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Abstract

My thesis focuses on two main problems in studying the heat equation: Control problem and
Inverse problem.

Our first concern is the null controllability of a semilinear heat equation which, if not controlled,
can blow up in finite time. Roughly speaking, it consists in analyzing whether the solution of a
semilinear heat equation, under the Dirichlet boundary condition, can be driven to zero by means
of a control applied on a subdomain in which the equation evolves. Under an assumption on
the smallness of the initial data, such control function is built up. The novelty of our method is
computing the control function in a constructive way. Furthermore, another achievement of our
method is providing a quantitative estimate for the smallness of the size of the initial data with
respect to the control time that ensures the null controllability property.

Our second issue is the local backward problem for a linear heat equation. We study here the
following question: Can we recover the source of a linear heat equation, under the Dirichlet bound-
ary condition, from the observation on a subdomain at some time later? This inverse problem
is well-known to be an ill-posed problem, i.e their solution (if exists) is unstable with respect to
data perturbations. Here, we tackle this problem by two different regularization methods: The
filtering method and The Tikhonov method. In both methods, the reconstruction formula of the
approximate solution is explicitly given. Moreover, we also provide the error estimate between the
exact solution and the regularized one.

In order to approach the two above results, the observation estimate at one point of time for
a linear heat equation plays an significant role. This well-known estimate can already be found
in many literatures. However, a full version of the proof for this estimate is presented here as the
author desires to make a self-contained discussion.






Introduction

It is well-known that the heat equation, which describes the distribution of heat in a given
region over time is a model for many diffusion phenomena. The interest on studying the heat
equation relies not only in the fact that it is a model for a large class of physical phenomena but
also one of the most significant partial differential equation of parabolic type.

My thesis focuses on the three following topics about the heat equation:

1. The observation estimate at one point of time for a linear heat equation: the estimate on the
energy at some point of time on the whole domain in terms of the energy at the same time
but on a subdomain;

2. The null controllability for a semilinear cubic heat equation: the property that there exists
a control function which leads the solution of a cubic semilinear system from a small given
data at initial time to be null at final time;

3. The local backward heat problem: the problem of reconstructing the solution at initial time
from the observation on a subdomain at some time later.

Now, suppose that € is denoted an open, bounded domain in R”(n > 1) with C? boundary 0.
We will give an abstract of our results as well as our methods for solving the three above problems.

1. The observation estimate at one point of time for a linear heat equation.

This issue on the observation estimate at one point of time for a linear heat equation is
studied in the first chapter of my thesis (see Subsection 1.2.3).

i/ Problem

We consider the following linear heat equation, under the Dirichlet boundary condition:
Ow—Av=0 in Q x (0,400),
v=0 on 99 x (0,4+00), (1)
v(-,0) =2 € L3(Q).

Our target is finding the answer for the question:

What can we conclude about the energy at some point of time on the whole domain when
we observe the energy at the same time on a subdomain?

ii/ Main result

The answer is presented in the following estimate, which named the observation estimate
at one point of time (see Theorem 1.8):
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Let w be a nonempty, open subset of 2 and T be a positive number. Then there exist
K1 >0, Ky >0and € (0,1) depending on 2 and w such that:

Ko _
lo T2y < Kre o(, DIl 100112t (2)

Thus, if the energy at some point of time on a subdomain equals 0 then so does the
energy at the same time on the whole domain.

The first application of this result is the observability estimate (see Theorem 1.7), which
is the key tool for studying our first main concern - the null controllability.

The second application of this result is the impulse controllability (see Theorem 1.11),
which plays an important role in tackling our second main issue - the local backward
problem.

Idea of method

The idea of our method comes from the logarithm convexity method, which has been
introduced by Agmon and Nirenberg [AgN]:

Let f be a positive smooth function defined on an interval D such that In f is a convex
function. Then for any t¢1,t3 € D, any k € (0, 1) so that (1—k)t; +kto € D, the following
estimate holds

F((L = k)t + ko) < f(t1) 7 ft2)F. (3)

By applying this method for the function ¢ — [, [v(x,t)|*dz, we obtain the following
well-known estimate:

t 1—4
oG D)2y < oG Dl e 100N athy YO<E<T. (4)

Now, with the observation restricted on a subdomain, we use a weight function £ =
&(x,t) € C°(Q x [0,T]) in order to remove the energy on the domain 2\ w. Precisely,
we consider the logarithm convexity of the function below:

W(t) = /Q (o (e, £)2eE@D . (5)

Indeed, the computation of the second derivative of the function ¥ involves some bound-
ary terms which can be dropped with a star-shaped assumption. To overcome this geo-
metrical assumption, we follow the strategy below.

Strategy
The strategy for getting our main result is decomposed into three following steps:

e The first step is constructing the local observation estimate: for any xy € €1, any
R > 0 and any § € (0, 1] such that Q N B(xzg, (1 + 2§)R) is star-shaped with respect
to xg, then for any 0 < r < R satisfying B(zo,r) € 2, we obtain:

< o —o
loC D)l 2 @nBao.r)) < CeT 00 T2 (20, 10° 1200y (6)

for some C' > 0 and ¢ € (0,1).
e The second step is replacing the ball B(xg,r) by the subdomain w. The used tech-

nique is the propagation of smallness, i.e constructing a sequence of balls chained
along the curve (see Figure 1).



CONTENTS

Figure 1 — Propagation of smallness

Figure 2 — Cover )

e The last step is covering 2 by dividing €2 into two parts: The interior 25 which
can be covered by balls being strictly inside © and the neighbourhood of 9Q (see
Figure 2). Thanks to the fact 2 is bounded with C? boundary, there is a finite set
of (x;, R;,0;) € Q2 % [Ri X (0, 1},2' = 1,2,...., M such that QN B(.Ti, (1 + 26Z)RZ> is
star-shaped with respect to z; and

00 c | J(@QnB(zi,Ry)). (7)

i=1

2. The null controllability for a semilinear cubic heat equation.

This topic on the null controllability for a semilinear cubic heat equation is the main concern
in the second chapter of my thesis. This result is also presented in my first publication [Vol].

i/ Problem
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We consider the cubic semilinear heat equation complemented with initial and Dirichlet
boundary condition in R®* x [0,7] (T > 0), which has the following form:

oy —Ay+vyy*=1,f in Qx(0,T),
y=0 on 90 x(0,7), (8)
y(~,0) = yO € L2(Q) )

where v € {1, —1}, 1,, denotes the characteristic function of w and f denotes the control
function acting on w x (0,7).

Our target is finding the answer for the following question (named null controllable at
time T property):

Is there a control function f € L*(wx (0,T)) which leads the solution of the above system
from a given data y° at the initial time t = 0 to be null at the final time t =T ?

Main result

In this writing, we provide two answers for the null controllability of the cubic semilinear
system, based on the fact that the blow up phenomenon appears or not:

— When the blow up phenomenon occurs (v = —1), under an assumption on the small-
ness of the initial data in H}(Q), the answer is yes, i.e the system (8) is null control-
lable at time T' (see Theorem 2.1).

— When the blow up phenomenon does not occur (y = 1), under an assumption on the
smallness of the initial data in L?(Q2), the answer is yes, i.e the system (8) is null
controllable at time T' (see Corollary 2.1). This result is a direct corollary from the
result for blow up case, thanks to the regularity property of the solution.

Furthermore, the construction of the control function is explicitly given and the small-
ness of the initial data is quantitatively estimated.

Idea of method

The idea of our method is based on an iterative algorithm of Liu, Takahashi and Tuc-
snak (see [LiTT]): Firstly, based on the null approximate controllability property of a
homogeneous linear system (see Theorem 1.9), we construct the null controllability for
a linear system with an outside force; Secondly, thanks to the idea of the Banach fixed-
point theorem, we utilize an iteration argument by treating —yy® as an outside force.

Strategy

For considering the null controllability of the linear system with an outside force (see
Theorem 2.2 for case the initial data belongs to L?(€2) and Corollary 2.2 for case the
initial data belongs to H}(£2)), we follow the following strategy:

e The first step is dividing [0,7] into small intervals of time [T}, Tk+1] (K > 0) by
taking

T
Ty =T — — forsome a>1. (9)
a

e The second step is separating the controlled system with the outside force into two
systems: One is with outside force, without control and another one is with control
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and without outside force such that the initial data of one system is the final data of
the other (see more detail in page 52-54).

e The third step is using the null approximate controllability of the controlled system
without outside force (see Subsection 1.3.1) to construct the null control function for
the controlled system with outside force. The key tool is using the following argu-
ment:

The fact that Hgbe% leo, ;22 () < oo for some M > 0 implies ¢(:,T") = 0.

3. The local backward heat problem.

The local backward heat problem is solved in the third chapter of my thesis. This problem
is also considered in my writing [Vo2]. Now, let us set up our problem.

i/

iii/

Problem

Let w be a nonempty, open subset of 2. We consider the following heat equation under
the Dirichlet boundary condition:

Ou — Au =0 in Qx (0,7),
u=0 on 092 x (0,7, (10)
u(,T)=Fe L*(w) .

Our target is finding the answer for the question (named the local backward problem):

Given § > 0 and b5 € L*(w) such that ||F — 5|12y < 8. Then can we construct an

operator which maps F5 to some g5 such that |[u(-,0)—gs||z2(q) < €(0) where €(0) 220 o7

Main result

Under a priori condition on the initial data, the answer for above question is yes (see
Theorem 3.2). Precisely, when 6§ < 1, if u(-,0) € HZ() then we can construct an
approximation gs from the given data fs and § such that

1
1\ "2
Ju0) ~aslzze <€ (w3) ()
where C' > 0 depends on , w, T"and [|u(-, 0)|| g1 (-

Furthermore, the reconstruction formula of the approximate solution g is explicitly given
in (3.176). In addition, the error estimate between the exact solution u(-,0) and the reg-
ularized solution gs is also computed in (3.177).

Idea of method

In order to get our main result, a natural idea is firstly connecting the information on a
subdomain with the solution on the whole domain, then secondly recovering the initial
solution from what we have known about the solution on the whole domain.

The idea for the first step is from [GaOT], who determines the spatial dependence f(x)
of the source term in a heat equation dyu — Au = f(z)o(t), assuming o(¢) is known,
from a single internal measurements of the solution in w x (0,7). The reconstruction
formula is associated to a family of null control acting on (0, 7) where 0 < 7 < T. Here,
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our observation is available on w x {T'}. Hence, our reconstruction is involved in a family
of impulse controls acting on w x {T'} (see Lemma 3.1).

The idea for the second step comes from [Se2]. In this work, under the assumption that
u(-,0) € L?(Q), the author constructs the solution u(-,t) (¢t € (0,7)) from the approxi-
mation data of u(-,T)|q by using a special filtering method. The idea of his method is
using a filter in the eigenfunctions decomposition of the solution in order to eliminate
the high frequency components. The error estimate by this method is of Holder type
§7. This has no meaning for the case t = 0 but the convergence is optimal in sense
of Tautenhahn (see Theorem 3.4). Hence, we will improve this method to recover the
solution at time ¢ = 0, whose convergence is also optimal (see Theorem 3.5).

Strategy

The strategy for constructing the regularized solution by the filtering method is pre-
sented in the following steps:

e In the first step, we will get the information of the solution at time 37 on the whole
domain, based on the given data s at time 7" on a subdomain. The key tool to get
this target is the null approximate impulse controllability (see Theorem 1.11) of the
dual system. This property provides us a family of the impulse control functions
acting on w x {T'} which leads the solution from e;(i = 1,2, ...) at initial time to be
null approximately at time 27. Then, thanks to the property that > e 2MT < oo,

i>1
we construct the approximate data f, of u(-,37")|q. Here A; and e; are respectively
the eigenvalues and the corresponding eigenfunctions of the Laplacian, under the
Dirichlet boundary condition.

e In the second step, we solve the backward problem (see Theorem 3.1): recovering the
initial solution from the noisy data at time 37 on the whole domain. The approximate
solution is constructed as below

o= ;min{eB)‘iT, o) ( /Q W,,(z)ei(a:)dx) . (12)

The important point in this step is choosing a suitable parameter « in order to
get minimum error. In the error estimate, we have split the total error into an
approximate error, which tends to 0 as @ — oo and a data error, which explodes as

a—00:
total error < approximate error + data error. (13)
N———
_1 <a
S(na)™2 ~

To get a good approximation, we have to balance these two error terms by a good
choice of the parameter «.

Combining the results in two steps, we obtain our desired result.



CONTENTS

Structure of the thesis

The content of the thesis is separated into three chapters:

Chapter 1: In this Chapter, we recall the important properties (well-posedness, spectral theory,
controllability) as well as the necessary estimates (energy estimate, regularity estimate, back-
ward estimate, stability estimate, observability estimate) for the linear heat equation, under the
Dirichlet boundary condition. These results are the preliminaries for our concerns in next chap-
ters.

Chapter 2: In this Chapter, we study the null controllability of a cubic semilinear heat equation.
We present a constructive way to compute a control function which leads the solution of a cubic
heat equation, under the Dirichlet condition, from a given data at time 0 (which is small enough)
to null at a given final time 7. Furthermore, the smallness of the initial data with respect to the
final time T is also given in a quantitative estimate.

Chapter 3: In this Chapter, we discuss about the backward problem and local backward problem
for the linear heat equation, under the Dirichlet boundary condition. Precisely, we approximately
recover the initial data from the observation on the whole domain (backward problem) or on a
subdomain (local backward problem). Two different regularization methods are used: the Fil-
tering method and the Tikhonov method. Furthermore, we also study the optimality of our
regularization method in sense of Tautenhahn, which concerns the best possible case error for
identifying the approximate solution. In addition, by using a technique of changing variable, we
also solve the backward and local backward problem for the time dependent thermal conductivity
heat equation.






Chapter 1

Preliminaries

In this chapter, we recall the main results on the properties for a solution of the heat equation,
which is the simplest example of a parabolic equation, under Dirichlet boundary condition. Fur-
thermore, the topic of observability estimate, which has many important applications in control
theory, is presented with detailed proof. One of these applications, null approximate controllability
and null controllability, is reminded by a constructive way of a control function. They are primary
results for studying null controllability for semilinear heat equation (see Chapter 2). Moreover, the
null approximate impulse controllability which connects the backward problem and local backward
one (see Chapter 3) is also studied. The main content of each section in this Chapter is shortly
given as below:

Section 1.1: We focus on the well-posedness (Subsection 1.1.1) of the problem of finding the
solution of heat equation, under Dirichlet boundary condition and the given initial data. Moreover,
the explicit formula of the solution with respect to the initial data is given by the decomposition
in Hilbert basis (Subsection 1.1.2). The classical estimates for solution of this problem are also
mentioned: energy estimate (Subsection 1.1.3), regularity estimate (Subsection 1.1.4), backward
estimate (Subsection 1.1.5) and stability estimate (Subsection 1.1.6).

Section 1.2: We study an interesting estimate which says: if v|,x 0,7y = 0 then v = 0 where v
is the solution of heat equation, under Dirichlet boundary condition and w is any open subdomain
(Subsection 1.2.1 ). In order to study how people solved this problem in the past, Subsection 1.2.2
is recommended . The main point to get this estimate is the observation estimate at one point
of time (Subsection 1.2.3). In Subsection 1.2.3, we will firstly provide some preliminary lemmas
(see 1.2.3.1) and then give the proof in two different geometry conditions: when Q is convex (see
1.2.3.2) and when Q is C?, open and bounded (see 1.2.3.3). The proof of main results (Subsection
1.2.4) as well as the preliminary results (Subsection 1.2.5) will complete this section.

Section 1.3: We concern about an important issue in control theory: Controllability. Precisely,
we construct a control function which leads the solution at a given point at initial time to a
desired point at final time. When the control function acts on w x (0,T), if final data gets null
approximately, we call null approximate controllability (see Subsection 1.3.1), if final data gets
null exactly, we call null controllability (see Subsection 1.3.2). When the control function acts on
w x {T} and final data approximates to zero, we name null approximate impulse controllability
(Subsection 1.3.3).

11



1.1. HEAT EQUATION

1.1 Heat equation

1.1.1 Well-posedness

The term well-posedness stems from a definition given by Jacques Hadamard. He claims that
a mathematical model for a physical problem has to be well-posed in the following sense.

Definition 1.1. (see [Ev, p.7] or [Ki, p.9])
A given problem for a partial differential equation is well-posed if
i/ The problem has a solution;
it/ The solution is unique;
i1/ The solution depends continuously on the given data.
Now, we study on the well-posedness of a heat problem: Let 2 be an open bounded domain

in R"(n > 1) with a boundary 99 of class C2. We consider the following heat equation under the
Dirichlet boundary condition:

(HP) Given v° € L*(Q), find a solution v: Q x [0,4+00) — R such that

Ov—Av=0 inQ x (0,400),
v=20 on 9Q x (0, 400), (1.1)
v(-,0) = ° in Q.

It is well-known that (HP) is well-posed in sense of Hadamard, thanks to the following theorem:

Theorem 1.1. (see [CaH, Pro.3.5.2, p.42])

There exists a unique function v(x,t) satisfying (HP) and
1. v € C([0,00); L2(2)) N C*((0, 00); L2(£2)),
2. Av € C((0,00); L2(Q2)),
3. v e C((0,00); HY(Q)).

In addition, we have:

I Hllz@ < 100012y Ve > 0. (1.2)

Furthermore, the explicit formula of the solution with respect to the initial data will be obtained
by the following fundamental theory.

1.1.2 Spectral theory

The unique solution of problem (HP) can be given by a decomposition in a Hilbert basis, thanks
to the following theorem:

Theorem 1.2. (see [Br, Th.9.31, p.311])
There exists a sequence of positive real eigenvalues of the operator —A (with Dirichlet boundary
condition), which denoted by {\;}i>1 where

(1.3)

O< A <A< A3< .,
A; —> 00 as i — 00.

Moreover, there exists an orthonormal basis {e;}i>1 of L*(Q), where e; € H} () N C>(Q) is an
eigenfunction corresponding to \; such that

—Aei = )\iei n .

12



1.1. HEAT EQUATION

In order to study more about the property of eigenvalues {\;}, we recommend the readers to
[He| or [BuH]. Here, we use this theorem to solve (HP) by a decomposition in a Hilbert basis of
L?(Q). Precisely, we seek a solution v of (HP) in the form of a series

v(z,t) = Zai(t)ei(x). (1.4)

i>1
The fact that v is a solution of (HP) requires the functions a;(t) satisfy

ai(t) + Aiai(t) = 0,
3" ai(0)e;(z) = 0°.
i>1
Thus, we get a;(t) = a;(0)e™*i* and a;(0) = [, v°(z)e;(x)dz. In conclusion, the unique solution of

(HP) is
v(nt) = </Q vo(x)ei(x)dx> e Mt (1.5)

i>1

1.1.3 Energy estimate

Here, we recall a basic estimate for the heat equation, which is based on the non-increasing
property of the "energy" function E(t) := 3 [, [v(z, t)[*da.

Theorem 1.3. (see [CaH, Pro.3.5.5, p.43])
Let v be the solution of (HP). Then the following estimate holds

”U('vt)HL?(Q) < eihtHUOHm(Q) vt > 0.

1.1.4 Regularity estimate

Let us move to another basic estimate for solution of (HP), which is called the regularity
estimate on smoothing effect of the heat equation.

Theorem 1.4. (see [CaH, Pro.3.5.2, p.42])
Let v be the solution of (HP). Then the following estimate holds

1
||V'U('7t)HL2(Q) < EHUOHLZ(Q) vt > 0.

1.1.5 Backward estimate

Our target in this subsection is looking for an estimate of the form
00| z2q) < constant||v(-, T)| r2(a) (1.6)

where v solves (HP) and T denotes a positive number. This estimate (1.6) is called "backward
estimate" for heat equation, which gives the uniqueness of solution for the backward heat problem.

Theorem 1.5. (see [BaT])
Let v be the solution of (HP) and T be a positive number. If v° € Hi () and |[v°]|2(q) # 0 then

02
113 @)
[|v

/Gl
10|22y < e "2 [v(, T) L2 (0 - (1.7)

13



1.2. OBSERVABILITY ESTIMATE

1.1.6 Stability estimate

The backward estimate shows how [|v°||12(q) depends on [[v(-,T)||12(q). Next, the stability
estimate in this subsection will tell us how |[v(-,t)||z2(q)(t € (0,T")) depends on [[v(-,T)| z2(q)-

Theorem 1.6. (see [Ve, p.432] or [Pa, p.11])
Let v be the solution of (HP) and T be a positive number. Then the following estimate holds for
any t € (0,T):

1— 4 1
lo( )220y < 10l o D - (18)

The result in Theorem 1.6 is obtained by using the logarithm convexity method for the function

f@) = [ vz, t)|*d.

1.2 Observability estimate

In this section, we concern about another well-known estimate named observability estimate
which is not only mathematically interesting but also has important applications in the control
theory of the heat equation, such as: Bang-bang control (see [PhW2]); Time optimal control (see
[PhW2]|, [PhWZ] or [ApEWZ]); Null controllability (see [Zu3]| or [ApEWZ]); etc. Now, let us state
the main result of this section.

1.2.1 Main result

Theorem 1.7. (see [DuZZ, Th.A, p.2])

Let w be a nonempty, open subset of Q, v be the solution of (HP) and T be a positive number. Then
there exist positive constants C1 and Cy depending on Q and w such that the following assertion
holds:

C
[o(-, Tl z2() < Cre ™ [|v]| p2(wx (0.1))- (1.9)

Remark 1.1. 1. The estimate (1.9) is so called an observability estimate which asserts that
the energy of solution concentrated in w yields an upper bound of the energy everywhere in
Q. Here, because of the strong irreversibility of the heat equation, the constant in (1.9) grows
exponentially as T — 0.

2. The constants C1 and Cy in (1.9) depend on the geometric properties of Q and w. Under the
special geometric condition on the domain, that is: Q) is convexr or star-shaped with respect
to g € 2 such that {x : |x — 20| < r} Cw for some r € (0,1), how the constant C; and Cy
depend on w are explicitly computed. Precisely, in [Ph, Th.1.1, p.2], the authors gives that:

Ce 1
[0(-s T) | 220y < Cee ™ T |[0]| 12 (wx (0,7)) - (1.10)

for some positive constant C. depending on e and max{|r —zo| : © € Q. Recently, the authors
in [LauL] improve the result of [Ph] by providing

2
[o(-, T) | r2(q)y < CelClnr] +C)%||U||L2(w><(0,T))- (1.11)

for some positive geometric constant C (see [LauL, TH.1.3,p.4]).

1.2.2 State of art

There are extensive literatures on the subject of finding the observability estimate (1.9). Let
us now discuss some of well-known methods.

14



1.2. OBSERVABILITY ESTIMATE

1. Global Carleman inequalities: The idea to use Global Carleman inequalities for establish-
ing the observability estimate is firstly given by Emanuvilov (see [Em]) in 1995. Then, thanks
to the advantage that getting explicit bounds on the observability constants and application
for general parabolic equations, this method is widely used by many researchers such as:
Fursikov ([Ful] or [Fu]), Fernandez-Cara, Zuazua ([FeZ2|, [DuZZ]), etc.The complete proof
can also be found in the book of Tucsnak and Weiss (see [TuW, Th.9.5.1, p.313]).

2. Spectral estimate: An interesting characterization of the observability estimate in terms of
the spectrum of Laplacian, which also named Lebeau-Robbiano spectral inequality, has been
derived by Lebeau and Robbiano in [LeR]. This method can also be found in [Zh], [Mi3],
[ApEWZ], [FeZ1] or [MiZ].

3. Logarithm convexity method: Recently, Phung and all (see [PhW1], [PhW2], [PhWX],
[PhWZ] or [BaP]) provide a new method, which is independent with the two above methods.
Their strategy is based on the logarithm convexity method to find an observation estimate at
one point of time, and then apply the telescoping series method to get the desired estimate.
This method can also work for the parabolic equations with space-time coefficients (see
[BaP]). In what following, we will use this method to give the proof of Theorem 1.7.

1.2.3 Observation estimate at one point of time

In this subsection, we will study an estimate which is the key point for the proof of Theorem
1.7.

Theorem 1.8. (see [PhWZ, Le.5] or [BaP, Th.4.1])
Let w be a nonempty, open subset of 2, v be the solution of (HP) and T be a positive number.
Then there exist positive constants K1, Ko and p € (0,1) depending on Q,w such that the following
estimate holds:
L2 I 01—
lol T2y < Kae P ol Dl 0153t (1.12)

Remark 1.2. 1. Theorem 1.8 has an interesting meaning that is: If v = 0 on w x {T'} then
v=0onQx{T}.

2. When Q is convex, the constants K1, Ko and u are explicitly computed (see Subsection
1.2.3.2). The interested readers can compare with [PhW1, Pro.2.1], [PhW2, Pro.2.2] or
[BaP, Th.4.2].

3. The estimate (1.12) is equivalent to the following Lebeau-Robbiano spectral inequality (see

[PhWX, Th.2.1]): There exist positive constants K3, K4, depending on Q and w so that for
each X > 0 and each sequence of real numbers {a;};j>1 C R, we get

3 0y < Ka [ S ajes . (1.13)
Aj<A @A <A

It is also called the observability estimate for the spectrum of Laplacian. The key ingredient
for this equivalence is the eigenfunctions decomposition of the solution of (HP) given by (1.5).

4. The estimate (1.12) can be improved by the following estimate (see also [PhWX, Th.2.1]):
There exist positive constants Ks, Kg, depending on  and w so that for any B € (0,1), one
has

K¢ _
o)Ly < Kse T ol T 001500, (114)
One application of this estimate is minimal norm impulse control (see [PhWX, Th.3.4]).

1.2.3.1 Preliminary lemmas

The key tool for the proof of Theorem 1.8 is the logarithm convezity method for the following
function

/ lv(z, t)2e$ @D de, (1.15)
Q
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1.2. OBSERVABILITY ESTIMATE

where ¢ is some weight function. In [PhW1], [PhW2], [PhWZ], [PhWX] or [BaP], they use the
following weight function
fat) = =B Py gy (1.16)
z,t) = ———— — —In(T — .
T NT—t+p) 2 P
for xg € Q and p > 0. With such choice of the weight function, the constants in final estimate
(1.12) depend on the dimension n of the domain. In [Ph], the author improves their result by
removing the dependence on the dimension n with another choice of weight function, which is

—|z — x0?

T i) (1.17)

{(z,t) ==
In [Ph], the author combines the logarithmic convexity with the Carleman commutator in order
to get an abstract result for any weight function satisfying some assumptions. Here, for simplicity,
we will use the same technique in the previous works but with the new weight function (1.17).
First of all, let us count on some properties of the weight function defined in (1.17):

(P1) 9,6+ |VE]> =0,
(P2) V¢ = o=z

2(T—t+p)’
(P3) AE = g,
= 57—~ 1, where I, 1s the identity matrix of size n.
P4) V¢ T %er)I here I,, is the identi ix of si

Now, we consider the first derivative of the function defined in (1.15) by Lemma below.

Lemma 1.1. Let 9 be an open set in R™ (n > 1), xg € 9, w € H*(0,T; H} (9)), p > 0, £ be defined
in (1.17) and ¥ : [0,T] — R such that

(t) = /19 lw(z, t)>es @D da, (1.18)

Then the following assertion holds for any time t > 0

U'(t) = 2/w(x,t)(@tw—Aw)(amt)eg(x’t)dx
9
-2 t)[2ef @) dg — L\If t).
[ 190 0pest=0as - 2ot
(1.19)
Next, we define another function N : [0, 7] — R satisfying
2 [, |[Vw(z,t)[2es@Nd
N(t) = Jy V(@ O™ Ddz - n (1.20)
Ly lw(z, t)[2eé @D da 2(T —t+p)
Then the estimate (1.19) can be written as
V() + NOU(E) = 2 / w(z, 1) (@w — Aw) (2, £)eS@D da, (1.21)
9

The next lemma will provide us the estimate of N'(t).

Lemma 1.2. Suppose all the assumptions of Lemma 1.1 are satisfied and ¥ is convex or star-shaped
with respect to xg. Let N be defined as in (1.20). Then we get the following estimate

N/(t) < N(t> fﬂ |atIU("IZ,t) — Aw(x7t)|2ef(w,t)dx

1.22
“T—t+p Ly lw(z, t)[2es @ da (1.22)
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1.2. OBSERVABILITY ESTIMATE

In the proof of Theorem 1.8 when © is C?, open and bounded (convex or non-convex), we need
two more technical lemmas. The first one is used to estimate the rest term, which appears in the
localization.

Lemma 1.3. (see [Ph, Le.2.2, p.12])
Let zo € Q, R >0, § € (0,1] and v be the solution of (HP). Then there exists 0 < h < min{1, T
such that the following estimate holds for any T —h <t <T:

Jol° @[ dr  asger

<e
1* da

fQﬁB(aco,(1+5)R) |v(x,t)

Here

1 2 (eajm%) 2 [ |00 (z)[2dx )

—=-—=n
h  (6R)? anB(zO,R) |v(z, T)|2dx

The second lemma is used for covering the neighbourhood of the boundary.

Lemma 1.4. For any z € 0N, there exist xg € Q and R > 0 such that z € B(xo,R) and
(x —xo)v > 0 for any x € 92 N B(xg, R) where v is the unit outward normal vector to x.

Now we can start the proof of Theorem 1.8 by the simple case when ) is convex.

1.2.3.2 Case when  is convex

We divide the proof into several steps: Step 1 constructs ordinary differential equations (ODEs)
which are applications of Lemma 1.1 and Lemma 1.2; Solving these ODEs, Step 2 provides us Holder
estimate; In Step 3, we take off the weight function and make appear the local term; Lastly, by
choosing suitable parameters, Step 4 and Step 5 will give us the final result.

Step 1: Construct ODEs.
Taking xy € w and p > 0, we define the weight function £ : Q x (0,7") — R such that

—|z — x0|?
)= ol 1.23
£o.0) = T (1.23)
Let v be the solution of (HP). We consider the following functions
U(t) = [ |o(x,t)]2ef @ dz (1.24)
Q
and
2 [, |Vo(z, t)]2ef @) d
N(t) = JoIVo(@, OP et Dde | n (1.25)
Jo lv(z, t)[2ef @D da 2T —t+p)
Applying Lemma 1.1 and Lemma 1.2 with § := Q, w := v, we get from (1.21) that
W (t) + N()T(t) =0 (1.26)
and from (1.22) that
N{(t)
N(t) < ————. 1.27
0 < 70 (1.27)

Step 2: Solve ODEs.
Let 0 <t; <ty <ts <T, we will solve ODEs (1.26) and (1.27) from Step 1 on (¢1,%2) and (t2,t3)
respectively. From (1.27), we get

(N@t)(T —t+p)) <. (1.28)

17



1.2. OBSERVABILITY ESTIMATE

For t; <t <ty

Integrating (1.28) over (t,t2) gives us

T—ta+p

N(t) > Nt .
(t) (t2) T—t+p
Combining (1.26) and (1.29), we obtain

T—ta+p

U'(t) + N(tz2) T i1,

It is equivalent to

(\Iz(t)eN(tz‘)(T*tﬁP) Jo ﬁ)' <0.

Integrating (1.30) over (t1,t2), one has

T—t1+p

U(ty) > \I/(tQ)eN(tz)(T—tz—&-p) In 7=4e

It deduces from (1.31) that

eV (E2)(T—t2+p) < (\I](tl)) In 51;3 )

For ty <t < t3

Integrating (1.28) over (t2,t) gives us

It deduces from (1.26) and (1.33) that

T—ta+p

W' (t) + N(ts) T i1,

U(t) > 0.

It is equivalent to

(\If(t)eN<t2><T—tz+p) Js ﬁ)’ >0.

Integrating (1.35) over (ta,t3) gives us

T—to+p

U(ty) < ‘I/(t3)6N(t2)(T_t2+p) In =350 .

Now, combining (1.32) and (1.36), one gets

U(ty) < \I’(t:;)(qj

where

T—ta+p
_ T—ts+p
T T—ti+p°
In T—ta+p

In

It implies from (1.37) that

U(tx)TM < (L)W ()M,

Step 3: Choose suitable t1,ts,t3, take off the weight function and make appear w.

Remind that

lz—=zq|2
() = / o, ) Pe” T .
Q
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1.2. OBSERVABILITY ESTIMATE

Now, for any ¢ > 1 such that {p < %, choosing t1 =T — 20p, to =T — Lp, t3 =T , we get from
(1.39) that

|z—zq|? 1+M
</ lv(z, T — £p)|2e” TT+0p d:r)
Q

z—aq|? |o—a ‘2 M
< </ "U(LC,T)|2€_‘ i dx) (/ lv(x, T — 2£p)|26_4<1+20€>Pd$> . (1.41)
Q Q

On one hand, we consider the term on the left-hand side of (1.41):
Put R := max |z — x| then
Q

TE
L e \NTTM meaia L \M
‘@(x7 T — gp)‘ e 20+0r dx > e A0+0e |’U(:E, T— Ep)| dx . (142)
@ Q

Applying the energy estimate, that is

/ lv(z, T — £p)|*dx 2/ |v(z, T)|*dz, (1.43)
Q Q
one obtains

g _lz—wgl? 1M _R2(4M) 9 T
/ |v(z, T — £p)|“e” 10F0r dx > e A0F0r / |v(z, T)|*dz . (1.44)
Q Q

On the other hand, we consider the terms on the right-hand side of (1.41):
e For the first term, in order to make appear w, take 0 < r < R such that B(zg,r) C w, we

have
—lz—=g|?
/|v(z,T)\26 1 dx
Q
Ce— a2 Co—wnl2
_ / lo(z, T)|2e 5" d:c+/ o(z, T)2e— 5" da
B(zo,r) Q\B(zo,r)
7_2
< / |v(x,T)|2dx+ew/ (e, T)2dz
B(zo,r) Q\B(zo,r)
L2
< /|v(x,T)|2dx+e*@/ lo(z, T)|2dz
w Q
r2
< /|v(x,T)|2dx+ew/ 100 () 2dz. (1.45)
w Q

The first inequality comes from the fact that

—lz—zg|?

e~ % <1 Vze B(xg,r) (1.46)

and

—le—xg|? 2
e~ <e T VreQ\B(zo,r) (1.47)
The second inequality is based on the fact that B(zg,r) C w and Q\ B(zo,r) C Q. The last
inequality is obtained thanks to the energy estimate.

|z—=zq]

e For the second term, using the fact that e 40+20» < 1 and the energy estimate, which is

/|v(x,T72£p)|2dx§/ |00 (2)|*de, (1.48)
Q Q

|z —2g]? M M
(/ lv(z, T — 20p)|?e” TTT07 da:) < (/ |v0(x)|2dx> . (1.49)
Q Q
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1.2. OBSERVABILITY ESTIMATE

Now, combining (1.41), (1.44), (1.45) and (1.49) gives us

2 e R2(14 M) 2 07,712 M
</ |v(z, T)| dx) < eTiFne (/ |v(x, T)| da:) (/ [v° (2)] da:)
Q w Q
RZ(+M) _ 2 1+M
e TN, (/ vo(ac)|2dx) . (1.50)
Q
Step 4: Choose suitable /.
Now, recall that
In ;—izip
o —t3Tp
M = - T—ti-i—p . (1.51)
T—ta+p
With above choice of t1,ts,t3, one gets
In(1+¢)
=T 1.52)
1120 (
In 1";@
Thanks to the fact that £ > 1, we obtain ﬁ"‘—ff =2 m % Hence, one has
In(1+¢
L < B0 gy (1.53)
In2
2

Notice that the estimate (1.50) still holds with M replaced by M,. Indeed, the estimate (1.50) can
be written as

2 1+M 2 2 2 5
Q’U X Q’U X

Thanks to the fact that fQ [v(z, T)Pdx < [, [0°(2)|*dz, one gets

(W>1+M > (W)HM, (1.55)

Jo 0@ Pdz Jo [0 @)Pdz

Hence, the following estimate holds

1+M, R2(1411,) M,
</ |v(x,T)|2dx> < e ATEDp /|v(x T)|?dx (/ |00 (x |2dx)
Q
R2(1+My) 2 1+MM,
+e 1TF0e 4P (/ |00 (z)] dac) . (1.56)

Now, in order to make the estimate (1.56) has the form A < e“(?) B + e~C) D for some positive
constant C'(p) depending on p, we choose £ > 1 such that

R2(1 +M4) r2
_ < — 1.57
414+0)p ~— 8 ( )

Remind that

In(1+¢
1< = BLEO (1.58)
3
n3
Hence, we get
R?*(1+M;)  2R°M,  R*In(1+/) (1.59)
A1+0p 41 +0p 21+ L)pnd '
Moreover, using the fact that In(1 + ¢) < % V0 < e < 1, one yields
R*(1+ M, R? R?
(1 + M) (1.60)

< < .
41+ 0)p 2e(140)1=¢pInd = 2el1~<pln 3
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Combining (1.57) and (1.60), we can choose ¢ such that

R2 742
3T o (1.61)
2ell~¢plng  8p
Precisely, we can take ¢ as below
1
4R? \T*
(= (EMDQ . (1.62)

Such choice of ¢ implies from (1.56) that

1+M, 2 M,
(/ |v(a7,T)|2dx) < e (/ |v(z,T)|2da:> (/ |v0(x)|2da:>
Q w Q
2 1+M,
+e s (/ |vo(x)|2dw) . (1.63)
Q
Step 5: Choose suitable p.

The estimate (1.63) holds for p < % Now, for p > 7 which implies % < 4T, we can get the
following estimate be true for any p > 0

(/Q |v(x,T)|2dx>1+Me < B (/ |v(x,T)|2dx> (/ |vo(x)|2d33>Me
b G (/ 00 ( dx)HMe. (1.64)

Now, in order to minimize the right-hand side of (1.64) with respect to p, we choose p such that

S (/Q |v0(:c)|2dx)l+Mz = % </Q |U($aT)|2dx)1+sz (1.65)

E [y [00(x) 2da \ T
5 — =92 4T _— . 1.66
€ € (fg |v(z T)| dx ( )

With such choice of p, it deduces from (1.64) that

(/Q |v(x,T)|2dx>2(1+M£) < 4o (/ lo(z, T)| dm) (/ 100 (x)| dx)MMe, (1.67)

It is equivalent to

that is

1+2M,

P 2(1+JVI[) 2 2(1+M£)
/|U:L‘T|d1’<( ﬁ/\ (2, T)] dx) (/ |00 ( d;v) . (1.68)

This completes the proof of Theorem 1.8 with Ky = 44<1+1Me) , Ko = and p =

1
16(1+M ) 2(1+My) -

1.2.3.3 Case when 2 is C2, open and bounded

When Q is C2, open and bounded, we will use the covering argument to cover Q by finite
number sets QN B(x;, R;)(i = 1,2,..., N) where N € N* and QN B(z;, (1 + 26;)R;) is star-shaped
with respect to z; € Q for some 6; € (0,1] (see Step 8). Furthermore, in order to reach w,
we will use the propagation of smallness (see Step 7). However, the difficulty when we work on
the local star-shaped ©Q N B(z;, (1 + 20;)R;) is that the Dirichlet boundary condition: v = 0 on
(2N B(x;, (1+26;)R;) does not hold any more. Hence, we need to use a cut off function x which
is null on OB(z;, (1 4+ 24;)R;). The appearance of this cut off function makes appear another term
¢ (xv) — A(xv). In order to estimate this term, we will use the technical Lemma 1.3 (see Step 3).
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For the rest of the proof, we use the same technique in proof when () is convex (see Subsection
1.2.3.2).

Step 1: Construct ODEs.
Let o € Q, R > 0, ¢ € (0, 1] such that QN B(z, (14+2J)R) is star-shaped with respect to zg. Let us
define the cut off function: Define x € CZ(B(zo, (1 + 26)R)) satisfying x = 1 in B(zo, (1+ 20) R)
and 0 < x(z) <1 Vx € B(zo,(1+26)R). Then xyv € H'((0,7); H (2 N B(zo, (1 + 20)R))). Let
p > 0, we define two following functions:

U(t) := / Ix(z)v(z, t))?es @D dz. (1.69)
QNB(zo,(14+26)R)
and
N(t) o ZfQﬂB(mo,(l—i-Qé)R) |V(X(x)v(x,t))\Qeg(”’t)dx n n (1 70)
fQﬂB(Io,(l-‘rQé)R) Ix(@)v(z, t)[ef@Ddx 2T —t+p)

Apply Lemma 1.1 and Lemma 1.2 with ¢ := QN B(zo, (1 + 20)R) and w := xv, we get

'(t) + N()¥(t) = 2/mB( s X(@)v(a, )9, (x(2)v(z, 1) = A(x(z)v(x,1)))et D da (1.71)

and

Nty < VO Jpinann ROE@E@D) - Ao )P de

- T - t + P fQﬂB(ﬂ’)o’(l_;'_Qé)R) |X(-’L‘)U($, t)‘Qeg(w’t)d{L'

Now, using the Cauchy-Schwarz inequality and the inequality that 2ab < a? +b? Va,b > 0 for the
right-hand side of (1.71), we get

V() + NOW(E)| < Ix(z)v(z, t)|?ef @D dz

/S)ﬂB(:co,(1+26)R)
4 / 18, (@), £)) — A(x(@)o(e, 1) @D da.
QNB(zo,(14+26)R)
(1.73)
Put

) o 200 PN 1) = B0 )P o
: anB(xo,(1+25)R) Ix(z)v(z,t)[2et @D dx . .

Then, one gets from (1.73) and (1.74) that
|W/(t) + NP ()| < (1+ G(t)¥(t). (1.75)

Moreover, we also get from (1.72) and (1.74) that

N'(t) < N(®)

< T+, +G(b). (1.76)

Step 2: Solve ODEs.

Let 0 <t; <ty <tz <T, we will solve ODEs (1.75) and (1.76) from Step 1 on (¢1,t2) and (t2,t3)
respectively. From (1.76), we get

(N(A)(T —t+p)) < GE)T —t+p). (1.77)

For t; <t <ty

22
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Integrating (1.77) over (t,t3) gives us

N(E2)(T —ts+p) = N@O(T —t+p) < [G(S)(T_Hp)ds

< (T—-t+p) G(s)ds.

It implies from (1.78) that

T—t b2
N = N [T e
t

On the other hand, it implies from (1.75) that
U(t)+ N@t)W(t) < (1+ G(t)) U(t).

Combining (1.79) and (1.80), we obtain

T*t2+’0 /t2
- 2rtE_ N < 0.
T ) s —1-a0) v <o

W'(t) + (N (t2)
It follows from (1.81) that
(\D(t)eN(tg)(T—tz-i-p) St e — ()2 G(s)ds)t—t— [ G(s)ds)’ <o.
Integrating (1.82) over (t1,t2), one has

T—ti4+p [t

U(t) > \I,(tz)eN(tQ)(Tfterp) In 7= 42 —([/2 G(s)ds) (ta—t1) = (t2—t1)— [} 2 G(s)ds

It deduces from (1.83) that

1
T—t1+p

eN(tg)(Tftg%»p) < (igil) e(fttf G(s)ds)(t27t1)+(t27t1)+ftt12 G(s)ds) I —Fs .
2

~

For to <t < i3

Integrating (1.77) over (to,t) gives us

T—ty+p 1 t
N(t) < N(t2)T—t+p+T—t+p/G(S)(T_S+p)ds
ta
T*tgﬂ*p Tt2+,0/t3
< N(t G(s)ds.
S NG gy by ). G6)

On the other hand, it follows from (1.75) that
W(t)+ N@E)P(t) > — (1+ G(t) U (2).
Combining (1.85) and (1.86), yields

T7t2+p T*fQ‘FP
T—t+p T—ts+p

U (t) + (N (t2)

to

It follows from (1.87) that

!
(\I}(t)eN(tz)(T—t2+l)) J§ 7o+ (2252 [ Glo)ds+1) t+ ) G(s)ds) >0.

Integrating (1.88) over (to,t3) gives us

T*‘2“’+(T*t2+” s G(s)ds+1)(t37t2)+jf23 G(s)ds

U(ty) < W(ty)e DT TG

T—tz+p

23
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Now, combining (1.84) and (1.89), one gets

U(ty) (o M
U(t) < U(ts) <\1/(t;)e(f“ G(s)ds+1)(ba—t1)+ [y GWS)

e (FEHF8 i3 Gldett) (to—ta) [ Gile)ds (1.90)
where
1n; izi”
. —t3Tp
M - W. (1-91)
T—to+p
It implies from (1.90) that
W)Y < () W(ty)M [ (T L Glods) (to—t) (P Gloyds | 100),
(1.92)
Step 3: Estimate ft s)ds for some 0 < t; < t3 <T.
Recall that
0 . FBtenrranm P 0) = A, ) )
. anB(ID,(1+25)R) Ix(x)v(z,t)[2es @D da . .
Firstly, we estimate [ 5, 105 r) [0t (X(@)0(2, 1)) — A(x(z)v(z, 1)) [2ef @D dy,
We have
O(xv) — A(xv) = x0w — V(Vux +ovVy)
= x0w — 2VxVv — Axv — xAv. (1.94)
Thanks to the fact that 0;v — Av = 0, one gets
O(xv) — A(xv) = —Axv — 2Vx V. (1.95)

Moreover, the fact that x = 1 on B(xo, (1 + %6) R) implies that Ax = 0 and Vyx = Ogn on
B(xo, (1 + %6) R). Here, Og» denotes the null vector in R”. Thus, we obtain the following equality

/ 0i(x(@)ol. 1) — Al(@(a, ) Vda
QNB(z0,(14+28)R)

/ |Ax(z)v(z,t) + 2V x(2)Vo(z, t)|2ef 0 d
QNB(zo,(1426)R)

/ |Ax(z)v(z,t) + 2Vx(2)Vo(z, 1) 2ef @D de.  (1.96)
QNB(zo,(1+28) R)\ B(zo,(1+34) R)

Now, taking off the weight function £ = ;(lff:iﬁlpz) from the right-hand side of (1.96) and using the

fact that N B(zo, (1 +20)R) \ B(wo, (1 + 36) R) C Q gives us

/ |Ax(z)v(z,t) + 2V X (2)Vo(z, )2 @ da
QﬂB(wo,(l+2§)R)\B(w0, 1+ 5) R)

1+35 2R2
Ce~ 4(T t+p) (/ |1) x, t 2dx+/ |VU z,t 2d$> (1~97)

where C' := 4max{||Ax||%,4/|Vx|%}. By using the energy estimate

/le(m,t)\des/QwO(x)de

24
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and the regularity estimate

1
/\Vu(x7t)|2dx§—/ |00 (x)|?dz,
Q 2t Jo

we obtain

1+"a 2R2
/ 19, ((@)o(2, 1)) — A(x(@)u(a, 1) PeEED de < o= Tt ( )/ [o°(z)Pda
QN B(z0,(1426)R)

Secondly, we estimate fQﬁB(zg (1426)R) Ix(z)v(z, t)]?es® ) de.
The fact that x = 1 on B(wo, (1 + 36) R) gives us

/ M@lanPede > [ x(@)oe, O da
QNB(zo,(1426)R) QNB(zo,(1+36)R)
= / lv(z, t))?es @D dx
QNB(xo,(1+56)R)
2 p2
S = / v(z, t)|2da.
QNB(z0,(146)R)
Lastly, combining (1.98) and (1.99), one yields
2455)9R2 2
G(t) < 0677(4&_2@) Jo [V (@) dx - (1 + 1) .
fQﬂB(wo,(1+6)R) v(z, t)[?dx 2t
Now, apply Lemma 1.3, one gets: there exists i < % such that
f \v 2dx (14+8)6R?
5 <e 2 VI —h<t<T.
meB(wO,(1+5 [v(,t)|2dw
Thus, it follows from (1.100) and (1.101) that
2+35) S R? 2
G(t) < o~ M cgen (1 + 21t> .
Suppose t; < t < t3 satisfy
_(2+30) 3R (1+6)6R> _ 0
4T —t+p) 2h -
It is equivalent to
24326
T—t < h.
TSI
Thus, with £ := % = g — 1%5 < g, ift >T + p— Eh then we get
Gty<c(1+ !
- 2t )

Hence, for any t1,t3 > 0 satisfying max{T + p — EA, T — h} < t; < t3, we conclude that

i3 1
/ G(s)ds < C [tg —t1+-In ] .
t

25
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Step 4: Choose suitable t1,to, t3, take off the weight function and make appear w.

Now, for any £ > 1 such that £p < min{z, Z, %h} we choose
tlzT—%p ;tQZT—fp ;t3=T. (1107)

In order to estimate fttf G(s)ds with t1,t3 chosen as above, we check t; > max{T + p—Eh, T — h}.
Indeed, we have

tlzT—%pzT—%ShzT—h. (1.108)
On the other hand, the fact that £ > 1 gives us
th—T—p=—(1+20)p>—-3lp> 725712 —&h. (1.109)
It implies that t; > T 4 p — Eh. Thus, we get from (1.106) that
/ G(s)ds < C [%p—i— 1 n T% } C (1 + 1n2> = Const. (1.110)

Let us recall the Holder estimate (1.92) from Step 3

\I/(t2)1+M < \If(tg)\I’(tI)MeKlJ'_T 212 ftf13 G(s )ds‘)(ta t1)+ft~3 G(s)ds](l—i—M).

(1.111)
Thanks to (1.110), the term in (1.111) is estimated as below
[(1+T tte fts G’(s)ds) (ts—t1)+[* G s)ds}(HM)
< 1+ Const)2tp+Const] (1+M)
< CHEM) (1.112)
for some constant C' > 0. Remind that
() = / (@) (z, £) |26~ H5 da. (1.113)
QN B(z0,(1426)R)

As a consequence, it deduces from (1.111) that

1+M
|lx—zg|?
/ Ix(@)v(z, T — bp)[2e™ 7007 da
QN B(zo,(1420) R)
—|lz—=z ‘2
< CL+M) / |X($)’U($,T)‘Qe ol
QNB(zo,(1+20) R)

M
Jz—=zq|?
« / (2)o(z, T — 20p) 2~ 85 d | . (1.114)
QN B(z0,(1425)R)

On one hand, we consider the term on the left-hand side of (1.114): We have

|z —x \2
/ Ix(x)v(z, T — €p)|2e_4(17#3)“191j
QN B(zo,(14+25)R)

_ (1+28)2R?
> e 40+0p

/ Ix(z)v(z, T — £p)|*dz. (1.115)
QNB(x0,(1426)R)
Thanks to the fact that x = 1 on B(zo, (1 + 26) R), one gets

X(@)o(@,T — tp)Pde > / (@)o(e, T — £p)2da
QNB(z0,(1+25)R)

= / |v(z, T — £p)|*dx
QNB(zo,(1+56)R)

/ lv(z, T — £p)|*du. (1.116)
QﬁB({L’o, 1+5

/QﬂB(zo,(lJrZJ)R)

v
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1.2. OBSERVABILITY ESTIMATE

Thus, it follows from (1.115) and (1.116) that

14+M
|lz—zq|?
/ Ix(z)v(z, T — £p)|2e™ T0+05 da
QNB(zo,(1+20)R)

(1+28)2R%2(1+M) M
> e A0FDe / |v(z, T — £p)|*dx . (1.117)
QNB(zo,(14+0)R)

On the other hand, we consider the terms on the right-hand side of (1.114):
e For the first term, thanks to the fact that 0 < x(z) <1 Vz € B(xo, (1 4+ 20)R), one has

—zn|2 —|e—=zg|?
/ N@ela TP do < [ folar, T)2e ™" da.
QNB(z0,(1+286)R) QNB(z0,(1+20)R)
(1.118)
Now, take 0 < r < R such that B(zg,r) C 2, we have
/ jo(a, T)2e 5 da
QNB(x0,(1426)R)
< / lu(z, T)|%e™ dm+/ o(e, T)|2e 5" de
B(zo,r) (QNB(z0,(1426)R))\ B(z0,7)
7‘2
< / |u(a:,T)|2dx+ew/ lo(z, T)|2dz
B(zo,r) Q
7‘2
< / |v(:c,T)|2dx+e*@/ 100 () 2d. (1.119)
B(zo,r) Q

e For the second term, thanks to the fact that 0 < x(z) < 1 Vz € B(zo,(1 + 20)R) and
|z—=zq|2

e 10+200 < 1, we get

[)ﬂB(wo,(1+26)R)

M
/ |o(x, T — 20p)|*dx
QNB(zo,(1+26)R)

M
|z—zg|?
|X($)U(:L'7 T — 2€p)|26_4(1+8)pdx)

<
< /Qv(x,T—%p)|2dac>M
< (/QUO(:C)de)M. (1.120)

Thus, combining (1.114), (1.117), (1.119) and (1.120) gives us

+M
/ lv(z, T — €p)|*dx
QNB(z0,(1+26)R)

Co(Laan QE202R2040) ) o o \M
< CH+M) ==, / lv(z, T)|*dx / [v° (2)]|*dx
B(zo,r) Q
2 p2 M
4O+ SR 2 (/ 100 ()] dx) , (1.121)

Step 5: Choose suitable /.

Recall that for £ > 1, we have 1 < M < M, := mﬁ%@ (see Step 4 of Subsection 1.2.3.2 for case
2
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Q convex). We claim that the estimate (1.121) still holds when M is replaced by M. Indeed, the
estimate (1.121) can be written as

1+M
fQﬂB(J;O,(1+26)R) lv(z, T — lp)Pdz
NEERE

22 v(z,T)|*dz 22
(CE(+M) (1+26)( R QM) fB(IO r) o )7 CZ(HM)e(Hza) RZ(A+M) _ r2

< aaroe i, (1.122)

- Jo 100 (2)|2dx
We have

/ |v(x,Tf€p)|2dx§/|v(z,T—Ep)|2d:c§/ |00 (z) | d. (1.123)
QNB(xo,(14+26)R) Q Q

Hence, with M, > M, one gets

1+ M 1+M
JonBao,ar20m) V(@ T = lp)|*dx ’ _ Jons o, (1425)r) V(@ T — £p)[*dx (1.124)
Jo 100(2)|?dx - Jo [00(2)]2dx T

It means the following estimate holds

1+ M,
/ |v(z, T — £p)|*dx
QMB(z0,(14+26)R)

(1+28)2R2 (14 M) M,
< CHFM) oty / lv(z, T)|*dx (/ |00 (z 2d$>
B(xo,r)
(1425)2R2(1+ M) 7, 1+M,
+3CZ(1+M£)€ I(150)p —arn,  — % </ |'U | dgg) . (1.125)

Our target is choosing ¢ > 1 such that

2 p2 2
(1+28)2R%(1 + My) < (1.126)
4(1+0)p 8p

With the same argument in Step 4 of Subsection 1.2.3.2 for case {2 convex, we can choose /¢ as
below

(= (WW>” Ve € (0,1). (1.127)

21n 3
er ln2

Such choice of ¢ implies from (1.125) that

1+My
/ lv(z, T — £p)|*dx
QNB(z0,(1425)R)

’7‘2 M(
< CHITM) / |v(x, T)|*dx </ UO($)|2d$>
B(zo,m) @
- 1+ M,
+eCHO+M) — 55 </ |u0(x)|2dx) . (1.128)
Q

On the other hand, in order to estimate the term on the left-hand side of (1.128), we apply again
Lemma 1.3:

lv(x, T — £p)|?dx > |v(x, T — £p)|*dx

/QﬁB(a:o,(lJrzS)R)
2
e Rt / |00 (x)|?d. (1.129)
Q

/QOB(:I:O,(lJrQJ)R)

v
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Applying the energy estimate, which says: [, [v°(2)[*dz > [, |v(z, T)[*dz, yields

/ (2, T — £p)[2dz > e / lv(z, T)|2dz. (1.130)
QNB(z0,(1426)R) Q

Combining (1.128) and (1.130), one obtains

1+M, o 5 M,
(/ |v(:v,T)2dx> < (Ceres (/ |v(x,T)2dx> (/ |v0(x)|2dx)
Q B(wo,’l‘) Q
o 5 1+ M,
+C’ef6_gip (/ |’UO(:C)|2dI’> . (1131)
Q

Here, the constant C' depends on R, ¢ and 4, not depends on & and p.
Step 6: Choose suitable p.

The estimate (1.131) holds for p < $ min{3,Z, £:}. Now, for p > $ min{3, 2, €%} which implies

2 j we can get the following estimate be true for any p > 0.

1+M, o 2 M,
(/ |v(a:,T)2d:v> Ceresr / |v(z, T)|da (/ |vo(sc)|2dx)
9) B(xoﬂ“)
c 7%2 1 T £h 1+M,
+ Cere  atETE (/ [0 (a |2dx) .

2
r
8p<

IN

(1.132)

Now, we choose p such that

that is .y
£ (flv |2d:c>”

Jo lv(z, T)|2dz
With such choice of p, it deduces from (1.132) that

(frereae) ™" < otk ([ wenpar) ([ werae) ™

(1.133)

St

for some constant C = C(r, ¢, R,d) > 0. Let us recall Lemma 1.3 that

2, 2 )|%d
1 = L)an (el?z(l-&-T) fﬂ [V (@) da > . (1.134)

h (6R JanB(.R) Iv(x7T)I2dx
Hence, one has
2
2 (6R)?
o = [B0r3) 2ol @)Pde . (1.135)
fQﬂB(mmR) |’U(J)7T)|2dl'

Thus, it implies from (1.133) and (1.135) that

2(14My) 0 2d %
(/ lv<w,T)|2dw) et (el
Q x, T)|" dx

fQﬁB(mO,R) Kl

) </B<wo,r> ”(x’T”de) ( |vo(x)2d$>l+2M[ 7
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for another positive constant C' not depending on 7. On the other hand, using the fact that

/|v(a:,T)|2dx2/ lo(z, T)[2dz, (1.137)
Q QNB(zo,R)

one has

2C
2(1+Mz)+w

( / v(x,T)|2da:>
QﬁB(Io,R)
o 1+2M£+(6R)2
< 067/ lv(z, T)|*dx </ |vo(:c)2dm> . (1.138)
B(zo,r) Q

Therefore, we obtain the following local observation estimate: For any xg € €, any R > 0, any
0 < 6 < 1 satisfying QN B(xg, (14+2J)R) is star-shaped with respect to g, any 0 < r < R satisfying
B(xg,r) € Q, there exist C > 0 and o € (0,1) only depending on R, r and § such that

e l1—0
/ lv(z, T)|*dx < CeT / lv(z, T)|*dx (/ |UO($)|2dx> .
QNB(zo,R) B(zo,r) Q

Step 7 Make appear w by propagation of smallness.
Suppose zp € Q, R > 0 and 0 < § < 1 satisfy QN B(xo, (1 + 2§)R) is star-shaped with respect
to zg. Let 0 < Kk < % and z; € Q(j =1,2,...,m)(m € N;m > 1), we can construct a sequence of
balls {B(2, %)} ;c17 such that the following inclusions hold
1. B(zm, k) Cw;
2. B(xzj_1,k) C B(xj,2k) ¥j=1,2,..,m
3. B(zj,2k) €QVj=1,2,.m+1.
According to the locally observation estimate in Step 6, one has: There exist C' > 0 and
€ (0,1) such that

(1.139)

/ |v(z, T)|*dx
QOB(Io,R)

< (ce% /B(W)| o(e, T)| d:z:) (/ e |d:c> s (1.140)

Thanks to the fact B(zo, ) C B(x1,2k), we get

/ lv(z, T)|*dz < / lv(z, T)|dz. (1.141)
B(zo,k)

B(z1,2k)

Now, due to the fact B(x1,2k) € (2, one has: there exists § € (0,1] small enough such that
B(z1,2(1 4+ 20)k) € . Now, applying the local result from Step 6, one obtains: There exists
Cy1 >0 and o7 € (0,1) such that

/ |v(z, T)|>dx
B(z1,2k)

1—01
< <Clech/ (e, T)| d:zc) (/ 00 (2 da:) . (1.142)
B(z1,K)

Repeat the same technique, one yields

/ |v(z, T)[*dx
QQB(CEQ,R)

< Ko </B(IM)| (2,7)] da:) (/ 100 (2 |2dx> , (1.143)
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where
K, =CoC]7 C37172..Coto2om, (1.144)
Ky =Co + Ciooy + Cao010 + ... + Cpyo,...09010, (1.145)
ki =00109...0m,, (1.146)
kr = 1l—c+(1—-01)o+(1—02)0104+...4+ (1 —0m)om—1...010
= 1—00109...0m. (1.147)

Thanks to the fact that B(z,,, k) C w, one gets
/ lv(z, T)|*dx
QNB(zo,R)
k1

< K </wv(33,T)|2dx)kl (/Q |v0(x)|2dx>1_ . (1.148)

Now, we can conclude that: For any non-empty subset w of Q, for any zg € 2, any R > 0 and
any ¢ € (0, 1] such that QN B(zo, (1 +20)R) is star-shaped with respect to xg, there exist Ky > 0,
Ky > 0and k € (0,1) satisfying

/QQB(%}R) lo(e, T)Pde < Kie ™ (/w |v(m,T)|2dm>k </Q |v0(x)2dx>1k. (1.149)

Step 8: Recover 2.

Thanks to the fact that Q is bounded, we can cover the interior of Q by finite number of balls
which are inside €. For covering the neighbourhood © of the boundary, we use Lemma 1.4 to
cover O by finite sets QN B(z;, R;) (1 = 1,2,..., M) where M € N* and QN B(z;, (1 + 26;)R;) is
star-shaped with respect to x; for some small §; > 0 (i = 1,2, ..., M). Thus, there exists N € N*
satisfying for i = 1,2, ..., N, there exist z; € Q, R; > 0 and §; € (0, 1] such that QN B(x;, (14+25;)R;)
is star-shaped with respect to z; and

QC Lj\j (Q N B(SL’Z,Rl)) (1.150)

i=1
Hence, applying the local result from Step 7, we get

/Q|v(x,T)|2dx

N

Z/ lo(z, T)2dz
QNB(z;,R;)

i=1

im,ie?‘i (/w |v(az,T)|2dx)kt (/Q |v0(x)|2dx)l_

< K (L |v(a:,T)2dm>M(/Q |v0(x)|2dx)1_u. (1.151)

Here, K1 = N max K;; , Koy= max Ky; , p= min k;.
i€[1,N] i€[1,N] i€[1,N]

This completes the proof of Theorem 1.8.

IN

ki

IN

1.2.4 Proof of Theorem 1.7

Now, we move to the proof of Theorem 1.7. First of all, we state the following lemma, which is
a direct corollary from Theorem 1.8.
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Lemma 1.5. Let v be the solution of (HP) and T be a positive number. Then there exist positive
constants My, Mo and 0 depending on Q0 and w such that the following estimate holds for any
e>0: )
Mo
MieT™
[o(, T)I72 () < (59 ) [o(, D720y + €2 10°172 () (1.152)

The proof of Lemma 1.5 will be found in Subsection 1.2.5.5.
Now, we start the proof of Theorem 1.7. The idea of this proof is based on the telescoping series
method (see [PhW2]), i.e using the following fact

E (¢m — ¢my1) = ¢ if lim ¢, = 0.
m—00
m>1

First of all, we construct a sequence of time as below: Let [, := alm (a > 1 will be chosen later).

Then {l,, }m>1 is a decreasing sequence and [, T

Step 1: Prove that: There exist M; > 0, M3 > 0 and 6 > 0 such that for any ¢ > 0, the
following estimate

Moy 2
Miet~tm+2
[0 lm) 1220y = €210, bnr2) 1720y < —— | Gt [

holds for 0 < ly4o < lmy1 <t <lp.
Indeed, Lemma 1.5 gives us: There exist M; > 0, My > 0 and 6 > 0 depending on 2, w, such that
for any € > 0 and any t > [,;, 12 the following estimate holds

My 2

Mye™his
[0, )1 720y < — [o(, )1 720y + 200 lns2) 1720y - (1.153)

On the other hand, with ¢ < [,,,, the energy estimate says

[l Z2 0y < G O Z20)- (1.154)
Combining (1.153) and (1.154), one yields

Mo 2
Miet=tm+2
oG )@y = e meo) ey < | 2 | oD (1.155)

Step 2: Make appear integration with respect to ¢.
Integrating (1.155) over (Lyn+41,lm) gives us

bm oMy 2
| e o e

lm+41

Mi\?
(i = ) (ol By = b ) < (75

20
(1.156)
Using the fact that ¢t > [,, 11, we get
2M

2
My \? eTmrttmiz
W@%N%m—ﬁvmmwmé@s<ge)

Im
| Il 157

lm - lm+1 lm+1
Furthermore, we also have

T(a—1)
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Combining (1.157) and (1.158), we obtain

M, 2 amtl 2Mya™+2 Im
oty = ol < (%) grampye T [ IOl

lmi1
(1.159)
Thanks to the fact that a > 1 and = < e® Va > 0, one obtains
am+1 am+2 am+2
< < eT(a—1), 1.160
Ta—-1) "Ta-1) ¢ (1.160)
It deduces from (1.159) and (1.160) that
2 2 2 Ml 2 (2M2+1)am+2 lm 2
G b )llz2 () = 00 i) 2 @) < {5 ) ¢ 7P /l [o(s )22 ) dt-
m+1
(1.161)
Step 3: Make appear terms in form ¢, — cgy1.
We can rewrite (1.161) with m = 2k as below
_ (2Ma+1)a?ht2 _ (2Ma+1)a2ht2
e T@0 (s, lax) 120y — 20 T@0 |u(, lakr2) 720
lak
< M?/ [0(s D12 0yt (1.162)
lag+1
_ (2Mo+1)a?kt?2
We choose € := e T(a=1) in order to get
_ (2Mo+1)a2k+2 _ (2Mg+1)a2k+2
e P o Lok ey — €T (o Lan) 720
lok
< M) ey (1163)
lag41

Now, our target is making appear the term c; — cx41 on the left-hand side of (1.163). Hence, we

choose a := ﬁ—gg > 1 for obtaining
_ (3+20)(2Mo+1)a?F _ (3+20)(2Mo+1)a2k+2
e Ty [o(-, la) 1720y — € TlemD [0(-, lak+2) 1 72(q)
lag
< Ml/ HU(',t)HQLg(W)dt. (1.164)
lakt1
Step 4: Use the telescoping series method .
Put
_ (3+20)(2Mo+1)a?F
k=€ T o Lkl 720y (1.165)

Then, thanks to the fact that a > 1, we have klim ¢, = 0. Now, taking infinite sum both side of
—00
(1.164), one has

Lok
Sl e MY [ ol (1.166)
E>1 E>17 b2kt

Using the fact > (cx — cgy1) = ¢y if lim ¢, = 0, one gets
E>1 k—o0

_ (3+20)(2Mo+1)a?

l2
o1 = IR () 2 < My / o D)2 . (1.167)
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For the left-hand side term of (1.167), we use the energy estimate, which is

(2172 () = IvC, )72 (0)- (1.168)
For the right-hand side term of (1.167), we use the fact that

lo T
|l < [ Il (1.169)

Combining (1.167), (1.168) and (1.169), we obtain
)P < My SRR [T e 1.170
[v(-, T) |72y < Mae | (-, N7 ) dt- (1.170)

This completes the proof of Theorem 1.7.

1.2.5 Proof of preliminary lemmas
1.2.5.1 Proof of Lemma 1.1
Remind that

U(t) = / lw(z,t)|?et @ da. (1.171)
9

We have
W' (t) :2/w(mﬁ)@tw(:mt)e{(x’t)dx+/ lw(z,t)|20:€ (2, 1)@ da.
9 9

In order to make appear the term 0;w — Aw, one has
V() = 2 /19 w(z, t)(Oyw — Aw)(z,t)ef @ dx + 2 /19 w(z, t) Aw(z, t)ef @V da
+ [9 lw(z, t)|?0:€ (x, t)ef @D da. (1.172)
Let us compute the second term on the right-hand side of (1.172) by using integration by parts
2/ﬁw(m,t)Aw(x,t)e§(m’t)dx
= —2/19 \Vw(z, t)[2e$ @D dy — 2 /ﬂ w(z, t)Vw(z, t)VE(z, t)e @D de
- —2/19 V(z, £)[2e5 D da — /9V(|w(a:,t)|2)vg(x,t)e€<m>dx.

(1.173)

We use the fact that 2wVw = V(Jw|?) to get the second equality. Integrating by parts the second
term in (1.173) gives

_/V(|w(x,t)P)vg(m’t)eg(w,t)dx
9

= /|w(x,t)|2Ag(m,t)efW>dx+/|w(x,t)\2|vg(x,t)|2e€<m>dx.
9 9
(1.174)
Combining (1.172), (1.173 and (1.174), we obtain

V() = 2 / w(w, ) (Ohw — Aw)(z, 1)e @D dx
?
_2/ |Vw(x,t)|265(”’t)dx—|—/|w(x,t)|2A§(x7t)ef(w,t)dx
L 9

—|—/|w(x,t)|2|V§($,t)\265(m’t)dx+/\w(m,t)|26t§(x,t)eg(m’t)dx. (1.175)
9 9
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Thanks to the property (P1) of the weight function, which is 9;¢ + |V¢|? = 0, one gets
v(t) = 2/ w(z, t)(Oyw — Aw)(z, t)eé ™D dy
9

—2 / Vw(z,t)[?et ) da + / (@, t)2AL(x, 1)t "D da.
v 9

Using the property (P3) of the weight function, which is A = 7@’ we get
v(t) = 2/w(x,t)(atw—Aw)(x,t)eﬂx,t)dx
9
o [ [Vwle ) PEEO G - e,
/ﬁl wle, (PN de = S w()

This completes the proof of Lemma 1.1.

1.2.5.2 Proof of Lemma 1.2

Step 1: Compute & ([, [Vw(z,t)[2e$@Ddz).

We have
4 /|Vw(x t)[2es @D dy
dt \ Jy ’

~ 9 / Ve, H0,(Vw(x, 1)) dz + / Vw(z, )20, (2, £)eS@ D da
9 9

Step 1.1: Compute A =2 [, Vw(z, t)0;(Vw(z,t))et @V dz.
By using integration by parts, we get

A = 2/Vw(x,t)V(@tw(x,t))eg(x"t)dx
¥

= —2/Aw(z,t)@tw(z,t)eg(x’t)dx—2/Vw(x,t)@tw(x,t)Vf(a:,t)eg(z’t)dz.
9 9

In order to make appear dyw — Aw, one gets
A = 72/ |5‘tw(x,t)|26£(z’t)d:z:+2/(8twfAw)(x,t)atw(x,t)eg(m’t)d:z:
9 9
72/ﬁtw(x,t)Vw(ac,t)Vf(:c,t)eg(m’t)dx.
9

Step 1.2: Compute B := [, |Vw(z,t)[20,&(x, t)et*H) da.
Thanks to property (P1) of the weight function, which is 9;¢ = —|V¢|?, we get

B= */ﬁ IVw(z,t)]*|VE(z, t) |2t Dda.
Notice that V(ef) = Vet hence B can be written as
B= —/19|Vw(x7t)|2V§(x,t)V(ef(””’t))d;v.
Now, by integrating by parts, one has
B - [9V(|vw(x,t)\?)vg(x,t)efw)dx + /9 V(e £)2AE(z, )@ dg

- |Vw(x,)|20,&(x, t)ef @D da.
99
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Next step is computing By := [, V(|Vw(z,t)[*)VE(z, t)es®da by using standard summation
notations

B = / Oi(|00(z, D)0, (w, s da
= /a w(z, )05 w(x, )€ (z, t)et ™ dx
= / (2, 1) Dyw(x, )D€ (x,1)e ™D da
72/19@w(:c,t)é)ijf(x,t)@iw(x,t)eg(gﬂ’t)d:c

—2 / djw(x, ) dyw(x, t)Di& (x,1)0;€ (1) et @D da
9

+2 . djw(x, 1) 0w (x, t)0i& (x, t)v; et @V da. (1.183)
Thus, we can write
B - -2 /9 Aw(z, ) Ve, t)VE(z, 1)@ do — 2 [9 Vel () V2E (e, ) Va(z, )0 do
—2/9\Vw(x,t)Vf(x,t)FeE(““t)dx+2/619|Vw(a:,t)IQGVE(x,t)eE(””t)da:. (1.184)

It follows from (1.182) and (1.184) that
B = —2/9Aw(w,t)Vw(x,t)Vg(x,t)ef(w’t)dx—2/19Vw(x,t)ng(x,t)Vw(x,t)ef(”“"t)dx
—2/19 |Vw(:1c7t)V«f(as7t)|265(”’t)da:—&—/619 |Vw(z, )20, (x, t)et @) da
—&-/19\Vw(x,t)|2A§(x,t)ef(”"t)dx. (1.185)

Step 1.8: Compute A + B.
We get from results (1.179) in Step 1.1 and (1.185) in Step 1.2 that

% (/19 |Vw(x,t)|2e€<m>dx) =A+B
S [9 10wz, 1) 25D dr + 2 [9 (0w — Aw)(@, Dy (x, )= dg
9 /19 (i, )V (z, ) VE (z, )N d — 2 [9 Aw(w, )Vw(e, ) VE(z, 1)@ da
9 /19 V(e )V2E (2, ) Vo (z, ) e @D dg — 2 /19 Vw(z, t)VE(z, £)2eE @D d
+/M\Vw(a:,t)|23y§(x,t)eg(m’t)dac+/9|Vw(1:,t)\ZAg(x,t)eé(z’t)dx. (1.186)
In order to make appear the term duw — Aw, we replace the fourth term in (1.156) by
2 [9 Aw(z, ) V(e )VE(z, 1)@ de
_ [9 (B, 1) — Aw(z, 1) Ve, ) Ve, )@ de

—2/ dyw(x, t)Vw(z, t)VE(x, t)es ™D dz. (1.187)
9
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It deduces from (1.186) and (1.187) that
4 / IV (z,t)2e$ @D de
dt \ Jy ’
= —2/ \3tw(as,t)|2e£(m’t)dx+2/(8tw—Aw)(x,t)@tw(:c,t)eg(m’t)dx
0 0
—4 / dyw(x, t)Vw(x, t)VE(x, t)et ™ dr + 2 / (Dyw(x, t) — Aw(z, 1)) Vw(z, t)VE(z, t)et @V da
0 9
72/ \Vw(x,t)Vf(:c,t)|265("’”’t)d:ﬂf2/Vw(:n,t)VQS(x,t)Vw(x,t)eg(w’t)dx
9 9
+/ |Vw(z,t)[20,¢(x, t)es ™D da +/ |V (z, t)2AE (2, 1)@V da. (1.188)
89 9
The sum of five first terms in (1.188) can be written as
1 2
—2/ <8tw(m,t) + Vw(z, t)VE(x,t) — i(atw(agt) - Aw(a:,t))) @)
9
1
—|—§/ |Byw(z,t) — Aw(z, t)[2ef@ D da. (1.189)
9

Thus, (1.188) is equivalent to

a 206(,0)
pr (/19 |Vw(z,t)|[“e dx

= —2[9 (@w(x,t) + Vw(z, t)VE(x,t) — %(&w — Aw)(z,t))Q £ gy
—1—% /19 |Ovw(z,t) — Aw(, 1) Pt da — 2/19V’w(l',t)v2§(;1;7t)vw(x’t)eﬁ(w,t)dx
+ M|Vw(:v,t)‘25u§(x,t)e§(w,t)dm—s—/ﬂ|Vw(:c,t)|2A§($,t)€€(a:,t)dx. (1.190)
Step 2: Estimate D := (& [ |Vw(z,t)2ef@Dda) ([, |w(z, )20 dz).

We will use properties of the weight function £ to compute the three last terms on the right-hand
side of (1.190).

Firstly, using the property (P4), which is V2¢ = mfm one obtains
—2/ Vw(z, t)V2E(x, t)Vw(z, t)es ™D dr = ﬁ/ |Vw(z, t)|?e$ @ de. (1.191)
4 _
Secondly, thanks to the property (P2), which is V& = —% and the assumption that ¢ is
star-shaped with respect to x(, we get a good sign for the boundary term
1
/&9 \Vw(z, t)20,&(x, t)et ™ dr = STt Loy |V (z, t)2v(z — x0)es@Ddz < 0. (1.192)
Thirdly, using the property (P3), which is A& = ﬁ?#»p)’ we get
/9|Vw(1:,t)\QAg(x,t)eg(z’t)dz = 2(T_t+/ lw(z,t)]?es® Y da. (1.193)

Combining (1.190), (1.191), (1.192) and (1.193), one obtains
2
D < —2/ <3tw(x,t)+Vw(ac,t)V§(x,t) - ;(&w—Aw)(x,t)) eg(w’t)dx/ lw(z, t)|?es @ da
i)

1
+§/ |(8tw—Aw)(x,t)|2ef(r’t)dm/ lw(z, t)[2e$@D da 4 /|Vw x,t)|?es @ dy
0 0

W
‘ﬁ/ jw (e, £)]%e$ D da / |Vw(a, t)[*et 1 de. (1.194)
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Step 3: Estimate E := — (4 [\ |w(z,t)[2e$®0dz) ([, |[Vw(z,t)[2eS®Ddz).
Our target is making appear the following term

/ <8tw(z, t) + Vw(z, t)VE(x,t) — 1(atw — Aw)(z, t)> w(z, t)et @Y dz. (1.195)
9 2

Step 8.1: Compute fﬁ IV (z, t)[2et @) da.
By integrating by parts, we have

/ |V (z,t)[2ef@) da:
9

—/Aw(x,t)w(x,t)eg(m’t)dx—/Vw(a:,t)w(x,t)Vf(x,t)eE(:”’t)dz
9 9

—/ (&gw(ac,t) + Vw(z, t)VE(x,t) — 1(8,gw - Aw)(m,t)) w(z, t)es ™D de
9 2
+% /ﬂ(@tw — Aw)(z, t)w(x, t)et @ de. (1.196)

Step 3.2: Compute 4 ([, |w(z,t)[2e$®Vdz).
Lemma 1.1 gives us (see (1.176))

d
—/|w(x7t)|2ef(””’t)dac
dt Jy
= 2/w(aat)(atw—Aw)(%t)e&(m’t)dx
0
—2/|Vw(m7t)|265(‘”’t)dm+/|w(:1c,t)\QAé(x,t)eg(”’t)dm. (1.197)
0 0
Using the result (1.196) in Step 3.1, one obtains
d
—/|w(m,t)\265(””t)dx
dt Jy

-2 <3tw(x,t) V(e OVE( 1) — (0w - Aw)(x,t)> (e e

v 2
—&-/((%w — Aw)(z, tw(x, )@V dx —|—/ lw(z, t)|2AE(z, £)ef@D da. (1.198)
K 9

Step 3.3: Compute F.

Combining (1.196), (1.198) and using the fact that 2(a + 3b)(a — 3b) = 24> — 3b?, we have

E = 2 </9 (@w(x,t) + Vw(z, t)VE(x, t) — %(atw — Aw)(:c,t)> w(m,t)eg(’”’t)dx)Q
_% </ﬂ(8ﬂu — Aw)(z, (e, t)eg(“)dx)z
([ e orage e ) ([ [woopeeoi). (1.199)

Step3.4: Estimate E.
For the first term of E, using the Cauchy-Schwarz inequality, we obtain

2 ( /19 <8tw(a:,t) + Vw(z, t)VE(x, t) — %(Btw - Aw)(x,t)) w(x,t)ef(wvﬂdm)?

2
< 2/ (@w(x,t) + Vw(z, t)VE(x, t) — %(@w - Aw)(a:,t)) eg(m’t)da:/ lw(x, t)>es @D da.
9 9
(1.200)
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For the second term of F, it is nonpositive.

For the third term of E, using the property (P3), which is A = we get

2(T:?+p)’
f/ |w(z,t)\zAg(x,t)eE(z’t)dz/ |V (z, t)[2e$ @D dz

= (TH/ lw(x, t)|?es® t)dx/ IV (z, t)[2e$ @D dz. (1.201)
—t+p)

Thus, F is estimated as below
1 2
E < 2/ (@w(m,t) + Vw(z, t)VE(x, t) — f(atw — Aw)(ac,t)) eg(m’t)da:/ |w(x,t)|265(m’t)dx
9 9

+(T_t+P/ lw(z, t)[2es @ t)dx/ |V (z,t)[2es @D d (1.202)

Step 4: Compute N'(t).
Combining (1.194) in Step 2 and (1.202) in Step 3, one gets

D+FE < %/ |(atw_Aw)(x’t)|2€£(w’t)dl'/|U/(.’K,t)|2e£(w7t)d1-
+ﬁ/ |Vw(z,t)|%e &(z, t)dx/ lw(z,t)|%e §@t) g (1.203)
Now, we can compute N'(t). We have
2(D+ E) n

([, lw(z, ) Pesnd)® 2T —t+p)?

L <2fﬂ|Vw(x7t>|2efw>dx . )
T—t+p\ [ylw(xt)PesENde  — 2(T —t+p)
[y 10w — Aw)(x, 1) 2e8@0 dx

Jy lw(a, 1) dz
N(t) [ (85w — Aw) (z, t)[2ef @D dar

= . 1.204
T—t+p * Ly lw(z, t)[2e @D de ( )

N'(t) =

IN

This completes the proof of Lemma 1.2.
1.2.5.3 Proof of Lemma 1.3

—lz—xql?
Step 1: Prove 4 (fQ |v(a:,t)|262<T—f«£ﬂ> d:v) <0 Vp>0 Vg, €.
We claim that

d ~
— (/ |v(x,t)|2e€<w>> dz <0, (1.205)
dt \ Jq
with £ € C(Q x [0, T]) satisfying
-1 -
i€ + 5|V§|2 <0. (1.206)
The weight function which is defined as below
: — |z — wo|?
t)i=————V 0 1.207
Eat) = gy s Vo> (1.20)
satisfies 0, + %|V§t|2 = 0. Hence we get
d 2 —|z—=q|?
— / [v(x,t)|“ex ™=+ dz | <O0. (1.208)
dt \ Jq
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Now, we will prove our claim. We have
4 </ |v(x,t)|2eé(w7t)> dz
dt \ Jo
= 2/v(x,t)@tv(x,t)eg(f’t)dm—|—/ \v(x,t)|28t§(x,t)e£(m’t)dx
Q Q
= 2/v(m,t)Av(m,t)eé(m’t)dm—&— \v(x,t)|28t§(x,t)eé(m’t)dx
Q Q
= —2/ \Vv(x,t)|zeé(z’t)da:—2/ v(x,t)Vv(x,t)Vf(x,t)eé(I’t)dx
Q Q
—|—/ |v(1:,t)|28t§(x,t)eg(z’t)d:c. (1.209)
Q

In the second equality of (1.209), we use the fact that d;v = Aw. In the third equality of (1.209),
we apply integration by parts for the first term. Now, thanks to assumption (1.206), yields

q 2 €(xt)
o (/Q lv(x, t)|%e dx

< 72/ |VU(:E,t)‘2€§"(I’t)d:c72/v(x,t)Vv(z,t)vg(x7t)e£(z,t)dx
“ Q
7}/ |v(x7t)|2|vg(l’7t)|2eé(th)d$
2 Ja
— —%/ (4[Vo(x, 1)]? + dv(z, ) Vo(z, ) VE(x, £) + |o(z, )2 VE(, 1)) @D da
Q
= —%/ (v(x,t)Vé(%t)+2vv(x7t))2 C
Q
o (1.210)

This completes the proof of Step 1.

Step 2: Make appear B(xo, (1 + J)R).
Integrating (??) over (¢,7) with 0 < ¢ < T, one obtains

12 —|z—wg|?
iz, T)2e™ 2 dz < [ |o(z,t)[2emT da. (1.211)
Q Q

Now, in order to make appear QN B(xo, (1 + §)R), we use the following fact

—lz—xg|?
/ \fu(ac,t)|2e2<T—7t+0ﬂ>dx
Q

—lz—xq —lz—=zg|?
= / |v(z, t)|26 2(T— t+ﬁ> dx + / |v(z, t)|2e ST dx
QNB(zo,(1+0)R) Q\B(zo,(1+0)R)

—( 5)2 2
/ (o, £)|2dz + e 2T v / oz, t)[2dz. (1.212)
QNB(zo,(14+6)R) Q

Thanks to the energy estimate, which is [, [v(x,t)[*dz < [, [0°(2)[*dz, we get from (1.211) and
(1.212) that

—lz—wgl|?
/ |v(z, T)| . dm</ lv(z,t)|?dx + e Sy / |00 (x)[2dz.  (1.213)
QNB(xo,(1+0)R)

Step 3: Take off the weight function.
On the other hand, we also have

/|vxT d$>/ |v(z, T)|?e
QNB(zo,R)

IN

lz— 10\2 .

dx > e 20 / |o(z, T)|*dz.
QNB(zo,R)

(1.214)
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Combining (1.213) and (1.214), one yields
2 5) R2
/ |v(a:,T)|2dmge%/ lo(, £) P + e Totr i /\U )[2dz. (1.215)
QNB(xo,R) QN B(wo,(1+5)R)

Step 4: Make appear A < e“?) B 4 e~ C() D for some positive constant C(p) depending on p.
Under the assumption that T'— dp <t < T, we get

1+ §)2R? R72 <_ SR?
2T —t+p)  2p 2p
Hence, it follows from (1.215) that

2
/ |v(m,T)\2da:§e§7/ lo(z, ) 2da + e~ /\v J2de.  (1.217)
QNB(z0,R) QNB(z0,(14+6)R)

Step 5: Choose suitable p.
Now, we choose p < min{1, £}, i.e 1 > 1+ 2 such that

(1.216)

/|v \dx—f -0 %>/ lv(z, T)[2dz (1.218)
QNB(zo,R)
or
1 2 2d
1_ 2 (e20rs)_ 2lel’@) S (1.219)
p  OR2 JonBas.ry V(@ T)[?dz

With such choice of p, it follows from (1.217) that

1 -B(1+2) 2 b 2
1——e 2 T [v(x, T)|*dx < e2¢ [v(x,t)]"dx. (1.220)
2 QNB(z0,R) QN B(z0,(145)R)

On the other hand, it deduces from (1.218) that
/ \o(z, T)[2dz = ze—%”;(“%)/ 100 () 2. (1.221)
QNB(zo,R) Q
Combining (1.220) and (1.221), one yields

1 2 2 2 2
2 (1 - e_R2<1+%)> 67%+%(1+%)/ 100 () |Pdx < e%/ lv(z,t)|?dz. (1.222)
2 Q QNB(zo,(1+8)R)

Thanks to the fact that

1 2
5 <1 _ 26%(1+%)> > 1 (1.223)
and
eF0E) >, (1.224)
we get
2
/ 100(2)[2de < " / lo(a, t)[2da. (1.225)
Q QNB(z0,(1+8)R)
Put A = dp then we can include that: for any % <T—h<t<T, the following estimate holds
0 2
o |[v*@)]" dx < (1.226)

2 —
fQﬂB(:pm(l—i-(S)R) lv(z,t)|" dx

2 2 2
1 = Lz In e%(l"'?) 2fQ |U ) dz .
h (0R) fQﬁB(mo,R) [o(z, T)[*dz

Here

This completes the proof of Lemma 1.3.
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y

Figure 1.1 — Ilustration for case 2D

1.2.5.4 Proof of Lemma 1.4

For simplicity, we will prove Lemma 1.4 in two dimensions n = 2. First of all, let us remind
the C? boundary definition.

Definition 1.2. (see [HaT, De.A.3, p.246])
Let Q be open and bounded in R2. We say 0Q is C? if O can be covered finitely by many open
balls B(z;,r;) in R? (i=1,2,..,N) for z; € 0Q and r; > 0 such that

an B(Zi, ’I“i) = B(zi,ri) N Ql with i = 1, 2, ceey N, (1.227)

where Q; are rotations of suitable special C? domains in R?.

Fix z € 00 and r, > 0. We have the illustrated situation where one may assume that 92 N
B(z,r,) can be presented in local coordinates by

Y2 =v(y1) with v € C*([-rs,72]),7(0) =0 and ~/(0) = 0. (1.228)

In these local coordinates, we have z = (0,0) and
QN B(z,7.) ={y = (y1,42) € B(0,72) 1 y2 > v(y1)}. (1.229)
Step 1: Prove that: there exists K > 0 such that
27/ (2) = 1(2)| < K|af? Va € [-r,7.]. (1:230)
Consider the following function:

g:[-r:r:] — R
r = ay'(z) —v(z). (1.231)

Thanks to the fact that v € C?([—r,,1.]), we get g € CY([~r,,7.]) with ¢'(z) = 27" (z). Since 7"
is continuous on [—r,,.], there exists K > 0 such that

/()| < K Yz € [-rs,r2]. (1.232)
It implies that

lg'(2)| < Klz| Va € [-rs,72]. (1.233)
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On the other hand, by using the mean value theorem, one has: For any = € [—r,,r,], there exists
t € (0,1) such that

g/ (tx) = g(x) — 9(0) = g(z). (1.234)
Combining (1.233) and (1.234), we get
l9(@)] < |g'(ta)llx] < Kltz|lz| < K|z, (1.235)

This completes the proof of Step 1.

Step 2: Choose zg € Q2 and R > 0.
Now, take R := min{H_#K7 %} and x¢ := (0, KR?).
Firstly, since KR?> = KRR < KﬁR < R, one has 0 € B(z, R).
Secondly, take x = (x1,22) € 02N B(zg, R) (|z1] < R). We claim that x € 92N B(0,r). Indeed,
one has

K
lz| < |z — 20| + |zo] < R+ KR*=(1+ KR)R < (1+ HK) R<2R<r,. (1.236)

Thus, we can write 25 = y(z1). The unit outward normal vector to = is computed as

1

= W(V@ﬂ = 1). (1.237)
Therefore, one has
(z —x0)v = W (217 (1) — y(21) + KR?) . (1.238)
Applying the result from Step 1, we get
lz17 (1) — y(z1)| < K|z1|* < KR (1.239)
It implies from (1.239) that
17 (x1) — y(z1) > —~KR2. (1.240)

Thus (x — x¢)v > 0. This completes the proof of Lemma 1.4.

1.2.5.5 Proof of Lemma 1.5

It implies from Theorem 1.8 that: There exist £; > 0, Ko > 0 and u € (0,1) depending on 2
and w such that

K2\ 2 2(1—
ol T2y < (Kae ™ ) ol DI 1175 (1.241)

Let € be a positive number. Applying the Young’s inequality ab < % + % for the right-hand side
of (1.241) with

K i 1 1=—p 2
o= (K1) ot Dl - 05 ) (1.242)
o
1 2(1—p)
b={e(2=) I ~ (1.243)
= 1— [ v L2(Q) N .
1 1
p=1 . 4= : 1.244
we obtain that the following estimate holds for any € > 0
Ko n 1—p
2 KIBT) (L= p)= 2 21,012
[v(, )72 < = oG, T 72wy +E7l10° 122 0)- (1.245)

E K
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Therefore, we get our desired estimate (1.152) with

This completes the proof of Lemma 1.5.

1.3 Controllability

The controllability of partial differential equations is an important area of research and has been
the subject of many papers, such as [Co], [FeG], [Fe2|, [Ful], [Li2], [Li3], [Mi3], [Zul], [Zu2], [Zu3]....
In this section, we present some of the recent progresses done on the problem of controllability of
the heat equation. Roughly speaking, it consists in analyzing whether the solution of the (HP) can
be driven to a given final target by means of a control applied on a subdomain of the domain in
which the equation evolves. On one hand, when control is added during the time from 0 until 7',
we concern two problems: The null approximate controllability (see Subsection 1.3.1) where the
solution at final time T' gets null approximately and the null controllability (see Subsection 1.3.2)
where the solution at final time T reaches zero exactly. These preliminary results are the key point
for our study of null controllability of semilinear heat equation, which will be presented in Chapter
2. On the other hand, when control is only added at one point of time T (called impulse control),
we study the null approximate impulse controllability (see 1.3.3) where the solution at final time
2T approximates to 0. Such result holds an important role in the topic of local backward heat
problem, which is concerned in Chapter 3.

1.3.1 Null approximate controllability

1.3.1.1 Introduction and main result

Let w be a nonempty, open subset of 2. Now, we analyze the null approzimate controllability
problem. Consider the following control system

O —Ap=1,f in Qx(0,7),
p=0 on 900 x(0,7), (1.247)
@(70) = SOO € LQ(Q) )

where T denotes a positive constant, 1, denotes the characteristic function of w and f € L?(w x
(0,T)) denotes the control function acting only on the set w x (0, 7). It is well-known that (1.247)
possesses a unique solution ¢ € C(0,7T; L*(Q)) N L2(0,T; Hi(Q)) (see [Co, Th.2.63, p.77], [Br,
Th.10.9, p.341] or [LiM]). Let us start with the definition of null approximate controllable property:

Definition 1.3. (see [Co, De.2.40, p.55])
System (1.247) will be said to be null approrimate controllable at time T if, for any e > 0, for
any ¢° € L?(Q), there exists a control f € L*(w x (0,T)) such that the associated state satisfies

o D2 < ellllzz@)-
This means that for every € > 0, for every ¢° € L?(Q2), the set
Cr,p0.. = {f € L*(w x (0,T)) : the solution of (1.247) satisfies [¢(-, T)||r2(0) < ell¢’|lr2(0) }-
(1.248)
is nonempty. It leads us to the definition of the cost of null approximate control

Definition 1.4. (see [FeZ2])

The quantity K(T,¢e) := sup inf || fllz2@wx(0,1)) 5 called the cost of null approvimate
90l L2y =1 fECT,00.

control at time T.

Now, we state a main result of approximate null controllability for the heat equation.
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1.3. CONTROLLABILITY

Theorem 1.9. (see [Mi3, Le.53.4, p.11])

The system (1.247) is null approximate controllable at any time T > 0. Moreover, for any e > 0
and any ©° € L%(Q), there exist positive constants C1,Co depending on Q and w such that the
following estimate holds

1 T 1

— 2/ /|f(x,t)\2dxdt+—2 / lo(z, T)Pdz < [©°]|72 (- (1.249)
2 g

(6187) 0 w Q

According to Definition 1.4, the cost of null approximate control satisfies K(T') < Cle%z. Here
the constants C; and Cy in (1.249) come from the estimate (1.9) of Theorem 1.7. There are several
possible proofs for the null approximate controllable property, such as: Using the Hahn-Banach
theorem (see [Zu2, Th.2.5.2, p.127]) or the minimization of a functional (see also [Zu2, p.129] or
[FeZ2, Th.1.1, p.3]).

1.3.1.2 Construction of the null approximate control function

The control can be built by minimizing a suitable quadratic functional defined on the class of
solutions of the adjoint system. For instance, according to Zuazua, (see [Zu2] or [Zu3]), the control
function is constructed as f = © where v is the solution of the following system

Ov—Av=0 in Q x (0,7,
v=0 on 082 x (0,7, (1.250)
v(-,0) =" € L3(Q)

corresponding to the initial data #°. Here, 7° is the unique minimizer of the following functional
J.: L?(2) — R such that

T
T (%) = 5/ / (e, T — ¢)|2dadt + ]| 0°) 22 0 +/ o(@, T (x)d. (1.251)
0 w Q
In (1.251), v is the solution of (1.250) corresponding to v°.

In [Mi3], the author changes the functional by defining

2
0 (Cle%> g 2 e o2 0
J(vV) = #/0 /\v(x,t)| dxdt + EHU 1220 —|—/Qv(x,T)<p (x)dx. (1.252)

Here, C; and Cs are the constants from the observability estimate (1.9). Let ¥y be the minimizer
of the functional J. and ¢ be the corresponding solution of (1.250). Then the null approximate

control function is constructed as f(z,t) = (Cle%)gfj(m,T —t). In this section, we will focus on
the second way with detailed proof below.

1.3.1.3 Proof of Theorem 1.9

Before starting the proof of Theorem 1.9, let us recall the following fundamental result whose
proof is the basis of the so called Direct Method of the Calculus of Variations.

Lemma 1.6. (see [Zu2, Th.1.5.1, p.30])

If H is a Hilbert space with norm || - ||g and the function J : H — R is continuous, convex and
coercive in H , i.e. it satisfies J(v) — 0o as ||v||g — oo. Then J attains its minimum at some point
¥ € H. If, moreover, J is strictly convex, this point is unique. If, addition, J is a C' function,
any minimizer 0 necessarily satisfies

J (@) =0, V(eH. (1.253)
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Now, we start the proof of Theorem 1.9.

Step 1: Construct a control function.
Let C; and Cs be the constants from Theorem 1.7. We consider the functional J. : L?(2) — R such
that

2
0 (Cle%> g 2 e o2 0
J(v7) = f/o /\v(m,t)| dxdt + 5”1} 720 —I—/QU(x,T)go (x)dx. (1.254)

Notice that J, is continuous, C', strictly convex and coercive. Thus, applying Lemma 1.6 with
H = L?(Q) and J = J,, we can conclude that J. has a unique minimizer . Moreover, the

assertion that J/(9°)¢Y =0 V¢° € H implies that the following equality holds for all ¢ € L?(£2)

Cie F / / O(x, )¢ (2, t)dzdt + €2 / (lL’)CO(:C)dLU+/QC(IL’,T)QOO(I’)dZ =0.

Here, ¥ and ¢ are respectively the solution of (1.250) corresponding to initial data #° and ¢°.
Now, multiplying 0,0 — A = 1, f by ((-,T —t) and integrating over Q, we get

(1.255)

d

o7 Qgp(x,t)g(x,T—t)dx = /wf(ac,t)C(x,T—t)dx. (1.256)

On one hand, integrating (1.256) over (0,7, we obtain
T
/ / flz, t)¢(x, T — t)dadt — / o(x, T)¢(z)dx + / ©°(x)¢ (2, T)dx = 0. (1.257)
0 w Q Q

Notice that fo L, oz, t)¢(x, t)dxdt = fo J.,0(x, T — t)¢(x, T — t)dedt. Thus from (1.255) and
(1.257), if we choose f(x,t) = (C16T>2 O(x, T —t) then
/ (¢(2,T) +&%%(z)) °(z)dz = 0 V¢© € L*(Q). (1.258)
Q
Hence
o(x,T) = —20%(x). (1.259)

Moreover, if we take (° = ©°, then by uniqueness property of (HP), we get ¢ = 0. It follows from
(1.255) that

(ClecT2>2/0T/w|17(x,t)|2dxdt+52/ﬂﬁo(m)|2dx+/917(m,T)goo(x)dx=0. (1.260)

Using the Cauchy-Schwarz inequality, that is UQ x,T)" dx| lo(-, )||L2(Q)||<,00||L2(Q)7 we
get

ca\2 B B
(€16 ) 19122 0.y + €203y < I T) 2oy 60 2o (1.261)

Applying the result of observability estimate in Theorem 1.7, one gets

196 7)oy < (1) 1ol (1:262)

This estimate implies that
156 D) ey < (1) 1000 + <2100 320 (1:263)
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Combining (1.261) and (1.263), we obtain
C%2~2 2117012 < {10 C%2~2 2117012 ?
1€ HUHL?(wx(O,T)) +e7|[v ||L2(Q) < e 2o 1€ HU”Lz(wx(O,T)) +e%||o ||L2(Q)
(1.264)
This is equivalent to

e\2 .
(€17 ) 19120y + 2P 12y < 1P 120y (1.265)

cy\ 2
Let us remind that f(z,t) = (C16T> o(x, T —t) and ¢(z,T) = —23°(x). Furthermore, notice
that

191172 0,77y = 180G T = )17 0,7 (1.266)
Hence, it implies from (1.265) that
1 1
21122 x 0.y + €7||90('»T)||2L2(Q) <¢°11Z2(0- (1.267)

(@)

This completes the proof of Theorem 1.9.

1.3.2 Null controllability

1.3.2.1 Introduction and main result
Let us start by the definition of null controllable property.

Definition 1.5. (see [Co, De.2.39, p.55])
System (1.247) will be said to be null controllable at time T if, for any ¢° € L*(Q), there exists a
control f € L*(w x (0,T)) such that the associated state satisfies (-, T) = 0.

This means that for every ¢" € L?(€2), the set
Cr.p0 == {f € L*(w x (0,T)) : the solution of (1.247) satisfies ¢(-,T) = 0} (1.268)
is nonempty. It leads us to the definition of the cost of null control.

Definition 1.6. (see [Mil, De.1.1, p.2])

The quantity K(T') := sup inf || fll22(wx(0,7)) is called the cost of null control at time
201l 2 0y =1 feCr 4o

T.
The following theorem asserts the null controllability at any time 7" > 0 of the system (1.247).

Theorem 1.10. (see [Co, Th.2.66, p.79])
The system (1.247) is null controllable at any time T > 0.

The cost of null control at time T satisfies K (7T") < Clec%. Here, the constants C; and C, are the
same in observability estimate (1.9) from Theorem 1.7. It is reasonable from the well-known fact
that the null controllability problem for system (1.247) is equivalent to the observability estimate
(1.9) for the adjoint system (1.250) (see [Li2] or [Ru]). The null controllability of the heat equation
has been extensively investigated for several decades by lots of method. The first result on null
controllability of heat equation in one dimension have been obtained by Fattorini and Russell
(see [FaR]) by using the moment method. Then the duality approach combined with Carleman
estimates has been initiated by the works of Fursikov and Imanuvilov (see [Ful]) and of Lebeau
and Robbiano (see [LeR]). Another method is based on the transmutation, which relates the null
controllability of the heat equation to the exact controllability of the wave equation (see [Mi2]).
Recently, Coron and Nguyen use the backstepping approach to deal with the heat equation with
variable coefficients in space in one dimension (see [CoN]). The proof of Theorem 1.10 can be
found in references therein. Here, we will only remind the construction of a null control function.
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1.3.2.2 Construction of the null control function

One way to construct a null control function is due to Zuazua (see [Zu3]). Firstly, the author
defines the following Hilbert space:

T
H= {vo : the corresponding solution v of (1.250) satisﬁes/ / lv(z, t)|*dxdt < oo} (1.269)
0 w

endowed with its norm

100 = (/0 / v(x,t)|2dxdt> . (1.270)

Secondly, the author constructs a functional on this Hilbert space, which is

J:H — R

0 e 2 0
vl 5/0 /w|v(x,t)| dacdt—l—/ﬂv(x,O)go (z)dx. (1.271)

Here, v is the solution of (1.250) corresponding to v°.

Thirdly, the control function is constructed based on the minimizer of J over H. Precisely, let ©°
be the minimizer of J over H and @ be the solution of (1.250) corresponding to the initial data ©°.
Then the null control function is constructed as f = 0.

Another way to construct the null control function, which can avoid working in the space H
(see also [Zu3] or [BuP, p. 23]), is based on null approximate controllability. Precisely, they build
a sequence of null approximate controls f. depending on arbitrary € > 0 (see Subsection 1.3.1.2).
In more detail, for any ¢ > 0, let 72 be the minimizer of the following functional

J L) — R

)

T 2
RN T/ /|v(x,t)|2dacdt+%HUOHQLQ(Q)+/v(m,T)apO(x)dx.(l.272)
0 w Q

Moreover, thanks to the observability estimate, the sequence {f.} is uniformly bounded in L?(w x
(0,T)). Hence, by extracting subsequences, we have f. converges weakly to f in L?(w x (0,7)).
The limit control f fullfils the null controllability requirement.

1.3.3 Null approximate impulse controllability
1.3.3.1 Introduction and main result

Now we study another issue of control theory, null approximate impulse controllability, where
the control function also acts on a subdomain w but at one point of time 7 € (0,7") (see more in
[MiR] or [QiW]). Consider the following system

o — Ay =0, in Qx (0,7)\ {7},
P =0, on 90 x (0,T),
(- 0) = ¥, in 0, (1.273)

¢('77) :w(VT_)'i_]]-wha in Q:
where (-, 77) denotes the left limit of the function ¢ at time 7.

Definition 1.7. (see [QiW, De.1.2, p.3])
System (1.273) will be said to be null approximate impulse controllable at time T if, for any e > 0,
any ° € L2(Q), there exists a control h € L*(w) such that the associated state at final time satisfies

19 T 22y < el L2(q)-
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This means that for every € > 0, for every ¢° € L*(Q), the set
Cr .y := {h € L*(w) : the solution of (1.273) satisfies (. Dllr2e) < ellvllr2@} (1.274)
is nonempty. It leads us to the definition of the cost of null approximate impulse control

Definition 1.8. The quantity K(T,¢) := sup inf ||h||L2(w) is called the cost of null
”wOHLQ(Q):l feCTﬂ/JO,E

approrimate impulse control at time T .
Now, we state a main result of null approximate impulse controllability for the system (1.247).

Theorem 1.11. (see [PhWX, Th.3.1, p.5021])
The system (1.273) is null approzimate impulse controllable at any time T > 0.

Moreover, for any € > 0, the cost of null approximate impulse control function at time 7" satisfies
Mo

K(T,e) < M%QT_T Here, the positive constants Mj, My and 6 are from the estimate (1.152) of
Lemma 1.5 (see Subsection 1.2.4).

1.3.3.2 Proof of main result

Mo

Fix ¢ > 0, put k := M%GT_T where the constants My, My and 6 are from Lemma 1.5. We

consider the functional J. : L?(2) — R such that

K2

52
T = Gl T = s + S0y + | #°(@)ota T (1.275)

where v(z,t) is the solution of the following system

Ov—Av=0 in Q x (0,7,
v=0 on 99 x (0,7, (1.276)
v(-,0) = € L3(Q).

Notice that J is a strictly convex, C* and coercive, i.e J(v”) — oo when |[v°]| 2(q) — oo. Therefore,

thanks to Lemma 1.6, J has a unique minimizer #° € L?(Q) such that J(?°) = OH}E%Q) J(v°). Tt
vYE

implies that J/(3°)¢° = 0 for any ¢° € L?(Q), i.e the following estimate holds for any ¢°
/<;2/ o(x, T —7)¢(x, T — 7)dx + 52/ 0 (2)¢(x)dx + / YO(2)¢(z, T)dx = 0; (1.277)
w Q Q

where 9 and ¢ are respectively the solution of (1.276) corresponding to % := (-, 0) and ¢° := ¢(-,0).
Multiplying 0;1) — Av = 0 by ((-,T — t) and integrating over ), one gets

%/ﬂqb(m,t){(x,Tft)dx 0. (1.278)

Integrating (1.278) over (0, 7) gives us

/w(x,O)C(x,T)dx:/z/J(xJ_)C(x,T—T)dm. (1.279)
Q Q
Integrating (1.278) over (7,T') gives us
/QZJ(QZ,T)C(IC,T*T)d’JJ = / (2, T)¢ (2)dx. (1.280)
Q Q
Combining (1.279), (1.280) and the fact ¥(-,7) = (-, 77 ) + 1,h;, one obtains

/Q/J(x,T)CO(x)dx:/wo(x)g(m,T)da:—&—/h(x)((w,T—r)dm. (1.281)
Q Q w
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The estimate (1.281) can be written as
/ h(z)¢(x, T — T)dx — / P(z, T)¢(x)dx —|—/ 0 (z)¢(z, T)dz = 0. (1.282)
w Q Q
Thus from (1.277) and (1.282), if we choose h(z) = x%0(z,T — 7) then
/ (¥(z,T) 4+ 28°(2)) (°(z)dz =0 V¢ € L*(Q).
Q

Hence, 9 (z,T) = —&22%(x). Moreover, with (* = #°, using the Cauchy-Schwarz inequality, it
implies from (1.277) that

K0C, T = )22 +218°1 220y < 1W°1z2 @ 18C, T)llz2(0)- (1.283)
Thanks to the energy estimate for the adjoint system (1.276), which is
[0C, T)llL2e0) < 190, T = 7)llL2(0) (1.284)
we obtain
K2o(, T — T)||2L2(w) + 52”170”%2(9) < WOHB(Q) 19¢, T = 7)llL2(0)- (1.285)
Applying the result in Lemma 1.5, which is
1567 = )y < #2180, T = 7)) + 215, 0) 20, (1.286)

one has
BT = )20y + 2 10°72 ) < 19°0172(q)- (1.287)

This is equivalent to

1 1
gllh\liz(w) + gllw-,T)H%z(m < 19122 (@) (1.288)

This completes the proof of Theorem 1.11.
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Chapter 2

Null controllability for cubic
semilinear heat equation

In this Chapter, we consider the null controllability problem for the cubic semilinear heat equa-
tion in bounded domains Q of R3, with Dirichlet boundary conditions for small initial data. A
constructive way to compute a control function acting on any nonempty open subset w of € is
given such that the corresponding solution of the cubic semilinear heat equation can be driven to
zero at a given final time T'. Furthermore, we provide a quantitative estimate for the smallness
of the size of the initial data with respect to T' that ensures the null controllability property. The
structure of this Chapter is given as below:

Section 2.1: We introduce our problem with locally well-posedness and blow up phenomenon
(see Subsection 2.1.1). Then, we prove two main results (see Subsection 2.1.2): One is the locally
null controllability for a blow up system under the smallness of initial data in H}(Q) (see Theorem
2.1); The other one is the locally null controllability for a non blow up system under the smallness
of initial data in L?(Q) (see Corollary 2.1) . Finally, we remind some of relevant works for semi-
linear null controllability (see Subsection 2.1.3).

Section 2.2: We study the null controllability for a linear system with an outside force for
two cases (see Subsection 2.2.1): The initial data belongs to L?*(Q) (Theorem 2.2) and the initial
data belongs to H}(Q2) (Corollary 2.2). The method is based on the iterative algorithm, whose
idea comes from [LiTT]. This method is completely different from the previous works based on
Carleman estimate and can be applied for other nonlinear parabolic systems. The readers can see
Subsection 2.2.2 for the detailed proof.

Section 2.3: We focus on the proof of the main results: The proof of Theorem 2.1 is given in
Subsection 2.3.1 and the proof of Corollary 2.1 is presented in Subsection 2.3.2.

Section 2.4: We recall some preliminary results which are used for our main proofs, such as:

The Sobolev embedding (see Subsection 2.4.1); The Banach fixed point theorem (see Subsection
2.4.2) or The classical estimates (see Subsection 2.4.3).
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2.1. INTRODUCTION AND MAIN RESULTS

2.1 Introduction and main results

2.1.1 Problem

Let © be an open bounded domain in R® with a boundary 99 of class C? and T > 0. We
consider the cubic semilinear heat equation complemented with initial and Dirichlet boundary
condition, which has the following form

Oy —Ay+yy*=1,f in Qx(0,T),
y=0 on 9N x(0,T), (2.1)
y(-,0) =9° in Q,

where v € {1, -1}, 1, denotes the characteristic function of w and f denotes the control function
acting on w x (0,T).
Now we consider the well-posedness of the uncontrolled system.

When v =1, i.e we consider the following system

Oy —Ay=—y> in Qx(0,7),
y=0 on 9N x(0,T), (2.2)
y(-,0) =y’ in Q.

It is well-known (see [Lil, p.6]) that if 4 € Hg (£2), there exists a unique solution y € L?(0,T; H2(2))
such that 9yy € L2(2 x (0,T)) and y satisfies the system (2.2).

When v = —1, we consider the following system

Oy—Ay=y> in Qx(0,7),
y=0 on INx(0,T), (2.3)
y(-,0) =y° in Q.

It is well-known ([BrC1, Th.3.1.1, p.1]) that if y° € L>°(Q), there exists a unique solution y of

(2.3), defined on a maximal time interval [0, T},), i.e y € L=°(2 x (0,T)) for all T' < T,,,. Moreover,

we have the blow up in finite time phenomenon, i.e T, < +o0o0 and lirqg ly(-, 1)l Lo () = 0o. The
t—=To

question what happens if yo ¢ L°°(Q) is considered by Brezis and Cazenave (see [BrC2]). Let us
assume that yo € L?(Q) for some 1 < g < oo. The existence and uniqueness of solutions depend
on the relationship between ¢ and the dimension of domain 2. Precisely

1. If ¢ > 3 then there exists time T(y°) > 0 and a unique solution y € C([0,T(y°)], L4(Q))
satisfying the system (2.3) (see [BrCl, Th.1, p.278]).

2. If g =1 or ¢ = 2 then the well-posednesss of system (2.3) is still an open problem.

On the other hand, Brezis and Cazenave also prove that: When 3 is small enough, the problem is
global well-posed by energy method (see [BrC1, Th.3.4.1]) or by comparasion method (see [BrCl,
Th.3.4.5]). In contrast, [BrC1, Th.3.6.1] also says that the solution will blow up in finite time when
y is big enough. Here, under a smallness condition on initial data in HE(Q), we will provide a
null controllability result for the control system (2.2) when v = 1 (non blow up case) or v = —1
(blow up case) (see Theorem 2.1). Furthermore, in case non blow up v = 1, we also can get the

same result but with a weaker assumption on initial data, that is y° € L?(2) (see Corollary 2.1).

2.1.2 Main results

Firstly, let us state our first main result which asserts the local null controllability for system
(2.1).
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Theorem 2.1. For any T > 0, suppose that y° € Hg () satisfies

1

012
<max ————— | 2.4
ly ||H(}(Q) (07T§ G+ Vi) 10e? (2.4)
for some constant G > 1. Then there exists a control function f € L?*(w x (0,T)) such that the
solution of (2.1) corresponding to y° satisfies y(-,T) = 0. Furthermore, the control can be computed
explicitly and the construction of the control is given below.

Remark 2.1. 1/ Theorem 2.1 ensures the local null controllability of (2.1) for any control set w,
any small enough initial data y° € HE (), at any time T. It is well-known that the system (2.1)
without control function blows up in finite time for the case v = —1. But thanks to an appropriate
control function, Theorem 2.1 affirms that the blow-up phenomena can be prevented for very specific
initial data.

2/ An important achievement of our result is that we can construct the control function. An
outline of the construction is described as follows: Firstly, we remind the construction of the null
approzimate control for the linear heat equation with an estimate of the cost (see Subsection 1.53.1.2
in Chapter 1); Secondly, from the previous result, we do similarly when adding an outside force
using the method of Y. Liu, T. Takahashi and M. Tucsnak in [LiTT], the solution will be forced
to be null at time T by adding an exponential weight function; Lastly, thanks to an appropriate
iterative fized point process and linearization by replacing the outside force by cubic function, the
desired control is constructed, but the result is only local, i.e. the initial condition must be small
enough. The precise construction of the control function is found in the proof of Theorem 2.1.

3/ Another main achievement of our result is to give a quantitative estimate for the smallness
of the size of the initial condition with respect to the control time T. The upper bound of initial
data is a function with respect to the final control time T, which obviously increases to a certain
value and then keeps to be a constant until T tends to oo.

Another interesting problem is to study the case where the blow-up phenomena will not occur
(see [AnT]), for example when v = 1. Our method gives the following result:

Corollary 2.1. For any T > 0, suppose that y° € L*(Q) satisfying

T

max ———= , 2.5
0.7 G(1 + V)10 (2:5)

||y0|\2L2(Q) <

for some constant G > 1. Then there exists a control function f € L*(w x (0,T)) such that the
solution of (2.1) with v = 1 corresponding to y° satisfies y(-,T) = 0.

2.1.3 State of art

We now review the achievements of controllability for the nonlinear heat equation which has
been intensively studied in the past. Let Q be an open, bounded domain in R” (n > 1). We
consider the heat equation in the following form:

Oy—Ay=F(y)+1,f in Qx(0,7),
y=0 on INx(0,T), (2.6)
y(-,0) =y° in Q.

e For linear case, i.e F = 0, this issue is considered in Chapter 1 (see Section 1.3.2).

e For sublinear case, i.e |F(s)] < C(1+s|) Vs € R for some C' > 0, the system (2.6) is global
null controllable. The first writing on this issue derives from A. Fursikov and O. Imanuvilov (see
[Ful] or [Em]). Their method is based on the Schauder’s fixed point theorem.
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e For superlinear case, for example F(s) = |s|Ps with p > 1, we consider two cases when the
blow-up phenomena occur or not:
O For dissipative semilinear case when there is no blow-up phenomena, the system (2.6) is local
null controllability. In [Ba], the author studies on the case when

[F(s)] < Cs[(1 + [s]%) (2.7)

where @ > 0 if n = 1,2 and @ = —15 if n > 2. The author can prove the system (2.6) is
null controllable, under some assumption on initial data, which depends on C,a and 7. In
addition, S. Anita and D.Tataru [AnT] consider the system (2.6) with F has a good sign, i.e
sF(s) >0 Vs € R. The authors can provide sharp estimates for the controllability time in
terms of the size of the initial data.

O For blowing-up semilinear heat equation, E. Ferndndez-Cara and E. Zuazua establish the first
result in the literature on the null controllability of system (2.6) (see [FeZl| or [Fel]). In
detail, they prove that the system (2.6) is global null controllable at any time provided if the
nonlinear term F(s) grows slower than |s[log2 (1 + |s|) as |s| — oo, i.e

[F(s)l

Wi _ (2.8)
lsl=>+o< | 5| In? (1 + |s|)

Furthermore, they observe that it is not possible to obtain a global controllability result for a

cubic nonlinear term. Generally, for some functions that behave at infinity like |s| In?(1 + |s])

with p > 2, the null controllability does not hold (see also [Fe2] or [Ful]).
Recently, in [LiTT], Liu, Takahashi and Tucsnak introduce a new methodology which can be used
for studying the null controllability of nonlinear parabolic systems. This method is as follows:
Firstly, they construct a new iterative algorithm for the null controllability of linear parabolic
equations in the presence of source terms; Secondly, by using a fixed point method, they obtain
the null controllability for a nonlinear system. In previous works ([Ful| or [Em]), the authors use a
linearized problem with time dependent coefficients, which is solved by using the global Carleman
estimates. Being independent on this techniques, the linearized problem in [LiTT] is with constant
coefficients. Hence, the spectral calculators can be used and their method can be applied for other
nonlinear systems.

2.2 Null controllability for linear case with outside force

2.2.1 Main results

We consider the linear heat equation with the outside force, which has the following form

o —Ap=g+1,f in Qx(0,T),
0=0 on 00 x (0,7), (2.9)
$(-,0) = ¢" in Q.

For the moment, we choose ¢ € L?(Q2) and g € L?(Q x (0,7)). In this section, our target is
constructing a control function f € L?(w x (0,T)) such that the solution of system (2.9) satisfies
¢(-,T) = 0. By using the iterative algorithm in [LiTT], we divide our time into small intervals.
On each divided interval of time, we again divide our problem (2.9) into two problems: The first
one is the linear system with outside force but without control (see (2.11)); The second one is the
basic linear system without outside force but with control (see (2.13)) such that the final data of
one problem is the initial data of the other. The first problem is known well-posed and the second
problem is the null approximate controllability for linear heat equation, which has already been
studied in Section 1.3.1. Now, let us introduce some notations before we state the main Theorem
in this Section.

Let {Tx}r>0 be the sequence of real positive numbers given by
T

T,=T-—

= (2.10)
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2.2. NULL CONTROLLABILITY FOR LINEAR CASE WITH OUTSIDE FORCE

where a > 1 will be chosen later. Put gx = 11, 1,,,]9- We start to describe the algorithm to
construct the control: We initiate with xo = ¢° and ¢_; = 0. Define the sequences {2y }r>0,
{(pk}kzo and {¢k}k20 as follows:

1/ Let zj be the solution of

Oz, — Dz, = gi; in Qx Ty, Tit1) »
=0 on 90 x (T, Thys) | (2.11)
Zk(~,Tk) = @k—l('aTk) in Q.

It is well-known that with o5_1(-, 7)) € L*(Q), (2.11) is well-posed (see [Br| or [LiM]). Hence,
let us introduce

Xe+1 = 2 (5 Tht1) - (2.12)
2/ Let ¢y, be the solution of
O — Apr =1 fy in QX (Ty, Thetr)

pr=0 on 00 x (T, Tkt1) , (2.13)
(pk(-,Tk) = Xk in Q .

Theorem 1.9 says that the system (2.13) is null approximate controllable at any time Ty 1.
Moreover, for any g5, > 0, any xj € L?(f2), there exists fi € L?(w x (Tk, Tx+1)) such that

1 Tt 1
S / / e, )Pdedt + 5 [ Jor(e Top)Pde < [xklZa@  (214)
(C’em) T w €k Jo

for some positive constant C. Precisely, the control function fj is constructed as below (see
more in Subsection 1.3.1.2)

C 2
fk(.l‘, t) = (Ce Tit1=Tk ) O (2, Thw1 + Ti — 1). (2.15)
Here ¥y, is the solution of the following system

Ovp —Avp, =0 In QX (Tk,Tk+1) ,
Vg = 0 on 0 X (Tk,Tk+1) s (2.16)
vk (-, Tg) = v, in Q,

corresponding to the initial data 99, which is the unique minimizer of the following functional
depending on &5, > 0: J., : L*(2) — R such that

C 2
(C’e Tp41—Tk ) Tk+1 82
Tof) = [ [lta e+ % [ a)Pde+ [ oo Toalad.

Ty

Here, vy, is the solution of (2.16) corresponding to the initial data vQ. Furthermore, we also

have (see (1.259) in Subsection 1.3.1.3)
or(x, Thy1) = —e20) (z). (2.17)
3/ Let ¢r = zi + ¢, then it solves

Orpo — Ao = go + 1 fo in Qx (T,11),
b0 =0 on 99 x (T,T)), (2.18)
¢0('70) = ¢O in Q
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2.2. NULL CONTROLLABILITY FOR LINEAR CASE WITH OUTSIDE FORCE

and

OrPr+1 — Adrg1 = grr1 + Lo forr  in QX (Thg1, Tt2) »
¢r+1 =0 on 00X (Tgt1,Tt2) , (2.19)

15 Thr1) = (- Thr1) + Xer1 in Q.

Notice that ¢y (-, Tk1) = ¢r11(-, Try1), therefore the functions ¢ = > 1ip, 7,,,19 is continous
k>0

on [0, T7.

Our main results below will assert that the function f := ) 17, 1, ,1.fx leads the solution of
k>0

the system (2.9) from any given ¢° at time 0 to null at time 7. Now we are able to state our result.

Theorem 2.2. For any ¢° € L*(Q), any a > 1, any g satisfying ge%ﬁ € L?(Q x (0,T)) for
some positive constant C, there exists a control f € L*(w x (0,T)) such that the solution of (2.9)
corresponding to ¢° satisfies ¢(-,T) = 0. Furthermore, there exists a positive constant K > 1 such
that the following estimate holds:

_c 1 _Cc _1
[pe==T T=*||cqo,m;22()) + 1Fe==T T || L2 (wx (0,1))

2¢ 2a2¢C

< K(1+T) #5160 2y + e ™= T 2oy - (2:20)

Here, f = > Lipy, 1,,.]fx where fi is constructed in (2.15).
k>0

When ¢° € H}(2), we have a corollary from Theorem 2.2 as below:

Corollary 2.2. For any ¢° € H}(2), any g satisfying ge% € L?(Q x (0,T)) for some positive
constant D, there exists a control f € L?(wx (0,T)) such that the solution of (2.9) corresponding to
¢° satisfies ¢(-,T) = 0. Furthermore, there exists a positive constant K > 1 such that the following
estimate holds:

_D _D
IVée™ | c(o,r;L2(0) + 1feT7 | L2(wx 0,1)

371 ap 3D
< K(14+VT) [PV 2 + lge ™ llr2@x o] - (2.21)

Here, the control function f comes from Theorem 2.2.

2.2.2 Proof of main results
2.2.2.1 Proof of Theorem 2.2

Sketch of proof of Theorem 2.2
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YA Y
e lleqo,ryL2 () 1 e™= 1l 22 (wx0,1)
Step 5 Step 7
¢ = L, 1) Pk f =1, 10k
2 2 T 2
kgoe o ”gbk”C([Tk’THl];LZ(Q)) kgoe o kaHLz(WX(TvakH))
Step 4 Step 6
7y
S T [ S T 2
k>0 kG ([T, T, L2(2)) k>0 PEIC(Ty, Ty ;L2(9))
Step 2 Step 3

T~ X

Xkt1 = 2k Tht1) Xk = or(Tk)

2A
kz>:0 e ||2L2(Q)

Step 1

Proof of Theorem 2.2
2A
Step 1: Estimate Y e~ Tk+1 ||XkH%2(Q) for any A > 0.
E>0
Remind that xo := ¢° and xg+1 := 25 (-, Tes1) for k > 0.

Step 1.1: Estimate ||2kl|2r, 1, ,}.22(0)) for k> 0.
Applying energy estimate (see Theorem 2.5) for the system (2.11), one has

20l E iz, 7g:z2)) < Tlgollzz@x (1. 1)) (2.22)
and
2kt 1E (T meratizz @) < 2T 19kl 72 @x (Ts Tiga)) T 21000 Ter) 1720y Vo 2 0. (2.23)
On the other hand, it implies from (2.14) for the system (2.13) that
low (s Thr) 7200y < ek lxalliz)  VE > 0. (2.24)
Combining (2.23) and (2.24) gives us
261l (T Dratizz ) < 2T Ngkw 12k (Tss gy T 260 IXE T2 () VR 2 0. (2.25)

Step 1.2: Estimate ||Xk||%2(9) for k > 0.
We have

||X0||2L2(Q) = ||¢0||2L2(Q), (2.26)
Ix1lZ20) < TllgollZ2x (0,1 (2.27)
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and
Ixkr2l720) < 2TNghr1 1172 0n (11 Trsn)) + 260 IXRIT 20y VE >0 (2.28)

2A
Step 1.3: Estimate Y e” Tk+1 ||XkH%2(Q) for any A > 0.
k>0
For any constant A > 0, we get

2A 9
Z e T Ik |72 (0
k>0

- f oy 2 ey 2 ﬁ 2
= e T |xoll720) teT 2 Ixallz2 () + Ze IXk+2ll72(0)

k>0
_24_ _24_
< eT 6720y + e 2 Tllgoll72 (o 0,11
24 24
+2T > T 553 [|gk 1l 72 (u (ma mie ey T2 €7+ 0 erllXkll72 0
k>0 k>0
24— 02 e ey 2 T=Hs 2 2
< eT @720 + 2TZ€ 2 || grll T2 (x (7, Tp0)) T 226 w3 el Ixkllz20)-
k>0 k>0
(2.29)
Using the fact that T'— Ty1o = % and T'— Tyi3 = %, one gets
2A 2
> T IxkllF2 0
k>0
24 __2aA 2424
< e h H¢O||%2(Q) + 2TZ e’ Tt ||gk||%2(§2><(Tk,Tk+1)) +2 Z e’ Tt EiHXk”%Z(Q) .
k>0 k>0
(2.30)
In order to get
2a%A 1 24
2 Z e’ Tkt Ei”XkH%P(Q) =3 Z e’ Tk ||Xk||2L2(Q)7 (2.31)
k>0 k>0
we choose ,
1 71;(:}71)
gp = 56 k1 VE >0 . (2.32)
With this choice of e, (2.30) becomes
% 2 <9 TZ_A'T 012 AT % 2 2.33
Doe k72 () < 2677 [|60]|720) +4T Y e 1951122 (@ (0 71 40)) - (2.33)
k>0 k>0
2M
Step 2: Estimate S~ ™51 |42, 1, 120y, for some M > 0.
S0 Ti41];
For any constant M > 0, we get
T 2
DT |l m, m o @)
k>0
_2M __2M
= ™20l Gy mupiz2 () + ZeTfT’““ ekt 1 s, T2 00 (2.34)
k>0
Combining (2.22), (2.25) and (2.34), one has
T_2,11“W 2
Ll N T
k>0
S2M oM
< etth T||90H%2(Q><(T0,T1)) + QTZ e’ etz ”gk-‘rl||2L2(Q><(Tk+1,Tk+2))
k>0
2M 2 2
+2Z€T7T’““ EillxrllZ2()- (2.35)

k>0
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Thanks to (2.32), one yields

- 2’11—\’/1 2
Ze Tk ”Zk“C([Tk,Tk,_,.l];L?(Q))
k>0

- 2TM 9 1 2(MT—AT(QQ—1)) )
< YT gl froxnmny Fy 2o T Xkl (2:36)
k>0 k>0
Under the condition that
M — A(a® —1) < A, (2.37)

one gets from (2.33) and (2.36)

T 2,1{%1 2
Ze Tk ||Zk||C([Tk,Tk+1];L2(Q))

k>0
2M
< QTZ eI g1 72 (7 i)
k>0
T (600 + 2T e e [l (2.38)
L2(Q) Ik L2(Qx Tk, Thy1)) :
k>0
Under another condition that
M < aA, (2.39)
we obtain
=t 2
Ze T 2kl T2 9))
k>0
< e Fagy +4T Y €T gl (2.40)
s L2(Q) IRIL2 (Qx (Th, Tis)) '
k>0
: b ey 2
Step 3: Estimate kgoe “T1 ||90k”C([Tk,THl];L?(Q))'
Applying again the energy estimate for the system (2.13), we also have
ek le e mennizz @) < 2T fkll7e (ox (momiany) + 21Xk 7200) VE >0, (2.41)
It also implies from (2.14) that
2 =\ ? 2
1120 (07 < (Ce™ ) IRy VE 2 0. (242)
Combining (2.41) and (2.42) gives us
2C
ek E (1 s 22 () < 2 (1 + CzTeiTwAka) Ixkll72) VR >0, (2.43)
Thus, it deduces from (2.43) that
T 2 T 2 T Ty 2
YT N eklE i@ 2T (1 + O Tehs ’“) Ixllze) - (244)
k>0 k>0
Using the fact that Ty — T} = Té',fjll) = (a—1)(T — Ti41), one gets from (2.44) that
M ) ) 20M+355) )
> T okllE e g ir2 @) < 20+ CHA+T)D e T [xkl[F2q - (2.45)

k>0 k>0
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Under the condition that

C
M+ ——<A 2.46
+a—1_ ’ (2.46)

it implies from (2.45) and (2.33) that

T 2
YT el 1 sza)
E>0
2A

< A1+ CH)(A+T)e™ 1T [|¢0]32 0

aA
+8(1+C*)T(1+1T) Z e gkl 22 (ax (1 i) - (2.47)
k>0

2M
: T—T, 1 2
Step 4: Estimate ) e~ Tk+1 ||¢’C||C([Tk,Tk+1];L2(Q))'
k>0

Combining (2.40), (2.47) and the fact that ¢ = zx + g, one gets

Tiyz 1 2
DT bkl i, i o)

k>0
_2M 2 _2M 9
< 23 T akllen mgze@) T2 €T Ikllém, @)
k>0 k>0
24 __2aA
< 10(1+C?)(1+T)e™ 1 [[¢°]| 20y + 24(1 + C?) (L +T)* D ™ % [|gil| 320 (3. 7310 -
)
(2.48)
Using the claim that
T 2 < lleT=% gl|2 VB >0 2.49
Ze k||g/€||L2(Q><(Tk,Tk+1)) <l 9||L2(Qx(o,T)) > U, (2.49)

k>0

one obtains

T_2’1]"VI 2
DT 0wl o))
k>0

24 a2
< 10(1+C*)(1+T)e™ ||¢OH2L2(Q) +24(1+C*)(1+ T)QHeTi_};gH%Q(QX(O,T)) . (2.50)
The rest of this step is proving the claim (2.49). We have

B 2
ngT—t

T
B

= Tt g(-.t)]|2 dt

L2 (0.T)) /0||€ g(a)||L2(Q)

Tri1 5 )
S / 17 g )12yt
T

k>0
2B Tht1
> e [ a0l
k>0 T
T2 g0 |2
= Ze - ngkHLQ(Qx(Tk,T,H_l))' (2.51)
k>0
. M
Step 5: Estimate ||.<beTft 1 (t0.13:22())-
Using the following claim
=1l < em e || VB 2.52
067 [y < 2 T Nkl sy ¥ >0 252)

k>0
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we obtain from (2.50) that

M
e ™= 12 0.17:22 ()
2

A a%4
< 1001+ )+ T) (e %32y ) +24(1+ C2)(1+ T)llge T 132 01y

2

A a?a
24(1+C*)(1+ T (755 622 0) + l9e ™ Banomy ) - (2.53)

IN

Now, we give the proof for claim (2.52). We have

2 B ?
sup ] o, t)eT= |2

C([0,T];L2(2)) telo,T

o

B
sup ||¢('at)€T’t||2L2(Q)
t€[0,T]

B
< D sup o [lgk( e g
kZOtE[Tk,Tk+1]
__ 2B
< Yo S s ont )
k>0 t€(Th, Thy1]
2
__ 2B
= D e sup ||k (- 1)l z2(0)
>0 te[Th, Tht1]
2B
_ ZGT%H ||¢k||2C([Tk,Tk+1];L2(Q))' (2.54)
k>0

2M
Step 6: Estimate > eT Tk+1 ||fk||2L2(
E>0
It implies from (2.42) that

WX (Tk, Try1))"

Z % f 2 < Z Tf'{{Jrl C2 kalchk‘ 2 2.55
€ [ k||L2(w><(Tk,Tk+1)) = € € \Xk”m(n) (2.55)
>0 k>0
_C \y__1
= (2 Z 62(M+(a—1))T—Tk+1 HXkH%?(Q)' (256)
E>0

Under the condition (2.46), which is

M + < A, (2.57)

(a—1)
we get from (2.56) and (2.33) that

e vy 2 < 920267 14012
Ze el T2x (1)) < e 97| 2

k>0

204
+4C2TZ eT—Thi1 Hgk”sz(QX(Tk,TkJrl)) . (258)
k>0
Using the claim (2.49), one has

=T 2 2 7241102 2 a2a|?
S T sty S 207 T 60 + ACPT gt
)

.(2.59)
L2(2%(0,T))

. M
Step 7: Estimate || feT—? ||%2(wx(07T)).
Using the following claim

B __2B
1 £e™ 1172 oy < D €T Tk /il 22 x (7 Tsny) VB >0, (2.60)
k>0
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one gets from (2.59) that

M 24 a?a

1fe™ Fewxory S 20%€T )18 F2q) +4C°Tllge T 32 0.1
< 4+ T) (70 a qy + lge ¥ ) @on
< 12(Q) g L2(Qx(0,T)) ) - :

Let us move to the proof of claim (2.60). We have

2

T
_B
/O 172 g, 1) 2yt

Tetr 5 9
- / e g, £) 2 0yt
Tk

k>0

o

L2(Q2x(0,T))

Tit1

L veny 2
ST [ gl 0t

E>0 T

2B
= Z e’ Tk ||gk||%2(§2><(Tk,Tk+1))' (2.62)
k>0

IN

Step 8: Get conclusion.
Now, we assume our result from above steps: For any A > 0 and any M > 0 satisfying (2.37),
(2.39) and (2.46), we get the following results (thanks to the fact that a? + b* < (a + b)?):
On one hand, it follows from (2.53) that

M
lpe™=7 ||c(0,77:L2(02))
A

112
< 2/6(1+CHA+T) (eT’Tl H¢OHL2(Q) + ngﬁ”L%Qx(O,T))) : (2.63)

On the other hand, it follows from (2.61) that

A

M a2A
[ fe™= |l L2(wx(0,m)) < 2CV1I+T (6T’T1 6%l 22 () + [lge = HL2(Q><(O,T))) : (2.64)

Now, with M = —%— and A = 25 all the conditions (2.37), (2.39) and (2.46) are satisfied.

(a—1) a—1’
Hence, we conclude from (2.63) and (2.64) that: There exists a positive constant K > 1 such that
o 1 c 1
16 =T loo,r):22(0)) + /€D T [[L2wx (0,1))

20 1 2¢2C 1
< K1 +T)|ea=7 ¢ 20 + [lge =T 7 ||L2(Q><(O,T))} : (2.65)
This completes the proof of Theorem 2.2.

2.2.2.2 Proof of Corollary 2.2

D

We turn now to the case ¢° € H (). For any constant D > 0, put ¢ = ¢(t) = e7—* and ( = q¢
then ( satisfies the following system

¢ —AC=qd+q(luf+g) in Qx(0,T),
(=0 on 90 x(0,7),
¢(-,0) = eF g° in Q.

Applying the regularity estimate (see Theorem 2.5), one has

D
IVClleqomirze) < eTIVellrz@) + 11d ¢l rz@x o) + lafl2wsxo.m) + l49)l2@x 0.7))-
(2.66)

We claim that: For any p € (1,3/2), there exists a constant K, > 1 such that

oD
4 Ol 2% 0,1)) < KplleT=2 @l L2(ax (0,1))- (2.67)
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Furthermore, we also have

Nl

D 4 L
6e= | 2 @0y = </O ||¢(',f)€;‘||2L2(Q)dt>

IN

%
oD
ﬁ( sup ||¢(~J)6Tpflliz(m>

t€[0,T]

= VT sup [|é(, )| 120
te[0,T]

pD
VT||get=* lleo,m;z2 ) (2.68)

Thus, (2.66) can be written as
D D 2D
IVéer™ llcqorzawy < e V602 + K VT Ide = leqoryza@)
HfeT=T || L2(wx 0,1)) + 19T~ | L2 (2x (0,1)) -
Thanks to the fact that p > 1 and K, > 1, one obtains

(2.69)

IVoe™ loqorpzz)y < €T IVE°lLa() + ll9e ™ |l L2 (om)
+EK,(1+ V) [ll6e = oo e + 1fe = oo -
(2.70)
Take

a\/gande(\/gl), (2.71)

QG“Q? = 3D. Then, Theorem 2.2 says: There exists a positive

in order that a > 1, pD = ﬁ and
constant K > 1 such that

pD oD
lpe™ ||cqo,m;z2 ) + 1 feT= | L2 (wx (0,7))
P 3D
< KQ+T) [P 6% 2 + 9™ ooy - (2.72)

Combining (2.70), (2.72) and the fact p < 2, one obtains

D 37 3p 3D
IVoeT= oo, m;z2 () < K (1 + \/:F) {6% IV&° |2y + llge™* ”L?(QX(O,T))} ; (2.73)

for another constant K > 1. The rest is the proof of our claim: For any p € (1,3/2), there exists
a constant K, > 1 such that

pD
14"l z20) < Kplle™ ¢llz2(@x (0,1))- (2.74)
Indeed, we have
D D
14" ?ll L2 (0,1)) = H(T—t)2eTﬂ¢ oy (2.75)
x(0,
Next, we use the following argument
D 1 8D 2 1 28D
= < T=t Y 0. 2.76
T—07 7D (Tt) Smpt (276)
Combining (2.75) and (2.76), one gets
1 (1+28)D
14"l L2 x (0,7)) < %He = @l L2(ax(0,1))- (2.77)

Thus, we get our claim with p =1+ 28 and K, =1+ ﬁ > 1. This completes the proof of
Corollary 2.2.
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2.3 Proof of main results

2.3.1 Proof of Theorem 2.1

Sketch of proof of Theorem 2.1
Based on the idea of the proof of the Banach fixed point theorem (see Theorem 2.4), we divide the
proof for Theorem 2.1 into four main steps as below.

Step 1: Choose yg such that yge?z € L*(Q x (0,T)) and construct a sequence {y, }m>1 and
{fm}mZI satistying

atym - Aym + ’nyn—l = ]]-wfm in Qx (OvT) ’
Ym =0 on 90 x(0,T), (2.78)
y’m(ao) = yO in Q .

The existence of {ym }m>1 and {fmnm}m>1 are based on the Corollary 2.2.

Step 2: Give assumption on the initial data ||y0||Hé(Q) in order to get
q=q(19° |z e) <1 (2.79)
satisfying
D D
IVWm+1 — ym)eT™ 7 [leqo,rizz@) < IV (Ym — ym—1)e™ lo(o,my122)) Vm = 1. (2.80)
In order to get (2.80), the boundedness of ||Vyme% leqom;z2 (@) ¥m > 0 is required.

Step 3: Using the argument that |Zm4+1 — Tmllx < ¢llm — Tm-1]lx ¥Ym>1for0<g<1
implies {2, }m>1 is a Cauchy sequence in a metric space (X, || - || x), we can conclude {y,, }m>1 is
a Cauchy sequence in C([0,7]; H}(2)).

Step 4: Thanks to the Sobolev embedding (see Theorem 2.3) and the fact that {ym,}m>1
is a Cauchy sequence in C([0,77]; H}(2)), we get that {fm,}m>1 is also a Cauchy sequence in
L?(w x (0,T)). Then f := 1i_r)n fm and y := li_r}n Ym in the corresponding spaces satisfy the

system (2.1). Moreover, the fact that y,,(-,7) =0 Vm > 1 implies y(-,T) = 0.

Now, let us move to the detailed proof of Theorem 2.1.
Step 1: Construct {ym, }m>1 and {fim}m>1.
Firstly, take yo = e~ T-e 7y, Then, we have

3D 3D
lyoe™ lzixory = 12T lz@xor)

( / ' /| |y0<x>|6dxdt>;

3D
= VTeT [|y°)36 - (2.81)

3

H‘U

= €

By using Sobolev embedding (see Theorem 2.3), which is [|y°|| o) < ¢/|[Vy° || 12(q) for some positive
constant ¢, we get

3D 3D
lyde ™ [|z2(ax 0,1)) < VT [Vy032 ) < o0 (2.82)

Thus, applying Corollary 2.2 with g := —7yy3, one has: There exists f; € L?(w x (0,T)) such that
the solution of the following system

Oy — Ayr +yyg =1, /i in Qx(0,7),
y1 =0 on 9N x(0,7), (2.83)
y1(-,0) =y in Q
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satisfies
_D _D
Vyre™= ||cqo,m1;22(0)) + 1f1e T (| L2 (wx (0,7))
37 ap 3D
< K (1 + \/T) [637? V4l L2 () + \IyS’eT-tIIU(Qx(o,T))} (2.84)

for some positive constants D and K.
3D
Secondly, we will prove that [|yfeT=7 || L2(ax(0,7)) < co. We have

T % T 2
o0 3D 3D _D
lyiet— lz2(@x0,1)) = (/0 lyfet— ||2L2(Q)dt> = (/0 [y1eT= ||6L6(Q)dt> . (2.85)

Using again the Sobolev embedding, which is
D D
1™ o) < ¢l Vyr1e™7 || L2(0), (2.86)

one obtains

T 2
3D _D
lyle™ | L2@ax(or)) < (/0 C6||Vy1€T‘||%2(Q)dt>
_D
< AVTIVye™ |1 o2 ) (2.87)

Combining (2.84) and (2.87), we get

3
8D 3/ sp 3D
lyie™ 7 |z2ax0r)y < VT [K (1 + \/T) (6 ™ VY2l p2) + lyge™ ||L2(Q><(O,T))):|

< oo (2.88)

Thus, applying again Corollary 2.2 with g := —vyy3, one has: There exists fo € L?(w x (0,T)) such
that the solution y, of the system (2.83) satisfies (2.84) where y; is replaced by ya, yo is replaced by
y1 and fi is replaced by fa. Iterating the same procedure, we can construct a sequence {yu, }rm>1 in
C([0,T]; L*(Q)) and a sequence { f,, }m>1 in L?(w x (0,7)) such that the solution of the following
system

OtYm — AYm + ’Vyfn—l =1,fm in Qx (O,T) s
Ym =0 on 9N x(0,T), (2.89)
Ym (-,0) = ¢° in Q.

satisfies
_D _D
VymeT= [l co,m1;02(9)) + 1 fmeT= |12 (wx 0,1))
37 sp E 3D
< K (1+VT) [P 1950 e + 195167 lr2oxcomy) (2.90)

for some positive constants D and K.
Step 2: Find upper bound « > 0 such that HVyme% oo,z ) < a Vm > 0.
Firstly, we have

_D_ D
Vyoe™ |lco,mr2) = €7 IVY°| 2 (0)- (2.91)

Suppose that ||Vym,1e% lleo,m;22 () < a for some o > eT [V4°|l £2(q) (o will be chosen later).
We need to prove that

_D
[VYmeT= lo(o,11:L2(0)) < @ (2.92)

First of all, we claim that

3D _D
lym 1€ |2 (@x0,7)) < VT VY17 1&o,);22(0)) ¥m > 1. (2.93)
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Then, thanks to (2.90) and (2.93), one yields

_D
IVymeT=% |l co,11:22 ()

3 . 3
< K (1 + \/T) e || VY| r2() + VTK (1 + \/T) HVymfle%”%‘([O,T];LZ(Q))
3 3
< K (1 + ﬁ) e |V 120 + EVTK (1 + ﬁ) as. (2.94)
We consider that A + Ba?® < « holds if we choose o = 24 and B < g4z- Therefore, if
3 3 1
ENGYS (1 + x/f) < (2.95)

3 2
8 <K (1 + ﬁ) e¥’||vy0||L2(Q)>
then we can choose
3 4p o
a=2K (1 n ﬁ) eIV L2 (2.96)

in order to get (2.92). Obviously, a > €%||vy0||L2(Q) with K > 1. In conclusion, under the first
assumption on the initial data, which is
IV 3y < 1
e = 8AVTK3(1 4 VT)%T

then by induction, we have for any m > 0, the following estimate holds

(2.97)

D 3 sp
[Vyme™= |[co,1y;02(0)) < 2K (1 + ﬁ) e VY L2(e- (2.98)

The rest of this step is proving the claim (2.93):
For m = 0, it implies from (2.82) that

IN

D
VT Vyler 17200
; D | -
= T[SUP] IVyeT |72

)

lyde ™ | 1
0 L2(Qx(0,T))

_ 3 T AV 2% ||3
= ¢ sup [ Vyoe HLZ(Q)
(0,7]

D
VT Vyoe ™ H%’([O,T];LQ(Q))' (2.99)
For m > 1, using the same above technique for y; (see Step 1), we get
3 23D 3 D .3
5 e™7 | L2x 0,1)) < EVTINVYme™ |E0.00:12 ) - (2.100)

Thus, we get our claim (2.93).

Step 3: Prove that {ym}m>11s a Cauchy sequence in C([0,T7]; H (Q))

Step 3.1: Prove that ||V (ym+1 — ym)eT “lleqo,mn2 @) < C(T)H( -3 )eT || L2 x (0,1))-
Put Y41 = Ymy1 — Ym and Frpp1 = frpge1 — fon forany m > 1 hen Y41 is solution of

WY1 — AY 1 = —v(yp, —vp 1) + 1uFnpn in Q% (0,7),
Y41 =0 on 002 x(0,7),
Yyni1(-,0) =0 in Q.

Secondly, following the same computations than in the proof of Corollary 2.2 (see (2.73)), we obtain
D 3 3 3 8D
[VYmt1e™" [lcqo,r)02(0) < K (1 + ﬁ) | (Y = Ym—1) €7 |22 (0,1)) - (2.101)
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3D D
Step 3.2: Prove that (v, —y2,_1)eT | .2cax0.1)) < IV Wm — Ym—1)eT |lc(o,17:L2(02))-
Thanks to the fact that |a® — b?| < 2]a — b|( + ) we have

168 = )Gy <4 [ 0m = )@ O [+ 9 2)(a 8 da Ve € 0.T].(2:102)

Thanks to Hélder inequality, which is [|ab|| 11 (o) < [lal| s ()|l one gets

L3 @)’

1 = Y1) D120

(/ )@ 1) dm)S (/ |<ym+ym1><x,t>|6dx)
= 4 — ) Dy | W ) D) By VE € 0., (2.103)

Using Sobolev embedding again, one has

2
3

IN

1 = Y1) D120

< ACN(VYm = VYm—1) D220y | (VYm + Vym-1) (5 )| 720
2
< 16¢° VY ()22 (Hvym(wt)HQLz(Q) + ||Vym,1(~,t)||%2(9)) vt € 10,77 . (2.104)
As a result,

(ys, — y2,— 1)€T tHLz(Qx(OT))

T
- ( JRCE N >||%z<mef”fdt>
1
< ( 1606HVY (s )||2L2(Q)(|Vym('at)”QL?(Q)+||Vym—1('at)||2L2(Q))2€7§Dtdt)
3
= ( 1606HVY (e 320y (Vg (- DT 22 + ||Vym1(',t)€TDt||2Lz(Q))2dt>
3
< ( 6406HVY (e 320y [ Vo (- )eTD‘tﬁz(m)
< 8AVTVYime™ [|eo,rc2@) IVHme ™ 120,122 (2.105)

Using the result in Step 2, which is
_D 3 3D 0
IVyme ™ oo ez < 2K (14 V) Vel 1200, (2.106)
we get
< 3D
(v, — Vo1 )eT1 |2 @x0,1))

3 2
< 8c3ﬁ<2K (1+vT) e%’?|vy°||L2(Q)> IVYime ™ ooz - (2-107)

Step 3.3: Find 0 < ¢ < 1 such that ||VYm+1€TL*t ||C([0’T];L2(Q)) < qHVYmeTL*‘ ||C([O,T];L2(Q))-
Gathering (2.101) and (2.107), yields

_D
IVYiq1eT=7 |l (o,17:02(9))

3 3D
K (14 V) (48— 9-1) 75 oz

3 2 2
8K (14 VT) VT <2K (1+vT) e?Vy(’IIm(m) IV Yme ™ o, 122 (@)

(2.108)

IN

IN
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Therefore, in order to get our target in this step, we need the following condition
3 3 4p 2
8K (1 + \/:7) VT (2}( (1 + x/T) P ||Vy°||L2(Q)> <1. (2.109)

It deduces the second assumption on the initial data, which is
< 1
3263VTK3(1 4+ VT)% T

Step 8.4: Prove {y; }m>1 is a Cauchy sequence in C([0,T]; Hj(2)).
In this step, we will use the following lemma, whose proof can be found in Subsection 2.4.4.

(2.110)

VY1172

Lemma 2.1. Let (X, ||-||x) be a metric space and {@m, }m>1 C X such that there exists a constant
0 < q < 1 satisfying

lZme1 — 2mllx < gllem — Tm—1llx Ym > 1. (2.111)
Then {zm}m>1 is a Cauchy sequence.

Applying Lemma 2.1 with X := C([0, T]; H3(Q)) and z,,, := yme%, we get that {yme%}mzl
is a Cauchy sequence in C([0,T]; Hi(9)). It also implies that {y,, }m>1 is a Cauchy sequence in
C([0,T]; Hy (22)).-

Step 4: Prove {f,}m>1 is a Cauchy sequence in L?(w x (0,7T)).
Step 4.1: Construct {Fp4+1}m>1-

Recall that the control function F),41 is constructed by Fp4+1(z,t) = > (fimt1.6 — fnk) (T, t).
k>0

Here )
C
(frt1,e — frmk) (@, t) = (CeT’““_T’“) (V1,6 — Vmk) (@, Ty + T — 1)

where vy, 11,5 — U,k solves

Ot(Vmt1,k — Um,k) — AWmt1,k — Umk) =0 in QX (Th, Thtr) ,
('Um+1,k - Um,k) =0 on O x (Tk,Tk+1) s (2112)
(Um-i-l,k — Um,k)(',Tk) S L2(Q) .

Now, we will consider || F}, 16% L2(wx (0.7))- By using the claim (2.60), we get
+ (wx(0,T))

_D
||-Fm,+1€T775 ||%2(w><(O,T))

2D

< Z e Tt || frng1 b — Frmok |l L2 (wx (T, Thin))

k>0

c 4 2D

< Z (CeT’““_Tk) e (a1 k = V) (5 Tt + T = Ol1T2 (1,701

k>0
— T, C—T‘ * T—2TD _ 2
= Z (Ce k+1 k) e k+1 ||(Um+1,]€ /Um’k)HL2(w><(Tk,Tk+1))' (2113)

k>0

The last equality is obtained by changing variable.

Step 4.2: Estimate ||vm i1,k — Vmkll L2 (wx (10,7 10)) fOr £ > 0.

We also have constructed the functions ¢y, 11, and ¢, by applying Corollary 2.2 with g = —yy3,
and g = —yy3,_; respectively

O (Pmt1,k — Pma) 7;) = Alemt1k = Pmp) (1)
c
= ]]-w (C@T’“+17Tk> (’Um+17k — Um,k)(’7Tk+1 +Tk - t) in Qx (Tk,Tk+1) R

(Pmt1k — Pmp) =0 on 9 x (Ty,Thyr), (2:114)
(meJrl,k: - Spm,k)('7Tk) = Xm+1,k — Xm,k in Q 5
(Pms1k = Pmp) (5 Thr1) = =3 (Wmgr .k — Vm) (5 Th)  in Q.
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Multiplying both sides of the first equation in (2.114) by (vm+1.6 — Vmk) (-, Tht1 + Tk — t) and
integrating over {2, we get

d
p / (mt1,6 — Pmke) (@) (Vmg1,k — Vi) (@, Thog1 + T — t)dx
Q
c 2
= (CeTk+er) / | (Vg 1.k — Vg (@, Teg1 + Tx — t)2d. (2.115)

Integrating both sides of (2.115) over (T}, Tx+1) and changing variable gives us

c 2 Tkt
(C"e Tpy1— Tk ) / / ‘(vm+l7k — Um,]g)(.’E, t)|2dl‘dt

Ty

= /(<Pm+1,k = @m k) (@ The1) (Vg 1,k — Vm,k) (2, Tk )dz
Q

- / (Pma1,k = ) (@ T ) (V1 i — Vg ) (@, Theg1)d
Q

—€i/ | (Umt1k — Umi) (@, Tp)[Pda — / (Xm+1.k = Xm k) (@) (Vm+1,k — Vm k) (2, Theg1)dw
Q Q

(2.116)
Therefore, it follows from (2.116) that
c 2 o
(Ce TR+l T ) V1,6 = Vmk T2 (x (Th Ths )
< [ 10tmt1 = X @)1t = V) T (2117)
Q
Using the Cauchy-Schwarz inequality, yields
c 2 9
(CST“FT"' ) [ ”m,k||L2(wx(Tk,Tk+1))
< xmtrk = Xmakllz2 @) | (0ma1k = vme) (5 Trga) 22 () - (2.118)
Furthermore, it also implies from Theorem 1.7 that
C
[(Umt1,6 = Vi) (5 Tt 1) [ 22(0) < O 7Tk Jom 1.6 — Vi e[| 22 (wx (T3, T 1)) - (2.119)
It deduces from (2.118) and (2.119) that
c 2 N
(CeT’““_T’“ ) Vm+1,6 = Vb 122 (x (Th Tesn))
C
< Xmr1k = Xmokllz2 @) Ce ™7 | (Umga b = Omo) L2 (@x (0 i) - (2.120)
Therefore, we get
C
CeT 1T [vmp 1,k — Vm k| L2@x (70T 1)) < IXmt1,k = X kll 22(0) - (2.121)
Step 4.3: Estimate ||Fm+le%||L2(w><(0,T))~
Combining (2.121) and (2.113), one gets
_D_
[ Fmt 1€ |72 (ux 0.1
__2c 2D
< Z C?eTrr1 Tk T IXm+16 — Xm,k”%z(w)' (2.122)
k>0
Using the fact that Tyy1 — Tx, = (a — 1)(T — Tj+1), one has
D 2(D+-C- ) Lt —
| FryreT— ||2L2(w><(0,T)) <C?Y e ( a—l)T—Tk+1 IXmt1.k6 — Xme”QL?(w) . (2.123)

k>0
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Recall that the constants a and D were given in the proof of Corollary 2.2 (see (2.71)) and satisfy

c C C 2C
D = < = A.
+a—1 p(a—1)+a—1_a—1

Following the same computations as in the proof of Theorem 2.2 (see (2.33)), we get

__2A
> T X1 — Xkl @)
k>0

2aA
< 4TZ e’ Tkt ||Z/g@,k - Z/fn—1,k||2L2(Q><(Tk,Tk+1))- (2.124)
k>0

Using the same argument in the claim (2.49), one yields

2aA

T—T, 3 3
E € k1 Hym,k - ym—l,k
k>0

3D
22 (mmin)) < (U = Yime1) €7 112 ax 0,7 (2.125)

Gathering (2.124) and (2.125), we obtain

2A a2A
> €T X1k — Xmkllzz) < AT (5 — v 1) €T 32 0.
k>0
‘ 3D
< AT (4, — vio1) €T 112 ax 0.1 (2.126)
Now, combining (2.123) and (2.126), it holds
_D 3D
1Fmi1eT | L2gx o)) < 2CVT (Y, — Yo—1)e™ " L2 @x(0.1) - (2.127)

Thus, it deduces from (2.127) and (2.107) that

_D
| Frs1eT=% || L2(wx (0,1))
3 . 2
< 8CT (2K (1+\/:F) e?||vy0||L2(Q)> IVYme™ ooz @) (2-128)

Thanks to the result that {yme%}mzl is a Cauchy sequence in C([0,77]; Hi(€2)) in Step 3 and

the estimate (2.128), one obtains {fmeTL—t}mzl is a Cauchy sequence in L?(w x (0,7)). It implies
that {fn}m>1 is a Cauchy sequence in L?(w x (0,7)).

Step 5: Get conclusion.
Step 5.1: Assume above result.
In brief, combining the two conditions (2.97) and (2.110) on the initial data, we get: If

1
HVyOH%?(Q) < 10 (2~129)
&

G<1+ﬁ) $

with G = max{32¢3K3,6D,1} > 1, then {ym;, }m>1 is a Cauchy sequence in C([0,7]; H}(Q2)) and
{fm}m>1 is a Cauchy sequence in L*(Q x (0,T)). Hence, there exists f € L?(w x (0,7)) and
y € C([0,T); H}(Q)) such that f,, — f and y,, — vy in the corresponding spaces. Moreover, the
fact Y, (T) =0 Vm > 1 implies that y(7") = 0.

Step 5.2: Improve assumption on initial data.

For a fixed constant G > 1, let us consider the function which expresses the smallness of the initial
data depending on the time control T

F:(0,400) — (0,+00)

fos (2.130)

G(1+\/i)1oe%
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The function F is increasing from the beginning until ¢ = Ty and then decreasing until ¢ reaches
oo. Here, instead of putting assumption that (called the old assumption):

IVy°|[Z2(0) < F(T), (2.131)
we make a tricky choice, which is (called the new assumption):

012
IVy°ll120) < t?}&’;]F(t)' (2.132)

The new function n%ax] F(t) with respect to T is nondecreasing on (0, +00). Now, we will prove
te(0,T

our new assumption is reasonable.
Case 1: When T < Ty.

In this case, one has Ir(la)jg] F(t) = F(T), so the old assumption is satisfied. Hence, we obtain our
te(0,

desire result.
Case 2: When T > Tj.

In this case, one has nzax} F(t) = F(Tp). Hence, we only need to control our system for ¢ € (0,7})
te(0,T

and take the control equal to zero for t € (Tp, T). Precisely, we consider two following systems:

Y- AG+P =1,f i Qx(0,Tp) ,
y=0 on 90 x (0,Tp) , (2.133)
@\<70) = yO in Q.

and

8@—Agj—|—fﬁf’:0 in Qx (T07T> s
=0 on 09 x (Ty,T) , (2.134)
7, To) =0 in Q.

Under the new assumption [|Vy°[|7. o) < max F(t), one has [[Vy°||7. ) < F(Tp). Hence, apply-

t€(0,T]
ing the result from Step 5.1, we obtain the null controllability at time Tp for the system (2.133).
It means there exists f € L?(w x (0,Tp)) such that 7(-,7p) = 0. Furthermore, thanks to the
uniqueness of solution of system (2.134) with null initial data, we obtain y(-,7) = 0. Put

o g(,t) forte0,Tp),
y(-,t) = { %(.j) for t € [T07%] )

then y satisfies (2.1) with

o f,t) forte(0,Ty),
ft) = { 0 fort € (To,%),

and y(-,T) = 0 . This completes the proof of Theorem 2.1.

2.3.2 Proof of Corollary 2.1

Now, we prove Corollary 2.1. Consider the following system

Oy —Ay+32=0 in Qx(0,7T/2),
y=0 on 90 x(0,T/2) ,
@\(70) :yO in Q.

Recall that no blow-up phenomena occurs. We can establish by classical regularity estimate that
y(-,T/2) € H} (). Furthermore, one has

~ 2 L o2 1
y(,T/2 < =y < max .
1572y < 70 o) < s =
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Consequently, applying Theorem 2.1, we obtain the existence of f € L?(w x (T/2,T)) such that

the solution of _
Oy —Ay+ g3 =1,f in Qx(T/2,T),
y=20 on 00 x (T/2,T) ,
y(,T/2) =y(-,T/2) in Q,

satisfies y(-,T) =0 .

Put

g(,t) forte[0,7/2),
y(o 1) = { %(.,t) fgr te {T/Z,T] :

then y satisfies (2.1) in case v = 1 with

0 for t € (0,7/2)
flt) = { f(-,t) forte(T/2,T),

and y(-,T) = 0 . This completes the proof of Corollary 2.1.

2.4 Appendix

2.4.1 Sobolev embedding
The general Sobolev embedding inequality is presented in the following theorem.

Theorem 2.3. (see [Ad, Chapter 4, p.79] or [GiT, p.156])
Let Q be a bounded domain in R™ (n >1). Let 1 <p <n and % =
positive constant ¢ such that

Then there exists a

1_ 1

P n’
I flla) < cllVEFllzr)s

for any f € Wy P().

The one we use in this Chapter is the following: Let Q be a bounded domain in R?. Then for
any function u € H}(12), we have:

lullzo@) < el VullL2 (o) (2.135)

2
23

T
327

where the constant c is independent of the domain; in fact ¢ = =
3

2.4.2 Banach fixed point theorem

The Banach fixed point theorem guarantees the existence and uniqueness of fixed points of
certain self-maps of metric spaces. Moreover, the proof provides a constructive method to find
those fixed points.

Theorem 2.4. (see [GrD, Th.1.1, p.10])
Let (X, || - |lx) be a complete metric space and T : X — X be a contraction mapping, i.e there
exists ¢ € (0,1) such that

1T(@) - TWlx <dllz—yllx Va,y € X. (2.136)

Then there exists x* € X satisfying T (z*) = a*.

2.4.3 Classical estimates
We will recall the energy estimate and regularity estimate for the following system

w—Aw=yg in Q x (0,7,
w=0 on 02 x (0,7, (2.137)
w(-,0) =w € L?(Q),

with given g € L?(Q x (0,T)). Now, let us state some classical estimates for this system.
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Theorem 2.5. Let w be the solution of (2.137). Then the following estimates hold:
i/ The energy estimate (see [CaH, Le.4.1.5, p.52])

lwlleqo.rz@) < lwlllzz@) + VTllgle2 @x .- (2.138)
it/ The regularity estimate (see [Ev, Th.5, p.360] )

IVwllcorrz@) < IVwlllz@) + 19l L2 @x 0,1y (2.139)

2.4.4 Proof of Lemma 2.1

Step 1: Prove that ||[zm+1 — Zm||x < ¢™||21 — zol|lx Ym > 1.
Thanks to assumption (2.111), we have ||z2 — 1| x < ¢||z1 — o] x. Moreover, due to the induction
hypothesis that ||€m+1 — Zm|lx < ¢™||x1 — 20| x, one gets

[Zmr2 = Zmy1llx < qlmir — zmllx < ¢z — 2ollx. (2.140)
Thus, by induction, we can conclude that

lZmt1 — Tmllx < ¢"||x1 — zollx VYm > 1. (2.141)

Step 2: Prove ||z, — xm|x < lq—ianxl —xzollx VI<m<n.
For 1 < m < n, by using triangle inequality, we get

[z — Zmllx < |20 — Zp-1llx + |[2n-1 — Tp—2llx + - + [[Tms1 — T x. (2.142)
Using the result in Step 1, one obtains

lzn = 2mllx < ¢ Hlon = @ollx +¢" 2l = wollx + -+ " l21 — wollx

n—m-—1

< g —wollx Y ¢
k=0

o0
< g —wollx Y ¢
k=0

|z1 — 2ol x- (2.143)

<
= 14

Step 3: Prove {&, }m>1 is a Cauchy sequence in (X, | - || x)-
For any ¢ > 0, take n. € N such that ¢ < stl;@. Then for any n > m > n., we have

A

ln —zmllx < T llen = zollx

Ne

IN

- lz1 — zollx <e. (2.144)

Thus, {%, }m>1 is a Cauchy sequence in (X, || - ||x). This completes the proof of Lemma 2.1.
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Chapter 3

Backward and Local backward for
heat equation

In this chapter, we study an inverse problem which is reconstructing the initial data of a heat
equation from an internal measurement of the solution on the whole domain (backward problem)
or on a subdomain (local backward problem) at some time later. Such inverse problem is well-
known to be an ill-posed problem, i.e even if a solution exists, it does not depend continuously on
the given data. As a consequence, it creates some troubles for numerical simulations. Therefore,
some special regularization methods are required. In this chapter, we study two different methods:
one is the filtering method basing on a filter for the eigenfunctions decomposition of solution and
another one is the Tikhonov method basing on a stability estimate. The structure of this Chapter
is given as below:

Section 3.1: We introduce the formal definition of inverse and ill-posed problem. We also pro-
vide an example for the ill-posedness of backward heat problem (see Subsection 3.1.1). It requires
a regularization method in order to construct an approximate solution which depends continuously
on the given data. A review of some regularization methods is mentioned (see Subsection 3.1.2).

Section 3.2: We set up our main problems: The backward and The local backward problem
(see Subsection 3.2.1). In order to state our main results, some preliminaries are necessary (see
Subsection 3.2.2). Then in Subsection 3.2.3, our main results of the reconstruction formula and the
convergence rate of the approximate solution for backward and local backward problem are released.

Section 3.3: We study the filtering method which is used by Seidman (see [Sel] or [Se2]).
Under a priori condition on the initial data, the author reconstructs the solution for the backward
heat problem at time ¢ > 0, from the observation at some time later 7" > t on the whole domain.
The method is optimal in sense of Tautenhahn (see more in Section 3.6.1).

Section 3.4: We provide the detailed proof for our first main result: The result of backward
problem.

Section 3.5: We provide the detailed proof for our second main result: The result of local
backward problem.

Section 3.6: We provide some further comments about the backward problem and the local
backward problem, such as:

i/ In subsection 3.6.1, we study the optimality of our regularization method in sense of Taut-
enhahn, which concerns the best possible case error for identifying the approximate solution.
Some definitions (see Subsection 3.6.1.1) as well as the optimality results for Seidman prob-
lem (see Subsection 3.6.1.2), backward problem (see Subsection 3.6.1.3) and local backward
problem (see Subsection 3.6.1.4) are presented;
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ii/ In subsection 3.6.2, we solve the local backward problem by another well-known regularization
method, the Tikhonov method. Moreover, some comments about the comparison between the
filtering method and the Tikhonov method are also given.

iii/ In subsection 3.6.3, we consider the backward and local backward problems for a time depen-
dent thermal conductivity heat equation.

Section 3.7: We complete our arguments by the proof of all preliminary lemmas which are
used in our proof of main results.
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3.1. INTRODUCTION

3.1 Introduction

3.1.1 Inverse and ill-posed problem

In this subsection, we will provide a general definition of inverse problem and ill-posed problem.
Then, we will consider an example of inverse problem and explain the ill-posedness of this problem.

Inverse and ill-posed problems (see [Is], [Pa], [Kel|, [Kal], [Ka2|) are the heart of scientific in-
quiry and technological development. They play a significant role in engineering applications, as
well as several practical areas, such as image processing, mathematical finance, physics, etc. and,
more recently, modelling in the life sciences. During the last ten years or so, there have been
remarkable developments both in the mathematical theory and applications of inverse problems.

A very general definition of inverse problem is formulated by Keller (see [Ke, p.1]): “We call
two problems inverses of one another if the formulation of each involves all a part of the solution of
the other. Often, for the historical reasons, one of the two problems has been studied extensively
for some time, while the other is newer and not so well understood. In such cases, the former is
called the direct problem, while the later is called inverse problem.”

According to Kabanikhin (see [Kal, p.3]) “An ill-posed problem is a problem that either has
no solutions in the desired class, or has many (two or more) solutions, or the solution procedure
is unstable (i.e., arbitrarily small errors in the measurement data may lead to indefinitely large
errors in the solutions)”. From this point of view, it can be said that an ill-posed problem is a
problem which is not well-posed, i.e one of three conditions (existence, uniqueness and continuously
dependence) of the well-posed problem is not satisfied.

Here, we will give an example of inverse problem and consider the ill-posedness of this problem:
Let Q be an open bounded domain in R*(n > 1) with a boundary 99 of class C? and T > 0. We
consider the heat equation under the Dirichlet boundary condition

{ Ou—Au=0 in Q x (0,7),

u=0 on 90 x (0,7). (3.1)

Direct problem: given v° € L?(Q), the task is to find u(-,T) € L?(2) where u satisfies (3.1) and
u(-,0) = u°.

Inverse problem (IP): given u” € L?(Q), the task is to find u(-,0) € L?(Q2) where u satisfies
(3.1) and u(-,T) = u”.

In Chapter 1, we already know that the direct problem is well-posed and the unique solution is
given as (see Subsection 1.1.2)

u(-,T) = Zef)‘iT (/ uo(cc)ei(x)dx> €. (3.2)
i>1 Q
Thus, a formal exact solution of inverse problem has the following form
u(-,0) = Ze)‘iT (/ uT(x)ei(x)dI) €. (3.3)
i>1 Q

Here, the fact that e*”7 — co when i — oo creates the non existence of solution in L?(f2) of the
inverse problem, i.e u(-,0) ¢ L?(f2), unless the given data u’ is smooth

;e%T < /Q uT(a:)ei(x)dx>2 < 0. (3.4)

This smoothness condition is hardly satisfied in practical problems. Moreover, even if the solution
exists, it does not depend continuously on the given data u”. For instance, suppose

vl =l + e—N, (3.5)
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for some N € N. Then, in one hand

1
v — uT||p2q) = pye — 0 when N — oo. (3.6)

On the other hand, let u and v be solutions of (3.1) and respectively satisfy u(-,7) = u” and
v(+,T) = vT. Then the corresponding formal exact solutions of inverse problem (if exist) are

u(,0) = 3 N T ( /Q uT(x)ei(x)da:> o (3.7)

i>1

and

v(-,0) = ZeAiT (/Q uT(x)ei(a:)dx) e + e;\\;\;T en- (3.8)

i>1
Thus, one has

ANT
AN

[u(-,0) = v(~,0)| z2(0) = —— — 00 when N — oo. (3.9)
Hence, we can see from (3.6) and (3.9) that: Even if solution exists, the small perturbations of the
observation data may be dramatically scaled up in the solution. It means that the inverse problem
is ill-posed. As a consequence, instead of finding the exact solution for inverse problem, we will
search for an approximate solution which depends continuously on the given data. It will be done
thanks to a regularization method, which will be mentioned in the next subsection.

3.1.2 Regularization methods

Roughly speaking, a regularization method is a special method which regularize an ill-posed
problem: Given an ill-posed problem, we define an approximate problem depending on a small
positive parameter such that it is well-posed; Then, one wishes to show that the solution of this
well-posed problem will converge to the solution of the ill-posed one as the parameter converges to
zero in an appropriate fashion. There are many such regularization methods for solving ill-posed
problems. Here, let us recall the main idea of some commonly used methods.

1. Quasi-reversibility method
One method for approaching the inverse problem is quasi reversibility, introduced by Lattes
and Lions (see [LaLl]). The main idea of this method is adding a “corrector” into the original
operator in order to get a well-posed problem, then use the solution of this new problem to
construct the approximate solution. Precisely, in order to regularize the above example (IP),
the authors solve the following (well-posed) problem:

Oue — Aue — eA?uc =0 in Q x (0,7),
Ue = Aue =0 on 02 x (0,7, (3.10)
(-, T) = u” in Q.

For each € > 0, the authors use the initial value u.(-,0) to solve the following problem:

Qylie — Ali, =0 in Q x (0, +00),
e =0 on 99 x (0, +00), (3.11)
Ue(+,0) = uc(-,0) in Q.

It is proved that .(-,7) converges to u’ when ¢ — 0. Such result shows that the quasi
solution 1, is an approximation for the exact solution w.

This method gives the stability magnitude is of order 6%7 which is so large for small €. Then,
Miller (see [Mi]) improves this method by finding optimal perturbations of the original op-
erator. His method, named stabilized quasi reversibility gets the stability magnitude is of
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order %, which is better than e <.

From the numerical point of view, the fact that the order of the original operator is multiplied
by two is a drawback of the original quasi reversibility method. One way to cope with this
problem is using some mixed formulations of quasi reversibility (see [BeBFD]). Precisely, the
authors introduce a novel unknown which enables us to replace a fourth order problem by two
coupled second order problems. Recently, this method has been generalized and improved
for the backward heat equation (see [BoR]).

Quasi boundary value method
Another way to approach the ill-posed problem is called the quasi boundary value method,
which is suggested by Showalter (see [Sh]). This method improves the quasi reversibility
method by putting “corrector” into the final data, instead of into the original operator. In
detail, the author approximate (IP) with

Oiue — Au, =0 in Q x (0,7),
ue=0 on 02 x (0,7, (3.12)
ue(+, T) + euc(-,0) = u” in Q,

One advantage of this method is that there is no need to solve the forward problem. The
new problem is well-posed for each € > 0. Moreover, u, converges to u? when ¢ — 0. The
explicit estimate for the convergence rate of the approximation is lately provided in [ClO].
In [DeB], Denche and Bessila perturb the final condition in another way, which contains a
derivative of the same order than the equation, as follows:

uc(-,T) — eul(-,0) =u” in Q.

Tikhonov regularization method
The most well-known regularization method is introduced by the Russian mathematician A.
N. Tikhonov, the Tikhonov regularization method (see [Til], [Ti2], [Ti3|,...). The general
idea of this method as follows: The (IP) may be equivalently reformulated as finding the
minimum of the functional

J: H;(Q) — R
¢ = 6. T) —u"|Z2q)- (3.13)

Here, ¢ is the solution of the following system:

B —Ap=0 inQx(0,T),
¢=0 on 02 x (0,7, (3.14)
6(,0)=¢"  inQ.

The solution to this minimization problem again does not depend continuously on the given
data. Hence, in order to restore stability, the author add a penalty term to the functional:

T (%) = 160, T) — u"[[72(q) + €l 8”3 0 (3.15)

for some regularization parameter € > 0. It is proved that (see [Ho2, Th. 2.1, p.14]) J has a
unique minimizer for all € > 0. This minimizer of the functional 7 is the approximation for
the ill-posed problem (IP). This method can also be found in lots of documents, such as [Fr],
[Ma], [Sc], [ZhM], [ItJ], etc.
Truncation method

It is a natural think to recover the stability of an ill-posed problem by removing the high
frequency components in the eigenfunctions expansion of solution. This is the main idea of
a regularization method, which is named the truncation method. In fact, one constructs the
approximate solution by the following formula:

N (e€)

> M < /Q uT(x)ei(x)dz> e

i=1
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with a suitable cutting point N (e) satisfying N(e) — oo as ¢ — 0 . This method is simple
and effective for solving some inverse problems. For instance, Nam, Trong and Tuan (see
[NaTT]) use the truncation method to solve an inhomogeneous backward heat problem in
two dimensions; Zhang, Fu and Ma (see [ZhFM]) also use this method to tackle the time
dependent thermal conductivity heat equation in one dimension and recently, Yang, Sun, Li
and Ma (see [YaSLM]) improve this method for identifying the initial value of an inhomoge-
neous heat equation on a spherical symmetric domain in high dimension.

5. Filtering method
With the same idea of the truncation method, but instead of finding the cutting point,
one uses a filter function for eliminating the high frequency noise, which called the filtering
method. For example, an approximate solution for (IP) is constructed as:

i R(i,e) ( /Q uT(x)ei(x)dm> e;

where R is a bounded function and closed to e*T when € tends to 0. The above regularization
methods can be correspond to a suitable filter function:

i/ Quasi boundary value method: The corresponding filter function for this method is

1

R(i,E) = m

(3.16)

ii/ Tikhonov method: According to [Ho2, Th. 2.1, p.14], we get the explicit formula for the
approximation of (IP), based on the eigenfunction decomposition, as below

Z e*%f—}—e (/Q UT(x)ei(x)dl") ei(x). (3.17)

It corresponds to the following filter function:

_ e NT
iii/ Truncation method: The filter function for this method is
. eMTf N < )\N(e),
R €) = { 0 if A > Ay (3.19)

In [Sel] or [Se2]), Seidman constructs a special filtering method, which gives the optimal
result in sense of Tautenhahn (see Subsection 3.6.1). Precisely, he uses the following filter
function:

R(i,€) = min {e*iT, 1} : (3.20)

€

In [TuKLT], the authors solve the backward heat equation in the multi-dimensional case
by a new general filter regularization method. From this method, they can derive several
regularization solutions by choosing a specific filter.

3.2 Main results

3.2.1 The backward problem and the local backward problem

Now, we move to the statement of our main problems. Firstly, we consider the following heat
equation under the Dirichlet boundary condition

Oy —Au=0 in Q x (0,7),
u=0 on 092 x (0,7, (3.21)
u(-,T) =€ L*(Q).

80



3.2. MAIN RESULTS

In reality, it is impossible to get the exact data [, as the data are based on physical observations
or the numerical methods. Hence, instead of exact data, a noisy data fs and a noisy level ¢ are
given such that

|6 — 5|20y < 0. (3.22)

Our target is constructing gs, based on 5 and J, such that gs approximate to u(-,0). Such problem
is called the backward problem, which is stated as below:

Backward problem: Given § > 0 and 5 € L2(Q) satisfying (3.22). Find gs € L*(Q) such
that the solution of (5.21) satisfies

[u(-,0) — 0s]| L2y < €(8) where €(5) 2= 0. (3.23)

A slightly different (and less well-known) problem consists, for some non empty open subset
w € , in finding wu(-,0) such that

Ou—Au=0 in Qx(0,7),
u=0 on 02 x (0,7, (3.24)
u(-,T) =F e L?(w).

This problem, named the local backward problem, might be more interesting than the backward
problem from the point of view of applications, since the given data corresponds to measurements
which might be accessible only on a subpart of the spatial domain. Precisely, the local backward
problem is stated as below:

Local backward problem: Let w be a nonempty, open subset of Q. Given 6 > 0 and
Fs € L?(w) satisfying

I = Byl 20y < 0. (3.25)

Find gs € L*(Q) such that the solution of (5.2]) satisfies

u(-,0) — g5l 20y < €(8) where €(8) =2 0. (3.26)

Obviously, the ill-posedness of the local backward problem is even more severe than that of the
backward problem.
3.2.2 Preliminaries

In order to state our main result, let us firstly introduce some functions. Let a € (%, g) be the
unique solution of e =14 2a and b := \/ae® € (%,4).

Firstly, consider the function
P:la,+00) — [1,400)

e$

— .
. 1+ 22

(3.27)

The function P is increasing on [a,+00). Moreover, it is bijective. Hence, the inverse function,
denoted by P~1, is well-defined on [1, +0c0).

Secondly, consider the function

Q:[0,400) — [0,400)
x = zer. (3.28)
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The function Q is also increasing on [0,+00). Moreover, it is bijective. Hence, there exists an
inverse function, denoted by Q=1 : [0, +00) — [0, +00).
Thirdly, consider the function

PQ ™! [b, +o0) = [1,+00). (3.29)
The function PQ~! is increasing on [b, +oc0). Moreover, we have PQ~!(z) < x Vx € [b, +00).

Now, dealing with the local backward problem where the observation is only available on a
subdomain, a natural idea is connecting the information on the whole domain and on the subdo-
main. In order to get this connection, we will use a result of impulse controllability which will be
presented in the following lemma.

Lemma 3.1. Let T be a positive number and w be a nonempty open subset of Q. Then for any
€ >0, for any i = 1,2, ..., there exists h; € L*(w) such that the solution of

Oph; — Ap; =0 in Q x (0,2T)\ {T},
i =0 on 0Q x (0,2T),
¥;(-,0) = e; n Q, (3.30)

(-, T) =i (-, T7) + 1yh;  in Q

satisfies ||+, 2T) || 2(q) < €. Remind that {e;}i>1 are the eigenfunctions of Laplacian under the
Dirichlet boundary condition. Moreover, there exist positive constants M1, My and 6 depending
on ) and w, such that the following estimate holds

MleT .
1ill L2y < Q- Vi>1. (3.31)

Lemma 3.1 is a direct corollary of Theorem 1.11 with ° = e;(i = 1,2, ...). Now, we can state
our two main results for the backward and the local backward problem, respectively.

3.2.3 Main results
Let us start by our first result for the backward problem.

Theorem 3.1. Let u be the solution of (5.21) such that M := [[u(-,0) g1 () < oo. Suppose § > 0
and b5 € L?(Q) are given such that

IF— sl z2(0) < 9. (3.32)

Then there exists gs € L*(Q)) satisfying
[u(-,0) — gsll 20y < €(8) where €(6) =2 0. (3.33)

Specially, when 6 < 1, the convergence rate is of order (ln %)7 , i.e there exists a positive constant

C > 0 depending on T and M such that €(0) = C’(ln %)_ . Furthermore, the reconstruction
formula of the approrimation and the error estimate are explicitly given below:

N= e

1. Reconstruction formula
The approzimate solution gs is constructed as below

0 if § > YT,
9 = ;min{e)‘iT, o} (o Fs(x)ei(x)dx) e; if 6 < @, (3.34)

Here
a=Po! <‘/1;M> , (3.35)

where the functions P and Q are respectively defined in (3.27) and (3.28).
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2. Convergence rate
The convergence of the approximate solution gs in (3.34) is estimated as

B if § > YIM
1 jtl )
[u(,0) —gsllrz) < § ——IM__ yr5 < \/TbM‘ (3.36)

Remark 3.1. 1. The approximate parameter «.
Thanks to the increasing property of the function PQ~1, we have: Smaller the noisy level
& 18, bigger the parameter o is. As a consequence, the approximation is more closed to the
exact data. Furthermore, we get the bound for parameter o as below

a< VIM

<
L= o

2. Upper bound of ||gsz2(q)-
Thanks to the upper bound of o and the construction of gs in (3.34), one gets

VTM
lgsllz2() < 5 [[RERSE (3.37)

3. Connection to the backward estimate.
Let us remind the backward estimate (1.7) for the system (3.21): If u(-,0) € H}(Q) and
u(-,0) # 0 then
1eCONF o)

T2, o &
2@ u(-, T) || 2(q)- (3.38)

u(-0)llL2e) < e
In order to make disappear the term |[u(-,0)||z2(q) on the right-hand side of (5.38), one has

T|u(-,0)|12

V() ) T
VTl 0) i@y < I o WOz ) (-, T) | 2
He (&) lu(-,0)[2(0) )
T, 0)[131 0
= O B e, Ty (3.39)
( [u( 0% q “

Thanks to the increasing property of the function Q™' we obtain

Tlu(-, 0)ll3 (@) Lo VT |[u(-,0)| 1 @) .
—— e > . .
[a(> 0 o [uC> Dl
This estimate is equivalent to
VT [[u(-,0)[l 3
[u(-, 0)[lz2(0) < o (3.41)

o-1 VT[[u(-0)l g1 ()
Hu('7T)”L2(Q)
Thus, when the noisy level is small, the error estimate (3.36) connects to the backward esti-

mate (5.41). Furthermore, the convergence is optimal on H}(Q) in sense of Tautenhahn (see
Section 3.0.1.3).

Let us move to the second main result for the local backward problem.

Theorem 3.2. Let u be the solution of (5.24) such that M := [[u(-,0)|| g1 () < oo. Suppose § > 0
and b5 € L?(w) are given such that

I = Byl 2wy < 0. (3.42)
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Then there ezists gs € L*(Q) such that

u(-,0) = gsll 20y < €(8) where €(§) =2 0. (3.43)

_1
Specially, when § < 1, the convergence rate is of order (ln %) 2. Furthermore, the reconstruction
formula of the approximation and the error estimate are given below:
1. Reconstruction formula
The approzimation solution gs is constructed as below

1
0 if 5> (ﬁ) "M,
bCleT

Qs ‘= (3.44)

> min{e?MT, Bre N ([ F5(x)hi(x)dx) e; if 6 < ( ﬁcz )” M,

i>1 bCre T

for some positive constants C1,C and p € (0,1) depending on Q and w. Here

5=Po! <£ (f)“)

where the functions P and Q are respectively defined in (3.27) and (3.28).
And h; € L?(w)(i > 1) comes from Lemma 3.1 with an explicit choice of €.

2. Convergence rate
The convergence of the approximate solution gs in (3.176) is estimated as

1 1
Ca \ n m
bCre T 9 . VT
( VT ) v Zf5><bclegz> M,

1
[u(+,0) — gsl[z2(0) < V3TM if6 < < VT _ > s (3.45)
ng (o)
CleT

bCre T
Remark 3.2. 1. The approrimate parameter (3.

(3.46)

2. Upper bound of ||gs|12(q)-

VTM
losll 2@y < €—5—IIFs ]l 2wy, (3.47)

for some positive constant C' only depending on Q and w. The proof of (3.47) can be found
in the proof of Theorem 3.2 (see Section 3.5).

3. Connection to the backward estimate.

Under the assumption that u(-,0) € H3(Q) and u(-,0) # 0, we recall the backward estimate
(3.41) for the system (3.24):

VT [u(-,0)] 520
o-1 \/THU(',O)HHé(n)
lu(-T) L2 (q)

Furthermore, we also have the observation estimate at one point of time for the system (3.24)
(see Theorem 1.8): There exists K1 > 0 and Ky > 0 such that

lu(-,0)[ L2 @) < (3.48)

Ky . 1-
[ul, Dllzz) < Kre ™ [ul, T 72 ) 1ul )l ey - (3.49)
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Combining (3.48) and (3.49), one gets the following estimate, named local backward estimate
VT |[u(-,0)| g1 (0
o-1( YT [EQUI A
Kyt \eCDL2w)

When the noisy data is acceptable, i.e the noisy level § is small, this estimate connects to the
error estimate (3.45) with the notice that Cy = K.

lu(-,0)lz2Q) <

(3.50)

3.3 Seidman problem

Let us recall the Seidman problem (see [Se2|). Let T' > 0, we consider the following system:

Ou — Au =10 in Q x (0,7),
u=0 on 09 x (0,7), (3.51)
u(-,T) =F € L?(Q).

Seidman problem: Given § > 0 and [s € L?(S2) satisfying
16— Csllr2) < 6.

Fort € (0,7T), find gs € L*(Q) such that the solution of (3.51) satisfies

5—0

lu(-,t) — gsllr2(q) < €(6) where €(d) —— 0. (3.52)

The “exact backward representation” for solution of Seidman problem, corresponding to [y is

gs(t) = Z eti(T=1) ( ﬁ;(m)ei(x)dx) €;. (3.53)

=1 Q

The fact that e*(T~%) — 0o when i — co shows that the approximation (3.53) is useless. This is
the essence of the ill-posedness of Seidman problem. Hence, a natural idea is replacing e (T—%) in
the formula (3.53) by p;(¢) such that p;(t) satisfies two following conditions:

1. p;(t) is bounded by some positive constant v = ~(t) for any i > 1,

i (T*t)

2. p;(t) is as closed to e as possible.

This construction of p;(t) corresponds to the following minimization problem: Fix ¢ and consider
minimize [T~ — p;|  subject to |ps] < 7. (3.54)

When v > *(T= the minimizer is p; = e*(T~? (see Figure 3.1) and when v < (T~ the
minimizer is p; = 7 (see Figure 3.2).

Hence, we can conclude that the minimizer for problem (3.54) is

Ai(T'—t)

p;i(t) = min{e VYt

The approximate solution is constructed by the following form:

gs(t) = Zmin{eki(T_t),'y} (/ ﬂ};(x)ei(x)dm> €. (3.55)
i>1 2
for some positive parameter v. Our target is finding a suitable parameter v in order to get the

minimal loss of resolution. Now, let us move to the main result of Seidman problem.
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L

! X

>
d

eXi(T=t) 7

Figure 3.1 — Graph of function y = [e*(T~=% — x| when v > e*(T—1),
A
| . .
—"}/ ’Y e)\i(Tft)
Ai(T—t) Ai(T—1)

Figure 3.2 — Graph of function y = |e — x’ when v < e

Theorem 3.3. (see [Sel, Th.5.1, p.166])
Let u be the solution of (5.51) such that M := [ju(-,0)|[z2(q) < c0. Let 0 <t <T. Suppose § > 0
and b5 € L*(Q) are given such that

IF = Fsll L2y < 6. (3.56)
Then there exists gs € L*(Q) such that

(-, t) — gsll 20y < €(8) where €(6) 2= 0. (3.57)

1. Reconstruction formula
The approzimation solution gs is constructed as below

g5 = ;min {e)‘i(Tt)’; (A;)l_T} ( i [F(;(a:)ei(x)dm> e . (3.58)

2. Convergence rate
The convergence of the approzimate solution gs in (3.58) is estimated as

u(-,t) = gsllz2(e) < M'"THT, (3.59)
Moreover, the convergence (3.59) is optimal in sense of Tautenhahn (see more in Section 3.6.1.2).

Proof of Theorem 3.3.
First of all, let us state two technical lemmas, whose proofs can be found in Section 3.7.
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3.3. SEIDMAN PROBLEM

Lemma 3.2. Let 0 <t <T and vy > 0. Consider the following function

F:R — R

r = e " e T,

In 2L %t
Then sup Fi(r) = Fy (72 ) = (1= 4) (57)
e

Lemma 3.3. Let A, B, s be positive real numbers. Consider the following function

Fy:(0,400) — (0,400)
r — Ax"°+ Bx.

Then inf Fy(z) = Fy ((%)ﬁ) = (As)TH BT (1+1).

z€(0,00)
Now, we can start the proof of Theorem 3.3. Let us define
g5 = Y mine 03 ([ tstatesoyir)
i>1 Q
and

ar = S min{e ™00} ( [ i@)estaras ) e

i>1

(3.60)

(3.61)

(3.62)

(3.63)

for some v > 0 which will be chosen later. The error estimate is established by using the triangle

inequality, i.e

u(,t) —gsllLz) < llulst) —orllrz) + llor — gsllL2()-

Step 1: Compute ||gr — sl|72(0)-
On one hand, we have

lor — sll gy = |3 min{eM @0, 1) ( / w—ws)(x)ei(m)dx) ol <ne.

= £2(2)

Step 2: Compute |ju(-,t) — @T||L2(Q).
On the other hand, we also have

[u(-t) =97l L2 (o)
= Z (e_)‘it - min{e’\f‘(T_t);'y}e_AiT) / u(z,0)e;(z)dxe;
i>1 Q
iz 1)

= Msup{e Nt — e T i >1 with eMT=8 > 4}
< Msup{e ™ —qe . X € R}.

L2()

IN

M sup {’e‘”\"t — min{e)"‘(T_t); v}e_kiT

In the first equality of (3.66), we use the following formula
f=wu(,T)= Ze"\iT </ u(z, O)ei(x)dx) €;
i>1 Q2

and

uc¢)}:eMt(jgzmxxn@@mdx)e@

i>1
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3.4. PROOF OF THEOREM 3.1

The second equality of (3.66) comes from the fact that all the terms corresponding to i such that
eri(T=1t) <~ equal 0. Now, applying Lemma 3.2, one obtains

EN [t T
sup{e M —ve M N e R} = (1 - T> (’YT) . (3.69)
Thus, it implies from (3.66) that
< M|(1 t LA 3.70
lu(t) —orlle@) < “7)\57 : (3.70)

Step 3: Compute |lu(-,t) — gs||z2(0)-
Combining (3.65) and (3.70) and using the triangle inequality, one gets

lu(8) = gsllz) < llult) —orllez@) + llor — gsllc2@

v+ M (1 _ fp) <Wfr) ) (3.71)

In order to minimize the right-hand side of (3.71), we apply Lemma 3.3 with A = M (1 - %) (%) Tt

B=¢§and s = ﬁ Then, the choice of ~ is

IN

t 1-

MQA-7) ()" 75 <z\§4

Sl

N~

’y: 5 =

With this choice of «y, we get from (3.71) that

lu(-,t) — gsllL2()

IN
/é\
N
—
|
N|
N————
N
N|

L
|
i
N
| ~
~
~__—
il
N
iy
>,
T
9 |7
i
/N
—
+
’ﬂH
|~
~__—

= M'T§T. (3.73)

This completes the proof of Theorem 3.3.

3.4 Proof of Theorem 3.1

In this section, we will reconstruct the initial solution u(-, 0) for the system (3.21) from the noisy
data of u(-,T)|q by the optimal filtering method of Seidman which is mentioned in the previous
section. Now, we will use the same idea with the filtering method of Seidman for solving the
backward problem. Precisely, we construct the approximate solution at time 0 as below:

05 = 3 min{eMT, o} ( /ﬂ m;(x)ei(x)dx> - (3.74)

i>1

for some regularization parameter o > 0 which will be chosen later. In progress of solving the
minimization problem, we need a > 1. This condition requires that the noisy level § should be
small enough. However, for the other case, i.e when ¢ is big, the backward problem is also solved
with the approximate solution can be chosen by 0. Now, let us move to the detailed proof.

Case 1: When ¢ > @.

We take gs = 0, then

lu(-,0) = gsll2(0) = llu(-,0)[|L2(0) < (3.75)

==
5
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3.4. PROOF OF THEOREM 3.1

Case 2: When 6 < @
First of all, we state the following classical technical lemma whose proof is mentioned in Subsection
3.7.

Lemma 3.4. Given « > 1. Then the following function

Fy : (0,400) — (0,400)

1—ae™™®
. 3.76
’ VT (376)
has the property that sup Fo(z) = Fo(P~1(a)) where P is defined in (5.27).

2€(0,+00)

Now, we compute the error [|u(-,0) —gs||12(q) by splitting into the approximate error ||u(-,0) —
grl/z2() and the data error ||gr — gs{/12(0). Here, gr is the approximate solution corresponding
to exact data u(-,7T), which is

or == ; min{eM7, o} ( /Q fr(z)ei(x)dx) ei.

Step 1: Compute ||gs — 97| 2(q)-
The data error is estimated by

lgs — orll 2 < Zmin{ekiT, alt (/Q([F — Wa)(:c)@(x)da:) €; < ad. (3.77)

= L2(9)

Step 2: Compute [|u(-,0) — grl2(q)-
The approximate data is computed as below

[u(+,0) = g7l p2(0)

S (1 - min{eMT, a}eNT) ( /Q (e, O)ei(x)dx> ei

i>1

L2(Q)

1
< Msup {‘1 —min{eMT a}e M —] i > 1}
r
1— -\ T
= \/TMsup{;% :i>1 with eM7T >o¢}
< VTMsu {M-A>O} (3.78)
- U | '
In the first equality, we use the following formula
F=u(-,T)= Z e~ NT (/ u(z, O)ei(x)d:c) €;. (3.79)
i>1 Q2

The second equality comes from the fact that all the terms corresponding to 4 such that e’ < o
equal 0. Now, suppose that a > 1, applying Lemma 3.4, we get

1 — e T 1— qe—P ')
sup (1—ae”™) = ac (3.80)
A0 VAT P~ a)
It deduces from (3.78) and (3.80) that
1—ae P '@
(- 0) = gl oy < VIMAZ 2 (3:81)
) P (a)
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3.4. PROOF OF THEOREM 3.1

Step 3: Compute [|u(-,0) — sl 72(0)-
Combining (3.77), (3.81) and using the triangle inequality, one yields

[u(0) = Gsll 2y = lu(,0) = orll2) + lor — Gsll2(q)

(1—ae P (@)

< ad+ VTM
VP o)
= ae P @P )5 4 (1- aefpfl(a))ﬂ. (3.82)
P~H(a)
In order to minimize the right-hand side of (3.82), we choose « such that
- TM
Py = YIM (3.83)
P (a)
It is equivalent to
P P = L;M , (3.84)
We can rewrite (3.84) as below
- VTM
Q(PH(a)) = ~5— (3.85)

Under the assumption that § < \/TbM , one has @ > b. Thus, (3.85) has a unique solution:

TM
a=PQo ! <\/;> > 1. (3.86)
With this choice of «, it implies from (3.82) that
- VTM VTM
lu(-,0) = g5l 20 < 07 () = ——— = . (3.87)
\/P (O‘) \/Ql (\/T]M)
0

Step 4: Make appear logarithm error.
Now, using the fact that /{x < e V¢ >0 Vz >0, one has

vi= Q) = Ve < 04 (3.55)
It implies that
_ -1 In (V€y)
x=9 " (y) > L€ vE > 0. (3.89)

2
It follows from (3.87) and (3.89) that

VIM, [ (1+5)
lu(0) = gsll o0 € ——me—" VE> o (3.90)
In (vEEM) T

If § < 1 then we choose { = 77 in order to get from (3.90) that

1
1 1\ 2
|U('70)—96||L2(Q)§\/TM2+2(ln6> . (3.91)

This completes the proof of Theorem 3.1.
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3.5 Proof of Theorem 3.2

In this section, we will present the proof of Theorem 3.2, a result for the local backward problem.
In the previous section, we already proved that from the observation on the whole domain, we can
recover the solution at the initial time (see Theorem 3.1). Hence, a natural idea to determine the
solution from the observation on a subdomain is making a connection between the data on the
whole domain and the data on the subdomain. For this purpose, we use a result of the impulse
controllability (see Lemma 3.1). Precisely, from u(-,T)|., thanks to Lemma 3.1, we construct
u(+,3T)|q, then we recover u(-,0)|q due to Theorem 3.1. First of all, let us consider the case when
the noisy level is large:

E=

Case 1: When § > ( ﬁcz) M.
bCre T
We take gs = 0, then

C2 H
M bCreT 0
50) = sllz2 @) = l[ul 0)l[L2(0) < < . 3.92
[u(-,0) — gsll2(0) = [[u(-, 0)[|L2(q) Ven < ﬁ) T ( )

1
Case 2: When § < ( */Tcz) M.
bCleT

In this case, it is necessary to use a weight function e

Lemma 3.5. (see [Ar, p.83])
Let {\;}i>1 be eigenvalues of Laplacian under the Dirichlet boundary condition and T be a positive

number. Then
Z e~ T < .

i>1

~MT which has the following property:

The proof of Lemma 3.5 can be found in Section 3.7. Furthermore, let us define the following
function, which is the extension of the function u(z,t) on © x (0, +00):

4:Qx(0,+40) — R

(x,t) Ze_/\it (/Q u(;v,O)eAx)dac) e;(x). (3.93)

i>1

Thanks to the spectral theory, one has: 4 satisfies

Ot — At =0 in Q x (0,400),
=0 on 09 x (0,400),
(-0) = u(-,0) in 9, (3.94)
a(-,T) = in w.
Now, we start the main steps of the proof of Theorem 3.2.
Step 1: Connect (-, 27T)|q and u(-, T)|,.-
For any ¢ > 0, for any i = 1,2..., thanks to Lemma 3.1, there exists h; € L?(w) such that
O — Ay = in © x (0,27) \ {T'},
; =0 on 09 x (0,27,
Pi(-,0) = ¢; in Q, (3.95)

Yi(,T) = i(-,T7) + Tuhi in Q,

Remind that {e;};>1 are the eigenfunctions of Laplacian under the Dirichlet boundary condition.
Moreover, there exist positive constants M, Mo and 6 depending on €2 and w, such that the
following estimate holds

Mo
Mie T

o Vizl (3.96)

1hill 20y <
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Multiplying both sides of the equation ;4 — Ad = 0 by ¢;(-,2T — t) and integrating over €, one

gets
d

dt
Integrating (3.97) over (0,7 gives us

(x, t);(x, 2T — t)dx = 0. (3.97)

/Q (e, 0)s (2, 2T dz — /Q (e, T)s(w, T~ )da. (3.98)
Integrating (3.97) over (T, 2T) gives us
/Qﬂ(x,T)'L/)i(:c,T)dx = /Qﬂ(x,QT)z/Ji(x,O)dm. (3.99)
Combining (3.98), (3.99) and the fact 1;(-,T) = ¥;(-,T7) + L, h;, one obtains
/Qa(x,2T)wi(x,0)dx: Qa(x,om(x,QT)dH / (e, T)ha(x)da. (3.100)
Remind that vs(-,0) = e; and (-, T) = , it follows from (3.101) that
/ (z, 2T )e;(z)dx — / x)dr = /Qﬁ(x,O)wi(xﬂT)dm. (3.101)

Step 2: Approximate (-, 37)|q.
Let us remind that ||A;]|12(.) < CE(,T) and [[¢;(+,2T)||L2(0) < e Vi =1,2,.... Hence, if we take the
infinite sum from ¢ = 1 to oo for getting information of 4(-,27") on the whole domain Q then we

have a difficulty, that is: There is no € = (i) > 0 such that Y £(i)? < oo and Z ﬁ < oo for
i>1

some 6 > 0. To overcome this difficulty, we multiply both sides of (3.101) by a welght function
~MT and take the sum from i = 1 to oo in order to get

)= e (/ x)h; ) => e </ (e, 0)ep; (x, 2T)da:> . (3.102)

i>1 i>1

Using Cauchy-Schwarz inequality and the fact that ||¢;(, 2T)HL2(Q) <e Vi>1,yields

I ( / 2) Z-(x)da:) S I E %ﬁl (3.103)

i>1 L) i>1
In (3.103), we also use the following argument
(-, 0l = (Ol () < . (3.104)
VAL

Thanks to Lemma 3.5, one gets: There exists a positive constant S such that

d e <. (3.105)

i>1

Gathering (3.103) and (3.105) gives us

a(-,3T) — MT (/w ) < EyMe, (3.106)
2(0)

where F; := \/%
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Step 3: Make appear [s.
Now, we will make appear [; by using the following triangle inequality

-, 37) Ze‘A T (/ Cs5(x dx) e;
i>1 L2(Q)
< 3T) — Ze"\T</ﬂ‘" da:) e;
i>1 L2(Q)
+ Z e MT (/ (F(z) — F5(z)) hz(:c)d;v> €; . (3.107)
izt ’ 12(@)

Using Cauchy-Schwarz inequality for the second term in (3.107), one gets

S e ([ 060) =t hutalie)

i>1 L2(9)
%
< Z e N TNE = 0501720y 1hill 720y |- (3.108)
i>1
Thanks to Lemma 3.5 and (3.96), one has:
Bye 75
T
=t } L2(@)
where Ey := SM;. Combining (3.106) and (3.107) and (3.109), yields
Mo
Eye ¢
Ze AT (/ x)hZ(x)dx> €; < EjMe + 2667;. (3.110)

>1 L2(Q)

In order to minimize the right-hand side of (3.110), we apply Lemma 3.3 with A = Ege%&
B = E1M and s = 0. Then, we obtain

1
Mo Mo +6
E T ) EQG T 60
rn>1n {ElMe + 59} gets at € = <E1]\4> . (3.111)
Moreover, we also have
Bye 7§ 1
T My
min {ElMs + 9} = (Bpe T 6)TH9 (B, MO) T (1 + >
e>0 g 0
_ (3.112)
with C' = EHH (B2 9) 5 (14 %) and p = 1+9 Then, the estimate (3.110) becomes
- Z e_’\iT/ Cs(x)h;(z)dxe; < Ce™T* MI~koH, (3.113)

= £2(2)

Step 4: Apply the global backward result.
Theorem 3.1 says that: for any 7 > 0, any 1 > 0, any [, € L*(Q) such that ||a(-,7) — 0yl[L2(0) <7
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then there exists g, € L?(Q) satisfying ||a(-,0) — g,|/r2(0) < €(n) where €(n) 129 0. From the

facts that h; € L?(w), F5 € L*(w) and 3 e=2M7T < oo, one gets
i>1

3Nt ( /w E(;(x)hi(x)dx) e € I2(Q).

i>1

Put C7 := % and Cy := uMs, then the assumptions in Theorem 3.1 are satisfied with

T =23T,

n=V3Cie T MHH,
F, = Ze"\iT </ Wg(m)hi(x)d:E) €;.
i>1 w
As a consequence, there exists g5 € L(£2) such that

(-, 0) — 05| 120y < €(8) where €(6) <=2 0.

The fact that 4(-,0) = u(-,0) gives us

[u(:,0) — 05| 120y < €(8) where €(6) 2= 0.

Moreover, under the condition that

5<< VT )uM,

(3.114)

(3.115)

(3.116)

(3.117)

(3.118)

(3.119)

bCye T
we get
n = \/gCle%Ml_“é“
TM"
S \/5016% Ml_“‘LC?
bCieT
_NTM
= T
Hence, according to Theorem 3.1, we get the reconstruction formula for the approximate solution
as below
g5 = Zmin{e)‘”,ﬂ} </ [Fn(x)ei(x)dx) €;
i>1 Q
= Zmin{e?’AiT,ﬁ} / Ze_’\"T (/ Wg(s)hj(s)ds> ej(x) | e;(z)dzx | e;
i>1 Q\j>1 w
= Zmin{eB’\iT,ﬂ}e*AiT </ ﬂ’g(x)hi(:v)dx) €;.
i>1 w
Here
™™
()

_ po-l V3T M
V3C e M1-ngn

Po-! (Cl\/; (A(f)”) .
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Furthermore, the convergence rate is

[u(-,0) = gsll2(@) = [14(,0) = gsllL2() <

< (3.121)
_ m
o (G )
Step 5: Bound of ||gs]/z2(q) and logarithm error.
Bound of ||gs|| > (0)-
Remind that
05 = 3 min{eNT, greNT ( / ms(x)hi(x)dx) (3.122)
i>1 w
with
L VT (M
B=PQ~! ( = <5> : (3.123)
1T
The fact that PQ~1(z) <z Vz € [b,+00) gives us
T MN\"
5 < ‘C2 () : (3.124)
CieT d

Moreover, thanks to (3.96) and (3.111), the following estimation for the cost of control function h;
holds for any ¢ > 1

Mo
Mie T
hillze@w) < —F—
0
EM o\
= Myt 1
E2€ T 06
M\
< K7 (5) , (3.125)
for some positive constant K. Thus, we obtain (notice that Co = uMs)
3
VT (M\" _ax, cg (MN\'TH
losllzz) < —=5 (5) Ze M) Ket <5) 18511 22 (w)
016? i>1
M
< Cﬁ?”ﬂ\éHLZ(w)a (3126)
for some constant C' > 0 only depending on €2 and w.
Logarithm error.
Using Remark 3.1 of Theorem 3.1, which is
VTMA/1+ 4 2
[4+0) = Bsll sy < e V>, (3.121)

()

95



3.6. FURTHER COMMENTS

we get
V3TM\/1+5 Cie 7 5\ "\
[[u(-,0) — gsllL2(0) < 2 vg>< i/T (M> ) . (3.128)
(v )
2 2
When 6 < 1, we choose £ = (016\/?7" (&)”) in order to get
2 1
V3T M 1(Cre? [ 1\" 1\ 2
: - < - = ’S e = . .
I 0) ~ ol < S22 15 (S (M) (1n5) (3.129)

This completes the proof of Theorem 3.2.

3.6 Further comments

3.6.1 Optimality

3.6.1.1 Introduction

In this section, we answer the question concerning the best possible worst case error for iden-
tifying the approximate solution from the noisy data. Roughly speaking, a regularization method
is called optimal if it achieves the best worst case error and order optimal if it is optimal up to a
multiplicative constant. This property is named the optimality of regularization methods, which
is investigated by Vainikko (see [Val] or [Va2]|) and then by Tautenhahn (see [Tal], [Ta2] or [TaS])
or Hohage (see [Hol] or [Ho2]). In order to introduce some notifications, we would like to restate
our problem in an abstract way: Let S : L?(Q) — L?(Q) be a linear bounded operator. We con-
sider the problem of identifying the unknown solution g € L?(f2) of the ill-posed inverse problem
Sg = [, where instead of [, a noisy data s is available with the noisy level 4. Let M, called the
source set, be a bounded set in L?(2) which contains g satisfying the priori condition. In detail,
in this Subsection, we will focus on the optimality of three problems: Seidman problem, backward
problem and local backward problem.

Problem | Operator Known Unknown Source set M
S data [ solution g
Seidman A ) u(-,T)|a u(-,t)|alt € | {u(-,t) € L*(Q) : lu(-,0)||z2(0) = M}
(0,7))
Backward | e &) u(-,T)|a u(+,0)|q {u(-,0) € H}(Q) : ||u(-,0)||Hé(Q) =M}
Local u Tl | ul-0)]e {u(-,0) € Hy(Q) : lu(-,0)[[ 43 () = M}
backward

Now, we state some definitions:

1/ The modulus of continuity of the operator S~* on the source set M:

m(8, 9, M) :=sup{||g|[z2() : g € M and ||Sg[z2(q) < J}. (3.130)

2/ The regularization method:
An arbitrarily mapping R : L2(2) — L?(€Q) is called a regularization method for solving Sg =
on the source set M with the noisy data s and the noisy level ¢ if

}ii%sup {llg — REs||r2(2) : g € M and ||Sg —Fs||20) <0} =0 (3.131)
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3/ The “worst case error” for identifying gs from s by a regularization method R under the
assumption that [|F — f5][z2(q) < d on M is defined as:

WR((S, S,M) (= sup {Hg — RG5||L2(Q) g E M and HSQ — G5||L2(Q) < (5} . (3.132)
4/ The “best possible worst case error” is defined as the infimum over all the mappings R

W (8,5, M) = inf Wr (6, S, M). (3.133)

It can be shown that the infimum in (3.133) is actually attained.

Lemma 3.6. ([Ho2, Th. 5.4, p.44])
Let m(5, S, M) and W (4, S, M) are respectively defined in (3.130) and (3.133), then

W (6, S, M) > m(s,S, M). (3.134)

The proof can be found in Subsection 3.7. The assertion in Lemma 3.6 leads us to the following
definition.

Definition 3.1. Let R : L*(Q) — L2(Q) be a regqularization method for solving Sg = [ on the
source set M with the noisy level §. The convergence of the method R is called

i/ “optimal” on M if Wg (4, S, M) < m(d, S, M),
it/ “order optimal” on M if there exists a constant C > 1 such that Wg (4,5, M) < Cm(6,S, M).

3.6.1.2 Optimality of Seidman problem

From now, let c(—A) denote the spectrum of Laplacian, under the Dirichlet boundary condition.
Theorem 3.4. Under the same assumptions of Theorem 3.3, if there exists A\, € o(—A) (m € N*)
satisfying

M
App = —2- (3.135)

then the convergence in (3.59) is optimal on L*(2).

Proof of Theorem 3.4
The regularization method we use in Theorem 3.3 is

R:L*(Q) — L*Q)

e; +— min{et(T~?

) v}ei (3.136)

The worst case error for identifying gs by the method R is rewritten as

WR(& SaM) =
sup {[|u(-,t) — sl 2(0) : lu(-,0)||2() = M < oo and |[[u(-,T) — [sl|p20) < 6} .
(3.137)
Thanks to the error estimate (3.59), we get
Wr(5,8,M) < M'~T§T. (3.138)

Hence, according to Definition 3.1, we only need to prove that m(d, S, M) = M'=7§7. On the
other hand, the modulus of continuity is rewritten as

m(6, 8, M) := sup{|lu(-,t)||z2(q) : [u(-,0)||z2(0) = M < oo and ||u(-,T)||z2¢q) <6} (3.139)
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Thanks to the stability estimate in Theorem 1.6, which is

1— £ 1
-, )l 2 < Tl 0) oy llal Dl Fayer (3.140)
one has

m(8,5, M) < M'~T§T. (3.141)

Amt

Moreover, with & = Me,,e”*m" where e,, is the eigenfunction corresponding to the eigenvalue

Am, We get
L [a(-, 0)[|z2) = M,
2. [|a(-, T)||2() = Me=*»T = § (thanks to assumption (3.135)),
3. ()| g2y = Memt = (e T M)T M=# = M1~ #6%.
Thus

t

m(8,S, M) > ||a(-,t)| 2 = M~ TOT. (3.142)

Combining (3.141) and (3.142), one yields

t

m(8,5, M) = M'~T§T. (3.143)

This completes the proof of Theorem 3.4.

3.6.1.3 Optimality of Backward problem

In this Section, we only consider the optimality of backward problem when the noisy level is
small enough.

Theorem 3.5. Suppose all the assumptions of Theorem 3.1 are satisfied and § < ‘/>M, Then if
there exists Ay, € o(—A) satisfying

Q(A\m) = —5 (3.144)
with Q defined in (5.28), the convergence in (5.36) is optimal on H}(Q).
Proof of Theorem 3.5
Thanks to Theorem 3.1, we have that: The worst case error in this case is estimated as
#(6,5, M) (3.145)

ﬁ

Hence, according to definition 3.1, we only need to prove that

ﬁ

Based on the definition of the modulus of continuity (3.130) and the backward estimate (3.41), we
get

m(4, S, M)

m(d, .S, M) (3.146)
fM

—km v . . . . .
Moreover, with @(z,t) = Me%f, where e,, is the eigenfunction corresponding to the eigenvalue

Am, We get
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L la(, 0)|| g2y = M,
2. |a(-, T)||p2 () = Mf/%:LT = § (thanks to assumption (3.144)),
~ _ M _ MJT _ VTM
3t Oz = 73- = T o ()
o (¥5)
Thus
_ vVTM
(5,8, M) = [, 0) 300y = ——LL (3147)
o (4

Combining (3.146) and (3.147), one yields

m(6, S, M) = —— . (3.148)

This completes the proof of Theorem 3.4.

3.6.1.4 Optimality of Local backward problem

The local backward estimate (3.50) is not sharp, i.e there does not exist v € H{}(2) such that
the equality in (3.50) occurs. Therefore, we can not provide any conclusion about the optimality
of the convergence (3.45) for the local backward problem.

3.6.2 Tikhonov method

In this section, we will use Tikhonov regularization method for solving our local backward
problem. Precisely, let us state the following theorem.

Theorem 3.6. Let u be the solution of (5.2]) such that M := |[u(-,0)| g1 () < co. Suppose § >0
and f5 € L?(w) are given such that

[ —Cs]| 20y <. (3.149)
Then there exists gs € L*() satisfying

u(-,0) — g5l 20y < €(8) where €(8) <=2 0. (3.150)

1
Specially, when § < 1, the convergence rate is of order (ln %) 2. Furthermore, the reconstruction
formula of the approximation and the error estimate are given below:
1. Reconstruction formula
The approximate solution gs is constructed by taking the minimizer of the following functional

J:H}(Q) — R
52
0" = 6 T) = BsllTew) + 319" 1 @) (3.151)

where ¢ is solution of the following system

dp—Ap=0 inQx(0,T),
=0 on 9Q x (0,T), (3.152)
$(~0)=¢"  inQ.

2. Conwvergence rate
The error estimate between the approzimate solution g5 and exact solution u(-,0) is given as

lu(,0) — sl z2) < \/ 4+ VHMVT , (3.153)

ot (% (4)")

Kie T

99



3.6. FURTHER COMMENTS

for some positive constants K1 > 0, Ko >0, 1 € (0,1) and Q defined in (5.28) .

Remark 3.3. By using the same method for Seidman problem, we get the following error estimate
lu(-st) = gslliz) < (14 V2Z)M' 15T, (3.154)
By using the same method for backward problem, we get the following error estimate

u(:,0) = gsllL2() < (1+ ﬁ)ﬂ, (3.155)

-1 (¥VTM
o (+5)
In both cases, under some assumption, the convergences in the Tikhonov method are order optimal
in sense of Tautenhahn (see Subsection 3.6.1).
Proof of Theorem 3.6

The Tikhonov functional J has a unique minimizer gs on H}(Q) (see [Ho2, Th.2.1, p.14]).
Now, we will estimate the error estimate||u(-,0) — gs||£2(q)-

Step 1: Apply backward estimate.
Let g be the solution of (3.152) corresponding to the initial data g(-,0) = gs. Let w := g — u, then
w satisfies

Ow—Aw =0 in Qx (0,7),
w=0 on 99 x (0,7,
w(-,0) = u(-,0) — g5 in (8-156)
w-,T)=0F-g(-,T) inw.
Apply the local backward estimate (3.50) for the system (3.156), one has
VT (-, 0)] 0
o, 0) 2oy < 2 . (3.157)
o-1( T w(-0)ll 1 0y \ ¥
o 5\ Tt 2 )
Now, we will estimate |[w(-,0)[| g1 (o) and [|w(-,T)||L2(w)-
Step 2: Estimate [[w(-,0)| s ()-
By triangle inequality, we have
[w( 010 = [l 0) — 05l g1 @) < llul 0@ + 195l (@) (3.158)

Remind that gs is the minimizer of J on H}(Q), then one gets 7 (gs) < J(u(-,0)). It implies that

losllmyier < 5V/T@) < /Tl (3.159)

Combining (3.158) and (3.159), one yields

o Ol @y < M+ 5/ Tl 0)). (3.160)

Step 3: Estimate [|w(-,T)||z2() -
By triangle inequality, we have

lw(, D)l 2wy = IF = g, DllL2@w) < M= Fsllz2q) + 905 T) = OsllL2(w)- (3.161)
The fact J(gs) < J(u(-,0)) also implies that
g, T) = Fsllz2w) < /T (g8) < v/ T (ul-,0)). (3.162)
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Hence, one obtains from (3.161) and (3.162)

[w(-, T)||p2(w) < 6+ /T (u(-,0)). (3.163)
Step 4: Estimate J (u(-,0)).

We have
2 82 2
J(u(-,0)) = [IF- W6||L2(w) + WHU(HO)HH(}(Q)
52
< 82+ WMQ = 202 (3.164)
Step 5: Estimate [|w(-,0)|12(q)-
Combining (3.160) and (3.164) gives us
Jw(, 0z < (1 + V2)M. (3.165)
Combining (3.163) and (3.164) gives us
lw(-, Tl 2w) < (1+ V2)8. (3.166)

Thus, it implies from (3.157) that

(14+V2)MVT

- 1
ot (- (")

Kie T

(3.167)

(-, 0) = gsll2(0) < \/

This completes the proof of Theorem 3.6.

Comments
It is well-known that Tikhonov method is a powerful tool to solve inverse problems. This method
can even be used for dealing with nonlinear systems (see [ItJ], [EnKN] or [Ne]). However, for our
heat backward problems, the filtering method has some following advantages:

1. According to Section 3.6.1, the convergence of the filtering method is optimal while the
convergence of the Tikhonov method is order optimal. It means, the error between the exact
solution and the approximate solution by the filtering method is better than the Tikhonov
method.

2. The construction of the approximate solution by the filtering method is given explicitly by a
formula while the construction of the approximate solution by the Tikhonov method is based
on the minimizer of a functional. Hence, in some sense, the algorithm for constructing the
approximate solution by the filtering method is more simple than Tikhonov method.

3. For the Tikhonov method, the backward estimate are required. However, for the filtering

method, we can tackle our problem without using the backward estimate. Furthermore, from
the error estimate, we can imply the backward estimates.

3.6.3 Time dependent thermal conductivity heat equation

In this section, we will apply our main results for solving the backward problem and local
backward problem of the time dependent thermal conductivity heat equation, by using a changing
variable technique. Precisely, let 7 > 0 and p € C'([0,7]) such that p(t) > 0 Vt € [0,7T], we
consider the following system:

{ Oyw —p(t)Aw =0 in Q x (0,7T),

w=0 on 002 x (0,T). (3.168)

Our target is recovering w(-,0) from w(-,T)|q (the backward problem) and from w(-,T)|, (the
local backward problem) for the system (3.168). The backward problem with the time dependent
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coefficients has been considered in [TrQTT], [TuKLT] or [TuQTT], however their results are only
focused on one dimensional problems. Recently, Tuan et al. (see [TuKLT]) solve the backward heat
equation in the multi-dimensional case by a new general filter regularization method. Here, based
on the main results for solving backward (Theorem 3.1) and local backward problem (Theorem
3.2), we use a technique of changing variable to obtain the following results.

Firstly, let us denote that pr := fOT p(s)ds. Then we can state a result for the backward
problem.

Theorem 3.7. Let w be the solution of (5.168) such that M := |[w(-,0)|| g1 (q) < oo. Letls € L2(2)
and 0 > 0 such that:

“f—ﬁg“Lz(gz) <. (3.169)
Then there ezists gs € L*(Q) such that

6—0

lw(-,0) = gsllz2(0) < €(0) where €(6) —— 0. (3.170)

et
Specially, when 6 < 1, the convergence rate is of order (ln %) 2. Furthermore, the reconstruction

formula of the approximation and the error estimate are explicitly given below:

1. Reconstruction formula
The approzimate solution gs is constructed as below

0 if 6 > YL,
8s = ;min{e)‘ipT, a}t (fQ ﬂ’g(x)ei(x)dx) e; ifd < \/‘TTTM, (3.171)

Here M
a=Po! (@) , (3.172)

where the functions P and Q are respectively defined in (3.27) and (3.28).

2. Convergence rate
The convergence of the approzimate solution gs in (3.34) is estimated as

b if § > YPrM
vVAipr - b ’
lu(0) = gsllzaio) < § —/ZEML__ jp g < ST (3.173)

Secondly, we state a result for the local backward problem.

Theorem 3.8. Let w be the solution of (3.168) such that M := [jw(-,0)|| g3 () < 0o. Letls € L?(w)
and 0 > 0 such that

|6 —Cs][ 2y < 0. (3.174)

Then there exists gs € L*(Q) such that

[w(-,0) — g5 L2 () < €(6) where €(8) 2=2% 0. (3.175)

St
Specially, when 6 < 1, the convergence rate is of order (ln %) 2. Furthermore, the reconstruction
formula of the approximation and the error estimate are given below:

1. Reconstruction formula
The approzimation solution gs is constructed as below

0 iféz( Vor )" M,

gs = bCre P 1/, (3.176)
> min{e?tirr Ble~AirT (fw [Fg(ac)hi(x)dx) e; ifd< ( ‘/@ ) M,
i>1 bCie P T
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for some positive constants Cy,Cy and pu € (0,1) depending on Q and w. Here

g=po-t ( vPr (A(f)#)

Cierr

where the functions P and Q are respectively defined in (3.27) and (3.28).
And h; € L?(w)(i > 1) is the impulse control at time pr (see Lemma 3.1)

2. Convergence rate
The convergence of the approximate solution gs in (3.176) is estimated as

C2 N\ n
(o) & oz (=)

bCie P T
1
l[u(-,0) — gsllL2(0) < JEeM 75 < ( i )u o (3.177)
bCre P T

J Q_l (\/ng(ﬂgf)u>
CyePT

Theorem 3.7 and Theorem 3.8 are respectively applications of Theorem 3.1 and Theorem 3.2
by using the following changing variable technique:
Define

f : [Oa T] - [Oa ,OT]
t
t — p(s)ds. (3.178)
0
Thanks to the fact that f/'(t) = p(t) > 0 Vt € [0,T], we get that f is a bijective function. Let us

denote f=1: [0, pr] — [0,7T] be the inverse function of f.
Now, put

u:Qx[0,pr] — R
(x,t) —» w (m,f_l(t)) (3.179)

then

dru(z,t) = Opw(x, fTHO)fHE)

—1 1
= ol O )
1 1
= Ow(z, f (t))pi(ffl(t))' (3.180)
Thus, thanks to the fact that
Oww(z, 1)) — p(f 1) Aw(z, F71(t) =0 Yz e Q Vt € (0,pr), (3.181)
we get
1 -1 - -t w(z, f1 =
Oy = A =~ [Bp(e £7(0) =l (D) Ao £ (0)] =0 (3.182)

Moreover, we also have u(z,0) = w(z, f~1(0)) = w(z,0) and u(-, pr) = w(-,T). Thus, u satisfies
the following system
8tu—AU:O ian(O,pT),
u=0 on 990 x (0, pr), (3.183)
u(pr)=F in Q.

Under the assumptions that M := [|w(-,0)||g1(q) < oo and [|f — 5| z2(0) < & (backward problem)
or ||f —Fs||z2() < 9 (local backward problem), one has

[uC 0z ) = w0 Hp ) = M (3.184)
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and
|u(-pr) — [F5||L2(Q) <9,
or

lw(-, pr) — W6||L2(w) <.

(3.185)

(3.186)

Thus, we can apply Theorem 3.1 or Theorem 3.2 where the observation is available at time pr.

3.7 Appendix

3.7.1 Proof of Lemma 3.2

Remind that F(z) = e~ — ye~*T. We have
Fj(z) = —te” ™ 4 ~yTe .
The equation F{(Z) = 0 is equivalent to

(Tt _ b
VT

Thus, the equation F](Z) = 0 has a unique solution

On the other hand, we also have
Fl//(x) _ t2€7:ct o ,YTQefwT'

It implies from (3.188) that

sup Fi(z) = Fi(Z)=e ™ —ne ™1
z€R
Thanks to (3.188), we get
sup Fy(z) = e ** — ie*"ﬁ
z€R T

Thanks to (3.189), one obtains

sup Fi(z) = (1_t) o~ n(3E)

z€R

It completes the proof of Lemma 3.2.
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3.7.2 Proof of Lemma 3.3
Remind that Fy(z) = Az~® 4+ Bx. We have

Fj(z) = —Asz™*"! + B. (3.195)
The equation F3(Z) = 0 has a unique solution z = (4£) ™. Moreover, we also have
Fy(z) = As(s + 1)z7°"2 >0 Vz > 0. (3.196)
It implies that
inf F = F(z
el (@) 2(7)

s 1

As\ s As\ 1+
- A<B> *B(B>

s s 1 s 1

= AﬁlsBu-s s T+ + ATHs BT+s gT+s
1 s 1
= (As)TH BT+ (1 + ) . (3.197)

S

This completes the proof of Lemma 3.3.

3.7.3 Proof of Lemma 3.4

Remnd that F,,(z) = % We have

o
ae™/z — A-(1 — ae™®)
Fi(x) = e
x
_ ae (14 2z) -1 (3.198)
21/x ' '
The equation F/(Z) = 0 is equivalent to
o7
= . .].
T 1y (3.199)

Thanks to the fact that @ > 1, we get: There exists a unique solution z = P~1(a) € [a, +00)
satisfying (3.199). Here, P is the function defined in (3.27).
Furthermore, we also have

a—1
F! =—F . 2
v (a) 2ava >0 (3.200)
Thus, sup F,(z) = F,(Z) = Fs(P~1(a)). It completes the proof of Lemma 3.4.

z€(0,00)

3.7.4 Proof of Lemma 3.5

Step 1: Prove that \;() > Ci» Vi = 1,2, .. for some C > 0.
Let us recall the following monotonicity for inclusion of eigenvalues of Laplacian with Dirichlet
boundary condition.

Lemma 3.7. (see [He, p.15])
Let U and V' be open bounded sets in R™ such that U C V. Then

A(V) < Ap(U), (3.201)
where A\, (U) (and M\, (V)) is k" eigenvalue of Laplacian with Dirichlet boundary condition on U
(and V).
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Thanks to the fact that € is bounded in R", we get: there exists R > 0 such that Q C [-R, R]".
Applying Lemma 3.7, one has

A(Q) > N(—R,R") Vi=1,2, ... (3.202)

Moreover, we also have a Lemma about boundedness of eigenvalues of Laplacian under the Dirichlet
boundary condition, which is

Lemma 3.8. (see [LiM])
For any R > 0, there exists a positive constant C' such that

XN([=R,R]") > Ci~. (3.203)

Here \i([-R, R]") denotes the it eigenvalue of Laplacian under the Dirichlet boundary condition
on [-R, R]™.

Combining (3.202) and (3.203), one obtains: There exists a positive constant C' such that

Ai(Q) > Civ Vi=1,2,.... (3.204)
Step 2: Prove Z e 2NT < 0.
It deduces that =
doe <y 20T, (3.205)
i>1 i>1

Furthermore, using the property that e™® < (%)n Ve >0 Vn >0, yields

;e_%T < (307) ;;2 = (3e7) %2 (3.206)

This completes the proof of Lemma 3.5.

3.7.5 Proof of Lemma 3.6
Let

0:Q2 — R
z — 0 (3.207)

be the zero function in L?*(2). Take g € M such that |Sg||r2(0) < & then for any mapping
R : L*(Q) — L?(Q2) solving Sg = [ on the source set M with the noisy level &, we get

Wr (6,5, M) = [lg = R(O)| L2 (3.208)
On the other hand, —g € M and |[S(—g)||z2(q) = |S(9)||L2(0) < 0. Hence, we also have
Wi (6.5, M) > g+ R(O)l|z2(0y. (3.209)
Combining (3.208) and (3.209), we obtain
2WR (6,8, M) > [lg = R(O)lL2) + llg + R(O)|2(0) > 2[l8llL2(0)- (3.210)
Thus
Wr(6,8,M) = gl L2(0)- (3.211)

On the other hand, the inequality (3.211) is true for any R, hence one yields
W((S, S,M) = i%fWR((S, S,M) > ||@||L2(Q) (3.212)

Furthermore, the inequality (3.212) is true for any g € M satisfying ||Sg|[z2(q) < 0. Hence, one
gets

W6, 8, M) > sup{|lg|lL2() : g € M and |[|Sg| L2 <} =m(5, S, M). (3.213)
This completes the proof of Lemma 3.6.

106



Conclusion

In my thesis, we solve two main problems: The null controllability of a cubic semilinear heat
equation and the local backward problem for a linear heat equation.

For the null controllability of a cubic semilinear heat equation, we use a new strategy to con-
struct a control function which leads the solution of a cubic heat from a small initial data to null at
any time later. The novelty of this method is the construction of the control function is explicitly
given. Moreover, the size of the smallness of the initial data which ensures the null controllability
of the cubic semilinear heat equation is quantitative computed. Our method can also be applied
for studying the controllability of more general nonlinear parabolic systems.

For the local backward problem, we reconstruct a source of a linear heat equation from an ob-
servation acting on a subdomain at some time later. Our special method is using a connection
between a control problem and an inverse problem. The achievement of this method is the ex-
plicit formula of the reconstruction, based on a family of impulse control functions. Furthermore,
the convergence rate with the logarithmic type is also provided. In addition, we also tackle our
local backward problem by Tikhonov regularization method and provide the comparison with our
method. Another accomplishment in this section is a result on the local backward problem for the
time dependent thermal conductivity heat equation.
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Future works

In this thesis, we assure the local null controllability of a semilinear heat system, where the blow
up occurs. Precisely, we construct a control function acting on w x (0,T) which steers the solution
of a semilinear heat system from a small given data at the initial time to be null at the final time.
On the other hand, we also build up a control function only acting on w x {7} (0 < 7 < T') which
leads the solution of a linear heat system from any given data at the initial data to a neighbourhood
of zero at the final time T (called null approximate impulse controllability). As a consquence, a
natural question is:

Question 1: Does the null approzimate impulse controllability property still true for the semi-
linear heat system?

In this thesis, we also can recover the initial temperature of a linear heat system from the measure-
ment on a subdomain at some time later (named the local backward problem). By the filtering
method, it requires the impulse controllability of the adjoint system while by the Tikhonov method,
a conditional stability estimate is commanded. Thus, if the answer for the Question 1 is yes, the

second question is coming:

Question 2: Can the local backward problem for a semilinear system be solved by the filtering
method?

Furthermore, the conditional stability estimate for the semilinear heat system is already estab-
lished (see [PhWZ] or [PhW1]). Hence, another question appears:

Question 3: How one can tackle the local backward problem for a semilinear system by the
Tikhonov method?

In addition, by using a technique of changing variable, we also deal with the local backward
problem for the equation d;u — p(t)Au = 0. This makes appear another concern:

Question 4: By using the same technique, can we get the null controllability for the semilinear
system with time dependent coefficients?

In both main problems, the construction of the null control and the reconstruction of the source
are explicitly given. Hence, a natural question arises:

Question 5: How one can illustrate our main results by numerical method?

Our next target is finding the answers for above questions.
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Thi Minh Nhat VO

Construction d'un contrdle et reconstruction de source pour les
équations linéaires et nonlinéaires de la chaleur

Résumé : Dans cette thése, nous étudions un probléme de contréle et un probléme inverse pour les équations
de la chaleur.

Notre premier travail concerne la contrélabilité & zéro pour une équation de la chaleur semi-linéaire. Il est a
noter que sans contrdle, la solution est instable et il y aura en général explosion de la solution en un temps
fini. Ici, nous proposons un résultat positif de controlabilité a zéro sous une hypothése quantifiée de petitesse
sur la donnée initiale. La nouveauté réside en la construction de ce controle pour amener la solution a I'état
d'équilibre.

Notre second travail aborde |'équation de la chaleur rétrograde dans un domaine borné et sous la condition de
Dirichlet. Nous nous intéressons a la question suivante: peut-on reconstruire la donnée initiale a partir d'une
observation de la solution restreinte & un sous-domaine et a un temps donnée? Ce probléme est connu pour étre
mal-posé. Ici, les deux principales méthodes proposées sont: une approche de filtrage des hautes fréquences
et une minimisation & la Tikhonov. A chaque fois, nous reconstruisons de maniére approchée la solution et
quantifions I'erreur d'approximation.

Mots clés: équation de la chaleur, équation cubique de la chaleur, inégalité d'observation, controlabilité a zéro,
probléme inverse rétrograde.

Construction of a control and reconstruction of a source for linear and
nonlinear heat equations

Abstract : My thesis focuses on two main problems in studying the heat equation: Control problem and Inverse
problem.

Our first concern is the null controllability of a semilinear heat equation which, if not controlled, can blow up in
finite time. Roughly speaking, it consists in analyzing whether the solution of a semilinear heat equation, under
the Dirichlet boundary condition, can be driven to zero by means of a control applied on a subdomain in which
the equation evolves. Under an assumption on the smallness of the initial data, such control function is built
up. The novelty of our method is computing the control function in a constructive way. Furthermore, another
achievement of our method is providing a quantitative estimate for the smallness of the size of the initial data
with respect to the control time that ensures the null controllability property.

Our second issue is the local backward problem for a linear heat equation. We study here the following
question: Can we recover the source of a linear heat equation, under the Dirichlet boundary condition, from the
observation on a subdomain at some time later? This inverse problem is well-known to be an ill-posed problem,
i.e their solution (if exists) is unstable with respect to data perturbations. Here, we tackle this problem by
two different regularization methods: The filtering method and The Tikhonov method. In both methods, the
reconstruction formula of the approximate solution is explicitly given. Moreover, we also provide the error
estimate between the exact solution and the regularized one.

Keywords : linear heat equation, cubic semilinear heat equation, observation estimate, null controllability, inverse
problem, local backward.
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