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Abstract

My thesis focuses on two main problems in studying the heat equation: Control problem and
Inverse problem.

Our first concern is the null controllability of a semilinear heat equation which, if not controlled,
can blow up in finite time. Roughly speaking, it consists in analyzing whether the solution of a
semilinear heat equation, under the Dirichlet boundary condition, can be driven to zero by means
of a control applied on a subdomain in which the equation evolves. Under an assumption on
the smallness of the initial data, such control function is built up. The novelty of our method is
computing the control function in a constructive way. Furthermore, another achievement of our
method is providing a quantitative estimate for the smallness of the size of the initial data with
respect to the control time that ensures the null controllability property.

Our second issue is the local backward problem for a linear heat equation. We study here the
following question: Can we recover the source of a linear heat equation, under the Dirichlet bound-
ary condition, from the observation on a subdomain at some time later? This inverse problem
is well-known to be an ill-posed problem, i.e their solution (if exists) is unstable with respect to
data perturbations. Here, we tackle this problem by two different regularization methods: The
filtering method and The Tikhonov method. In both methods, the reconstruction formula of the
approximate solution is explicitly given. Moreover, we also provide the error estimate between the
exact solution and the regularized one.

In order to approach the two above results, the observation estimate at one point of time for
a linear heat equation plays an significant role. This well-known estimate can already be found
in many literatures. However, a full version of the proof for this estimate is presented here as the
author desires to make a self-contained discussion.
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Introduction

It is well-known that the heat equation, which describes the distribution of heat in a given
region over time is a model for many diffusion phenomena. The interest on studying the heat
equation relies not only in the fact that it is a model for a large class of physical phenomena but
also one of the most significant partial differential equation of parabolic type.

My thesis focuses on the three following topics about the heat equation:

1. The observation estimate at one point of time for a linear heat equation: the estimate on the
energy at some point of time on the whole domain in terms of the energy at the same time
but on a subdomain;

2. The null controllability for a semilinear cubic heat equation: the property that there exists
a control function which leads the solution of a cubic semilinear system from a small given
data at initial time to be null at final time;

3. The local backward heat problem: the problem of reconstructing the solution at initial time
from the observation on a subdomain at some time later.

Now, suppose that Ω is denoted an open, bounded domain in Rn(n ≥ 1) with C2 boundary ∂Ω.
We will give an abstract of our results as well as our methods for solving the three above problems.

1. The observation estimate at one point of time for a linear heat equation.

This issue on the observation estimate at one point of time for a linear heat equation is
studied in the first chapter of my thesis (see Subsection 1.2.3).

i/ Problem

We consider the following linear heat equation, under the Dirichlet boundary condition:




∂tv −∆v = 0 in Ω× (0,+∞),
v = 0 on ∂Ω× (0,+∞),
v(·, 0) = v0 ∈ L2(Ω).

(1)

Our target is finding the answer for the question:

What can we conclude about the energy at some point of time on the whole domain when
we observe the energy at the same time on a subdomain?

ii/ Main result

The answer is presented in the following estimate, which named the observation estimate
at one point of time (see Theorem 1.8):

3
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Let ω be a nonempty, open subset of Ω and T be a positive number. Then there exist
K1 > 0, K2 > 0 and µ ∈ (0, 1) depending on Ω and ω such that:

‖v(·, T )‖L2(Ω) ≤ K1e
K2
T ‖v(·, T )‖µ

L2(ω)‖v
0‖1−µ
L2(Ω). (2)

Thus, if the energy at some point of time on a subdomain equals 0 then so does the
energy at the same time on the whole domain.

The first application of this result is the observability estimate (see Theorem 1.7), which
is the key tool for studying our first main concern - the null controllability.

The second application of this result is the impulse controllability (see Theorem 1.11),
which plays an important role in tackling our second main issue - the local backward
problem.

iii/ Idea of method

The idea of our method comes from the logarithm convexity method, which has been
introduced by Agmon and Nirenberg [AgN]:
Let f be a positive smooth function defined on an interval D such that ln f is a convex
function. Then for any t1, t2 ∈ D, any k ∈ (0, 1) so that (1−k)t1+kt2 ∈ D, the following
estimate holds

f ((1− k)t1 + kt2) ≤ f(t1)
1−kf(t2)

k. (3)

By applying this method for the function t →
∫
Ω
|v(x, t)|2dx, we obtain the following

well-known estimate:

‖v(·, t)‖L2(Ω) ≤ ‖v(·, T )‖
t
T

L2(Ω)‖v
0‖1−

t
T

L2(Ω) ∀0 ≤ t ≤ T . (4)

Now, with the observation restricted on a subdomain, we use a weight function ξ =
ξ(x, t) ∈ C∞(Ω× [0, T ]) in order to remove the energy on the domain Ω \ ω. Precisely,
we consider the logarithm convexity of the function below:

Ψ(t) :=

∫

Ω

|v(x, t)|2eξ(x,t)dx. (5)

Indeed, the computation of the second derivative of the function Ψ involves some bound-
ary terms which can be dropped with a star-shaped assumption. To overcome this geo-
metrical assumption, we follow the strategy below.

iv/ Strategy

The strategy for getting our main result is decomposed into three following steps:

• The first step is constructing the local observation estimate: for any x0 ∈ Ω, any
R > 0 and any δ ∈ (0, 1] such that Ω ∩B(x0, (1 + 2δ)R) is star-shaped with respect
to x0, then for any 0 < r < R satisfying B(x0, r) ⋐ Ω, we obtain:

‖v(·, T )‖L2(Ω∩B(x0,R)) ≤ Ce
C
T ‖v(·, T )‖σL2(B(x0,r))

‖v0‖1−σ
L2(Ω) (6)

for some C > 0 and σ ∈ (0, 1).

• The second step is replacing the ball B(x0, r) by the subdomain ω. The used tech-
nique is the propagation of smallness, i.e constructing a sequence of balls chained
along the curve (see Figure 1).
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Figure 1 – Propagation of smallness

Figure 2 – Cover Ω

• The last step is covering Ω by dividing Ω into two parts: The interior Ω0 which
can be covered by balls being strictly inside Ω and the neighbourhood of ∂Ω (see
Figure 2). Thanks to the fact Ω is bounded with C2 boundary, there is a finite set
of (xi, Ri, δi) ∈ Ω × R∗

+ × (0, 1], i = 1, 2, ...,M such that Ω ∩ B(xi, (1 + 2δi)Ri) is
star-shaped with respect to xi and

∂Ω ⊂
M⋃

i=1

(Ω ∩B(xi, Ri)) . (7)

2. The null controllability for a semilinear cubic heat equation.

This topic on the null controllability for a semilinear cubic heat equation is the main concern
in the second chapter of my thesis. This result is also presented in my first publication [Vo1].

i/ Problem

5
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We consider the cubic semilinear heat equation complemented with initial and Dirichlet
boundary condition in R3 × [0, T ] (T > 0), which has the following form:





∂ty −∆y + γy3 = ✶ωf in Ω× (0, T ) ,

y = 0 on ∂Ω× (0, T ) ,

y(·, 0) = y0 ∈ L2(Ω) ,

(8)

where γ ∈ {1,−1}, ✶ω denotes the characteristic function of ω and f denotes the control
function acting on ω × (0, T ).

Our target is finding the answer for the following question (named null controllable at
time T property):

Is there a control function f ∈ L2(ω×(0, T )) which leads the solution of the above system
from a given data y0 at the initial time t = 0 to be null at the final time t = T?

ii/ Main result

In this writing, we provide two answers for the null controllability of the cubic semilinear
system, based on the fact that the blow up phenomenon appears or not:

— When the blow up phenomenon occurs (γ = −1), under an assumption on the small-
ness of the initial data in H1

0 (Ω), the answer is yes, i.e the system (8) is null control-
lable at time T (see Theorem 2.1).

— When the blow up phenomenon does not occur (γ = 1), under an assumption on the
smallness of the initial data in L2(Ω), the answer is yes, i.e the system (8) is null
controllable at time T (see Corollary 2.1). This result is a direct corollary from the
result for blow up case, thanks to the regularity property of the solution.

Furthermore, the construction of the control function is explicitly given and the small-
ness of the initial data is quantitatively estimated.

iii/ Idea of method

The idea of our method is based on an iterative algorithm of Liu, Takahashi and Tuc-
snak (see [LiTT]): Firstly, based on the null approximate controllability property of a
homogeneous linear system (see Theorem 1.9), we construct the null controllability for
a linear system with an outside force; Secondly, thanks to the idea of the Banach fixed-
point theorem, we utilize an iteration argument by treating −γy3 as an outside force.

iv/ Strategy

For considering the null controllability of the linear system with an outside force (see
Theorem 2.2 for case the initial data belongs to L2(Ω) and Corollary 2.2 for case the
initial data belongs to H1

0 (Ω)), we follow the following strategy:

• The first step is dividing [0, T ] into small intervals of time [Tk, Tk+1] (k ≥ 0) by
taking

Tk = T − T

ak
for some a > 1. (9)

• The second step is separating the controlled system with the outside force into two
systems: One is with outside force, without control and another one is with control

6
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and without outside force such that the initial data of one system is the final data of
the other (see more detail in page 52-54).

• The third step is using the null approximate controllability of the controlled system
without outside force (see Subsection 1.3.1) to construct the null control function for
the controlled system with outside force. The key tool is using the following argu-
ment:

The fact that ‖φe M
T−t ‖C([0,T ];L2(Ω)) <∞ for some M > 0 implies φ(·, T ) = 0.

3. The local backward heat problem.

The local backward heat problem is solved in the third chapter of my thesis. This problem
is also considered in my writing [Vo2]. Now, let us set up our problem.

i/ Problem

Let ω be a nonempty, open subset of Ω. We consider the following heat equation under
the Dirichlet boundary condition:





∂tu−∆u = 0 in Ω× (0, T ),
u = 0 on ∂Ω× (0, T ),
u(·, T ) = f ∈ L2(ω) .

(10)

Our target is finding the answer for the question (named the local backward problem):

Given δ > 0 and fδ ∈ L2(ω) such that ‖f − fδ‖L2(ω) ≤ δ. Then can we construct an

operator which maps fδ to some gδ such that ‖u(·, 0)−gδ‖L2(Ω) ≤ ǫ(δ) where ǫ(δ)
δ→0−−−→ 0?

ii/ Main result

Under a priori condition on the initial data, the answer for above question is yes (see
Theorem 3.2). Precisely, when δ < 1, if u(·, 0) ∈ H1

0 (Ω) then we can construct an
approximation gδ from the given data fδ and δ such that

‖u(·, 0)− gδ‖L2(Ω) ≤ C

(
ln

1

δ

)− 1
2

, (11)

where C > 0 depends on Ω, ω, T and ‖u(·, 0)‖H1
0 (Ω).

Furthermore, the reconstruction formula of the approximate solution g is explicitly given
in (3.176). In addition, the error estimate between the exact solution u(·, 0) and the reg-
ularized solution gδ is also computed in (3.177).

iii/ Idea of method

In order to get our main result, a natural idea is firstly connecting the information on a
subdomain with the solution on the whole domain, then secondly recovering the initial
solution from what we have known about the solution on the whole domain.

The idea for the first step is from [GaOT], who determines the spatial dependence f(x)
of the source term in a heat equation ∂tu − ∆u = f(x)σ(t), assuming σ(t) is known,
from a single internal measurements of the solution in ω × (0, T ). The reconstruction
formula is associated to a family of null control acting on (0, τ) where 0 < τ < T . Here,
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our observation is available on ω×{T}. Hence, our reconstruction is involved in a family
of impulse controls acting on ω × {T} (see Lemma 3.1).
The idea for the second step comes from [Se2]. In this work, under the assumption that
u(·, 0) ∈ L2(Ω), the author constructs the solution u(·, t) (t ∈ (0, T )) from the approxi-
mation data of u(·, T )|Ω by using a special filtering method. The idea of his method is
using a filter in the eigenfunctions decomposition of the solution in order to eliminate
the high frequency components. The error estimate by this method is of Hölder type
δ
t
T . This has no meaning for the case t = 0 but the convergence is optimal in sense

of Tautenhahn (see Theorem 3.4). Hence, we will improve this method to recover the
solution at time t = 0, whose convergence is also optimal (see Theorem 3.5).

iv/ Strategy

The strategy for constructing the regularized solution by the filtering method is pre-
sented in the following steps:

• In the first step, we will get the information of the solution at time 3T on the whole
domain, based on the given data fδ at time T on a subdomain. The key tool to get
this target is the null approximate impulse controllability (see Theorem 1.11) of the
dual system. This property provides us a family of the impulse control functions
acting on ω × {T} which leads the solution from ei(i = 1, 2, ...) at initial time to be
null approximately at time 2T . Then, thanks to the property that

∑
i≥1

e−2λiT < ∞,

we construct the approximate data fη of u(·, 3T )|Ω. Here λi and ei are respectively
the eigenvalues and the corresponding eigenfunctions of the Laplacian, under the
Dirichlet boundary condition.

• In the second step, we solve the backward problem (see Theorem 3.1): recovering the
initial solution from the noisy data at time 3T on the whole domain. The approximate
solution is constructed as below

g :=
∑

i≥1

min{e3λiT , α}
(∫

Ω

fη(x)ei(x)dx

)
ei. (12)

The important point in this step is choosing a suitable parameter α in order to
get minimum error. In the error estimate, we have split the total error into an
approximate error, which tends to 0 as α → ∞ and a data error, which explodes as
α→ ∞ :

total error ≤ approximate error︸ ︷︷ ︸
.(lnα)−

1
2

+ data error︸ ︷︷ ︸
.α

. (13)

To get a good approximation, we have to balance these two error terms by a good
choice of the parameter α.

Combining the results in two steps, we obtain our desired result.
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CONTENTS

Structure of the thesis

The content of the thesis is separated into three chapters:

Chapter 1: In this Chapter, we recall the important properties (well-posedness, spectral theory,
controllability) as well as the necessary estimates (energy estimate, regularity estimate, back-
ward estimate, stability estimate, observability estimate) for the linear heat equation, under the
Dirichlet boundary condition. These results are the preliminaries for our concerns in next chap-
ters.

Chapter 2: In this Chapter, we study the null controllability of a cubic semilinear heat equation.
We present a constructive way to compute a control function which leads the solution of a cubic
heat equation, under the Dirichlet condition, from a given data at time 0 (which is small enough)
to null at a given final time T . Furthermore, the smallness of the initial data with respect to the
final time T is also given in a quantitative estimate.

Chapter 3: In this Chapter, we discuss about the backward problem and local backward problem
for the linear heat equation, under the Dirichlet boundary condition. Precisely, we approximately
recover the initial data from the observation on the whole domain (backward problem) or on a
subdomain (local backward problem). Two different regularization methods are used: the Fil-
tering method and the Tikhonov method. Furthermore, we also study the optimality of our
regularization method in sense of Tautenhahn, which concerns the best possible case error for
identifying the approximate solution. In addition, by using a technique of changing variable, we
also solve the backward and local backward problem for the time dependent thermal conductivity
heat equation.

9





Chapter 1

Preliminaries

In this chapter, we recall the main results on the properties for a solution of the heat equation,
which is the simplest example of a parabolic equation, under Dirichlet boundary condition. Fur-
thermore, the topic of observability estimate, which has many important applications in control
theory, is presented with detailed proof. One of these applications, null approximate controllability
and null controllability, is reminded by a constructive way of a control function. They are primary
results for studying null controllability for semilinear heat equation (see Chapter 2). Moreover, the
null approximate impulse controllability which connects the backward problem and local backward
one (see Chapter 3) is also studied. The main content of each section in this Chapter is shortly
given as below:

Section 1.1: We focus on the well-posedness (Subsection 1.1.1) of the problem of finding the
solution of heat equation, under Dirichlet boundary condition and the given initial data. Moreover,
the explicit formula of the solution with respect to the initial data is given by the decomposition
in Hilbert basis (Subsection 1.1.2). The classical estimates for solution of this problem are also
mentioned: energy estimate (Subsection 1.1.3), regularity estimate (Subsection 1.1.4), backward
estimate (Subsection 1.1.5) and stability estimate (Subsection 1.1.6).

Section 1.2: We study an interesting estimate which says: if v|ω×(0,T ) = 0 then v ≡ 0 where v
is the solution of heat equation, under Dirichlet boundary condition and ω is any open subdomain
(Subsection 1.2.1 ). In order to study how people solved this problem in the past, Subsection 1.2.2
is recommended . The main point to get this estimate is the observation estimate at one point
of time (Subsection 1.2.3). In Subsection 1.2.3, we will firstly provide some preliminary lemmas
(see 1.2.3.1) and then give the proof in two different geometry conditions: when Ω is convex (see
1.2.3.2) and when Ω is C2, open and bounded (see 1.2.3.3). The proof of main results (Subsection
1.2.4) as well as the preliminary results (Subsection 1.2.5) will complete this section.

Section 1.3: We concern about an important issue in control theory: Controllability. Precisely,
we construct a control function which leads the solution at a given point at initial time to a
desired point at final time. When the control function acts on ω × (0, T ), if final data gets null
approximately, we call null approximate controllability (see Subsection 1.3.1), if final data gets
null exactly, we call null controllability (see Subsection 1.3.2). When the control function acts on
ω × {T} and final data approximates to zero, we name null approximate impulse controllability
(Subsection 1.3.3).
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1.1. HEAT EQUATION

1.1 Heat equation

1.1.1 Well-posedness

The term well-posedness stems from a definition given by Jacques Hadamard. He claims that
a mathematical model for a physical problem has to be well-posed in the following sense.

Definition 1.1. (see [Ev, p.7] or [Ki, p.9])
A given problem for a partial differential equation is well-posed if

i/ The problem has a solution;

ii/ The solution is unique;

iii/ The solution depends continuously on the given data.

Now, we study on the well-posedness of a heat problem: Let Ω be an open bounded domain
in Rn(n ≥ 1) with a boundary ∂Ω of class C2. We consider the following heat equation under the
Dirichlet boundary condition:

(HP) Given v0 ∈ L2(Ω), find a solution v : Ω× [0,+∞) → R such that





∂tv −∆v = 0 in Ω× (0,+∞),
v = 0 on ∂Ω× (0,+∞),
v(·, 0) = v0 in Ω.

(1.1)

It is well-known that (HP) is well-posed in sense of Hadamard, thanks to the following theorem:

Theorem 1.1. (see [CaH, Pro.3.5.2, p.42])
There exists a unique function v(x, t) satisfying (HP) and

1. v ∈ C([0,∞);L2(Ω)) ∩ C1((0,∞);L2(Ω)),

2. ∆v ∈ C((0,∞);L2(Ω)),

3. v ∈ C((0,∞);H1
0 (Ω)).

In addition, we have:

‖v(·, t)‖L2(Ω) ≤ ‖v0‖L2(Ω) ∀t > 0. (1.2)

Furthermore, the explicit formula of the solution with respect to the initial data will be obtained
by the following fundamental theory.

1.1.2 Spectral theory

The unique solution of problem (HP) can be given by a decomposition in a Hilbert basis, thanks
to the following theorem:

Theorem 1.2. (see [Br, Th.9.31, p.311])
There exists a sequence of positive real eigenvalues of the operator −∆ (with Dirichlet boundary
condition), which denoted by {λi}i≥1 where

{
0 < λ1 ≤ λ2 ≤ λ3 ≤ ....,
λi → ∞ as i→ ∞.

(1.3)

Moreover, there exists an orthonormal basis {ei}i≥1 of L2(Ω), where ei ∈ H1
0 (Ω) ∩ C∞(Ω) is an

eigenfunction corresponding to λi such that

−∆ei = λiei in Ω.

12



1.1. HEAT EQUATION

In order to study more about the property of eigenvalues {λi}, we recommend the readers to
[He] or [BuH]. Here, we use this theorem to solve (HP) by a decomposition in a Hilbert basis of
L2(Ω). Precisely, we seek a solution v of (HP) in the form of a series

v(x, t) =
∑

i≥1

ai(t)ei(x). (1.4)

The fact that v is a solution of (HP) requires the functions ai(t) satisfy

{
a′i(t) + λiai(t) = 0,∑
i≥1

ai(0)ei(x) = v0.

Thus, we get ai(t) = ai(0)e
−λit and ai(0) =

∫
Ω
v0(x)ei(x)dx. In conclusion, the unique solution of

(HP) is

v(·, t) =
∑

i≥1

(∫

Ω

v0(x)ei(x)dx

)
e−λitei. (1.5)

1.1.3 Energy estimate

Here, we recall a basic estimate for the heat equation, which is based on the non-increasing
property of the "energy" function E(t) := 1

2

∫
Ω
|v(x, t)|2dx.

Theorem 1.3. (see [CaH, Pro.3.5.5, p.43])
Let v be the solution of (HP). Then the following estimate holds

‖v(·, t)‖L2(Ω) ≤ e−λ1t‖v0‖L2(Ω) ∀t > 0.

1.1.4 Regularity estimate

Let us move to another basic estimate for solution of (HP), which is called the regularity
estimate on smoothing effect of the heat equation.

Theorem 1.4. (see [CaH, Pro.3.5.2, p.42])
Let v be the solution of (HP). Then the following estimate holds

‖∇v(·, t)‖L2(Ω) ≤
1√
2t
‖v0‖L2(Ω) ∀t > 0.

1.1.5 Backward estimate

Our target in this subsection is looking for an estimate of the form

‖v0‖L2(Ω) ≤ constant‖v(·, T )‖L2(Ω) (1.6)

where v solves (HP) and T denotes a positive number. This estimate (1.6) is called "backward
estimate" for heat equation, which gives the uniqueness of solution for the backward heat problem.

Theorem 1.5. (see [BaT])
Let v be the solution of (HP) and T be a positive number. If v0 ∈ H1

0 (Ω) and ‖v0‖L2(Ω) 6= 0 then

‖v0‖L2(Ω) ≤ e

‖v0‖2
H1

0(Ω)

‖v0‖2
L2(Ω)

T

‖v(·, T )‖L2(Ω). (1.7)
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1.2. OBSERVABILITY ESTIMATE

1.1.6 Stability estimate

The backward estimate shows how ‖v0‖L2(Ω) depends on ‖v(·, T )‖L2(Ω). Next, the stability
estimate in this subsection will tell us how ‖v(·, t)‖L2(Ω)(t ∈ (0, T )) depends on ‖v(·, T )‖L2(Ω).

Theorem 1.6. (see [Ve, p.432] or [Pa, p.11])
Let v be the solution of (HP) and T be a positive number. Then the following estimate holds for
any t ∈ (0, T ):

‖v(·, t)‖L2(Ω) ≤ ‖v0‖1−
t
T

L2(Ω)‖v(·, T )‖
t
T

L2(Ω). (1.8)

The result in Theorem 1.6 is obtained by using the logarithm convexity method for the function
f(t) :=

∫
Ω
|v(x, t)|2dx.

1.2 Observability estimate

In this section, we concern about another well-known estimate named observability estimate
which is not only mathematically interesting but also has important applications in the control
theory of the heat equation, such as: Bang-bang control (see [PhW2]); Time optimal control (see
[PhW2], [PhWZ] or [ApEWZ]); Null controllability (see [Zu3] or [ApEWZ]); etc. Now, let us state
the main result of this section.

1.2.1 Main result

Theorem 1.7. (see [DuZZ, Th.A, p.2])
Let ω be a nonempty, open subset of Ω, v be the solution of (HP) and T be a positive number. Then
there exist positive constants C1 and C2 depending on Ω and ω such that the following assertion
holds:

‖v(·, T )‖L2(Ω) ≤ C1e
C2
T ‖v‖L2(ω×(0,T )). (1.9)

Remark 1.1. 1. The estimate (1.9) is so called an observability estimate which asserts that
the energy of solution concentrated in ω yields an upper bound of the energy everywhere in
Ω. Here, because of the strong irreversibility of the heat equation, the constant in (1.9) grows
exponentially as T → 0.

2. The constants C1 and C2 in (1.9) depend on the geometric properties of Ω and ω. Under the
special geometric condition on the domain, that is: Ω is convex or star-shaped with respect
to x0 ∈ Ω such that {x : |x − x0| < r} ⊂ ω for some r ∈ (0, 1), how the constant C1 and C2
depend on ω are explicitly computed. Precisely, in [Ph, Th.1.1, p.2], the authors gives that:

‖v(·, T )‖L2(Ω) ≤ Cǫe
Cǫ
rǫ

1
T ‖v‖L2(ω×(0,T )). (1.10)

for some positive constant Cǫ depending on ǫ and max{|x−x0| : x ∈ Ω. Recently, the authors
in [LauL] improve the result of [Ph] by providing

‖v(·, T )‖L2(Ω) ≤ Ce(C| ln r|2+C) 1
T ‖v‖L2(ω×(0,T )). (1.11)

for some positive geometric constant C (see [LauL, TH.1.3,p.4]).

1.2.2 State of art

There are extensive literatures on the subject of finding the observability estimate (1.9). Let
us now discuss some of well-known methods.
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1.2. OBSERVABILITY ESTIMATE

1. Global Carleman inequalities: The idea to use Global Carleman inequalities for establish-
ing the observability estimate is firstly given by Emanuvilov (see [Em]) in 1995. Then, thanks
to the advantage that getting explicit bounds on the observability constants and application
for general parabolic equations, this method is widely used by many researchers such as:
Fursikov ([FuI] or [Fu]), Fernández-Cara, Zuazua ([FeZ2], [DuZZ]), etc.The complete proof
can also be found in the book of Tucsnak and Weiss (see [TuW, Th.9.5.1, p.313]).

2. Spectral estimate: An interesting characterization of the observability estimate in terms of
the spectrum of Laplacian, which also named Lebeau-Robbiano spectral inequality, has been
derived by Lebeau and Robbiano in [LeR]. This method can also be found in [Zh], [Mi3],
[ApEWZ], [FeZ1] or [MiZ].

3. Logarithm convexity method: Recently, Phung and all (see [PhW1], [PhW2], [PhWX],
[PhWZ] or [BaP]) provide a new method, which is independent with the two above methods.
Their strategy is based on the logarithm convexity method to find an observation estimate at
one point of time, and then apply the telescoping series method to get the desired estimate.
This method can also work for the parabolic equations with space-time coefficients (see
[BaP]). In what following, we will use this method to give the proof of Theorem 1.7.

1.2.3 Observation estimate at one point of time

In this subsection, we will study an estimate which is the key point for the proof of Theorem
1.7.

Theorem 1.8. (see [PhWZ, Le.5] or [BaP, Th.4.1])
Let ω be a nonempty, open subset of Ω, v be the solution of (HP) and T be a positive number.
Then there exist positive constants K1, K2 and µ ∈ (0, 1) depending on Ω, ω such that the following
estimate holds:

‖v(·, T )‖L2(Ω) ≤ K1e
K2
T ‖v(·, T )‖µ

L2(ω)‖v
0‖1−µ
L2(Ω). (1.12)

Remark 1.2. 1. Theorem 1.8 has an interesting meaning that is: If v ≡ 0 on ω × {T} then
v ≡ 0 on Ω× {T}.

2. When Ω is convex, the constants K1, K2 and µ are explicitly computed (see Subsection
1.2.3.2). The interested readers can compare with [PhW1, Pro.2.1], [PhW2, Pro.2.2] or
[BaP, Th.4.2].

3. The estimate (1.12) is equivalent to the following Lebeau-Robbiano spectral inequality (see
[PhWX, Th.2.1]): There exist positive constants K3, K4, depending on Ω and ω so that for
each λ > 0 and each sequence of real numbers {aj}j≥1 ⊂ R, we get

∑

λj<λ

|aj |2 ≤ K3e
K4

√
λ

∫

ω

|
∑

λj<λ

ajej |2. (1.13)

It is also called the observability estimate for the spectrum of Laplacian. The key ingredient
for this equivalence is the eigenfunctions decomposition of the solution of (HP) given by (1.5).

4. The estimate (1.12) can be improved by the following estimate (see also [PhWX, Th.2.1]):
There exist positive constants K5, K6, depending on Ω and ω so that for any β ∈ (0, 1), one
has

‖v(·, T )‖L2(Ω) ≤ K5e
K6
Tβ ‖v(·, T )‖β

L2(ω)‖v
0‖1−β
L2(Ω). (1.14)

One application of this estimate is minimal norm impulse control (see [PhWX, Th.3.4]).

1.2.3.1 Preliminary lemmas

The key tool for the proof of Theorem 1.8 is the logarithm convexity method for the following
function

∫

Ω

|v(x, t)|2eξ(x,t)dx, (1.15)
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1.2. OBSERVABILITY ESTIMATE

where ξ is some weight function. In [PhW1], [PhW2], [PhWZ], [PhWX] or [BaP], they use the
following weight function

ξ(x, t) :=
−|x− x0|2
4(T − t+ ρ)

− n

2
ln(T − t+ ρ) (1.16)

for x0 ∈ Ω and ρ > 0. With such choice of the weight function, the constants in final estimate
(1.12) depend on the dimension n of the domain. In [Ph], the author improves their result by
removing the dependence on the dimension n with another choice of weight function, which is

ξ(x, t) :=
−|x− x0|2
4(T − t+ ρ)

. (1.17)

In [Ph], the author combines the logarithmic convexity with the Carleman commutator in order
to get an abstract result for any weight function satisfying some assumptions. Here, for simplicity,
we will use the same technique in the previous works but with the new weight function (1.17).
First of all, let us count on some properties of the weight function defined in (1.17):

(P1) ∂tξ + |∇ξ|2 = 0,

(P2) ∇ξ = −(x−x0)
2(T−t+ρ) ,

(P3) ∆ξ = −n
2(T−t+ρ) ,

(P4) ∇2ξ = −1
2(T−t+ρ)In where In is the identity matrix of size n.

Now, we consider the first derivative of the function defined in (1.15) by Lemma below.

Lemma 1.1. Let ϑ be an open set in Rn (n ≥ 1), x0 ∈ ϑ, w ∈ H1(0, T ;H1
0 (ϑ)), ρ > 0, ξ be defined

in (1.17) and Ψ : [0, T ] → R such that

Ψ(t) :=

∫

ϑ

|w(x, t)|2eξ(x,t)dx. (1.18)

Then the following assertion holds for any time t > 0

Ψ′(t) = 2

∫

ϑ

w(x, t)(∂tw −∆w)(x, t)eξ(x,t)dx

−2

∫

ϑ

|∇w(x, t)|2eξ(x,t)dx− n

2(T − t+ ρ)
Ψ(t).

(1.19)

Next, we define another function N : [0, T ] → R satisfying

N(t) :=
2
∫
ϑ
|∇w(x, t)|2eξ(x,t)dx∫

ϑ
|w(x, t)|2eξ(x,t)dx +

n

2(T − t+ ρ)
. (1.20)

Then the estimate (1.19) can be written as

Ψ′(t) +N(t)Ψ(t) = 2

∫

ϑ

w(x, t)(∂tw −∆w)(x, t)eξ(x,t)dx. (1.21)

The next lemma will provide us the estimate of N ′(t).

Lemma 1.2. Suppose all the assumptions of Lemma 1.1 are satisfied and ϑ is convex or star-shaped
with respect to x0. Let N be defined as in (1.20). Then we get the following estimate

N ′(t) ≤ N(t)

T − t+ ρ
+

∫
ϑ
|∂tw(x, t)−∆w(x, t)|2eξ(x,t)dx∫

ϑ
|w(x, t)|2eξ(x,t)dx . (1.22)
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1.2. OBSERVABILITY ESTIMATE

In the proof of Theorem 1.8 when Ω is C2, open and bounded (convex or non-convex), we need
two more technical lemmas. The first one is used to estimate the rest term, which appears in the
localization.

Lemma 1.3. (see [Ph, Le.2.2, p.12])
Let x0 ∈ Ω, R > 0, δ ∈ (0, 1] and v be the solution of (HP). Then there exists 0 < ~ ≤ min{1, T2 }
such that the following estimate holds for any T − ~ ≤ t ≤ T :

∫
Ω

∣∣v0(x)
∣∣2 dx

∫
Ω∩B(x0,(1+δ)R)

|v(x, t)|2 dx
≤ e

(1+δ)δR2

2~ .

Here
1

~
=

2

(δR)2
ln

(
e
R2

2 (1+ 2
T )

2
∫
Ω
|v0(x)|2dx∫

Ω∩B(x0,R)
|v(x, T )|2dx

)
.

The second lemma is used for covering the neighbourhood of the boundary.

Lemma 1.4. For any z ∈ ∂Ω, there exist x0 ∈ Ω and R > 0 such that z ∈ B(x0, R) and
(x− x0)ν ≥ 0 for any x ∈ ∂Ω ∩B(x0, R) where ν is the unit outward normal vector to x.

Now we can start the proof of Theorem 1.8 by the simple case when Ω is convex.

1.2.3.2 Case when Ω is convex

We divide the proof into several steps: Step 1 constructs ordinary differential equations (ODEs)
which are applications of Lemma 1.1 and Lemma 1.2; Solving these ODEs, Step 2 provides us Hölder
estimate; In Step 3, we take off the weight function and make appear the local term; Lastly, by
choosing suitable parameters, Step 4 and Step 5 will give us the final result.

Step 1: Construct ODEs.
Taking x0 ∈ ω and ρ > 0, we define the weight function ξ : Ω× (0, T ) → R such that

ξ(x, t) :=
−|x− x0|2
4(T − t+ ρ)

. (1.23)

Let v be the solution of (HP). We consider the following functions

Ψ(t) :=

∫

Ω

|v(x, t)|2eξ(x,t)dx (1.24)

and

N(t) :=
2
∫
Ω
|∇v(x, t)|2eξ(x,t)dx∫

Ω
|v(x, t)|2eξ(x,t)dx +

n

2(T − t+ ρ)
. (1.25)

Applying Lemma 1.1 and Lemma 1.2 with ϑ := Ω, w := v, we get from (1.21) that

Ψ′(t) +N(t)Ψ(t) = 0 (1.26)

and from (1.22) that

N ′(t) ≤ N(t)

T − t+ ρ
. (1.27)

Step 2: Solve ODEs.
Let 0 ≤ t1 < t2 < t3 ≤ T , we will solve ODEs (1.26) and (1.27) from Step 1 on (t1, t2) and (t2, t3)
respectively. From (1.27), we get

(N(t)(T − t+ ρ))
′ ≤ 0. (1.28)
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1.2. OBSERVABILITY ESTIMATE

For t1 < t < t2

Integrating (1.28) over (t, t2) gives us

N(t) ≥ N(t2)
T − t2 + ρ

T − t+ ρ
. (1.29)

Combining (1.26) and (1.29), we obtain

Ψ′(t) +N(t2)
T − t2 + ρ

T − t+ ρ
Ψ(t) ≤ 0.

It is equivalent to (
Ψ(t)eN(t2)(T−t2+ρ)

∫

t
0

ds
T−s+ρ

)′
≤ 0. (1.30)

Integrating (1.30) over (t1, t2), one has

Ψ(t1) ≥ Ψ(t2)e
N(t2)(T−t2+ρ) ln T−t1+ρ

T−t2+ρ . (1.31)

It deduces from (1.31) that

eN(t2)(T−t2+ρ) ≤
(
Ψ(t1)

Ψ(t2)

) 1

ln
T−t1+ρ
T−t2+ρ . (1.32)

For t2 < t < t3

Integrating (1.28) over (t2, t) gives us

N(t) ≤ N(t2)
T − t2 + ρ

T − t+ ρ
. (1.33)

It deduces from (1.26) and (1.33) that

Ψ′(t) +N(t2)
T − t2 + ρ

T − t+ ρ
Ψ(t) ≥ 0. (1.34)

It is equivalent to (
Ψ(t)eN(t2)(T−t2+ρ)

∫

t
0

ds
T−s+ρ

)′
≥ 0. (1.35)

Integrating (1.35) over (t2, t3) gives us

Ψ(t2) ≤ Ψ(t3)e
N(t2)(T−t2+ρ) ln T−t2+ρ

T−t3+ρ . (1.36)

Now, combining (1.32) and (1.36), one gets

Ψ(t2) ≤ Ψ(t3)

(
Ψ(t1)

Ψ(t2)

)M
(1.37)

where

M :=
ln T−t2+ρ

T−t3+ρ

ln T−t1+ρ
T−t2+ρ

. (1.38)

It implies from (1.37) that

Ψ(t2)
1+M ≤ Ψ(t3)Ψ(t1)

M . (1.39)

Step 3: Choose suitable t1, t2, t3, take off the weight function and make appear ω.
Remind that

Ψ(t) =

∫

Ω

|v(x, t)|2e−
|x−x0|2

4(T−t+ρ) dx. (1.40)
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Now, for any ℓ > 1 such that ℓρ ≤ T
2 , choosing t1 = T − 2ℓρ, t2 = T − ℓρ, t3 = T , we get from

(1.39) that

(∫

Ω

|v(x, T − ℓρ)|2e−
|x−x0|2
4(1+ℓ)ρ dx

)1+M

≤
(∫

Ω

|v(x, T )|2e−
|x−x0|2

4ρ dx

)(∫

Ω

|v(x, T − 2ℓρ)|2e−
|x−x0|2
4(1+2ℓ)ρ dx

)M
. (1.41)

On one hand, we consider the term on the left-hand side of (1.41):
Put R := max

x∈Ω
|x− x0| then

(∫

Ω

|v(x, T − ℓρ)|2e−
|x−x0|2
4(1+ℓ)ρ dx

)1+M

≥ e−
R2(1+M)
4(1+ℓ)ρ

(∫

Ω

|v(x, T − ℓρ)|2dx
)1+M

. (1.42)

Applying the energy estimate, that is
∫

Ω

|v(x, T − ℓρ)|2dx ≥
∫

Ω

|v(x, T )|2dx, (1.43)

one obtains
(∫

Ω

|v(x, T − ℓρ)|2e−
|x−x0|2
4(1+ℓ)ρ dx

)1+M

≥ e−
R2(1+M)
4(1+ℓ)ρ

(∫

Ω

|v(x, T )|2dx
)1+M

. (1.44)

On the other hand, we consider the terms on the right-hand side of (1.41):
• For the first term, in order to make appear ω, take 0 < r < R such that B(x0, r) ⊂ ω, we

have
∫

Ω

|v(x, T )|2e
−|x−x0|2

4ρ dx

=

∫

B(x0,r)

|v(x, T )|2e
−|x−x0|2

4ρ dx+

∫

Ω\B(x0,r)

|v(x, T )|2e
−|x−x0|2

4ρ dx

≤
∫

B(x0,r)

|v(x, T )|2dx+ e−
r2

4ρ

∫

Ω\B(x0,r)

|v(x, T )|2dx

≤
∫

ω

|v(x, T )|2dx+ e−
r2

4ρ

∫

Ω

|v(x, T )|2dx

≤
∫

ω

|v(x, T )|2dx+ e−
r2

4ρ

∫

Ω

|v0(x)|2dx. (1.45)

The first inequality comes from the fact that

e
−|x−x0|2

4ρ ≤ 1 ∀x ∈ B(x0, r) (1.46)

and

e
−|x−x0|2

4ρ ≤ e−
r2

4ρ ∀x ∈ Ω \B(x0, r). (1.47)

The second inequality is based on the fact that B(x0, r) ⊂ ω and Ω\B(x0, r) ⊂ Ω. The last
inequality is obtained thanks to the energy estimate.

• For the second term, using the fact that e−
|x−x0|2
4(1+2ℓ)ρ ≤ 1 and the energy estimate, which is

∫

Ω

|v(x, T − 2ℓρ)|2dx ≤
∫

Ω

|v0(x)|2dx, (1.48)

we get

(∫

Ω

|v(x, T − 2ℓρ)|2e−
|x−x0|2
4(1+ℓ)ρ dx

)M
≤
(∫

Ω

|v0(x)|2dx
)M

. (1.49)
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Now, combining (1.41), (1.44), (1.45) and (1.49) gives us

(∫

Ω

|v(x, T )|2dx
)1+M

≤ e
R2(1+M)
4(1+ℓ)ρ

(∫

ω

|v(x, T )|2dx
)(∫

Ω

|v0(x)|2dx
)M

+e
R2(1+M)
4(1+ℓ)ρ

− r2

4ρ

(∫

Ω

|v0(x)|2dx
)1+M

. (1.50)

Step 4: Choose suitable ℓ.
Now, recall that

M :=
ln T−t2+ρ

T−t3+ρ

ln T−t1+ρ
T−t2+ρ

. (1.51)

With above choice of t1, t2, t3, one gets

M =
ln(1 + ℓ)

ln 1+2ℓ
1+ℓ

. (1.52)

Thanks to the fact that ℓ > 1, we obtain 1+2ℓ
1+ℓ = 2− 1

1+ℓ >
3
2 . Hence, one has

1 < M <
ln(1 + ℓ)

ln 3
2

:=Mℓ. (1.53)

Notice that the estimate (1.50) still holds with M replaced by Mℓ. Indeed, the estimate (1.50) can
be written as

(∫
Ω
|v(x, T )|2dx∫

Ω
|v0(x)|2dx

)1+M

≤ e
R2(1+M)
4(1+ℓ)ρ

∫
ω
|v(x, T )|2dx∫

Ω
|v0(x)|2dx + e

R2(1+M)
4(1+ℓ)ρ

− r2

4ρ . (1.54)

Thanks to the fact that
∫
Ω
|v(x, T )|2dx ≤

∫
Ω
|v0(x)|2dx, one gets

(∫
Ω
|v(x, T )|2dx∫

Ω
|v0(x)|2dx

)1+M

≥
(∫

Ω
|v(x, T )|2dx∫

Ω
|v0(x)|2dx

)1+Mℓ

. (1.55)

Hence, the following estimate holds
(∫

Ω

|v(x, T )|2dx
)1+Mℓ

≤ e
R2(1+Mℓ)

4(1+ℓ)ρ

∫

ω

|v(x, T )|2dx
(∫

Ω

|v0(x)|2dx
)Mℓ

+e
R2(1+Mℓ)

4(1+ℓ)ρ
− r2

4ρ

(∫

Ω

|v0(x)|2dx
)1+Mℓ

. (1.56)

Now, in order to make the estimate (1.56) has the form A ≤ eC(ρ)B + e−C(ρ)D for some positive
constant C(ρ) depending on ρ, we choose ℓ > 1 such that

R2(1 +Mℓ)

4(1 + ℓ)ρ
≤ r2

8ρ
. (1.57)

Remind that

1 < Mℓ =
ln(1 + ℓ)

ln 3
2

. (1.58)

Hence, we get

R2(1 +Mℓ)

4(1 + ℓ)ρ
<

2R2Mℓ

4(1 + ℓ)ρ
=

R2 ln(1 + ℓ)

2(1 + ℓ)ρ ln 3
2

. (1.59)

Moreover, using the fact that ln(1 + ℓ) ≤ (1+ℓ)ε

ε
∀0 < ε < 1, one yields

R2(1 +Mℓ)

4(1 + ℓ)ρ
<

R2

2ε(1 + ℓ)1−ερ ln 3
2

<
R2

2εℓ1−ερ ln 3
2

. (1.60)
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Combining (1.57) and (1.60), we can choose ℓ such that

R2

2εℓ1−ερ ln 3
2

=
r2

8ρ
. (1.61)

Precisely, we can take ℓ as below

ℓ =

(
4R2

εr2 ln 3
2

) 1
1−ε

. (1.62)

Such choice of ℓ implies from (1.56) that

(∫

Ω

|v(x, T )|2dx
)1+Mℓ

≤ e
r2

8ρ

(∫

ω

|v(x, T )|2dx
)(∫

Ω

|v0(x)|2dx
)Mℓ

+e−
r2

8ρ

(∫

Ω

|v0(x)|2dx
)1+Mℓ

. (1.63)

Step 5: Choose suitable ρ.
The estimate (1.63) holds for ρ ≤ T

2ℓ . Now, for ρ > T
2ℓ which implies r2

8ρ <
r2ℓ
4T , we can get the

following estimate be true for any ρ > 0

(∫

Ω

|v(x, T )|2dx
)1+Mℓ

≤ e
r2

8ρ

(∫

ω

|v(x, T )|2dx
)(∫

Ω

|v0(x)|2dx
)Mℓ

+e−
r2

8ρ+
r2ℓ
4T

(∫

Ω

|v0(x)|2dx
)1+Mℓ

. (1.64)

Now, in order to minimize the right-hand side of (1.64) with respect to ρ, we choose ρ such that

e−
r2

8ρ+
r2ℓ
4T

(∫

Ω

|v0(x)|2dx
)1+Mℓ

=
1

2

(∫

Ω

|v(x, T )|2dx
)1+Mℓ

, (1.65)

that is

e
r2

8ρ = 2e
r2ℓ
4T

( ∫
Ω
|v0(x)|2dx∫

Ω
|v(x, T )|2dx

)1+Mℓ

. (1.66)

With such choice of ρ, it deduces from (1.64) that

(∫

Ω

|v(x, T )|2dx
)2(1+Mℓ)

≤ 4e
r2ℓ
4T

(∫

ω

|v(x, T )|2dx
)(∫

Ω

|v0(x)|2dx
)1+2Mℓ

. (1.67)

It is equivalent to

∫

Ω

|v(x, T )|2dx ≤
(
4e

r2ℓ
4T

∫

ω

|v(x, T )|2dx
) 1

2(1+Mℓ)
(∫

Ω

|v0(x)|2dx
) 1+2Mℓ

2(1+Mℓ)

. (1.68)

This completes the proof of Theorem 1.8 with K1 = 4
1

4(1+Mℓ) , K2 = r2ℓ
16(1+Mℓ)

and µ = 1
2(1+Mℓ)

.

1.2.3.3 Case when Ω is C2, open and bounded

When Ω is C2, open and bounded, we will use the covering argument to cover Ω by finite
number sets Ω ∩B(xi, Ri)(i = 1, 2, ..., N) where N ∈ N∗ and Ω ∩B(xi, (1 + 2δi)Ri) is star-shaped
with respect to xi ∈ Ω for some δi ∈ (0, 1] (see Step 8). Furthermore, in order to reach ω,
we will use the propagation of smallness (see Step 7). However, the difficulty when we work on
the local star-shaped Ω ∩ B(xi, (1 + 2δi)Ri) is that the Dirichlet boundary condition: v = 0 on
∂(Ω∩B(xi, (1+ 2δi)Ri) does not hold any more. Hence, we need to use a cut off function χ which
is null on ∂B(xi, (1 + 2δi)Ri). The appearance of this cut off function makes appear another term
∂t(χv)−∆(χv). In order to estimate this term, we will use the technical Lemma 1.3 (see Step 3).
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For the rest of the proof, we use the same technique in proof when Ω is convex (see Subsection
1.2.3.2).

Step 1: Construct ODEs.
Let x0 ∈ Ω, R > 0, δ ∈ (0, 1] such that Ω∩B(x0, (1+2δ)R) is star-shaped with respect to x0. Let us
define the cut off function: Define χ ∈ C2

0 (B(x0, (1 + 2δ)R)) satisfying χ = 1 in B(x0,
(
1 + 3

2δ
)
R)

and 0 < χ(x) ≤ 1 ∀x ∈ B(x0, (1 + 2δ)R). Then χv ∈ H1((0, T );H1
0 (Ω ∩ B(x0, (1 + 2δ)R))). Let

ρ > 0, we define two following functions:

Ψ(t) :=

∫

Ω∩B(x0,(1+2δ)R)

|χ(x)v(x, t)|2eξ(x,t)dx. (1.69)

and

N(t) :=
2
∫
Ω∩B(x0,(1+2δ)R)

|∇(χ(x)v(x, t))|2eξ(x,t)dx
∫
Ω∩B(x0,(1+2δ)R)

|χ(x)v(x, t)|2eξ(x,t)dx +
n

2(T − t+ ρ)
. (1.70)

Apply Lemma 1.1 and Lemma 1.2 with ϑ := Ω ∩B(x0, (1 + 2δ)R) and w := χv, we get

Ψ′(t) +N(t)Ψ(t) = 2

∫

Ω∩B(x0,(1+2δ)R)

χ(x)v(x, t)(∂t(χ(x)v(x, t))−∆(χ(x)v(x, t)))eξ(x,t)dx(1.71)

and

N ′(t) ≤ N(t)

T − t+ ρ
+

∫
Ω∩B(x0,(1+2δ)R)

|∂t(χ(x)v(x, t))−∆(χ(x)v(x, t))|2eξ(x,t)dx
∫
Ω∩B(x0,(1+2δ)R)

|χ(x)v(x, t)|2eξ(x,t)dx . (1.72)

Now, using the Cauchy-Schwarz inequality and the inequality that 2ab ≤ a2 + b2 ∀a, b > 0 for the
right-hand side of (1.71), we get

|Ψ′(t) +N(t)Ψ(t)| ≤
∫

Ω∩B(x0,(1+2δ)R)

|χ(x)v(x, t)|2eξ(x,t)dx

+

∫

Ω∩B(x0,(1+2δ)R)

|∂t(χ(x)v(x, t))−∆(χ(x)v(x, t))|2eξ(x,t)dx.

(1.73)

Put

G(t) :=

∫
Ω∩B(x0,(1+2δ)R)

|∂t(χ(x)v(x, t))−∆(χ(x)v(x, t))|2eξ(x,t)dx
∫
Ω∩B(x0,(1+2δ)R)

|χ(x)v(x, t)|2eξ(x,t)dx . (1.74)

Then, one gets from (1.73) and (1.74) that

|Ψ′(t) +N(t)Ψ(t)| ≤ (1 +G(t))Ψ(t). (1.75)

Moreover, we also get from (1.72) and (1.74) that

N ′(t) ≤ N(t)

T − t+ ρ
+G(t). (1.76)

Step 2: Solve ODEs.
Let 0 ≤ t1 < t2 < t3 ≤ T , we will solve ODEs (1.75) and (1.76) from Step 1 on (t1, t2) and (t2, t3)
respectively. From (1.76), we get

(N(t)(T − t+ ρ))
′ ≤ G(t)(T − t+ ρ). (1.77)

For t1 < t < t2
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Integrating (1.77) over (t, t2) gives us

N(t2)(T − t2 + ρ)−N(t)(T − t+ ρ) ≤
∫ t2

t

G(s)(T − s+ ρ)ds

≤ (T − t+ ρ)

∫ t2

t

G(s)ds. (1.78)

It implies from (1.78) that

N(t) ≥ N(t2)
T − t2 + ρ

T − t+ ρ
−
∫ t2

t

G(s)ds. (1.79)

On the other hand, it implies from (1.75) that

Ψ′(t) +N(t)Ψ(t) ≤ (1 +G(t))Ψ(t). (1.80)

Combining (1.79) and (1.80), we obtain

Ψ′(t) +

(
N(t2)

T − t2 + ρ

T − t+ ρ
−
∫ t2

t1

G(s)ds− 1−G(t)

)
Ψ(t) ≤ 0. (1.81)

It follows from (1.81) that
(
Ψ(t)eN(t2)(T−t2+ρ)

∫

t
0

ds
T−s+ρ−(

∫ t2
t1
G(s)ds)t−t−

∫

t
0
G(s)ds

)′
≤ 0. (1.82)

Integrating (1.82) over (t1, t2), one has

Ψ(t1) ≥ Ψ(t2)e
N(t2)(T−t2+ρ) ln T−t1+ρ

T−t2+ρ−(
∫ t2
t1
G(s)ds)(t2−t1)−(t2−t1)−

∫ t2
t1
G(s)ds. (1.83)

It deduces from (1.83) that

eN(t2)(T−t2+ρ) ≤
(
Ψ(t1)

Ψ(t2)
e(

∫ t2
t1
G(s)ds)(t2−t1)+(t2−t1)+

∫ t2
t1
G(s)ds

) 1

ln
T−t1+ρ
T−t2+ρ . (1.84)

For t2 < t < t3

Integrating (1.77) over (t2, t) gives us

N(t) ≤ N(t2)
T − t2 + ρ

T − t+ ρ
+

1

T − t+ ρ

∫ t

t2

G(s)(T − s+ ρ)ds

≤ N(t2)
T − t2 + ρ

T − t+ ρ
+
T − t2 + ρ

T − t3 + ρ

∫ t3

t2

G(s)ds. (1.85)

On the other hand, it follows from (1.75) that

Ψ′(t) +N(t)Ψ(t) ≥ − (1 +G(t))Ψ(t). (1.86)

Combining (1.85) and (1.86), yields

Ψ′(t) +

(
N(t2)

T − t2 + ρ

T − t+ ρ
+
T − t2 + ρ

T − t3 + ρ

∫ t3

t2

G(s)ds+ 1 +G(t)

)
Ψ(t) ≥ 0. (1.87)

It follows from (1.87) that
(
Ψ(t)e

N(t2)(T−t2+ρ)
∫

t
0

ds
T−s+ρ+

(

T−t2+ρ
T−t3+ρ

∫ t3
t2
G(s)ds+1

)

t+
∫

t
0
G(s)ds

)′
≥ 0. (1.88)

Integrating (1.88) over (t2, t3) gives us

Ψ(t2) ≤ Ψ(t3)e
N(t2)(T−t2+ρ) ln T−t2+ρ

T−t3+ρ+
(

T−t2+ρ
T−t3+ρ

∫ t3
t2
G(s)ds+1

)

(t3−t2)+
∫ t3
t2
G(s)ds

. (1.89)
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Now, combining (1.84) and (1.89), one gets

Ψ(t2) ≤ Ψ(t3)

(
Ψ(t1)

Ψ(t2)
e(

∫ t2
t1
G(s)ds+1)(t2−t1)+

∫ t2
t1
G(s)ds

)M

×e
(

T−t2+ρ
T−t3+ρ

∫ t3
t2
G(s)ds+1

)

(t3−t2)+
∫ t3
t2
G(s)ds

(1.90)

where

M :=
ln T−t2+ρ

T−t3+ρ

ln T−t1+ρ
T−t2+ρ

. (1.91)

It implies from (1.90) that

Ψ(t2)
1+M ≤ Ψ(t3)Ψ(t1)

Me

[(

1+
T−t2+ρ
T−t3+ρ

∫ t3
t1
G(s)ds

)

(t3−t1)+
∫ t3
t1
G(s)ds

]

(1+M)
.

(1.92)

Step 3: Estimate
∫ t3
t1
G(s)ds for some 0 ≤ t1 < t3 ≤ T .

Recall that

G(t) :=

∫
Ω∩B(x0,(1+2δ)R)

|∂t(χ(x)v(x, t))−∆(χ(x)v(x, t))|2eξ(x,t)dx
∫
Ω∩B(x0,(1+2δ)R)

|χ(x)v(x, t)|2eξ(x,t)dx . (1.93)

Firstly, we estimate
∫
Ω∩B(x0,(1+2δ)R)

|∂t(χ(x)v(x, t))−∆(χ(x)v(x, t))|2eξ(x,t)dx.
We have

∂t(χv)−∆(χv) = χ∂tv −∇(∇vχ+ v∇χ)
= χ∂tv − 2∇χ∇v −∆χv − χ∆v. (1.94)

Thanks to the fact that ∂tv −∆v = 0, one gets

∂t(χv)−∆(χv) = −∆χv − 2∇χ∇v. (1.95)

Moreover, the fact that χ = 1 on B(x0,
(
1 + 3

2δ
)
R) implies that ∆χ = 0 and ∇χ = 0Rn on

B(x0,
(
1 + 3

2δ
)
R). Here, 0Rn denotes the null vector in Rn. Thus, we obtain the following equality

∫

Ω∩B(x0,(1+2δ)R)

|∂t(χ(x)v(x, t))−∆(χ(x)v(x, t))|2eξ(x,t)dx

=

∫

Ω∩B(x0,(1+2δ)R)

|∆χ(x)v(x, t) + 2∇χ(x)∇v(x, t)|2eξ(x,t)dx

=

∫

Ω∩B(x0,(1+2δ)R)\B(x0,(1+ 3
2 δ)R)

|∆χ(x)v(x, t) + 2∇χ(x)∇v(x, t)|2eξ(x,t)dx. (1.96)

Now, taking off the weight function ξ = −|x−x0|2
4(T−t+ρ) from the right-hand side of (1.96) and using the

fact that Ω ∩B(x0, (1 + 2δ)R) \B(x0,
(
1 + 3

2δ
)
R) ⊂ Ω gives us

∫

Ω∩B(x0,(1+2δ)R)\B(x0,(1+ 3
2 δ)R)

|∆χ(x)v(x, t) + 2∇χ(x)∇v(x, t)|2eξ(x,t)dx

≤ Ce−
(1+ 3

2
δ)

2
R2

4(T−t+ρ)

(∫

Ω

|v(x, t)|2dx+

∫

Ω

|∇v(x, t)|2dx
)

(1.97)

where C := 4max{‖∆χ‖2∞, 4‖∇χ‖2∞}. By using the energy estimate

∫

Ω

|v(x, t)|2dx ≤
∫

Ω

|v0(x)|2dx
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and the regularity estimate
∫

Ω

|∇v(x, t)|2dx ≤ 1

2t

∫

Ω

|v0(x)|2dx,

we obtain

∫

Ω∩B(x0,(1+2δ)R)

|∂t(χ(x)v(x, t))−∆(χ(x)v(x, t))|2eξ(x,t)dx ≤ Ce−
(1+ 3

2
δ)

2
R2

4(T−t+ρ)

(
1 +

1

2t

)∫

Ω

|v0(x)|2dx.

(1.98)

Secondly, we estimate
∫
Ω∩B(x0,(1+2δ)R)

|χ(x)v(x, t)|2eξ(x,t)dx.
The fact that χ = 1 on B(x0,

(
1 + 3

2δ
)
R) gives us

∫

Ω∩B(x0,(1+2δ)R)

|χ(x)v(x, t)|2eξ(x,t)dx ≥
∫

Ω∩B(x0,(1+ 3
2 δ)R)

|χ(x)v(x, t)|2eξ(x,t)dx

=

∫

Ω∩B(x0,(1+ 3
2 δ)R)

|v(x, t)|2eξ(x,t)dx

≥ e−
(1+δ)2R2

4(T−t+ρ)

∫

Ω∩B(x0,(1+δ)R)

|v(x, t)|2dx.

(1.99)

Lastly, combining (1.98) and (1.99), one yields

G(t) ≤ Ce−
(2+ 5

2
δ) δ2R2

4(T−t+ρ)

∫
Ω
|v0(x)|2dx∫

Ω∩B(x0,(1+δ)R)
|v(x, t)|2dx

(
1 +

1

2t

)
. (1.100)

Now, apply Lemma 1.3, one gets: there exists ~ ≤ T
2 such that

∫
Ω
|v0(x)|2dx∫

Ω∩B(x0,(1+δ)R)
|v(x, t)|2dx ≤ e

(1+δ)δR2

2~ ∀T − ~ ≤ t ≤ T . (1.101)

Thus, it follows from (1.100) and (1.101) that

G(t) ≤ Ce−
(2+ 5

2
δ) δ2R2

4(T−t+ρ) +
(1+δ)δR2

2~

(
1 +

1

2t

)
. (1.102)

Suppose t1 < t < t3 satisfy

−
(
2 + 5

2δ
)
δ
2R

2

4(T − t+ ρ)
+

(1 + δ)δR2

2~
≤ 0. (1.103)

It is equivalent to

T − t+ ρ ≤ 2 + 5
2δ

1 + δ
~. (1.104)

Thus, with E :=
2+ 5

2 δ

1+δ = 5
2 −

1
2

1+δ <
5
2 , if t ≥ T + ρ− E~ then we get

G(t) ≤ C

(
1 +

1

2t

)
. (1.105)

Hence, for any t1, t3 > 0 satisfying max{T + ρ− E~, T − ~} ≤ t1 < t3, we conclude that

∫ t3

t1

G(s)ds ≤ C

[
t3 − t1 +

1

2
ln
t3
t1

]
. (1.106)
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Step 4: Choose suitable t1, t2, t3, take off the weight function and make appear ω.
Now, for any ℓ > 1 such that ℓρ ≤ min{ 1

2 ,
T
4 ,

E~
5 }, we choose

t1 = T − 2ℓρ ; t2 = T − ℓρ ; t3 = T . (1.107)

In order to estimate
∫ t3
t1
G(s)ds with t1, t3 chosen as above, we check t1 ≥ max{T + ρ−E~, T − ~}.

Indeed, we have

t1 = T − 2ℓρ ≥ T − 2

5
E~ ≥ T − ~. (1.108)

On the other hand, the fact that ℓ > 1 gives us

t1 − T − ρ = −(1 + 2ℓ)ρ ≥ −3ℓρ ≥ −3

5
E~ ≥ −E~. (1.109)

It implies that t1 ≥ T + ρ− E~. Thus, we get from (1.106) that
∫ t3

t1

G(s)ds ≤ C

[
2ℓρ+

1

2
ln

T

T − 2ℓρ

]
≤ C

(
1 +

1

2
ln 2

)
:= Const. (1.110)

Let us recall the Hölder estimate (1.92) from Step 3

Ψ(t2)
1+M ≤ Ψ(t3)Ψ(t1)

Me

[(

1+
T−t2+ρ
T−t3+ρ

∫ t3
t1
G(s)ds

)

(t3−t1)+
∫ t3
t1
G(s)ds

]

(1+M)
.

(1.111)

Thanks to (1.110), the term in (1.111) is estimated as below

e

[(

1+
T−t2+ρ
T−t3+ρ

∫ t3
t1
G(s)ds

)

(t3−t1)+
∫ t3
t1
G(s)ds

]

(1+M)

≤ e[(1+(1+ℓ)Const)2ℓρ+Const](1+M)

≤ eCℓ(1+M) (1.112)

for some constant C > 0. Remind that

Ψ(t) =

∫

Ω∩B(x0,(1+2δ)R)

|χ(x)v(x, t)|2e−
|x−x0|2

4(T−t+ρ) dx. (1.113)

As a consequence, it deduces from (1.111) that
(∫

Ω∩B(x0,(1+2δ)R)

|χ(x)v(x, T − ℓρ)|2e−
|x−x0|2
4(1+ℓ)ρ dx

)1+M

≤ eCℓ(1+M)

(∫

Ω∩B(x0,(1+2δ)R)

|χ(x)v(x, T )|2e
−|x−x0|2

4ρ dx

)

×
(∫

Ω∩B(x0,(1+2δ)R)

|χ(x)v(x, T − 2ℓρ)|2e−
|x−x0|2
4(1+2ℓ)ρ dx

)M
. (1.114)

On one hand, we consider the term on the left-hand side of (1.114): We have
∫

Ω∩B(x0,(1+2δ)R)

|χ(x)v(x, T − ℓρ)|2e−
|x−x0|2
4(1+ℓ)ρ dx

≥ e−
(1+2δ)2R2

4(1+ℓ)ρ

∫

Ω∩B(x0,(1+2δ)R)

|χ(x)v(x, T − ℓρ)|2dx. (1.115)

Thanks to the fact that χ = 1 on B(x0,
(
1 + 3

2δ
)
R), one gets

∫

Ω∩B(x0,(1+2δ)R)

|χ(x)v(x, T − ℓρ)|2dx ≥
∫

Ω∩B(x0,(1+ 3
2 δ)R)

|χ(x)v(x, T − ℓρ)|2dx

=

∫

Ω∩B(x0,(1+ 3
2 δ)R)

|v(x, T − ℓρ)|2dx

≥
∫

Ω∩B(x0,(1+δ)R)

|v(x, T − ℓρ)|2dx. (1.116)
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Thus, it follows from (1.115) and (1.116) that

(∫

Ω∩B(x0,(1+2δ)R)

|χ(x)v(x, T − ℓρ)|2e−
|x−x0|2
4(1+ℓ)ρ dx

)1+M

≥ e−
(1+2δ)2R2(1+M)

4(1+ℓ)ρ

(∫

Ω∩B(x0,(1+δ)R)

|v(x, T − ℓρ)|2dx
)1+M

. (1.117)

On the other hand, we consider the terms on the right-hand side of (1.114):
• For the first term, thanks to the fact that 0 < χ(x) ≤ 1 ∀x ∈ B(x0, (1 + 2δ)R), one has

∫

Ω∩B(x0,(1+2δ)R)

|χ(x)v(x, T )|2e
−|x−x0|2

4ρ dx ≤
∫

Ω∩B(x0,(1+2δ)R)

|v(x, T )|2e
−|x−x0|2

4ρ dx.

(1.118)

Now, take 0 < r < R such that B(x0, r) ⊂ Ω, we have

∫

Ω∩B(x0,(1+2δ)R)

|v(x, T )|2e
−|x−x0|2

4ρ dx

≤
∫

B(x0,r)

|v(x, T )|2e
−|x−x0|2

4ρ dx+

∫

(Ω∩B(x0,(1+2δ)R))\B(x0,r)

|v(x, T )|2e
−|x−x0|2

4ρ dx

≤
∫

B(x0,r)

|v(x, T )|2dx+ e−
r2

4ρ

∫

Ω

|v(x, T )|2dx

≤
∫

B(x0,r)

|v(x, T )|2dx+ e−
r2

4ρ

∫

Ω

|v0(x)|2dx. (1.119)

• For the second term, thanks to the fact that 0 < χ(x) ≤ 1 ∀x ∈ B(x0, (1 + 2δ)R) and

e−
|x−x0|2
4(1+2ℓ)ρ ≤ 1, we get

(∫

Ω∩B(x0,(1+2δ)R)

|χ(x)v(x, T − 2ℓρ)|2e−
|x−x0|2
4(1+ℓ)ρ dx

)M

≤
(∫

Ω∩B(x0,(1+2δ)R)

|v(x, T − 2ℓρ)|2dx
)M

≤
(∫

Ω

|v(x, T − 2ℓρ)|2dx
)M

≤
(∫

Ω

|v0(x)|2dx
)M

. (1.120)

Thus, combining (1.114), (1.117), (1.119) and (1.120) gives us

(∫

Ω∩B(x0,(1+2δ)R)

|v(x, T − ℓρ)|2dx
)1+M

≤ eCℓ(1+M)e
(1+2δ)2R2(1+M)

4(1+ℓ)ρ

(∫

B(x0,r)

|v(x, T )|2dx
)(∫

Ω

|v0(x)|2dx
)M

+eCℓ(1+M)e
(1+2δ)2R2(1+M)

4(1+ℓ)ρ
− r2

4ρ

(∫

Ω

|v0(x)|2dx
)1+M

. (1.121)

Step 5: Choose suitable ℓ.
Recall that for ℓ > 1, we have 1 < M < Mℓ :=

ln(1+ℓ)

ln 3
2

(see Step 4 of Subsection 1.2.3.2 for case
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Ω convex). We claim that the estimate (1.121) still holds when M is replaced by Mℓ. Indeed, the
estimate (1.121) can be written as

(∫
Ω∩B(x0,(1+2δ)R)

|v(x, T − ℓρ)|2dx
∫
Ω
|v0(x)|2dx

)1+M

≤ eCℓ(1+M)e
(1+2δ)2R2(1+M)

4(1+ℓ)ρ

∫
B(x0,r)

|v(x, T )|2dx
∫
Ω
|v0(x)|2dx + eCℓ(1+M)e

(1+2δ)2R2(1+M)
4(1+ℓ)ρ

− r2

4ρ . (1.122)

We have
∫

Ω∩B(x0,(1+2δ)R)

|v(x, T − ℓρ)|2dx ≤
∫

Ω

|v(x, T − ℓρ)|2dx ≤
∫

Ω

|v0(x)|2dx. (1.123)

Hence, with Mℓ > M , one gets

(∫
Ω∩B(x0,(1+2δ)R)

|v(x, T − ℓρ)|2dx
∫
Ω
|v0(x)|2dx

)1+Mℓ

≤
(∫

Ω∩B(x0,(1+2δ)R)
|v(x, T − ℓρ)|2dx

∫
Ω
|v0(x)|2dx

)1+M

. (1.124)

It means the following estimate holds

(∫

Ω∩B(x0,(1+2δ)R)

|v(x, T − ℓρ)|2dx
)1+Mℓ

≤ eCℓ(1+Mℓ)e
(1+2δ)2R2(1+Mℓ)

4(1+ℓ)ρ

(∫

B(x0,r)

|v(x, T )|2dx
)(∫

Ω

|v0(x)|2dx
)Mℓ

+eCℓ(1+Mℓ)e
(1+2δ)2R2(1+Mℓ)

4(1+ℓ)ρ
− r2

4ρ

(∫

Ω

|v0(x)|2dx
)1+Mℓ

. (1.125)

Our target is choosing ℓ > 1 such that

(1 + 2δ)2R2(1 +Mℓ)

4(1 + ℓ)ρ
≤ r2

8ρ
. (1.126)

With the same argument in Step 4 of Subsection 1.2.3.2 for case Ω convex, we can choose ℓ as
below

ℓ =

(
4(1 + 2δ)2R2

εr2 ln 3
2

) 1
1−ε

∀ε ∈ (0, 1). (1.127)

Such choice of ℓ implies from (1.125) that

(∫

Ω∩B(x0,(1+2δ)R)

|v(x, T − ℓρ)|2dx
)1+Mℓ

≤ eCℓ(1+Mℓ)e
r2

8ρ

(∫

B(x0,r)

|v(x, T )|2dx
)(∫

Ω

|v0(x)|2dx
)Mℓ

+eCℓ(1+Mℓ)e−
r2

8ρ

(∫

Ω

|v0(x)|2dx
)1+Mℓ

. (1.128)

On the other hand, in order to estimate the term on the left-hand side of (1.128), we apply again
Lemma 1.3:

∫

Ω∩B(x0,(1+2δ)R)

|v(x, T − ℓρ)|2dx ≥
∫

Ω∩B(x0,(1+δ)R)

|v(x, T − ℓρ)|2dx

≥ e−
(1+δ)δR2

2~

∫

Ω

|v0(x)|2dx. (1.129)
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Applying the energy estimate, which says:
∫
Ω
|v0(x)|2dx ≥

∫
Ω
|v(x, T )|2dx, yields

∫

Ω∩B(x0,(1+2δ)R)

|v(x, T − ℓρ)|2dx ≥ e−
(1+δ)δR2

2~

∫

Ω

|v(x, T )|2dx. (1.130)

Combining (1.128) and (1.130), one obtains
(∫

Ω

|v(x, T )|2dx
)1+Mℓ

≤ Ce
C
~ e

r2

8ρ

(∫

B(x0,r)

|v(x, T )|2dx
)(∫

Ω

|v0(x)|2dx
)Mℓ

+Ce
C
~ e−

r2

8ρ

(∫

Ω

|v0(x)|2dx
)1+Mℓ

. (1.131)

Here, the constant C depends on R, ℓ and δ, not depends on ~ and ρ.

Step 6: Choose suitable ρ.
The estimate (1.131) holds for ρ ≤ 1

ℓ
min{ 1

2 ,
T
4 ,

E~
5 }. Now, for ρ > 1

ℓ
min{ 1

2 ,
T
4 ,

E~
5 } which implies

r2

8ρ <
r2ℓ

4( 1
2+

T
4 + E~

5 )
, we can get the following estimate be true for any ρ > 0.

(∫

Ω

|v(x, T )|2dx
)1+Mℓ

≤ Ce
C
~ e

r2

8ρ

(∫

B(x0,r)

|v(x, T )|2dx
)(∫

Ω

|v0(x)|2dx
)Mℓ

+ Ce
C
~ e

− r2

8ρ+
r2ℓ

4( 1
2
+T

4
+ E~

5 )
(∫

Ω

|v0(x)|2dx
)1+Mℓ

.

(1.132)

Now, we choose ρ such that

Ce
C
~ e

− r2

8ρ+
r2ℓ

4( 1
2
+T

4
+ E~

5 )
(∫

Ω

|v0(x)|2dx
)1+Mℓ

=
1

2

(∫

Ω

|v(x, T )|2dx
)1+Mℓ

,

that is

e
r2

8ρ = 2Ce
C
~ e

r2ℓ

4( 1
2
+T

4
+ E~

5 )
( ∫

Ω
|v0(x)|2dx∫

Ω
|v(x, T )|2dx

)1+Mℓ

.

With such choice of ρ, it deduces from (1.132) that
(∫

Ω

|v(x, T )|2dx
)2(1+Mℓ)

≤ CeC(
1
T
+ 1

~ )

(∫

B(x0,r)

|v(x, T )|2dx
)(∫

Ω

|v0(x)|2dx
)1+2Mℓ

,

(1.133)

for some constant C = C(r, ℓ, R, δ) > 0. Let us recall Lemma 1.3 that

1

~
=

2

(δR)2
ln

(
e
R2

2 (1+ 2
T )

2
∫
Ω
|v0(x)|2dx∫

Ω∩B(x0,R)
|v(x, T )|2dx

)
. (1.134)

Hence, one has

e
1
~ =

(
e
R2

2 (1+ 2
T )

2
∫
Ω
|v0(x)|2dx∫

Ω∩B(x0,R)
|v(x, T )|2dx

) 2
(δR)2

. (1.135)

Thus, it implies from (1.133) and (1.135) that

(∫

Ω

|v(x, T )|2dx
)2(1+Mℓ)

≤ Ce
C
T

( ∫
Ω

∣∣v0(x)
∣∣2 dx

∫
Ω∩B(x0,R)

|v(x, T )|2 dx

) 2C
(δR)2

×
(∫

B(x0,r)

|v(x, T )|2dx
)(∫

Ω

|v0(x)|2dx
)1+2Mℓ

,

(1.136)
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for another positive constant C not depending on T . On the other hand, using the fact that
∫

Ω

|v(x, T )|2dx ≥
∫

Ω∩B(x0,R)

|v(x, T )|2dx, (1.137)

one has
(∫

Ω∩B(x0,R)

|v(x, T )|2dx
)2(1+Mℓ)+

2C
(δR)2

≤
(
Ce

C
T

∫

B(x0,r)

|v(x, T )|2dx
)(∫

Ω

|v0(x)|2dx
)1+2Mℓ+

2C
(δR)2

. (1.138)

Therefore, we obtain the following local observation estimate: For any x0 ∈ Ω, any R > 0, any
0 < δ ≤ 1 satisfying Ω∩B(x0, (1+2δ)R) is star-shaped with respect to x0, any 0 < r < R satisfying
B(x0, r) ⋐ Ω, there exist C > 0 and σ ∈ (0, 1) only depending on R, r and δ such that

∫

Ω∩B(x0,R)

|v(x, T )|2dx ≤
(
Ce

C
T

∫

B(x0,r)

|v(x, T )|2dx
)σ (∫

Ω

|v0(x)|2dx
)1−σ

.

(1.139)

Step 7 Make appear ω by propagation of smallness.
Suppose x0 ∈ Ω, R > 0 and 0 < δ ≤ 1 satisfy Ω ∩ B(x0, (1 + 2δ)R) is star-shaped with respect
to x0. Let 0 < κ < R

2 and xj ∈ Ω(j = 1, 2, ...,m)(m ∈ N;m ≥ 1), we can construct a sequence of
balls {B(xj , κ)}j∈1,m such that the following inclusions hold

1. B(xm, κ) ⊂ ω ;

2. B(xj−1, κ) ⊂ B(xj , 2κ) ∀j = 1, 2, ..,m;

3. B(xj , 2κ) ⋐ Ω ∀j = 1, 2, ...m+ 1 .

According to the locally observation estimate in Step 6, one has: There exist C > 0 and
σ ∈ (0, 1) such that

∫

Ω∩B(x0,R)

|v(x, T )|2dx

≤
(
Ce

C
T

∫

B(x0,κ)

|v(x, T )|2dx
)σ (∫

Ω

|v0(x)|2dx
)1−σ

. (1.140)

Thanks to the fact B(x0, κ) ⊂ B(x1, 2κ), we get
∫

B(x0,κ)

|v(x, T )|2dx ≤
∫

B(x1,2κ)

|v(x, T )|2dx. (1.141)

Now, due to the fact B(x1, 2κ) ⋐ Ω, one has: there exists δ ∈ (0, 1] small enough such that
B(x1, 2(1 + 2δ)κ) ⋐ Ω. Now, applying the local result from Step 6, one obtains: There exists
C1 > 0 and σ1 ∈ (0, 1) such that

∫

B(x1,2κ)

|v(x, T )|2dx

≤
(
C1e

C1
T

∫

B(x1,κ)

|v(x, T )|2dx
)σ1 (∫

Ω

|v0(x)|2dx
)1−σ1

. (1.142)

Repeat the same technique, one yields
∫

Ω∩B(x0,R)

|v(x, T )|2dx

≤ K1e
K2
T

(∫

B(xm,κ)

|v(x, T )|2dx
)k1 (∫

Ω

|v0(x)|2dx
)k2

, (1.143)
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where

K1 = CσCσσ1
1 Cσσ1σ2

2 ...Cσσ1σ2...σm
m , (1.144)

K2 = Cσ + C1σσ1 + C2σ2σ1σ + ...+ Cmσm...σ2σ1σ, (1.145)

k1 = σσ1σ2...σm, (1.146)

k2 = 1− σ + (1− σ1)σ + (1− σ2)σ1σ + ...+ (1− σm)σm−1...σ1σ

= 1− σσ1σ2...σm. (1.147)

Thanks to the fact that B(xm, κ) ⊂ ω, one gets
∫

Ω∩B(x0,R)

|v(x, T )|2dx

≤ K1e
K2
T

(∫

ω

|v(x, T )|2dx
)k1 (∫

Ω

|v0(x)|2dx
)1−k1

. (1.148)

Now, we can conclude that: For any non-empty subset ω of Ω, for any x0 ∈ Ω, any R > 0 and
any δ ∈ (0, 1] such that Ω∩B(x0, (1+ 2δ)R) is star-shaped with respect to x0, there exist K1 > 0,
K2 > 0 and k ∈ (0, 1) satisfying

∫

Ω∩B(x0,R)

|v(x, T )|2dx ≤ K1e
K2
T

(∫

ω

|v(x, T )|2dx
)k (∫

Ω

|v0(x)|2dx
)1−k

. (1.149)

Step 8: Recover Ω.

Thanks to the fact that Ω is bounded, we can cover the interior of Ω by finite number of balls
which are inside Ω. For covering the neighbourhood Θ of the boundary, we use Lemma 1.4 to
cover Θ by finite sets Ω ∩ B(xi, Ri) (i = 1, 2, ...,M) where M ∈ N∗ and Ω ∩ B(xi, (1 + 2δi)Ri) is
star-shaped with respect to xi for some small δi > 0 (i = 1, 2, ...,M). Thus, there exists N ∈ N∗

satisfying for i = 1, 2, ..., N , there exist xi ∈ Ω, Ri > 0 and δi ∈ (0, 1] such that Ω∩B(xi, (1+2δi)Ri)
is star-shaped with respect to xi and

Ω ⊂
N⋃

i=1

(Ω ∩B(xi, Ri)) (1.150)

Hence, applying the local result from Step 7, we get

∫

Ω

|v(x, T )|2dx ≤
N∑

i=1

∫

Ω∩B(xi,Ri)

|v(x, T )|2dx

≤
N∑

i=1

K1,ie
K2,i
T

(∫

ω

|v(x, T )|2dx
)ki (∫

Ω

|v0(x)|2dx
)1−ki

≤ K1e
K2
T

(∫

ω

|v(x, T )|2dx
)µ(∫

Ω

|v0(x)|2dx
)1−µ

. (1.151)

Here, K1 = N max
i∈[1,N ]

K1,i , K2 = max
i∈[1,N ]

K2,i , µ = min
i∈[1,N ]

ki.

This completes the proof of Theorem 1.8.

1.2.4 Proof of Theorem 1.7

Now, we move to the proof of Theorem 1.7. First of all, we state the following lemma, which is
a direct corollary from Theorem 1.8.
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Lemma 1.5. Let v be the solution of (HP) and T be a positive number. Then there exist positive
constants M1,M2 and θ depending on Ω and ω such that the following estimate holds for any
ε > 0:

‖v(·, T )‖2L2(Ω) ≤
(
M1e

M2
T

εθ

)2

‖v(·, T )‖2L2(ω) + ε2‖v0‖2L2(Ω). (1.152)

The proof of Lemma 1.5 will be found in Subsection 1.2.5.5.
Now, we start the proof of Theorem 1.7. The idea of this proof is based on the telescoping series
method (see [PhW2]), i.e using the following fact

∑

m≥1

(cm − cm+1) = c1 if lim
m→∞

cm = 0.

First of all, we construct a sequence of time as below: Let lm := T
am

(a > 1 will be chosen later).

Then {lm}m≥1 is a decreasing sequence and lm
m→∞−−−−→ 0.

Step 1: Prove that: There exist M1 > 0, M2 > 0 and θ > 0 such that for any ε > 0, the
following estimate

‖v(·, lm)‖2L2(Ω) − ε2‖v(·, lm+2)‖2L2(Ω) ≤


M1e

M2
t−lm+2

εθ




2

‖v(·, t)‖2L2(ω)

holds for 0 < lm+2 < lm+1 < t < lm.
Indeed, Lemma 1.5 gives us: There exist M1 > 0, M2 > 0 and θ > 0 depending on Ω, ω, such that
for any ε > 0 and any t > lm+2 the following estimate holds

‖v(·, t)‖2L2(Ω) ≤


M1e

M2
t−lm+2

εθ




2

‖v(·, t)‖2L2(ω) + ε2‖v(·, lm+2)‖2L2(Ω). (1.153)

On the other hand, with t < lm, the energy estimate says

‖v(·, lm)‖2L2(Ω) ≤ ‖v(·, t)‖2L2(Ω). (1.154)

Combining (1.153) and (1.154), one yields

‖v(·, lm)‖2L2(Ω) − ε2‖v(·, lm+2)‖2L2(Ω) ≤


M1e

M2
t−lm+2

εθ




2

‖v(·, t)‖2L2(ω). (1.155)

Step 2: Make appear integration with respect to t.
Integrating (1.155) over (lm+1, lm) gives us

(lm − lm+1)
(
‖v(·, lm)‖2L2(Ω) − ε2‖v(·, lm+2)‖2L2(Ω)

)
≤
(M1

εθ

)2 ∫ lm

lm+1

e
2M2

t−lm+2 ‖v(·, t)‖2L2(ω)dt.

(1.156)

Using the fact that t ≥ lm+1, we get

‖v(·, lm)‖2L2(Ω) − ε2‖v(·, lm+2)‖2L2(Ω) ≤
(M1

εθ

)2
e

2M2
lm+1−lm+2

lm − lm+1

∫ lm

lm+1

‖v(·, t)‖2L2(ω)dt. (1.157)

Furthermore, we also have

lm − lm+1 =
T (a− 1)

am+1
. (1.158)
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Combining (1.157) and (1.158), we obtain

‖v(·, lm)‖2L2(Ω) − ε2‖v(·, lm+2)‖2L2(Ω) ≤
(M1

εθ

)2
am+1

T (a− 1)
e

2M2a
m+2

T (a−1)

∫ lm

lm+1

‖v(·, t)‖2L2(ω)dt.

(1.159)

Thanks to the fact that a > 1 and x ≤ ex ∀x > 0, one obtains

am+1

T (a− 1)
≤ am+2

T (a− 1)
≤ e

am+2

T (a−1) . (1.160)

It deduces from (1.159) and (1.160) that

‖v(·, lm)‖2L2(Ω) − ε2‖v(·, lm+2)‖2L2(Ω) ≤
(M1

εθ

)2

e
(2M2+1)am+2

T (a−1)

∫ lm

lm+1

‖v(·, t)‖2L2(ω)dt.

(1.161)

Step 3: Make appear terms in form ck − ck+1.
We can rewrite (1.161) with m = 2k as below

ε2θe−
(2M2+1)a2k+2

T (a−1) ‖v(·, l2k)‖2L2(Ω) − ε2(1+θ)e−
(2M2+1)a2k+2

T (a−1) ‖v(·, l2k+2)‖2L2(Ω)

≤ M2
1

∫ l2k

l2k+1

‖v(·, t)‖2L2(ω)dt. (1.162)

We choose ε := e−
(2M2+1)a2k+2

T (a−1) in order to get

e−(1+2θ)
(2M2+1)a2k+2

T (a−1) ‖v(·, l2k)‖2L2(Ω) − e−(3+2θ)
(2M2+1)a2k+2

T (a−1) ‖v(·, l2k+2)‖2L2(Ω)

≤ M2
1

∫ l2k

l2k+1

‖v(·, t)‖2L2(ω)dt. (1.163)

Now, our target is making appear the term ck − ck+1 on the left-hand side of (1.163). Hence, we

choose a :=
√

3+2θ
1+2θ > 1 for obtaining

e−
(3+2θ)(2M2+1)a2k

T (a−1) ‖v(·, l2k)‖2L2(Ω) − e−
(3+2θ)(2M2+1)a2k+2

T (a−1) ‖v(·, l2k+2)‖2L2(Ω)

≤ M1

∫ l2k

l2k+1

‖v(·, t)‖2L2(ω)dt. (1.164)

Step 4: Use the telescoping series method .
Put

ck := e−
(3+2θ)(2M2+1)a2k

T (a−1) ‖v(·, l2k)‖2L2(Ω), (1.165)

Then, thanks to the fact that a > 1, we have lim
k→∞

ck = 0. Now, taking infinite sum both side of

(1.164), one has

∑

k≥1

(ck − ck+1) ≤ M1

∑

k≥1

∫ l2k

l2k+1

‖v(·, t)‖2L2(ω)dt. (1.166)

Using the fact
∑
k≥1

(ck − ck+1) = c1 if lim
k→∞

ck = 0, one gets

c1 = e−
(3+2θ)(2M2+1)a2

T (a−1) ‖v(·, l2)‖2L2(Ω) ≤ M1

∫ l2

0

‖v(·, t)‖2L2(ω)dt. (1.167)
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For the left-hand side term of (1.167), we use the energy estimate, which is

‖v(·, l2)‖2L2(Ω) ≥ ‖v(·, T )‖2L2(Ω). (1.168)

For the right-hand side term of (1.167), we use the fact that
∫ l2

0

‖v(·, t)‖2L2(ω)dt ≤
∫ T

0

‖v(·, t)‖2L2(ω)dt. (1.169)

Combining (1.167), (1.168) and (1.169), we obtain

‖v(·, T )‖2L2(Ω) ≤ M1e
(3+2θ)(2M2+1)a2

T (a−1)

∫ T

0

‖v(·, t)‖2L2(ω)dt. (1.170)

This completes the proof of Theorem 1.7.

1.2.5 Proof of preliminary lemmas

1.2.5.1 Proof of Lemma 1.1

Remind that

Ψ(t) =

∫

ϑ

|w(x, t)|2eξ(x,t)dx. (1.171)

We have

Ψ′(t) = 2

∫

ϑ

w(x, t)∂tw(x, t)e
ξ(x,t)dx+

∫

ϑ

|w(x, t)|2∂tξ(x, t)eξ(x,t)dx.

In order to make appear the term ∂tw −∆w, one has

Ψ′(t) = 2

∫

ϑ

w(x, t)(∂tw −∆w)(x, t)eξ(x,t)dx+ 2

∫

ϑ

w(x, t)∆w(x, t)eξ(x,t)dx

+

∫

ϑ

|w(x, t)|2∂tξ(x, t)eξ(x,t)dx. (1.172)

Let us compute the second term on the right-hand side of (1.172) by using integration by parts

2

∫

ϑ

w(x, t)∆w(x, t)eξ(x,t)dx

= −2

∫

ϑ

|∇w(x, t)|2eξ(x,t)dx− 2

∫

ϑ

w(x, t)∇w(x, t)∇ξ(x, t)eξ(x,t)dx

= −2

∫

ϑ

|∇w(x, t)|2eξ(x,t)dx−
∫

ϑ

∇(|w(x, t)|2)∇ξ(x, t)eξ(x,t)dx.

(1.173)

We use the fact that 2w∇w = ∇(|w|2) to get the second equality. Integrating by parts the second
term in (1.173) gives

−
∫

ϑ

∇(|w(x, t)|2)∇ξ(x, t)eξ(x,t)dx

=

∫

ϑ

|w(x, t)|2∆ξ(x, t)eξ(x,t)dx+

∫

ϑ

|w(x, t)|2|∇ξ(x, t)|2eξ(x,t)dx.

(1.174)

Combining (1.172), (1.173 and (1.174), we obtain

Ψ′(t) = 2

∫

ϑ

w(x, t)(∂tw −∆w)(x, t)eξ(x,t)dx

−2

∫

ϑ

|∇w(x, t)|2eξ(x,t)dx+

∫

ϑ

|w(x, t)|2∆ξ(x, t)eξ(x,t)dx

+

∫

ϑ

|w(x, t)|2|∇ξ(x, t)|2eξ(x,t)dx+

∫

ϑ

|w(x, t)|2∂tξ(x, t)eξ(x,t)dx. (1.175)
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Thanks to the property (P1) of the weight function, which is ∂tξ + |∇ξ|2 = 0, one gets

Ψ′(t) = 2

∫

ϑ

w(x, t)(∂tw −∆w)(x, t)eξ(x,t)dx

−2

∫

ϑ

|∇w(x, t)|2eξ(x,t)dx+

∫

ϑ

|w(x, t)|2∆ξ(x, t)eξ(x,t)dx.

Using the property (P3) of the weight function, which is ∆ξ = − n
2(T−t+ρ) , we get

Ψ′(t) = 2

∫

ϑ

w(x, t)(∂tw −∆w)(x, t)eξ(x,t)dx

−2

∫

ϑ

|∇w(x, t)|2eξ(x,t)dx− n

2(T − t+ ρ)
Ψ(t). (1.176)

This completes the proof of Lemma 1.1.

1.2.5.2 Proof of Lemma 1.2

Step 1: Compute d
dt

(∫
ϑ
|∇w(x, t)|2eξ(x,t)dx

)
.

We have

d

dt

(∫

ϑ

|∇w(x, t)|2eξ(x,t)dx
)

= 2

∫

ϑ

∇w(x, t)∂t(∇w(x, t))eξ(x,t)dx+

∫

ϑ

|∇w(x, t)|2∂tξ(x, t)eξ(x,t)dx. (1.177)

Step 1.1: Compute A := 2
∫
ϑ
∇w(x, t)∂t(∇w(x, t))eξ(x,t)dx.

By using integration by parts, we get

A = 2

∫

ϑ

∇w(x, t)∇(∂tw(x, t))e
ξ(x,t)dx

= −2

∫

ϑ

∆w(x, t)∂tw(x, t)e
ξ(x,t)dx− 2

∫

ϑ

∇w(x, t)∂tw(x, t)∇ξ(x, t)eξ(x,t)dx. (1.178)

In order to make appear ∂tw −∆w, one gets

A = −2

∫

ϑ

|∂tw(x, t)|2eξ(x,t)dx+ 2

∫

ϑ

(∂tw −∆w)(x, t)∂tw(x, t)e
ξ(x,t)dx

−2

∫

ϑ

∂tw(x, t)∇w(x, t)∇ξ(x, t)eξ(x,t)dx. (1.179)

Step 1.2: Compute B :=
∫
ϑ
|∇w(x, t)|2∂tξ(x, t)eξ(x,t)dx.

Thanks to property (P1) of the weight function, which is ∂tξ = −|∇ξ|2, we get

B = −
∫

ϑ

|∇w(x, t)|2|∇ξ(x, t)|2eξ(x,t)dx. (1.180)

Notice that ∇(eξ) = ∇ξeξ, hence B can be written as

B = −
∫

ϑ

|∇w(x, t)|2∇ξ(x, t)∇(eξ(x,t))dx. (1.181)

Now, by integrating by parts, one has

B =

∫

ϑ

∇(|∇w(x, t)|2)∇ξ(x, t)eξ(x,t)dx+

∫

ϑ

|∇w(x, t)|2∆ξ(x, t)eξ(x,t)dx

−
∫

∂ϑ

|∇w(x, t)|2∂νξ(x, t)eξ(x,t)dx. (1.182)
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Next step is computing B1 :=
∫
ϑ
∇(|∇w(x, t)|2)∇ξ(x, t)eξ(x,t)dx by using standard summation

notations

B1 =

∫

ϑ

∂i(|∂jw(x, t)|2)∂iξ(x, t)eξ(x,t)dx

= 2

∫

ϑ

∂jw(x, t)∂
2
ijw(x, t)∂iξ(x, t)e

ξ(x,t)dx

= −2

∫

ϑ

∂2jjw(x, t)∂iw(x, t)∂iξ(x, t)e
ξ(x,t)dx

−2

∫

ϑ

∂jw(x, t)∂
2
ijξ(x, t)∂iw(x, t)e

ξ(x,t)dx

−2

∫

ϑ

∂jw(x, t)∂iw(x, t)∂iξ(x, t)∂jξ(x, t)e
ξ(x,t)dx

+2

∫

∂ϑ

∂jw(x, t)∂iw(x, t)∂iξ(x, t)νje
ξ(x,t)dx. (1.183)

Thus, we can write

B1 = −2

∫

ϑ

∆w(x, t)∇w(x, t)∇ξ(x, t)eξ(x,t)dx− 2

∫

ϑ

∇w(x, t)∇2ξ(x, t)∇w(x, t)eξ(x,t)dx

−2

∫

ϑ

|∇w(x, t)∇ξ(x, t)|2eξ(x,t)dx+ 2

∫

∂ϑ

|∇w(x, t)|2∂νξ(x, t)eξ(x,t)dx. (1.184)

It follows from (1.182) and (1.184) that

B = −2

∫

ϑ

∆w(x, t)∇w(x, t)∇ξ(x, t)eξ(x,t)dx− 2

∫

ϑ

∇w(x, t)∇2ξ(x, t)∇w(x, t)eξ(x,t)dx

−2

∫

ϑ

|∇w(x, t)∇ξ(x, t)|2eξ(x,t)dx+

∫

∂ϑ

|∇w(x, t)|2∂νξ(x, t)eξ(x,t)dx

+

∫

ϑ

|∇w(x, t)|2∆ξ(x, t)eξ(x,t)dx. (1.185)

Step 1.3: Compute A+B.
We get from results (1.179) in Step 1.1 and (1.185) in Step 1.2 that

d

dt

(∫

ϑ

|∇w(x, t)|2eξ(x,t)dx
)

= A+B

= −2

∫

ϑ

|∂tw(x, t)|2eξ(x,t)dx+ 2

∫

ϑ

(∂tw −∆w)(x, t)∂tw(x, t)e
ξ(x,t)dx

−2

∫

ϑ

∂tw(x, t)∇w(x, t)∇ξ(x, t)eξ(x,t)dx− 2

∫

ϑ

∆w(x, t)∇w(x, t)∇ξ(x, t)eξ(x,t)dx

−2

∫

ϑ

∇w(x, t)∇2ξ(x, t)∇w(x, t)eξ(x,t)dx− 2

∫

ϑ

|∇w(x, t)∇ξ(x, t)|2eξ(x,t)dx

+

∫

∂ϑ

|∇w(x, t)|2∂νξ(x, t)eξ(x,t)dx+

∫

ϑ

|∇w(x, t)|2∆ξ(x, t)eξ(x,t)dx. (1.186)

In order to make appear the term ∂tw −∆w, we replace the fourth term in (1.186) by

−2

∫

ϑ

∆w(x, t)∇w(x, t)∇ξ(x, t)eξ(x,t)dx

= 2

∫

ϑ

(∂tw(x, t)−∆w(x, t))∇w(x, t)∇ξ(x, t)eξ(x,t)dx

−2

∫

ϑ

∂tw(x, t)∇w(x, t)∇ξ(x, t)eξ(x,t)dx. (1.187)
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It deduces from (1.186) and (1.187) that

d

dt

(∫

ϑ

|∇w(x, t)|2eξ(x,t)dx
)

= −2

∫

ϑ

|∂tw(x, t)|2eξ(x,t)dx+ 2

∫

ϑ

(∂tw −∆w)(x, t)∂tw(x, t)e
ξ(x,t)dx

−4

∫

ϑ

∂tw(x, t)∇w(x, t)∇ξ(x, t)eξ(x,t)dx+ 2

∫

ϑ

(∂tw(x, t)−∆w(x, t))∇w(x, t)∇ξ(x, t)eξ(x,t)dx

−2

∫

ϑ

|∇w(x, t)∇ξ(x, t)|2eξ(x,t)dx− 2

∫

ϑ

∇w(x, t)∇2ξ(x, t)∇w(x, t)eξ(x,t)dx

+

∫

∂ϑ

|∇w(x, t)|2∂νξ(x, t)eξ(x,t)dx+

∫

ϑ

|∇w(x, t)|2∆ξ(x, t)eξ(x,t)dx. (1.188)

The sum of five first terms in (1.188) can be written as

−2

∫

ϑ

(
∂tw(x, t) +∇w(x, t)∇ξ(x, t)− 1

2
(∂tw(x, t)−∆w(x, t))

)2

eξ(x,t)dx

+
1

2

∫

ϑ

|∂tw(x, t)−∆w(x, t)|2eξ(x,t)dx. (1.189)

Thus, (1.188) is equivalent to

d

dt

(∫

ϑ

|∇w(x, t)|2eξ(x,t)dx
)

= −2

∫

ϑ

(
∂tw(x, t) +∇w(x, t)∇ξ(x, t)− 1

2
(∂tw −∆w)(x, t)

)2

eξ(x,t)dx

+
1

2

∫

ϑ

|∂tw(x, t)−∆w(x, t)|2eξ(x,t)dx− 2

∫

ϑ

∇w(x, t)∇2ξ(x, t)∇w(x, t)eξ(x,t)dx

+

∫

∂ϑ

|∇w(x, t)|2∂νξ(x, t)eξ(x,t)dx+

∫

ϑ

|∇w(x, t)|2∆ξ(x, t)eξ(x,t)dx. (1.190)

Step 2: Estimate D :=
(
d
dt

∫
ϑ
|∇w(x, t)|2eξ(x,t)dx

) (∫
ϑ
|w(x, t)|2eξ(x,t)dx

)
.

We will use properties of the weight function ξ to compute the three last terms on the right-hand
side of (1.190).
Firstly, using the property (P4), which is ∇2ξ = −1

2(T−t+ρ)In, one obtains

−2

∫

ϑ

∇w(x, t)∇2ξ(x, t)∇w(x, t)eξ(x,t)dx =
1

T − t+ ρ

∫

ϑ

|∇w(x, t)|2eξ(x,t)dx. (1.191)

Secondly, thanks to the property (P2), which is ∇ξ = − x−x0

2(T−t+ρ) and the assumption that ϑ is
star-shaped with respect to x0, we get a good sign for the boundary term
∫

∂ϑ

|∇w(x, t)|2∂νξ(x, t)eξ(x,t)dx = − 1

2(T − t+ ρ)

∫

∂ϑ

|∇w(x, t)|2ν(x− x0)e
ξ(x,t)dx ≤ 0. (1.192)

Thirdly, using the property (P3), which is ∆ξ = −n
2(T−t+ρ) , we get

∫

ϑ

|∇w(x, t)|2∆ξ(x, t)eξ(x,t)dx =
−n

2(T − t+ ρ)

∫

ϑ

|w(x, t)|2eξ(x,t)dx. (1.193)

Combining (1.190), (1.191), (1.192) and (1.193), one obtains

D ≤ −2

∫

ϑ

(
∂tw(x, t) +∇w(x, t)∇ξ(x, t)− 1

2
(∂tw −∆w)(x, t)

)2

eξ(x,t)dx

∫

ϑ

|w(x, t)|2eξ(x,t)dx

+
1

2

∫

ϑ

|(∂tw −∆w)(x, t)|2eξ(x,t)dx
∫

ϑ

|w(x, t)|2eξ(x,t)dx+
1

T − t+ ρ

∫

ϑ

|∇w(x, t)|2eξ(x,t)dx

− n

2(T − t+ ρ)

∫

ϑ

|w(x, t)|2eξ(x,t)dx
∫

ϑ

|∇w(x, t)|2eξ(x,t)dx. (1.194)
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Step 3: Estimate E := −
(
d
dt

∫
ϑ
|w(x, t)|2eξ(x,t)dx

) (∫
ϑ
|∇w(x, t)|2eξ(x,t)dx

)
.

Our target is making appear the following term
∫

ϑ

(
∂tw(x, t) +∇w(x, t)∇ξ(x, t)− 1

2
(∂tw −∆w)(x, t)

)
w(x, t)eξ(x,t)dx. (1.195)

Step 3.1: Compute
∫
ϑ
|∇w(x, t)|2eξ(x,t)dx.

By integrating by parts, we have
∫

ϑ

|∇w(x, t)|2eξ(x,t)dx

= −
∫

ϑ

∆w(x, t)w(x, t)eξ(x,t)dx−
∫

ϑ

∇w(x, t)w(x, t)∇ξ(x, t)eξ(x,t)dx

= −
∫

ϑ

(
∂tw(x, t) +∇w(x, t)∇ξ(x, t)− 1

2
(∂tw −∆w)(x, t)

)
w(x, t)eξ(x,t)dx

+
1

2

∫

ϑ

(∂tw −∆w)(x, t)w(x, t)eξ(x,t)dx. (1.196)

Step 3.2: Compute d
dt

(∫
ϑ
|w(x, t)|2eξ(x,t)dx

)
.

Lemma 1.1 gives us (see (1.176))

d

dt

∫

ϑ

|w(x, t)|2eξ(x,t)dx

= 2

∫

ϑ

w(x, t)(∂tw −∆w)(x, t)eξ(x,t)dx

−2

∫

ϑ

|∇w(x, t)|2eξ(x,t)dx+

∫

ϑ

|w(x, t)|2∆ξ(x, t)eξ(x,t)dx. (1.197)

Using the result (1.196) in Step 3.1, one obtains

d

dt

∫

ϑ

|w(x, t)|2eξ(x,t)dx

= 2

∫

ϑ

(
∂tw(x, t) +∇w(x, t)∇ξ(x, t)− 1

2
(∂tw −∆w)(x, t)

)
w(x, t)eξ(x,t)dx

+

∫

ϑ

(∂tw −∆w)(x, t)w(x, t)eξ(x,t)dx+

∫

ϑ

|w(x, t)|2∆ξ(x, t)eξ(x,t)dx. (1.198)

Step 3.3: Compute E.
Combining (1.196), (1.198) and using the fact that 2(a+ 1

2b)(a− 1
2b) = 2a2 − 1

2b
2, we have

E = 2

(∫

ϑ

(
∂tw(x, t) +∇w(x, t)∇ξ(x, t)− 1

2
(∂tw −∆w)(x, t)

)
w(x, t)eξ(x,t)dx

)2

−1

2

(∫

ϑ

(∂tw −∆w)(x, t)w(x, t)eξ(x,t)dx

)2

−
(∫

ϑ

|w(x, t)|2∆ξ(x, t)eξ(x,t)dx
)(∫

ϑ

|∇w(x, t)|2eξ(x,t)dx
)

. (1.199)

Step3.4: Estimate E.
For the first term of E, using the Cauchy-Schwarz inequality, we obtain

2

(∫

ϑ

(
∂tw(x, t) +∇w(x, t)∇ξ(x, t)− 1

2
(∂tw −∆w)(x, t)

)
w(x, t)eξ(x,t)dx

)2

≤ 2

∫

ϑ

(
∂tw(x, t) +∇w(x, t)∇ξ(x, t)− 1

2
(∂tw −∆w)(x, t)

)2

eξ(x,t)dx

∫

ϑ

|w(x, t)|2eξ(x,t)dx.

(1.200)
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For the second term of E, it is nonpositive.
For the third term of E, using the property (P3), which is ∆ξ = −n

2(T−t+ρ) , we get

−
∫

ϑ

|w(x, t)|2∆ξ(x, t)eξ(x,t)dx
∫

ϑ

|∇w(x, t)|2eξ(x,t)dx

=
n

2(T − t+ ρ)

∫

ϑ

|w(x, t)|2eξ(x,t)dx
∫

ϑ

|∇w(x, t)|2eξ(x,t)dx. (1.201)

Thus, E is estimated as below

E ≤ 2

∫

ϑ

(
∂tw(x, t) +∇w(x, t)∇ξ(x, t)− 1

2
(∂tw −∆w)(x, t)

)2

eξ(x,t)dx

∫

ϑ

|w(x, t)|2eξ(x,t)dx

+
n

2(T − t+ ρ)

∫

ϑ

|w(x, t)|2eξ(x,t)dx
∫

ϑ

|∇w(x, t)|2eξ(x,t)dx. (1.202)

Step 4: Compute N ′(t).
Combining (1.194) in Step 2 and (1.202) in Step 3, one gets

D + E ≤ 1

2

∫

ϑ

|(∂tw −∆w)(x, t)|2eξ(x,t)dx
∫

ϑ

|w(x, t)|2eξ(x,t)dx

+
1

T − t+ ρ

∫

ϑ

|∇w(x, t)|2eξ(x,t)dx
∫

ϑ

|w(x, t)|2eξ(x,t)dx. (1.203)

Now, we can compute N ′(t). We have

N ′(t) =
2(D + E)

(∫
ϑ
|w(x, t)|2eξ(x,t)dx

)2 +
n

2(T − t+ ρ)2

≤ 1

T − t+ ρ

(
2
∫
ϑ
|∇w(x, t)|2eξ(x,t)dx∫

ϑ
|w(x, t)|2eξ(x,t)dx +

n

2(T − t+ ρ)

)

+

∫
ϑ
|(∂tw −∆w)(x, t)|2eξ(x,t)dx∫

ϑ
|w(x, t)|2eξ(x,t)dx

=
N(t)

T − t+ ρ
+

∫
ϑ
|(∂tw −∆w)(x, t)|2eξ(x,t)dx∫

ϑ
|w(x, t)|2eξ(x,t)dx . (1.204)

This completes the proof of Lemma 1.2.

1.2.5.3 Proof of Lemma 1.3

Step 1: Prove d
dt

(∫
Ω
|v(x, t)|2e

−|x−x0|2
2(T−t+ρ) dx

)
≤ 0 ∀ρ > 0 ∀x0 ∈ Ω.

We claim that

d

dt

(∫

Ω

|v(x, t)|2eξ̃(x,t)
)
dx ≤ 0, (1.205)

with ξ̃ ∈ C∞(Ω× [0, T ]) satisfying

∂tξ̃ +
1

2
|∇ξ̃|2 ≤ 0. (1.206)

The weight function which is defined as below

ξ̃(x, t) :=
−|x− x0|2
2(T − t+ ρ)

∀ρ > 0 (1.207)

satisfies ∂tξ̃ + 1
2 |∇ξ̃|2 = 0. Hence we get

d

dt

(∫

Ω

|v(x, t)|2e
−|x−x0|2
2(T−t+ρ) dx

)
≤ 0. (1.208)
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Now, we will prove our claim. We have

d

dt

(∫

Ω

|v(x, t)|2eξ̃(x,t)
)
dx

= 2

∫

Ω

v(x, t)∂tv(x, t)e
ξ̃(x,t)dx+

∫

Ω

|v(x, t)|2∂tξ(x, t)eξ̃(x,t)dx

= 2

∫

Ω

v(x, t)∆v(x, t)eξ̃(x,t)dx+

∫

Ω

|v(x, t)|2∂tξ(x, t)eξ̃(x,t)dx

= −2

∫

Ω

|∇v(x, t)|2eξ̃(x,t)dx− 2

∫

Ω

v(x, t)∇v(x, t)∇ξ(x, t)eξ̃(x,t)dx

+

∫

Ω

|v(x, t)|2∂tξ(x, t)eξ̃(x,t)dx. (1.209)

In the second equality of (1.209), we use the fact that ∂tv = ∆v. In the third equality of (1.209),
we apply integration by parts for the first term. Now, thanks to assumption (1.206), yields

d

dt

(∫

Ω

|v(x, t)|2eξ̃(x,t)
)
dx

≤ −2

∫

Ω

|∇v(x, t)|2eξ̃(x,t)dx− 2

∫

Ω

v(x, t)∇v(x, t)∇ξ(x, t)eξ̃(x,t)dx

−1

2

∫

Ω

|v(x, t)|2|∇ξ(x, t)|2eξ̃(x,t)dx

= −1

2

∫

Ω

(
4|∇v(x, t)|2 + 4v(x, t)∇v(x, t)∇ξ(x, t) + |v(x, t)|2|∇ξ(x, t)|2

)
eξ̃(x,t)dx

= −1

2

∫

Ω

(v(x, t)∇ξ(x, t) + 2∇v(x, t))2 eξ̃(x,t)dx

≤ 0. (1.210)

This completes the proof of Step 1.

Step 2: Make appear B(x0, (1 + δ)R).
Integrating (??) over (t, T ) with 0 < t < T , one obtains

∫

Ω

|v(x, T )|2e
−|x−x0|2

2ρ dx ≤
∫

Ω

|v(x, t)|2e
−|x−x0|2
2(T−t+ρ) dx. (1.211)

Now, in order to make appear Ω ∩B(x0, (1 + δ)R), we use the following fact
∫

Ω

|v(x, t)|2e
−|x−x0|2
2(T−t+ρ) dx

=

∫

Ω∩B(x0,(1+δ)R)

|v(x, t)|2e
−|x−x0|2
2(T−t+ρ) dx+

∫

Ω\B(x0,(1+δ)R)

|v(x, t)|2e
−|x−x0|2
2(T−t+ρ) dx

≤
∫

Ω∩B(x0,(1+δ)R)

|v(x, t)|2dx+ e
−(1+δ)2R2

2(T−t+ρ)

∫

Ω

|v(x, t)|2dx. (1.212)

Thanks to the energy estimate, which is
∫
Ω
|v(x, t)|2dx ≤

∫
Ω
|v0(x)|2dx, we get from (1.211) and

(1.212) that
∫

Ω

|v(x, T )|2e
−|x−x0|2

2ρ dx ≤
∫

Ω∩B(x0,(1+δ)R)

|v(x, t)|2dx+ e
−(1+δ)2R2

2(T−t+ρ)

∫

Ω

|v0(x)|2dx. (1.213)

Step 3: Take off the weight function.
On the other hand, we also have
∫

Ω

|v(x, T )|2e
−|x−x0|2

2ρ dx ≥
∫

Ω∩B(x0,R)

|v(x, T )|2e
−|x−x0|2

2ρ dx ≥ e
−R2

2ρ

∫

Ω∩B(x0,R)

|v(x, T )|2dx.

(1.214)
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Combining (1.213) and (1.214), one yields
∫

Ω∩B(x0,R)

|v(x, T )|2dx ≤ e
R2

2ρ

∫

Ω∩B(x0,(1+δ)R)

|v(x, t)|2dx+ e
−(1+δ)2R2

2(T−t+ρ) +R2

2ρ

∫

Ω

|v0(x)|2dx. (1.215)

Step 4: Make appear A ≤ eC(ρ)B + e−C(ρ)D for some positive constant C(ρ) depending on ρ.
Under the assumption that T − δρ ≤ t ≤ T , we get

− (1 + δ)2R2

2(T − t+ ρ)
+
R2

2ρ
≤ −δR

2

2ρ
. (1.216)

Hence, it follows from (1.215) that
∫

Ω∩B(x0,R)

|v(x, T )|2dx ≤ e
R2

2ρ

∫

Ω∩B(x0,(1+δ)R)

|v(x, t)|2dx+ e−
δR2

2ρ

∫

Ω

|v0(x)|2dx. (1.217)

Step 5: Choose suitable ρ.
Now, we choose ρ ≤ min{1, T2 }, i.e 1

ρ
≥ 1 + 2

T
such that

e−
δR2

2ρ

∫

Ω

|v0(x)|2dx =
1

2
e−

R2

2 (1+ 2
T )
∫

Ω∩B(x0,R)

|v(x, T )|2dx (1.218)

or

1

ρ
=

2

δR2
ln

(
e
R2

2 (1+ 2
T )

2
∫
Ω
|v0(x)|2dx∫

Ω∩B(x0,R)
|v(x, T )|2dx

)
. (1.219)

With such choice of ρ, it follows from (1.217) that
(
1− 1

2
e−

R2

2 (1+ 2
T )
)∫

Ω∩B(x0,R)

|v(x, T )|2dx ≤ e
R2

2ρ

∫

Ω∩B(x0,(1+δ)R)

|v(x, t)|2dx. (1.220)

On the other hand, it deduces from (1.218) that
∫

Ω∩B(x0,R)

|v(x, T )|2dx = 2e−
δR2

2ρ +R2

2 (1+ 2
T )
∫

Ω

|v0(x)|2dx. (1.221)

Combining (1.220) and (1.221), one yields

2

(
1− 1

2
e−

R2

2 (1+ 2
T )
)
e−

δR2

2ρ +R2

2 (1+ 2
T )
∫

Ω

|v0(x)|2dx ≤ e
R2

2ρ

∫

Ω∩B(x0,(1+δ)R)

|v(x, t)|2dx. (1.222)

Thanks to the fact that

2

(
1− 1

2
e−

R2

2 (1+ 2
T )
)

≥ 1 (1.223)

and

e
R2

2 (1+ 2
T ) ≥ 1, (1.224)

we get
∫

Ω

|v0(x)|2dx ≤ e
(1+δ)R2

2ρ

∫

Ω∩B(x0,(1+δ)R)

|v(x, t)|2dx. (1.225)

Put ~ = δρ then we can include that: for any T
2 ≤ T − ~ ≤ t ≤ T , the following estimate holds

∫
Ω

∣∣v0(x)
∣∣2 dx

∫
Ω∩B(x0,(1+δ)R)

|v(x, t)|2 dx
≤ e

(1+δ)δR2

2~ . (1.226)

Here
1

~
=

2

(δR)2
ln

(
e
R2

2 (1+ 2
T )

2
∫
Ω
|v0(x)|2dx∫

Ω∩B(x0,R)
|v(x, T )|2dx

)
.

This completes the proof of Lemma 1.3.

41
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Figure 1.1 – Illustration for case 2D

1.2.5.4 Proof of Lemma 1.4

For simplicity, we will prove Lemma 1.4 in two dimensions n = 2. First of all, let us remind
the C2 boundary definition.

Definition 1.2. (see [HaT, De.A.3, p.246])
Let Ω be open and bounded in R2. We say ∂Ω is C2 if ∂Ω can be covered finitely by many open
balls B(zi, ri) in R2 (i=1,2,..,N) for zi ∈ ∂Ω and ri > 0 such that

Ω ∩B(zi, ri) = B(zi, ri) ∩ Ωi with i = 1, 2, ..., N , (1.227)

where Ωi are rotations of suitable special C2 domains in R2.

Fix z ∈ ∂Ω and rz > 0. We have the illustrated situation where one may assume that ∂Ω ∩
B(z, rz) can be presented in local coordinates by

y2 = γ(y1) with γ ∈ C2([−rz, rz]), γ(0) = 0 and γ′(0) = 0. (1.228)

In these local coordinates, we have z = (0, 0) and

Ω ∩B(z, rz) = {y = (y1, y2) ∈ B(0, rz) : y2 > γ(y1)}. (1.229)

Step 1: Prove that: there exists K > 0 such that

|xγ′(x)− γ(x)| ≤ K|x|2 ∀x ∈ [−rz, rz]. (1.230)

Consider the following function:

g : [−rz, rz] → R

x 7→ xγ′(x)− γ(x). (1.231)

Thanks to the fact that γ ∈ C2([−rz, rz]), we get g ∈ C1([−rz, rz]) with g′(x) = xγ′′(x). Since γ′′

is continuous on [−rz, rz], there exists K > 0 such that

|γ′′(x)| ≤ K ∀x ∈ [−rz, rz]. (1.232)

It implies that

|g′(x)| ≤ K|x| ∀x ∈ [−rz, rz]. (1.233)
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On the other hand, by using the mean value theorem, one has: For any x ∈ [−rz, rz], there exists
t ∈ (0, 1) such that

xg′(tx) = g(x)− g(0) = g(x). (1.234)

Combining (1.233) and (1.234), we get

|g(x)| ≤ |g′(tx)||x| ≤ K|tx||x| ≤ K|x|2. (1.235)

This completes the proof of Step 1.

Step 2: Choose x0 ∈ Ω and R > 0.
Now, take R := min{ 1

1+K ,
rz
2 } and x0 := (0,KR2).

Firstly, since KR2 = KRR ≤ K 1
1+KR < R, one has 0 ∈ B(x0, R).

Secondly, take x = (x1, x2) ∈ ∂Ω∩B(x0, R) (|x1| < R). We claim that x ∈ ∂Ω∩B(0, rz). Indeed,
one has

|x| ≤ |x− x0|+ |x0| < R+KR2 = (1 +KR)R ≤
(
1 +

K

1 +K

)
R < 2R ≤ rz. (1.236)

Thus, we can write x2 = γ(x1). The unit outward normal vector to x is computed as

ν =
1√

1 + |γ′(x1)|2
(γ′(x1) − 1). (1.237)

Therefore, one has

(x− x0)ν =
1√

1 + |γ′(x1)|2
(
x1γ

′(x1)− γ(x1) +KR2
)
. (1.238)

Applying the result from Step 1, we get

|x1γ′(x1)− γ(x1)| ≤ K|x1|2 < KR2. (1.239)

It implies from (1.239) that

x1γ
′(x1)− γ(x1) > −KR2. (1.240)

Thus (x− x0)ν > 0. This completes the proof of Lemma 1.4.

1.2.5.5 Proof of Lemma 1.5

It implies from Theorem 1.8 that: There exist K1 > 0, K2 > 0 and µ ∈ (0, 1) depending on Ω
and ω such that

‖v(·, T )‖2L2(Ω) ≤
(
K1e

K2
T

)2
‖v(·, T )‖2µ

L2(ω)‖v
0‖2(1−µ)
L2(Ω) . (1.241)

Let ε be a positive number. Applying the Young’s inequality ab ≤ ap

p
+ bq

q
for the right-hand side

of (1.241) with

a =

((
K1e

K2
T

) 1
µ ‖v(·, T )‖L2(ω)

1

ε
1−µ
µ

(1− µ)
1−µ
2µ

)2µ

; (1.242)

b =

(
ε

(
1

1− µ

) 1
2

‖v0‖L2(Ω)

)2(1−µ)

; (1.243)

p =
1

µ
; q =

1

1− µ
; (1.244)

we obtain that the following estimate holds for any ε > 0

‖v(·, T )‖2L2(Ω) ≤




(
K1e

K2
T

) 1
µ

(1− µ)
1−µ
2µ

ε
1−µ
µ




2

µ‖v(·, T )‖2L2(ω) + ε2‖v0‖2L2(Ω). (1.245)
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Therefore, we get our desired estimate (1.152) with

M1 := K
1
µ

1 (1− µ)
1−µ
2µ µ

1
2 ; M2 :=

K2

µ
; θ :=

(1− µ)

µ
. (1.246)

This completes the proof of Lemma 1.5.

1.3 Controllability

The controllability of partial differential equations is an important area of research and has been
the subject of many papers, such as [Co], [FeG], [Fe2], [FuI], [Li2], [Li3], [Mi3], [Zu1], [Zu2], [Zu3]....
In this section, we present some of the recent progresses done on the problem of controllability of
the heat equation. Roughly speaking, it consists in analyzing whether the solution of the (HP) can
be driven to a given final target by means of a control applied on a subdomain of the domain in
which the equation evolves. On one hand, when control is added during the time from 0 until T ,
we concern two problems: The null approximate controllability (see Subsection 1.3.1) where the
solution at final time T gets null approximately and the null controllability (see Subsection 1.3.2)
where the solution at final time T reaches zero exactly. These preliminary results are the key point
for our study of null controllability of semilinear heat equation, which will be presented in Chapter
2. On the other hand, when control is only added at one point of time T (called impulse control),
we study the null approximate impulse controllability (see 1.3.3) where the solution at final time
2T approximates to 0. Such result holds an important role in the topic of local backward heat
problem, which is concerned in Chapter 3.

1.3.1 Null approximate controllability

1.3.1.1 Introduction and main result

Let ω be a nonempty, open subset of Ω. Now, we analyze the null approximate controllability
problem. Consider the following control system





∂tϕ−∆ϕ = ✶ωf in Ω× (0, T ) ,

ϕ = 0 on ∂Ω× (0, T ) ,

ϕ(·, 0) = ϕ0 ∈ L2(Ω) ,

(1.247)

where T denotes a positive constant, ✶ω denotes the characteristic function of ω and f ∈ L2(ω ×
(0, T )) denotes the control function acting only on the set ω× (0, T ). It is well-known that (1.247)
possesses a unique solution ϕ ∈ C(0, T ;L2(Ω)) ∩ L2(0, T ;H1

0 (Ω)) (see [Co, Th.2.63, p.77], [Br,
Th.10.9, p.341] or [LiM]). Let us start with the definition of null approximate controllable property:

Definition 1.3. (see [Co, De.2.40, p.55])
System (1.247) will be said to be null approximate controllable at time T if, for any ε > 0, for
any ϕ0 ∈ L2(Ω), there exists a control f ∈ L2(ω × (0, T )) such that the associated state satisfies
‖ϕ(·, T )‖L2(Ω) ≤ ε‖ϕ0‖L2(Ω).

This means that for every ε > 0, for every ϕ0 ∈ L2(Ω), the set

CT,ϕ0,ε := {f ∈ L2(ω × (0, T )) : the solution of (1.247) satisfies ‖ϕ(·, T )‖L2(Ω) ≤ ε‖ϕ0‖L2(Ω)}.
(1.248)

is nonempty. It leads us to the definition of the cost of null approximate control

Definition 1.4. (see [FeZ2])
The quantity K(T, ε) := sup

‖ϕ0‖L2(Ω)=1

inf
f∈CT,ϕ0,ε

‖f‖L2(ω×(0,T )) is called the cost of null approximate

control at time T .

Now, we state a main result of approximate null controllability for the heat equation.
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Theorem 1.9. (see [Mi3, Le.3.4, p.11])
The system (1.247) is null approximate controllable at any time T > 0. Moreover, for any ε > 0
and any ϕ0 ∈ L2(Ω), there exist positive constants C1, C2 depending on Ω and ω such that the
following estimate holds

1
(
C1e

C2
T

)2
∫ T

0

∫

ω

|f(x, t)|2dxdt+ 1

ε2

∫

Ω

|ϕ(x, T )|2dx ≤ ‖ϕ0‖2L2(Ω). (1.249)

According to Definition 1.4, the cost of null approximate control satisfies K(T ) ≤ C1e
C2
T . Here

the constants C1 and C2 in (1.249) come from the estimate (1.9) of Theorem 1.7. There are several
possible proofs for the null approximate controllable property, such as: Using the Hahn-Banach
theorem (see [Zu2, Th.2.5.2, p.127]) or the minimization of a functional (see also [Zu2, p.129] or
[FeZ2, Th.1.1, p.3]).

1.3.1.2 Construction of the null approximate control function

The control can be built by minimizing a suitable quadratic functional defined on the class of
solutions of the adjoint system. For instance, according to Zuazua, (see [Zu2] or [Zu3]), the control
function is constructed as f = ṽ where ṽ is the solution of the following system





∂tv −∆v = 0 in Ω× (0, T ),
v = 0 on ∂Ω× (0, T ),
v(·, 0) = v0 ∈ L2(Ω)

(1.250)

corresponding to the initial data ṽ0. Here, ṽ0 is the unique minimizer of the following functional
Jε : L

2(Ω) → R such that

Jε(v
0) =

1

2

∫ T

0

∫

ω

|v(x, T − t)|2dxdt+ ε‖v0‖L2(Ω) +

∫

Ω

v(x, T )ϕ0(x)dx. (1.251)

In (1.251), v is the solution of (1.250) corresponding to v0.

In [Mi3], the author changes the functional by defining

Jε(v
0) =

(
C1e

C2
T

)2

2

∫ T

0

∫

ω

|v(x, t)|2dxdt+ ε2

2
‖v0‖2L2(Ω) +

∫

Ω

v(x, T )ϕ0(x)dx. (1.252)

Here, C1 and C2 are the constants from the observability estimate (1.9). Let ṽ0 be the minimizer
of the functional Jε and ṽ be the corresponding solution of (1.250). Then the null approximate

control function is constructed as f(x, t) = (C1e
C2
T )2ṽ(x, T − t). In this section, we will focus on

the second way with detailed proof below.

1.3.1.3 Proof of Theorem 1.9

Before starting the proof of Theorem 1.9, let us recall the following fundamental result whose
proof is the basis of the so called Direct Method of the Calculus of Variations.

Lemma 1.6. (see [Zu2, Th.1.5.1, p.30])
If H is a Hilbert space with norm ‖ · ‖H and the function J : H → R is continuous, convex and
coercive in H, i.e. it satisfies J(v) → ∞ as ‖v‖H → ∞. Then J attains its minimum at some point
ṽ ∈ H. If, moreover, J is strictly convex, this point is unique. If, addition, J is a C1 function,
any minimizer ṽ necessarily satisfies

J ′(ṽ)ζ = 0, ∀ζ ∈ H. (1.253)
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Now, we start the proof of Theorem 1.9.
Step 1: Construct a control function.

Let C1 and C2 be the constants from Theorem 1.7. We consider the functional Jε : L2(Ω) → R such
that

Jε(v
0) =

(
C1e

C2
T

)2

2

∫ T

0

∫

ω

|v(x, t)|2dxdt+ ε2

2
‖v0‖2L2(Ω) +

∫

Ω

v(x, T )ϕ0(x)dx. (1.254)

Notice that Jε is continuous, C1, strictly convex and coercive. Thus, applying Lemma 1.6 with
H := L2(Ω) and J = Jǫ, we can conclude that Jε has a unique minimizer ṽ0. Moreover, the
assertion that J ′

ε(ṽ
0)ζ0 = 0 ∀ζ0 ∈ H implies that the following equality holds for all ζ0 ∈ L2(Ω)

(
C1e

C2
T

)2 ∫ T

0

∫

ω

ṽ(x, t)ζ(x, t)dxdt+ ε2
∫

Ω

ṽ0(x)ζ0(x)dx+

∫

Ω

ζ(x, T )ϕ0(x)dx = 0.

(1.255)

Here, ṽ and ζ are respectively the solution of (1.250) corresponding to initial data ṽ0 and ζ0.
Now, multiplying ∂tϕ−∆ϕ = ✶ωf by ζ(·, T − t) and integrating over Ω, we get

d

dt

∫

Ω

ϕ(x, t)ζ(x, T − t)dx =

∫

ω

f(x, t)ζ(x, T − t)dx. (1.256)

On one hand, integrating (1.256) over (0, T ), we obtain

∫ T

0

∫

ω

f(x, t)ζ(x, T − t)dxdt−
∫

Ω

ϕ(x, T )ζ0(x)dx+

∫

Ω

ϕ0(x)ζ(x, T )dx = 0. (1.257)

Notice that
∫ T
0

∫
ω
ṽ(x, t)ζ(x, t)dxdt =

∫ T
0

∫
ω
ṽ(x, T − t)ζ(x, T − t)dxdt. Thus from (1.255) and

(1.257), if we choose f(x, t) =
(
C1e

C2
T

)2
ṽ(x, T − t) then

∫

Ω

(
ϕ(x, T ) + ε2ṽ0(x)

)
ζ0(x)dx = 0 ∀ζ0 ∈ L2(Ω). (1.258)

Hence

ϕ(x, T ) = −ε2ṽ0(x). (1.259)

Moreover, if we take ζ0 ≡ ṽ0, then by uniqueness property of (HP), we get ζ ≡ ṽ. It follows from
(1.255) that

(
C1e

C2
T

)2 ∫ T

0

∫

ω

|ṽ(x, t)|2dxdt+ ε2
∫

Ω

|ṽ0(x)|2dx+

∫

Ω

ṽ(x, T )ϕ0(x)dx = 0. (1.260)

Using the Cauchy-Schwarz inequality, that is
∣∣∫

Ω
ṽ(x, T )ϕ0(x)dx

∣∣ ≤ ‖ṽ(·, T )‖L2(Ω)‖ϕ0‖L2(Ω), we
get

(
C1e

C2
T

)2
‖ṽ‖2L2(ω×(0,T )) + ε2‖ṽ0‖2L2(Ω) ≤ ‖ṽ(·, T )‖L2(Ω)‖ϕ0‖L2(Ω). (1.261)

Applying the result of observability estimate in Theorem 1.7, one gets

‖ṽ(·, T )‖2L2(Ω) ≤
(
C1e

C2
T

)2
‖ṽ‖2L2(ω×(0,T )). (1.262)

This estimate implies that

‖ṽ(·, T )‖2L2(Ω) ≤
(
C1e

C2
T

)2
‖ṽ‖2L2(ω×(0,T )) + ε2‖ṽ0‖2L2(Ω). (1.263)
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Combining (1.261) and (1.263), we obtain

(
C1e

C2
T

)2
‖ṽ‖2L2(ω×(0,T )) + ε2‖ṽ0‖2L2(Ω) ≤ ‖ϕ0‖L2(Ω)

((
C1e

C2
T

)2
‖ṽ‖2L2(ω×(0,T )) + ε2‖ṽ0‖2L2(Ω)

) 1
2

.

(1.264)
This is equivalent to

(
C1e

C2
T

)2
‖ṽ‖2L2(ω×(0,T )) + ε2‖ṽ0‖2L2(Ω) ≤ ‖ϕ0‖2L2(Ω). (1.265)

Let us remind that f(x, t) =
(
C1e

C2
T

)2
ṽ(x, T − t) and ϕ(x, T ) = −ε2ṽ0(x). Furthermore, notice

that

‖ṽ‖2L2(ω×(0,T )) = ‖ṽ(·, T − t)‖2L2(ω×(0,T )). (1.266)

Hence, it implies from (1.265) that

1
(
C1e

C2
T

)2 ‖f‖
2
L2(ω×(0,T )) +

1

ε2
‖ϕ(·, T )‖2L2(Ω) ≤ ‖ϕ0‖2L2(Ω). (1.267)

This completes the proof of Theorem 1.9.

1.3.2 Null controllability

1.3.2.1 Introduction and main result

Let us start by the definition of null controllable property.

Definition 1.5. (see [Co, De.2.39, p.55])
System (1.247) will be said to be null controllable at time T if, for any ϕ0 ∈ L2(Ω), there exists a
control f ∈ L2(ω × (0, T )) such that the associated state satisfies ϕ(·, T ) = 0.

This means that for every ϕ0 ∈ L2(Ω), the set

CT,ϕ0 := {f ∈ L2(ω × (0, T )) : the solution of (1.247) satisfies ϕ(·, T ) = 0} (1.268)

is nonempty. It leads us to the definition of the cost of null control.

Definition 1.6. (see [Mi1, De.1.1, p.2])
The quantity K(T ) := sup

‖ϕ0‖L2(Ω)=1

inf
f∈CT,ϕ0

‖f‖L2(ω×(0,T )) is called the cost of null control at time

T .

The following theorem asserts the null controllability at any time T > 0 of the system (1.247).

Theorem 1.10. (see [Co, Th.2.66, p.79])
The system (1.247) is null controllable at any time T > 0.

The cost of null control at time T satisfies K(T ) ≤ C1e
C2
T . Here, the constants C1 and C2 are the

same in observability estimate (1.9) from Theorem 1.7. It is reasonable from the well-known fact
that the null controllability problem for system (1.247) is equivalent to the observability estimate
(1.9) for the adjoint system (1.250) (see [Li2] or [Ru]). The null controllability of the heat equation
has been extensively investigated for several decades by lots of method. The first result on null
controllability of heat equation in one dimension have been obtained by Fattorini and Russell
(see [FaR]) by using the moment method. Then the duality approach combined with Carleman
estimates has been initiated by the works of Fursikov and Imanuvilov (see [FuI]) and of Lebeau
and Robbiano (see [LeR]). Another method is based on the transmutation, which relates the null
controllability of the heat equation to the exact controllability of the wave equation (see [Mi2]).
Recently, Coron and Nguyen use the backstepping approach to deal with the heat equation with
variable coefficients in space in one dimension (see [CoN]). The proof of Theorem 1.10 can be
found in references therein. Here, we will only remind the construction of a null control function.
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1.3. CONTROLLABILITY

1.3.2.2 Construction of the null control function

One way to construct a null control function is due to Zuazua (see [Zu3]). Firstly, the author
defines the following Hilbert space:

H =

{
v0 : the corresponding solution v of (1.250) satisfies

∫ T

0

∫

ω

|v(x, t)|2dxdt <∞
}

(1.269)

endowed with its norm

‖v0‖H =

(∫ T

0

∫

ω

|v(x, t)|2dxdt
) 1

2

. (1.270)

Secondly, the author constructs a functional on this Hilbert space, which is

J : H → R

v0 7→ 1

2

∫ T

0

∫

ω

|v(x, t)|2dxdt+
∫

Ω

v(x, 0)ϕ0(x)dx. (1.271)

Here, v is the solution of (1.250) corresponding to v0.
Thirdly, the control function is constructed based on the minimizer of J over H. Precisely, let ṽ0

be the minimizer of J over H and ṽ be the solution of (1.250) corresponding to the initial data ṽ0.
Then the null control function is constructed as f = ṽ.

Another way to construct the null control function, which can avoid working in the space H

(see also [Zu3] or [BuP, p. 23]), is based on null approximate controllability. Precisely, they build
a sequence of null approximate controls fε depending on arbitrary ε > 0 (see Subsection 1.3.1.2).
In more detail, for any ε > 0, let ṽ0ε be the minimizer of the following functional

Jε : L
2(Ω) → R

v0 7→

(
C1e

C2
T

)2

2

∫ T

0

∫

ω

|v(x, t)|2dxdt+ ε2

2
‖v0‖2L2(Ω) +

∫

Ω

v(x, T )ϕ0(x)dx.(1.272)

Moreover, thanks to the observability estimate, the sequence {fε} is uniformly bounded in L2(ω×
(0, T )). Hence, by extracting subsequences, we have fε converges weakly to f in L2(ω × (0, T )).
The limit control f fullfils the null controllability requirement.

1.3.3 Null approximate impulse controllability

1.3.3.1 Introduction and main result

Now we study another issue of control theory, null approximate impulse controllability, where
the control function also acts on a subdomain ω but at one point of time τ ∈ (0, T ) (see more in
[MiR] or [QiW]). Consider the following system





∂tψ −∆ψ = 0, in Ω× (0, T ) \ {τ},
ψ = 0, on ∂Ω× (0, T ),
ψ(·, 0) = ψ0, in Ω,
ψ(·, τ) = ψ(·, τ−) + ✶ωh, in Ω,

(1.273)

where ψ(·, τ−) denotes the left limit of the function ψ at time τ .

Definition 1.7. (see [QiW, De.1.2, p.3])
System (1.273) will be said to be null approximate impulse controllable at time T if, for any ε > 0,
any ψ0 ∈ L2(Ω), there exists a control h ∈ L2(ω) such that the associated state at final time satisfies
‖ψ(·, T )‖L2(Ω) ≤ ε‖ψ0‖L2(Ω).
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This means that for every ε > 0, for every ϕ0 ∈ L2(Ω), the set

CT,ψ0,ε := {h ∈ L2(ω) : the solution of (1.273) satisfies ‖ψ(·, T )‖L2(Ω) ≤ ε‖ψ0‖L2(Ω)} (1.274)

is nonempty. It leads us to the definition of the cost of null approximate impulse control

Definition 1.8. The quantity K(T, ε) := sup
‖ψ0‖L2(Ω)=1

inf
f∈CT,ψ0,ε

‖h‖L2(ω) is called the cost of null

approximate impulse control at time T .

Now, we state a main result of null approximate impulse controllability for the system (1.247).

Theorem 1.11. (see [PhWX, Th.3.1, p.5021])
The system (1.273) is null approximate impulse controllable at any time T > 0.

Moreover, for any ε > 0, the cost of null approximate impulse control function at time T satisfies

K(T, ε) ≤ M1e
M2
T−τ
εθ

. Here, the positive constants M1, M2 and θ are from the estimate (1.152) of
Lemma 1.5 (see Subsection 1.2.4).

1.3.3.2 Proof of main result

Fix ε > 0, put κ := M1e
M2
T−τ
εθ

where the constants M1, M2 and θ are from Lemma 1.5. We
consider the functional Jε : L2(Ω) → R such that

J(v0) =
κ2

2
‖v(·, T − τ)‖2L2(ω) +

ε2

2
‖v0‖2L2(Ω) +

∫

Ω

ψ0(x)v(x, T )dx; (1.275)

where v(x, t) is the solution of the following system




∂tv −∆v = 0 in Ω× (0, T ),
v = 0 on ∂Ω× (0, T ),
v(·, 0) = v0 ∈ L2(Ω).

(1.276)

Notice that J is a strictly convex, C1 and coercive, i.e J(v0) → ∞ when ‖v0‖L2(Ω) → ∞. Therefore,
thanks to Lemma 1.6, J has a unique minimizer ṽ0 ∈ L2(Ω) such that J(ṽ0) = min

v0∈L2(Ω)
J(v0). It

implies that J ′(ṽ0)ζ0 = 0 for any ζ0 ∈ L2(Ω), i.e the following estimate holds for any ζ0

κ2
∫

ω

ṽ(x, T − τ)ζ(x, T − τ)dx+ ε2
∫

Ω

ṽ0(x)ζ0(x)dx+

∫

Ω

ψ0(x)ζ(x, T )dx = 0; (1.277)

where ṽ and ζ are respectively the solution of (1.276) corresponding to ṽ0 := ṽ(·, 0) and ζ0 := ζ(·, 0).
Multiplying ∂tψ −∆ψ = 0 by ζ(·, T − t) and integrating over Ω, one gets

d

dt

∫

Ω

ψ(x, t)ζ(x, T − t)dx = 0. (1.278)

Integrating (1.278) over (0, τ) gives us
∫

Ω

ψ(x, 0)ζ(x, T )dx =

∫

Ω

ψ(x, τ−)ζ(x, T − τ)dx. (1.279)

Integrating (1.278) over (τ, T ) gives us
∫

Ω

ψ(x, τ)ζ(x, T − τ)dx =

∫

Ω

ψ(x, T )ζ0(x)dx. (1.280)

Combining (1.279), (1.280) and the fact ψ(·, τ) = ψ(·, τ−) + ✶ωhi, one obtains
∫

Ω

ψ(x, T )ζ0(x)dx =

∫

Ω

ψ0(x)ζ(x, T )dx+

∫

ω

h(x)ζ(x, T − τ)dx. (1.281)
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The estimate (1.281) can be written as
∫

ω

h(x)ζ(x, T − τ)dx−
∫

Ω

ψ(x, T )ζ0(x)dx+

∫

Ω

ψ0(x)ζ(x, T )dx = 0. (1.282)

Thus from (1.277) and (1.282), if we choose h(x) = κ2ṽ(x, T − τ) then
∫

Ω

(
ψ(x, T ) + ε2ṽ0(x)

)
ζ0(x)dx = 0 ∀ζ0 ∈ L2(Ω).

Hence, ψ(x, T ) = −ε2ṽ0(x). Moreover, with ζ0 ≡ ṽ0, using the Cauchy-Schwarz inequality, it
implies from (1.277) that

κ2‖ṽ(·, T − τ)‖2L2(ω) + ε2‖ṽ0‖2L2(Ω) ≤ ‖ψ0‖L2(Ω)‖ṽ(·, T )‖L2(Ω). (1.283)

Thanks to the energy estimate for the adjoint system (1.276), which is

‖ṽ(·, T )‖L2(Ω) ≤ ‖ṽ(·, T − τ)‖L2(Ω), (1.284)

we obtain

κ2‖ṽ(·, T − τ)‖2L2(ω) + ε2‖ṽ0‖2L2(Ω) ≤ ‖ψ0‖L2(Ω)‖ṽ(·, T − τ)‖L2(Ω). (1.285)

Applying the result in Lemma 1.5, which is

‖ṽ(·, T − τ)‖2L2(Ω) ≤ κ2‖ṽ(·, T − τ)‖2L2(ω) + ε2‖ṽ(·, 0)‖2L2(Ω), (1.286)

one has
κ2‖ṽ(·, T − τ)‖2L2(ω) + ε2‖ṽ0‖2L2(Ω) ≤ ‖ψ0‖2L2(Ω). (1.287)

This is equivalent to
1

κ2
‖h‖2L2(ω) +

1

ε2
‖ψ(·, T )‖2L2(Ω) ≤ ‖ψ0‖2L2(Ω). (1.288)

This completes the proof of Theorem 1.11.
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Chapter 2

Null controllability for cubic

semilinear heat equation

In this Chapter, we consider the null controllability problem for the cubic semilinear heat equa-
tion in bounded domains Ω of R3, with Dirichlet boundary conditions for small initial data. A
constructive way to compute a control function acting on any nonempty open subset ω of Ω is
given such that the corresponding solution of the cubic semilinear heat equation can be driven to
zero at a given final time T . Furthermore, we provide a quantitative estimate for the smallness
of the size of the initial data with respect to T that ensures the null controllability property. The
structure of this Chapter is given as below:

Section 2.1: We introduce our problem with locally well-posedness and blow up phenomenon
(see Subsection 2.1.1). Then, we prove two main results (see Subsection 2.1.2): One is the locally
null controllability for a blow up system under the smallness of initial data in H1

0 (Ω) (see Theorem
2.1); The other one is the locally null controllability for a non blow up system under the smallness
of initial data in L2(Ω) (see Corollary 2.1) . Finally, we remind some of relevant works for semi-
linear null controllability (see Subsection 2.1.3).

Section 2.2: We study the null controllability for a linear system with an outside force for
two cases (see Subsection 2.2.1): The initial data belongs to L2(Ω) (Theorem 2.2) and the initial
data belongs to H1

0 (Ω) (Corollary 2.2). The method is based on the iterative algorithm, whose
idea comes from [LiTT]. This method is completely different from the previous works based on
Carleman estimate and can be applied for other nonlinear parabolic systems. The readers can see
Subsection 2.2.2 for the detailed proof.

Section 2.3: We focus on the proof of the main results: The proof of Theorem 2.1 is given in
Subsection 2.3.1 and the proof of Corollary 2.1 is presented in Subsection 2.3.2.

Section 2.4: We recall some preliminary results which are used for our main proofs, such as:
The Sobolev embedding (see Subsection 2.4.1); The Banach fixed point theorem (see Subsection
2.4.2) or The classical estimates (see Subsection 2.4.3).
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2.1. INTRODUCTION AND MAIN RESULTS

2.1 Introduction and main results

2.1.1 Problem

Let Ω be an open bounded domain in R3 with a boundary ∂Ω of class C2 and T > 0. We
consider the cubic semilinear heat equation complemented with initial and Dirichlet boundary
condition, which has the following form





∂ty −∆y + γy3 = ✶ωf in Ω× (0, T ) ,

y = 0 on ∂Ω× (0, T ) ,

y(·, 0) = y0 in Ω ,

(2.1)

where γ ∈ {1,−1}, ✶ω denotes the characteristic function of ω and f denotes the control function
acting on ω × (0, T ).
Now we consider the well-posedness of the uncontrolled system.

When γ = 1, i.e we consider the following system





∂ty −∆y = −y3 in Ω× (0, T ) ,

y = 0 on ∂Ω× (0, T ) ,

y(·, 0) = y0 in Ω.

(2.2)

It is well-known (see [Li1, p.6]) that if y0 ∈ H1
0 (Ω), there exists a unique solution y ∈ L2(0, T ;H2(Ω))

such that ∂ty ∈ L2(Ω× (0, T )) and y satisfies the system (2.2).

When γ = −1, we consider the following system





∂ty −∆y = y3 in Ω× (0, T ) ,

y = 0 on ∂Ω× (0, T ) ,

y(·, 0) = y0 in Ω.

(2.3)

It is well-known ([BrC1, Th.3.1.1, p.1]) that if y0 ∈ L∞(Ω), there exists a unique solution y of
(2.3), defined on a maximal time interval [0, Tm), i.e y ∈ L∞(Ω× (0, T )) for all T < Tm. Moreover,
we have the blow up in finite time phenomenon, i.e Tm < +∞ and lim

t→Tm
‖y(·, t)‖L∞(Ω) = ∞. The

question what happens if y0 /∈ L∞(Ω) is considered by Brezis and Cazenave (see [BrC2]). Let us
assume that y0 ∈ Lq(Ω) for some 1 ≤ q < ∞. The existence and uniqueness of solutions depend
on the relationship between q and the dimension of domain Ω. Precisely

1. If q ≥ 3 then there exists time T (y0) > 0 and a unique solution y ∈ C([0, T (y0)], Lq(Ω))
satisfying the system (2.3) (see [BrC1, Th.1, p.278]).

2. If q = 1 or q = 2 then the well-posednesss of system (2.3) is still an open problem.

On the other hand, Brezis and Cazenave also prove that: When y0 is small enough, the problem is
global well-posed by energy method (see [BrC1, Th.3.4.1]) or by comparasion method (see [BrC1,
Th.3.4.5]). In contrast, [BrC1, Th.3.6.1] also says that the solution will blow up in finite time when
y0 is big enough. Here, under a smallness condition on initial data in H1

0 (Ω), we will provide a
null controllability result for the control system (2.2) when γ = 1 (non blow up case) or γ = −1
(blow up case) (see Theorem 2.1). Furthermore, in case non blow up γ = 1, we also can get the
same result but with a weaker assumption on initial data, that is y0 ∈ L2(Ω) (see Corollary 2.1).

2.1.2 Main results

Firstly, let us state our first main result which asserts the local null controllability for system
(2.1).
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Theorem 2.1. For any T > 0, suppose that y0 ∈ H1
0 (Ω) satisfies

‖y0‖2H1
0 (Ω) < max

(0,T ]

1

G(1 +
√
t)10e

G
t

, (2.4)

for some constant G > 1. Then there exists a control function f ∈ L2(ω × (0, T )) such that the
solution of (2.1) corresponding to y0 satisfies y(·, T ) = 0. Furthermore, the control can be computed
explicitly and the construction of the control is given below.

Remark 2.1. 1/ Theorem 2.1 ensures the local null controllability of (2.1) for any control set ω,
any small enough initial data y0 ∈ H1

0 (Ω), at any time T . It is well-known that the system (2.1)
without control function blows up in finite time for the case γ = −1. But thanks to an appropriate
control function, Theorem 2.1 affirms that the blow-up phenomena can be prevented for very specific
initial data.

2/ An important achievement of our result is that we can construct the control function. An
outline of the construction is described as follows: Firstly, we remind the construction of the null
approximate control for the linear heat equation with an estimate of the cost (see Subsection 1.3.1.2
in Chapter 1); Secondly, from the previous result, we do similarly when adding an outside force
using the method of Y. Liu, T. Takahashi and M. Tucsnak in [LiTT], the solution will be forced
to be null at time T by adding an exponential weight function; Lastly, thanks to an appropriate
iterative fixed point process and linearization by replacing the outside force by cubic function, the
desired control is constructed, but the result is only local, i.e. the initial condition must be small
enough. The precise construction of the control function is found in the proof of Theorem 2.1.

3/ Another main achievement of our result is to give a quantitative estimate for the smallness
of the size of the initial condition with respect to the control time T . The upper bound of initial
data is a function with respect to the final control time T , which obviously increases to a certain
value and then keeps to be a constant until T tends to ∞.

Another interesting problem is to study the case where the blow-up phenomena will not occur
(see [AnT]), for example when γ = 1. Our method gives the following result:

Corollary 2.1. For any T > 0, suppose that y0 ∈ L2(Ω) satisfying

‖y0‖2L2(Ω) < max
(0,T ]

T

G(1 +
√
t)10e

G
t

, (2.5)

for some constant G > 1. Then there exists a control function f ∈ L2(ω × (0, T )) such that the
solution of (2.1) with γ = 1 corresponding to y0 satisfies y(·, T ) = 0.

2.1.3 State of art

We now review the achievements of controllability for the nonlinear heat equation which has
been intensively studied in the past. Let Ω be an open, bounded domain in Rn (n ≥ 1). We
consider the heat equation in the following form:





∂ty −∆y = F(y) + ✶ωf in Ω× (0, T ) ,

y = 0 on ∂Ω× (0, T ) ,

y(·, 0) = y0 in Ω .

(2.6)

• For linear case, i.e F ≡ 0, this issue is considered in Chapter 1 (see Section 1.3.2).

• For sublinear case, i.e |F(s)| ≤ C(1 + |s|) ∀s ∈ R for some C > 0, the system (2.6) is global
null controllable. The first writing on this issue derives from A. Fursikov and O. Imanuvilov (see
[FuI] or [Em]). Their method is based on the Schauder’s fixed point theorem.
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• For superlinear case, for example F(s) = |s|ps with p > 1, we consider two cases when the
blow-up phenomena occur or not:
� For dissipative semilinear case when there is no blow-up phenomena, the system (2.6) is local

null controllability. In [Ba], the author studies on the case when

|F(s)| ≤ C|s|(1 + |s|α) (2.7)

where α > 0 if n = 1, 2 and α = 1
n−1 if n > 2. The author can prove the system (2.6) is

null controllable, under some assumption on initial data, which depends on C,α and T . In
addition, S. Anita and D.Tataru [AnT] consider the system (2.6) with F has a good sign, i.e
sF(s) ≥ 0 ∀s ∈ R. The authors can provide sharp estimates for the controllability time in
terms of the size of the initial data.

� For blowing-up semilinear heat equation, E. Fernández-Cara and E. Zuazua establish the first
result in the literature on the null controllability of system (2.6) (see [FeZ1] or [Fe1]). In
detail, they prove that the system (2.6) is global null controllable at any time provided if the
nonlinear term F(s) grows slower than |s|log

3
2 (1 + |s|) as |s| → ∞, i.e

lim
|s|→+∞

|F(s)|
|s| ln 3

2 (1 + |s|)
= 0 (2.8)

Furthermore, they observe that it is not possible to obtain a global controllability result for a
cubic nonlinear term. Generally, for some functions that behave at infinity like |s| lnp(1+ |s|)
with p > 2, the null controllability does not hold (see also [Fe2] or [FuI]).

Recently, in [LiTT], Liu, Takahashi and Tucsnak introduce a new methodology which can be used
for studying the null controllability of nonlinear parabolic systems. This method is as follows:
Firstly, they construct a new iterative algorithm for the null controllability of linear parabolic
equations in the presence of source terms; Secondly, by using a fixed point method, they obtain
the null controllability for a nonlinear system. In previous works ([FuI] or [Em]), the authors use a
linearized problem with time dependent coefficients, which is solved by using the global Carleman
estimates. Being independent on this techniques, the linearized problem in [LiTT] is with constant
coefficients. Hence, the spectral calculators can be used and their method can be applied for other
nonlinear systems.

2.2 Null controllability for linear case with outside force

2.2.1 Main results

We consider the linear heat equation with the outside force, which has the following form




∂tφ−∆φ = g + ✶ωf in Ω× (0, T ) ,

φ = 0 on ∂Ω× (0, T ) ,

φ(·, 0) = φ0 in Ω .

(2.9)

For the moment, we choose φ0 ∈ L2(Ω) and g ∈ L2(Ω × (0, T )). In this section, our target is
constructing a control function f ∈ L2(ω × (0, T )) such that the solution of system (2.9) satisfies
φ(·, T ) = 0. By using the iterative algorithm in [LiTT], we divide our time into small intervals.
On each divided interval of time, we again divide our problem (2.9) into two problems: The first
one is the linear system with outside force but without control (see (2.11)); The second one is the
basic linear system without outside force but with control (see (2.13)) such that the final data of
one problem is the initial data of the other. The first problem is known well-posed and the second
problem is the null approximate controllability for linear heat equation, which has already been
studied in Section 1.3.1. Now, let us introduce some notations before we state the main Theorem
in this Section.

Let {Tk}k≥0 be the sequence of real positive numbers given by

Tk = T − T

ak
, (2.10)

54



2.2. NULL CONTROLLABILITY FOR LINEAR CASE WITH OUTSIDE FORCE

where a > 1 will be chosen later. Put gk = ✶[Tk,Tk+1]g. We start to describe the algorithm to
construct the control: We initiate with χ0 = φ0 and ϕ−1 = 0. Define the sequences {zk}k≥0,
{ϕk}k≥0 and {φk}k≥0 as follows:

1/ Let zk be the solution of





∂tzk −∆zk = gk in Ω× (Tk, Tk+1) ,

zk = 0 on ∂Ω× (Tk, Tk+1) ,

zk(·, Tk) = ϕk−1(·, Tk) in Ω .

(2.11)

It is well-known that with ϕk−1(·, Tk) ∈ L2(Ω), (2.11) is well-posed (see [Br] or [LiM]). Hence,
let us introduce

χk+1 = zk(·, Tk+1) . (2.12)

2/ Let ϕk be the solution of





∂tϕk −∆ϕk = ✶ωfk in Ω× (Tk, Tk+1) ,

ϕk = 0 on ∂Ω× (Tk, Tk+1) ,

ϕk(·, Tk) = χk in Ω .

(2.13)

Theorem 1.9 says that the system (2.13) is null approximate controllable at any time Tk+1.
Moreover, for any εk > 0, any χk ∈ L2(Ω), there exists fk ∈ L2(ω × (Tk, Tk+1)) such that

1
(
Ce

C
Tk+1−Tk

)2
∫ Tk+1

Tk

∫

ω

|fk(x, t)|2dxdt+
1

ε2k

∫

Ω

|ϕk(x, Tk+1)|2dx ≤ ‖χk‖2L2(Ω) (2.14)

for some positive constant C. Precisely, the control function fk is constructed as below (see
more in Subsection 1.3.1.2)

fk(x, t) =
(
Ce

C
Tk+1−Tk

)2
ṽk(x, Tk+1 + Tk − t). (2.15)

Here ṽk is the solution of the following system





∂tvk −∆vk = 0 in Ω× (Tk, Tk+1) ,

vk = 0 on ∂Ω× (Tk, Tk+1) ,

vk(·, Tk) = v0k in Ω ,

(2.16)

corresponding to the initial data ṽ0k, which is the unique minimizer of the following functional
depending on εk > 0: Jεk : L2(Ω) → R such that

Jεk(v
0
k) =

(
Ce

C
Tk+1−Tk

)2

2

∫ Tk+1

Tk

∫

ω

|vk(x, t)|2dxdt+
ε2k
2

∫

Ω

|v0k(x)|2dx+

∫

Ω

vk(x, Tk+1)χk(x)dx.

Here, vk is the solution of (2.16) corresponding to the initial data v0k. Furthermore, we also
have (see (1.259) in Subsection 1.3.1.3)

ϕk(x, Tk+1) = −ε2kṽ0k(x). (2.17)

3/ Let φk = zk + ϕk, then it solves





∂tφ0 −∆φ0 = g0 + ✶ωf0 in Ω× (T, T1) ,

φ0 = 0 on ∂Ω× (T, T1) ,

φ0(·, 0) = φ0 in Ω

(2.18)
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and





∂tφk+1 −∆φk+1 = gk+1 + ✶ωfk+1 in Ω× (Tk+1, Tk+2) ,

φk+1 = 0 on ∂Ω× (Tk+1, Tk+2) ,

φk+1(·, Tk+1) = ϕk(·, Tk+1) + χk+1 in Ω .

(2.19)

Notice that φk(·, Tk+1) = φk+1(·, Tk+1), therefore the functions φ =
∑
k≥0

✶[Tk,Tk+1]φk is continous

on [0, T ].

Our main results below will assert that the function f :=
∑
k≥0

✶[Tk,Tk+1]fk leads the solution of

the system (2.9) from any given φ0 at time 0 to null at time T . Now we are able to state our result.

Theorem 2.2. For any φ0 ∈ L2(Ω), any a > 1, any g satisfying ge
2a2C
a−1

1
T−t ∈ L2(Ω × (0, T )) for

some positive constant C, there exists a control f ∈ L2(ω × (0, T )) such that the solution of (2.9)
corresponding to φ0 satisfies φ(·, T ) = 0. Furthermore, there exists a positive constant K > 1 such
that the following estimate holds:

‖φe C
a−1

1
T−t ‖C([0,T ];L2(Ω)) + ‖fe C

a−1
1

T−t ‖L2(ω×(0,T ))

≤ K (1 + T )
[
e

2C
a−1

1
T ‖φ0‖L2(Ω) + ‖ge 2a2C

a−1
1

T−t ‖L2(Ω×(0,T ))

]
. (2.20)

Here, f =
∑
k≥0

✶[Tk,Tk+1]fk where fk is constructed in (2.15).

When φ0 ∈ H1
0 (Ω), we have a corollary from Theorem 2.2 as below:

Corollary 2.2. For any φ0 ∈ H1
0 (Ω), any g satisfying ge

3D
T−t ∈ L2(Ω × (0, T )) for some positive

constant D, there exists a control f ∈ L2(ω×(0, T )) such that the solution of (2.9) corresponding to
φ0 satisfies φ(·, T ) = 0. Furthermore, there exists a positive constant K > 1 such that the following
estimate holds:

‖∇φe D
T−t ‖C([0,T ];L2(Ω)) + ‖fe D

T−t ‖L2(ω×(0,T ))

≤ K
(
1 +

√
T
)3 [

e
3D
T ‖∇φ0‖L2(Ω) + ‖ge 3D

T−t ‖L2(Ω×(0,T ))

]
. (2.21)

Here, the control function f comes from Theorem 2.2.

2.2.2 Proof of main results

2.2.2.1 Proof of Theorem 2.2

Sketch of proof of Theorem 2.2
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‖φe M
T−t ‖C([0,T ];L2(Ω))

Step 5

‖fe M
T−t ‖L2(ω×(0,T ))

Step 7

∑
k≥0

e
2M

T−Tk+1 ‖φk‖2C([Tk,Tk+1];L2(Ω))

Step 4

∑
k≥0

e
2M

T−Tk+1 ‖zk‖2C([Tk,Tk+1];L2(Ω))

Step 2

∑
k≥0

e
2M

T−Tk+1 ‖ϕk‖2C([Tk,Tk+1];L2(Ω))

Step 3

∑
k≥0

e
2M

T−Tk+1 ‖fk‖2L2(ω×(Tk,Tk+1))

Step 6

∑
k≥0

e
2A

T−Tk+1 ‖χk‖2L2(Ω)

Step 1

φ = ✶[Tk,Tk+1]φk

χk+1 = zk(·, Tk+1) χk = ϕk(·, Tk)

f = ✶[Tk,Tk+1]fk

Proof of Theorem 2.2

Step 1: Estimate
∑
k≥0

e
2A

T−Tk+1 ‖χk‖2L2(Ω) for any A > 0.

Remind that χ0 := φ0 and χk+1 := zk(·, Tk+1) for k ≥ 0.

Step 1.1: Estimate ‖zk‖2C([Tk,Tk+1];L2(Ω)) for k ≥ 0.
Applying energy estimate (see Theorem 2.5) for the system (2.11), one has

‖z0‖2C([T0,T1];L2(Ω)) ≤ T‖g0‖2L2(Ω×(T0,T1))
(2.22)

and

‖zk+1‖2C([Tk+1,Tk+2];L2(Ω)) ≤ 2T‖gk+1‖2L2(Ω×(Tk+1,Tk+2))
+ 2‖ϕk(·, Tk+1)‖2L2(Ω) ∀k ≥ 0. (2.23)

On the other hand, it implies from (2.14) for the system (2.13) that

‖ϕk(·, Tk+1)‖2L2(Ω) ≤ ε2k‖χk‖2L2(Ω) ∀k ≥ 0. (2.24)

Combining (2.23) and (2.24) gives us

‖zk+1‖2C([Tk+1,Tk+2];L2(Ω)) ≤ 2T‖gk+1‖2L2(Ω×(Tk+1,Tk+2))
+ 2ε2k‖χk‖2L2(Ω) ∀k ≥ 0. (2.25)

Step 1.2: Estimate ‖χk‖2L2(Ω) for k ≥ 0.
We have

‖χ0‖2L2(Ω) = ‖φ0‖2L2(Ω), (2.26)

‖χ1‖2L2(Ω) ≤ T‖g0‖2L2(Ω×(0,T1))
(2.27)
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and

‖χk+2‖2L2(Ω) ≤ 2T‖gk+1‖2L2(Ω×(Tk+1,Tk+2))
+ 2ε2k‖χk‖2L2(Ω) ∀k ≥ 0 . (2.28)

Step 1.3: Estimate
∑
k≥0

e
2A

T−Tk+1 ‖χk‖2L2(Ω) for any A > 0.

For any constant A > 0, we get
∑

k≥0

e
2A

T−Tk+1 ‖χk‖2L2(Ω)

= e
2A

T−T1 ‖χ0‖2L2(Ω) + e
2A

T−T2 ‖χ1‖2L2(Ω) +
∑

k≥0

e
2A

T−Tk+3 ‖χk+2‖2L2(Ω)

≤ e
2A

T−T1 ‖φ0‖2L2(Ω) + e
2A

T−T2 T‖g0‖2L2(Ω×(0,T1))

+2T
∑

k≥0

e
2A

T−Tk+3 ‖gk+1‖2L2(Ω×(Tk+1,Tk+2))
+ 2

∑

k≥0

e
2A

T−Tk+3 ε2k‖χk‖2L2(Ω)

≤ e
2A

T−T1 ‖φ0‖2L2(Ω) + 2T
∑

k≥0

e
2A

T−Tk+2 ‖gk‖2L2(Ω×(Tk,Tk+1))
+ 2

∑

k≥0

e
2A

T−Tk+3 ε2k‖χk‖2L2(Ω).

(2.29)

Using the fact that T − Tk+2 = T−Tk+1

a
and T − Tk+3 = T−Tk+1

a2
, one gets

∑

k≥0

e
2A

T−Tk+1 ‖χk‖2L2(Ω)

≤ e
2A

T−T1 ‖φ0‖2L2(Ω) + 2T
∑

k≥0

e
2aA

T−Tk+1 ‖gk‖2L2(Ω×(Tk,Tk+1))
+ 2

∑

k≥0

e
2a2A

T−Tk+1 ε2k‖χk‖2L2(Ω) .

(2.30)

In order to get

2
∑

k≥0

e
2a2A

T−Tk+1 ε2k‖χk‖2L2(Ω) =
1

2

∑

k≥0

e
2A

T−Tk+1 ‖χk‖2L2(Ω), (2.31)

we choose

εk =
1

2
e
−
A(a2−1)
T−Tk+1 ∀k ≥ 0 . (2.32)

With this choice of εk, (2.30) becomes
∑

k≥0

e
2A

T−Tk+1 ‖χk‖2L2(Ω) ≤ 2e
2A

T−T1 ‖φ0‖2L2(Ω) + 4T
∑

k≥0

e
2aA

T−Tk+1 ‖gk‖2L2(Ω×(Tk,Tk+1))
. (2.33)

Step 2: Estimate
∑
k≥0

e
2M

T−Tk+1 ‖zk‖2C([Tk,Tk+1];L2(Ω)) for some M > 0.

For any constant M > 0, we get
∑

k≥0

e
2M

T−Tk+1 ‖zk‖2C([Tk,Tk+1];L2(Ω))

= e
2M
T−T1 ‖z0‖2C([T0,T1];L2(Ω)) +

∑

k≥0

e
2M

T−Tk+2 ‖zk+1‖2C([Tk+1,Tk+2];L2(Ω)). (2.34)

Combining (2.22), (2.25) and (2.34), one has
∑

k≥0

e
2M

T−Tk+1 ‖zk‖2C([Tk,Tk+1];L2(Ω))

≤ e
2M
T−T1 T‖g0‖2L2(Ω×(T0,T1))

+ 2T
∑

k≥0

e
2M

T−Tk+2 ‖gk+1‖2L2(Ω×(Tk+1,Tk+2))

+2
∑

k≥0

e
2M

T−Tk+1 ε2k‖χk‖2L2(Ω). (2.35)
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Thanks to (2.32), one yields

∑

k≥0

e
2M

T−Tk+1 ‖zk‖2C([Tk,Tk+1];L2(Ω))

≤ 2T
∑

k≥0

e
2M

T−Tk+1 ‖gk‖2L2(Ω×(Tk,Tk+1)
+

1

2

∑

k≥0

e
2(M−A(a2−1))

T−Tk+1 ‖χk‖2L2(Ω). (2.36)

Under the condition that

M −A(a2 − 1) ≤ A, (2.37)

one gets from (2.33) and (2.36)

∑

k≥0

e
2M

T−Tk+1 ‖zk‖2C([Tk,Tk+1];L2(Ω))

≤ 2T
∑

k≥0

e
2M

T−Tk+1 ‖gk‖2L2(Ω×(Tk,Tk+1))

+e
2A

T−T1 ‖φ0‖2L2(Ω) + 2T
∑

k≥0

e
2aA

T−Tk+1 ‖gk‖2L2(Ω×(Tk,Tk+1))
. (2.38)

Under another condition that

M ≤ aA, (2.39)

we obtain
∑

k≥0

e
2M

T−Tk+1 ‖zk‖2C([Tk,Tk+1];L2(Ω))

≤ e
2A

T−T1 ‖φ0‖2L2(Ω) + 4T
∑

k≥0

e
2aA

T−Tk+1 ‖gk‖2L2(Ω×(Tk,Tk+1))
. (2.40)

Step 3: Estimate
∑
k≥0

e
2M

T−Tk+1 ‖ϕk‖2C([Tk,Tk+1];L2(Ω)).

Applying again the energy estimate for the system (2.13), we also have

‖ϕk‖2C([Tk,Tk+1];L2(Ω)) ≤ 2T‖fk‖2L2(ω×(Tk,Tk+1))
+ 2‖χk‖2L2(Ω) ∀k ≥ 0 . (2.41)

It also implies from (2.14) that

‖fk‖2L2(ω×(Tk,Tk+1))
≤
(
Ce

C
Tk+1−Tk

)2
‖χk‖2L2(Ω) ∀k ≥ 0. (2.42)

Combining (2.41) and (2.42) gives us

‖ϕk‖2C([Tk,Tk+1];L2(Ω)) ≤ 2
(
1 + C2Te

2C
Tk+1−Tk

)
‖χk‖2L2(Ω) ∀k ≥ 0 . (2.43)

Thus, it deduces from (2.43) that

∑

k≥0

e
2M

T−Tk+1 ‖ϕk‖2C([Tk,Tk+1];L2(Ω)) ≤ 2
∑

k≥0

e
2M

T−Tk+1

(
1 + C2Te

2C
Tk+1−Tk

)
‖χk‖2L2(Ω) . (2.44)

Using the fact that Tk+1 − Tk = T (a−1)
ak+1 = (a− 1)(T − Tk+1), one gets from (2.44) that

∑

k≥0

e
2M

T−Tk+1 ‖ϕk‖2C([Tk,Tk+1];L2(Ω)) ≤ 2(1 + C2)(1 + T )
∑

k≥0

e
2(M+ C

a−1
)

T−Tk+1 ‖χk‖2L2(Ω) . (2.45)
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Under the condition that

M +
C

a− 1
≤ A, (2.46)

it implies from (2.45) and (2.33) that

∑

k≥0

e
2M

T−Tk+1 ‖ϕk‖2C([Tk,Tk+1];L2(Ω))

≤ 4(1 + C2)(1 + T )e
2A

T−T1 ‖φ0‖2L2(Ω)

+8(1 + C2)T (1 + T )
∑

k≥0

e
aA

T−Tk+1 ‖gk‖2L2(Ω×(Tk,Tk+1))
. (2.47)

Step 4: Estimate
∑
k≥0

e
2M

T−Tk+1 ‖φk‖2C([Tk,Tk+1];L2(Ω)).

Combining (2.40), (2.47) and the fact that φk = zk + ϕk, one gets

∑

k≥0

e
2M

T−Tk+1 ‖φk‖2C([Tk,Tk+1];L2(Ω))

≤ 2
∑

k≥0

e
2M

T−Tk+1 ‖zk‖2C([Tk,Tk+1];L2(Ω)) + 2
∑

k≥0

e
2M

T−Tk+1 ‖ϕk‖2C([Tk,Tk+1];L2(Ω))

≤ 10(1 + C2)(1 + T )e
2A

T−T1 ‖φ0‖L2(Ω) + 24(1 + C2)(1 + T )2
∑

k≥0

e
2aA

T−Tk+1 ‖gk‖2L2(Ω×(Tk,Tk+1))
.

(2.48)

Using the claim that

∑

k≥0

e
2B

T−Tk ‖gk‖2L2(Ω×(Tk,Tk+1))
≤ ‖e B

T−t g‖2L2(Ω×(0,T )) ∀B > 0, (2.49)

one obtains

∑

k≥0

e
2M

T−Tk+1 ‖φk‖2C([Tk,Tk+1];L2(Ω))

≤ 10(1 + C2)(1 + T )e
2A

T−T1 ‖φ0‖2L2(Ω) + 24(1 + C2)(1 + T )2‖e a
2A
T−t g‖2L2(Ω×(0,T )) . (2.50)

The rest of this step is proving the claim (2.49). We have

∥∥∥ge
B
T−t

∥∥∥
2

L2(Ω×(0,T ))
=

∫ T

0

‖e B
T−t g(·, t)‖2L2(Ω)dt

=
∑

k≥0

∫ Tk+1

Tk

‖e B
T−t gk(·, t)‖2L2(Ω)dt

≥
∑

k≥0

e
2B

T−Tk

∫ Tk+1

Tk

‖gk(·, t)‖2L2(Ω)dt

=
∑

k≥0

e
2B

T−Tk ‖gk‖2L2(Ω×(Tk,Tk+1))
. (2.51)

Step 5: Estimate ‖φe M
T−t ‖2C([0,T ];L2(Ω)).

Using the following claim

∥∥∥φe
B
T−t

∥∥∥
2

C([0,T ];L2(Ω))
≤
∑

k≥0

e
2B

T−Tk+1 ‖φk‖2C([Tk,Tk+1];L2(Ω)) ∀B > 0, (2.52)
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we obtain from (2.50) that

‖φe M
T−t ‖2C([0,T ];L2(Ω))

≤ 10(1 + C2)(1 + T )
(
e

2A
T−T1 ‖φ0‖2L2(Ω)

)
+ 24(1 + C2)(1 + T )2‖ge a

2A
T−t ‖2L2(Ω×(0,T ))

≤ 24(1 + C2)(1 + T )2
(
e

2A
T−T1 ‖φ0‖2L2(Ω) + ‖ge a

2A
T−t ‖2L2(Ω×(0,T ))

)
. (2.53)

Now, we give the proof for claim (2.52). We have

∥∥∥φe
B
T−t

∥∥∥
2

C([0,T ];L2(Ω))
=

(
sup
t∈[0,T ]

‖φ(·, t)e B
T−t ‖L2(Ω)

)2

= sup
t∈[0,T ]

‖φ(·, t)e B
T−t ‖2L2(Ω)

≤
∑

k≥0

sup
t∈[Tk,Tk+1]

‖φk(·, t)e
B
T−t ‖2L2(Ω)

≤
∑

k≥0

e
2B

T−Tk+1 sup
t∈[Tk,Tk+1]

‖φk(·, t)‖2L2(Ω)

=
∑

k≥0

e
2B

T−Tk+1

(
sup

t∈[Tk,Tk+1]

‖φk(·, t)‖L2(Ω)

)2

=
∑

k≥0

e
2B

T−Tk+1 ‖φk‖2C([Tk,Tk+1];L2(Ω)). (2.54)

Step 6: Estimate
∑
k≥0

e
2M

T−Tk+1 ‖fk‖2L2(ω×(Tk,Tk+1))
.

It implies from (2.42) that

∑

k≥0

e
2M

T−Tk+1 ‖fk‖2L2(ω×(Tk,Tk+1))
≤ ∑
k≥0

e
2M

T−Tk+1 C2e
2C

Tk+1−Tk ‖χk‖2L2(Ω) (2.55)

= C2
∑
k≥0

e
2(M+ C

(a−1) )
1

T−Tk+1 ‖χk‖2L2(Ω). (2.56)

Under the condition (2.46), which is

M +
C

(a− 1)
≤ A, (2.57)

we get from (2.56) and (2.33) that

∑

k≥0

e
2M

T−Tk+1 ‖fk‖2L2(ω×(Tk,Tk+1))
≤ 2C2e

2A
T−T1 ‖φ0‖2L2(Ω)

+4C2T
∑

k≥0

e
2aA

T−Tk+1 ‖gk‖2L2(Ω×(Tk,Tk+1))
. (2.58)

Using the claim (2.49), one has

∑

k≥0

e
2M

T−Tk+1 ‖fk‖2L2(ω×(Tk,Tk+1))
≤ 2C2e

2A
T−T1 ‖φ0‖2L2(Ω) + 4C2T

∥∥∥ge
a2A
T−t

∥∥∥
2

L2(Ω×(0,T ))
. (2.59)

Step 7: Estimate ‖fe M
T−t ‖2L2(ω×(0,T )).

Using the following claim

‖fe B
T−t ‖2L2(ω×(0,T )) ≤

∑

k≥0

e
2B

T−Tk+1 ‖fk‖2L2(ω×(Tk,Tk+1))
∀B > 0, (2.60)
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one gets from (2.59) that

‖fe M
T−t ‖2L2(ω×(0,T )) ≤ 2C2e

2A
T−T1 ‖φ0‖2L2(Ω) + 4C2T‖ge a

2A
T−t ‖2L2(Ω×(0,T ))

≤ 4C2(1 + T )
(
e

2A
T−T1 ‖φ0‖2L2(Ω) + ‖ge a

2A
T−t ‖2L2(Ω×(0,T ))

)
. (2.61)

Let us move to the proof of claim (2.60). We have

∥∥∥fe
B
T−t

∥∥∥
2

L2(Ω×(0,T ))
=

∫ T

0

‖e B
T−t g(·, t)‖2L2(Ω)dt

=
∑

k≥0

∫ Tk+1

Tk

‖e B
T−t gk(·, t)‖2L2(Ω)dt

≤
∑

k≥0

e
2B

T−Tk+1

∫ Tk+1

Tk

‖gk(·, t)‖2L2(Ω)dt

=
∑

k≥0

e
2B

T−Tk+1 ‖gk‖2L2(Ω×(Tk,Tk+1))
. (2.62)

Step 8: Get conclusion.
Now, we assume our result from above steps: For any A > 0 and any M > 0 satisfying (2.37),
(2.39) and (2.46), we get the following results (thanks to the fact that a2 + b2 ≤ (a+ b)2):
On one hand, it follows from (2.53) that

‖φe 2M
T−t ‖C([0,T ];L2(Ω))

≤ 2
√
6(1 + C2)(1 + T )

(
e

A
T−T1 ‖φ0‖L2(Ω) + ‖ge a

2A
T−t ‖L2(Ω×(0,T ))

)
. (2.63)

On the other hand, it follows from (2.61) that

‖fe M
T−t ‖L2(ω×(0,T )) ≤ 2C

√
1 + T

(
e

A
T−T1 ‖φ0‖L2(Ω) + ‖ge a

2A
T−t ‖L2(Ω×(0,T ))

)
. (2.64)

Now, with M = C
(a−1) and A = 2C

a−1 , all the conditions (2.37), (2.39) and (2.46) are satisfied.
Hence, we conclude from (2.63) and (2.64) that: There exists a positive constant K > 1 such that

‖φe
C

(a−1)
1

T−t ‖C([0,T ];L2(Ω)) + ‖fe
C

(a−1)
1

T−t ‖L2(ω×(0,T ))

≤ K (1 + T )
[
e

2C
a−1

1
T ‖φ0‖L2(Ω) + ‖ge 2a2C

a−1
1

T−t ‖L2(Ω×(0,T ))

]
. (2.65)

This completes the proof of Theorem 2.2.

2.2.2.2 Proof of Corollary 2.2

We turn now to the case φ0 ∈ H1
0 (Ω). For any constant D > 0, put q = q(t) = e

D
T−t and ζ = qφ

then ζ satisfies the following system




∂tζ −∆ζ = q′φ+ q(✶ωf + g) in Ω× (0, T ) ,

ζ = 0 on ∂Ω× (0, T ) ,

ζ(·, 0) = e
D
T φ0 in Ω .

Applying the regularity estimate (see Theorem 2.5), one has

‖∇ζ‖C([0,T ];L2(Ω)) ≤ e
D
T ‖∇φ0‖L2(Ω) + ‖q′φ‖L2(Ω×(0,T )) + ‖qf‖L2(ω×(0,T )) + ‖qg‖L2(Ω×(0,T )).

(2.66)

We claim that: For any ρ ∈ (1, 3/2), there exists a constant Kρ > 1 such that

‖q′φ‖L2(Ω×(0,T )) ≤ Kρ‖e
ρD
T−tφ‖L2(Ω×(0,T )). (2.67)
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Furthermore, we also have

‖φe
ρD
T−t ‖L2(Ω×(0,T )) =

(∫ T

0

‖φ(·, t)e
ρD
T−t ‖2L2(Ω)dt

) 1
2

≤
√
T

(
sup
t∈[0,T ]

‖φ(·, t)e
ρD
T−t ‖2L2(Ω)

) 1
2

=
√
T sup
t∈[0,T ]

‖φ(·, t)e
ρD
T−t ‖L2(Ω)

=
√
T‖φe

ρD
T−t ‖C([0,T ];L2(Ω)). (2.68)

Thus, (2.66) can be written as

‖∇φe D
T−t ‖C([0,T ];L2(Ω)) ≤ e

D
T ‖∇φ0‖L2(Ω) +Kρ

√
T‖φe

ρD
T−t ‖C([0,T ];L2(Ω))

+‖fe D
T−t ‖L2(ω×(0,T )) + ‖ge D

T−t ‖L2(Ω×(0,T )) .
(2.69)

Thanks to the fact that ρ > 1 and Kρ > 1, one obtains

‖∇φe D
T−t ‖C([0,T ];L2(Ω)) ≤ e

D
T ‖∇φ0‖L2(Ω) + ‖ge 3D

T−t ‖L2(Ω×(0,T ))

+Kρ(1 +
√
T )
[
‖φe

ρD
T−t ‖C([0,T ];L2(Ω)) + ‖fe

ρD
T−t ‖L2(ω×(0,T ))

]
.

(2.70)

Take

a =

√
3

2ρ
and D =

C

ρ
(√

3
2ρ − 1

) , (2.71)

in order that a > 1, ρD = C
(a−1) and 2a2C

a−1 = 3D. Then, Theorem 2.2 says: There exists a positive
constant K > 1 such that

‖φe
ρD
T−t ‖C([0,T ];L2(Ω)) + ‖fe

ρD
T−t ‖L2(ω×(0,T ))

≤ K (1 + T )
[
e

2ρD
T ‖φ0‖L2(Ω) + ‖ge 3D

T−t ‖L2(Ω×(0,T ))

]
. (2.72)

Combining (2.70), (2.72) and the fact ρ < 3
2 , one obtains

‖∇φe D
T−t ‖C([0,T ];L2(Ω)) ≤ K

(
1 +

√
T
)3 [

e
3D
T ‖∇φ0‖L2(Ω) + ‖ge 3D

T−t ‖L2(Ω×(0,T ))

]
, (2.73)

for another constant K > 1. The rest is the proof of our claim: For any ρ ∈ (1, 3/2), there exists
a constant Kρ > 1 such that

‖q′φ‖L2(Ω) ≤ Kρ‖e
ρD
T−tφ‖L2(Ω×(0,T )). (2.74)

Indeed, we have

‖q′φ‖L2(Ω×(0,T )) =

∥∥∥∥
D

(T − t)2
e

D
T−tφ

∥∥∥∥
L2(Ω×(0,T ))

. (2.75)

Next, we use the following argument

D

(T − t)2
=

1

β2D

(
βD

T − t

)2

≤ 1

β2D
e

2βD
T−t ∀β > 0. (2.76)

Combining (2.75) and (2.76), one gets

‖q′φ‖L2(Ω×(0,T )) ≤
1

β2D
‖e

(1+2β)D
T−t φ‖L2(Ω×(0,T )). (2.77)

Thus, we get our claim with ρ = 1 + 2β and Kρ = 1 + 4
D(ρ−1)2 > 1. This completes the proof of

Corollary 2.2.
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2.3 Proof of main results

2.3.1 Proof of Theorem 2.1

Sketch of proof of Theorem 2.1
Based on the idea of the proof of the Banach fixed point theorem (see Theorem 2.4), we divide the
proof for Theorem 2.1 into four main steps as below.

Step 1: Choose y0 such that y30e
3D
T−t ∈ L2(Ω× (0, T )) and construct a sequence {ym}m≥1 and

{fm}m≥1 satisfying




∂tym −∆ym + γy3m−1 = ✶ωfm in Ω× (0, T ) ,

ym = 0 on ∂Ω× (0, T ) ,

ym(·, 0) = y0 in Ω .

(2.78)

The existence of {ym}m≥1 and {fm}m≥1 are based on the Corollary 2.2.

Step 2: Give assumption on the initial data ‖y0‖H1
0 (Ω) in order to get

q = q(‖y0‖H1
0 (Ω)) < 1 (2.79)

satisfying

‖∇(ym+1 − ym)e
D
T−t ‖C([0,T ];L2(Ω)) ≤ q‖∇(ym − ym−1)e

D
T−t ‖C([0,T ];L2(Ω)) ∀m ≥ 1. (2.80)

In order to get (2.80), the boundedness of ‖∇yme
D
T−t ‖C([0,T ];L2(Ω)) ∀m ≥ 0 is required.

Step 3: Using the argument that ‖xm+1 − xm‖X ≤ q‖xm − xm−1‖X ∀m ≥ 1 for 0 < q < 1
implies {xm}m≥1 is a Cauchy sequence in a metric space (X, ‖ · ‖X), we can conclude {ym}m≥1 is
a Cauchy sequence in C([0, T ];H1

0 (Ω)).

Step 4: Thanks to the Sobolev embedding (see Theorem 2.3) and the fact that {ym}m≥1

is a Cauchy sequence in C([0, T ];H1
0 (Ω)), we get that {fm}m≥1 is also a Cauchy sequence in

L2(ω × (0, T )). Then f := lim
m→∞

fm and y := lim
m→∞

ym in the corresponding spaces satisfy the

system (2.1). Moreover, the fact that ym(·, T ) = 0 ∀m ≥ 1 implies y(·, T ) = 0.

Now, let us move to the detailed proof of Theorem 2.1.
Step 1: Construct {ym}m≥1 and {fm}m≥1.

Firstly, take y0 = e−
D
T−t e

D
T y0. Then, we have

‖y30e
3D
T−t ‖L2(Ω×(0,T )) = ‖(y0)3e 3D

T ‖L2(Ω×(0,T ))

= e
3D
T

(∫ T

0

∫

Ω

|y0(x)|6dxdt
) 1

2

=
√
Te

3D
T ‖y0‖3L6(Ω). (2.81)

By using Sobolev embedding (see Theorem 2.3), which is ‖y0‖L6(Ω) ≤ c‖∇y0‖L2(Ω) for some positive
constant c, we get

‖y30e
3D
T−t ‖L2(Ω×(0,T )) ≤ c3

√
Te

3D
T ‖∇y0‖3L2(Ω) <∞. (2.82)

Thus, applying Corollary 2.2 with g := −γy30 , one has: There exists f1 ∈ L2(ω × (0, T )) such that
the solution of the following system





∂ty1 −∆y1 + γy30 = ✶ωf1 in Ω× (0, T ) ,

y1 = 0 on ∂Ω× (0, T ) ,

y1(·, 0) = y0 in Ω

(2.83)
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satisfies

‖∇y1e
D
T−t ‖C([0,T ];L2(Ω)) + ‖f1e

D
T−t ‖L2(ω×(0,T ))

≤ K
(
1 +

√
T
)3 [

e
3D
T ‖∇y0‖L2(Ω) + ‖y30e

3D
T−t ‖L2(Ω×(0,T ))

]
(2.84)

for some positive constants D and K.
Secondly, we will prove that ‖y31e

3D
T−t ‖L2(Ω×(0,T )) <∞. We have

‖y31e
3D
T−t ‖L2(Ω×(0,T )) =

(∫ T

0

‖y31e
3D
T−t ‖2L2(Ω)dt

) 1
2

=

(∫ T

0

‖y1e
D
T−t ‖6L6(Ω)dt

) 1
2

. (2.85)

Using again the Sobolev embedding, which is

‖y1e
D
T−t ‖L6(Ω) ≤ c‖∇y1e

D
T−t ‖L2(Ω), (2.86)

one obtains

‖y31e
3D
T−t ‖L2(Ω×(0,T )) ≤

(∫ T

0

c6‖∇y1e
D
T−t ‖6L2(Ω)dt

) 1
2

≤ c3
√
T‖∇y1e

D
T−t ‖3C([0,T ];L2(Ω)). (2.87)

Combining (2.84) and (2.87), we get

‖y31e
3D
T−t ‖L2(Ω×(0,T )) ≤ c3

√
T

[
K
(
1 +

√
T
)3 (

e
3D
T ‖∇y0‖L2(Ω) + ‖y30e

3D
T−t ‖L2(Ω×(0,T ))

)]3

< ∞. (2.88)

Thus, applying again Corollary 2.2 with g := −γy31 , one has: There exists f2 ∈ L2(ω× (0, T )) such
that the solution y2 of the system (2.83) satisfies (2.84) where y1 is replaced by y2, y0 is replaced by
y1 and f1 is replaced by f2. Iterating the same procedure, we can construct a sequence {ym}m≥1 in
C([0, T ];L2(Ω)) and a sequence {fm}m≥1 in L2(ω × (0, T )) such that the solution of the following
system





∂tym −∆ym + γy3m−1 = ✶ωfm in Ω× (0, T ) ,

ym = 0 on ∂Ω× (0, T ) ,

ym(·, 0) = y0 in Ω .

(2.89)

satisfies

‖∇yme
D
T−t ‖C([0,T ];L2(Ω)) + ‖fme

D
T−t ‖L2(ω×(0,T ))

≤ K
(
1 +

√
T
)3 [

e
3D
T ‖∇y0‖L2(Ω) + ‖y3m−1e

3D
T−t ‖L2(Ω×(0,T ))

]
(2.90)

for some positive constants D and K.
Step 2: Find upper bound α > 0 such that ‖∇yme

D
T−t ‖C([0,T ];L2(Ω)) ≤ α ∀m ≥ 0.

Firstly, we have

‖∇y0e
D
T−t ‖C([0,T ];L2(Ω)) = e

D
T ‖∇y0‖L2(Ω). (2.91)

Suppose that ‖∇ym−1e
D
T−t ‖C([0,T ];L2(Ω)) ≤ α for some α ≥ e

D
T ‖∇y0‖L2(Ω) (α will be chosen later).

We need to prove that

‖∇yme
D
T−t ‖C([0,T ];L2(Ω)) ≤ α. (2.92)

First of all, we claim that

‖y3m−1e
3D
T−t ‖L2(Ω×(0,T )) ≤ c3

√
T‖∇ym−1e

D
T−t ‖3C([0,T ];L2(Ω)) ∀m ≥ 1. (2.93)
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Then, thanks to (2.90) and (2.93), one yields

‖∇yme
D
T−t ‖C([0,T ];L2(Ω))

≤ K
(
1 +

√
T
)3
e

3D
T ‖∇y0‖L2(Ω) + c3

√
TK

(
1 +

√
T
)3

‖∇ym−1e
D
T−t ‖3C([0,T ];L2(Ω))

≤ K
(
1 +

√
T
)3
e

3D
T ‖∇y0‖L2(Ω) + c3

√
TK

(
1 +

√
T
)3
α3. (2.94)

We consider that A+Bα3 ≤ α holds if we choose α = 2A and B ≤ 1
8A2 . Therefore, if

c3
√
TK

(
1 +

√
T
)3

≤ 1

8

(
K
(
1 +

√
T
)3
e

3D
T ‖∇y0‖L2(Ω)

)2 (2.95)

then we can choose

α = 2K
(
1 +

√
T
)3
e

3D
T ‖∇y0‖L2(Ω). (2.96)

in order to get (2.92). Obviously, α ≥ e
D
T ‖∇y0‖L2(Ω) with K > 1. In conclusion, under the first

assumption on the initial data, which is

‖∇y0‖2L2(Ω) ≤
1

8c3
√
TK3(1 +

√
T )9e

6D
T

(2.97)

then by induction, we have for any m ≥ 0, the following estimate holds

‖∇yme
D
T−t ‖C([0,T ];L2(Ω)) ≤ 2K

(
1 +

√
T
)3
e

3D
T ‖∇y0‖L2(Ω). (2.98)

The rest of this step is proving the claim (2.93):
For m = 0, it implies from (2.82) that

‖y30e
3D
T−t ‖L2(Ω×(0,T )) ≤ c3

√
T‖∇y0eDT ‖3L2(Ω)

= c3
√
T sup

[0,T ]

‖∇y0eDT ‖3L2(Ω)

= c3
√
T sup

[0,T ]

‖∇y0e
D
T−t ‖3L2(Ω)

= c3
√
T‖∇y0e

D
T−t ‖3C([0,T ];L2(Ω)). (2.99)

For m ≥ 1, using the same above technique for y1 (see Step 1), we get

‖y3me
3D
T−t ‖L2(Ω×(0,T )) < c3

√
T‖∇yme

D
T−t ‖3C([0,T ];L2(Ω)). (2.100)

Thus, we get our claim (2.93).

Step 3: Prove that {ym}m≥1 is a Cauchy sequence in C([0, T ];H1
0 (Ω)).

Step 3.1: Prove that ‖∇(ym+1 − ym)e
D
T−t ‖C([0,T ];L2(Ω)) ≤ C(T )‖(y3m − y3m−1)e

3D
T−t ‖L2(Ω×(0,T )).

Put Ym+1 = ym+1 − ym and Fm+1 = fm+1 − fm for any m ≥ 1 then Ym+1 is solution of




∂tYm+1 −∆Ym+1 = −γ(y3m − y3m−1) + ✶ωFm+1 in Ω× (0, T ) ,

Ym+1 = 0 on ∂Ω× (0, T ) ,

Ym+1(·, 0) = 0 in Ω .

Secondly, following the same computations than in the proof of Corollary 2.2 (see (2.73)), we obtain

‖∇Ym+1e
D
T−t ‖C([0,T ];L2(Ω)) ≤ K

(
1 +

√
T
)3

‖
(
y3m − y3m−1

)
e

3D
T−t ‖L2(Ω×(0,T )) . (2.101)
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Step 3.2: Prove that ‖(y3m − y3m−1)e
3D
T−t ‖L2(Ω×(0,T )) ≤ ‖∇(ym − ym−1)e

D
T−t ‖C([0,T ];L2(Ω)).

Thanks to the fact that |a3 − b3| ≤ 2|a− b|(a+ b)2, we have

‖(y3m − y3m−1)(·, t)‖2L2(Ω) ≤ 4

∫

Ω

|(ym − ym−1)(x, t)|2 |(ym + ym−1)(x, t)|4 dx ∀t ∈ [0, T ]. (2.102)

Thanks to Hölder inequality, which is ‖ab‖L1(Ω) ≤ ‖a‖L3(Ω)‖b‖
L

3
2 (Ω)

, one gets

‖(y3m − y3m−1)(·, t)‖2L2(Ω)

≤ 4

(∫

Ω

|(ym − ym−1)(x, t)|6 dx
) 1

3
(∫

Ω

|(ym + ym−1)(x, t)|6 dx
) 2

3

= 4‖(ym − ym−1)(·, t)‖2L6(Ω)‖(ym + ym−1)(·, t)‖4L6(Ω) ∀t ∈ [0, T ]. (2.103)

Using Sobolev embedding again, one has

‖(y3m − y3m−1)(·, t)‖2L2(Ω)

≤ 4c6‖(∇ym −∇ym−1)(·, t)‖2L2(Ω)‖(∇ym +∇ym−1)(·, t)‖4L2(Ω)

≤ 16c6‖∇Ym(·, t)‖2L2(Ω)

(
‖∇ym(·, t)‖2L2(Ω) + ‖∇ym−1(·, t)‖2L2(Ω)

)2
∀t ∈ [0, T ] . (2.104)

As a result,

‖(y3m − y3m−1)e
3D
T−t ‖L2(Ω×(0,T ))

=

(∫ T

0

‖(y3m − y3m−1)(·, t)‖2L2(Ω)e
6D
T−t dt

) 1
2

≤
(∫ T

0

16c6‖∇Ym(·, t)‖2L2(Ω)(‖∇ym(·, t)‖2L2(Ω) + ‖∇ym−1(·, t)‖2L2(Ω))
2e

6D
T−t dt

) 1
2

≤
(∫ T

0

16c6‖∇Ym(·, t)e D
T−t ‖2L2(Ω)(‖∇ym(·, t)e D

T−t ‖2L2(Ω) + ‖∇ym−1(·, t)e
D
T−t ‖2L2(Ω))

2dt

) 1
2

≤
(∫ T

0

64c6‖∇Ym(·, t)e D
T−t ‖2L2(Ω)‖∇ym(·, t)e D

T−t ‖4L2(Ω)

) 1
2

≤ 8c3
√
T‖∇Yme

D
T−t ‖C([0,T ];L2(Ω))‖∇yme

D
T−t ‖2C([0,T ];L2(Ω)). (2.105)

Using the result in Step 2, which is

‖∇yme
D
T−t ‖C([0,T ];L2(Ω)) ≤ 2K

(
1 +

√
T
)3
e

3D
T ‖∇y0‖L2(Ω), (2.106)

we get

‖(y3m − y3m−1)e
3D
T−t ‖L2(Ω×(0,T ))

≤ 8c3
√
T

(
2K

(
1 +

√
T
)3
e

3D
T ‖∇y0‖L2(Ω)

)2

‖∇Yme
D
T−t ‖C([0,T ];L2(Ω)) . (2.107)

Step 3.3: Find 0 < q < 1 such that ‖∇Ym+1e
D
T−t ‖C([0,T ];L2(Ω)) ≤ q‖∇Yme

D
T−t ‖C([0,T ];L2(Ω)).

Gathering (2.101) and (2.107), yields

‖∇Ym+1e
D
T−t ‖C([0,T ];L2(Ω))

≤ K
(
1 +

√
T
)3

‖
(
y3m − y3m−1

)
e

3D
T−t ‖L2(Ω×(0,T ))

≤ 8c3K
(
1 +

√
T
)3 √

T

(
2K

(
1 +

√
T
)2
e

3D
T ‖∇y0‖L2(Ω)

)2

‖∇Yme
D
T−t ‖C([0,T ];L2(Ω)).

(2.108)
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Therefore, in order to get our target in this step, we need the following condition

8c3K
(
1 +

√
T
)3 √

T

(
2K

(
1 +

√
T
)3
e

3D
T ‖∇y0‖L2(Ω)

)2

< 1. (2.109)

It deduces the second assumption on the initial data, which is

‖∇y0‖2L2(Ω) <
1

32c3
√
TK3(1 +

√
T )9e

6D
T

. (2.110)

Step 3.4: Prove {ym}m≥1 is a Cauchy sequence in C([0, T ];H1
0 (Ω)).

In this step, we will use the following lemma, whose proof can be found in Subsection 2.4.4.

Lemma 2.1. Let (X, ‖ ·‖X) be a metric space and {xm}m≥1 ⊂ X such that there exists a constant
0 < q < 1 satisfying

‖xm+1 − xm‖X ≤ q‖xm − xm−1‖X ∀m ≥ 1. (2.111)

Then {xm}m≥1 is a Cauchy sequence.

Applying Lemma 2.1 with X := C([0, T ];H1
0 (Ω)) and xm := yme

D
T−t , we get that {yme

D
T−t }m≥1

is a Cauchy sequence in C([0, T ];H1
0 (Ω)). It also implies that {ym}m≥1 is a Cauchy sequence in

C([0, T ];H1
0 (Ω)).

Step 4: Prove {fm}m≥1 is a Cauchy sequence in L2(ω × (0, T )).
Step 4.1: Construct {Fm+1}m≥1.
Recall that the control function Fm+1 is constructed by Fm+1(x, t) =

∑
k≥0

(fm+1,k − fm,k)(x, t).

Here

(fm+1,k − fm,k)(x, t) =
(
Ce

C
Tk+1−Tk

)2
(vm+1,k − vm,k) (x, Tk+1 + Tk − t) ,

where vm+1,k − vm,k solves




∂t(vm+1,k − vm,k)−∆(vm+1,k − vm,k) = 0 in Ω× (Tk, Tk+1) ,

(vm+1,k − vm,k) = 0 on ∂Ω× (Tk, Tk+1) ,

(vm+1,k − vm,k)(·, Tk) ∈ L2(Ω) .

(2.112)

Now, we will consider ‖Fm+1e
D
T−t ‖L2(ω×(0,T )). By using the claim (2.60), we get

‖Fm+1e
D
T−t ‖2L2(ω×(0,T ))

≤
∑

k≥0

e
2D

T−Tk+1 ‖fm+1,k − fm,k‖L2(ω×(Tk,Tk+1))

≤
∑

k≥0

(
Ce

C
Tk+1−Tk

)4
e

2D
T−Tk+1 ‖(vm+1,k − vm,k)(·, Tk+1 + Tk − t)‖2L2(ω×(Tk,Tk+1))

=
∑

k≥0

(
Ce

C
Tk+1−Tk

)4
e

2D
T−Tk+1 ‖(vm+1,k − vm,k)‖2L2(ω×(Tk,Tk+1))

. (2.113)

The last equality is obtained by changing variable.
Step 4.2: Estimate ‖vm+1,k − vm,k‖L2(ω×(Tk,Tk+1)) for k ≥ 0.
We also have constructed the functions ϕm+1,k and ϕm,k by applying Corollary 2.2 with g = −γy3m
and g = −γy3m−1 respectively





∂t(ϕm+1,k − ϕm,k)(·, t)−∆(ϕm+1,k − ϕm,k)(·, t)
= ✶ω

(
Ce

C
Tk+1−Tk

)2
(vm+1,k − vm,k)(·, Tk+1 + Tk − t) in Ω× (Tk, Tk+1) ,

(ϕm+1,k − ϕm,k) = 0 on ∂Ω× (Tk, Tk+1) ,

(ϕm+1,k − ϕm,k)(·, Tk) = χm+1,k − χm,k in Ω ,

(ϕm+1,k − ϕm,k)(·, Tk+1) = −ε2k(vm+1,k − vm,k)(·, Tk) in Ω .

(2.114)
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Multiplying both sides of the first equation in (2.114) by (vm+1,k − vm,k)(·, Tk+1 + Tk − t) and
integrating over Ω, we get

d

dt

∫

Ω

(ϕm+1,k − ϕm,k)(x, t)(vm+1,k − vm,k)(x, Tk+1 + Tk − t)dx

=
(
Ce

C
Tk+1−Tk

)2 ∫

ω

|(vm+1,k − vm,k)(x, Tk+1 + Tk − t)|2dx. (2.115)

Integrating both sides of (2.115) over (Tk, Tk+1) and changing variable gives us

(
Ce

C
Tk+1−Tk

)2 ∫ Tk+1

Tk

∫

ω

|(vm+1,k − vm,k)(x, t)|2dxdt

=

∫

Ω

(ϕm+1,k − ϕm,k)(x, Tk+1)(vm+1,k − vm,k)(x, Tk)dx

−
∫

Ω

(ϕm+1,k − ϕm,k)(x, Tk)(vm+1,k − vm,k)(x, Tk+1)dx

= −ε2k
∫

Ω

| (vm+1,k − vm,k) (x, Tk)|2dx−
∫

Ω

(χm+1,k − χm,k)(x)(vm+1,k − vm,k)(x, Tk+1)dx .

(2.116)

Therefore, it follows from (2.116) that

(
Ce

C
Tk+1−Tk

)2
‖vm+1,k − vm,k‖2L2(ω×(Tk,Tk+1))

≤
∫

Ω

|(χm+1,k − χm,k)(x)(vm+1,k − vm,k)(x, Tk+1)|dx. (2.117)

Using the Cauchy-Schwarz inequality, yields

(
Ce

C
Tk+1−Tk

)2
‖vm+1,k − vm,k‖2L2(ω×(Tk,Tk+1))

≤ ‖χm+1,k − χm,k‖L2(Ω)‖(vm+1,k − vm,k)(·, Tk+1)‖L2(Ω). (2.118)

Furthermore, it also implies from Theorem 1.7 that

‖(vm+1,k − vm,k)(·, Tk+1)‖L2(Ω) ≤ Ce
C

Tk+1−Tk ‖vm+1,k − vm,k‖L2(ω×(Tk,Tk+1)). (2.119)

It deduces from (2.118) and (2.119) that

(
Ce

C
Tk+1−Tk

)2
‖vm+1,k − vm,k‖2L2(ω×(Tk,Tk+1))

≤ ‖χm+1,k − χm,k‖L2(Ω)Ce
C

Tk+1−Tk ‖(vm+1,k − vm,k)‖L2(ω×(Tk,Tk+1)). (2.120)

Therefore, we get

Ce
C

Tk+1−Tk ‖vm+1,k − vm,k‖L2(ω×(Tk,Tk+1)) ≤ ‖χm+1,k − χm,k‖L2(Ω) . (2.121)

Step 4.3: Estimate ‖Fm+1e
D
T−t ‖L2(ω×(0,T )).

Combining (2.121) and (2.113), one gets

‖Fm+1e
D
T−t ‖2L2(ω×(0,T ))

≤
∑

k≥0

C2e
2C

Tk+1−Tk
+ 2D
T−Tk+1 ‖χm+1,k − χm,k‖2L2(ω). (2.122)

Using the fact that Tk+1 − Tk = (a− 1)(T − Tk+1), one has

‖Fm+1e
D
T−t ‖2L2(ω×(0,T )) ≤ C2

∑
k≥0

e
2(D+ C

a−1 )
1

T−Tk+1 ‖χm+1,k − χm,k‖2L2(ω) . (2.123)
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Recall that the constants a and D were given in the proof of Corollary 2.2 (see (2.71)) and satisfy

D +
C

a− 1
=

C

ρ (a− 1)
+

C

a− 1
≤ 2C

a− 1
= A.

Following the same computations as in the proof of Theorem 2.2 (see (2.33)), we get

∑

k≥0

e
2A

T−Tk+1 ‖χm+1,k − χm,k‖L2(Ω)

≤ 4T
∑

k≥0

e
2aA

T−Tk+1 ‖y3m,k − y3m−1,k‖2L2(Ω×(Tk,Tk+1))
. (2.124)

Using the same argument in the claim (2.49), one yields

∑

k≥0

e
2aA

T−Tk+1 ‖y3m,k − y3m−1,k‖2L2(Ω×(Tk,Tk+1))
≤ ‖

(
y3m − y3m−1

)
e

3D
T−t ‖2L2(Ω×(0,T )). (2.125)

Gathering (2.124) and (2.125), we obtain

∑

k≥0

e
2A

T−Tk+1 ‖χm+1,k − χm,k‖L2(Ω) ≤ 4T‖
(
y3m − y3m−1

)
e
a2A
T−t ‖2L2(Ω×(0,T ))

≤ 4T‖
(
y3m − y3m−1

)
e

3D
T−t ‖2L2(Ω×(0,T )). (2.126)

Now, combining (2.123) and (2.126), it holds

‖Fm+1e
D
T−t ‖L2(ω×(0,T )) ≤ 2C

√
T‖(y3m − y3m−1)e

3D
T−t ‖L2(Ω×(0,T )) . (2.127)

Thus, it deduces from (2.127) and (2.107) that

‖Fm+1e
D
T−t ‖L2(ω×(0,T ))

≤ 8CTc3
(
2K

(
1 +

√
T
)3
e

3D
T ‖∇y0‖L2(Ω)

)2

‖∇Yme
D
T−t ‖C([0,T ];L2(Ω)). (2.128)

Thanks to the result that {yme
D
T−t }m≥1 is a Cauchy sequence in C([0, T ];H1

0 (Ω)) in Step 3 and

the estimate (2.128), one obtains {fme
D
T−t }m≥1 is a Cauchy sequence in L2(ω× (0, T )). It implies

that {fm}m≥1 is a Cauchy sequence in L2(ω × (0, T )).

Step 5: Get conclusion.
Step 5.1: Assume above result.
In brief, combining the two conditions (2.97) and (2.110) on the initial data, we get: If

‖∇y0‖2L2(Ω) <
1

G
(
1 +

√
T
)10

e
G
T

, (2.129)

with G = max{32c3K3, 6D, 1} > 1, then {ym}m≥1 is a Cauchy sequence in C([0, T ];H1
0 (Ω)) and

{fm}m≥1 is a Cauchy sequence in L2(Ω × (0, T )). Hence, there exists f ∈ L2(ω × (0, T )) and
y ∈ C([0, T ];H1

0 (Ω)) such that fm → f and ym → y in the corresponding spaces. Moreover, the
fact ym(T ) = 0 ∀m ≥ 1 implies that y(T ) = 0.
Step 5.2: Improve assumption on initial data.
For a fixed constant G > 1, let us consider the function which expresses the smallness of the initial
data depending on the time control T :

F : (0,+∞) → (0,+∞)

t 7→ 1

G
(
1 +

√
t
)10

e
G
t

. (2.130)
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The function F is increasing from the beginning until t = T0 and then decreasing until t reaches
∞. Here, instead of putting assumption that (called the old assumption):

‖∇y0‖2L2(Ω) < F (T ), (2.131)

we make a tricky choice, which is (called the new assumption):

‖∇y0‖2L2(Ω) < max
t∈(0,T ]

F (t). (2.132)

The new function max
t∈(0,T ]

F (t) with respect to T is nondecreasing on (0,+∞). Now, we will prove

our new assumption is reasonable.
Case 1: When T ≤ T0.
In this case, one has max

t∈(0,T ]
F (t) = F (T ), so the old assumption is satisfied. Hence, we obtain our

desire result.
Case 2: When T > T0.
In this case, one has max

t∈(0,T ]
F (t) = F (T0). Hence, we only need to control our system for t ∈ (0, T0)

and take the control equal to zero for t ∈ (T0, T ). Precisely, we consider two following systems:




∂tŷ −∆ŷ + γŷ3 = ✶ω f̂ in Ω× (0, T0) ,

ŷ = 0 on ∂Ω× (0, T0) ,

ŷ(·, 0) = y0 in Ω .

(2.133)

and




∂tỹ −∆ỹ + γỹ3 = 0 in Ω× (T0, T ) ,

ỹ = 0 on ∂Ω× (T0, T ) ,

ỹ(·, T0) = 0 in Ω.

(2.134)

Under the new assumption ‖∇y0‖2L2(Ω) ≤ max
t∈(0,T ]

F (t), one has ‖∇y0‖2L2(Ω) ≤ F (T0). Hence, apply-

ing the result from Step 5.1, we obtain the null controllability at time T0 for the system (2.133).
It means there exists f̂ ∈ L2(ω × (0, T0)) such that ŷ(·, T0) = 0. Furthermore, thanks to the
uniqueness of solution of system (2.134) with null initial data, we obtain ỹ(·, T ) = 0. Put

y(·, t) =
{
ŷ(·, t) for t ∈ [0, T0) ,
ỹ(·, t) for t ∈ [T0, T ] ,

then y satisfies (2.1) with

f(·, t) =
{
f̂(·, t) for t ∈ (0, T0) ,
0 for t ∈ (T0, T ),

and y(·, T ) = 0 . This completes the proof of Theorem 2.1.

2.3.2 Proof of Corollary 2.1

Now, we prove Corollary 2.1. Consider the following system




∂tŷ −∆ŷ + ŷ3 = 0 in Ω× (0, T/2) ,

ŷ = 0 on ∂Ω× (0, T/2) ,

ŷ(·, 0) = y0 in Ω .

Recall that no blow-up phenomena occurs. We can establish by classical regularity estimate that
ŷ(·, T/2) ∈ H1

0 (Ω). Furthermore, one has

‖ŷ (·, T/2)‖2H1
0 (Ω) ≤

1

T
‖y0‖2L2(Ω) < max

(0;T ]

1

G(1 +
√
t)

10
e
G
t

.
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Consequently, applying Theorem 2.1, we obtain the existence of f̃ ∈ L2(ω × (T/2, T )) such that
the solution of 




∂tỹ −∆ỹ + ỹ3 = ✶ω f̃ in Ω× (T/2, T ) ,

ỹ = 0 on ∂Ω× (T/2, T ) ,

ỹ(·, T/2) = ŷ(·, T/2) in Ω ,

satisfies ỹ(·, T ) = 0 .
Put

y(·, t) =
{
ŷ(·, t) for t ∈ [0, T/2) ,
ỹ(·, t) for t ∈ [T/2, T ] ,

then y satisfies (2.1) in case γ = 1 with

f(·, t) =
{

0 for t ∈ (0, T/2) ,
f̃(·, t) for t ∈ (T/2, T ),

and y(·, T ) = 0 . This completes the proof of Corollary 2.1.

2.4 Appendix

2.4.1 Sobolev embedding

The general Sobolev embedding inequality is presented in the following theorem.

Theorem 2.3. (see [Ad, Chapter 4, p.79] or [GiT, p.156])
Let Ω be a bounded domain in Rn (n ≥ 1). Let 1 ≤ p < n and 1

q
= 1

p
− 1

n
. Then there exists a

positive constant c such that
‖f‖Lq(Ω) ≤ c‖∇f‖Lp(Ω),

for any f ∈W 1,p
0 (Ω).

The one we use in this Chapter is the following: Let Ω be a bounded domain in R3. Then for
any function u ∈ H1

0 (Ω), we have:

‖u‖L6(Ω) ≤ c‖∇u‖L2(Ω) (2.135)

where the constant c is independent of the domain; in fact c = 2
2
3

3
1
2 π

2
3
.

2.4.2 Banach fixed point theorem

The Banach fixed point theorem guarantees the existence and uniqueness of fixed points of
certain self-maps of metric spaces. Moreover, the proof provides a constructive method to find
those fixed points.

Theorem 2.4. (see [GrD, Th.1.1, p.10])
Let (X, ‖ · ‖X) be a complete metric space and T : X → X be a contraction mapping, i.e there
exists q ∈ (0, 1) such that

‖T (x)− T (y)‖X ≤ q‖x− y‖X ∀x, y ∈ X. (2.136)

Then there exists x∗ ∈ X satisfying T (x∗) = x∗.

2.4.3 Classical estimates

We will recall the energy estimate and regularity estimate for the following system




∂tw −∆w = g in Ω× (0, T ),
w = 0 on ∂Ω× (0, T ),
w(·, 0) = w0 ∈ L2(Ω),

(2.137)

with given g ∈ L2(Ω× (0, T )). Now, let us state some classical estimates for this system.
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Theorem 2.5. Let w be the solution of (2.137). Then the following estimates hold:

i/ The energy estimate (see [CaH, Le.4.1.5, p.52])

‖w‖C([0,T ];L2(Ω)) ≤ ‖w0‖L2(Ω) +
√
T‖g‖L2(Ω×(0,T )). (2.138)

ii/ The regularity estimate (see [Ev, Th.5, p.360] )

‖∇w‖C([0,T ];L2(Ω)) ≤ ‖∇w0‖L2(Ω) + ‖g‖L2(Ω×(0,T )). (2.139)

2.4.4 Proof of Lemma 2.1

Step 1: Prove that ‖xm+1 − xm‖X ≤ qm‖x1 − x0‖X ∀m ≥ 1.
Thanks to assumption (2.111), we have ‖x2−x1‖X ≤ q‖x1−x0‖X . Moreover, due to the induction
hypothesis that ‖xm+1 − xm‖X ≤ qm‖x1 − x0‖X , one gets

‖xm+2 − xm+1‖X ≤ q‖xm+1 − xm‖X ≤ qm+1‖x1 − x0‖X . (2.140)

Thus, by induction, we can conclude that

‖xm+1 − xm‖X ≤ qm‖x1 − x0‖X ∀m ≥ 1. (2.141)

Step 2: Prove ‖xn − xm‖X ≤ qm

1−q‖x1 − x0‖X ∀1 ≤ m < n.
For 1 ≤ m < n, by using triangle inequality, we get

‖xn − xm‖X ≤ ‖xn − xn−1‖X + ‖xn−1 − xn−2‖X + ...+ ‖xm+1 − xm‖X . (2.142)

Using the result in Step 1, one obtains

‖xn − xm‖X ≤ qn−1‖x1 − x0‖X + qn−2‖x1 − x0‖X + ...+ qm‖x1 − x0‖X

≤ qm‖x1 − x0‖X
n−m−1∑

k=0

qk

≤ qm‖x1 − x0‖X
∞∑

k=0

qk

≤ qm

1− q
‖x1 − x0‖X . (2.143)

Step 3: Prove {xm}m≥1 is a Cauchy sequence in (X, ‖ · ‖X).
For any ε > 0, take nε ∈ N such that qnε < ε(1−q)

‖x1−x0‖X . Then for any n > m ≥ nε, we have

‖xn − xm‖X ≤ qm

1− q
‖x1 − x0‖X

≤ qnε

1− q
‖x1 − x0‖X < ε. (2.144)

Thus, {xm}m≥1 is a Cauchy sequence in (X, ‖ · ‖X). This completes the proof of Lemma 2.1.
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Chapter 3

Backward and Local backward for

heat equation

In this chapter, we study an inverse problem which is reconstructing the initial data of a heat
equation from an internal measurement of the solution on the whole domain (backward problem)
or on a subdomain (local backward problem) at some time later. Such inverse problem is well-
known to be an ill-posed problem, i.e even if a solution exists, it does not depend continuously on
the given data. As a consequence, it creates some troubles for numerical simulations. Therefore,
some special regularization methods are required. In this chapter, we study two different methods:
one is the filtering method basing on a filter for the eigenfunctions decomposition of solution and
another one is the Tikhonov method basing on a stability estimate. The structure of this Chapter
is given as below:

Section 3.1: We introduce the formal definition of inverse and ill-posed problem. We also pro-
vide an example for the ill-posedness of backward heat problem (see Subsection 3.1.1). It requires
a regularization method in order to construct an approximate solution which depends continuously
on the given data. A review of some regularization methods is mentioned (see Subsection 3.1.2).

Section 3.2: We set up our main problems: The backward and The local backward problem
(see Subsection 3.2.1). In order to state our main results, some preliminaries are necessary (see
Subsection 3.2.2). Then in Subsection 3.2.3, our main results of the reconstruction formula and the
convergence rate of the approximate solution for backward and local backward problem are released.

Section 3.3: We study the filtering method which is used by Seidman (see [Se1] or [Se2]).
Under a priori condition on the initial data, the author reconstructs the solution for the backward
heat problem at time t > 0, from the observation at some time later T > t on the whole domain.
The method is optimal in sense of Tautenhahn (see more in Section 3.6.1).

Section 3.4: We provide the detailed proof for our first main result: The result of backward
problem.

Section 3.5: We provide the detailed proof for our second main result: The result of local
backward problem.

Section 3.6: We provide some further comments about the backward problem and the local
backward problem, such as:

i/ In subsection 3.6.1, we study the optimality of our regularization method in sense of Taut-
enhahn, which concerns the best possible case error for identifying the approximate solution.
Some definitions (see Subsection 3.6.1.1) as well as the optimality results for Seidman prob-
lem (see Subsection 3.6.1.2), backward problem (see Subsection 3.6.1.3) and local backward
problem (see Subsection 3.6.1.4) are presented;
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ii/ In subsection 3.6.2, we solve the local backward problem by another well-known regularization
method, the Tikhonov method. Moreover, some comments about the comparison between the
filtering method and the Tikhonov method are also given.

iii/ In subsection 3.6.3, we consider the backward and local backward problems for a time depen-
dent thermal conductivity heat equation.

Section 3.7: We complete our arguments by the proof of all preliminary lemmas which are
used in our proof of main results.
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3.1. INTRODUCTION

3.1 Introduction

3.1.1 Inverse and ill-posed problem

In this subsection, we will provide a general definition of inverse problem and ill-posed problem.
Then, we will consider an example of inverse problem and explain the ill-posedness of this problem.

Inverse and ill-posed problems (see [Is], [Pa], [Ke], [Ka1], [Ka2]) are the heart of scientific in-
quiry and technological development. They play a significant role in engineering applications, as
well as several practical areas, such as image processing, mathematical finance, physics, etc. and,
more recently, modelling in the life sciences. During the last ten years or so, there have been
remarkable developments both in the mathematical theory and applications of inverse problems.

A very general definition of inverse problem is formulated by Keller (see [Ke, p.1]): “We call
two problems inverses of one another if the formulation of each involves all a part of the solution of
the other. Often, for the historical reasons, one of the two problems has been studied extensively
for some time, while the other is newer and not so well understood. In such cases, the former is
called the direct problem, while the later is called inverse problem.”

According to Kabanikhin (see [Ka1, p.3]) “An ill-posed problem is a problem that either has
no solutions in the desired class, or has many (two or more) solutions, or the solution procedure
is unstable (i.e., arbitrarily small errors in the measurement data may lead to indefinitely large
errors in the solutions)”. From this point of view, it can be said that an ill-posed problem is a
problem which is not well-posed, i.e one of three conditions (existence, uniqueness and continuously
dependence) of the well-posed problem is not satisfied.

Here, we will give an example of inverse problem and consider the ill-posedness of this problem:
Let Ω be an open bounded domain in Rn(n ≥ 1) with a boundary ∂Ω of class C2 and T > 0. We
consider the heat equation under the Dirichlet boundary condition

{
∂tu−∆u = 0 in Ω× (0, T ),
u = 0 on ∂Ω× (0, T ).

(3.1)

Direct problem: given u0 ∈ L2(Ω), the task is to find u(·, T ) ∈ L2(Ω) where u satisfies (3.1) and
u(·, 0) = u0.
Inverse problem (IP): given uT ∈ L2(Ω), the task is to find u(·, 0) ∈ L2(Ω) where u satisfies
(3.1) and u(·, T ) = uT .
In Chapter 1, we already know that the direct problem is well-posed and the unique solution is
given as (see Subsection 1.1.2)

u(·, T ) =
∑

i≥1

e−λiT
(∫

Ω

u0(x)ei(x)dx

)
ei. (3.2)

Thus, a formal exact solution of inverse problem has the following form

u(·, 0) =
∑

i≥1

eλiT
(∫

Ω

uT (x)ei(x)dx

)
ei. (3.3)

Here, the fact that eλiT → ∞ when i → ∞ creates the non existence of solution in L2(Ω) of the
inverse problem, i.e u(·, 0) /∈ L2(Ω), unless the given data uT is smooth

∑

i≥1

e2λiT
(∫

Ω

uT (x)ei(x)dx

)2

<∞. (3.4)

This smoothness condition is hardly satisfied in practical problems. Moreover, even if the solution
exists, it does not depend continuously on the given data uT . For instance, suppose

vT := uT +
eN
λN

, (3.5)
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for some N ∈ N. Then, in one hand

‖vT − uT ‖L2(Ω) =
1

λN
→ 0 when N → ∞. (3.6)

On the other hand, let u and v be solutions of (3.1) and respectively satisfy u(·, T ) = uT and
v(·, T ) = vT . Then the corresponding formal exact solutions of inverse problem (if exist) are

u(·, 0) =
∑

i≥1

eλiT
(∫

Ω

uT (x)ei(x)dx

)
ei (3.7)

and

v(·, 0) =
∑

i≥1

eλiT
(∫

Ω

uT (x)ei(x)dx

)
ei +

eλNT

λN
eN . (3.8)

Thus, one has

‖u(·, 0)− v(·, 0)‖L2(Ω) =
eλNT

λN
→ ∞ when N → ∞. (3.9)

Hence, we can see from (3.6) and (3.9) that: Even if solution exists, the small perturbations of the
observation data may be dramatically scaled up in the solution. It means that the inverse problem
is ill-posed. As a consequence, instead of finding the exact solution for inverse problem, we will
search for an approximate solution which depends continuously on the given data. It will be done
thanks to a regularization method, which will be mentioned in the next subsection.

3.1.2 Regularization methods

Roughly speaking, a regularization method is a special method which regularize an ill-posed
problem: Given an ill-posed problem, we define an approximate problem depending on a small
positive parameter such that it is well-posed; Then, one wishes to show that the solution of this
well-posed problem will converge to the solution of the ill-posed one as the parameter converges to
zero in an appropriate fashion. There are many such regularization methods for solving ill-posed
problems. Here, let us recall the main idea of some commonly used methods.

1. Quasi-reversibility method
One method for approaching the inverse problem is quasi reversibility, introduced by Lattes
and Lions (see [LaL]). The main idea of this method is adding a “corrector” into the original
operator in order to get a well-posed problem, then use the solution of this new problem to
construct the approximate solution. Precisely, in order to regularize the above example (IP),
the authors solve the following (well-posed) problem:





∂tuǫ −∆uǫ − ǫ∆2uǫ = 0 in Ω× (0, T ),
uǫ = ∆uǫ = 0 on ∂Ω× (0, T ),
uǫ(·, T ) = uT in Ω.

(3.10)

For each ǫ > 0, the authors use the initial value uǫ(·, 0) to solve the following problem:




∂tũǫ −∆ũǫ = 0 in Ω× (0,+∞),
ũǫ = 0 on ∂Ω× (0,+∞),
ũǫ(·, 0) = uǫ(·, 0) in Ω.

(3.11)

It is proved that ũǫ(·, T ) converges to uT when ǫ → 0. Such result shows that the quasi
solution ũǫ is an approximation for the exact solution u.

This method gives the stability magnitude is of order e
C
ǫ , which is so large for small ǫ. Then,

Miller (see [Mi]) improves this method by finding optimal perturbations of the original op-
erator. His method, named stabilized quasi reversibility gets the stability magnitude is of
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order C
ǫ
, which is better than e

C
ǫ .

From the numerical point of view, the fact that the order of the original operator is multiplied
by two is a drawback of the original quasi reversibility method. One way to cope with this
problem is using some mixed formulations of quasi reversibility (see [BeBFD]). Precisely, the
authors introduce a novel unknown which enables us to replace a fourth order problem by two
coupled second order problems. Recently, this method has been generalized and improved
for the backward heat equation (see [BoR]).

2. Quasi boundary value method
Another way to approach the ill-posed problem is called the quasi boundary value method,
which is suggested by Showalter (see [Sh]). This method improves the quasi reversibility
method by putting “corrector” into the final data, instead of into the original operator. In
detail, the author approximate (IP) with





∂tuǫ −∆uǫ = 0 in Ω× (0, T ),
uǫ = 0 on ∂Ω× (0, T ),
uǫ(·, T ) + ǫuǫ(·, 0) = uT in Ω,

(3.12)

One advantage of this method is that there is no need to solve the forward problem. The
new problem is well-posed for each ǫ > 0. Moreover, uǫ converges to uT when ǫ → 0. The
explicit estimate for the convergence rate of the approximation is lately provided in [ClO].
In [DeB], Denche and Bessila perturb the final condition in another way, which contains a
derivative of the same order than the equation, as follows:

uǫ(·, T )− ǫu′ǫ(·, 0) = uT in Ω.

3. Tikhonov regularization method
The most well-known regularization method is introduced by the Russian mathematician A.
N. Tikhonov, the Tikhonov regularization method (see [Ti1], [Ti2], [Ti3],...). The general
idea of this method as follows: The (IP) may be equivalently reformulated as finding the
minimum of the functional

J : H1
0 (Ω) → R

φ0 7→ ‖φ(·, T )− uT ‖2L2(Ω). (3.13)

Here, φ is the solution of the following system:




∂tφ−∆φ = 0 in Ω× (0, T ),
φ = 0 on ∂Ω× (0, T ),
φ(·, 0) = φ0 in Ω.

(3.14)

The solution to this minimization problem again does not depend continuously on the given
data. Hence, in order to restore stability, the author add a penalty term to the functional:

J (φ0) = ‖φ(·, T )− uT ‖2L2(Ω) + ǫ‖φ0‖H1
0 (Ω), (3.15)

for some regularization parameter ǫ > 0. It is proved that (see [Ho2, Th. 2.1, p.14]) J has a
unique minimizer for all ǫ > 0. This minimizer of the functional J is the approximation for
the ill-posed problem (IP). This method can also be found in lots of documents, such as [Fr],
[Ma], [Sc], [ZhM], [ItJ], etc.

4. Truncation method
It is a natural think to recover the stability of an ill-posed problem by removing the high
frequency components in the eigenfunctions expansion of solution. This is the main idea of
a regularization method, which is named the truncation method. In fact, one constructs the
approximate solution by the following formula:

N(ǫ)∑

i=1

eλiT
(∫

Ω

uT (x)ei(x)dx

)
ei
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with a suitable cutting point N(ǫ) satisfying N(ǫ) → ∞ as ǫ → 0 . This method is simple
and effective for solving some inverse problems. For instance, Nam, Trong and Tuan (see
[NaTT]) use the truncation method to solve an inhomogeneous backward heat problem in
two dimensions; Zhang, Fu and Ma (see [ZhFM]) also use this method to tackle the time
dependent thermal conductivity heat equation in one dimension and recently, Yang, Sun, Li
and Ma (see [YaSLM]) improve this method for identifying the initial value of an inhomoge-
neous heat equation on a spherical symmetric domain in high dimension.

5. Filtering method
With the same idea of the truncation method, but instead of finding the cutting point,
one uses a filter function for eliminating the high frequency noise, which called the filtering
method. For example, an approximate solution for (IP) is constructed as:

∞∑

i=1

R(i, ǫ)

(∫

Ω

uT (x)ei(x)dx

)
ei

where R is a bounded function and closed to eλiT when ǫ tends to 0. The above regularization
methods can be correspond to a suitable filter function:

i/ Quasi boundary value method: The corresponding filter function for this method is

R(i, ǫ) =
1

e−λiT + ǫ
. (3.16)

ii/ Tikhonov method: According to [Ho2, Th. 2.1, p.14], we get the explicit formula for the
approximation of (IP), based on the eigenfunction decomposition, as below

∑

i≥1

e−λiT

e−2λiT + ǫ

(∫

Ω

uT (x)ei(x)dx

)
ei(x). (3.17)

It corresponds to the following filter function:

R(i, ǫ) =
e−λiT

e−2λiT + ǫ
. (3.18)

iii/ Truncation method: The filter function for this method is

R(i, ǫ) =

{
eλiT if λi ≤ λN(ǫ),
0 if λi > λN(ǫ).

(3.19)

In [Se1] or [Se2]), Seidman constructs a special filtering method, which gives the optimal
result in sense of Tautenhahn (see Subsection 3.6.1). Precisely, he uses the following filter
function:

R(i, ǫ) = min

{
eλiT ,

1

ǫ

}
. (3.20)

In [TuKLT], the authors solve the backward heat equation in the multi-dimensional case
by a new general filter regularization method. From this method, they can derive several
regularization solutions by choosing a specific filter.

3.2 Main results

3.2.1 The backward problem and the local backward problem

Now, we move to the statement of our main problems. Firstly, we consider the following heat
equation under the Dirichlet boundary condition





∂tu−∆u = 0 in Ω× (0, T ),
u = 0 on ∂Ω× (0, T ),
u(·, T ) = f ∈ L2(Ω).

(3.21)
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In reality, it is impossible to get the exact data f, as the data are based on physical observations
or the numerical methods. Hence, instead of exact data, a noisy data fδ and a noisy level δ are
given such that

‖f − fδ‖L2(Ω) ≤ δ. (3.22)

Our target is constructing gδ, based on fδ and δ, such that gδ approximate to u(·, 0). Such problem
is called the backward problem, which is stated as below:

Backward problem: Given δ > 0 and fδ ∈ L
2(Ω) satisfying (3.22). Find gδ ∈ L2(Ω) such

that the solution of (3.21) satisfies

‖u(·, 0)− gδ‖L2(Ω) ≤ ǫ(δ) where ǫ(δ)
δ→0−−−→ 0. (3.23)

A slightly different (and less well-known) problem consists, for some non empty open subset
ω ⋐ Ω, in finding u(·, 0) such that





∂tu−∆u = 0 in Ω× (0, T ),
u = 0 on ∂Ω× (0, T ),
u(·, T ) = f ∈ L2(ω).

(3.24)

This problem, named the local backward problem, might be more interesting than the backward
problem from the point of view of applications, since the given data corresponds to measurements
which might be accessible only on a subpart of the spatial domain. Precisely, the local backward
problem is stated as below:

Local backward problem: Let ω be a nonempty, open subset of Ω. Given δ > 0 and
fδ ∈ L

2(ω) satisfying

‖f − fδ‖L2(ω) ≤ δ. (3.25)

Find gδ ∈ L2(Ω) such that the solution of (3.24) satisfies

‖u(·, 0)− gδ‖L2(Ω) ≤ ǫ(δ) where ǫ(δ)
δ→0−−−→ 0. (3.26)

Obviously, the ill-posedness of the local backward problem is even more severe than that of the
backward problem.

3.2.2 Preliminaries

In order to state our main result, let us firstly introduce some functions. Let a ∈
(
5
4 ,

6
4

)
be the

unique solution of ea = 1 + 2a and b :=
√
aea ∈

(
39
10 , 4

)
.

Firstly, consider the function

P : [a,+∞) → [1,+∞)

x 7→ ex

1 + 2x
. (3.27)

The function P is increasing on [a,+∞). Moreover, it is bijective. Hence, the inverse function,
denoted by P−1, is well-defined on [1,+∞).

Secondly, consider the function

Q : [0,+∞) → [0,+∞)

x 7→
√
xex. (3.28)

81



3.2. MAIN RESULTS

The function Q is also increasing on [0,+∞). Moreover, it is bijective. Hence, there exists an
inverse function, denoted by Q−1 : [0,+∞) → [0,+∞).

Thirdly, consider the function

PQ−1 : [b,+∞) → [1,+∞). (3.29)

The function PQ−1 is increasing on [b,+∞). Moreover, we have PQ−1(x) ≤ x ∀x ∈ [b,+∞).

Now, dealing with the local backward problem where the observation is only available on a
subdomain, a natural idea is connecting the information on the whole domain and on the subdo-
main. In order to get this connection, we will use a result of impulse controllability which will be
presented in the following lemma.

Lemma 3.1. Let T be a positive number and ω be a nonempty open subset of Ω. Then for any
ε > 0, for any i = 1, 2, ..., there exists hi ∈ L2(ω) such that the solution of





∂tψi −∆ψi = 0 in Ω× (0, 2T ) \ {T},
ψi = 0 on ∂Ω× (0, 2T ),
ψi(·, 0) = ei in Ω,
ψi(·, T ) = ψi(·, T−) + ✶ωhi in Ω

(3.30)

satisfies ‖ψi(·, 2T )‖L2(Ω) ≤ ε. Remind that {ei}i≥1 are the eigenfunctions of Laplacian under the
Dirichlet boundary condition. Moreover, there exist positive constants M1,M2 and θ depending
on Ω and ω, such that the following estimate holds

‖hi‖L2(ω) ≤
M1e

M2
T

εθ
∀i ≥ 1. (3.31)

Lemma 3.1 is a direct corollary of Theorem 1.11 with ψ0 = ei(i = 1, 2, ...). Now, we can state
our two main results for the backward and the local backward problem, respectively.

3.2.3 Main results

Let us start by our first result for the backward problem.

Theorem 3.1. Let u be the solution of (3.21) such that M := ‖u(·, 0)‖H1
0 (Ω) <∞. Suppose δ > 0

and fδ ∈ L2(Ω) are given such that

‖f − fδ‖L2(Ω) ≤ δ. (3.32)

Then there exists gδ ∈ L2(Ω) satisfying

‖u(·, 0)− gδ‖L2(Ω) ≤ ǫ(δ) where ǫ(δ)
δ→0−−−→ 0. (3.33)

Specially, when δ < 1, the convergence rate is of order
(
ln 1

δ

)− 1
2 , i.e there exists a positive constant

C > 0 depending on T and M such that ǫ(δ) = C
(
ln 1

δ

)− 1
2 . Furthermore, the reconstruction

formula of the approximation and the error estimate are explicitly given below:

1. Reconstruction formula

The approximate solution gδ is constructed as below

gδ :=





0 if δ ≥
√
TM
b

,∑
i≥1

min{eλiT , α}
(∫

Ω
fδ(x)ei(x)dx

)
ei if δ <

√
TM
b

, (3.34)

Here

α = PQ−1

(√
TM

δ

)
, (3.35)

where the functions P and Q are respectively defined in (3.27) and (3.28).
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2. Convergence rate

The convergence of the approximate solution gδ in (3.34) is estimated as

‖u(·, 0)− gδ‖L2(Ω) ≤





bδ√
λ1T

if δ ≥
√
TM
b

,
√
TM

√

Q−1
(√

TM
δ

)

if δ <
√
TM
b

. (3.36)

Remark 3.1. 1. The approximate parameter α.
Thanks to the increasing property of the function PQ−1, we have: Smaller the noisy level
δ is, bigger the parameter α is. As a consequence, the approximation is more closed to the
exact data. Furthermore, we get the bound for parameter α as below

1 ≤ α ≤
√
TM

δ
.

2. Upper bound of ‖gδ‖L2(Ω).
Thanks to the upper bound of α and the construction of gδ in (3.34), one gets

‖gδ‖L2(Ω) ≤
√
TM

δ
‖fδ‖L2(Ω). (3.37)

3. Connection to the backward estimate.
Let us remind the backward estimate (1.7) for the system (3.21): If u(·, 0) ∈ H1

0 (Ω) and
u(·, 0) 6= 0 then

‖u(·, 0)‖L2(Ω) ≤ e

‖u(·,0)‖2
H1

0(Ω)

‖u(·,0)‖2
L2(Ω)

T

‖u(·, T )‖L2(Ω). (3.38)

In order to make disappear the term ‖u(·, 0)‖L2(Ω) on the right-hand side of (3.38), one has

√
T‖u(·, 0)‖H1

0 (Ω) ≤
√
T‖u(·, 0)‖H1

0 (Ω)

‖u(·, 0)‖L2(Ω)
e

T‖u(·,0)‖2
H1

0(Ω)

‖u(·,0)‖2
L2(Ω) ‖u(·, T )‖L2(Ω)

= Q
(
T‖u(·, 0)‖2

H1
0 (Ω)

‖u(·, 0)‖2
L2(Ω)

)
‖u(·, T )‖L2(Ω). (3.39)

Thanks to the increasing property of the function Q−1, we obtain

T‖u(·, 0)‖2
H1

0 (Ω)

‖u(·, 0)‖2
L2(Ω)

≥ Q−1

(√
T‖u(·, 0)‖H1

0 (Ω)

‖u(·, T )‖L2(Ω)

)
. (3.40)

This estimate is equivalent to

‖u(·, 0)‖L2(Ω) ≤
√
T‖u(·, 0)‖H1

0 (Ω)√
Q−1

(√
T‖u(·,0)‖

H1
0(Ω)

‖u(·,T )‖L2(Ω)

) . (3.41)

Thus, when the noisy level is small, the error estimate (3.36) connects to the backward esti-
mate (3.41). Furthermore, the convergence is optimal on H1

0 (Ω) in sense of Tautenhahn (see
Section 3.6.1.3).

Let us move to the second main result for the local backward problem.

Theorem 3.2. Let u be the solution of (3.24) such that M := ‖u(·, 0)‖H1
0 (Ω) <∞. Suppose δ > 0

and fδ ∈ L2(ω) are given such that

‖f − fδ‖L2(ω) ≤ δ. (3.42)
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Then there exists gδ ∈ L2(Ω) such that

‖u(·, 0)− gδ‖L2(Ω) ≤ ǫ(δ) where ǫ(δ)
δ→0−−−→ 0. (3.43)

Specially, when δ < 1, the convergence rate is of order
(
ln 1

δ

)− 1
2 . Furthermore, the reconstruction

formula of the approximation and the error estimate are given below:

1. Reconstruction formula

The approximation solution gδ is constructed as below

gδ :=





0 if δ ≥
( √

T

bC1e
C2
T

) 1
µ

M ,

∑
i≥1

min{e3λiT , β}e−λiT
(∫
ω

fδ(x)hi(x)dx
)
ei if δ <

( √
T

bC1e
C2
T

) 1
µ

M ,

(3.44)

for some positive constants C1, C2 and µ ∈ (0, 1) depending on Ω and ω. Here

β = PQ−1

( √
T

C1e
C2
T

(
M

δ

)µ)

where the functions P and Q are respectively defined in (3.27) and (3.28).
And hi ∈ L2(ω)(i ≥ 1) comes from Lemma 3.1 with an explicit choice of ε.

2. Convergence rate

The convergence of the approximate solution gδ in (3.176) is estimated as

‖u(·, 0)− gδ‖L2(Ω) ≤





(
bC1e

C2
T√

T

) 1
µ

δ√
λ1

if δ ≥
( √

T

bC1e
C2
T

) 1
µ

M ,

√
3TM

√

√

√

√

√Q−1





√
T

C1e

C2
T

(Mδ )
µ





if δ <

( √
T

bC1e
C2
T

) 1
µ

M .
(3.45)

Remark 3.2. 1. The approximate parameter β.

1 ≤ β ≤
√
T

C1e
C2
T

(
M

δ

)µ
. (3.46)

2. Upper bound of ‖gδ‖L2(Ω).

‖gδ‖L2(Ω) ≤ C

√
TM

δ
‖fδ‖L2(ω), (3.47)

for some positive constant C only depending on Ω and ω. The proof of (3.47) can be found
in the proof of Theorem 3.2 (see Section 3.5).

3. Connection to the backward estimate.
Under the assumption that u(·, 0) ∈ H1

0 (Ω) and u(·, 0) 6= 0, we recall the backward estimate
(3.41) for the system (3.24):

‖u(·, 0)‖L2(Ω) ≤
√
T‖u(·, 0)‖H1

0 (Ω)√
Q−1

(√
T‖u(·,0)‖

H1
0(Ω)

‖u(·,T )‖L2(Ω)

) . (3.48)

Furthermore, we also have the observation estimate at one point of time for the system (3.24)
(see Theorem 1.8): There exists K1 > 0 and K2 > 0 such that

‖u(·, T )‖L2(Ω) ≤ K1e
K2
T ‖u(·, T )‖µ

L2(ω)‖u(·, 0)‖
1−µ
H1

0 (Ω)
. (3.49)
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Combining (3.48) and (3.49), one gets the following estimate, named local backward estimate

‖u(·, 0)‖L2(Ω) ≤
√
T‖u(·, 0)‖H1

0 (Ω)√
Q−1

( √
T

K1e
K2
T

(
‖u(·,0)‖

H1
0(Ω)

‖u(·,T )‖L2(ω)

)µ) . (3.50)

When the noisy data is acceptable, i.e the noisy level δ is small, this estimate connects to the
error estimate (3.45) with the notice that C2 = K2.

3.3 Seidman problem

Let us recall the Seidman problem (see [Se2]). Let T > 0, we consider the following system:





∂tu−∆u = 0 in Ω× (0, T ),
u = 0 on ∂Ω× (0, T ),
u(·, T ) = f ∈ L2(Ω).

(3.51)

Seidman problem: Given δ > 0 and fδ ∈ L2(Ω) satisfying

‖f − fδ‖L2(Ω) ≤ δ.

For t ∈ (0, T ), find gδ ∈ L2(Ω) such that the solution of (3.51) satisfies

‖u(·, t)− gδ‖L2(Ω) ≤ ǫ(δ) where ǫ(δ)
δ→0−−−→ 0. (3.52)

The “exact backward representation” for solution of Seidman problem, corresponding to fδ is

gδ(t) =
∑

i≥1

eλi(T−t)
(∫

Ω

fδ(x)ei(x)dx

)
ei. (3.53)

The fact that eλi(T−t) → ∞ when i → ∞ shows that the approximation (3.53) is useless. This is
the essence of the ill-posedness of Seidman problem. Hence, a natural idea is replacing eλi(T−t) in
the formula (3.53) by pi(t) such that pi(t) satisfies two following conditions:

1. pi(t) is bounded by some positive constant γ = γ(t) for any i ≥ 1,

2. pi(t) is as closed to eλi(T−t) as possible.

This construction of pi(t) corresponds to the following minimization problem: Fix i and consider

minimize
∣∣∣eλi(T−t) − pi

∣∣∣ subject to |pi| ≤ γ. (3.54)

When γ > eλi(T−t), the minimizer is pi = eλi(T−t) (see Figure 3.1) and when γ ≤ eλi(T−t), the
minimizer is pi = γ (see Figure 3.2).

Hence, we can conclude that the minimizer for problem (3.54) is

pi(t) = min{eλi(T−t), γ}.

The approximate solution is constructed by the following form:

gδ(t) =
∑

i≥1

min{eλi(T−t), γ}
(∫

Ω

fδ(x)ei(x)dx

)
ei. (3.55)

for some positive parameter γ. Our target is finding a suitable parameter γ in order to get the
minimal loss of resolution. Now, let us move to the main result of Seidman problem.
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−γ γeλi(T−t)

x

y

Figure 3.1 – Graph of function y =
∣∣eλi(T−t) − x

∣∣ when γ > eλi(T−t).

−γ γ eλi(T−t)

x

y

Figure 3.2 – Graph of function y =
∣∣eλi(T−t) − x

∣∣ when γ < eλi(T−t).

Theorem 3.3. (see [Se1, Th.3.1, p.166])
Let u be the solution of (3.51) such that M := ‖u(·, 0)‖L2(Ω) < ∞. Let 0 < t < T . Suppose δ > 0
and fδ ∈ L2(Ω) are given such that

‖f − fδ‖L2(Ω) ≤ δ. (3.56)

Then there exists gδ ∈ L2(Ω) such that

‖u(·, t)− gδ‖L2(Ω) ≤ ǫ(δ) where ǫ(δ)
δ→0−−−→ 0. (3.57)

1. Reconstruction formula

The approximation solution gδ is constructed as below

gδ :=
∑

i≥1

min

{
eλi(T−t),

t

T

(
M

δ

)1− t
T

}(∫

Ω

fδ(x)ei(x)dx

)
ei . (3.58)

2. Convergence rate

The convergence of the approximate solution gδ in (3.58) is estimated as

‖u(·, t)− gδ‖L2(Ω) ≤M1− t
T δ

t
T . (3.59)

Moreover, the convergence (3.59) is optimal in sense of Tautenhahn (see more in Section 3.6.1.2).

Proof of Theorem 3.3.
First of all, let us state two technical lemmas, whose proofs can be found in Section 3.7.
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Lemma 3.2. Let 0 < t < T and γ > 0. Consider the following function

F1 : R → R

x 7→ e−xt − γe−xT . (3.60)

Then sup
x∈R

F1(x) = F1

(
ln γT

t

T−t

)
=
(
1− t

T

) (
t
γT

) t
T−t

.

Lemma 3.3. Let A,B, s be positive real numbers. Consider the following function

F2 : (0,+∞) → (0,+∞)

x 7→ Ax−s +Bx. (3.61)

Then inf
x∈(0,∞)

F2(x) = F2

((
As
B

) 1
1+s

)
= (As)

1
1+sB

s
1+s
(
1 + 1

s

)
.

Now, we can start the proof of Theorem 3.3. Let us define

gδ :=
∑

i≥1

min{eλi(T−t); γ}
(∫

Ω

fδ(x)ei(x)dx

)
ei (3.62)

and

gT :=
∑

i≥1

min{eλi(T−t); γ}
(∫

Ω

f(x)ei(x)dx

)
ei, (3.63)

for some γ > 0 which will be chosen later. The error estimate is established by using the triangle
inequality, i.e

‖u(·, t)− gδ‖L2(Ω) ≤ ‖u(·, t)− gT ‖L2(Ω) + ‖gT − gδ‖L2(Ω). (3.64)

Step 1: Compute ‖gT − gδ‖L2(Ω).
On one hand, we have

‖gT − gδ‖L2(Ω) =

∥∥∥∥∥∥

∑

i≥1

min{eλi(T−t), γ}
(∫

Ω

(f − fδ)(x)ei(x)dx

)
ei

∥∥∥∥∥∥
L2(Ω)

≤ γδ. (3.65)

Step 2: Compute ‖u(·, t)− gT ‖L2(Ω).
On the other hand, we also have

‖u(·, t)− gT ‖L2(Ω)

=

∥∥∥∥∥∥

∑

i≥1

(
e−λit −min{eλi(T−t); γ}e−λiT

)∫

Ω

u(x, 0)ei(x)dxei

∥∥∥∥∥∥
L2(Ω)

≤ M sup
{∣∣∣e−λit −min{eλi(T−t); γ}e−λiT

∣∣∣ : i ≥ 1
}

= M sup{e−λit − γe−λiT : i ≥ 1 with eλi(T−t) > γ}
≤ M sup{e−λt − γe−λT : λ ∈ R}. (3.66)

In the first equality of (3.66), we use the following formula

f = u(·, T ) =
∑

i≥1

e−λiT
(∫

Ω

u(x, 0)ei(x)dx

)
ei (3.67)

and

u(·, t) =
∑

i≥1

e−λit
(∫

Ω

u(x, 0)ei(x)dx

)
ei. (3.68)
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The second equality of (3.66) comes from the fact that all the terms corresponding to i such that
eλi(T−t) ≤ γ equal 0. Now, applying Lemma 3.2, one obtains

sup{e−λt − γe−λT : λ ∈ R} =

(
1− t

T

)(
t

γT

) t
T−t

. (3.69)

Thus, it implies from (3.66) that

‖u(·, t)− gT ‖L2(Ω) ≤ M

(
1− t

T

)(
t

γT

) t
T−t

. (3.70)

Step 3: Compute ‖u(·, t)− gδ‖L2(Ω).
Combining (3.65) and (3.70) and using the triangle inequality, one gets

‖u(·, t)− gδ‖L2(Ω) ≤ ‖u(·, t)− gT ‖L2(Ω) + ‖gT − gδ‖L2(Ω)

≤ γδ +M

(
1− t

T

)(
t

γT

) t
T−t

. (3.71)

In order to minimize the right-hand side of (3.71), we apply Lemma 3.3 withA =M
(
1− t

T

) (
t
T

) t
T−t ,

B = δ and s = t
T−t . Then, the choice of γ is

γ =


M

(
1− t

T

) (
t
T

) t
T−t t

T−t
δ




1− t
T

=
t

T

(
M

δ

)1− t
T

. (3.72)

With this choice of γ, we get from (3.71) that

‖u(·, t)− gδ‖L2(Ω)

≤
(
M

(
1− t

T

)(
t

T

) t
T−t t

T − t

) 1

1+ t
T−t

δ

t
T−t

1+ t
T−t

(
1 +

1
t

T−t

)

=

(
M

(
t

T

) T
T−t
)1− t

T

δ
t
T
T

t

= M1− t
T δ

t
T . (3.73)

This completes the proof of Theorem 3.3.

3.4 Proof of Theorem 3.1

In this section, we will reconstruct the initial solution u(·, 0) for the system (3.21) from the noisy
data of u(·, T )|Ω by the optimal filtering method of Seidman which is mentioned in the previous
section. Now, we will use the same idea with the filtering method of Seidman for solving the
backward problem. Precisely, we construct the approximate solution at time 0 as below:

gδ :=
∑

i≥1

min{eλiT , α}
(∫

Ω

fδ(x)ei(x)dx

)
ei, (3.74)

for some regularization parameter α > 0 which will be chosen later. In progress of solving the
minimization problem, we need α > 1. This condition requires that the noisy level δ should be
small enough. However, for the other case, i.e when δ is big, the backward problem is also solved
with the approximate solution can be chosen by 0. Now, let us move to the detailed proof.
Case 1: When δ ≥

√
TM
b

.
We take gδ = 0, then

‖u(·, 0)− gδ‖L2(Ω) = ‖u(·, 0)‖L2(Ω) ≤
M√
λ1

≤ bδ√
λ1T

. (3.75)
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Case 2: When δ <
√
TM
b

.
First of all, we state the following classical technical lemma whose proof is mentioned in Subsection
3.7.

Lemma 3.4. Given α ≥ 1. Then the following function

Fα : (0,+∞) → (0,+∞)

x 7→ 1− αe−x√
x

(3.76)

has the property that sup
x∈(0,+∞)

Fα(x) = Fα(P−1(α)) where P is defined in (3.27).

Now, we compute the error ‖u(·, 0)−gδ‖L2(Ω) by splitting into the approximate error ‖u(·, 0)−
gT ‖L2(Ω) and the data error ‖gT − gδ‖L2(Ω). Here, gT is the approximate solution corresponding
to exact data u(·, T ), which is

gT :=
∑

i≥1

min{eλiT , α}
(∫

Ω

f(x)ei(x)dx

)
ei.

Step 1: Compute ‖gδ − gT ‖L2(Ω).
The data error is estimated by

‖gδ − gT ‖L2(Ω) ≤

∥∥∥∥∥∥

∑

i≥1

min{eλiT , α}
(∫

Ω

(f − fδ)(x)ei(x)dx

)
ei

∥∥∥∥∥∥
L2(Ω)

≤ αδ. (3.77)

Step 2: Compute ‖u(·, 0)− gT ‖L2(Ω).
The approximate data is computed as below

‖u(·, 0)− gT ‖L2(Ω)

=

∥∥∥∥∥∥

∑

i≥1

(
1−min{eλiT , α}e−λiT

)(∫

Ω

u(x, 0)ei(x)dx

)
ei

∥∥∥∥∥∥
L2(Ω)

≤ M sup

{∣∣∣∣1−min{eλiT , α}e−λiT 1√
λi

∣∣∣∣ : i ≥ 1

}

=
√
TM sup

{
1− αe−λiT√

λiT
: i ≥ 1 with eλiT > α

}

≤
√
TM sup

{
1− αe−λT√

λT
: λ > 0

}
. (3.78)

In the first equality, we use the following formula

f = u(·, T ) =
∑

i≥1

e−λiT
(∫

Ω

u(x, 0)ei(x)dx

)
ei. (3.79)

The second equality comes from the fact that all the terms corresponding to i such that eλiT ≤ α
equal 0. Now, suppose that α ≥ 1, applying Lemma 3.4, we get

sup
λ>0

(1− αe−λT )√
λT

=
1− αe−P−1(α)

√
P−1(α)

. (3.80)

It deduces from (3.78) and (3.80) that

‖u(·, 0)− gT ‖L2(Ω) ≤
√
TM

1− αe−P−1(α)

√
P−1(α)

. (3.81)
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Step 3: Compute ‖u(·, 0)− gδ‖L2(Ω).
Combining (3.77), (3.81) and using the triangle inequality, one yields

‖u(·, 0)− gδ‖L2(Ω) ≤ ‖u(·, 0)− gT ‖L2(Ω) + ‖gT − gδ‖L2(Ω)

≤ αδ +
(1− αe−P−1(α))√

P−1(α)

√
TM

= αe−P−1(α)eP
−1(α)δ + (1− αe−P−1(α))

√
TM√

P−1(α)
. (3.82)

In order to minimize the right-hand side of (3.82), we choose α such that

eP
−1(α)δ =

√
TM√

P−1(α)
. (3.83)

It is equivalent to

eP
−1(α)

√
P−1(α) =

√
TM

δ
. (3.84)

We can rewrite (3.84) as below

Q
(
P−1(α)

)
=

√
TM

δ
. (3.85)

Under the assumption that δ <
√
TM
b

, one has
√
TM
δ

> b. Thus, (3.85) has a unique solution:

α = PQ−1

(√
TM

δ

)
> 1. (3.86)

With this choice of α, it implies from (3.82) that

‖u(·, 0)− gδ‖L2(Ω) ≤ δeP
−1(α) =

√
TM√

P−1(α)
=

√
TM√

Q−1
(√

TM
δ

) . (3.87)

Step 4: Make appear logarithm error.
Now, using the fact that

√
ξx ≤ e

ξx
2 ∀ξ > 0 ∀x > 0, one has

y := Q(x) =
√
xex ≤ 1√

ξ
e(1+

ξ
2 )x. (3.88)

It implies that

x = Q−1(y) ≥ ln
(√
ξy
)

1 + ξ
2

∀ξ > 0. (3.89)

It follows from (3.87) and (3.89) that

‖u(·, 0)− gδ‖L2(Ω) ≤

√
TM

√(
1 + ξ

2

)

√
ln
(√

ξ
√
TM
δ

) ∀ξ > δ2

TM2
. (3.90)

If δ < 1 then we choose ξ = 1
TM2 in order to get from (3.90) that

‖u(·, 0)− gδ‖L2(Ω) ≤
√
TM2 +

1

2

(
ln

1

δ

)− 1
2

. (3.91)

This completes the proof of Theorem 3.1.
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3.5 Proof of Theorem 3.2

In this section, we will present the proof of Theorem 3.2, a result for the local backward problem.
In the previous section, we already proved that from the observation on the whole domain, we can
recover the solution at the initial time (see Theorem 3.1). Hence, a natural idea to determine the
solution from the observation on a subdomain is making a connection between the data on the
whole domain and the data on the subdomain. For this purpose, we use a result of the impulse
controllability (see Lemma 3.1). Precisely, from u(·, T )|ω, thanks to Lemma 3.1, we construct
u(·, 3T )|Ω, then we recover u(·, 0)|Ω due to Theorem 3.1. First of all, let us consider the case when
the noisy level is large:

Case 1: When δ ≥
( √

T

bC1e
C2
T

) 1
µ

M .

We take gδ = 0, then

‖u(·, 0)− gδ‖L2(Ω) = ‖u(·, 0)‖L2(Ω) ≤
M√
λ1

≤
(
bC1e

C2
T

√
T

) 1
µ

δ√
λ1

. (3.92)

Case 2: When δ <

( √
T

bC1e
C2
T

) 1
µ

M .

In this case, it is necessary to use a weight function e−λiT which has the following property:

Lemma 3.5. (see [Ar, p.83])
Let {λi}i≥1 be eigenvalues of Laplacian under the Dirichlet boundary condition and T be a positive
number. Then ∑

i≥1

e−2λiT <∞.

The proof of Lemma 3.5 can be found in Section 3.7. Furthermore, let us define the following
function, which is the extension of the function u(x, t) on Ω× (0,+∞):

û : Ω× (0,+∞) → R

(x, t) 7→
∑

i≥1

e−λit
(∫

Ω

u(x, 0)ei(x)dx

)
ei(x). (3.93)

Thanks to the spectral theory, one has: û satisfies




∂tû−∆û = 0 in Ω× (0,+∞),
û = 0 on ∂Ω× (0,+∞),
û(·, 0) = u(·, 0) in Ω,
û(·, T ) = f in ω.

(3.94)

Now, we start the main steps of the proof of Theorem 3.2.

Step 1: Connect û(·, 2T )|Ω and u(·, T )|ω.
For any ε > 0, for any i = 1, 2..., thanks to Lemma 3.1, there exists hi ∈ L2(ω) such that





∂tψi −∆ψi = 0 in Ω× (0, 2T ) \ {T},
ψi = 0 on ∂Ω× (0, 2T ),
ψi(·, 0) = ei in Ω,
ψi(·, T ) = ψi(·, T−) + ✶ωhi in Ω,
‖ψi(·, 2T )‖L2(Ω) ≤ ε.

(3.95)

Remind that {ei}i≥1 are the eigenfunctions of Laplacian under the Dirichlet boundary condition.
Moreover, there exist positive constants M1,M2 and θ depending on Ω and ω, such that the
following estimate holds

‖hi‖L2(ω) ≤
M1e

M2
T

εθ
∀i ≥ 1. (3.96)
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Multiplying both sides of the equation ∂tû −∆û = 0 by ψi(·, 2T − t) and integrating over Ω, one
gets

d

dt

∫

Ω

û(x, t)ψi(x, 2T − t)dx = 0. (3.97)

Integrating (3.97) over (0, T ) gives us
∫

Ω

û(x, 0)ψi(x, 2T )dx =

∫

Ω

û(x, T )ψi(x, T
−)dx. (3.98)

Integrating (3.97) over (T, 2T ) gives us
∫

Ω

û(x, T )ψi(x, T )dx =

∫

Ω

û(x, 2T )ψi(x, 0)dx. (3.99)

Combining (3.98), (3.99) and the fact ψi(·, T ) = ψi(·, T−) + ✶ωhi, one obtains
∫

Ω

û(x, 2T )ψi(x, 0)dx =

∫

Ω

û(x, 0)ψi(x, 2T )dx+

∫

ω

û(x, T )hi(x)dx. (3.100)

Remind that ψi(·, 0) = ei and û(·, T ) = f, it follows from (3.101) that
∫

Ω

û(x, 2T )ei(x)dx−
∫

ω

f(x)hi(x)dx =

∫

Ω

û(x, 0)ψi(x, 2T )dx. (3.101)

Step 2: Approximate û(·, 3T )|Ω.
Let us remind that ‖hi‖L2(ω) ≤ C(T )

εθ
and ‖ψi(·, 2T )‖L2(Ω) ≤ ε ∀i = 1, 2, .... Hence, if we take the

infinite sum from i = 1 to ∞ for getting information of û(·, 2T ) on the whole domain Ω then we
have a difficulty, that is: There is no ε = ε(i) > 0 such that

∑
i≥1

ε(i)2 < ∞ and
∑
i≥1

1
ε(i)2θ

< ∞ for

some θ > 0. To overcome this difficulty, we multiply both sides of (3.101) by a weight function
e−λiT and take the sum from i = 1 to ∞ in order to get

û(·, 3T )−
∑

i≥1

e−λiT
(∫

ω

f(x)hi(x)dx

)
ei =

∑

i≥1

e−λiT
(∫

Ω

û(x, 0)ψi(x, 2T )dx

)
ei. (3.102)

Using Cauchy-Schwarz inequality and the fact that ‖ψi(·, 2T )‖L2(Ω) ≤ ε ∀i ≥ 1, yields

∥∥∥∥∥∥
û(·, 3T )−

∑

i≥1

e−λiT
(∫

ω

f(x)hi(x)dx

)
ei

∥∥∥∥∥∥
L2(Ω)

≤


∑

i≥1

e−2λiT




1
2

Mε√
λ1

. (3.103)

In (3.103), we also use the following argument

‖û(·, 0)‖L2(Ω) = ‖u(·, 0)‖L2(Ω) ≤
M√
λ1

. (3.104)

Thanks to Lemma 3.5, one gets: There exists a positive constant S such that


∑

i≥1

e−2λiT




1
2

≤ S. (3.105)

Gathering (3.103) and (3.105) gives us
∥∥∥∥∥∥
û(·, 3T )−

∑

i≥1

e−λiT
(∫

ω

f(x)hi(x)dx

)
ei

∥∥∥∥∥∥
L2(Ω)

≤ E1Mε, (3.106)

where E1 := S√
λ1

.
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Step 3: Make appear fδ.
Now, we will make appear fδ by using the following triangle inequality

∥∥∥∥∥∥
û(·, 3T )−

∑

i≥1

e−λiT
(∫

ω

fδ(x)hi(x)dx

)
ei

∥∥∥∥∥∥
L2(Ω)

≤

∥∥∥∥∥∥
û(·, 3T )−

∑

i≥1

e−λiT
(∫

ω

f(x)hi(x)dx

)
ei

∥∥∥∥∥∥
L2(Ω)

+

∥∥∥∥∥∥

∑

i≥1

e−λiT
(∫

ω

(f(x)− fδ(x))hi(x)dx

)
ei

∥∥∥∥∥∥
L2(Ω)

. (3.107)

Using Cauchy-Schwarz inequality for the second term in (3.107), one gets
∥∥∥∥∥∥

∑

i≥1

e−λiT
(∫

ω

(f(x)− fδ(x))hi(x)dx

)
ei

∥∥∥∥∥∥
L2(Ω)

≤


∑

i≥1

e−2λiT ‖f − fδ‖2L2(ω)‖hi‖2L2(ω)




1
2

. (3.108)

Thanks to Lemma 3.5 and (3.96), one has:
∥∥∥∥∥∥

∑

i≥1

e−λiT
(∫

ω

(f(x)− fδ(x))hi(x)dx

)
ei

∥∥∥∥∥∥
L2(Ω)

≤ E2e
M2
T δ

εθ
, (3.109)

where E2 := SM1. Combining (3.106) and (3.107) and (3.109), yields
∥∥∥∥∥∥
û(·, 3T )−

∑

i≥1

e−λiT
(∫

ω

fδ(x)hi(x)dx

)
ei

∥∥∥∥∥∥
L2(Ω)

≤ E1Mε+
E2e

M2
T δ

εθ
. (3.110)

In order to minimize the right-hand side of (3.110), we apply Lemma 3.3 with A = E2e
M2
T δ;

B = E1M and s = θ. Then, we obtain

min
ε>0

{
E1Mε+

E2e
M2
T δ

εθ

}
gets at ε =

(
E2e

M2
T δθ

E1M

) 1
1+θ

. (3.111)

Moreover, we also have

min
ε>0

{
E1Mε+

E2e
M2
T δ

εθ

}
= (E2e

M2
T δ)

1
1+θ (E1Mθ)

θ
1+θ

(
1 +

1

θ

)

= Ce
µM2
T M1−µδµ, (3.112)

with C = E
θ

1+θ

1 (E2θ)
1

1+θ
(
1 + 1

θ

)
and µ = 1

1+θ . Then, the estimate (3.110) becomes

∥∥∥∥∥∥
û(·, 3T )−

∑

i≥1

e−λiT
∫

ω

fδ(x)hi(x)dxei

∥∥∥∥∥∥
L2(Ω)

≤ Ce
µM2
T M1−µδµ. (3.113)

Step 4: Apply the global backward result.
Theorem 3.1 says that: for any τ > 0, any η > 0, any fη ∈ L2(Ω) such that ‖û(·, τ)− fη‖L2(Ω) ≤ η
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then there exists gη ∈ L2(Ω) satisfying ‖û(·, 0) − gη‖L2(Ω) ≤ ǫ(η) where ǫ(η)
η→0−−−→ 0. From the

facts that hi ∈ L2(ω), fδ ∈ L2(ω) and
∑
i≥1

e−2λiT <∞, one gets

∑

i≥1

e−λiT
(∫

ω

fδ(x)hi(x)dx

)
ei ∈ L2(Ω). (3.114)

Put C1 := C√
3

and C2 := µM2, then the assumptions in Theorem 3.1 are satisfied with

τ = 3T ,

η =
√
3C1e

C2
T M1−µδµ,

fη =
∑

i≥1

e−λiT
(∫

ω

fδ(x)hi(x)dx

)
ei.

As a consequence, there exists gδ ∈ L2(Ω) such that

‖û(·, 0)− gδ‖L2(Ω) ≤ ǫ(δ) where ǫ(δ)
δ→0−−−→ 0. (3.115)

The fact that û(·, 0) = u(·, 0) gives us

‖u(·, 0)− gδ‖L2(Ω) ≤ ǫ(δ) where ǫ(δ)
δ→0−−−→ 0. (3.116)

Moreover, under the condition that

δ <

( √
T

bC1e
C2
T

) 1
µ

M , (3.117)

we get

η :=
√
3C1e

C2
T M1−µδµ

≤
√
3C1e

C2
T M1−µ

√
TMµ

bC1e
C2
T

=

√
τM

b
. (3.118)

Hence, according to Theorem 3.1, we get the reconstruction formula for the approximate solution
as below

gδ =
∑

i≥1

min{eλiτ , β}
(∫

Ω

fη(x)ei(x)dx

)
ei

=
∑

i≥1

min{e3λiT , β}



∫

Ω


∑

j≥1

e−λjT
(∫

ω

fδ(s)hj(s)ds

)
ej(x)


 ei(x)dx


 ei

=
∑

i≥1

min{e3λiT , β}e−λiT
(∫

ω

fδ(x)hi(x)dx

)
ei. (3.119)

Here

β = PQ−1

(√
τM

η

)

= PQ−1

( √
3TM

√
3C1e

C2
T M1−µδµ

)

= PQ−1

( √
T

C1e
C2
T

(
M

δ

)µ)
. (3.120)
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Furthermore, the convergence rate is

‖u(·, 0)− gδ‖L2(Ω) = ‖û(·, 0)− gδ‖L2(Ω) ≤
√
τM√

Q−1
(√

τM

η

)

=

√
3TM√

Q−1

( √
3TM

√
3C1e

C2
T M1−µδµ

)

≤
√
3TM√

Q−1

( √
T

C1e
C2
T

(
M
δ

)µ
) . (3.121)

Step 5: Bound of ‖gδ‖L2(Ω) and logarithm error.
Bound of ‖gδ‖L2(Ω).
Remind that

gδ =
∑

i≥1

min{e3λiT , β}e−λiT
(∫

ω

fδ(x)hi(x)dx

)
ei, (3.122)

with

β = PQ−1

( √
T

C1e
C2
T

(
M

δ

)µ)
. (3.123)

The fact that PQ−1(x) ≤ x ∀x ∈ [b,+∞) gives us

β ≤
√
T

C1e
C2
T

(
M

δ

)µ
. (3.124)

Moreover, thanks to (3.96) and (3.111), the following estimation for the cost of control function hi
holds for any i ≥ 1

‖hi‖L2(ω) ≤ M1e
M2
T

εθ

= M1e
M2
T

(
E1M

E2e
M2
T δθ

) θ
1+θ

≤ Ke
µM2
T

(
M

δ

)1−µ
, (3.125)

for some positive constant K. Thus, we obtain (notice that C2 = µM2)

‖gδ‖L2(Ω) ≤
√
T

C1e
C2
T

(
M

δ

)µ

∑

i≥1

e−2λiT




1
2

Ke
C2
T

(
M

δ

)1−µ
‖fδ‖L2(ω)

≤ C
√
T
M

δ
‖fδ‖L2(ω), (3.126)

for some constant C > 0 only depending on Ω and ω.
Logarithm error.
Using Remark 3.1 of Theorem 3.1, which is

‖u(·, 0)− gδ‖L2(Ω) ≤
√
τM

√
1 + ξ

2√
ln
(√

ξ
√
τM

η

) ∀ξ > η2

τM2
, (3.127)

95



3.6. FURTHER COMMENTS

we get

‖u(·, 0)− gδ‖L2(Ω) ≤
√
3TM

√
1 + ξ

2√
ln

(√
ξ

√
T

C1e
C2
T

(
M
δ

)µ
) ∀ξ >

(
C1e

C2
T

√
T

(
δ

M

)µ)2

. (3.128)

When δ < 1, we choose ξ =

(
C1e

C2
T√
T

(
1
M

)µ
)2

in order to get

‖u(·, 0)− gδ‖L2(Ω) ≤
√
3TM√
µ

√√√√1 +
1

2

(
C1e

C2
T

√
T

(
1

M

)µ)2(
ln

1

δ

)− 1
2

. (3.129)

This completes the proof of Theorem 3.2.

3.6 Further comments

3.6.1 Optimality

3.6.1.1 Introduction

In this section, we answer the question concerning the best possible worst case error for iden-
tifying the approximate solution from the noisy data. Roughly speaking, a regularization method
is called optimal if it achieves the best worst case error and order optimal if it is optimal up to a
multiplicative constant. This property is named the optimality of regularization methods, which
is investigated by Vainikko (see [Va1] or [Va2]) and then by Tautenhahn (see [Ta1], [Ta2] or [TaS])
or Hohage (see [Ho1] or [Ho2]). In order to introduce some notifications, we would like to restate
our problem in an abstract way: Let S : L2(Ω) → L2(Ω) be a linear bounded operator. We con-
sider the problem of identifying the unknown solution g ∈ L2(Ω) of the ill-posed inverse problem
Sg = f, where instead of f, a noisy data fδ is available with the noisy level δ. Let M, called the
source set, be a bounded set in L2(Ω) which contains g satisfying the priori condition. In detail,
in this Subsection, we will focus on the optimality of three problems: Seidman problem, backward
problem and local backward problem.

Problem Operator
S

Known
data f

Unknown
solution g

Source set M

Seidman e−∆(T−t) u(·, T )|Ω u(·, t)|Ω(t ∈
(0, T ))

{u(·, t) ∈ L2(Ω) : ‖u(·, 0)‖L2(Ω) =M}

Backward e−∆(T ) u(·, T )|Ω u(·, 0)|Ω {u(·, 0) ∈ H1
0 (Ω) : ‖u(·, 0)‖H1

0 (Ω) =M}
Local
backward

u(·, T )|ω u(·, 0)|Ω {u(·, 0) ∈ H1
0 (Ω) : ‖u(·, 0)‖H1

0 (Ω) =M}

Now, we state some definitions:

1/ The modulus of continuity of the operator S−1 on the source set M:

m(δ, S,M) := sup{‖g‖L2(Ω) : g ∈ M and ‖Sg‖L2(Ω) ≤ δ}. (3.130)

2/ The regularization method:
An arbitrarily mapping R : L2(Ω) → L2(Ω) is called a regularization method for solving Sg = f

on the source set M with the noisy data fδ and the noisy level δ if

lim
δ→0

sup
{
‖g −Rfδ‖L2(Ω) : g ∈ M and ‖Sg − fδ‖L2(Ω) ≤ δ

}
= 0 (3.131)
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3/ The “worst case error” for identifying gδ from fδ by a regularization method R under the
assumption that ‖f − fδ‖L2(Ω) ≤ δ on M is defined as:

WR(δ, S,M) := sup
{
‖g −Rfδ‖L2(Ω) : g ∈ M and ‖Sg − fδ‖L2(Ω) ≤ δ

}
. (3.132)

4/ The “best possible worst case error” is defined as the infimum over all the mappings R

W (δ, S,M) := inf
R
WR(δ, S,M). (3.133)

It can be shown that the infimum in (3.133) is actually attained.

Lemma 3.6. ([Ho2, Th. 5.4, p.44])
Let m(δ, S,M) and W (δ, S,M) are respectively defined in (3.130) and (3.133), then

W (δ, S,M) ≥ m(δ, S,M). (3.134)

The proof can be found in Subsection 3.7. The assertion in Lemma 3.6 leads us to the following
definition.

Definition 3.1. Let R : L2(Ω) → L2(Ω) be a regularization method for solving Sg = f on the
source set M with the noisy level δ. The convergence of the method R is called

i/ “optimal” on M if WR(δ, S,M) ≤ m(δ, S,M),

ii/ “order optimal” on M if there exists a constant C > 1 such that WR(δ, S,M) ≤ Cm(δ, S,M).

3.6.1.2 Optimality of Seidman problem

From now, let σ(−∆) denote the spectrum of Laplacian, under the Dirichlet boundary condition.

Theorem 3.4. Under the same assumptions of Theorem 3.3, if there exists λm ∈ σ(−∆) (m ∈ N∗)
satisfying

λm =
ln M

δ

T
(3.135)

then the convergence in (3.59) is optimal on L2(Ω).

Proof of Theorem 3.4
The regularization method we use in Theorem 3.3 is

R : L2(Ω) → L2(Ω)

ei 7→ min{eλi(T−t), γ}ei. (3.136)

The worst case error for identifying gδ by the method R is rewritten as

WR(δ, S,M) :=

sup
{
‖u(·, t)− gδ‖L2(Ω) : ‖u(·, 0)‖L2(Ω) =M <∞ and ‖u(·, T )− fδ‖L2(Ω) ≤ δ

}
.

(3.137)

Thanks to the error estimate (3.59), we get

WR(δ, S,M) ≤M1− t
T δ

t
T . (3.138)

Hence, according to Definition 3.1, we only need to prove that m(δ, S,M) = M1− t
T δ

t
T . On the

other hand, the modulus of continuity is rewritten as

m(δ, S,M) := sup{‖u(·, t)‖L2(Ω) : ‖u(·, 0)‖L2(Ω) =M <∞ and ‖u(·, T )‖L2(Ω) ≤ δ}. (3.139)

97



3.6. FURTHER COMMENTS

Thanks to the stability estimate in Theorem 1.6, which is

‖u(·, t)‖L2(Ω) ≤ ‖u(·, 0)‖1−
t
T

L2(Ω)‖u(·, T )‖
t
T

L2(Ω), (3.140)

one has

m(δ, S,M) ≤M1− t
T δ

t
T . (3.141)

Moreover, with ũ = Meme
−λmt, where em is the eigenfunction corresponding to the eigenvalue

λm, we get

1. ‖ũ(·, 0)‖L2(Ω) =M ,

2. ‖ũ(·, T )‖L2(Ω) =Me−λmT = δ (thanks to assumption (3.135)),

3. ‖ũ(·, t)‖L2(Ω) =Me−λmt =
(
e−λmTM

) t
T M1− t

T =M1− t
T δ

t
T .

Thus

m(δ, S,M) ≥ ‖ũ(·, t)‖L2(Ω) =M1− t
T δ

t
T . (3.142)

Combining (3.141) and (3.142), one yields

m(δ, S,M) =M1− t
T δ

t
T . (3.143)

This completes the proof of Theorem 3.4.

3.6.1.3 Optimality of Backward problem

In this Section, we only consider the optimality of backward problem when the noisy level is
small enough.

Theorem 3.5. Suppose all the assumptions of Theorem 3.1 are satisfied and δ <
√
TM
b

. Then if
there exists λm ∈ σ(−∆) satisfying

Q(λm) =

√
TM

δ
(3.144)

with Q defined in (3.28), the convergence in (3.36) is optimal on H1
0 (Ω).

Proof of Theorem 3.5
Thanks to Theorem 3.1, we have that: The worst case error in this case is estimated as

WR(δ, S,M) ≤
√
TM√

Q−1
(√

TM
δ

) . (3.145)

Hence, according to definition 3.1, we only need to prove that

m(δ, S,M) =

√
TM√

Q−1
(√

TM
δ

) .

Based on the definition of the modulus of continuity (3.130) and the backward estimate (3.41), we
get

m(δ, S,M) ≤
√
TM√

Q−1
(√

TM
δ

) . (3.146)

Moreover, with ũ(x, t) = Meme
−λmt√
λm

, where em is the eigenfunction corresponding to the eigenvalue
λm, we get
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1. ‖ũ(·, 0)‖H1
0 (Ω) =M ,

2. ‖ũ(·, T )‖L2(Ω) =
Me−λmT√

λm
= δ (thanks to assumption (3.144)),

3. ‖ũ(·, 0)‖L2(Ω) =
M√
λm

= M
√
T√

λmT
=

√
TM

√

Q−1
(√

TM
δ

)

.

Thus

m(δ, S,M) ≥ ‖ũ(·, 0)‖L2(Ω) =

√
TM√

Q−1
(√

TM
δ

) . (3.147)

Combining (3.146) and (3.147), one yields

m(δ, S,M) =

√
TM√

Q−1
(√

TM
δ

) . (3.148)

This completes the proof of Theorem 3.4.

3.6.1.4 Optimality of Local backward problem

The local backward estimate (3.50) is not sharp, i.e there does not exist u ∈ H1
0 (Ω) such that

the equality in (3.50) occurs. Therefore, we can not provide any conclusion about the optimality
of the convergence (3.45) for the local backward problem.

3.6.2 Tikhonov method

In this section, we will use Tikhonov regularization method for solving our local backward
problem. Precisely, let us state the following theorem.

Theorem 3.6. Let u be the solution of (3.24) such that M := ‖u(·, 0)‖H1
0 (Ω) <∞. Suppose δ > 0

and fδ ∈ L2(ω) are given such that

‖f − fδ‖L2(ω) ≤ δ. (3.149)

Then there exists gδ ∈ L2(Ω) satisfying

‖u(·, 0)− gδ‖L2(Ω) ≤ ǫ(δ) where ǫ(δ)
δ→0−−−→ 0. (3.150)

Specially, when δ < 1, the convergence rate is of order
(
ln 1

δ

)− 1
2 . Furthermore, the reconstruction

formula of the approximation and the error estimate are given below:

1. Reconstruction formula

The approximate solution gδ is constructed by taking the minimizer of the following functional

J : H1
0 (Ω) → R

φ0 7→ ‖φ(·, T )− fδ‖2L2(ω) +
δ2

M2
‖φ0‖2H1

0 (Ω). (3.151)

where φ is solution of the following system




∂tφ−∆φ = 0 in Ω× (0, T ),
φ = 0 on ∂Ω× (0, T ),
φ(·, 0) = φ0 in Ω.

(3.152)

2. Convergence rate

The error estimate between the approximate solution gδ and exact solution u(·, 0) is given as

‖u(·, 0)− gδ‖L2(Ω) ≤
(1 +

√
2)M

√
T√

Q−1

( √
T

K1e
K2
T

(
M
δ

)µ
) , (3.153)
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for some positive constants K1 > 0, K2 > 0, µ ∈ (0, 1) and Q defined in (3.28) .

Remark 3.3. By using the same method for Seidman problem, we get the following error estimate

‖u(·, t)− gδ‖L2(Ω) ≤ (1 +
√
2)M1− t

T δ
t
T . (3.154)

By using the same method for backward problem, we get the following error estimate

‖u(·, 0)− gδ‖L2(Ω) ≤ (1 +
√
2)

√
TM√

Q−1
(√

TM
δ

) . (3.155)

In both cases, under some assumption, the convergences in the Tikhonov method are order optimal
in sense of Tautenhahn (see Subsection 3.6.1).

Proof of Theorem 3.6

The Tikhonov functional J has a unique minimizer gδ on H1
0 (Ω) (see [Ho2, Th.2.1, p.14]).

Now, we will estimate the error estimate‖u(·, 0)− gδ‖L2(Ω).

Step 1: Apply backward estimate.
Let g be the solution of (3.152) corresponding to the initial data g(·, 0) = gδ. Let w := g− u, then
w satisfies





∂tw −∆w = 0 in Ω× (0, T ),
w = 0 on ∂Ω× (0, T ),
w(·, 0) = u(·, 0)− gδ in Ω,
w(·, T ) = f − g(·, T ) in ω.

(3.156)

Apply the local backward estimate (3.50) for the system (3.156), one has

‖w(·, 0)‖L2(Ω) ≤
√
T‖w(·, 0)‖H1

0 (Ω)√
Q−1

( √
T

K1e
K2
T

(
‖w(·,0)‖

H1
0(Ω)

‖w(·,T )‖L2(ω)

)µ) . (3.157)

Now, we will estimate ‖w(·, 0)‖H1
0 (Ω) and ‖w(·, T )‖L2(ω).

Step 2: Estimate ‖w(·, 0)‖H1
0 (Ω).

By triangle inequality, we have

‖w(·, 0)‖H1
0 (Ω) = ‖u(·, 0)− gδ‖H1

0 (Ω) ≤ ‖u(·, 0)‖H1
0 (Ω) + ‖gδ‖H1

0 (Ω). (3.158)

Remind that gδ is the minimizer of J on H1
0 (Ω), then one gets J (gδ) ≤ J (u(·, 0)). It implies that

‖gδ‖H1
0 (Ω) ≤

M

δ

√
J (gδ) ≤

M

δ

√
J (u(·, 0)). (3.159)

Combining (3.158) and (3.159), one yields

‖w(·, 0)‖H1
0 (Ω) ≤M +

M

δ

√
J (u(·, 0)). (3.160)

Step 3: Estimate ‖w(·, T )‖L2(ω) .
By triangle inequality, we have

‖w(·, T )‖L2(ω) = ‖f − g(·, T )‖L2(ω) ≤ ‖f − fδ‖L2(ω) + ‖g(·, T )− fδ‖L2(ω). (3.161)

The fact J (gδ) ≤ J (u(·, 0)) also implies that

‖g(·, T )− fδ‖L2(ω) ≤
√
J (gδ) ≤

√
J (u(·, 0)). (3.162)
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Hence, one obtains from (3.161) and (3.162)

‖w(·, T )‖L2(ω) ≤ δ +
√

J (u(·, 0)). (3.163)

Step 4: Estimate J (u(·, 0)).
We have

J (u(·, 0)) = ‖f − fδ‖2L2(ω) +
δ2

M2
‖u(·, 0)‖2H1

0 (Ω)

≤ δ2 +
δ2

M2
M2 = 2δ2. (3.164)

Step 5: Estimate ‖w(·, 0)‖L2(Ω).
Combining (3.160) and (3.164) gives us

‖w(·, 0)‖H1
0 (Ω) ≤ (1 +

√
2)M . (3.165)

Combining (3.163) and (3.164) gives us

‖w(·, T )‖L2(ω) ≤ (1 +
√
2)δ. (3.166)

Thus, it implies from (3.157) that

‖u(·, 0)− gδ‖L2(Ω) ≤
(1 +

√
2)M

√
T√

Q−1

( √
T

K1e
K2
T

(
M
δ

)µ
) . (3.167)

This completes the proof of Theorem 3.6.

Comments
It is well-known that Tikhonov method is a powerful tool to solve inverse problems. This method
can even be used for dealing with nonlinear systems (see [ItJ], [EnKN] or [Ne]). However, for our
heat backward problems, the filtering method has some following advantages:

1. According to Section 3.6.1, the convergence of the filtering method is optimal while the
convergence of the Tikhonov method is order optimal. It means, the error between the exact
solution and the approximate solution by the filtering method is better than the Tikhonov
method.

2. The construction of the approximate solution by the filtering method is given explicitly by a
formula while the construction of the approximate solution by the Tikhonov method is based
on the minimizer of a functional. Hence, in some sense, the algorithm for constructing the
approximate solution by the filtering method is more simple than Tikhonov method.

3. For the Tikhonov method, the backward estimate are required. However, for the filtering
method, we can tackle our problem without using the backward estimate. Furthermore, from
the error estimate, we can imply the backward estimates.

3.6.3 Time dependent thermal conductivity heat equation

In this section, we will apply our main results for solving the backward problem and local
backward problem of the time dependent thermal conductivity heat equation, by using a changing
variable technique. Precisely, let T > 0 and p ∈ C1([0, T ]) such that p(t) > 0 ∀t ∈ [0, T ], we
consider the following system:

{
∂tw − p(t)∆w = 0 in Ω× (0, T ),
w = 0 on ∂Ω× (0, T ).

(3.168)

Our target is recovering w(·, 0) from w(·, T )|Ω (the backward problem) and from w(·, T )|ω (the
local backward problem) for the system (3.168). The backward problem with the time dependent
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coefficients has been considered in [TrQTT], [TuKLT] or [TuQTT], however their results are only
focused on one dimensional problems. Recently, Tuan et al. (see [TuKLT]) solve the backward heat
equation in the multi-dimensional case by a new general filter regularization method. Here, based
on the main results for solving backward (Theorem 3.1) and local backward problem (Theorem
3.2), we use a technique of changing variable to obtain the following results.

Firstly, let us denote that ρT :=
∫ T
0
p(s)ds. Then we can state a result for the backward

problem.

Theorem 3.7. Let w be the solution of (3.168) such that M := ‖w(·, 0)‖H1
0 (Ω) <∞. Let fδ ∈ L2(Ω)

and δ > 0 such that:

‖f − fδ‖L2(Ω) ≤ δ. (3.169)

Then there exists gδ ∈ L2(Ω) such that

‖w(·, 0)− gδ‖L2(Ω) ≤ ǫ(δ) where ǫ(δ)
δ→0−−−→ 0. (3.170)

Specially, when δ < 1, the convergence rate is of order
(
ln 1

δ

)− 1
2 . Furthermore, the reconstruction

formula of the approximation and the error estimate are explicitly given below:

1. Reconstruction formula

The approximate solution gδ is constructed as below

gδ :=





0 if δ ≥
√
ρTM

b
,∑

i≥1

min{eλiρT , α}
(∫

Ω
fδ(x)ei(x)dx

)
ei if δ <

√
ρTM

b
, (3.171)

Here

α = PQ−1

(√
ρTM

δ

)
, (3.172)

where the functions P and Q are respectively defined in (3.27) and (3.28).

2. Convergence rate

The convergence of the approximate solution gδ in (3.34) is estimated as

‖u(·, 0)− gδ‖L2(Ω) ≤





bδ√
λ1ρT

if δ ≥
√
ρTM

b
,

√
ρTM

√

Q−1
(√

ρTM

δ

)

if δ <
√
ρTM

b
. (3.173)

Secondly, we state a result for the local backward problem.

Theorem 3.8. Let w be the solution of (3.168) such that M := ‖w(·, 0)‖H1
0 (Ω) <∞. Let fδ ∈ L2(ω)

and δ > 0 such that

‖f − fδ‖L2(ω) ≤ δ. (3.174)

Then there exists gδ ∈ L2(Ω) such that

‖w(·, 0)− gδ‖L2(Ω) ≤ ǫ(δ) where ǫ(δ)
δ→0−−−→ 0. (3.175)

Specially, when δ < 1, the convergence rate is of order
(
ln 1

δ

)− 1
2 . Furthermore, the reconstruction

formula of the approximation and the error estimate are given below:

1. Reconstruction formula

The approximation solution gδ is constructed as below

gδ :=





0 if δ ≥
( √

ρT

bC1e
C2
ρ T

) 1
µ

M ,

∑
i≥1

min{e3λiρT , β}e−λiρT
(∫
ω

fδ(x)hi(x)dx
)
ei if δ <

( √
ρT

bC1e
C2
ρ T

) 1
µ

M ,

(3.176)
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for some positive constants C1, C2 and µ ∈ (0, 1) depending on Ω and ω. Here

β = PQ−1

( √
ρT

C1e
C2
ρT

(
M

δ

)µ)

where the functions P and Q are respectively defined in (3.27) and (3.28).
And hi ∈ L2(ω)(i ≥ 1) is the impulse control at time ρT (see Lemma 3.1)

2. Convergence rate

The convergence of the approximate solution gδ in (3.176) is estimated as

‖u(·, 0)− gδ‖L2(Ω) ≤





(
bC1e

C2
ρ T√
ρT

) 1
µ

δ√
λ1

if δ ≥
( √

ρT

bC1e
C2
ρ T

) 1
µ

M ,

√
3ρTM

√

√

√

√

√Q−1





√
ρT

C1e

C2
ρT

(Mδ )
µ





if δ <

( √
ρT

bC1e
C2
ρ T

) 1
µ

M .
(3.177)

Theorem 3.7 and Theorem 3.8 are respectively applications of Theorem 3.1 and Theorem 3.2
by using the following changing variable technique:
Define

f : [0, T ] → [0, ρT ]

t 7→
∫ t

0

p(s)ds. (3.178)

Thanks to the fact that f ′(t) = p(t) > 0 ∀t ∈ [0, T ], we get that f is a bijective function. Let us
denote f−1 : [0, ρT ] → [0, T ] be the inverse function of f .
Now, put

u : Ω× [0, ρT ] → R

(x, t) 7→ w
(
x, f−1(t)

)
(3.179)

then

∂tu(x, t) = ∂tw(x, f
−1(t))(f−1(t))′

= ∂tw(x, f
−1(t))

1

f ′(f−1(t))

= ∂tw(x, f
−1(t))

1

p(f−1(t))
. (3.180)

Thus, thanks to the fact that

∂tw(x, f
−1(t))− p(f−1(t))∆w(x, f−1(t)) = 0 ∀x ∈ Ω ∀t ∈ (0, ρT ) , (3.181)

we get

∂tu−∆u =
1

p(f−1(t))

[
∂tw(x, f

−1(t))− p(f−1(t))∆w(x, f−1(t))
]
= 0. (3.182)

Moreover, we also have u(x, 0) = w(x, f−1(0)) = w(x, 0) and u(·, ρT ) = w(·, T ). Thus, u satisfies
the following system 




∂tu−∆u = 0 in Ω× (0, ρT ),
u = 0 on ∂Ω× (0, ρT ),
u (·, ρT ) = f in Ω.

(3.183)

Under the assumptions that M := ‖w(·, 0)‖H1
0 (Ω) < ∞ and ‖f − fδ‖L2(Ω) ≤ δ (backward problem)

or ‖f − fδ‖L2(ω) ≤ δ (local backward problem), one has

‖u(·, 0)‖H1
0 (Ω) = ‖w(·, 0)‖H1

0 (Ω) =M (3.184)
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and

‖u (·, ρT )− fδ‖L2(Ω) ≤ δ, (3.185)

or

‖u (·, ρT )− fδ‖L2(ω) ≤ δ. (3.186)

Thus, we can apply Theorem 3.1 or Theorem 3.2 where the observation is available at time ρT .

3.7 Appendix

3.7.1 Proof of Lemma 3.2

Remind that F1(x) = e−xt − γe−xT . We have

F ′
1(x) = −te−xt + γTe−xT . (3.187)

The equation F ′
1(x̄) = 0 is equivalent to

e−x̄(T−t) =
t

γT
. (3.188)

Thus, the equation F ′
1(x̄) = 0 has a unique solution

x̄ =
1

T − t
ln
γT

t
. (3.189)

On the other hand, we also have

F ′′
1 (x) = t2e−xt − γT 2e−xT . (3.190)

It implies from (3.188) that

e−x̄T =
t

γT
e−x̄T . (3.191)

Hence F ′′(x̄) = γTe−x̄T (t− T ) < 0. Thus, we get

sup
x∈R

F1(x) = F1(x̄) = e−x̄t − γe−x̄T . (3.192)

Thanks to (3.188), we get

sup
x∈R

F1(x) = e−x̄t − t

T
e−x̄t. (3.193)

Thanks to (3.189), one obtains

sup
x∈R

F1(x) =

(
1− t

T

)
e−

t
T−t ln(

γT
t )

=

(
1− t

T

)(
t

γT

) t
T−t

. (3.194)

It completes the proof of Lemma 3.2.
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3.7.2 Proof of Lemma 3.3

Remind that F2(x) = Ax−s +Bx. We have

F ′
2(x) = −Asx−s−1 +B. (3.195)

The equation F ′
2(x̄) = 0 has a unique solution x̄ =

(
As
B

) 1
1+s . Moreover, we also have

F ′′
2 (x) = As(s+ 1)x−s−2 > 0 ∀x > 0. (3.196)

It implies that

inf
x∈(0,+∞)

F2(x) = F2(x̄)

= A

(
As

B

)− s
1+s

+B

(
As

B

) 1
1+s

= A
1

1+sB
s

1+s s−
s

1+s +A
1

1+sB
s

1+s s
1

1+s

= (As)
1

1+sB
s

1+s

(
1 +

1

s

)
. (3.197)

This completes the proof of Lemma 3.3.

3.7.3 Proof of Lemma 3.4

Remnd that Fα(x) = 1−αe−x√
x

. We have

F ′
α(x) =

αe−x
√
x− 1

2
√
x
(1− αe−x)

x

=
αe−x(1 + 2x)− 1

2x
√
x

. (3.198)

The equation F ′
α(x̄) = 0 is equivalent to

α =
ex̄

1 + 2x̄
. (3.199)

Thanks to the fact that α > 1, we get: There exists a unique solution x̄ = P−1(α) ∈ [a,+∞)
satisfying (3.199). Here, P is the function defined in (3.27).

Furthermore, we also have

F ′
α(a) =

α− 1

2a
√
a
> 0. (3.200)

Thus, sup
x∈(0,∞)

Fα(x) = Fα(x̄) = Fα(P−1(α)). It completes the proof of Lemma 3.4.

3.7.4 Proof of Lemma 3.5

Step 1: Prove that λi(Ω) ≥ Ci
2
n ∀i = 1, 2, .. for some C > 0.

Let us recall the following monotonicity for inclusion of eigenvalues of Laplacian with Dirichlet
boundary condition.

Lemma 3.7. (see [He, p.13])
Let U and V be open bounded sets in Rn such that U ⊂ V . Then

λk(V ) ≤ λk(U), (3.201)

where λk(U) (and λk(V )) is kth eigenvalue of Laplacian with Dirichlet boundary condition on U
(and V ).
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Thanks to the fact that Ω is bounded in Rn, we get: there exists R > 0 such that Ω ⊂ [−R,R]n.
Applying Lemma 3.7, one has

λi(Ω) ≥ λi([−R,R]n) ∀i = 1, 2, .... (3.202)

Moreover, we also have a Lemma about boundedness of eigenvalues of Laplacian under the Dirichlet
boundary condition, which is

Lemma 3.8. (see [LiM])
For any R > 0, there exists a positive constant C such that

λi([−R,R]n) ≥ Ci
2
n . (3.203)

Here λi([−R,R]n) denotes the ith eigenvalue of Laplacian under the Dirichlet boundary condition
on [−R,R]n.

Combining (3.202) and (3.203), one obtains: There exists a positive constant C such that

λi(Ω) ≥ Ci
2
n ∀i = 1, 2, .... (3.204)

Step 2: Prove
∑
i≥1

e−2λiT <∞.

It deduces that
∑

i≥1

e−2λiT ≤
∑

i≥1

e−2Ci
2
n T . (3.205)

Furthermore, using the property that e−x ≤
(
n
x

)n ∀x > 0 ∀n > 0, yields

∑

i≥1

e−2λiT ≤
( n

2CT

)n∑

i≥1

1

i2
=
( n

2CT

)n π2

6
. (3.206)

This completes the proof of Lemma 3.5.

3.7.5 Proof of Lemma 3.6

Let

O : Ω → R

x 7→ 0 (3.207)

be the zero function in L2(Ω). Take g ∈ M such that ‖Sg‖L2(Ω) ≤ δ then for any mapping
R : L2(Ω) → L2(Ω) solving Sg = f on the source set M with the noisy level δ, we get

WR(δ, S,M) ≥ ‖g −R(O)‖L2(Ω). (3.208)

On the other hand, −g ∈ M and ‖S(−g)‖L2(Ω) = ‖S(g)‖L2(Ω) ≤ δ. Hence, we also have

WR(δ, S,M) ≥ ‖g +R(O)‖L2(Ω). (3.209)

Combining (3.208) and (3.209), we obtain

2WR(δ, S,M) ≥ ‖g −R(O)‖L2(Ω) + ‖g +R(O)‖L2(Ω) ≥ 2‖g‖L2(Ω). (3.210)

Thus

WR(δ, S,M) ≥ ‖g‖L2(Ω). (3.211)

On the other hand, the inequality (3.211) is true for any R, hence one yields

W (δ, S,M) = inf
R
WR(δ, S,M) ≥ ‖g‖L2(Ω). (3.212)

Furthermore, the inequality (3.212) is true for any g ∈ M satisfying ‖Sg‖L2(Ω) ≤ δ. Hence, one
gets

W (δ, S,M) ≥ sup{‖g‖L2(Ω) : g ∈ M and ‖Sg‖L2(Ω) ≤ δ} = m(δ, S,M). (3.213)

This completes the proof of Lemma 3.6.
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Conclusion

In my thesis, we solve two main problems: The null controllability of a cubic semilinear heat
equation and the local backward problem for a linear heat equation.

For the null controllability of a cubic semilinear heat equation, we use a new strategy to con-
struct a control function which leads the solution of a cubic heat from a small initial data to null at
any time later. The novelty of this method is the construction of the control function is explicitly
given. Moreover, the size of the smallness of the initial data which ensures the null controllability
of the cubic semilinear heat equation is quantitative computed. Our method can also be applied
for studying the controllability of more general nonlinear parabolic systems.

For the local backward problem, we reconstruct a source of a linear heat equation from an ob-
servation acting on a subdomain at some time later. Our special method is using a connection
between a control problem and an inverse problem. The achievement of this method is the ex-
plicit formula of the reconstruction, based on a family of impulse control functions. Furthermore,
the convergence rate with the logarithmic type is also provided. In addition, we also tackle our
local backward problem by Tikhonov regularization method and provide the comparison with our
method. Another accomplishment in this section is a result on the local backward problem for the
time dependent thermal conductivity heat equation.
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Future works

In this thesis, we assure the local null controllability of a semilinear heat system, where the blow
up occurs. Precisely, we construct a control function acting on ω× (0, T ) which steers the solution
of a semilinear heat system from a small given data at the initial time to be null at the final time.
On the other hand, we also build up a control function only acting on ω×{τ} (0 < τ < T ) which
leads the solution of a linear heat system from any given data at the initial data to a neighbourhood
of zero at the final time T (called null approximate impulse controllability). As a consquence, a
natural question is:

Question 1: Does the null approximate impulse controllability property still true for the semi-
linear heat system?

In this thesis, we also can recover the initial temperature of a linear heat system from the measure-
ment on a subdomain at some time later (named the local backward problem). By the filtering
method, it requires the impulse controllability of the adjoint system while by the Tikhonov method,
a conditional stability estimate is commanded. Thus, if the answer for the Question 1 is yes, the
second question is coming:

Question 2: Can the local backward problem for a semilinear system be solved by the filtering
method?

Furthermore, the conditional stability estimate for the semilinear heat system is already estab-
lished (see [PhWZ] or [PhW1]). Hence, another question appears:

Question 3: How one can tackle the local backward problem for a semilinear system by the
Tikhonov method?

In addition, by using a technique of changing variable, we also deal with the local backward
problem for the equation ∂tu− p(t)∆u = 0. This makes appear another concern:

Question 4: By using the same technique, can we get the null controllability for the semilinear
system with time dependent coefficients?

In both main problems, the construction of the null control and the reconstruction of the source
are explicitly given. Hence, a natural question arises:

Question 5: How one can illustrate our main results by numerical method?

Our next target is finding the answers for above questions.
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Thi Minh Nhat VO
Construction d’un contrôle et reconstruction de source pour les

équations linéaires et nonlinéaires de la chaleur

Résumé : Dans cette thèse, nous étudions un problème de contrôle et un problème inverse pour les équations
de la chaleur.
Notre premier travail concerne la contrôlabilité à zéro pour une équation de la chaleur semi-linéaire. Il est à
noter que sans contrôle, la solution est instable et il y aura en général explosion de la solution en un temps
fini. Ici, nous proposons un résultat positif de contrôlabilité à zéro sous une hypothèse quantifiée de petitesse
sur la donnée initiale. La nouveauté réside en la construction de ce contrôle pour amener la solution à l’état
d’équilibre.
Notre second travail aborde l’équation de la chaleur rétrograde dans un domaine borné et sous la condition de
Dirichlet. Nous nous intéressons à la question suivante: peut-on reconstruire la donnée initiale à partir d’une
observation de la solution restreinte à un sous-domaine et à un temps donnée? Ce problème est connu pour être
mal-posé. Ici, les deux principales méthodes proposées sont: une approche de filtrage des hautes fréquences
et une minimisation à la Tikhonov. A chaque fois, nous reconstruisons de manière approchée la solution et
quantifions l’erreur d’approximation.

Mots clés: équation de la chaleur, équation cubique de la chaleur, inégalité d’observation, contrôlabilité à zéro,
problème inverse rétrograde.

Construction of a control and reconstruction of a source for linear and
nonlinear heat equations

Abstract : My thesis focuses on two main problems in studying the heat equation: Control problem and Inverse
problem.
Our first concern is the null controllability of a semilinear heat equation which, if not controlled, can blow up in
finite time. Roughly speaking, it consists in analyzing whether the solution of a semilinear heat equation, under
the Dirichlet boundary condition, can be driven to zero by means of a control applied on a subdomain in which
the equation evolves. Under an assumption on the smallness of the initial data, such control function is built
up. The novelty of our method is computing the control function in a constructive way. Furthermore, another
achievement of our method is providing a quantitative estimate for the smallness of the size of the initial data
with respect to the control time that ensures the null controllability property.
Our second issue is the local backward problem for a linear heat equation. We study here the following
question: Can we recover the source of a linear heat equation, under the Dirichlet boundary condition, from the
observation on a subdomain at some time later? This inverse problem is well-known to be an ill-posed problem,
i.e their solution (if exists) is unstable with respect to data perturbations. Here, we tackle this problem by
two different regularization methods: The filtering method and The Tikhonov method. In both methods, the
reconstruction formula of the approximate solution is explicitly given. Moreover, we also provide the error
estimate between the exact solution and the regularized one.

Keywords : linear heat equation, cubic semilinear heat equation, observation estimate, null controllability, inverse
problem, local backward.
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