. .. De-flamme, , p.166

, Bilan de la densité de surface de flamme

A. De-la-vitesse-de and . .. De-flamme, 171 7.6.2 Analyse du bilan de la vitesse de déplacement

.. .. Structure-locale-de-flamme,

.. .. Analyse,

.. .. Analyse-de-flammes-tridimensionnelles,

. .. , Étude dynamique et cinématique des orientations scalaire-vitesse, p.187

.. .. Conclusion,

.. .. Revue-bibliographique,

.. .. Modèle-optimisé-À-une-Étape, 122 6.3.2 Estimation de la vitesse de propagation de la flamme laminaire

.. .. Analyse,

. Applications and . .. Oss, 146 6.5.3 Développement de noyaux de flamme prémélangés turbulents dans des mé-langes hétérogènes

. .. Dns-tridimensionnelle-de-développement-de-noyaux-de-flamme, , p.152

.. .. Conclusions,

. .. Analyse, 165 7.5.1 Mécanismes opérant sur la surface de flamme

, 171 7.6.2 Analyse du bilan de la vitesse de déplacement

.. .. Structure-locale-de-flamme,

.. .. Analyse,

.. .. Analyse-de-flammes-tridimensionnelles,

, Étude dynamique et cinématique des orientations scalaire-vitesse, p.187

.. .. Conclusion,

A. C. , Alkidas : Combustion advancements in gasoline engines, Energy Conversion and Management, vol.48, issue.11, pp.2751-2761, 2007.

M. C. Drake and D. C. Haworth, Advanced gasoline engine development using optical diagnostics and numerical modeling, Proceedings of the Combustion Institute, vol.31, pp.99-124, 2007.
DOI : 10.1016/j.proci.2006.08.120

S. Wang, V. Yang, G. Hsiao, S. Hsieh, and H. , Mongia : Large-eddy simulations of gas-turbine swirl injector flow dynamics, Journal of Fluid Mechanics, vol.583, pp.99-122, 2007.

J. Hélie and A. Trouvé, A modified coherent flame model to describe turbulent flame propagation in mixtures with variable composition, Proceedings of the Combustion Institute, vol.28, pp.193-201, 2000.

R. W. Bilger, S. B. Pope, K. N. Bray, and J. F. Driscoll, Paradigms in turbulent combustion research. Proceedings of the Combustion Institute, vol.30, pp.21-42, 2005.
DOI : 10.1016/j.proci.2004.08.273

S. Gordon and B. J. Mcbride, Computer program for calculation of complex chemical equilibrium compositions, rocket performance, incident and reflected shocks, and Chapman-Jouguet detonations. Nasa sp-273, 1971.

F. A. Lindemann, S. Arrhenius, I. Langmuir, N. R. Dhar, J. Perrin et al., Lewis : Discussion on "the radiation theory of chemical action, Trans. Faraday Soc, vol.17, pp.598-606, 1922.

R. G. Gilbert, K. Luther, and J. Troe, Theory of thermal unimolecular reactions in the fall-off range. II. Weak collision rate constants, Berichte der Bunsengesellschaft für physikalische Chemie, vol.87, issue.2, pp.169-177, 1983.

P. H. Stewart, C. W. Larson, and D. M. Golden, Pressure and temperature dependence of reactions proceeding via a bound complex. 2. Application to 2CH3 C2H5+ H, Combustion and Flame, vol.75, issue.1, pp.25-31, 1989.

A. Ern and V. Giovangigli, Multicomponent transport algorithms, vol.24, 1994.
DOI : 10.1007/978-3-540-48650-3

J. O. Hirschfelder, C. F. Curtiss, R. B. Bird, and M. G. Mayer, Molecular theory of gases and liquids, vol.26, 1954.

V. Giovangigli, Multicomponent flow modeling. Modeling and Simulation in Science, Engineering and Technology, 1999.
DOI : 10.1007/s11425-011-4346-y

URL : http://www.cmap.polytechnique.fr/preprint/repository/732.pdf

C. R. Wilke, A viscosity equation for gas mixtures, The journal of chemical physics, vol.18, issue.4, pp.517-519, 1950.
DOI : 10.1063/1.1747673

S. Mathur, P. K. Tondon, and S. C. Saxena, Thermal conductivity of binary, ternary and quaternary mixtures of rare gases, Molecular physics, vol.12, issue.6, pp.569-579, 1967.

J. Réveillon, C. Péra, and Z. Bouali, Examples of the potential of DNS for the understanding of reactive multiphase flows, International Journal of Spray and Combustion Dynamics, vol.3, issue.1, pp.63-92, 2011.

Z. Bouali, C. Péra, and J. Réveillon, Numerical analysis of the influence of two-phase flow mass and heat transfer on n-heptane autoignition, Combustion and Flame, vol.159, issue.6, pp.2056-2068, 2012.

M. Chauvy, B. Delhom, J. Réveillon, and F. , Demoulin : Flame/wall interactions: laminar study of unburnt HC formation. Flow, turbulence and combustion, vol.84, p.207, 2010.
DOI : 10.1007/s10494-009-9245-8

URL : http://hal.archives-ouvertes.fr/docs/00/44/55/05/PDF/paper_ftac.pdf

D. Kah, F. Laurent, L. Fréret, S. De-chaisemartin, R. O. Fox et al., Eulerian quadrature-based moment models for dilute polydisperse evaporating sprays. Flow, Turbulence and Combustion, vol.85, pp.649-676, 2010.
DOI : 10.1007/s10494-010-9286-z

URL : https://hal.archives-ouvertes.fr/hal-00449866

J. Réveillon and F. Demoulin, Effects of the preferential segregation of droplets on evaporation and turbulent mixing, Journal of Fluid Mechanics, vol.583, pp.273-302, 2007.

J. Réveillon and F. Demoulin, Evaporating droplets in turbulent reacting flows, Proceedings of the Combustion Institute, vol.31, pp.2319-2326, 2007.

L. Fréret, O. Thomine, J. Réveillon, S. De-chaisemartin, F. Laurent et al., On the role of preferential segregation in flame dynamics in polydisperse evaporating sprays, Proceedings of the Summer Program, pp.383-392, 2010.

H. Meftah, J. Réveillon, A. Mir, and F. Demoulin, SGS analysis of the evolution equations of the mixture fraction and the progress variable variances in the presence of spray combustion, International Journal of Spray and Combustion Dynamics, vol.2, issue.1, pp.21-47, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00475523

J. Dombard, B. Leveugle, L. Selle, J. Réveillon, T. Poinsot et al., Modeling heat transfer in dilute two-phase flows using the Mesoscopic Eulerian Formalism, International Journal of Heat and Mass Transfer, vol.55, issue.5-6, pp.1486-1495, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00811401

C. Pera, S. Chevillard, and J. Reveillon, Effects of residual burnt gas heterogeneity on early flame propagation and on cyclic variability in spark-ignited engines, Combustion and Flame, vol.160, issue.6, pp.1020-1032, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01665333

C. Pera, V. Knop, S. Chevillard, and J. Réveillon, Effects of residual burnt gas heterogeneity on cyclic variability in lean-burn SI engines. Flow, Turbulence and Combustion, vol.92, pp.837-863, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01612427

C. Péra, V. Knop, and J. Réveillon, Influence of flow and ignition fluctuations on cycle-to-cycle variations in early flame kernel growth, Proceedings of the Combustion Institute, vol.35, issue.3, pp.2897-2905, 2015.

S. Chevillard, J. Michel, C. Péra, and J. Réveillon, Evaluation of different turbulent combustion models based on tabulated chemistry using DNS of heterogeneous mixtures, Combustion Theory and Modelling, vol.21, issue.3, pp.440-465, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01582158

A. Majda and J. Sethian, The derivation and numerical solution of the equations for zero Mach number combustion. Combustion science and technology, vol.42, pp.185-205, 1985.

S. K. Lele, Compact finite difference schemes with spectral-like resolution, Journal of computational physics, vol.103, issue.1, pp.16-42, 1992.

A. Wray, Minimal storage time advancement schemes for spectral methods, p.202, 1990.

R. J. Kee, F. M. Rupley, and J. A. Miller, Chemkin-II: A Fortran chemical kinetics package for the analysis of gas-phase chemical kinetics, 1989.

Z. Bouali, Impact d'une phase liquide dispersée sur le processus d'auto-inflammation : prise en compte d'une chimie détaillée, J. Physique Rouen, 2011.

P. N. Brown, G. D. Byrne, and A. C. , Hindmarsh : VODE: A variable-coefficient ODE solver, SIAM journal on scientific and statistical computing, vol.10, issue.5, pp.1038-1051, 1989.

S. D. Cohen, A. C. Hindmarsh, and P. F. Dubois, CVODE, a stiff/nonstiff ODE solver in C. Computers in physics, vol.10, pp.138-143, 1996.

A. J. Chorin, Numerical solution of the Navier-Stokes equations. Mathematics of computation, vol.22, pp.745-762, 1968.

J. Kim and P. Moin, Application of a fractional-step method to incompressible Navier-Stokes equations, Journal of computational physics, vol.59, issue.2, pp.308-323, 1985.

J. Adams, P. Swarztrauber, and R. Sweet, FISHPAK: Efficient FORTRAN subprograms for the solution of separable elliptic partial differential equations, Version 3, National Center for Atmospheric Res, 1978.

P. Hénon, P. Ramet, and J. Roman, PASTIX: a high-performance parallel direct solver for sparse symmetric positive definite systems, Parallel Computing, vol.28, issue.2, pp.301-321, 2002.

P. R. Amestoy, I. S. Duff, and J. Excellent, Multifrontal parallel distributed symmetric and unsymmetric solvers, Computer methods in applied mechanics and engineering, vol.184, issue.2-4, pp.501-520, 2000.
URL : https://hal.archives-ouvertes.fr/hal-00856651

D. Kourounis, A. Fuchs, and O. Schenk, Towards the Next Generation of Multiperiod Optimal Power Flow Solvers, IEEE Transactions on Power Systems, issue.99, pp.1-10, 2018.

A. H. Baker, R. D. Falgout, T. V. Kolev, and U. M. Yang, Scaling hypre's multigrid solvers to 100,000 cores, High-Performance Scientific Computing, pp.261-279, 2012.

A. Baker, T. Gamblin, U. M. Schulz, and . Yang, Challenges of scaling algebraic multigrid across modern multicore architectures, 2010.

R. D. Falgout and U. M. , Yang : hypre: A library of high performance preconditioners, International Conference on Computational Science, pp.632-641, 2002.

Y. Saad, Iterative methods for sparse linear systems, vol.82, 2003.

V. A. Sabelnikov and A. N. , Lipatnikov : Recent advances in understanding of thermal expansion effects in premixed turbulent flames, Annual Review of Fluid Mechanics, vol.49, pp.91-117, 2017.

F. A. Williams, Criteria for existence of wrinkled laminar flame structure of turbulent premixed flames, Combustion and Flame, vol.26, pp.269-270, 1976.

R. Borghi, On the structure and morphology of turbulent premixed flames, Recent advances in the Aerospace Sciences, pp.117-138, 1985.

N. Peters, The turbulent burning velocity for large-scale and small-scale turbulence, Journal of Fluid mechanics, vol.384, pp.107-132, 1999.

A. Mura and M. , Champion : Relevance of the Bray number in the small-scale modeling of turbulent premixed flames, Combustion and Flame, vol.156, issue.3, pp.729-733, 2009.

D. Veynante and L. Vervisch, Turbulent combustion modeling, Progress in energy and combustion science, vol.28, issue.3, pp.193-266, 2002.
DOI : 10.1016/s0360-1285(01)00017-x

URL : https://hal.archives-ouvertes.fr/hal-01672225

H. Pitsch, A consistent level set formulation for large-eddy simulation of premixed turbulent combustion, Combustion and Flame, vol.143, issue.4, pp.587-598, 2005.

F. A. Williams, Turbulent combustion. The mathematics of combustion, vol.2, pp.267-294, 1985.

. Frank-e-marble, E. James, and . Broadwell, The coherent flame model for turbulent chemical reactions, 1977.

S. M. Candel and T. J. Poinsot, Flame stretch and the balance equation for the flame area, Combustion Science and Technology, vol.70, issue.1-3, pp.1-15, 1990.

L. Vervisch, E. Bidaux, K. N. Bray, and W. Kollmann, Surface density function in premixed turbulent combustion modeling, similarities between probability density function and flame surface approaches, Physics of Fluids, vol.7, issue.10, pp.2496-2503, 1995.
URL : https://hal.archives-ouvertes.fr/hal-01655415

. Rw and . Bilger, The structure of turbulent nonpremixed flames, Symposium (International) on Combustion, vol.22, pp.475-488, 1989.

C. M. Müller, H. Breitbach, and N. Peters, Partially premixed turbulent flame propagation in jet flames, Symposium (International) on Combustion, vol.25, pp.1099-1106, 1994.

T. Poinsot, D. Veynante, and A. Trouvé, Ruetsch : Turbulent flame propagation in partially premixed flames, 1996.

J. Hélie and A. Trouvé, Turbulent flame propagation in partially premixed combustion, Symposium (International) on Combustion, vol.27, pp.891-898, 1998.

D. Haworth, R. J. Blint, B. Cuenot, and T. Poinsot, Numerical simulation of turbulent propane-air combustion with nonhomogeneous reactants, Combustion and Flame, vol.121, issue.3, pp.395-417, 2000.
DOI : 10.1016/s0010-2180(99)00148-0

K. Bray, P. Domingo, and L. Vervisch, Role of the progress variable in models for partially premixed turbulent combustion, Combustion and Flame, vol.141, issue.4, pp.431-437, 2005.
URL : https://hal.archives-ouvertes.fr/hal-01672206

A. Trouvé and T. Poinsot, The evolution equation for the flame surface density in turbulent premixed combustion, Journal of Fluid Mechanics, vol.278, pp.1-31, 1994.

F. Fichot, F. Lacas, D. Veynante, and S. Candel, One-dimensional propagation of a premixed turbulent flame with a balance equation for the flame surface density. Combustion science and technology, vol.90, pp.35-60, 1993.

S. B. , Pope : The evolution of surfaces in turbulence, International journal of engineering science, vol.26, issue.5, pp.445-469, 1988.

S. B. , Pope : Computations of turbulent combustion: progress and challenges, Symposium (International) on Combustion, vol.23, pp.591-612, 1991.

R. Borghi, Turbulent premixed combustion: Further discussions on the scales of fluctuations, Combustion and Flame, vol.80, issue.3-4, pp.304-312, 1990.

T. Mantel and R. Borghi, A new model of premixed wrinkled flame propagation based on a scalar dissipation equation, Combustion and Flame, vol.96, issue.4, pp.443-457, 1994.

A. Mura and R. Borghi, Towards an extended scalar dissipation equation for turbulent premixed combustion, Combustion and flame, vol.133, pp.193-196, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00014835

N. Swaminathan and K. N. Bray, Effect of dilatation on scalar dissipation in turbulent premixed flames, Combustion and Flame, vol.143, issue.4, pp.549-565, 2005.

N. Chakraborty, J. W. Rogerson, and N. Swaminathan, A priori assessment of closures for scalar dissipation rate transport in turbulent premixed flames using direct numerical simulation, Physics of Fluids, vol.20, issue.4, p.45106, 2008.

T. Lieuwen, Y. Neumeier, and B. T. Zinn, The role of unmixedness and chemical kinetics in driving combustion instabilities in lean premixed combustors, Combustion Science and Technology, vol.135, issue.1-6, pp.193-211, 1998.

A. H. Lefebvre, Gas turbine combustion, 1998.

J. F. Driscoll and C. C. Rasmussen, Correlation and analysis of blowout limits of flames in high-speed airflows, Journal of propulsion and power, vol.21, issue.6, pp.1035-1044, 2005.

D. J. Micka and J. F. Driscoll, Stratified jet flames in a heated (1390 K) air cross-flow with autoignition, Combustion and Flame, vol.159, issue.3, pp.1205-1214, 2012.

E. Achleitner, H. Bäcker, and A. Funaioli, Direct injection systems for otto engines. Rapport technique, SAE Technical Paper, 2007.

P. G. Aleiferis, Y. Hardalupas, A. M. Taylor, K. Ishii, and Y. Urata, Flame chemiluminescence studies of cyclic combustion variations and air-to-fuel ratio of the reacting mixture in a lean-burn stratified-charge spark-ignition engine, Combustion and Flame, vol.136, issue.1-2, pp.72-90, 2004.

M. C. Drake, T. D. Fansler, and A. , Lippert : Stratified-charge combustion: modeling and imaging of a spray-guided direct-injection spark-ignition engine, Proceedings of the Combustion Institute, vol.30, pp.2683-2691, 2005.

Y. Yang, J. E. Dec, N. Dronniou, and M. Sjöberg, Tailoring HCCI heat-release rates with partial fuel stratification: Comparison of two-stage and single-stage-ignition fuels, Proceedings of the Combustion Institute, vol.33, pp.3047-3055, 2011.

N. Pasquier, B. Lecordier, M. Trinite, and A. Cessou, An experimental investigation of flame propagation through a turbulent stratified mixture, Proceedings of the Combustion Institute, vol.31, pp.1567-1574, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00638764

Y. S. Cho and D. A. Santavicca, The effect of incomplete fuel-air mixing on spark-ignited flame kernel growth, 1993.

J. Zhou, K. Nishida, T. Yoshizaki, and H. Hiroyasu, Effects of mixture heterogeneity on flame propagation in a constant volume combustion chamber, 1997.

I. A. Zeldovich, G. I. Barenblatt, V. B. Librovich, and G. M. Makhviladze, Mathematical theory of combustion and explosions. Consultants Bureau, 1985.

N. Peters, Turbulent combustion, 2000.
DOI : 10.1088/0957-0233/12/11/708

F. A. Williams, Combustion Theory 2nd, 1985.

A. N. Lipatnikov, Stratified turbulent flames: Recent advances in understanding the influence of mixture inhomogeneities on premixed combustion and modeling challenges, Progress in Energy and Combustion Science, vol.62, pp.87-132, 2017.

P. Girard, M. Huneau, C. Rabasse, and J. , Leyer : Flame propagation through unconfined and confined hemispherical stratified gaseous mixtures, Symposium (International) on Combustion, vol.17, pp.1247-1255, 1979.

S. Meares and A. R. , Masri : A modified piloted burner for stabilizing turbulent flames of inhomogeneous mixtures, Combustion and Flame, vol.161, issue.2, pp.484-495, 2014.

S. Meares, V. N. Prasad, G. Magnotti, R. S. Barlow, and A. R. Masri, Stabilization of piloted turbulent flames with inhomogeneous inlets. Proceedings of the Combustion Institute, vol.35, pp.1477-1484, 2015.

R. Lauvergne and F. N. Egolfopoulos, Unsteady response of C3H3/Air laminar premixed flames submitted to mixture composition oscillations, Proceedings of the Combustion Institute, vol.28, pp.1841-1850, 2000.

R. Sankaran and H. Im, Dynamic flammability limits of methane/air premixed flames with mixture composition fluctuations, Proceedings of the Combustion Institute, vol.29, pp.77-84, 2002.

M. S. Sweeney, S. Hochgreb, M. J. Dunn, and R. S. Barlow, The structure of turbulent stratified and premixed methane/air flames I: Non-swirling flows, Combustion and flame, vol.159, issue.9, pp.2896-2911, 2012.

M. S. Sweeney, S. Hochgreb, M. J. Dunn, and R. S. Barlow, The structure of turbulent stratified and premixed methane/air flames II: Swirling flows, Combustion and Flame, vol.159, issue.9, pp.2912-2929, 2012.

N. Ishikawa, A diffusion combustor and methane-air flame propagation in concentration gradient fields, Combustion Science and Technology, vol.30, issue.1-6, pp.185-203, 1983.

N. Ishikawa, Combustion of stratified methane/air layers. Combustion Science and Technology, vol.30, pp.311-325, 1983.

A. Cruz, A. M. Dean, and J. , Grenda : A numerical study of the laminar flame speed of stratified methane/air flames, Proceedings of the Combustion Institute, vol.28, pp.1925-1932, 2000.

C. Galizzi and D. Escudié, Experimental analysis of an oblique laminar flame front propagating in a stratified flow, Combustion and flame, vol.145, issue.3, pp.621-634, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00358059

T. Kang and D. C. , Kyritsis : Methane flame propagation in compositionally stratified gases. Combustion science and technology, vol.177, pp.2191-2210, 2005.

T. Kang and D. C. , Kyritsis : Departure from quasi-homogeneity during laminar flame propagation in lean, compositionally stratified methane-air mixtures, Proceedings of the Combustion Institute, vol.31, pp.1075-1083, 2007.

T. Kang and D. C. , Kyritsis : Phenomenology of methane flame propagation into compositionally stratified, gradually richer mixtures, Proceedings of the Combustion Institute, vol.32, pp.979-985, 2009.

T. Kang and D. C. , Kyritsis : Theoretical investigation of flame propagation through compositionally stratified methane-air mixtures, Combustion Theory and Modelling, vol.13, issue.4, pp.705-719, 2009.

T. Stahler, D. Geyer, G. Magnotti, P. Trunk, M. J. Dunn et al., Multiple conditioned analysis of the turbulent stratified flame A, Proceedings of the Combustion Institute, vol.36, pp.1947-1955, 2017.

O. Degardin, B. Renou, and A. M. Boukhalfa, Simultaneous measurement of temperature and fuel mole fraction using acetone planar induced fluorescence and Rayleigh scattering in stratified flames, Experiments in Fluids, vol.40, issue.3, pp.452-463, 2006.

V. Robin, A. Mura, M. Champion, O. Degardin, B. Renou et al., Experimental and numerical analysis of stratified turbulent V-shaped flames, Combustion and flame, vol.153, issue.1-2, pp.288-315, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00352949

J. Zhou, K. Nishida, T. Yoshizaki, and H. Hiroyasu, Flame propagation characteristics in a heterogeneous concentration distribution of a fuel-air mixture, 1998.

C. Jiménez, B. Cuenot, T. Poinsot, and D. Haworth, Numerical simulation and modeling for lean stratified propane-air flames, Combustion and Flame, vol.128, issue.1-2, pp.1-21, 2002.

D. Garrido-lopez and S. Sarkar, Effects of imperfect premixing coupled with hydrodynamic instability on flame propagation, Proceedings of the Combustion Institute, vol.30, pp.621-628, 2005.

R. W. Grout, N. Swaminathan, and R. S. Cant, Effects of compositional fluctuations on premixed flames. Combustion Theory and Modelling, vol.13, pp.823-852, 2009.

P. Anselmo-filho, S. Hochgreb, R. S. Barlow, and R. S. Cant, Experimental measurements of geometric properties of turbulent stratified flames, Proceedings of the Combustion Institute, vol.32, pp.1763-1770, 2009.

M. S. Sweeney, S. Hochgreb, and R. S. Barlow, The structure of premixed and stratified low turbulence flames, Combustion and Flame, vol.158, issue.5, pp.935-948, 2011.

B. Böhm, J. H. Frank, and A. Dreizler, Temperature and mixing field measurements in stratified lean premixed turbulent flames, Proceedings of the Combustion Institute, vol.33, pp.1583-1590, 2011.

M. S. Sweeney, S. Hochgreb, M. J. Dunn, and R. S. Barlow, Multiply conditioned analyses of stratification in highly swirling methane/air flames, Combustion and Flame, vol.160, issue.2, pp.322-334, 2013.

E. S. Richardson and J. H. Chen, Analysis of turbulent flame propagation in equivalence ratio-stratified flow, Proceedings of the Combustion Institute, vol.36, pp.1729-1736, 2017.

B. Renou, E. Samson, and A. Boukhalfa, An experimental study of freely propagating turbulent propane/air flames in stratified inhomogeneous mixtures. Combustion science and technology, vol.176, pp.1867-1890, 2004.

A. Bonaldo and J. , Kelman : Experimental annular stratified flames characterisation stabilised by weak swirl, Combustion and Flame, vol.156, issue.4, pp.750-762, 2009.
DOI : 10.1016/j.combustflame.2008.08.011

W. J. Ramaekers, J. A. Van-oijen, and L. P. De-goey, Stratified turbulent Bunsen flames: flame surface analysis and flame surface density modelling. Combustion Theory and Modelling, vol.16, pp.943-975, 2012.
DOI : 10.1080/13647830.2012.686172

J. A. Van-van-oijen and L. P. De-goey, Modelling of premixed laminar flames using flamelet-generated manifolds, Combustion Science and Technology, vol.161, issue.1, pp.113-137, 2000.

J. A. Van-oijen, A. Donini, R. J. Bastiaans, J. H. Ten-thije, L. P. Boonkkamp et al., State-of-the-art in premixed combustion modeling using flamelet generated manifolds, Progress in Energy and Combustion Science, vol.57, pp.30-74, 2016.

P. C. Vena, B. Deschamps, G. J. Smallwood, and M. R. Johnson, Equivalence ratio gradient effects on flame front topology in a stratified iso-octane/air turbulent V-flame, Proceedings of the Combustion Institute, vol.33, pp.1551-1558, 2011.

P. C. Vena, B. Deschamps, H. Guo, G. J. Smallwood, and M. R. Johnson, Heat release rate variations in a globally stoichiometric, stratified iso-octane/air turbulent V-flame, Combustion and Flame, vol.162, issue.4, pp.944-959, 2015.

P. C. Vena, B. Deschamps, H. Guo, and M. R. Johnson, Effects of stratification on locally lean, nearstoichiometric, and rich iso-octane/air turbulent V-flames, Combustion and Flame, vol.162, issue.11, pp.4231-4240, 2015.

E. S. Richardson, V. E. Granet, A. Eyssartier, and J. H. Chen, Effects of equivalence ratio variation on lean, stratified methane-air laminar counterflow flames, Combustion Theory and Modelling, vol.14, issue.6, pp.775-792, 2010.

S. P. Malkeson and N. Chakraborty, A Priori Direct Numerical Simulation Assessment of Algebraic Models of Variances and Dissipation Rates in the Context of Reynolds-Averaged Navier-Stokes Simulations for Low Damköhler Number Partially Premixed Combustion, Combustion Science and Technology, vol.182, issue.8, pp.960-999, 2010.

S. P. Malkeson and N. Chakraborty, Statistical analysis of displacement speed in turbulent stratified flames: A Direct Numerical Simulation study, Combustion Science and Technology, vol.182, pp.1841-1883, 2010.

S. P. Malkeson and N. Chakraborty, The modeling of fuel mass fraction variance transport in turbulent stratified flames: a direct numerical simulation study, Numerical Heat Transfer, Part A : Applications, vol.58, issue.3, pp.187-206, 2010.

S. P. Malkeson and N. Chakraborty, Statistical analysis of scalar dissipation rate transport in turbulent partially premixed flames: a direct numerical simulation study. Flow, Turbulence and Combustion, vol.86, pp.1-44, 2011.

S. P. Malkeson and N. Chakraborty, Alignment statistics of active and passive scalar gradients in turbulent stratified flames, Physical Review E, vol.83, issue.4, p.46308, 2011.

S. P. Malkeson and N. Chakraborty, A Priori DNS Modeling of the Turbulent Scalar Fluxes for Low Damköhler Number Stratified Flames, Combustion Science and Technology, vol.184, pp.1680-1707, 2012.

S. P. Malkeson and N. Chakraborty, A-priori direct numerical simulation modelling of co-variance transport in turbulent stratified flames. Flow, turbulence and combustion, vol.90, pp.243-267, 2013.

S. P. Malkeson and N. Chakraborty, Statistical Analysis and a-priori Modelling of Flame Surface Density Transport in Turbulent Stratified Flames: A Direct Numerical Simulation Study. Flow, turbulence and combustion, vol.90, pp.143-187, 2013.

S. P. Malkeson, S. Ruan, N. Chakraborty, and N. Swaminathan, Statistics of reaction progress variable and mixture fraction gradients from DNS of turbulent partially premixed flames, Combustion Science and Technology, vol.185, issue.9, pp.1329-1359, 2013.

X. Shi, J. Y. Chen, and Z. Chen, Numerical study of laminar flame speed of fuel-stratified hydrogen/air flames, Combustion and Flame, vol.163, pp.394-405, 2016.

D. C. Haworth and T. J. Poinsot, Numerical simulations of Lewis number effects in turbulent premixed flames, Journal of fluid mechanics, vol.244, pp.405-436, 1992.

R. S. Cant, C. J. Rutland, and A. Trouvé, Statistics for laminar flamelet modeling, Proc. of the Summer Program, pp.271-279, 1990.

D. Veynante, A. Trouvé, K. N. Bray, and T. Mantel, Gradient and counter-gradient scalar transport in turbulent premixed flames, Journal of Fluid Mechanics, vol.332, pp.263-293, 1997.

R. S. Rogallo, Numerical experiments in homogeneous turbulence, 1981.

T. Passot and A. Pouquet, Numerical simulation of compressible homogeneous flows in the turbulent regime, Journal of Fluid Mechanics, vol.181, pp.441-466, 1987.

J. Reveillon, Numerical Procedures to Generate and to Visualize Flow Fields from Analytical or Experimental Statistics: Turbulent Velocity, Fluctuating Scalars, and Variable Density Sprays, Journal of Flow Visualization and Image Processing, vol.12, issue.3, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00767602

B. Deshaies and G. Joulin, On the initiation of a spherical flame kernel, Combustion Science and Technology, vol.37, issue.3-4, pp.99-116, 1984.

C. Hasse, M. Bollig, N. Peters, and H. A. Dwyer, Quenching of laminar iso-octane flames at cold walls, Combustion and flame, vol.122, issue.1-2, pp.117-129, 2000.

F. Halter, F. Foucher, L. Landry, and C. Mounaïm-rousselle, Effect of dilution by nitrogen and/or carbon dioxide on methane and iso-octane air flames, Combustion Science and Technology, vol.181, issue.6, pp.813-827, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00618039

S. P. Marshall, S. Taylor, C. R. Stone, T. J. Davies, and R. F. Cracknell, Laminar burning velocity measurements of liquid fuels at elevated pressures and temperatures with combustion residuals, Combustion and Flame, vol.158, issue.10, pp.1920-1932, 2011.

D. G. Goodwin, H. K. Moffat, and R. L. Speth, Cantera: An Object-oriented Software Toolkit for Chemical Kinetics, Thermodynamics, and Transport Processes, 2016.

C. Gruselle, Etude du développement d'une flamme soumise à un gradient de concentration : Rôle de la stratification et des EGR, 2014.

C. Gruselle, V. Moureau, and Y. D'angelo, Numerical simulation of turbulent stratified flame propagation in a closed vessel, ICHMT DIGITAL LIBRARY ONLINE, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01658720

E. Albin and Y. D'angelo, Assessment of the Evolution Equation Modelling approach for three-dimensional expanding wrinkled premixed flames, Combustion and Flame, vol.159, issue.5, pp.1932-1948, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00967136

B. Boust, Q. Michalski, and M. Bellenoue, Experimental Investigation of Ignition and Combustion Processes in a Constant-Volume Combustion Chamber for Air-Breathing Propulsion, 52nd AIAA/SAE/ASEE Joint Propulsion Conference, p.4699, 2016.

S. Chevillard, Simulation Numérique Directe pour la modélisation de la combustion dans les moteurs à combustion interne, 2013.

Y. Zeldovich, Kinetics of chemical reactions in flames, 1946.

D. B. Spalding, Some fundamentals of combustion, vol.2, 1955.

J. A. Sethian, Numerical methods for propagating fronts, Variational methods for free surface interfaces, pp.155-164, 1987.

S. Osher and J. A. Sethian, Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations, Journal of computational physics, vol.79, issue.1, pp.12-49, 1988.

, scikit-fmm, an extension python module which implements the fast marching method

A. Er-raiy, Z. Bouali, J. Réveillon, and A. Mura, Optimized single-step (OSS) chemistry models for the simulation of turbulent premixed flame propagation, Combustion and Flame, vol.192, pp.130-148, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02304849

S. B. , Pope : PDF methods for turbulent reactive flows, Progress in energy and combustion science, vol.11, issue.2, pp.119-192, 1985.

C. Dopazo, Recent developments in pdf methods. Turbulent reacting flows, pp.375-474, 1994.

S. B. Pope, Computationally efficient implementation of combustion chemistry using in situ adaptive tabulation, Combustion Theory and Modelling, vol.1, pp.41-63, 1997.

B. J. Liu and S. B. , Pope : The performance of in situ adaptive tabulation in computations of turbulent flames, Combustion Theory and Modelling, vol.9, issue.4, pp.549-568, 2005.

R. Borghi, Sur la structure des flammes turbulentes, Journal de chimie physique, vol.81, pp.361-370, 1984.

N. Peters, Laminar flamelet concepts in turbulent combustion, Symposium (International) on Combustion, vol.21, pp.1231-1250, 1988.

H. Barths, N. Peters, A. Brehm, N. Mack, M. Pfitzner et al., Simulation of pollutant formation in a gas-turbine combustor using unsteady flamelets, Symposium (International) on Combustion, vol.27, pp.1841-1847, 1998.

H. Pitsch, M. Chen, and N. Peters, Unsteady flamelet modeling of turbulent hydrogen-air diffusion flames, Symposium (international) on combustion, vol.27, pp.1057-1064, 1998.

M. Obounou, M. Gonzalez, and R. Borghi, A Lagrangian model for predicting turbulent diffusion flames with chemical kinetic effects, Symposium (International) on Combustion, vol.25, pp.1107-1113, 1994.

L. Fallot, M. Gonzalez, R. Elamraoui, and M. Obounou, Modelling finite-rate chemistry effects in nonpremixed turbulent combustion: test on the bluff-body stabilized flame, Combustion and Flame, vol.110, issue.3, pp.298-318, 1997.

A. Mura and F. X. Demoulin, Lagrangian intermittent modelling of turbulent lifted flames, Combustion Theory and Modelling, vol.11, issue.2, pp.227-257, 2007.

R. Mouangue, M. Obounou, L. Gomet, and A. Mura, Lagrangian intermittent modelling of a turbulent lifted methane-air jet flame stabilized in a vitiated air coflow. Flow, turbulence and combustion, vol.92, pp.731-765, 2014.

U. Maas and S. B. , Pope : Implementation of simplified chemical kinetics based on intrinsic low-dimensional manifolds, Symposium (International) on Combustion, vol.24, pp.103-112, 1992.

U. Maas and S. B. Pope, Simplifying chemical kinetics: intrinsic low-dimensional manifolds in composition space, Combustion and flame, vol.88, issue.3-4, pp.239-264, 1992.

D. A. Goussis and S. H. Lam, A study of homogeneous methanol oxidation kinetics using CSP, Symposium (International) on Combustion, vol.24, pp.113-120, 1992.

S. H. Lam and D. A. , Goussis : The CSP method for simplifying kinetics, International Journal of Chemical Kinetics, vol.26, issue.4, pp.461-486, 1994.

M. K. Neophytou, D. A. Goussis, M. Van-loon, and E. Mastorakos, Reduced chemical mechanisms for atmospheric pollution using computational singular perturbation analysis, Atmospheric Environment, vol.38, issue.22, pp.3661-3673, 2004.

V. Bykov and U. Maas, The extension of the ILDM concept to reaction-diffusion manifolds, Combustion Theory and Modelling, vol.11, issue.6, pp.839-862, 2007.

O. Gicquel, N. Darabiha, and D. Thévenin, Liminar premixed hydrogen/air counterflow flame simulations using flame prolongation of ILDM with differential diffusion, Proceedings of the Combustion Institute, vol.28, pp.1901-1908, 2000.

N. Peters and R. J. Kee, The computation of stretched laminar methane-air diffusion flames using a reduced four-step mechanism, Combustion and Flame, vol.68, issue.1, pp.17-29, 1987.

W. P. Jones and R. P. Lindstedt, Global reaction schemes for hydrocarbon combustion, Combustion and flame, vol.73, issue.3, pp.233-249, 1988.

R. W. Bilger, S. H. Stårner, and R. J. Kee, On reduced mechanisms for methane-air combustion in nonpremixed flames, Combustion and Flame, vol.80, issue.2, pp.135-149, 1990.

P. Boivin, C. Jiménez, A. L. Sánchez, and F. A. Williams, An explicit reduced mechanism for H2-air combustion, Proceedings of the Combustion Institute, vol.33, pp.517-523, 2011.

P. Boivin, A. L. Sánchez, and F. A. Williams, Four-step and three-step systematically reduced chemistry for wide-range H2-air combustion problems, Combustion and Flame, vol.160, issue.1, pp.76-82, 2013.

P. Boivin, A. Dauptain, C. Jiménez, and B. Cuenot, Simulation of a supersonic hydrogen-ir autoignitionstabilized flame using reduced chemistry, Combustion and Flame, vol.159, issue.4, pp.1779-1790, 2012.

P. Boivin, C. Jiménez, A. L. Sánchez, and F. A. Williams, A four-step reduced mechanism for syngas combustion, Combustion and Flame, vol.158, issue.6, pp.1059-1063, 2011.

P. Boivin, A. L. Sánchez, and F. A. Williams, Analytical prediction of syngas induction times, Combustion and Flame, vol.176, pp.489-499, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01417104

J. W. Dold, Premixed flames modelled with thermally sensitive intermediate branching kinetics. Combustion Theory and Modelling, vol.11, pp.909-948, 2007.

L. Vervisch, B. Labegorre, and J. Réveillon, Hydrogen-sulphur oxy-flame analysis and single-step flame tabulated chemistry, Fuel, vol.83, issue.4-5, pp.605-614, 2004.
URL : https://hal.archives-ouvertes.fr/hal-01668618

E. Fernandez-tarrazo, A. L. Sánchez, A. Linan, and F. A. Williams, A simple one-step chemistry model for partially premixed hydrocarbon combustion, Combustion and Flame, vol.147, issue.1, pp.32-38, 2006.

J. Reveillon, Direct numerical simulation of sprays: turbulent dispersion, evaporation and combustion, Multiphase reacting flows : modelling and simulation, pp.229-269, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00767598

B. Franzelli, E. Riber, and M. Sanjosé, Poinsot : A two-step chemical scheme for kerosene-air premixed flames, Combustion and Flame, vol.157, issue.7, pp.1364-1373, 2010.

M. Cailler, N. Darabiha, D. Veynante, and B. Fiorina, Building-up virtual optimized mechanism for flame modeling, Proceedings of the Combustion Institute, vol.36, pp.1251-1258, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01541938

P. A. Libby and K. N. Bray, Countergradient diffusion in premixed turbulent flames, AIAA journal, vol.19, issue.2, pp.205-213, 1981.

K. N. Bray, P. A. Libby, G. Masuya, and J. , Moss : Turbulence production in premixed turbulent flames, Combustion Science and Technology, vol.25, pp.127-140, 1981.

V. Robin, A. Mura, M. Champion, and T. Hasegawa, Modeling the effects of thermal expansion on scalar turbulent fluxes in turbulent premixed flames, Combustion Science and Technology, vol.182, issue.4-6, pp.449-464, 2010.

A. N. Lipatnikov and J. Chomiak, Effects of premixed flames on turbulence and turbulent scalar transport, Progress in Energy and Combustion Science, vol.36, issue.1, pp.1-102, 2010.

C. K. Westbrook and F. L. Dryer, Simplified reaction mechanisms for the oxidation of hydrocarbon fuels in flames. Combustion science and technology, vol.27, pp.31-43, 1981.

C. K. Westbrook and F. L. Dryer, Chemical kinetic modeling of hydrocarbon combustion, Progress in Energy and Combustion Science, vol.10, issue.1, pp.1-57, 1984.

G. Joulin and P. Vidal, An introduction to the instability of flames, shocks, and detonations, Collection Alea Saclay Monographs And Texts In Statistical Physics, vol.1, issue.3, pp.493-673, 1998.

M. Matalon, Intrinsic flame instabilities in premixed and nonpremixed combustion, Annu. Rev. Fluid Mech, vol.39, pp.163-191, 2007.

G. P. Smith, D. M. Golden, M. Frenklach, B. Eiteener, M. Goldenberg et al., , 2000.

S. Jerzembeck, N. Peters, P. Pepiot-desjardins, and H. Pitsch, Laminar burning velocities at high pressure for primary reference fuels and gasoline: Experimental and numerical investigation, Combustion and Flame, vol.156, issue.2, pp.292-301, 2009.

M. Mehl, W. J. Pitz, M. Sjöberg, and J. E. Dec, Detailed kinetic modeling of low-temperature heat release for PRF fuels in an HCCI engine, 2009.

M. Mehl, W. J. Pitz, C. K. Westbrook, and H. J. Curran, Kinetic modeling of gasoline surrogate components and mixtures under engine conditions, Proceedings of the Combustion Institute, vol.33, pp.193-200, 2011.

E. Mallard and H. L. Chatelier, Recherches expérimentales et théoriques sur la combustion des mélanges gazeux explosives. H. Dunod et E. Pinat, p.1883

J. H. Ferziger and T. Echekki, A simplified reaction rate model and its application to the analysis of premixed flames. Combustion science and technology, vol.89, pp.293-315, 1993.

J. Jarosinski, The thickness of laminar flames, Combustion and Flame, vol.56, issue.3, pp.337-342, 1984.

G. E. Andrews, D. Bradley, and S. B. , Lwakabamba : Turbulence and turbulent flame propagation-a critical appraisal, Combustion and Flame, vol.24, pp.285-304, 1975.

J. Abraham, F. A. Williams, and F. V. Bracco, Discussion of turbulent flame structure in premixed charges, 1985.

J. F. Driscoll, Turbulent premixed combustion: Flamelet structure and its effect on turbulent burning velocities, Progress in Energy and Combustion Science, vol.34, issue.1, pp.91-134, 2008.

A. G. Gaydon and H. , Wolfhard : Flames, their structure, radiation, and temperature, 1979.

R. J. Blint, The relationship of the laminar flame width to flame speed, Combustion Science and Technology, vol.49, issue.1-2, pp.79-92, 1986.

J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular Theory of Gases and Liquids, vol.1, 1954.

T. P. Coffee and J. , Heimerl : Transport algorithms for premixed, laminar steady-state flames, Combustion and Flame, vol.43, pp.273-289, 1981.

J. M. Heimerl and T. P. Coffee, Transport algorithms for methane flames. Combustion science and technology, vol.34, pp.31-43, 1983.

J. Nocedal and S. J. Wright, Sequential quadratic programming, 2006.

A. Liñan, The asymptotic structure of counterflow diffusion flames for large activation energies, Acta Astronautica, pp.1007-1039, 1974.

J. Natarajan, T. Lieuwen, and J. Seitzman, Laminar flame speeds of H2/CO mixtures: effect of CO2 dilution, preheat temperature, and pressure, Combustion and flame, vol.151, issue.1-2, pp.104-119, 2007.

L. Boyer, Laser tomographic method for flame front movement studies, Combustion and Flame, vol.39, issue.3, pp.321-323, 1980.

K. N. Bray, Turbulent flows with premixed reactants, Turbulent reacting flows, pp.115-183, 1980.

R. S. Cant and E. Mastorakos, An introduction to turbulent reacting flows, 2008.

A. N. Lipatnikov, Conditionally averaged balance equations for modeling premixed turbulent combustion in flamelet regime, Combustion and Flame, vol.152, issue.4, pp.529-547, 2008.

V. A. Sabelnikov and A. N. Lipatnikov, Transition from pulled to pushed premixed turbulent flames due to countergradient transport, Combustion Theory and Modelling, vol.17, issue.6, pp.1154-1175, 2013.

K. Q. Kha, V. Robin, and A. Mura, Champion : Implications of laminar flame finite thickness on the structure of turbulent premixed flames, Journal of Fluid Mechanics, vol.787, pp.116-147, 2016.

A. Er-raiy, Z. Bouali, and A. Mura, Effects of composition fluctuations on the structure and development of laminar and turbulent flame kernels, 26 th International Colloquium on the Dynamics of Explosions and Reactive Systems (ICDERS), 2017.

S. Zhao, A. Er-raiy, Z. Bouali, and A. Mura, Dynamics and kinematics of the reactive scalar gradient in weakly turbulent premixed flames, Combustion and Flame, vol.198, pp.436-454, 2018.

L. Y. Gicquel, N. Gourdain, J. Boussuge, H. Deniau, G. Staffelbach et al., High performance parallel computing of flows in complex geometries, Comptes Rendus Mecanique, vol.339, issue.2-3, pp.104-124, 2011.

C. Burstedde, L. Wilcox, and O. , Ghattas : p4est: Scalable algorithms for parallel adaptive mesh refinement on forests of octrees, SIAM Journal on Scientific Computing, vol.33, issue.3, pp.1103-1133, 2011.

F. Drui, A. Fikl, P. Kestener, S. Kokh, A. Larat et al., Experimenting with the p4est library for AMR simulations of two-phase flows, ESAIM : Proceedings and Surveys, vol.53, pp.232-247, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01591956