. Cependant, nous ne trouvons pas de corrélation entre l'irisine et l'expression de FNDC5 musculaire

, Chez nos souris, il semble que les vibrations aient un début d'action sur le système musculaire avec des effets non visibles macroscopiquement, mais retrouvés au niveau moléculaire. Soit le temps de vibrations n'est pas suffisant ce qui expliquerait l'absence d'effet osseux et le début d'effet musculaire

C. Arroyo-johnson and K. D. Mincey, Obesity Epidemiology Worldwide, vol.45, pp.571-579, 2016.

. «-microsoft-word, Diet_overweight and obesity.doc -Diet_overweight_and_obesity.pdf

K. Kulkarni, T. Karssiens, V. Kumar, and H. Pandit, Maturitas, vol.89, pp.22-28, 2016.

P. Faucher and C. Poitou, « Physiopathologie de l'obésité, Rev. Rhum. Monogr, vol.83, issue.1, pp.6-12, 2016.

D. Gallagher, S. B. Heymsfield, M. Heo, S. A. Jebb, P. R. Murgatroyd et al., Healthy percentage body fat ranges: an approach for developing guidelines based on body mass index, vol.72, pp.694-701, 2000.

A. H. Kissebah, « Relation of body fat distribution to metabolic complications of obesity, J. Clin. Endocrinol. Metab, vol.54, issue.2, pp.254-260, 1982.

A. Hruby and F. B. Hu, The Epidemiology of Obesity: A Big Picture, vol.33, pp.673-689, 2015.

J. K. Van-den-heuvel, A. J. Van-rozen, R. A. Adan, and S. E. Fleur, « An overview on how components of the melanocortin system respond to different high energy diets », Eur. J. Pharmacol, vol.660, issue.1, pp.207-212, 2011.

Y. M. Haidar and B. C. Cosman, Clin. Colon Rectal Surg, vol.24, issue.4, pp.205-210, 2011.

M. Cornier, « The metabolic syndrome, Endocr. Rev, vol.29, issue.7, pp.777-822, 2008.

C. L. Boulangé, A. L. Neves, J. Chilloux, J. K. Nicholson, and M. Dumas, Impact of the gut microbiota on inflammation, vol.8, 2016.

S. M. Harakeh, « Gut Microbiota: A Contributing Factor to Obesity, Front. Cell. Infect. Microbiol, vol.6, 2016.

N. A. Berger, Ann. N. Y. Acad. Sci, vol.1311, pp.57-76, 2014.

J. Vendrell, « Resistin, adiponectin, ghrelin, leptin, and proinflammatory cytokines: relationships in obesity, Obes. Res, vol.12, issue.6, pp.962-971, 2004.

A. Koster, « Body Fat Distribution and Inflammation Among Obese Older Adults With and Without Metabolic Syndrome, Obesity, vol.18, pp.2354-2361, 2010.

Z. Wang, T. Nakayama, and . Inflammation, Mediators Inflamm, vol.2010, p.535918, 2010.

S. P. Weisberg, D. Mccann, M. Desai, M. Rosenbaum, R. L. Leibel et al., « Obesity is associated with macrophage accumulation in adipose tissue, J. Clin. Invest, vol.112, pp.1796-1808, 2003.

J. S. Yudkin, M. Kumari, S. E. Humphries, and V. Mohamed-ali, « Inflammation, obesity, stress and coronary heart disease: is interleukin-6 the link? », Atherosclerosis, vol.148, pp.209-214, 2000.

Z. Bagi, Z. Broskova, and A. Feher, « Obesity and Coronary Microvascular Disease -Implications for Adipose Tissue-Mediated Remote Inflammatory Response, Curr. Vasc. Pharmacol, vol.12, issue.3, pp.453-461, 2014.

K. Selthofer-relati?, I. Bo?njak, and A. Kibel, « Obesity Related Coronary Microvascular Dysfunction: From Basic to Clinical Practice », Cardiol. Res. Pract, vol.2016, 2016.

N. Arsenii, « Impact of Visceral Obesity on Microvascular Invasion in Hepatocellular Carcinoma, Cancer Invest, vol.34, issue.6, pp.271-278, 2016.

L. Zhao, « Inflammation-induced microvascular insulin resistance is an early event in diet-induced obesity, Clin. Sci. Lond. Engl, vol.129, pp.1025-1036, 1979.

C. Li, « Oxidative Stress-Related Mechanisms and Antioxidant Therapy in Diabetic Retinopathy, Oxid. Med. Cell. Longev, vol.2017, 2017.

Y. Wang and H. Yan, « MicroRNA-126 contributes to Niaspan treatment induced vascular restoration after diabetic retinopathy, Sci. Rep, vol.6, 2016.

N. A. Berger, «. Cancer, and E. Balance, Epidemiology and Overview

D. C. Mcmillan, N. Sattar, and C. S. Mcardle, BMJ, vol.333, pp.1109-1111, 2006.

C. Holroyd, C. Cooper, and E. E. Dennison, Epidemiology of osteoporosis, vol.22, pp.671-685, 2008.

R. Cherif, L. Vico, N. Laroche, M. Sakly, N. Attia et al., « Dual-energy X-ray absorptiometry underestimates in vivo lumbar spine bone mineral density in overweight rats, 2017.

J. E. Compston, « Relationship of weight, height, and body mass index with fracture risk at different sites in postmenopausal women: the Global Longitudinal study of Osteoporosis in Women (GLOW), J. Bone Miner. Res. Off. J. Am. Soc. Bone Miner. Res, vol.29, issue.2, pp.487-493, 2014.

E. Sornay-rendu, S. Boutroy, N. Vilayphiou, B. Claustrat, and R. D. Chapurlat, « In Obese Postmenopausal Women, Bone Microarchitecture and Strength Are Not Commensurate to Greater Body Weight: The Os des Femmes de Lyon (OFELY) Study », J. Bone Miner. Res, vol.28, issue.7, pp.1679-1687, 2013.

C. Caffarelli, C. Alessi, R. Nuti, and E. S. Gonnelli, Divergent effects of obesity on fragility fractures, vol.9, pp.1629-1636, 2014.

J. Compston, « Obesity and fractures in postmenopausal women, Curr. Opin. Rheumatol, vol.27, issue.4, pp.414-419, 2015.

L. Zhang, « Adiponectin ameliorates experimental periodontitis in diet-induced obesity mice, PloS One, vol.9, issue.5, p.97824, 2014.

B. Roy, M. E. Curtis, L. S. Fears, S. N. Nahashon, and H. M. Fentress, Molecular Mechanisms of Obesity-Induced Osteoporosis and Muscle Atrophy, vol.7, p.439, 2016.

U. T. Iwaniec and R. T. Turner, Influence of body weight on bone mass, vol.230, pp.115-130, 2016.

R. N. Baumgartner, « Epidemiology of sarcopenia among the elderly in New Mexico », Am. J. Epidemiol, vol.147, issue.8, pp.755-763, 1998.

M. Zamboni, G. Mazzali, F. Fantin, A. Rossi, and V. Di-francesco, Sarcopenic obesity: A new category of obesity in the elderly », vol.18, pp.388-395, 2008.

D. Heber, S. Ingles, J. M. Ashley, M. H. Maxwell, R. F. Lyons et al., « Clinical detection of sarcopenic obesity by bioelectrical impedance analysis, Am. J. Clin. Nutr, vol.64, pp.472-477, 1996.

A. Kalinkovich and G. Livshits, « Sarcopenic obesity or obese sarcopenia: A cross talk between age-associated adipose tissue and skeletal muscle inflammation as a main mechanism of the pathogenesis, Ageing Res. Rev, vol.35, pp.200-221, 2017.

C. T. Lutz and L. S. Quinn, « Sarcopenia, obesity, and natural killer cell immune senescence in aging: Altered cytokine levels as a common mechanism, Aging, vol.4, pp.535-546

R. C. Lawrence, « Estimates of the prevalence of arthritis and other rheumatic conditions in the United States, Arthritis Rheum, vol.58, issue.1, pp.26-35, 2008.

E. Lespessailles, N. Ibrahim-nasser, H. Toumi, and R. Chapurlat, « Contribution of high resolution peripheral quantitative CT to the management of bone and joint diseases, Bone Spine Rev. Rhum, 2017.

Z. Huang and V. B. Kraus, « Does lipopolysaccharide-mediated inflammation have a role in OA?, Nat. Rev. Rheumatol, vol.12, issue.2, pp.123-129, 2016.

Z. Cui, « Halofuginone attenuates osteoarthritis by inhibition of TGF-? activity and Htype vessel formation in subchondral bone, Ann. Rheum. Dis, vol.75, issue.9, pp.1714-1721, 2016.

P. I. Mapp, « Angiogenesis in two animal models of osteoarthritis, Osteoarthritis Cartilage, vol.16, issue.1, pp.61-69, 2008.

C. A. Karvonen-gutierrez, M. R. Sowers, and S. G. Heeringa, « Sex dimorphism in the association of cardiometabolic characteristics and osteophytes-defined radiographic knee osteoarthritis among obese and non-obese adults: NHANES III, Osteoarthr. Cartil. OARS Osteoarthr. Res. Soc, vol.20, issue.7, pp.614-621, 2012.

S. R. Piva, A. M. Susko, S. S. Khoja, D. A. Josbeno, G. K. Fitzgerald et al., Links between Osteoarthritis and Diabetes:Implications for Management from a Physical Activity Perspective, vol.31, pp.67-87, 2015.

F. Guilak, Best Pract. Res. Clin. Rheumatol, vol.25, issue.6, pp.815-823, 2011.

». «-1thepotentialimpactapjaivol34no4december2016p249.pdf,

S. F. Clarke, The gut microbiota and its relationship to diet and obesity, vol.3, pp.186-202, 2012.

P. J. Parekh, E. Arusi, A. I. Vinik, and D. A. Johnson, « The Role and Influence of Gut Microbiota in Pathogenesis and Management of Obesity and Metabolic Syndrome, Front. Endocrinol, vol.5, 2014.

C. Sanmiguel, A. Gupta, and E. A. Mayer, Gut Microbiome and Obesity: A Plausible Explanation for Obesity, vol.4, pp.250-261, 2015.

F. Bäckhed, « The gut microbiota as an environmental factor that regulates fat storage, Proc. Natl. Acad. Sci. U. S. A, vol.101, pp.15718-15723, 2004.

M. Aguirre and K. Venema, Does the Gut Microbiota Contribute to Obesity? Going beyond the Gut Feeling », Microorganisms, vol.3, pp.213-235, 2015.

M. F. Gregor and G. S. Hotamisligil, « Inflammatory mechanisms in obesity, Annu. Rev. Immunol, vol.29, pp.415-445, 2011.

P. D. Cani, Metabolic endotoxemia initiates obesity and insulin resistance », Diabetes, vol.56, pp.1761-1772, 2007.

Y. Mendizábal, S. Llorens, and E. E. Nava, Hypertension in Metabolic Syndrome: Vascular Pathophysiology, vol.2013, 2013.

T. Mclaughlin and G. Reaven, « Insulin resistance and hypertension. Patients in double jeopardy for cardiovascular disease, Geriatrics, vol.55, issue.6, pp.28-32, 2000.

E. Imbalzano, « Clinical impact of angiotensin I converting enzyme polymorphisms in subjects with resistant hypertension, Mol. Cell. Biochem, 2017.

L. Riet, J. H. Van-esch, A. J. Roks, A. H. Van-den-meiracker, A. H. Danser et al., Circ. Res, vol.116, issue.6, pp.960-975, 2015.

J. Son, H. Koh, and E. J. Son, « The association between intraocular pressure and different combination of metabolic syndrome components, BMC Ophthalmol, vol.16, 2016.

H. Yanai, Y. Tomono, K. Ito, N. Furutani, H. Yoshida et al., « The underlying mechanisms for development of hypertension in the metabolic syndrome, Nutr. J, vol.7, p.10, 2008.

H. Ahmadieh and S. T. Azar, « Type 2 Diabetes Mellitus, Oral Diabetic Medications, Insulin Therapy, and Overall Breast Cancer Risk, ISRN Endocrinol, vol.2013, 2013.

Y. Zhu, « Cardiac PI3K-Akt Impairs Insulin-Stimulated Glucose Uptake Independent of mTORC1 and GLUT4 Translocation, Mol. Endocrinol, vol.27, issue.1, pp.172-184, 2013.

Y. V. Wong, P. Cook, and B. K. Somani, The Association of Metabolic Syndrome and Urolithiasis, vol.2015, 2015.

S. Tangvarasittichai, « Oxidative stress, insulin resistance, dyslipidemia and type 2 diabetes mellitus, World J. Diabetes, vol.6, issue.3, pp.456-480, 2015.

M. D. Meglasson and F. M. Matschinsky, « Pancreatic islet glucose metabolism and regulation of insulin secretion, Diabetes. Metab. Rev, vol.2, pp.163-214, 1986.

J. Capeau, J. Bastard, C. Vigouroux, . Syndrome, ». Et-insulinorésistance-:-physiopathologie et al., , vol.2, pp.155-164, 2006.

A. C. Fahed, J. M. Gholmieh, and S. T. Azar, Connecting the Lines between Hypogonadism and Atherosclerosis, vol.2012, 2012.

P. Barrette and A. G. Schwertani, « A closer look at the role of urotensin II in the metabolic syndrome, Front. Endocrinol, vol.3, 2012.

U. J. Jung and M. Choi, « Obesity and Its Metabolic Complications: The Role of Adipokines and the Relationship between Obesity, Inflammation, Insulin Resistance, Dyslipidemia and Nonalcoholic Fatty Liver Disease », Int. J. Mol. Sci, vol.15, issue.4, pp.6184-6223, 2014.

G. Boden, Obesity and Free Fatty Acids (FFA), vol.37, p.635, 2008.

Y. Homma, Predictors of atherosclerosis, J. Atheroscler. Thromb, vol.11, issue.5, pp.265-270, 2004.

F. C. Mcgillicuddy, M. P. Reilly, and D. J. Rader, Adipose Modulation of High-Density Lipoprotein Cholesterol », Circulation, vol.124, pp.1602-1605, 2011.

W. H. Ettinger, L. A. Miller, T. K. Smith, and J. S. Parks, Effect of interleukin-1 alpha on lipoprotein lipids in cynomolgus monkeys: comparison to tumor necrosis factor, vol.1128, pp.186-192, 1992.

Y. Liu, H. Dang, D. Li, W. Pang, B. D. Hammock et al., « Inhibition of Soluble Epoxide Hydrolase Attenuates High-Fat-Diet-Induced Hepatic Steatosis by Reduced Systemic Inflammatory Status in Mice, PLoS ONE, vol.7, issue.6

F. Du, A. Virtue, H. Wang, and X. Yang, Metabolomic analyses for atherosclerosis, diabetes, and obesity, vol.1, p.17, 2013.

K. H. Kwok, K. S. Lam, and E. A. Xu, « Heterogeneity of white adipose tissue: molecular basis and clinical implications, Exp. Mol. Med, vol.48, issue.3, p.215, 2016.

A. Park, W. K. Kim, and K. Bae, « Distinction of white, beige and brown adipocytes derived from mesenchymal stem cells », World J. Stem Cells, vol.6, issue.1, pp.33-42, 2014.

J. Y. Huh, Y. J. Park, M. Ham, and J. B. Kim, Crosstalk between Adipocytes and Immune Cells in Adipose Tissue Inflammation and Metabolic Dysregulation in Obesity, vol.37, pp.365-371, 2014.

T. Sakurai, « The Effects of Exercise Training on Obesity-Induced Dysregulated Expression of Adipokines in White Adipose Tissue », Int. J. Endocrinol, vol.2013, 2013.

L. Frederiksen, « Subcutaneous rather than visceral adipose tissue is associated with adiponectin levels and insulin resistance in young men, J. Clin. Endocrinol. Metab, vol.94, issue.10, pp.4010-4015, 2009.

I. Moreno-indias, « Adipose tissue infiltration in normal-weight subjects and its impact on metabolic function, Transl. Res. J. Lab. Clin. Med, vol.172, pp.6-17, 2016.

I. K. Lesna, « Human adipose tissue accumulation is associated with pro-inflammatory changes in subcutaneous rather than visceral adipose tissue, Nutr. Diabetes, vol.7, p.264, 2017.

J. M. Wentworth, Pro-inflammatory CD11c+CD206+ adipose tissue macrophages are associated with insulin resistance in human obesity », Diabetes, vol.59, pp.1648-1656

A. V. Castro, C. M. Kolka, S. P. Kim, and R. N. Bergman, « Obesity, insulin resistance and comorbidities -Mechanisms of association, Arq. Bras. Endocrinol. Metabol, vol.58, issue.6, pp.600-609, 2014.

A. J. Richard and J. M. Stephens, « The role of JAK-STAT signaling in adipose tissue function, Biochim. Biophys. Acta, vol.1842, issue.3, pp.431-439, 2014.

M. , Id1 Promotes Obesity by Suppressing Brown Adipose Thermogenesis and White Adipose Browning, p.161079, 2017.

M. W. Hamrick, M. E. Mcgee-lawrence, and D. M. Frechette, « Fatty Infiltration of Skeletal Muscle: Mechanisms and Comparisons with Bone Marrow Adiposity, vol.7, p.69, 2016.

W. Liu, Y. Liu, X. Lai, and E. S. Kuang, « Intramuscular adipose is derived from a non-Pax3 lineage and required for efficient regeneration of skeletal muscles, Dev. Biol, vol.361, issue.1, pp.27-38

M. Mora, « Fibrous-adipose replacement in skeletal muscle biopsy, Eur. Heart J, vol.10

D. Suppl, , pp.103-104, 1989.

S. Schenk, M. Saberi, and J. M. Olefsky, « Insulin sensitivity: modulation by nutrients and inflammation, J. Clin. Invest, vol.118, issue.9, pp.2992-3002, 2008.

O. Addison, R. L. Marcus, P. C. Lastayo, A. S. Ryan, and . Intermuscular, Int. J. Endocrinol, vol.2014, p.309570, 2014.

M. P. Krause, « Adiponectin is expressed by skeletal muscle fibers and influences muscle phenotype and function », Am. J. Physiol. Cell Physiol, vol.295, issue.1, pp.203-212, 2008.

J. Machann, H. Häring, F. Schick, and M. Stumvoll, Intramyocellular lipids and insulin resistance, vol.6, pp.239-248, 2004.

K. Eckardt, A. Taube, and J. Eckel, « Obesity-associated insulin resistance in skeletal muscle: Role of lipid accumulation and physical inactivity, Rev. Endocr. Metab. Disord, vol.12, issue.3, pp.163-172, 2011.

D. Serra, P. Mera, M. I. Malandrino, J. F. Mir, and L. Herrero, Mitochondrial Fatty Acid Oxidation in Obesity, vol.19, pp.269-284, 2013.

T. Lam, « Reversal of intramyocellular lipid accumulation by lipophagy and a p62-mediated pathway, Cell Death Discov, vol.2, p.16061, 2016.

M. Gueugneau, « Skeletal muscle lipid content and oxidative activity in relation to muscle fiber type in aging and metabolic syndrome, J. Gerontol. A. Biol. Sci. Med. Sci, vol.70, issue.5, pp.566-576, 2015.

S. J. Choi, « Intramyocellular Lipid and Impaired Myofiber Contraction in Normal Weight and Obese Older Adults, J. Gerontol. A. Biol. Sci. Med. Sci, vol.71, issue.4, pp.557-564, 2016.

M. Tavassoli, Marrow adipose cells. Histochemical identification of labile and stable components, vol.100, pp.16-18, 1976.

M. E. Kricun, « Red-yellow marrow conversion: its effect on the location of some solitary bone lesions, Skeletal Radiol, vol.14, issue.1, pp.10-19, 1985.

H. Cao, K. Gerhold, J. R. Mayers, M. M. Wiest, S. M. Watkins et al., « Identification of a lipokine, a lipid hormone linking adipose tissue to systemic metabolism, Cell, vol.134, issue.6, pp.933-944, 2008.

E. L. Scheller, A. A. Burr, O. A. Macdougald, and W. P. Cawthorn, « Inside out: Bone marrow adipose tissue as a source of circulating adiponectin, Adipocyte, vol.5, issue.3, pp.251-269, 2016.

E. L. Scheller and C. J. Rosen, « What's the matter with MAT? Marrow adipose tissue, metabolism, and skeletal health, Ann. N. Y. Acad. Sci, vol.1311, pp.14-30, 2014.

M. W. Morcos, H. Al-jallad, and E. R. Hamdy, « Comprehensive Review of Adipose Stem Cells and Their Implication in Distraction Osteogenesis and Bone Regeneration, BioMed Res. Int, vol.2015, 2015.

N. Kawao and H. Kaji, « Interactions between muscle tissues and bone metabolism, J. Cell. Biochem, vol.116, issue.5, pp.687-695, 2015.

H. Kaji, « Interaction between Muscle and Bone, J. Bone Metab, vol.21, issue.1, pp.29-40, 2014.

M. W. Hamrick, « The skeletal muscle secretome: an emerging player in muscle-bone crosstalk, BoneKEy Rep, vol.1, p.60, 2012.

G. Karsenty and E. N. Olson, Bone and Muscle Endocrine Functions: Unexpected Paradigms of Inter-organ Communication, vol.164, pp.1248-1256, 2016.

J. E. Gunton, C. M. Girgis, P. A. Baldock, and P. Lips, Bone muscle interactions and vitamin D, vol.80, pp.89-94, 2015.

H. M. Frost and . Bone, mass" and the "mechanostat": a proposal », Anat. Rec, vol.219, issue.1, pp.1-9, 1987.

H. M. Frost and . Muscle, bone, and the Utah paradigm: a 1999 overview, Med. Sci. Sports Exerc, vol.32, issue.5, pp.911-917, 2000.

J. L. Ferretti, G. R. Cointry, R. F. Capozza, and H. M. Frost, Bone mass, bone strength, musclebone interactions, osteopenias and osteoporoses, vol.124, pp.269-279, 2003.

V. Gnyubkin, « Effects of chronic hypergravity: from adaptive to deleterious responses in growing mouse skeleton, J. Appl. Physiol, vol.119, issue.8, pp.908-917, 2015.

B. Canciani, « Effects of long time exposure to simulated micro-and hypergravity on skeletal architecture, J. Mech. Behav. Biomed. Mater, vol.51, pp.1-12, 2015.

L. Vico, O. Barou, N. Laroche, C. Alexandre, and M. H. Lafage-proust, Effects of centrifuging at 2g on rat long bone metaphyses, vol.80, pp.360-366, 1999.

M. Miwa, « Effects of hypergravity on proliferation and differentiation of osteoblast-like cells, Bone Miner, vol.14, issue.1, pp.15-25, 1991.

A. Nemoto and T. Uemura, Hypergravity effects on osteoclasts activity, vol.7, pp.127-128, 2000.

M. M. Chi, J. K. Manchester, and O. H. Lowry, « Effect of centrifugation at 2G for 14 days on metabolic enzymes of the tibialis anterior and soleus muscles, Aviat. Space Environ. Med, vol.69, issue.6, pp.9-11, 1998.

W. T. Stauber, G. R. Miller, and J. G. Grimmett, « Adaptation of rat gastrocnemius muscles to 2 weeks of centrifugation: myofibers and extracellular matrix, Aviat. Space Environ. Med, vol.69, issue.6, pp.45-48, 1998.

W. D. Martin, Effects of chronic centrifugation on skeletal muscle fibers in young developing rats, Aviat. Space Environ. Med, vol.51, issue.5, pp.473-484, 1980.

M. Frey, R. Känel-christen, V. Stalder-navarro, P. J. Duke, E. R. Weibel et al., « Effects of long-term hypergravity on muscle, heart and lung structure of mice, J. Comp. Physiol, vol.167, issue.7, pp.494-501, 1997.

M. Bojados and M. Jamon, « The long-term consequences of the exposure to increasing gravity levels on the muscular, vestibular and cognitive functions in adult mice, Behav. Brain Res, vol.264, pp.64-73, 2014.

T. L. Clemens and G. Karsenty, « The osteoblast: an insulin target cell controlling glucose homeostasis, J. Bone Miner. Res. Off. J. Am. Soc. Bone Miner. Res, vol.26, issue.4, pp.677-680, 2011.

M. Ferron, « Insulin signaling in osteoblasts integrates bone remodeling and energy metabolism, Cell, vol.142, issue.2, pp.296-308

K. Fulzele, « Insulin receptor signaling in osteoblasts regulates postnatal bone acquisition and body composition, Cell, vol.142, issue.2, pp.309-319

C. Riehle and E. D. Abel, « Insulin Signaling and Heart Failure, vol.118, pp.1151-1169, 2016.

J. M. Rojas and M. W. Schwartz, Control of Hepatic Glucose Metabolism by Islet and Brain, vol.16, pp.33-40, 2014.

V. T. Samuel and G. I. Shulman, « Integrating Mechanisms for Insulin Resistance: Common Threads and Missing Links, vol.148, pp.852-871, 2012.

J. Chen, « Obesity reduces bone density associated with activation of PPAR? and suppression of Wnt/?-catenin in rapidly growing male rats, PloS One, vol.5, issue.10, p.13704, 2010.

Z. Wang, « Effect of advanced glycosylation end products on apoptosis in human adipose tissue-derived stem cells in vitro, Cell Biosci, vol.5, p.3, 2015.

S. N. Pramojanee, M. Phimphilai, N. Chattipakorn, and S. C. Chattipakorn, Possible roles of insulin signaling in osteoblasts, vol.39, pp.144-151, 2014.

B. T. O'neill, H. P. Lauritzen, M. F. Hirshman, G. Smyth, L. J. Goodyear et al., Differential Role of Insulin/IGF-1 Receptor Signaling in Muscle Growth and Glucose Homeostasis, vol.11, pp.1220-1235, 2015.

C. Tagliaferri, Y. Wittrant, M. Davicco, S. Walrand, V. Coxam et al., Ageing Res. Rev, vol.21, pp.55-70, 2015.

B. Roy, Biomolecular basis of the role of diabetes mellitus in osteoporosis and bone fractures », World J. Diabetes, vol.4, pp.101-113, 2013.

L. Tian and X. Yu, « Lipid metabolism disorders and bone dysfunction--interrelated and mutually regulated (review) », Mol. Med. Rep, vol.12, issue.1, pp.783-794, 2015.

J. Wei and P. Ducy, « Co-dependence of bone and energy metabolisms, Arch. Biochem. Biophys, vol.503, issue.1, pp.35-40, 2010.

K. Tanabe, K. Amo-shiinoki, M. Hatanaka, and Y. Tanizawa, « Interorgan Crosstalk Contributing to ?-Cell Dysfunction, J. Diabetes Res, vol.2017, p.3605178, 2017.

H. C. Denroche, F. K. Huynh, and T. J. Kieffer, « The role of leptin in glucose homeostasis, J. Diabetes Investig, vol.3, issue.2, pp.115-129, 2012.

Z. Yang, « Regulation of insulin and leptin signaling by muscle suppressor of cytokine signaling 3 (SOCS3), PloS One, vol.7, issue.10, p.47493, 2012.

K. Sakuma and A. Yamaguchi, « Sarcopenic obesity and endocrinal adaptation with age, Int. J. Endocrinol, vol.2013, p.204164, 2013.

A. C. Mcpherron, A. M. Lawler, and S. J. Lee, « Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member, Nature, vol.387, pp.83-90, 1997.

A. C. Mcpherron and S. Lee, « Suppression of body fat accumulation in myostatin-deficient mice, J. Clin. Invest, vol.109, issue.5, pp.595-601, 2002.

T. Guo, W. Jou, T. Chanturiya, J. Portas, O. Gavrilova et al., « Myostatin inhibition in muscle, but not adipose tissue, decreases fat mass and improves insulin sensitivity, PloS One, vol.4, p.4937, 2009.

M. W. Hamrick, « Increased bone mineral density in the femora of GDF8 knockout mice, Anat. Rec. A. Discov. Mol. Cell. Evol. Biol, vol.272, issue.1, pp.388-391, 2003.

J. Dong, Y. Dong, Y. Dong, F. Chen, W. E. Mitch et al., « Inhibition of myostatin in mice improves insulin sensitivity via irisin-mediated cross talk between muscle and adipose tissues », Int. J. Obes, vol.40, issue.3, pp.434-442, 2005.

H. Amthor, « Follistatin complexes Myostatin and antagonises Myostatin-mediated inhibition of myogenesis, Dev. Biol, vol.270, issue.1, pp.19-30, 2004.

H. Gilson, O. Schakman, S. Kalista, P. Lause, K. Tsuchida et al., « Follistatin induces muscle hypertrophy through satellite cell proliferation and inhibition of both myostatin and activin, Am. J. Physiol. Endocrinol. Metab, vol.297, issue.1, pp.157-164, 2009.

M. Eijken, « The activin A-follistatin system: potent regulator of human extracellular matrix mineralization, FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol, vol.21, issue.11, pp.2949-2960, 2007.

P. V. Sepulveda, « Evaluation of follistatin as a therapeutic in models of skeletal muscle atrophy associated with denervation and tenotomy, Sci. Rep, vol.5, p.17535, 2015.

B. Dankbar, « Myostatin is a direct regulator of osteoclast differentiation and its inhibition reduces inflammatory joint destruction in mice, Nat. Med, vol.21, issue.9, pp.1085-1090, 2015.

M. R. Laurent, « Muscle-bone interactions: From experimental models to the clinic? A critical update, Mol. Cell. Endocrinol, vol.432, pp.14-36, 2016.

Y. Chen, « GDF8 inhibits bone formation and promotes bone resorption in mice, Clin. Exp. Pharmacol. Physiol, vol.44, issue.4, pp.500-508, 2017.

H. Kaji, Effects of myokines on bone, vol.5, p.826, 2016.

B. Buehring, N. Binkley, and . Myostatin, The Holy Grail for Muscle, Bone, and Fat?, Curr. Osteoporos. Rep, vol.11, issue.4, pp.407-414, 2013.

D. L. Allen, D. S. Hittel, and A. C. Mcpherron, « Expression and Function of Myostatin in Obesity, Diabetes, and Exercise Adaptation, Med. Sci. Sports Exerc, vol.43, issue.10, pp.1828-1835, 2011.

, Inhibiting myostatin signaling prevents femoral trabecular bone loss and microarchitecture deterioration in diet-induced obese rats

P. Bialek, « A myostatin and activin decoy receptor enhances bone formation in mice, Bone, vol.60, pp.162-171, 2014.

R. C. Smith and B. K. Lin, « Myostatin inhibitors as therapies for muscle wasting associated with cancer and other disorders, Curr. Opin. Support. Palliat. Care, vol.7, issue.4, pp.352-360, 2013.

K. A. Reardon, J. Davis, R. M. Kapsa, P. Choong, E. Byrne et al., insulin-like growth factor-1, and leukemia inhibitory factor mRNAs are upregulated in chronic human disuse muscle atrophy, Muscle Nerve, vol.24, issue.7, pp.893-899, 2001.

D. F. Sun, Y. Chen, and R. Rabkin, « Work-induced changes in skeletal muscle IGF-1 and myostatin gene expression in uremia, Kidney Int, vol.70, issue.3, pp.453-459, 2006.

Y. Elkina, S. Haehling, S. D. Anker, and J. Springer, « The role of myostatin in muscle wasting: an overview, J. Cachexia Sarcopenia Muscle, vol.2, issue.3, pp.143-151, 2011.

D. S. Hittel, J. R. Berggren, J. Shearer, K. Boyle, and J. A. Houmard, « Increased secretion and expression of myostatin in skeletal muscle from extremely obese women, Diabetes, vol.58, issue.1, pp.30-38, 2009.

H. Q. Han and W. E. Mitch, Targeting the Myostatin Signaling Pathway to Treat Muscle Wasting Diseases, vol.5, pp.334-341, 2011.

D. Akhmedov and R. Berdeaux, The effects of obesity on skeletal muscle regeneration, vol.4, p.371, 2013.

B. K. Pedersen and M. A. Febbraio, « Muscles, exercise and obesity: skeletal muscle as a secretory organ, Nat. Rev. Endocrinol, vol.8, issue.8, pp.457-465

A. C. Dilger, M. E. Spurlock, A. L. Grant, and D. E. Gerrard, « Myostatin null mice respond differently to dietary-induced and genetic obesity, Anim. Sci. J. Nihon Chikusan Gakkaiho, vol.81, issue.5, pp.586-593, 2010.

C. Zhang, « Myostatin-deficient mice exhibit reduced insulin resistance through activating the AMP-activated protein kinase signalling pathway, Diabetologia, vol.54, issue.6, pp.1491-1501, 2011.

F. Li, Y. Li, Y. Duan, C. A. Hu, Y. Tang et al., « Myokines and adipokines: Involvement in the crosstalk between skeletal muscle and adipose tissue, Cytokine Growth Factor Rev, vol.33, pp.73-82, 2017.

P. Boström, « A PGC1?-dependent myokine that drives browning of white fat and thermogenesis, Nature, vol.481, pp.463-468

R. A. Vaughan, « Characterization of the metabolic effects of irisin on skeletal muscle in vitro, Diabetes Obes. Metab, vol.16, issue.8, pp.711-718, 2014.

Y. Zhang, « Irisin exerts dual effects on browning and adipogenesis of human white adipocytes, Am. J. Physiol. -Endocrinol. Metab, vol.311, issue.2, pp.530-541, 2016.

J. I. Castillo-quan, « From white to brown fat through the PGC-1?-dependent myokine irisin: implications for diabetes and obesity, Dis. Model. Mech, vol.5, issue.3, pp.293-295, 2012.

G. Colaianni, « The myokine irisin increases cortical bone mass, Proc. Natl. Acad. Sci. U. S. A, vol.112, pp.12157-12162, 2015.

G. Colaianni, « Irisin prevents and restores bone loss and muscle atrophy in hind-limb suspended mice, Sci. Rep, vol.7, issue.1, p.2811, 2017.

S. Gao, Y. Cheng, L. Zhao, Y. Chen, and Y. Liu, « The relationships of irisin with bone mineral density and body composition in PCOS patients, Diabetes Metab. Res. Rev, vol.32, issue.4, pp.421-428, 2016.

J. Shao, Z. Wang, T. Yang, H. Ying, Y. Zhang et al., « Bone Regulates Glucose Metabolism as an Endocrine Organ through Osteocalcin », Int. J. Endocrinol, vol.2015, 2015.

M. P. Jedrychowski, Detection and Quantitation of Circulating Human Irisin by Tandem Mass Spectrometry, vol.22, pp.734-740, 2015.

M. Ferron, E. Hinoi, G. Karsenty, and P. Ducy, « Osteocalcin differentially regulates beta cell and adipocyte gene expression and affects the development of metabolic diseases in wild-type mice, Proc. Natl. Acad. Sci. U. S. A, vol.105, issue.13, pp.5266-5270, 2008.

I. Kanazawa, Osteocalcin as a hormone regulating glucose metabolism, World J. Diabetes, vol.6, pp.1345-1354

M. Ferron, M. D. Mckee, R. L. Levine, P. Ducy, and G. Karsenty, « INTERMITTENT INJECTIONS OF OSTEOCALCIN IMPROVE GLUCOSE METABOLISM AND PREVENT TYPE 2 DIABETES IN MICE, Bone, vol.50, issue.2, pp.568-575

D. Chen, « HIF-1? inhibits Wnt signaling pathway by activating Sost expression in osteoblasts, PloS One, vol.8, issue.6, p.65940, 2013.

N. Warde and . Osteoarthritis, Sclerostin inhibits Wnt signaling in OA chondrocytes and protects against inflammation-induced cartilage damage, Nat. Rev. Rheumatol, vol.7, issue.8, p.438, 2011.

N. Kamiya, « BMP signaling negatively regulates bone mass through sclerostin by inhibiting the canonical Wnt pathway, Dev. Camb. Engl, vol.135, pp.3801-3811, 2008.

P. Mera, « Osteocalcin Signaling in Myofibers Is Necessary and Sufficient for Optimum Adaptation to Exercise, Cell Metab, vol.23, issue.6, pp.1078-1092, 2016.

K. Brooks and . Sarcopenia, Increased Body Fat in Sclerostin-deficient Mice: Interactions between Muscle and Bone and Potential Implications for Osteoporosis Management

G. Colaianni and M. Grano, Role of Irisin on the bone-muscle functional unit, vol.4, p.765, 2015.

G. Daniele, « Sclerostin and Insulin Resistance in Prediabetes: Evidence of a Cross Talk Between Bone and Glucose Metabolism, Diabetes Care, vol.38, issue.8, pp.1509-1517, 2015.

M. Á. Gómez-sámano, « Fibroblast growth factor 21 and its novel association with oxidative stress, Redox Biol, vol.11, pp.335-341, 2016.

F. L. Mashili, « Direct effects of FGF21 on glucose uptake in human skeletal muscle: implications for type 2 diabetes and obesity, Diabetes Metab. Res. Rev, vol.27, issue.3, pp.286-297, 2011.

A. O. Chavez, M. Molina-carrion, M. A. Abdul-ghani, F. Folli, R. A. Defronzo et al., Circulating Fibroblast Growth Factor-21 Is Elevated in Impaired Glucose Tolerance and Type 2 Diabetes and Correlates With Muscle and Hepatic Insulin Resistance, Diabetes Care, vol.32, issue.8, p.1542, 2009.

J. Y. Jeon, « Association between insulin resistance and impairment of FGF21 signal transduction in skeletal muscles, vol.53, pp.97-106, 2016.

P. Lee, « Irisin and FGF21 Are Cold-Induced Endocrine Activators of Brown Fat Function in Humans, Cell Metab, vol.19, issue.2, pp.302-309, 2014.

D. Cuevas-ramos and C. A. Aguilar-salinas, Modulation of energy balance by fibroblast growth factor 21, 2016.

J. S. Moyers, « Molecular determinants of FGF-21 activity-synergy and cross-talk with PPAR? signaling, J. Cell. Physiol, vol.210, issue.1, pp.1-6, 2007.

M. Giralt, A. Gavaldà-navarro, and E. F. Villarroya, « Fibroblast growth factor-21, energy balance and obesity, Mol. Cell. Endocrinol, vol.418, pp.66-73, 2015.

M. Pi and L. D. Quarles, Curr. Osteoporos. Rep, vol.11, issue.4, pp.391-399

M. C. Hu, K. Shiizaki, M. Kuro-o, and O. W. Moe, « Fibroblast Growth Factor 23 and Klotho: Physiology and Pathophysiology of an Endocrine Network of Mineral Metabolism », Annu. Rev. Physiol, vol.75, pp.503-533, 2013.

M. Wojcik, D. Janus, K. Dolezal-oltarzewska, D. Drozdz, K. Sztefko et al., « The association of FGF23 levels in obese adolescents with insulin sensitivity, J. Pediatr. Endocrinol. Metab. JPEM, vol.25, pp.687-690, 2012.

M. A. Mirza, A. Larsson, H. Melhus, L. Lind, and T. E. Larsson, « Serum intact FGF23 associate with left ventricular mass, hypertrophy and geometry in an elderly population, Atherosclerosis, vol.207, issue.2, pp.546-551, 2009.

D. Li, H. Fu, T. Zhao, M. Ni, and F. Shen, « Exercise-stimulated FGF23 promotes exercise performance via controlling the excess reactive oxygen species production and enhancing mitochondrial function in skeletal muscle, vol.65, pp.747-756, 2016.

M. A. Mirza, A. Larsson, L. Lind, and T. E. Larsson, Circulating fibroblast growth factor-23 is associated with vascular dysfunction in the community, Atherosclerosis, vol.205, issue.2, pp.385-390, 2009.

X. Hu, « Associations of serum fibroblast growth factor 23 levels with obesity and visceral fat accumulation, Clin. Nutr. Edinb. Scotl., déc, 2016.

J. P. Whitehead, A. A. Richards, I. J. Hickman, G. A. Macdonald, and J. , Prins, « Adiponectin--a key adipokine in the metabolic syndrome, Diabetes Obes. Metab, vol.8, issue.3, pp.264-280, 2006.

H. S. Berner, « Adiponectin and its receptors are expressed in bone-forming cells, Bone, vol.35, issue.4, pp.842-849, 2004.

A. E. Achari, S. K. Jain, and . Adiponectin, Therapeutic Target for Obesity, Diabetes, and Endothelial Dysfunction, vol.18, 2017.

G. Singhal, « Fibroblast Growth Factor 21 (FGF21) Protects against High Fat Diet Induced Inflammation and Islet Hyperplasia in Pancreas, PLoS ONE, vol.11, issue.2, 2016.

C. Weyer, « Hypoadiponectinemia in obesity and type 2 diabetes: close association with insulin resistance and hyperinsulinemia, J. Clin. Endocrinol. Metab, vol.86, issue.5, pp.1930-1935, 2001.

C. A. Aguilar-salinas, « High adiponectin concentrations are associated with the metabolically healthy obese phenotype, J. Clin. Endocrinol. Metab, vol.93, issue.10, pp.4075-4079, 2008.

A. Onat, G. Hergenç, D. Dursuno?lu, Z. Küçükdurmaz, S. Bulur et al., « Relatively high levels of serum adiponectin in obese women, a potential indicator of anti-inflammatory dysfunction: relation to sex hormone-binding globulin », Int. J. Biol. Sci, vol.4, pp.208-214, 2008.

L. Rossmeislová, Weight Loss Improves the Adipogenic Capacity of Human Preadipocytes and Modulates Their Secretory Profile », Diabetes, vol.62, 1990.

M. J. Kim, M. Maachi, J. Capeau, and J. Bastard, Adiponectine et syndrome métabolique, vol.21, pp.1-7, 2006.

X. Mao, « APPL1 binds to adiponectin receptors and mediates adiponectin signalling and function, Nat. Cell Biol, vol.8, issue.5, pp.516-523, 2006.

Q. Tu, « Adiponectin inhibits osteoclastogenesis and bone resorption via APPL1-mediated suppression of Akt1, J. Biol. Chem, vol.286, pp.12542-12553, 2011.

D. Kajimura, « Adiponectin regulates bone mass via opposite central and peripheral mechanisms through FoxO1, Cell Metab, vol.17, issue.6, pp.901-915, 2013.

H. W. Lee, S. Y. Kim, A. Y. Kim, E. J. Lee, J. Choi et al., Adiponectin stimulates osteoblast differentiation through induction of COX2 in mesenchymal progenitor cells, Stem Cells Dayt. Ohio, vol.27, issue.9, pp.2254-2262, 2009.

K. E. Barbour, « The effects of adiponectin and leptin on changes in bone mineral density, Osteoporos. Int. J. Establ. Result Coop. Eur. Found. Osteoporos. Natl. Osteoporos. Found. USA, vol.23, issue.6, pp.1699-1710

Y. Liu and G. Sweeney, « Adiponectin action in skeletal muscle, Best Pract. Res. Clin. Endocrinol. Metab, vol.28, issue.1, pp.33-41, 2014.

H. S. El-abhar and M. F. Schaalan, « Phytotherapy in diabetes: Review on potential mechanistic perspectives, World J. Diabetes, vol.5, issue.2, pp.176-197, 2014.

L. Zhao, « Globular adiponectin ameliorates metabolic insulin resistance via AMPKmediated restoration of microvascular insulin responses, J. Physiol, vol.593, p.4067, 2015.

A. Fukuhara, « Visfatin: a protein secreted by visceral fat that mimics the effects of insulin, Science, vol.307, pp.426-430, 2005.

S. S. Sonoli, S. Shivprasad, C. V. Prasad, A. B. Patil, P. B. Desai et al., Eur. Rev. Med. Pharmacol. Sci, vol.15, issue.1, pp.9-14, 2011.

A. R. Moschen, S. Geiger, R. Gerner, and H. Tilg, « Pre-B cell colony enhancing factor/NAMPT/visfatin and its role in inflammation-related bone disease, Mutat. Res, vol.690, issue.2, pp.95-101, 2010.

H. Xie, « Insulin-Like Effects of Visfatin on Human Osteoblasts, Calcif. Tissue Int, vol.80, issue.3, pp.201-210, 2007.

K. M. Choi, J. H. Kim, G. J. Cho, S. H. Baik, H. S. Park et al., Eur. J. Endocrinol, vol.157, issue.4, pp.437-442, 2007.

R. R. Banerjee and M. A. Lazar, « Resistin: molecular history and prognosis, J. Mol. Med. Berl. Ger, vol.81, issue.4, pp.218-226, 2003.

L. Thommesen, « Expression and regulation of resistin in osteoblasts and osteoclasts indicate a role in bone metabolism, J. Cell. Biochem, vol.99, issue.3, pp.824-834, 2006.

G. Lombardi, F. Sanchis-gomar, S. Perego, V. Sansoni, and G. Banfi, « Implications of exerciseinduced adipo-myokines in bone metabolism, Endocrine, vol.54, issue.2, pp.284-305, 2016.

S. B. Jørgensen, « Oligomeric resistin impairs insulin and AICAR-stimulated glucose uptake in mouse skeletal muscle by inhibiting GLUT4 translocation », Am. J. Physiol. Endocrinol. Metab, vol.297, issue.1, pp.57-66, 2009.

R. Palanivel and G. Sweeney, « Regulation of fatty acid uptake and metabolism in L6 skeletal muscle cells by resistin, FEBS Lett, vol.579, pp.5049-5054, 2005.

P. Muñoz-cánoves, C. Scheele, B. K. Pedersen, and A. L. Serrano, « Interleukin-6 myokine signaling in skeletal muscle: a double-edged sword?, FEBS J, vol.280, pp.4131-4148, 2013.

S. Kaneshiro, « IL-6 negatively regulates osteoblast differentiation through the SHP2/MEK2 and SHP2/Akt2 pathways in vitro, J. Bone Miner. Metab, vol.32, issue.4, pp.378-392, 2014.

W. Feng, « Long-Term Administration of High-Fat Diet Corrects Abnormal Bone Remodeling in the Tibiae of Interleukin-6-Deficient Mice, J. Histochem. Cytochem, vol.64, issue.1, pp.42-53, 2016.

T. T. Wang, C. Q. He, and X. J. Yu, Pro-Inflammation Cytokines: New Potential Therapeutic Targets for Obesity-Related Bone Disorders, 2017.

M. E. Starr, M. Saito, B. M. Evers, and H. Saito, « Age-Associated Increase in Cytokine Production During Systemic Inflammation-II: The Role of IL-1? in Age-Dependent IL-6 Upregulation in Adipose Tissue, J. Gerontol. A. Biol. Sci. Med. Sci, vol.70, pp.1508-1515, 2015.

K. Asadullah, W. Sterry, and H. D. Volk, Interleukin-10 Therapy-Review of a New Approach, vol.55, pp.241-269, 2003.

F. Driessler, K. Venstrom, R. Sabat, K. Asadullah, and A. J. Schottelius, « Molecular mechanisms of interleukin-10-mediated inhibition of NF-?B activity: a role for p50, Clin. Exp. Immunol, vol.135, issue.1, pp.64-73, 2004.

H. Shin, J. Lee, E. A. Lee, B. S. Kwon, and H. Choi, « Enhanced osteoclastogenesis in 4-1BB-deficient mice caused by reduced interleukin-10, J. Bone Miner. Res. Off. J. Am. Soc. Bone Miner. Res, vol.21, pp.1907-1912, 2006.

T. Kyung, J. Lee, T. V. Phan, R. Yu, and H. Choi, « Osteoclastogenesis by Bone MarrowDerived Macrophages Is Enhanced in Obese Mice, J. Nutr, vol.139, issue.3, pp.502-506, 2009.

C. N. Lumeng, J. L. Bodzin, and A. R. Saltiel, « Obesity induces a phenotypic switch in adipose tissue macrophage polarization, J. Clin. Invest, vol.117, issue.1, pp.175-184, 2007.

S. Amar, Q. Zhou, Y. Shaik-dasthagirisaheb, and E. S. Leeman, « Diet-induced obesity in mice causes changes in immune responses and bone loss manifested by bacterial challenge, Proc. Natl. Acad. Sci. U. S. A, vol.104, pp.20466-20471, 2007.

H. Kim, « Differential effects of interleukin-6 and -10 on skeletal muscle and liver insulin action in vivo, Diabetes, vol.53, issue.4, pp.1060-1067, 2004.

E. Hong, « Interleukin-10 prevents diet-induced insulin resistance by attenuating macrophage and cytokine response in skeletal muscle, Diabetes, vol.58, issue.11, pp.2525-2535, 2009.

K. Makki, P. Froguel, and E. I. Wolowczuk, Adipose Tissue in Obesity-Related Inflammation and Insulin Resistance: Cells, Cytokines, and Chemokines, vol.2013, 2013.

J. Kim, « Regulation of the catabolic cascade in osteoarthritis by the zinc-ZIP8-MTF1 axis, Cell, vol.156, issue.4, pp.730-743, 2014.

K. Kobayashi, « Tumor Necrosis Factor ? Stimulates Osteoclast Differentiation by a Mechanism Independent of the Odf/Rankl-Rank Interaction, J. Exp. Med, vol.191, issue.2, pp.275-286, 2000.

A. Fanzani, V. M. Conraads, F. Penna, and W. Martinet, « Molecular and cellular mechanisms of skeletal muscle atrophy: an update, J. Cachexia Sarcopenia Muscle, vol.3, issue.3, pp.163-179, 2012.

D. Wang, « Resveratrol prevents TNF-?-induced muscle atrophy via regulation of Akt/mTOR/FoxO1 signaling in C2C12 myotubes, Int. Immunopharmacol, vol.19, issue.2, pp.206-213, 2014.

G. Sabio, « Role of muscle c-Jun NH2-terminal kinase 1 in obesity-induced insulin resistance, Mol. Cell. Biol, vol.30, issue.1, pp.106-115

Y. Cao, Angiogenesis modulates adipogenesis and obesity, J. Clin. Invest, vol.117, issue.9, pp.2362-2368, 2007.

G. Voros, E. Maquoi, D. Demeulemeester, N. Clerx, D. Collen et al., « Modulation of Angiogenesis during Adipose Tissue Development in Murine Models of Obesity, Endocrinology, vol.146, issue.10, pp.4545-4554, 2005.

Y. Cao, Angiogenesis and Vascular Functions in Modulation of Obesity, Adipose Metabolism, and Insulin Sensitivity, vol.18, issue.4, pp.478-489, 2013.

T. R. Mcguire, « Inflammation Associated With Obesity: Relationship With Blood and Bone Marrow Endothelial Cells », Obesity, vol.19, issue.11, pp.2130-2136, 2011.

M. Silvennoinen, « High-fat feeding induces angiogenesis in skeletal muscle and activates angiogenic pathways in capillaries, Angiogenesis, vol.16, issue.2, pp.297-307, 2012.

Y. Bhattarai, « High-fat diet-induced obesity alters nitric oxide-mediated neuromuscular transmission and smooth muscle excitability in the mouse distal colon, Am. J. Physiol. Gastrointest. Liver Physiol, vol.311, issue.2, pp.210-220, 2016.

S. Suri, S. E. Gill, S. M. De-camin, D. Wilson, D. F. Mcwilliams et al., « Neurovascular invasion at the osteochondral junction and in osteophytes in osteoarthritis, Ann. Rheum. Dis, vol.66, issue.11, pp.1423-1428, 2007.

S. S. Glasson, T. J. Blanchet, and E. A. Morris, « The surgical destabilization of the medial meniscus (DMM) model of osteoarthritis in the 129/SvEv mouse, Osteoarthr. Cartil. OARS Osteoarthr. Res. Soc, vol.15, issue.9, pp.1061-1069, 2007.

M. Pasqualini, « Skeletal site-specific effects of whole body vibration in mature rats: from deleterious to beneficial frequency-dependent effects, vol.55, pp.69-77, 2013.

R. D. Prisby, M. Lafage-proust, L. Malaval, A. Belli, and L. Vico, « Effects of whole body vibration on the skeleton and other organ systems in man and animal models: what we know and what we need to know, Ageing Res. Rev, vol.7, issue.4, pp.319-329, 2008.

R. M. Deacon, « Measuring the Strength of Mice, J. Vis. Exp. JoVE, p.76, 2013.

B. Roche, « Structure and quantification of microvascularisation within mouse long bones: what and how should we measure?, vol.50, pp.390-399

H. Huang, J. D. Skelly, D. C. Ayers, and E. J. Song, « Age-dependent Changes in the Articular Cartilage and Subchondral Bone of C57BL/6 Mice after Surgical Destabilization of, Medial Meniscus », Sci. Rep, vol.7, p.42294, 2017.

M. R. Fernandes, N. V. De-lima, K. S. Rezende, I. C. Santos, I. S. Silva et al., « Animal models of obesity in rodents. An integrative review, Acta Cir. Bras, vol.31, pp.840-844, 2016.

A. Heydemann, « An Overview of Murine High Fat Diet as a Model for Type 2 Diabetes Mellitus, J. Diabetes Res, vol.2016, p.2902351, 2016.

R. Burcelin, V. Crivelli, A. Dacosta, and A. Roy-tirelli, Thorens, « Heterogeneous metabolic adaptation of C57BL/6J mice to high-fat diet », Am. J. Physiol. -Endocrinol. Metab, vol.282, 2002.

Y. Wang, C. Wang, X. Zhang, H. F. Gu, and L. Wu, « Common drugs for stabilization of renal function in the progression of diabetic nephropathy and their relations with hypertension therapy, Curr. Diabetes Rev, 2017.

P. Lindström, The physiology of obese-hyperglycemic mice, ScientificWorldJournal, vol.7, pp.666-685, 2007.

B. Lecka-czernik, L. A. Stechschulte, P. J. Czernik, and A. R. Dowling, « High bone mass in adult mice with diet-induced obesity results from a combination of initial increase in bone mass followed by attenuation in bone formation; implications for high bone mass and decreased bone quality in obesity, Mol. Cell. Endocrinol, 2015.

H. S. Choi, S. J. Park, Z. H. Lee, and S. Lim, The Effects of a High Fat Diet Containing Diacylglycerol on Bone in C57BL/6J Mice », vol.56, pp.951-960, 2015.

E. L. Scheller, Changes in Skeletal Integrity and Marrow Adiposity during High-Fat Diet and after Weight Loss, vol.7, p.102, 2016.

A. A. Loredo-pérez, « High-fat diet exacerbates pain-like behaviors and periarticular bone loss in mice with CFA-induced knee arthritis, Obes. Silver Spring Md, vol.24, issue.5, pp.1106-1115, 2016.

Y. Fujita, K. Watanabe, and K. Maki, « Serum leptin levels negatively correlate with trabecular bone mineral density in high-fat diet-induced obesity mice, J. Musculoskelet. Neuronal Interact, vol.12, issue.2, pp.84-94

C. R. Doucette, « A High Fat Diet Increases Bone Marrow Adipose Tissue (MAT) But Does Not Alter Trabecular or Cortical Bone Mass in C57BL/6J Mice, J. Cell. Physiol, 2015.

L. Shu, « High-fat Diet Causes Bone Loss in Young Mice by Promoting Osteoclastogenesis through Alteration of the Bone Marrow Environment, Calcif. Tissue Int, vol.96, issue.4, pp.313-323, 2015.

T. H. Ambrosi, « Adipocyte Accumulation in the Bone Marrow during Obesity and Aging Impairs Stem Cell-Based Hematopoietic and Bone Regeneration, Cell Stem Cell, vol.20, issue.6, pp.771-784, 2017.

S. V. Silva, M. Renovato-martins, C. Ribeiro-pereira, M. Citelli, and C. Barja-fidalgo, « Obesity modifies bone marrow microenvironment and directs bone marrow mesenchymal cells to adipogenesis, Obesity, vol.24, pp.2522-2532, 2016.

G. Kerckhofs, « Changes in bone macro-and microstructure in diabetic obese mice revealed by high resolution microfocus X-ray computed tomography, Sci. Rep, vol.6, p.35517, 2016.

D. D. Sosa and E. F. Eriksen, « Reduced Bone Material Strength is Associated with Increased Risk and Severity of Osteoporotic Fractures. An Impact Microindentation Study, Calcif. Tissue Int, vol.101, issue.1, pp.34-42, 2017.

M. Ferron and J. Lacombe, « Regulation of energy metabolism by the skeleton: Osteocalcin and beyond, Arch. Biochem. Biophys, vol.561, pp.137-146, 2014.

U. Saleem, T. H. Mosley, and I. J. Kullo, « Serum Osteocalcin Is Associated With Measures of Insulin Resistance, Adipokine Levels, and the Presence of Metabolic Syndrome, Arterioscler. Thromb. Vasc. Biol, vol.30, issue.7, pp.1474-1478, 2010.

J. N. Stabley, R. D. Prisby, B. J. Behnke, and M. D. Delp, « Type 2 diabetes alters bone and marrow blood flow and vascular control mechanisms in the ZDF rat, J. Endocrinol, vol.225, issue.1, pp.47-58, 2015.

I. Elias, « Adipose Tissue Overexpression of Vascular Endothelial Growth Factor Protects Against Diet-Induced Obesity and Insulin Resistance, Diabetes, vol.61, issue.7, pp.1801-1813, 2012.

Z. S. Ai-aql, A. S. Alagl, D. T. Graves, L. C. Gerstenfeld, and T. A. Einhorn, « Molecular mechanisms controlling bone formation during fracture healing and distraction osteogenesis, J. Dent. Res, vol.87, issue.2, pp.107-118, 2008.

S. Lillioja, « Skeletal muscle capillary density and fiber type are possible determinants of in vivo insulin resistance in man, J. Clin. Invest, vol.80, issue.2, pp.415-424, 1987.

H. Eshima, « Long-term, but not short-term high-fat diet induces fiber composition changes and impaired contractile force in mouse fast-twitch skeletal muscle, Physiol. Rep, vol.5, issue.7, 2017.

M. Mogi, « Diabetic mice exhibited a peculiar alteration in body composition with exaggerated ectopic fat deposition after muscle injury due to anomalous cell differentiation, J. Cachexia Sarcopenia Muscle, vol.7, issue.2, pp.213-224, 2016.

Y. Komiya, « Mouse soleus (slow) muscle shows greater intramyocellular lipid droplet accumulation than EDL (fast) muscle: fiber type-specific analysis, J. Muscle Res. Cell Motil, 2017.

K. E. Shortreed, « Muscle-specific adaptations, impaired oxidative capacity and maintenance of contractile function characterize diet-induced obese mouse skeletal muscle, PloS One, vol.4, issue.10, p.7293, 2009.

D. L. Allen, activin receptor IIb, and follistatin-like-3 gene expression are altered in adipose tissue and skeletal muscle of obese mice », Am. J. Physiol. Endocrinol. Metab, vol.294, issue.5, pp.918-927, 2008.

N. Kubota, « PPAR gamma mediates high-fat diet-induced adipocyte hypertrophy and insulin resistance, Mol. Cell, vol.4, pp.597-609, 1999.

A. W. Norris, « Muscle-specific PPAR?-deficient mice develop increased adiposity and insulin resistance but respond to thiazolidinediones, J. Clin. Invest, vol.112, issue.4, pp.608-618, 2003.

R. M. Evans, G. D. Barish, and Y. Wang, PPARs and the complex journey to obesity, vol.10, pp.355-361, 2004.

M. Ahmadian, « PPAR? signaling and metabolism: the good, the bad and the future », Nat. Med, vol.99, issue.5, pp.557-566, 2013.

B. Lee, « C/EBP? regulates macrophage activation and systemic metabolism », Am. J. Physiol. Endocrinol. Metab, vol.306, issue.10, pp.1144-1154, 2014.

G. J. Darlington, S. E. Ross, and O. A. Macdougald, « The Role of C/EBP Genes in Adipocyte Differentiation, J. Biol. Chem, vol.273, pp.30057-30060, 1998.

K. Krüger, « Functional and muscular adaptations in an experimental model for isometric strength training in mice, PloS One, vol.8, issue.11, p.79069, 2013.

P. M. Fuller, K. M. Baldwin, and C. A. Fuller, « Parallel and divergent adaptations of rat soleus and plantaris to chronic exercise and hypergravity », Am. J. Physiol. Regul. Integr. Comp. Physiol, vol.290, issue.2, pp.442-448, 2006.

I. Girard and T. Garland, « Plasma corticosterone response to acute and chronic voluntary exercise in female house mice, J. Appl. Physiol. Bethesda Md, vol.92, issue.4, pp.1553-1561, 1985.

N. Kawao, H. Morita, K. Obata, Y. Tamura, K. Okumoto et al., « The vestibular system is critical for the changes in muscle and bone induced by hypergravity in mice, Physiol. Rep, vol.4, 2016.

T. M. Gotoh, N. Fujiki, T. Matsuda, S. Gao, and H. Morita, « Roles of baroreflex and vestibulosympathetic reflex in controlling arterial blood pressure during gravitational stress in conscious rats, Am. J. Physiol. Regul. Integr. Comp. Physiol, vol.286, issue.1, pp.25-30, 2004.

S. Buscemi, D. Corleo, C. Buscemi, and C. Giordano, Does iris(in) bring bad news or good news? », Eat. Weight Disord. EWD, sept, 2017.

Z. Yang, X. Chen, Y. Chen, and Q. Zhao, « Decreased irisin secretion contributes to muscle insulin resistance in high-fat diet mice », Int. J. Clin. Exp. Pathol, vol.8, issue.6, pp.6490-6497, 2015.

B. L. Guilford, J. C. Parson, C. W. Grote, S. N. Vick, J. M. Ryals et al., « Increased FNDC5 is associated with insulin resistance in high fat-fed mice, Physiol. Rep, vol.5, issue.13, 2017.

G. Sesti, « High circulating irisin levels are associated with insulin resistance and vascular atherosclerosis in a cohort of nondiabetic adult subjects, Acta Diabetol, vol.51, issue.5, pp.705-713, 2014.

B. García-fontana, Relationship between myostatin and irisin in type 2 diabetes mellitus: a compensatory mechanism to an unfavourable metabolic state? », Endocrine, vol.52, pp.54-62, 2016.

N. M. Al-daghri, « Habitual physical activity is associated with circulating irisin in healthy controls but not in subjects with diabetes mellitus type 2 », Eur, J. Clin. Invest, vol.45, issue.8, pp.775-781, 2015.

T. Kurdiova, « Effects of obesity, diabetes and exercise on Fndc5 gene expression and irisin release in human skeletal muscle and adipose tissue: in vivo and in vitro studies, J. Physiol, vol.592, issue.5, pp.1091-1107, 2014.

J. Liu, « Lower circulating irisin is associated with type 2 diabetes mellitus, J. Diabetes Complications, vol.27, issue.4, pp.365-369, 2013.

Y. Choi, Serum irisin levels in new-onset type 2 diabetes, vol.100, pp.96-101, 2013.

R. and A. , « Association between irisin and homocysteine in euglycemic and diabetic subjects, Clin. Biochem, vol.47, pp.333-335, 2014.

M. Forouzanfar, « Fndc5 overexpression facilitated neural differentiation of mouse embryonic stem cells, Cell Biol. Int, vol.39, issue.5, pp.629-637, 2015.

A. Roca-rivada, « FNDC5/irisin is not only a myokine but also an adipokine, PloS One, vol.8, p.60563, 2013.

B. M. Varela-rodríguez, L. Pena-bello, P. Juiz-valiña, B. Vidal-bretal, and F. Cordido, SangiaoAlvarellos, « FNDC5 expression and circulating irisin levels are modified by diet and hormonal conditions in hypothalamus, adipose tissue and muscle, Sci. Rep, vol.6, p.29898, 2016.

Y. Tsuchiya, D. Ando, K. Takamatsu, and K. Goto, « Resistance exercise induces a greater irisin response than endurance exercise, vol.64, pp.1042-1050, 2015.

J. Y. Huh, V. Mougios, A. Skraparlis, A. Kabasakalis, and C. S. Mantzoros, « Irisin in response to acute and chronic whole-body vibration exercise in humans, Metabolism, vol.63, issue.7, pp.918-921, 2014.

T. M. Griffin, « Diet-induced obesity differentially regulates behavioral, biomechanical, and molecular risk factors for osteoarthritis in mice, Arthritis Res. Ther, vol.12, p.130, 2010.

T. Pitcher, J. Sousa-valente, and E. M. Malcangio, The Monoiodoacetate Model of Osteoarthritis Pain in the Mouse, J. Vis. Exp. JoVE, p.111, 2016.

Y. Higuchi, « Conditional knockdown of hyaluronidase 2 in articular cartilage stimulates osteoarthritic progression in a mice model, Sci. Rep, vol.7, issue.1, p.7028, 2017.

E. L. Radin and R. M. Rose, « Role of subchondral bone in the initiation and progression of cartilage damage, Clin. Orthop, pp.34-40, 1986.

S. Kyostio-moore, « STR/ort mice, a model for spontaneous osteoarthritis, exhibit elevated levels of both local and systemic inflammatory markers, Comp. Med, vol.61, issue.4, pp.346-355, 2011.

C. V. Manion, U. Hochgeschwender, A. B. Edmundson, T. E. Hugli, and C. R. Gabaglia, « Dietary aspartyl-phenylalanine-1-methyl ester delays osteoarthritis and prevents associated bone loss in STR/ORT mice, Rheumatol. Oxf. Engl, vol.50, issue.7, pp.1244-1249, 2011.

R. A. Mooney, E. R. Sampson, J. Lerea, R. N. Rosier, and M. J. Zuscik, « High-fat diet accelerates progression of osteoarthritis after meniscal/ligamentous injury, Arthritis Res. Ther, vol.13, issue.6, p.198, 2011.

B. Poulet, « Time-series transcriptional profiling yields new perspectives on susceptibility to murine osteoarthritis, Arthritis Rheum, vol.64, issue.10, pp.3256-3266, 2012.

T. Matsumoto, « The influence of sex on the chondrogenic potential of muscle-derived stem cells: implications for cartilage regeneration and repair, Arthritis Rheum, vol.58, pp.3809-3819, 2008.

M. Laiguillon, « Expression and function of visfatin (Nampt), an adipokine-enzyme involved in inflammatory pathways of osteoarthritis, Arthritis Res. Ther, vol.16, issue.1, 2014.

P. Das-neves, T. L. Borges, M. Vincent, and . Marenzana, Automated assessment of bone changes in cross-sectional micro-CT studies of murine experimental osteoarthritis, PLoS ONE, vol.12, issue.3, 2017.

C. Slemenda, « Quadriceps weakness and osteoarthritis of the knee, Ann. Intern. Med, vol.127, issue.2, pp.97-104, 1997.

V. Kuptniratsaikul, O. Tosayanonda, S. Nilganuwong, and V. Thamalikitkul, « The efficacy of a muscle exercise program to improve functional performance of the knee in patients with osteoarthritis, J. Med. Assoc. Thail. Chotmaihet Thangphaet, vol.85, issue.1, pp.33-40, 2002.

K. R. Vincent and H. K. Vincent, « Resistance Exercise for Knee Osteoarthritis, PM R, vol.4, pp.45-52, 2012.

C. Rubin, G. Xu, and E. S. Judex, « The anabolic activity of bone tissue, suppressed by disuse, is normalized by brief exposure to extremely low-magnitude mechanical stimuli, FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol, vol.15, pp.2225-2229, 2001.

C. Huang, T. Tseng, W. Huang, Y. Chung, H. Chuang et al., Int. J. Med. Sci, vol.11, pp.1218-1227, 2014.

D. M. Frechette, D. Krishnamoorthy, T. Pamon, M. E. Chan, V. Patel et al., « Mechanical signals protect stem cell lineage selection, preserving the bone and muscle phenotypes in obesity, Ann. N. Y. Acad. Sci, 2017.

G. J. Kerr, « C57BL/6 mice are resistant to joint degeneration induced by whole-body vibration », Osteoarthritis Cartilage

Y. K. Luu, « Mechanical stimulation of mesenchymal stem cell proliferation and differentiation promotes osteogenesis while preventing dietary-induced obesity, J. Bone Miner. Res. Off. J. Am. Soc. Bone Miner. Res, vol.24, issue.1, pp.50-61, 2009.

B. Y. Chan, « Increased chondrocyte sclerostin may protect against cartilage degradation in osteoarthritis, Osteoarthritis Cartilage, vol.19, issue.7, pp.874-885, 2011.

W. Bouaziz, « Loss of sclerostin promotes osteoarthritis in mice via ?-catenin-dependent and -independent Wnt pathways, Arthritis Res. Ther, vol.17, issue.1, 2015.

M. M. Weivoda, S. J. Youssef, and M. J. Oursler, « Sclerostin expression and functions beyond the osteocyte, Bone, vol.96, pp.45-50, 2017.

J. Wu, L. Ma, L. Wu, and E. Q. Jin, « Wnt-?-catenin signaling pathway inhibition by sclerostin may protect against degradation in healthy but not osteoarthritic cartilage, Mol. Med. Rep, vol.15, issue.5, pp.2423-2432, 2017.

M. R. Mccann, « Whole-body vibration of mice induces articular cartilage degeneration with minimal changes in subchondral bone, Osteoarthritis Cartilage, vol.25, issue.5, pp.770-778, 2017.

W. L. Murfee, « High-frequency, low-magnitude vibrations suppress the number of blood vessels per muscle fiber in mouse soleus muscle, J. Appl. Physiol. Bethesda Md, vol.98, issue.6, pp.2376-2380, 1985.

G. Ceccarelli, « Low-amplitude high frequency vibration down-regulates myostatin and atrogin-1 expression, two components of the atrophy pathway in muscle cells, J. Tissue Eng. Regen. Med, vol.8, issue.5, pp.396-406, 2014.

K. Lemaster, D. Jackson, D. Goldman, and J. C. Frisbee, « Insidious incrementalism: The silent failure of the microcirculation with increasing peripheral vascular disease risk, vol.24, 1994.

E. Nwadozi, « Endothelial FoxO proteins impair insulin sensitivity and restrain muscle angiogenesis in response to a high-fat diet, FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol, vol.30, issue.9, pp.3039-3052, 2016.

R. I. Meijer, « Perivascular adipose tissue control of insulin-induced vasoreactivity in muscle is impaired in db/db mice, Diabetes, vol.62, issue.2, pp.590-598, 2013.

T. K. Chatterjee, « Proinflammatory phenotype of perivascular adipocytes: influence of high-fat feeding, Circ. Res, vol.104, issue.4, pp.541-549, 2009.

». Plugin-«-adipocyte1 and . Macro, Adipocyte1 Action Tool -C037L0ff0G0e2b157581c1f000" { ? Nom de la macro run

, Add")

, Measure")

. ?-mesure-l'aire-totale-de-la-roi-run, Split Channels

, ? Ferme la fenêtre active close(

, ? Ferme la fenêtre active run

, ? Inverse les niveaux de gris roiManager

?. Désélectionne, Select

. ?-sélectionne-la-première-roi-run,

, ? Coupe l'extérieur de la ROI run, Clear Outside

, ? Supprime les niveaux de gris à l'extérieur de la ROI

. //run,

?. Pré-seuillage-}-plugin-«-adipocyte2 and ». Macro, Adipocyte2 Action Tool -C037L0ff0G0e2b157581c1f001" { ? Nom de la macro setOption, BlackBackground

?. Fond-noir-run, Convert to Mask")

, Ouvre une fenêtre des éléments quantifiés run

, ? Analyse des particules roiManager

?. Désélectionne, Select

?. Sélectionne and . Roimanager,

R. ?-mesure-l'aire-totale-de-la-roi-}-enregistre-la-roi-dans-le-gestionnaire-de,

. Listes, . Communication, and . Prix, Communication oral : 2016 : ? Effet d'une augmentation de la gravité par centrifugation (2g) sur l'appareil musculosquelettique dans un modèle d'arthrose chez la souris

. Dechaumet-b, D. Cleret, N. Laroche, A. Vanden-bossche, M. Lafage-proust et al., Vico L Journées Françaises de Biologie des Tissus Minéralisés (JFBTM), 1 au 3 juin 2016 (NANCY) Communications affichées : 2017 : ? Effects of 2g hypergravity on osteoarthritis-induced bone and muscle changes, 2017.

. Dechaumet-b, D. Cleret, N. Laroche, A. Vanden-bossche, and M. H. Lafage-proust, ? Impact of obesity on the musculoskeletal system in osteoarthritis mouse model, 2017.

. Dechaumet-b, D. Cleret, N. Laroche, A. Vanden-bossche, and M. H. Lafage-proust, The evolution of osteoarthritis in obese mice?, Vico L Journées Françaises de Biologie des Tissus Minéralisés (JFBTM), 2017.

. Dechaumet-b, D. Cleret, N. Laroche, A. Vanden-bossche, L. Vico et al., SAINT ETIENNE) 2016 : ? Effet d'une augmentation de la gravité par centrifugation (2g) sur l'appareil musculo, ? Effet des vibrations corps entier comme contre-mesure à l'évolution de l'arthrose chez des souris avec différents grades d'obésités, 2017.

. Dechaumet-b, D. Cleret, N. Laroche, A. Vanden-bossche, M. H. Lafage-proust et al., , 2016.

, Effet d'une augmentation de la gravité par centrifugation (2g) sur l'appareil musculosquelettique dans un modèle d'arthrose chez la souris

. Dechaumet-b, D. Cleret, N. Laroche, A. Vanden-bossche, M. H. Lafage-proust et al., , vol.10, 2016.

, Effet d'une augmentation de la gravité par centrifugation (2g) sur l'appareil musculosquelettique dans un modèle d'arthrose chez la souris

. Dechaumet-b, D. Cleret, N. Laroche, A. Vanden-bossche, and M. H. Lafage-proust, Vico L Journée de l'école doctorale et de la recherche-16 Juin, 2016.


, Notre but est d'explorer leurs contributions relatives en comparant un modèle associant obésité et conditions métaboliques avec un modèle mimant le surpoids de l'obésité par exposition à une hypergravité. L'obésité MM (mécanique et métabolique) est obtenue par un régime alimentaire qui débute chez des C57BL6/J mâles de 5 semaines. L'obésité M (mécanique) est mimée par une exposition continue à une hypergravité à 2g qui débute à l'âge de 16 semaines. L'arthrose (OA) est induite à l'âge de 16 semaines par déstabilisation du ménisque médial de la patte postérieure droite, L'obésité et le syndrome métabolique sont tous deux associés à un risque de fragilité musculo-squelettique, en particulier d'arthrose

, Les obèses MM ont un os (tibia proximal droit) trabéculaire préservé, un os cortical plus fin et moins poreux et des muscles (tibialis, gastrocnémien, soléaire) fragilisés (diminution de la masse, de la force globale, augmentation du nombre de fibres avec gouttelettes lipidiques). A l'opposé chez les obèses M, l'os est préservé et les muscles sont renforcés (gain de masse, fibres du gastrocnémien plus orientées vers un profil oxydatif lent, stimulation des voies de signalisation), Nous avons tout d'abord exploré les effets des obésités MM et M sur le système musculo-squelettique de souris non arthrosiques

, OA chez les non obèses fragilise l'os trabéculaire de la métaphyse tibiale (et augmente la résorption ostéoclastique) mais n'a aucun effet significatif ni sur l'os cortical, ni sur les muscles adjacents à l'articulation arthrosique. L'OA chez les obèses MM accentue la diminution de l'épaisseur corticale tout en augmentant sa porosité et n'induit pas de détériorations supérieures à celles de l'obésité MM seule pour les autres paramètres. L'OA chez les souris obèses M fragilise encore plus l'os cortical et le muscle que chez les souris MM, Dans une deuxième partie, les conséquences de l'OA sont évaluées chez des souris non obèses, obèses MM ou M. L'

, dernières semaines (entre l'âge de 20 et 24 semaines) comme traitement potentiel des détériorations musculo-squelettiques de l'obésité MM couplée ou non à l'OA. Les vibrations n'impactent pas la sévérité de l'obésité ou de l'arthrose. Un effet musculaire est observé au niveau moléculaire : diminution de l'expression de la myostatine et de son récepteur Act RIIb, de la visfatine, de FNDC5, PPAR-? et CEBP-?, ces diminutions étant plus importantes chez les OA. Toutefois aucun changement de masse musculaire, aire et typage des myofibres n'est observé. Le tissu osseux n'est pas influencé. Ce traitement est donc neutre pour l'os et semble amorcer un effet positif sur le muscle. Les modalités du régime vibratoire, Dans une dernière partie nous avons testé les vibrations corps entiers (90Hz, 0.5g, 15 min/jour, 5 jours/7) pendant les, vol.4

, Par contre chez les OA, l'impact mécanique s'ajoute à l'impact métabolique pour augmenter la fragilité de l'os cortical. L'obésité MM est délétère pour les muscles avec ou sans OA. Les troubles métaboliques s'accompagnent d'un défaut de vascularisation et d'une augmentation de l'adiposité dans l'os et le muscle. L'hypergravité à 2g (obésité M) corrige l'invasion graisseuse musculaire chez les non OA et OA, et médullaire chez les non OA seulement, chez les souris non OA, seuls les troubles métaboliques diminuent l'épaisseur corticale