E. Narni-mancinelli, S. M. Soudja, K. Crozat, M. Dalod, and P. Gounon, Inflammatory monocytes and neutrophils are licensed to kill during memory responses in vivo, PLoS Pathog, vol.7, p.1002457, 2011.

S. M. Soudja, A. L. Ruiz, J. C. Marie, and G. Lauvau, Inflammatory monocytes activate memory CD8(+) T and innate NK lymphocytes independent of cognate antigen during microbial pathogen invasion, Immunity, vol.37, pp.549-562, 2012.

S. Gordon and P. R. Taylor, Monocyte and macrophage heterogeneity, Nature reviews Immunology, vol.5, pp.953-964, 2005.
DOI : 10.1038/nri1733

A. Sica and A. Mantovani, Macrophage plasticity and polarization: in vivo veritas, The Journal of clinical investigation, vol.122, pp.787-795, 2012.

S. K. Biswas and A. Mantovani, Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm, Nature immunology, vol.11, pp.889-896, 2010.

A. Mantovani, A. Sica, S. Sozzani, P. Allavena, and A. Vecchi, The chemokine system in diverse forms of macrophage activation and polarization, Trends in immunology, vol.25, pp.677-686, 2004.

F. A. Verreck, T. De-boer, D. M. Langenberg, M. A. Hoeve, and M. Kramer, Human IL-23-producing type 1 macrophages promote but IL-10-producing type 2 macrophages subvert immunity to (myco)bacteria, Proceedings of the National Academy of Sciences of the United States of America, vol.101, pp.4560-4565, 2004.

D. C. Lacey, A. Achuthan, A. J. Fleetwood, H. Dinh, and J. Roiniotis, Defining GM-CSF-and Macrophage-CSF-Dependent Macrophage Responses by In Vitro Models, Journal of immunology, vol.188, pp.5752-5765, 2012.

A. J. Fleetwood, T. Lawrence, J. A. Hamilton, and A. D. Cook, Granulocytemacrophage colony-stimulating factor (CSF) and macrophage CSF-dependent macrophage phenotypes display differences in cytokine profiles and transcription factor activities: implications for CSF blockade in inflammation, Journal of immunology, vol.178, pp.5245-5252, 2007.

D. Duluc, Y. Delneste, F. Tan, M. P. Moles, and L. Grimaud, Tumorassociated leukemia inhibitory factor and IL-6 skew monocyte differentiation into tumor-associated macrophage-like cells, Blood, vol.110, pp.4319-4330, 2007.

D. M. Mosser and J. P. Edwards, Exploring the full spectrum of macrophage activation, Nature reviews Immunology, vol.8, pp.958-969, 2008.

H. Lin, E. Lee, K. Hestir, C. Leo, and M. Huang, Discovery of a cytokine and its receptor by functional screening of the extracellular proteome, Science, vol.320, pp.807-811, 2008.

T. Chihara, S. Suzu, R. Hassan, N. Chutiwitoonchai, and M. Hiyoshi, IL-34 and M-CSF share the receptor Fms but are not identical in biological activity and signal activation, Cell death and differentiation, vol.17, pp.1917-1927, 2010.

J. Pandit, A. Bohm, J. Jancarik, R. Halenbeck, and K. Koths, Threedimensional structure of dimeric human recombinant macrophage colonystimulating factor, Science, vol.258, pp.1358-1362, 1992.

N. Droin and E. Solary, Editorial: CSF1R, CSF-1, and IL-34, a ''menage a trois'' conserved across vertebrates, Journal of leukocyte biology, vol.87, pp.745-747, 2010.

X. Ma, W. Y. Lin, Y. Chen, S. Stawicki, and K. Mukhyala, Structural basis for the dual recognition of helical cytokines IL-34 and CSF-1 by CSF-1R, Structure, vol.20, pp.676-687, 2012.

S. Wei, S. Nandi, V. Chitu, Y. G. Yeung, and W. Yu, Functional overlap but differential expression of CSF-1 and IL-34 in their CSF-1 receptor-mediated regulation of myeloid cells, Journal of leukocyte biology, vol.88, pp.495-505, 2010.

S. Nandi, S. Gokhan, X. M. Dai, S. Wei, and G. Enikolopov, The CSF-1 receptor ligands IL-34 and CSF-1 exhibit distinct developmental brain expression patterns and regulate neural progenitor cell maintenance and maturation, Developmental biology, 2012.

M. Greter, I. Lelios, P. Pelczar, G. Hoeffel, and J. Price, Stroma-derived interleukin-34 controls the development and maintenance of langerhans cells and the maintenance of microglia, Immunity, vol.37, pp.1050-1060, 2012.

Y. Wang, K. J. Szretter, W. Vermi, S. Gilfillan, and C. Rossini, IL-34 is a tissue-restricted ligand of CSF1R required for the development of Langerhans cells and microglia, Nature immunology, vol.13, pp.753-760, 2012.

Z. Chen, K. Buki, J. Vaaraniemi, G. Gu, and H. K. Vaananen, The critical role of IL-34 in osteoclastogenesis, PloS one, vol.6, p.18689, 2011.

M. Baud'huin, R. R. Charrier, C. Riet, A. Moreau, and A. , Interleukin-34 is expressed by giant cell tumours of bone and plays a key role in RANKL-induced osteoclastogenesis, The Journal of pathology, vol.221, pp.77-86, 2010.

M. Chemel, L. Goff, B. Brion, R. Cozic, C. Berreur et al., Interleukin 34 expression is associated with synovitis severity in rheumatoid arthritis patients, Ann Rheum Dis, vol.71, pp.150-154, 2012.
URL : https://hal.archives-ouvertes.fr/inserm-00667486

S. J. Hwang, B. Choi, S. S. Kang, J. H. Chang, and Y. G. Kim, Interleukin-34 produced by human fibroblast-like synovial cells in rheumatoid arthritis supports osteoclastogenesis, Arthritis Res Ther, vol.14, p.14, 2012.

D. G. Denardo, D. J. Brennan, E. Rexhepaj, B. Ruffell, and S. L. Shiao, Leukocyte complexity predicts breast cancer survival and functionally regulates response to chemotherapy, Cancer Discov, vol.1, pp.54-67, 2011.

D. Metcalf, Control of granulocytes and macrophages: molecular, cellular, and clinical aspects, Science, vol.254, pp.529-533, 1991.

B. C. Gliniak, L. S. Park, and L. R. Rohrschneider, A GM-colony-stimulating factor (CSF) activated ribonuclease system transregulates M-CSF receptor expression in the murine FDC-P1/MAC myeloid cell line, Molecular biology of the cell, vol.3, pp.535-544, 1992.

P. Jeannin, D. Duluc, and Y. Delneste, IL-6 and leukemia-inhibitory factor are involved in the generation of tumor-associated macrophage: regulation by IFNgamma, Immunotherapy, vol.3, pp.23-26, 2011.

P. Fraticelli, M. Sironi, G. Bianchi, D. 'ambrosio, D. Albanesi et al., Fractalkine (CX3CL1) as an amplification circuit of polarized Th1 responses, The Journal of clinical investigation, vol.107, pp.1173-1181, 2001.

F. O. Martinez, S. Gordon, M. Locati, and A. Mantovani, Transcriptional profiling of the human monocyte-to-macrophage differentiation and polarization: new molecules and patterns of gene expression, Journal of immunology, vol.177, pp.7303-7311, 2006.

M. Beyer, M. R. Mallmann, J. Xue, A. Staratschek-jox, and D. Vorholt, High-resolution transcriptome of human macrophages, PloS one, vol.7, p.45466, 2012.

B. C. Gliniak and L. R. Rohrschneider, Expression of the M-CSF receptor is controlled posttranscriptionally by the dominant actions of GM-CSF or multi-CSF, Cell, vol.63, pp.1073-1083, 1990.

A. Sica, T. Schioppa, A. Mantovani, and P. Allavena, Tumour-associated macrophages are a distinct M2 polarised population promoting tumour progression: potential targets of anti-cancer therapy, European journal of cancer, vol.42, pp.717-727, 2006.

D. Duluc, M. Corvaisier, S. Blanchard, L. Catala, and P. Descamps, Interferon-gamma reverses the immunosuppressive and protumoral properties and prevents the generation of human tumor-associated macrophages, International journal of cancer Journal international du cancer, vol.125, pp.367-373, 2009.

M. G. Cecchini, M. G. Dominguez, S. Mocci, A. Wetterwald, and R. Felix, Role of colony stimulating factor-1 in the establishment and regulation of tissue macrophages during postnatal development of the mouse, Development, vol.120, pp.1357-1372, 1994.

F. Ginhoux, F. Tacke, V. Angeli, M. Bogunovic, and M. Loubeau, Langerhans cells arise from monocytes in vivo, Nature immunology, vol.7, pp.265-273, 2006.

T. Mizuno, Y. Doi, H. Mizoguchi, J. S. Noda, and M. , Interleukin-34 selectively enhances the neuroprotective effects of microglia to attenuate oligomeric amyloid-beta neurotoxicity, The American journal of pathology, vol.179, pp.2016-2027, 2011.

I. Brocheriou, S. Maouche, H. Durand, V. Braunersreuther, L. Naour et al., Antagonistic regulation of macrophage phenotype by M-CSF and GM-CSF: implication in atherosclerosis, vol.214, pp.316-324, 2011.

I. Espinoza-delgado, D. L. Longo, G. L. Gusella, and L. Varesio, IL-2 enhances cfms expression in human monocytes, Journal of immunology, vol.145, pp.1137-1143, 1990.

, IL-34 Induces the Generation of M2d Macrophages

S. Gordon, P. R. Taylor, M. Monocyte, and . Heterogeneity,

, Nat. Rev. Immunol, vol.5, pp.953-964, 2005.

A. Sica and A. Mantovani, Macrophage plasticity and polarization: in vivo veritas, J. Clin. Invest, vol.122, pp.787-795, 2012.

S. K. Biswas and A. Mantovani, Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm, Nat. Immunol, vol.11, pp.889-896, 2010.

H. Lin, E. Lee, K. Hestir, C. Leo, M. Huang et al., Discovery of a cytokine and its receptor by functional screening of the extracellular proteome, Science, vol.320, pp.807-811, 2008.

F. A. Verreck, T. De-boer, D. M. Langenberg, M. A. Hoeve, M. Kramer et al., Human IL-23-producing type 1 macrophages promote but IL-10-producing type 2 macrophages subvert immunity to (myco)bacteria, Proc. Natl. Acad. Sci, vol.101, pp.4560-4565, 2004.

E. D. Foucher, S. Blanchard, L. Preisser, E. Garo, N. Ifrah et al., IL-34 induces the differentiation of human monocytes into immunosuppressive macrophages. Antagonistic effects of GM-CSF and IFNgamma, PloS one, vol.8, p.56045, 2013.

D. Duluc, Y. Delneste, F. Tan, M. P. Moles, L. Grimaud et al., Tumor-associated leukemia inhibitory factor and IL-6 skew monocyte differentiation into tumor-associated macrophage-like cells, Blood, vol.110, pp.4319-4330, 2007.

J. J. O'shea and W. E. Paul, Mechanisms underlying lineage commitment and plasticity of helper CD4+ T cells, Science, vol.327, pp.1098-1102, 2010.

D. Kurotaki, S. Kon, K. Bae, K. Ito, Y. Matsui et al., CSF-1-dependent red pulp macrophages regulate CD4 T cell responses, J. Immunol, vol.186, pp.2229-2237, 2011.

T. L. Denning, Y. C. Wang, S. R. Patel, I. R. Williams, and B. Pulendran, Lamina propria macrophages and dendritic cells differentially induce regulatory and interleukin 17-producing T cell responses, Nat. Immunol, vol.8, pp.1086-1094, 2007.

F. A. Verreck, T. De-boer, D. M. Langenberg, L. Van-der-zanden, and T. H. Ottenhoff, Phenotypic and functional profiling of human proinflammatory type-1 and anti-inflammatory type-2 macrophages in response to microbial antigens and IFN-gamma-and CD40L-mediated costimulation

, J. Leukoc. Biol, vol.79, pp.285-293, 2006.

D. A. Horwitz, S. G. Zheng, and J. D. Gray, The role of the combination of IL-2 and TGF-beta or IL-10 in the generation and function of CD4+ CD25+ and CD8+ regulatory T cell subsets, J. Leukoc. Biol, vol.74, pp.471-478, 2003.

N. J. Wilson, K. Boniface, J. R. Chan, B. S. Mckenzie, and W. Blumenschein,

M. Mattson, J. D. Basham, and B. , Development, cytokine profile and function of human interleukin 17-producing helper T cells, Nat. Immunol, vol.8, pp.950-957, 2007.

F. Zhao, B. Hoechst, J. Gamrekelashvili, L. A. Ormandy, T. Voigtlander et al., Human CCR4+ CCR6+ Th17 cells suppress autologous CD8+ T cell responses, J. Immunol, vol.188, pp.6055-6062, 2012.

C. E. Zielinski, F. Mele, D. Aschenbrenner, D. Jarrossay, F. Ronchi et al., Pathogen-induced human TH17 cells produce IFN-gamma or IL-10 and are regulated by IL-1beta, Nature, vol.484, pp.514-518, 2012.

F. Chalmin, G. Mignot, M. Bruchard, A. Chevriaux, F. Vegran et al., Stat3 and Gfi-1 transcription factors control Th17 cell immunosuppressive activity via the regulation of ectonucleotidase expression, Immunity, vol.36, pp.362-373, 2012.
URL : https://hal.archives-ouvertes.fr/inserm-00821485

B. Hoechst, J. Gamrekelashvili, M. P. Manns, T. F. Greten, and F. Korangy, Plasticity of human Th17 cells and iTregs is orchestrated by different subsets of myeloid cells, Blood, vol.117, pp.6532-6541, 2011.

S. Romagnani, E. Maggi, F. Liotta, L. Cosmi, and F. Annunziato, Properties and origin of human Th17 cells, Mol. Immunol, vol.47, pp.3-7, 2009.

K. Boniface, W. M. Blumenschein, K. Brovont-porth, M. J. Mcgeachy, B. Basham et al., Human Th17 cells comprise heterogeneous subsets including IFN-gamma-producing cells with distinct properties from the Th1 lineage, J. Immunol, vol.185, pp.679-687, 2010.

L. Cosmi, R. De-palma, V. Santarlasci, L. Maggi, M. Capone et al., Human interleukin 17-producing cells originate from a CD161+CD4+ T cell precursor, J Exp Med2008, vol.205, pp.1903-1916

A. J. Fleetwood, T. Lawrence, J. A. Hamilton, and A. D. Cook, Granulocyte-macrophage colony-stimulating factor (CSF) and macrophage CSF-dependent macrophage phenotypes display differences in cytokine profiles and transcription factor activities: implications for CSF blockade in inflammation, J. Immunol, vol.178, pp.5245-5252, 2007.

K. , E. A. Beller, D. I. Mizel, S. B. Unanue, and E. R. , Identification of a membrane-associated interleukin 1 in macrophages, Proc. Natl. Acad

. Sci and . Usa, , vol.82, pp.1204-1208, 1985.

A. Fettelschoss, M. Kistowska, S. Leibundgut-landmann, H. D. Beer, P. Johansen et al., Inflammasome activation and IL-1beta target IL-1alpha for secretion as opposed to surface expression

, Proc. Natl. Acad. Sci, vol.108, pp.18055-18060, 2011.

K. H. Mills, L. S. Dungan, S. A. Jones, and J. Harris, The role of inflammasome-derived IL-1 in driving IL-17 responses, J. Leukoc. Biol, vol.93, pp.489-497, 2013.

F. Bellora, R. Castriconi, A. Doni, C. Cantoni, L. Moretta et al., M-CSF induces the expression of a membrane-bound form of IL-18 in a subset of human monocytes differentiating in vitro toward macrophages, Eur. J. Immunol, vol.42, pp.1618-1626, 2012.

C. Conforti-andreoni, R. Spreafico, H. L. Qian, N. Riteau, B. Ryffel et al., Uric acid-driven Th17 differentiation requires inflammasome-derived IL-1 and IL-18, J. Immunol, vol.187, pp.5842-5850, 2011.

E. V. Acosta-rodriguez, G. Napolitani, A. Lanzavecchia, and F. Sallusto, Interleukins 1beta and 6 but not transforming growth factor-beta are essential for the differentiation of interleukin 17-producing human T helper cells, Nat. Immunol, vol.8, pp.942-949, 2007.

M. Corvaisier, Y. Delneste, H. Jeanvoine, L. Preisser, S. Blanchard et al., IL-26 is overexpressed in rheumatoid arthritis and induces proinflammatory cytokine production and Th17 cell generation, PLoS Biol, vol.10, p.1001395, 2012.

L. Wei, A. Laurence, K. M. Elias, and J. J. Shea, IL-21 is produced by Th17 cells and drives IL-17 production in a STAT3-dependent manner

, Biol. Chem, vol.282, pp.34605-34610, 2007.

F. Sallusto, C. E. Zielinski, and A. Lanzavecchia,

, Eur. J. Immunol, vol.42, pp.2215-2220, 2012.

I. Kryczek, M. Banerjee, P. Cheng, L. Vatan, W. Szeliga et al., Phenotype, distribution, generation, and functional and clinical relevance of Th17 cells in the human tumor environments, Blood, vol.114, pp.1141-1149, 2009.

C. T. Weaver and E. R. Unanue, T cell induction of membrane IL 1 on macrophages, J. Immunol, vol.137, pp.3868-3873, 1986.

M. Labadia, R. B. Faanes, and R. Rothlein, Role of adherence vs. spreading in the induction of membrane-associated interleukin-1 on mouse peritoneal macrophages, J. Leukoc. Biol, vol.48, pp.420-425, 1990.

A. V. Orjalo, D. Bhaumik, B. K. Gengler, G. K. Scott, and J. Campisi, Cell surface-bound IL-1alpha is an upstream regulator of the senescenceassociated IL-6/IL-8 cytokine network, Proc. Natl. Acad. Sci, vol.106, pp.17031-17036, 2009.

C. A. Dinarello, Interleukin-1 and interleukin-1 antagonism, Blood, vol.77, pp.1627-1652, 1991.

G. Kaplanski, C. Farnarier, S. Kaplanski, R. Porat, L. Shapiro et al., Interleukin-1 induces interleukin-8 secretion from endothelial cells by a juxtacrine mechanism, Blood, vol.84, pp.4242-4248, 1994.

C. A. Dinarello, Membrane interleukin-18 revisits membrane IL-1alpha in T-helper type 1 responses, Eur. J. Immunol, vol.42, pp.1385-1387, 2012.

Y. Niki, H. Yamada, S. Seki, T. Kikuchi, H. Takaishi et al., Macrophage-and neutrophil-dominant arthritis in human IL-1 alpha transgenic mice, J. Clin. Invest, vol.107, pp.1127-1135, 2001.

E. Voronov, S. Dotan, Y. Krelin, X. Song, M. Elkabets et al., Unique versus redundant functions of IL-1alpha and IL-1beta in the tumor microenvironment, Front Immunol, vol.4, p.177, 2013.

Y. Miyahara, K. Odunsi, W. Chen, G. Peng, J. Matsuzaki et al., Generation and regulation of human CD4+ IL-17-producing T cells in ovarian cancer, Proc. Natl. Acad. Sci, vol.105, pp.15505-15510, 2008.

H. Liu and C. Rohowsky-kochan, Regulation of IL-17 in human CCR6+ effector memory T cells, J. Immunol, vol.180, pp.7948-7957, 2008.

A. J. Van-beelen, Z. Zelinkova, E. W. Taanman-kueter, F. J. Muller, D. W. Hommes et al., Stimulation of the intracellular bacterial sensor NOD2 programs dendritic cells to promote interleukin-17 production in human memory T cells, Immunity, vol.27, pp.660-669, 2007.

C. E. Sutton, S. J. Lalor, C. M. Sweeney, C. F. Brereton, E. C. Lavelle et al., Interleukin-1 and IL-23 induce innate IL-17 production from gammadelta T cells, amplifying Th17 responses and autoimmunity, Immunity, vol.31, pp.331-341, 2009.

P. Muranski and N. P. Restifo, Essentials of Th17 cell commitment and plasticity, Blood, vol.121, pp.2402-2414, 2013.

Y. Tatano, T. Shimizu, and H. Tomioka, Unique macrophages different from M1/M2 macrophages inhibit T cell mitogenesis while upregulating Th17 polarization, Sci. Rep, vol.4, p.4146, 2014.
DOI : 10.1038/srep04146

URL : https://www.nature.com/articles/srep04146.pdf

N. D. Savage, T. De-boer, K. V. Walburg, S. A. Joosten, K. Van-meijgaarden et al., Human anti-inflammatory macrophages induce Foxp3+ GITR+ CD25+ regulatory T cells, which suppress via membrane-bound TGFbeta-1, J. Immunol, vol.181, pp.2220-2226, 2008.

J. Banchereau, V. Pascual, and A. O'garra, From IL-2 to IL-37: the expanding spectrum of anti-inflammatory cytokines, Nat. Immunol, vol.13, pp.925-931, 2012.

G. J. Martinez, R. I. Nurieva, X. O. Yang, and C. Dong, Regulation and function of proinflammatory TH17 cells, Ann. N Y Acad. Sci, vol.1143, pp.188-211, 2008.

E. Voronov, D. S. Shouval, Y. Krelin, E. Cagnano, D. Benharroch et al., IL-1 is required for tumor invasiveness and angiogenesis, Proc. Natl. Acad. Sci, vol.100, pp.2645-2650, 2003.

A. M. Lewis, S. Varghese, H. Xu, and H. R. Alexander, Interleukin-1 and cancer progression: the emerging role of interleukin-1 receptor antagonist as a novel therapeutic agent in cancer treatment, J. Transl

. Med, , vol.4, p.48, 2006.

C. A. Dinarello, Why not treat human cancer with interleukin-1 blockade?, Cancer Metastasis Rev, vol.29, pp.317-329, 2010.

F. Ghiringhelli, M. Bruchard, and L. Apetoh, Immune effects of 5-fluorouracil: ambivalence matters, Oncoimmunology, issue.2, p.23139, 2013.

M. Bruchard, G. Mignot, V. Derangere, F. Chalmin, A. Chevriaux et al., Chemotherapy-triggered cathepsin B release in myeloid-derived suppressor cells activates the Nlrp3 inflammasome and promotes tumor growth, Nat. Med, vol.19, pp.57-64, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00919371

Y. Carmi, G. Rinott, S. Dotan, M. Elkabets, P. Rider et al., Microenvironment-derived IL-1 and IL-17 interact in the control of lung metastasis, J. Immunol, vol.186, pp.3462-3471, 2011.

F. Martin, L. Apetoh, and F. Ghiringhelli, Controversies on the role of Th17 in cancer: a TGF-beta-dependent immunosuppressive activity?, Trends Mol. Med, vol.18, pp.742-749, 2012.

T. F. Greten, F. Zhao, J. Gamrekelashvili, and F. Korangy, Human Th17 cells in patients with cancer: friends or foe? Oncoimmunology, vol.1, pp.1438-1439, 2012.

Y. Ji and W. Zhang, Th17 cells: positive or negative role in tumor?, Cancer Immunol. Immunother, vol.59, pp.979-987, 2010.

W. Zou and N. P. Restifo, T(H)17 cells in tumour immunity and immunotherapy, Nat. Rev. Immunol, vol.10, pp.248-256, 2010.

K. H. Mills, Induction, function and regulation of IL-17-producing T cells, Eur. J. Immunol, vol.38, pp.2636-2649, 2008.

, Abbreviations: mIL-1?: membrane IL-1? · PFA: paraformaldehyde · TAMs: tumor-associated macrophages Full correspondence: Dr. Pascale Jeannin

G. Le, IFN? inhibent les macrophages M2

, Alors que les macrophages M2 maintiennent l'homéostasie tissulaire et empêchent des réponses immunitaires excessives, leur accumulation dans certaines pathologies, comme dans les tumeurs, porte préjudice. Les stratégies pour empêcher leur génération et/ou induire la réversion des propriétés immunosuppressives des macrophages M2

, Nous avons observé que (i) l'IFN? induit la réversion des IL-34-M? en M1 immunostimulants et (ii) que le GM-CSF et l'IFN? empêchent la génération des IL-34-M?

, En analysant les profils transcriptionnels des GM-CSF-M? et des M-CSF-M?, nous observons que l'expression des gènes induits par le M-CSF

G. Soutenant-ces-observations,-le and . Supprime, dans des lignées cellulaires myéloïdes murines, l'expression de l'ARNm du M-CSF

, IFN? est un activateur efficace des cellules myéloïdes induisant la génération de macrophages M1 immunostimulants et, comme précédemment observé

, En revanche, l'IFN? ne module pas l'expression de l'ARNm du M-CSF-R par les monocytes, vol.314

C. , &. Il-34-et-le, M. Agissent-via-le, M. Expliquer-pourquoi-le, and G. , Une stratégie intéressante serait de combiner plusieurs approches : -(i) inhiber les macrophages M2 -(ii) différencier les monocytes en macrophages M1 -(iii) améliorer l'efficacité des propriétés anti-tumorales des macrophages M1 Pour cela, il serait intéressant (i) d'inhiber la différenciation en macrophages M2 immunosuppresseurs en utilisant un Ac neutralisant le CD115 (récepteur du M-CSF et de l'IL-34) ; (ii) de différencier les monocytes recrutés au niveau de la tumeur en macrophages immunostimulants anti-tumoraux par le GM-CSF ou par un Ac agoniste du CD40 (sécrétion d'IL-12 et présentation antigénique entraînant une réponse lymphocytaire anti-tumorale)

A. K. Abbas, . Lah, and S. Pillai, Les bases de l'immunologie foncdamentale et clinique, 2013.

R. Medzhitov, C. Janeway, and J. , Innate immune recognition: mechanisms and pathways, Immunological reviews, vol.173, pp.89-97, 2000.

R. Medzhitov, C. Janeway, and J. , Innate immunity, N Engl J Med, vol.343, pp.338-344, 2000.
URL : https://hal.archives-ouvertes.fr/hal-01438527

C. A. Janeway and R. Medzhitov, Innate immune recognition, Annu Rev Immunol, vol.20, pp.197-216, 2002.

A. Rubartelli and M. T. Lotze, Inside, outside, upside down: damage-associated molecular-pattern molecules (DAMPs) and redox, Trends Immunol, vol.28, pp.429-436, 2007.

D. T. Fearon and R. M. Locksley, The instructive role of innate immunity in the acquired immune response, Science, vol.272, pp.50-53, 1996.

M. A. Caligiuri, Human natural killer cells, Blood, vol.112, pp.461-469, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00431858

A. W. Goldrath and M. J. Bevan, Selecting and maintaining a diverse T-cell repertoire, Nature, vol.402, pp.255-262, 1999.

J. Zhu and W. E. Paul, Heterogeneity and plasticity of T helper cells, Cell Res, vol.20, pp.4-12, 2010.

I. Gutcher and B. Becher, APC-derived cytokines and T cell polarization in autoimmune inflammation, J Clin Invest, vol.117, pp.1119-1127, 2007.

L. Spel, J. J. Boelens, S. Nierkens, and M. Boes, Antitumor immune responses mediated by dendritic cells: How signals derived from dying cancer cells drive antigen cross-presentation, Oncoimmunology, vol.2, p.26403, 2013.

O. Stutman, Tumor development after 3-methylcholanthrene in immunologically deficient athymic-nude mice, Science, vol.183, pp.534-536, 1974.

S. Ikehara, R. N. Pahwa, G. Fernandes, C. T. Hansen, and R. A. Good, Functional T cells in athymic nude mice, Proc Natl Acad Sci, vol.81, pp.886-888, 1984.

J. R. Maleckar and L. A. Sherman, The composition of the T cell receptor repertoire in nude mice, J Immunol, vol.138, pp.3873-3876, 1987.

D. H. Kaplan, V. Shankaran, A. S. Dighe, E. Stockert, and M. Aguet, Demonstration of an interferon gamma-dependent tumor surveillance system in immunocompetent mice, Proc Natl Acad Sci U S A, vol.95, pp.7556-7561, 1998.

S. E. Street, E. Cretney, and M. J. Smyth, Perforin and interferon-gamma activities independently control tumor initiation, growth, and metastasis, Blood, vol.97, pp.192-197, 2001.

M. E. Van-den-broek, D. Kagi, F. Ossendorp, R. Toes, and S. Vamvakas, Decreased tumor surveillance in perforin-deficient mice, J Exp Med, vol.184, pp.1781-1790, 1996.

D. Mittal, M. M. Gubin, R. D. Schreiber, and M. J. Smyth, New insights into cancer immunoediting and its three component phases--elimination, equilibrium and escape, Curr Opin Immunol, vol.27, pp.16-25, 2014.

G. P. Dunn, A. T. Bruce, H. Ikeda, L. J. Old, and R. D. Schreiber, Cancer immunoediting: from immunosurveillance to tumor escape, Nat Immunol, vol.3, pp.991-998, 2002.

G. P. Dunn, L. J. Old, and R. D. Schreiber, The immunobiology of cancer immunosurveillance and immunoediting, Immunity, vol.21, pp.137-148, 2004.

N. Bhardwaj, Harnessing the immune system to treat cancer, J Clin Invest, vol.117, pp.1130-1136, 2007.

S. Ostrand-rosenberg, Immune surveillance: a balance between protumor and antitumor immunity, Curr Opin Genet Dev, vol.18, pp.11-18, 2008.

, Tartour E Mécanismes de l'immunosurveillance anti-tumorales

D. Hannani, C. Locher, T. Yamazaki, V. Colin-minard, and M. Vetizou, Contribution of humoral immune responses to the antitumor effects mediated by anthracyclines, Cell Death Differ, vol.21, pp.50-58, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02047412

B. H. Nelson, The impact of T-cell immunity on ovarian cancer outcomes, Immunol Rev, vol.222, pp.101-116, 2008.

J. T. Harty and M. J. Bevan, Responses of CD8(+) T cells to intracellular bacteria, Curr Opin Immunol, vol.11, pp.89-93, 1999.

D. Kagi, B. Ledermann, K. Burki, P. Seiler, and B. Odermatt, Cytotoxicity mediated by T cells and natural killer cells is greatly impaired in perforin-deficient mice, Nature, vol.369, pp.31-37, 1994.

M. J. Smyth, K. Y. Thia, S. E. Street, D. Macgregor, and D. I. Godfrey, Perforin-mediated cytotoxicity is critical for surveillance of spontaneous lymphoma, J Exp Med, vol.192, pp.755-760, 2000.

X. Cao, S. F. Cai, T. A. Fehniger, J. Song, and L. I. Collins, Granzyme B and perforin are important for regulatory T cell-mediated suppression of tumor clearance, Immunity, vol.27, pp.635-646, 2007.

E. L. Brincks, A. Katewa, T. A. Kucaba, T. S. Griffith, and K. L. Legge, CD8 T cells utilize TRAIL to control influenza virus infection, J Immunol, vol.181, pp.4918-4925, 2008.

A. Snijders, P. Kalinski, C. M. Hilkens, and M. L. Kapsenberg, High-level IL-12 production by human dendritic cells requires two signals, Int Immunol, vol.10, pp.1593-1598, 1998.

M. R. Verneris, M. Karimi, J. Baker, A. Jayaswal, and R. S. Negrin, Role of NKG2D signaling in the cytotoxicity of activated and expanded CD8+ T cells, Blood, vol.103, pp.3065-3072, 2004.

E. Vivier, S. Ugolini, D. Blaise, C. Chabannon, and L. Brossay, Targeting natural killer cells and natural killer T cells in cancer, Nat Rev Immunol, vol.12, pp.239-252, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00685473

I. Waldhauer and A. Steinle, NK cells and cancer immunosurveillance, Oncogene, vol.27, pp.5932-5943, 2008.

S. R. Carding and P. J. Egan, Gammadelta T cells: functional plasticity and heterogeneity, Nat Rev Immunol, vol.2, pp.336-345, 2002.

M. Bonneville and E. Scotet, Human Vgamma9Vdelta2 T cells: promising new leads for immunotherapy of infections and tumors, Curr Opin Immunol, vol.18, pp.539-546, 2006.

Y. L. Wu, Y. P. Ding, Y. Tanaka, L. W. Shen, and C. H. Wei, ) gammadelta T cells and their potential for immunotherapy, Int J Biol Sci, vol.10, pp.119-135, 2014.

S. Fujii, K. Shimizu, Y. Okamoto, N. Kunii, and T. Nakayama, NKT cells as an ideal anti-tumor immunotherapeutic, Front Immunol, vol.4, p.409, 2013.

B. Ruffell, D. G. Denardo, N. I. Affara, and L. M. Coussens, Lymphocytes in cancer development: polarization towards pro-tumor immunity, Cytokine Growth Factor Rev, vol.21, pp.3-10, 2010.

N. Y. Hemdan, Anti-cancer versus cancer-promoting effects of the interleukin-17-producing T helper cells, Immunol Lett, vol.149, pp.123-133, 2013.

F. Benchetrit, A. Ciree, V. Vives, G. Warnier, and A. Gey, Interleukin-17 inhibits tumor cell growth by means of a T-cell-dependent mechanism, Blood, vol.99, pp.2114-2121, 2002.

G. P. Dunn, C. M. Koebel, and R. D. Schreiber, Interferons, immunity and cancer immunoediting, Nat Rev Immunol, vol.6, pp.836-848, 2006.

R. Kennedy and E. Celis, Multiple roles for CD4+ T cells in anti-tumor immune responses, Immunol Rev, vol.222, pp.129-144, 2008.

R. Spolski and W. J. Leonard, IL-21 is an immune activator that also mediates suppression via IL-10, Crit Rev Immunol, vol.30, pp.559-570, 2010.

S. R. Bailey, M. H. Nelson, R. A. Himes, Z. Li, and S. Mehrotra, Th17 cells in cancer: the ultimate identity crisis, Front Immunol, vol.5, p.276, 2014.

H. Ga, Th17 cell plasticity and functions in cancer immunity, 2015.

K. S. Sfanos, T. C. Bruno, C. H. Maris, L. Xu, and C. J. Thoburn, Phenotypic analysis of prostateinfiltrating lymphocytes reveals TH17 and Treg skewing, Clin Cancer Res, vol.14, pp.3254-3261, 2008.

Z. J. Ye, Q. Zhou, Y. Y. Gu, S. M. Qin, and W. L. Ma, Generation and differentiation of IL-17-producing CD4+ T cells in malignant pleural effusion, J Immunol, vol.185, pp.6348-6354, 2010.

I. Kryczek, M. Banerjee, P. Cheng, L. Vatan, and W. Szeliga, Phenotype, distribution, generation, and functional and clinical relevance of Th17 cells in the human tumor environments, Blood, vol.114, pp.1141-1149, 2009.

K. Palucka and J. Banchereau, Dendritic-cell-based therapeutic cancer vaccines, Immunity, vol.39, pp.38-48, 2013.

A. K. Wesa and W. J. Storkus, Killer dendritic cells: mechanisms of action and therapeutic implications for cancer, Cell Death Differ, vol.15, pp.51-57, 2008.

D. E. Orange, M. Jegathesan, N. E. Blachere, M. O. Frank, and H. I. Scher, Effective antigen crosspresentation by prostate cancer patients' dendritic cells: implications for prostate cancer immunotherapy, Prostate Cancer Prostatic Dis, vol.7, pp.63-72, 2004.
URL : https://hal.archives-ouvertes.fr/pasteur-01402399

S. Miyagawa, J. Soeda, S. Takagi, S. Miwa, and E. Ichikawa, Prognostic significance of mature dendritic cells and factors associated with their accumulation in metastatic liver tumors from colorectal cancer, Hum Pathol, vol.35, pp.1392-1396, 2004.

M. R. Shurin, G. V. Shurin, A. Lokshin, Z. R. Yurkovetsky, and D. W. Gutkin, Intratumoral cytokines/chemokines/growth factors and tumor infiltrating dendritic cells: friends or enemies?, Cancer Metastasis Rev, vol.25, pp.333-356, 2006.

T. Ishida, T. Oyama, D. P. Carbone, and D. I. Gabrilovich, Defective function of Langerhans cells in tumor-bearing animals is the result of defective maturation from hemopoietic progenitors, J Immunol, vol.161, pp.4842-4851, 1998.

D. I. Gabrilovich, T. Ishida, S. Nadaf, J. E. Ohm, and D. P. Carbone, Antibodies to vascular endothelial growth factor enhance the efficacy of cancer immunotherapy by improving endogenous dendritic cell function, Clin Cancer Res, vol.5, pp.2963-2970, 1999.

B. Almand, J. R. Resser, B. Lindman, S. Nadaf, and J. I. Clark, Clinical significance of defective dendritic cell differentiation in cancer, Clin Cancer Res, vol.6, pp.1755-1766, 2000.

K. Wojas, J. Tabarkiewicz, M. Jankiewicz, and J. Rolinski, Dendritic cells in peripheral blood of patients with breast and lung cancer--a pilot study, Folia Histochem Cytobiol, vol.42, pp.45-48, 2004.

D. Bella, S. Gennaro, M. Vaccari, M. Ferraris, C. Nicola et al., Altered maturation of peripheral blood dendritic cells in patients with breast cancer, Br J Cancer, vol.89, pp.1463-1472, 2003.

S. Yu, C. Liu, K. Su, J. Wang, and Y. Liu, Tumor exosomes inhibit differentiation of bone marrow dendritic cells, J Immunol, vol.178, pp.6867-6875, 2007.

P. Allavena, A. Sica, C. Garlanda, and A. Mantovani, The Yin-Yang of tumor-associated macrophages in neoplastic progression and immune surveillance, Immunol Rev, vol.222, pp.155-161, 2008.

L. A. Pozzi, J. W. Maciaszek, and K. L. Rock, Both dendritic cells and macrophages can stimulate naive CD8 T cells in vivo to proliferate, develop effector function, and differentiate into memory cells, J Immunol, vol.175, pp.2071-2081, 2005.

A. Mantovani, Macrophages, Neutrophils, and Cancer: A Double Edged Sword, New Journal of Science, vol.14, 2014.

H. Piccard, R. J. Muschel, and G. Opdenakker, On the dual roles and polarized phenotypes of neutrophils in tumor development and progression, Crit Rev Oncol Hematol, vol.82, pp.296-309, 2012.

G. P. Dunn, L. J. Old, and R. D. Schreiber, The three Es of cancer immunoediting, Annu Rev Immunol, vol.22, pp.329-360, 2004.

S. Fulda, Tumor resistance to apoptosis, Int J Cancer, vol.124, pp.511-515, 2009.

L. M. Weiner, Cancer immunotherapy--the endgame begins, N Engl J Med, vol.358, pp.2664-2665, 2008.

G. A. Rabinovich, D. Gabrilovich, and E. M. Sotomayor, Immunosuppressive strategies that are mediated by tumor cells, Annu Rev Immunol, vol.25, pp.267-296, 2007.

J. B. Swann and M. J. Smyth, Immune surveillance of tumors, J Clin Invest, vol.117, pp.1137-1146, 2007.

M. Urosevic and R. Dummer, Human leukocyte antigen-G and cancer immunoediting, Cancer Res, vol.68, pp.627-630, 2008.
DOI : 10.1158/0008-5472.can-07-2704

D. H. Munn, M. D. Sharma, D. Hou, B. Baban, and J. R. Lee, Expression of indoleamine 2,3-dioxygenase by plasmacytoid dendritic cells in tumor-draining lymph nodes, J Clin Invest, vol.114, pp.280-290, 2004.

D. Bell, P. Chomarat, D. Broyles, G. Netto, and G. M. Harb, In breast carcinoma tissue, immature dendritic cells reside within the tumor, whereas mature dendritic cells are located in peritumoral areas, J Exp Med, vol.190, pp.1417-1426, 1999.

C. Aspord, A. Pedroza-gonzalez, M. Gallegos, S. Tindle, and E. C. Burton, Breast cancer instructs dendritic cells to prime interleukin 13-secreting CD4+ T cells that facilitate tumor development, J Exp Med, vol.204, pp.1037-1047, 2007.

W. Zou, Regulatory T cells, tumour immunity and immunotherapy, Nat Rev Immunol, vol.6, pp.295-307, 2006.

D. A. Vignali, L. W. Collison, and C. J. Workman, How regulatory T cells work, Nat Rev Immunol, vol.8, pp.523-532, 2008.

E. M. Shevach, From vanilla to 28 flavors: multiple varieties of T regulatory cells, Immunity, vol.25, pp.195-201, 2006.

W. Liu, A. L. Putnam, Z. Xu-yu, G. L. Szot, and M. R. Lee, CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4+ T reg cells, J Exp Med, vol.203, pp.1701-1711, 2006.

L. M. Ebert, B. S. Tan, J. Browning, S. Svobodova, and S. E. Russell, The regulatory T cellassociated transcription factor FoxP3 is expressed by tumor cells, Cancer Res, vol.68, pp.3001-3009, 2008.

T. Takahashi, T. Tagami, S. Yamazaki, T. Uede, and J. Shimizu, Immunologic self-tolerance maintained by CD25(+)CD4(+) regulatory T cells constitutively expressing cytotoxic T lymphocyte-associated antigen 4, J Exp Med, vol.192, pp.303-310, 2000.

J. Shimizu, S. Yamazaki, T. Takahashi, Y. Ishida, and S. Sakaguchi, Stimulation of CD25(+)CD4(+) regulatory T cells through GITR breaks immunological self-tolerance, Nat Immunol, vol.3, pp.135-142, 2002.

S. G. Zheng, J. H. Wang, J. D. Gray, H. Soucier, and D. A. Horwitz, Natural and induced CD4+CD25+ cells educate CD4+CD25-cells to develop suppressive activity: the role of IL-2, TGF-beta, and IL-10, J Immunol, vol.172, pp.5213-5221, 2004.

M. C. Fantini, C. Becker, G. Monteleone, F. Pallone, and P. R. Galle, Cutting edge: TGF-beta induces a regulatory phenotype in CD4+CD25-T cells through Foxp3 induction and downregulation of Smad7, J Immunol, vol.172, pp.5149-5153, 2004.

T. J. Curiel, Tregs and rethinking cancer immunotherapy, J Clin Invest, vol.117, pp.1167-1174, 2007.

L. Vence, A. K. Palucka, J. W. Fay, T. Ito, and Y. J. Liu, Circulating tumor antigen-specific regulatory T cells in patients with metastatic melanoma, Proc Natl Acad Sci U S A, vol.104, pp.20884-20889, 2007.

T. J. Curiel, G. Coukos, L. Zou, X. Alvarez, and P. Cheng, Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival, Nat Med, vol.10, pp.942-949, 2004.

N. Cools, V. F. Van-tendeloo, E. L. Smits, M. Lenjou, and G. Nijs, Immunosuppression induced by immature dendritic cells is mediated by TGF-beta/IL-10 double-positive CD4(+) regulatory T cells, J Cell Mol Med, vol.12, pp.690-700, 2008.

M. K. Levings, S. Gregori, E. Tresoldi, S. Cazzaniga, and C. Bonini, Differentiation of Tr1 cells by immature dendritic cells requires IL-10 but not CD25+CD4+ Tr cells, Blood, vol.105, pp.1162-1169, 2005.

F. Ghiringhelli, P. E. Puig, S. Roux, A. Parcellier, and E. Schmitt, Tumor cells convert immature myeloid dendritic cells into TGF-beta-secreting cells inducing CD4+CD25+ regulatory T cell proliferation, J Exp Med, vol.202, pp.919-929, 2005.
DOI : 10.1084/jem.20050463

URL : http://jem.rupress.org/content/202/7/919.full.pdf

T. J. Curiel, S. Wei, H. Dong, X. Alvarez, and P. Cheng, Blockade of B7-H1 improves myeloid dendritic cell-mediated antitumor immunity, Nat Med, vol.9, pp.562-567, 2003.

H. Dong, G. Zhu, K. Tamada, and L. Chen, B7-H1, a third member of the B7 family, co-stimulates Tcell proliferation and interleukin-10 secretion, Nat Med, vol.5, pp.1365-1369, 1999.

A. Curti, S. Pandolfi, B. Valzasina, M. Aluigi, and A. Isidori, Modulation of tryptophan catabolism by human leukemic cells results in the conversion of CD25-into CD25+ T regulatory cells, Blood, vol.109, pp.2871-2877, 2007.

F. Fallarino, U. Grohmann, S. You, B. C. Mcgrath, and D. R. Cavener, The combined effects of tryptophan starvation and tryptophan catabolites down-regulate T cell receptor zeta-chain and induce a regulatory phenotype in naive T cells, J Immunol, vol.176, pp.6752-6761, 2006.

M. D. Sharma, B. Baban, P. Chandler, D. Y. Hou, and N. Singh, Plasmacytoid dendritic cells from mouse tumor-draining lymph nodes directly activate mature Tregs via indoleamine 2,3-dioxygenase, J Clin Invest, vol.117, pp.2570-2582, 2007.

P. Serafini, S. Mgebroff, K. Noonan, and I. Borrello, Myeloid-derived suppressor cells promote crosstolerance in B-cell lymphoma by expanding regulatory T cells, Cancer Res, vol.68, pp.5439-5449, 2008.

D. Berrebi, S. Bruscoli, N. Cohen, A. Foussat, and G. Migliorati, Synthesis of glucocorticoidinduced leucine zipper (GILZ) by macrophages: an anti-inflammatory and immunosuppressive mechanism shared by glucocorticoids and IL-10, Blood, vol.101, pp.729-738, 2003.

N. Cohen, E. Mouly, H. Hamdi, M. C. Maillot, and M. Pallardy, GILZ expression in human dendritic cells redirects their maturation and prevents antigen-specific T lymphocyte response, Blood, vol.107, pp.2037-2044, 2006.

A. Sica, A. Saccani, B. Bottazzi, N. Polentarutti, and A. Vecchi, Autocrine production of IL-10 mediates defective IL-12 production and NF-kappa B activation in tumor-associated macrophages, J Immunol, vol.164, pp.762-767, 2000.

S. K. Biswas, L. Gangi, S. Paul, T. Schioppa, and A. Saccani, A distinct and unique transcriptional program expressed by tumor-associated macrophages (defective NF-kappaB and enhanced IRF-3/STAT1 activation), Blood, vol.107, pp.2112-2122, 2006.

T. R. Smith and V. Kumar, Revival of CD8(+) Treg-mediated suppression, Trends Immunol, vol.29, pp.337-342, 2008.

A. G. Jarnicki, J. Lysaght, S. Todryk, and K. H. Mills, Suppression of antitumor immunity by IL-10 and TGF-beta-producing T cells infiltrating the growing tumor: influence of tumor environment on the induction of CD4+ and CD8+ regulatory T cells, J Immunol, vol.177, pp.896-904, 2006.

G. Filaci, D. Fenoglio, M. Fravega, G. Ansaldo, and G. Borgonovo, CD8+ CD28-T regulatory lymphocytes inhibiting T cell proliferative and cytotoxic functions infiltrate human cancers, J Immunol, vol.179, pp.4323-4334, 2007.

C. C. Chang, R. Ciubotariu, J. S. Manavalan, J. Yuan, and A. I. Colovai, Tolerization of dendritic cells by T(S) cells: the crucial role of inhibitory receptors ILT3 and ILT4, Nat Immunol, vol.3, pp.237-243, 2002.

Y. Kiniwa, Y. Miyahara, H. Y. Wang, W. Peng, and G. Peng, CD8+ Foxp3+ regulatory T cells mediate immunosuppression in prostate cancer, Clin Cancer Res, vol.13, pp.6947-6958, 2007.

S. Wei, I. Kryczek, L. Zou, B. Daniel, and P. Cheng, Plasmacytoid dendritic cells induce CD8+ regulatory T cells in human ovarian carcinoma, Cancer Res, vol.65, pp.5020-5026, 2005.

J. S. Nam, M. Terabe, M. J. Kang, H. Chae, and N. Voong, Transforming growth factor beta subverts the immune system into directly promoting tumor growth through interleukin-17, Cancer Res, vol.68, pp.3915-3923, 2008.

L. Benevides, D. M. Da-fonseca, P. B. Donate, D. G. Tiezzi, D. Carvalho et al., IL17 Promotes Mammary Tumor Progression by Changing the Behavior of Tumor Cells and Eliciting Tumorigenic Neutrophils Recruitment, Cancer Res, vol.75, pp.3788-3799, 2015.

W. Zou and N. P. Restifo, T(H)17 cells in tumour immunity and immunotherapy, Nat Rev Immunol, vol.10, pp.248-256, 2010.

B. Zhang, G. Rong, H. Wei, M. Zhang, and J. Bi, The prevalence of Th17 cells in patients with gastric cancer, Biochem Biophys Res Commun, 2008.

I. Kryczek, S. Wei, L. Zou, S. Altuwaijri, and W. Szeliga, Cutting edge: Th17 and regulatory T cell dynamics and the regulation by IL-2 in the tumor microenvironment, J Immunol, vol.178, pp.6730-6733, 2007.

A. Ciree, L. Michel, S. Camilleri-broet, J. Louis, F. Oster et al., Expression and activity of IL-17 in cutaneous T-cell lymphomas (mycosis fungoides and Sezary syndrome), Int J Cancer, vol.112, pp.113-120, 2004.

W. W. Lin and M. Karin, A cytokine-mediated link between innate immunity, inflammation, and cancer, J Clin Invest, vol.117, pp.1175-1183, 2007.

E. Tartour, F. Fossiez, I. Joyeux, A. Galinha, and A. Gey, Interleukin 17, a T-cell-derived cytokine, promotes tumorigenicity of human cervical tumors in nude mice, Cancer Res, vol.59, pp.3698-3704, 1999.

J. P. Zhang, J. Yan, J. Xu, X. H. Pang, and M. S. Chen, Increased intratumoral IL-17-producing cells correlate with poor survival in hepatocellular carcinoma patients, J Hepatol, vol.50, pp.980-989, 2009.

E. Derhovanessian, V. Adams, K. Hahnel, A. Groeger, and H. Pandha, Pretreatment frequency of circulating IL-17+ CD4+ T-cells, but not Tregs, correlates with clinical response to whole-cell vaccination in prostate cancer patients, Int J Cancer, vol.125, pp.1372-1379, 2009.

X. Chen, J. Wan, J. Liu, W. Xie, and X. Diao, Increased IL-17-producing cells correlate with poor survival and lymphangiogenesis in NSCLC patients, Lung Cancer, vol.69, pp.348-354, 2010.

F. Zhao, B. Hoechst, J. Gamrekelashvili, L. A. Ormandy, and T. Voigtlander, Human CCR4+ CCR6+ Th17 cells suppress autologous CD8+ T cell responses, J Immunol, vol.188, pp.6055-6062, 2012.

F. Chalmin, G. Mignot, M. Bruchard, A. Chevriaux, and F. Vegran, Stat3 and Gfi-1 transcription factors control Th17 cell immunosuppressive activity via the regulation of ectonucleotidase expression, Immunity, vol.36, pp.362-373, 2012.
URL : https://hal.archives-ouvertes.fr/inserm-00821485

A. Agarwal, S. Verma, U. Burra, N. S. Murthy, and N. K. Mohanty, Flow cytometric analysis of Th1 and Th2 cytokines in PBMCs as a parameter of immunological dysfunction in patients of superficial transitional cell carcinoma of bladder, Cancer Immunol Immunother, vol.55, pp.734-743, 2006.

M. Kanazawa, K. Yoshihara, H. Abe, M. Iwadate, and K. Watanabe, Effects of PSK on T and dendritic cells differentiation in gastric or colorectal cancer patients, Anticancer Res, vol.25, pp.443-449, 2005.

B. C. Sheu, R. H. Lin, H. C. Lien, H. N. Ho, and S. M. Hsu, Predominant Th2/Tc2 polarity of tumorinfiltrating lymphocytes in human cervical cancer, J Immunol, vol.167, pp.2972-2978, 2001.

M. Terabe, J. M. Park, and J. A. Berzofsky, Role of IL-13 in regulation of anti-tumor immunity and tumor growth, Cancer Immunol Immunother, vol.53, pp.79-85, 2004.

E. Gumus, S. Erdamar, G. Demirel, K. Horasanli, and M. Kendirci, Association of positive serum anti-p53 antibodies with poor prognosis in bladder cancer patients, Int J Urol, vol.11, pp.1070-1077, 2004.

S. Shah, A. A. Divekar, S. P. Hilchey, H. M. Cho, and C. L. Newman, Increased rejection of primary tumors in mice lacking B cells: inhibition of anti-tumor CTL and TH1 cytokine responses by B cells, Int J Cancer, vol.117, pp.574-586, 2005.

P. Yu, Y. Lee, W. Liu, R. K. Chin, and J. Wang, Priming of naive T cells inside tumors leads to eradication of established tumors, Nat Immunol, vol.5, pp.141-149, 2004.

A. Troy, P. Davidson, C. Atkinson, and D. Hart, Phenotypic characterisation of the dendritic cell infiltrate in prostate cancer, J Urol, vol.160, pp.214-219, 1998.

A. J. Troy, K. L. Summers, P. J. Davidson, C. H. Atkinson, and D. N. Hart, Minimal recruitment and activation of dendritic cells within renal cell carcinoma, Clin Cancer Res, vol.4, pp.585-593, 1998.

K. Steinbrink, M. Wolfl, H. Jonuleit, J. Knop, and A. H. Enk, Induction of tolerance by IL-10-treated dendritic cells, J Immunol, vol.159, pp.4772-4780, 1997.

A. H. Enk, H. Jonuleit, J. Saloga, and J. Knop, Dendritic cells as mediators of tumor-induced tolerance in metastatic melanoma, Int J Cancer, vol.73, pp.309-316, 1997.

H. Huang, W. Dawicki, X. Zhang, J. Town, and J. R. Gordon, Tolerogenic dendritic cells induce CD4+CD25hiFoxp3+ regulatory T cell differentiation from CD4+CD25-/loFoxp3-effector T cells, J Immunol, vol.185, pp.5003-5010, 2010.

D. I. Gabrilovich, J. Corak, I. F. Ciernik, D. Kavanaugh, and D. P. Carbone, Decreased antigen presentation by dendritic cells in patients with breast cancer, Clin Cancer Res, vol.3, pp.483-490, 1997.

D. Gabrilovich, Mechanisms and functional significance of tumour-induced dendritic-cell defects, Nat Rev Immunol, vol.4, pp.941-952, 2004.

H. Dong, S. E. Strome, D. R. Salomao, H. Tamura, and F. Hirano, Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion, Nat Med, vol.8, pp.793-800, 2002.

W. Zou and L. Chen, Inhibitory B7-family molecules in the tumour microenvironment, Nat Rev Immunol, vol.8, pp.467-477, 2008.

J. Jablonska, S. Leschner, K. Westphal, S. Lienenklaus, and S. Weiss, Neutrophils responsive to endogenous IFN-beta regulate tumor angiogenesis and growth in a mouse tumor model, J Clin Invest, vol.120, pp.1151-1164, 2010.

Z. G. Fridlender, J. Sun, S. Kim, V. Kapoor, and G. Cheng, Polarization of tumor-associated neutrophil phenotype by TGF-beta: "N1" versus "N2, TAN. Cancer Cell, vol.16, pp.183-194, 2009.

V. Bronte, D. B. Chappell, E. Apolloni, A. Cabrelle, and M. Wang, Unopposed production of granulocyte-macrophage colony-stimulating factor by tumors inhibits CD8+ T cell responses by dysregulating antigen-presenting cell maturation, J Immunol, vol.162, pp.5728-5737, 1999.

V. Bronte, M. Wang, W. W. Overwijk, D. R. Surman, and F. Pericle, Apoptotic death of CD8+ T lymphocytes after immunization: induction of a suppressive population of Mac-1+/Gr-1+ cells, J Immunol, vol.161, pp.5313-5320, 1998.

D. I. Gabrilovich, V. Bronte, S. H. Chen, M. P. Colombo, and A. Ochoa, The terminology issue for myeloid-derived suppressor cells, Cancer Res, vol.67, p.425, 2007.

P. Serafini, I. Borrello, and V. Bronte, Myeloid suppressor cells in cancer: recruitment, phenotype, properties, and mechanisms of immune suppression, Semin Cancer Biol, vol.16, pp.53-65, 2006.

V. Bronte, E. Apolloni, A. Cabrelle, R. Ronca, and P. Serafini, Identification of a CD11b(+)/Gr-1(+)/CD31(+) myeloid progenitor capable of activating or suppressing CD8(+) T cells, Blood, vol.96, pp.3838-3846, 2000.

B. Huang, P. Y. Pan, Q. Li, A. I. Sato, and D. E. Levy, Gr-1+CD115+ immature myeloid suppressor cells mediate the development of tumor-induced T regulatory cells and T-cell anergy in tumorbearing host, Cancer Res, vol.66, pp.1123-1131, 2006.

G. Gallina, L. Dolcetti, P. Serafini, D. Santo, C. Marigo et al., Tumors induce a subset of inflammatory monocytes with immunosuppressive activity on CD8+ T cells, J Clin Invest, vol.116, pp.2777-2790, 2006.

D. I. Gabrilovich, M. P. Velders, E. M. Sotomayor, and W. M. Kast, Mechanism of immune dysfunction in cancer mediated by immature Gr-1+ myeloid cells, J Immunol, vol.166, pp.5398-5406, 2001.

K. Movahedi, M. Guilliams, J. Van-den-bossche, R. Van-den-bergh, and C. Gysemans, Identification of discrete tumor-induced myeloid-derived suppressor cell subpopulations with distinct T cell-suppressive activity, Blood, vol.111, pp.4233-4244, 2008.

B. Almand, J. I. Clark, E. Nikitina, J. Van-beynen, and N. R. English, Increased production of immature myeloid cells in cancer patients: a mechanism of immunosuppression in cancer, J Immunol, vol.166, pp.678-689, 2001.

C. M. Diaz-montero, M. L. Salem, M. I. Nishimura, E. Garrett-mayer, and D. J. Cole, Increased circulating myeloid-derived suppressor cells correlate with clinical cancer stage, metastatic tumor burden, and doxorubicin-cyclophosphamide chemotherapy, Cancer Immunol Immunother, 2008.

S. A. Kusmartsev, Y. Li, and S. H. Chen, Gr-1+ myeloid cells derived from tumor-bearing mice inhibit primary T cell activation induced through CD3/CD28 costimulation, J Immunol, vol.165, pp.779-785, 2000.

A. Mazzoni, V. Bronte, A. Visintin, J. H. Spitzer, and E. Apolloni, Myeloid suppressor lines inhibit T cell responses by an NO-dependent mechanism, J Immunol, vol.168, pp.689-695, 2002.

S. Nagaraj, K. Gupta, V. Pisarev, L. Kinarsky, and S. Sherman, Altered recognition of antigen is a mechanism of CD8+ T cell tolerance in cancer, Nat Med, vol.13, pp.828-835, 2007.

V. Bronte, P. Serafini, D. Santo, C. Marigo, I. Tosello et al., IL-4-induced arginase 1 suppresses alloreactive T cells in tumor-bearing mice, J Immunol, vol.170, pp.270-278, 2003.

J. C. Brooks and D. W. Hoskin, The inhibitory effect of cyclophosphamide-induced MAC-1+ natural suppressor cells on IL-2 and IL-4 utilization in MLR, Transplantation, vol.58, pp.1096-1103, 1994.

P. Sinha, V. K. Clements, S. K. Bunt, S. M. Albelda, and S. Ostrand-rosenberg, Cross-talk between myeloid-derived suppressor cells and macrophages subverts tumor immunity toward a type 2 response, J Immunol, vol.179, pp.977-983, 2007.

B. Hoechst, L. A. Ormandy, M. Ballmaier, F. Lehner, and C. Kruger, A new population of myeloid-derived suppressor cells in hepatocellular carcinoma patients induces CD4(+)CD25(+)Foxp3(+) T cells, Gastroenterology, vol.135, pp.234-243, 2008.

L. Yang, L. M. Debusk, K. Fukuda, B. Fingleton, and B. Green-jarvis, Expansion of myeloid immune suppressor Gr+CD11b+ cells in tumor-bearing host directly promotes tumor angiogenesis, Cancer Cell, vol.6, pp.409-421, 2004.

A. J. Muller and P. A. Scherle, Targeting the mechanisms of tumoral immune tolerance with smallmolecule inhibitors, Nat Rev Cancer, vol.6, pp.613-625, 2006.

I. Mellman, G. Coukos, and G. Dranoff, Cancer immunotherapy comes of age, Nature, vol.480, pp.480-489, 2011.

M. Kalos and C. H. June, Adoptive T cell transfer for cancer immunotherapy in the era of synthetic biology, Immunity, vol.39, pp.49-60, 2013.

W. Zou, Immunosuppressive networks in the tumour environment and their therapeutic relevance, Nat Rev Cancer, vol.5, pp.263-274, 2005.

F. Sandoval, M. Terme, M. Nizard, C. Badoual, and M. F. Bureau, Mucosal imprinting of vaccineinduced CD8(+) T cells is crucial to inhibit the growth of mucosal tumors, Sci Transl Med, vol.5, pp.172-120, 2013.

N. Bercovici, N. Haicheur, S. Massicard, F. Vernel-pauillac, and O. Adotevi, Analysis and characterization of antitumor T-cell response after administration of dendritic cells loaded with allogeneic tumor lysate to metastatic melanoma patients, J Immunother, vol.31, pp.101-112, 2008.

O. J. Finn, Cancer immunology, N Engl J Med, vol.358, pp.2704-2715, 2008.

G. Lizee, M. A. Cantu, and P. Hwu, Less yin, more yang: confronting the barriers to cancer immunotherapy, Clin Cancer Res, vol.13, pp.5250-5255, 2007.

C. Chester, O. Dorigo, J. S. Berek, and H. Kohrt, Immunotherapeutic approaches to ovarian cancer treatment, J Immunother Cancer, vol.3, p.7, 2015.

K. T. Byrne, R. H. Vonderheide, E. M. Jaffee, and T. D. Armstrong, Special Conference on Tumor Immunology and Immunotherapy: A New Chapter, 2015.

S. L. Topalian, C. G. Drake, and D. M. Pardoll, Immune checkpoint blockade: a common denominator approach to cancer therapy, Cancer Cell, vol.27, pp.450-461, 2015.

P. Sharma and J. P. Allison, Immune checkpoint targeting in cancer therapy: toward combination strategies with curative potential, Cell, vol.161, pp.205-214, 2015.

H. Onishi, T. Morisaki, and M. Katano, Immunotherapy approaches targeting regulatory T-cells, Anticancer Res, vol.32, pp.997-1003, 2012.

H. Nishikawa and S. Sakaguchi, Regulatory T cells in cancer immunotherapy, Curr Opin Immunol, vol.27, pp.1-7, 2014.

J. Bayry, E. Tartour, and D. F. Tough, Targeting CCR4 as an emerging strategy for cancer therapy and vaccines, Trends Pharmacol Sci, vol.35, pp.163-165, 2014.

Y. Bulliard, R. Jolicoeur, J. Zhang, G. Dranoff, and N. S. Wilson, OX40 engagement depletes intratumoral Tregs via activating FcgammaRs, leading to antitumor efficacy, Immunol Cell Biol, vol.92, pp.475-480, 2014.

D. A. Schaer, S. Budhu, C. Liu, C. Bryson, and N. Malandro, GITR pathway activation abrogates tumor immune suppression through loss of regulatory T cell lineage stability, Cancer Immunol Res, vol.1, pp.320-331, 2013.

M. Terme, S. Pernot, E. Marcheteau, F. Sandoval, and N. Benhamouda, VEGFA-VEGFR pathway blockade inhibits tumor-induced regulatory T-cell proliferation in colorectal cancer, Cancer Res, vol.73, pp.539-549, 2013.

M. H. Sieweke and J. E. Allen, Beyond stem cells: self-renewal of differentiated macrophages, Science, vol.342, p.1242974, 2013.

J. Sheng, C. Ruedl, and K. Karjalainen, Most Tissue-Resident Macrophages Except Microglia Are Derived from Fetal Hematopoietic Stem Cells, Immunity, vol.43, pp.382-393, 2015.

S. Epelman, K. J. Lavine, and G. J. Randolph, Origin and functions of tissue macrophages, Immunity, vol.41, pp.21-35, 2014.

L. C. Davies, S. J. Jenkins, J. E. Allen, and P. R. Taylor, Tissue-resident macrophages, Nat Immunol, vol.14, pp.986-995, 2013.

C. Varol, A. Mildner, and S. Jung, Macrophages: development and tissue specialization, Annu Rev Immunol, vol.33, pp.643-675, 2015.

S. Gordon and P. R. Taylor, Monocyte and macrophage heterogeneity, Nature reviews Immunology, vol.5, pp.953-964, 2005.

C. Auffray, M. H. Sieweke, and F. Geissmann, Blood monocytes: development, heterogeneity, and relationship with dendritic cells, Annual review of immunology, vol.27, pp.669-692, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00407757

S. K. Biswas and A. Mantovani, Orchestration of metabolism by macrophages, Cell Metab, vol.15, pp.432-437, 2012.

J. M. Slauch, How does the oxidative burst of macrophages kill bacteria? Still an open question, Mol Microbiol, vol.80, pp.580-583, 2011.

G. Weiss and U. E. Schaible, Macrophage defense mechanisms against intracellular bacteria, Immunol Rev, vol.264, pp.182-203, 2015.

R. S. Flannagan, G. Cosio, and S. Grinstein, Antimicrobial mechanisms of phagocytes and bacterial evasion strategies, Nat Rev Microbiol, vol.7, pp.355-366, 2009.

L. P. Erwig and P. M. Henson, Clearance of apoptotic cells by phagocytes, Cell Death Differ, vol.15, pp.243-250, 2008.

A. Krispin, Y. Bledi, M. Atallah, U. Trahtemberg, and I. Verbovetski, Apoptotic cell thrombospondin-1 and heparin-binding domain lead to dendritic-cell phagocytic and tolerizing states, Blood, vol.108, pp.3580-3589, 2006.

K. S. Ravichandran and U. Lorenz, Engulfment of apoptotic cells: signals for a good meal, Nat Rev Immunol, vol.7, pp.964-974, 2007.

T. M. Oberyszyn, Inflammation and wound healing, Front Biosci, vol.12, pp.2993-2999, 2007.

O. Soehnlein and L. Lindbom, Phagocyte partnership during the onset and resolution of inflammation, Nat Rev Immunol, vol.10, pp.427-439, 2010.

C. D. Buckley, D. W. Gilroy, C. N. Serhan, B. Stockinger, and P. P. Tak, The resolution of inflammation, Nat Rev Immunol, vol.13, pp.59-66, 2013.

D. M. Mosser and J. P. Edwards, Exploring the full spectrum of macrophage activation, Nat Rev Immunol, vol.8, pp.958-969, 2008.

S. K. Biswas and A. Mantovani, Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm, Nature immunology, vol.11, pp.889-896, 2010.

A. Sica and A. Mantovani, Macrophage plasticity and polarization: in vivo veritas, The Journal of clinical investigation, vol.122, pp.787-795, 2012.

A. Mantovani, A. Sica, S. Sozzani, P. Allavena, and A. Vecchi, The chemokine system in diverse forms of macrophage activation and polarization, Trends in immunology, vol.25, pp.677-686, 2004.

D. C. Lacey, A. Achuthan, A. J. Fleetwood, H. Dinh, and J. Roiniotis, Defining GM-CSF-and Macrophage-CSF-Dependent Macrophage Responses by In Vitro Models, Journal of immunology, vol.188, pp.5752-5765, 2012.
DOI : 10.4049/jimmunol.1103426

M. Greter, I. Lelios, P. Pelczar, G. Hoeffel, and J. Price, Stroma-derived interleukin-34 controls the development and maintenance of langerhans cells and the maintenance of microglia, Immunity, vol.37, pp.1050-1060, 2012.

Y. Wang, K. J. Szretter, W. Vermi, S. Gilfillan, and C. Rossini, IL-34 is a tissue-restricted ligand of CSF1R required for the development of Langerhans cells and microglia, Nat Immunol, vol.13, pp.753-760, 2012.

T. Chihara, S. Suzu, R. Hassan, N. Chutiwitoonchai, and M. Hiyoshi, IL-34 and M-CSF share the receptor Fms but are not identical in biological activity and signal activation, Cell death and differentiation, vol.17, pp.1917-1927, 2010.

H. Lin, E. Lee, K. Hestir, C. Leo, and M. Huang, Discovery of a cytokine and its receptor by functional screening of the extracellular proteome, Science, vol.320, pp.807-811, 2008.

J. Pandit, A. Bohm, J. Jancarik, R. Halenbeck, and K. Koths, Three-dimensional structure of dimeric human recombinant macrophage colony-stimulating factor, Science, vol.258, pp.1358-1362, 1992.
DOI : 10.1126/science.1455231

URL : https://zenodo.org/record/1230962/files/article.pdf

N. Droin and E. Solary, Editorial: CSF1R, CSF-1, and IL-34, a "menage a trois" conserved across vertebrates, Journal of leukocyte biology, vol.87, pp.745-747, 2010.
DOI : 10.1189/jlb.1209780

URL : https://jlb.onlinelibrary.wiley.com/doi/pdf/10.1189/jlb.1209780

Y. Nakamichi, N. Udagawa, and N. Takahashi, IL-34 and CSF-1: similarities and differences, J Bone Miner Metab, vol.31, pp.486-495, 2013.
DOI : 10.1007/s00774-013-0476-3

S. Wei, S. Nandi, V. Chitu, Y. G. Yeung, and W. Yu, Functional overlap but differential expression of CSF-1 and IL-34 in their CSF-1 receptor-mediated regulation of myeloid cells, Journal of leukocyte biology, vol.88, pp.495-505, 2010.

Z. Chen, K. Buki, J. Vaaraniemi, G. Gu, and H. K. Vaananen, The critical role of IL-34 in osteoclastogenesis, PloS one, vol.6, p.18689, 2011.

M. Baud'huin, R. R. Charrier, C. Riet, A. Moreau, and A. , Interleukin-34 is expressed by giant cell tumours of bone and plays a key role in RANKL-induced osteoclastogenesis, The Journal of pathology, vol.221, pp.77-86, 2010.

X. Ma, W. Y. Lin, Y. Chen, S. Stawicki, and K. Mukhyala, Structural basis for the dual recognition of helical cytokines IL-34 and CSF-1 by CSF-1R, Structure, vol.20, pp.676-687, 2012.

A. Mantovani, A. Sica, and M. Locati, Macrophage polarization comes of age, Immunity, vol.23, pp.344-346, 2005.

P. R. Taylor, L. Martinez-pomares, M. Stacey, H. H. Lin, and G. D. Brown, Macrophage receptors and immune recognition, Annual review of immunology, vol.23, pp.901-944, 2005.
DOI : 10.1146/annurev.immunol.23.021704.115816

J. Macmicking, Q. W. Xie, and C. Nathan, Nitric oxide and macrophage function, Annu Rev Immunol, vol.15, pp.323-350, 1997.

A. H. Klimp, E. G. De-vries, G. L. Scherphof, and T. Daemen, A potential role of macrophage activation in the treatment of cancer, Crit Rev Oncol Hematol, vol.44, pp.143-161, 2002.

F. A. Verreck, T. De-boer, D. M. Langenberg, M. A. Hoeve, and M. Kramer, Human IL-23-producing type 1 macrophages promote but IL-10-producing type 2 macrophages subvert immunity to (myco)bacteria, Proc Natl Acad Sci U S A, vol.101, pp.4560-4565, 2004.
DOI : 10.1073/pnas.0400983101

URL : https://www.pnas.org/content/pnas/101/13/4560.full.pdf

A. J. Fleetwood, T. Lawrence, J. A. Hamilton, and A. D. Cook, Granulocyte-macrophage colonystimulating factor (CSF) and macrophage CSF-dependent macrophage phenotypes display differences in cytokine profiles and transcription factor activities: implications for CSF blockade in inflammation, Journal of immunology, vol.178, pp.5245-5252, 2007.

P. Qasimi, A. Ming-lum, A. Ghanipour, C. J. Ong, and M. E. Cox, Divergent mechanisms utilized by SOCS3 to mediate interleukin-10 inhibition of tumor necrosis factor alpha and nitric oxide production by macrophages, The Journal of biological chemistry, vol.281, pp.6316-6324, 2006.

D. Duluc, Y. Delneste, F. Tan, M. P. Moles, and L. Grimaud, Tumor-associated leukemia inhibitory factor and IL-6 skew monocyte differentiation into tumor-associated macrophage-like cells, Blood, vol.110, pp.4319-4330, 2007.
DOI : 10.1182/blood-2007-02-072587

URL : http://www.bloodjournal.org/content/110/13/4319.full.pdf

S. B. Lee and R. Kalluri, Mechanistic connection between inflammation and fibrosis, Kidney Int, pp.22-26, 2010.
DOI : 10.1038/ki.2010.418

URL : http://europepmc.org/articles/pmc4067095?pdf=render

E. S. White and A. R. Mantovani, Inflammation, wound repair, and fibrosis: reassessing the spectrum of tissue injury and resolution, J Pathol, vol.229, pp.141-144, 2013.

A. J. Czaja, Hepatic inflammation and progressive liver fibrosis in chronic liver disease, World J Gastroenterol, vol.20, pp.2515-2532, 2014.
DOI : 10.3748/wjg.v20.i10.2515

URL : https://doi.org/10.3748/wjg.v20.i10.2515

G. Wick, C. Grundtman, C. Mayerl, T. F. Wimpissinger, and J. Feichtinger, The immunology of fibrosis, Annu Rev Immunol, vol.31, pp.107-135, 2013.

A. Pellicoro, P. Ramachandran, J. P. Iredale, and J. A. Fallowfield, Liver fibrosis and repair: immune regulation of wound healing in a solid organ, Nat Rev Immunol, vol.14, pp.181-194, 2014.

T. J. Koh and L. A. Dipietro, Inflammation and wound healing: the role of the macrophage, Expert Rev Mol Med, vol.13, p.23, 2011.

M. Weidenbusch and H. J. Anders, Tissue microenvironments define and get reinforced by macrophage phenotypes in homeostasis or during inflammation, repair and fibrosis, J Innate Immun, vol.4, pp.463-477, 2012.

L. Preisser, C. Miot, L. Guillou-guillemette, H. Beaumont, E. Foucher et al., IL-34 and macrophage colony-stimulating factor are overexpressed in hepatitis C virus fibrosis and induce profibrotic macrophages that promote collagen synthesis by hepatic stellate cells, Hepatology, vol.60, pp.1879-1890, 2014.

M. Iero, R. Valenti, V. Huber, P. Filipazzi, and G. Parmiani, Tumour-released exosomes and their implications in cancer immunity, Cell Death Differ, vol.15, pp.80-88, 2008.

R. Valenti, V. Huber, P. Filipazzi, L. Pilla, and G. Sovena, Human tumor-released microvesicles promote the differentiation of myeloid cells with transforming growth factor-beta-mediated suppressive activity on T lymphocytes, Cancer Res, vol.66, pp.9290-9298, 2006.

R. Valenti, V. Huber, M. Iero, P. Filipazzi, and G. Parmiani, Tumor-released microvesicles as vehicles of immunosuppression, Cancer Res, vol.67, pp.2912-2915, 2007.

T. Hagemann, J. Wilson, F. Burke, H. Kulbe, and N. F. Li, Ovarian cancer cells polarize macrophages toward a tumor-associated phenotype, J Immunol, vol.176, pp.5023-5032, 2006.
DOI : 10.4049/jimmunol.176.8.5023

URL : http://www.jimmunol.org/content/176/8/5023.full.pdf

P. Chomarat, J. Banchereau, J. Davoust, and A. K. Palucka, IL-6 switches the differentiation of monocytes from dendritic cells to macrophages, Nat Immunol, vol.1, pp.510-514, 2000.

C. Menetrier-caux, G. Montmain, M. C. Dieu, C. Bain, and M. C. Favrot, Inhibition of the differentiation of dendritic cells from CD34(+) progenitors by tumor cells: role of interleukin-6 and macrophage colony-stimulating factor, Blood, vol.92, pp.4778-4791, 1998.

B. M. Kacinski, CSF-1 and its receptor in ovarian, endometrial and breast cancer, Ann Med, vol.27, pp.79-85, 1995.

B. M. Kacinski, CSF-1 and its receptor in breast carcinomas and neoplasms of the female reproductive tract, Mol Reprod Dev, vol.46, pp.71-74, 1997.

E. Y. Lin, V. Gouon-evans, A. V. Nguyen, and J. W. Pollard, The macrophage growth factor CSF-1 in mammary gland development and tumor progression, J Mammary Gland Biol Neoplasia, vol.7, pp.147-162, 2002.

S. M. Scholl, C. Pallud, F. Beuvon, K. Hacene, and E. R. Stanley, Anti-colony-stimulating factor-1 antibody staining in primary breast adenocarcinomas correlates with marked inflammatory cell infiltrates and prognosis, J Natl Cancer Inst, vol.86, pp.120-126, 1994.

H. Saji, M. Koike, T. Yamori, S. Saji, and M. Seiki, Significant correlation of monocyte chemoattractant protein-1 expression with neovascularization and progression of breast carcinoma, Cancer, vol.92, pp.1085-1091, 2001.

D. Milliken, C. Scotton, S. Raju, F. Balkwill, and J. Wilson, Analysis of chemokines and chemokine receptor expression in ovarian cancer ascites, Clin Cancer Res, vol.8, pp.1108-1114, 2002.

A. Sica, T. Schioppa, A. Mantovani, and P. Allavena, Tumour-associated macrophages are a distinct M2 polarised population promoting tumour progression: potential targets of anti-cancer therapy, Eur J Cancer, vol.42, pp.717-727, 2006.

A. Mantovani, R. Bonecchi, and M. Locati, Tuning inflammation and immunity by chemokine sequestration: decoys and more, Nat Rev Immunol, vol.6, pp.907-918, 2006.

E. Azenshtein, G. Luboshits, S. Shina, E. Neumark, and D. Shahbazian, The CC chemokine RANTES in breast carcinoma progression: regulation of expression and potential mechanisms of promalignant activity, Cancer Res, vol.62, pp.1093-1102, 2002.

M. C. Duyndam, M. C. Hilhorst, H. M. Schluper, H. M. Verheul, and P. J. Van-diest, Vascular endothelial growth factor-165 overexpression stimulates angiogenesis and induces cyst formation and macrophage infiltration in human ovarian cancer xenografts, Am J Pathol, vol.160, pp.537-548, 2002.

A. Adini, T. Kornaga, F. Firoozbakht, and L. E. Benjamin, Placental growth factor is a survival factor for tumor endothelial cells and macrophages, Cancer Res, vol.62, pp.2749-2752, 2002.

P. Allavena, A. Sica, G. Solinas, C. Porta, and A. Mantovani, The inflammatory micro-environment in tumor progression: the role of tumor-associated macrophages, Crit Rev Oncol Hematol, vol.66, pp.1-9, 2008.

O. R. Colegio, N. Q. Chu, A. L. Szabo, T. Chu, and A. M. Rhebergen, Functional polarization of tumour-associated macrophages by tumour-derived lactic acid, Nature, vol.513, pp.559-563, 2014.

K. L. Talks, H. Turley, K. C. Gatter, P. H. Maxwell, and C. W. Pugh, The expression and distribution of the hypoxia-inducible factors HIF-1alpha and HIF-2alpha in normal human tissues, cancers, and tumor-associated macrophages, Am J Pathol, vol.157, pp.411-421, 2000.

J. S. Lewis, R. J. Landers, J. C. Underwood, A. L. Harris, and C. E. Lewis, Expression of vascular endothelial growth factor by macrophages is up-regulated in poorly vascularized areas of breast carcinomas, J Pathol, vol.192, pp.150-158, 2000.

R. Du, K. V. Lu, C. Petritsch, P. Liu, and R. Ganss, HIF1alpha induces the recruitment of bone marrow-derived vascular modulatory cells to regulate tumor angiogenesis and invasion, Cancer Cell, vol.13, pp.206-220, 2008.

J. R. White, R. A. Harris, S. R. Lee, M. H. Craigon, and K. Binley, Genetic amplification of the transcriptional response to hypoxia as a novel means of identifying regulators of angiogenesis, Genomics, vol.83, pp.1-8, 2004.

E. Guida and A. Stewart, Influence of hypoxia and glucose deprivation on tumour necrosis factoralpha and granulocyte-macrophage colony-stimulating factor expression in human cultured monocytes, Cell Physiol Biochem, vol.8, pp.75-88, 1998.

S. L. Hempel, M. M. Monick, and G. W. Hunninghake, Effect of hypoxia on release of IL-1 and TNF by human alveolar macrophages, Am J Respir Cell Mol Biol, vol.14, pp.170-176, 1996.

F. Balkwill, K. A. Charles, and A. Mantovani, Smoldering and polarized inflammation in the initiation and promotion of malignant disease, Cancer Cell, vol.7, pp.211-217, 2005.

A. Mantovani, P. Allavena, A. Sica, and F. Balkwill, Cancer-related inflammation, Nature, vol.454, pp.436-444, 2008.

I. Kryczek, L. Zou, P. Rodriguez, G. Zhu, and S. Wei, B7-H4 expression identifies a novel suppressive macrophage population in human ovarian carcinoma, J Exp Med, vol.203, pp.871-881, 2006.

I. Kryczek, S. Wei, G. Zhu, L. Myers, and P. Mottram, Relationship between B7-H4, regulatory T cells, and patient outcome in human ovarian carcinoma, Cancer Res, vol.67, pp.8900-8905, 2007.

I. Kryczek, S. Wei, L. Zou, G. Zhu, and P. Mottram, Cutting edge: induction of B7-H4 on APCs through IL-10: novel suppressive mode for regulatory T cells, J Immunol, vol.177, pp.40-44, 2006.

A. Mantovani, S. Sozzani, M. Locati, P. Allavena, and A. Sica, Macrophage polarization: tumorassociated macrophages as a paradigm for polarized M2 mononuclear phagocytes, Trends Immunol, vol.23, pp.549-555, 2002.

P. Carmeliet and R. K. Jain, Angiogenesis in cancer and other diseases, Nature, vol.407, pp.249-257, 2000.

N. Boudreau and C. Myers, Breast cancer-induced angiogenesis: multiple mechanisms and the role of the microenvironment, Breast Cancer Res, vol.5, pp.140-146, 2003.

E. Y. Lin and J. W. Pollard, Tumor-associated macrophages press the angiogenic switch in breast cancer, Cancer Res, vol.67, pp.5064-5066, 2007.

E. Y. Lin, J. F. Li, G. Bricard, W. Wang, and Y. Deng, VEGF Restores Delayed Tumor Progression in Tumors Depleted of Macrophages, Mol Oncol, vol.1, pp.288-302, 2007.

M. L. Varney, K. J. Olsen, R. L. Mosley, and R. K. Singh, Paracrine regulation of vascular endothelial growth factor--a expression during macrophage-melanoma cell interaction: role of monocyte chemotactic protein-1 and macrophage colony-stimulating factor, J Interferon Cytokine Res, vol.25, pp.674-683, 2005.

C. Melani, C. Chiodoni, G. Forni, and M. P. Colombo, Myeloid cell expansion elicited by the progression of spontaneous mammary carcinomas in c-erbB-2 transgenic BALB/c mice suppresses immune reactivity, Blood, vol.102, pp.2138-2145, 2003.

T. Ueno, M. Toi, H. Saji, M. Muta, and H. Bando, Significance of macrophage chemoattractant protein-1 in macrophage recruitment, angiogenesis, and survival in human breast cancer, Clin Cancer Res, vol.6, pp.3282-3289, 2000.

H. Eda, K. Fujimoto, S. Watanabe, M. Ura, and A. Hino, Cytokines induce thymidine phosphorylase expression in tumor cells and make them more susceptible to 5'-deoxy-5-fluorouridine, Cancer Chemother Pharmacol, vol.32, pp.333-338, 1993.

R. D. Leek, R. Landers, S. B. Fox, F. Ng, and A. L. Harris, Association of tumour necrosis factor alpha and its receptors with thymidine phosphorylase expression in invasive breast carcinoma, Br J Cancer, vol.77, pp.2246-2251, 1998.

C. Marconi, F. Bianchini, A. Mannini, G. Mugnai, and S. Ruggieri, Tumoral and macrophage uPAR and MMP-9 contribute to the invasiveness of B16 murine melanoma cells, Clin Exp Metastasis, vol.25, pp.225-231, 2008.

R. Hildenbrand, C. Jansen, G. Wolf, B. Bohme, and S. Berger, Transforming growth factor-beta stimulates urokinase expression in tumor-associated macrophages of the breast, Lab Invest, vol.78, pp.59-71, 1998.

S. Kim, H. Takahashi, W. W. Lin, P. Descargues, and S. Grivennikov, Carcinoma-produced factors activate myeloid cells through TLR2 to stimulate metastasis, Nature, vol.457, pp.102-106, 2009.

C. E. Lewis, R. Leek, A. Harris, and J. O. Mcgee, Cytokine regulation of angiogenesis in breast cancer: the role of tumor-associated macrophages, J Leukoc Biol, vol.57, pp.747-751, 1995.

J. W. Pollard, Tumour-educated macrophages promote tumour progression and metastasis, Nat Rev Cancer, vol.4, pp.71-78, 2004.

R. Z. Panni, D. C. Linehan, and D. G. Denardo, Targeting tumor-infiltrating macrophages to combat cancer, Immunotherapy, vol.5, pp.1075-1087, 2013.

C. H. Ries, M. A. Cannarile, S. Hoves, J. Benz, and K. Wartha, Targeting tumor-associated macrophages with anti-CSF-1R antibody reveals a strategy for cancer therapy, Cancer Cell, vol.25, pp.846-859, 2014.

A. Mantovani and P. Allavena, The interaction of anticancer therapies with tumor-associated macrophages, J Exp Med, vol.212, pp.435-445, 2015.

R. Noy and J. W. Pollard, Tumor-associated macrophages: from mechanisms to therapy, Immunity, vol.41, pp.49-61, 2014.

D. Duluc, M. Corvaisier, S. Blanchard, L. Catala, and P. Descamps, Interferon-gamma reverses the immunosuppressive and protumoral properties and prevents the generation of human tumor-associated macrophages, Int J Cancer, vol.125, pp.367-373, 2009.

X. Liu, Y. Pu, K. Cron, L. Deng, and J. Kline, CD47 blockade triggers T cell-mediated destruction of immunogenic tumors, Nat Med, 2015.

J. J. O'shea and W. E. Paul, Mechanisms underlying lineage commitment and plasticity of helper CD4+ T cells, Science, vol.327, pp.1098-1102, 2010.

S. Nandi, S. Gokhan, X. M. Dai, S. Wei, and G. Enikolopov, The CSF-1 receptor ligands IL-34 and CSF-1 exhibit distinct developmental brain expression patterns and regulate neural progenitor cell maintenance and maturation, Dev Biol, vol.367, pp.100-113, 2012.

D. G. Denardo, D. J. Brennan, E. Rexhepaj, B. Ruffell, and S. L. Shiao, Leukocyte complexity predicts breast cancer survival and functionally regulates response to chemotherapy, Cancer Discov, vol.1, pp.54-67, 2011.

M. G. Cecchini, M. G. Dominguez, S. Mocci, A. Wetterwald, and R. Felix, Role of colony stimulating factor-1 in the establishment and regulation of tissue macrophages during postnatal development of the mouse, Development, vol.120, pp.1357-1372, 1994.

F. Ginhoux, F. Tacke, V. Angeli, M. Bogunovic, and M. Loubeau, Langerhans cells arise from monocytes in vivo, Nat Immunol, vol.7, pp.265-273, 2006.

E. Voronov, S. Dotan, Y. Krelin, X. Song, and M. Elkabets, Unique Versus Redundant Functions of IL-1alpha and IL-1beta in the Tumor Microenvironment, Front Immunol, vol.4, p.177, 2013.

A. M. Lewis, S. Varghese, H. Xu, and A. Hr, Interleukin-1 and cancer progression: the emerging role of interleukin-1 receptor antagonist as a novel therapeutic agent in cancer treatment, J Transl Med, vol.4, p.48, 2006.

C. A. Dinarello, Why not treat human cancer with interleukin-1 blockade?, Cancer Metastasis Rev, vol.29, pp.317-329, 2010.

F. Ghiringhelli, M. Bruchard, and L. Apetoh, Immune effects of 5-fluorouracil: Ambivalence matters, Oncoimmunology, vol.2, p.23139, 2013.

M. Bruchard, G. Mignot, V. Derangere, F. Chalmin, and A. Chevriaux, Chemotherapy-triggered cathepsin B release in myeloid-derived suppressor cells activates the Nlrp3 inflammasome and promotes tumor growth, Nat Med, vol.19, pp.57-64, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00919371

N. J. Wilson, K. Boniface, J. R. Chan, B. S. Mckenzie, and W. M. Blumenschein, Development, cytokine profile and function of human interleukin 17-producing helper T cells, Nat Immunol, vol.8, pp.950-957, 2007.

A. Fettelschoss, M. Kistowska, S. Leibundgut-landmann, H. D. Beer, and P. Johansen, Inflammasome activation and IL-1beta target IL-1alpha for secretion as opposed to surface expression, Proc Natl Acad Sci U S A, vol.108, pp.18055-18060, 2011.

E. D. Foucher, S. Blanchard, L. Preisser, P. Descamps, and N. Ifrah, IL-34-and M-CSF-induced macrophages switch memory T cells into Th17 cells via membrane IL-1alpha, Eur J Immunol, vol.45, pp.1092-1102, 2015.

Y. Miyahara, K. Odunsi, W. Chen, G. Peng, and J. Matsuzaki, Generation and regulation of human CD4+ IL-17-producing T cells in ovarian cancer, Proc Natl Acad Sci U S A, vol.105, pp.15505-15510, 2008.

S. Romagnani, M. E. Liotta, F. Cosmi, L. Annunziato, and F. , Properties and origin of human Th17 cells, Mol Immunol, vol.47, pp.3-7, 2009.

L. Cosmi, D. Palma, R. Santarlasci, V. Maggi, L. Capone et al., Human interleukin 17-producing cells originate from a CD161+CD4+ T cell precursor, J Exp Med, vol.205, pp.1903-1916, 2008.

H. Liu and C. Rohowsky-kochan, Regulation of IL-17 in human CCR6+ effector memory T cells, J Immunol, vol.180, pp.7948-7957, 2008.

A. J. Van-beelen, Z. Zelinkova, E. W. Taanman-kueter, F. J. Muller, and D. W. Hommes, Stimulation of the intracellular bacterial sensor NOD2 programs dendritic cells to promote interleukin-17 production in human memory T cells, Immunity, vol.27, pp.660-669, 2007.

C. A. Dinarello, Interleukin-1 and interleukin-1 antagonism, Blood, vol.77, pp.1627-1652, 1991.

M. Labadia, R. B. Faanes, and R. Rothlein, Role of adherence vs. spreading in the induction of membrane-associated interleukin-1 on mouse peritoneal macrophages, J Leukoc Biol, vol.48, pp.420-425, 1990.

A. V. Orjalo, D. Bhaumik, B. K. Gengler, G. K. Scott, and J. Campisi, Cell surface-bound IL-1alpha is an upstream regulator of the senescence-associated IL-6/IL-8 cytokine network, Proc Natl Acad Sci U S A, vol.106, pp.17031-17036, 2009.

C. A. Dinarello, Membrane interleukin-18 revisits membrane IL-1alpha in T-helper type 1 responses, Eur J Immunol, vol.42, pp.1385-1387, 2012.

F. Bellora, R. Castriconi, A. Doni, C. Cantoni, and L. Moretta, M-CSF induces the expression of a membrane-bound form of IL-18 in a subset of human monocytes differentiating in vitro toward macrophages, Eur J Immunol, vol.42, pp.1618-1626, 2012.

C. Gabay, C. Lamacchia, and G. Palmer, IL-1 pathways in inflammation and human diseases, Nat Rev Rheumatol, vol.6, pp.232-241, 2010.

C. Conforti-andreoni, R. Spreafico, H. L. Qian, N. Riteau, and B. Ryffel, Uric acid-driven Th17 differentiation requires inflammasome-derived IL-1 and IL-18, J Immunol, vol.187, pp.5842-5850, 2011.

Y. Niki, H. Yamada, S. Seki, T. Kikuchi, and H. Takaishi, Macrophage-and neutrophil-dominant arthritis in human IL-1 alpha transgenic mice, J Clin Invest, vol.107, pp.1127-1135, 2001.

E. D. Foucher, S. Blanchard, L. Preisser, E. Garo, and N. Ifrah, IL-34 induces the differentiation of human monocytes into immunosuppressive macrophages. antagonistic effects of GM-CSF and IFNgamma, PLoS One, vol.8, p.56045, 2013.

K. H. Mills, L. S. Dungan, S. A. Jones, and J. Harris, The role of inflammasome-derived IL-1 in driving IL-17 responses, J Leukoc Biol, vol.93, pp.489-497, 2013.

C. E. Sutton, S. J. Lalor, C. M. Sweeney, C. F. Brereton, and E. C. Lavelle, Interleukin-1 and IL-23 induce innate IL-17 production from gammadelta T cells, amplifying Th17 responses and autoimmunity, Immunity, vol.31, pp.331-341, 2009.

F. Martin, L. Apetoh, and F. Ghiringhelli, Controversies on the role of Th17 in cancer: a TGF-betadependent immunosuppressive activity?, Trends Mol Med, vol.18, pp.742-749, 2012.

T. F. Greten, F. Zhao, J. Gamrekelashvili, and F. Korangy, Human Th17 cells in patients with cancer: Friends or foe?, Oncoimmunology, vol.1, pp.1438-1439, 2012.

Y. Ji and W. Zhang, Th17 cells: positive or negative role in tumor?, Cancer Immunol Immunother, vol.59, pp.979-987, 2010.

C. E. Zielinski, F. Mele, D. Aschenbrenner, D. Jarrossay, and F. Ronchi, Pathogen-induced human TH17 cells produce IFN-gamma or IL-10 and are regulated by IL-1beta, Nature, vol.484, pp.514-518, 2012.

L. Wei, A. Laurence, K. M. Elias, O. Shea, and J. J. , IL-21 is produced by Th17 cells and drives IL-17 production in a STAT3-dependent manner, J Biol Chem, vol.282, pp.34605-34610, 2007.

F. Sallusto, C. E. Zielinski, and A. Lanzavecchia, Human Th17 subsets, Eur J Immunol, vol.42, pp.2215-2220, 2012.

N. D. Savage, T. De-boer, K. V. Walburg, S. A. Joosten, and K. Van-meijgaarden, Human antiinflammatory macrophages induce Foxp3+ GITR+ CD25+ regulatory T cells, which suppress via membrane-bound TGFbeta-1, J Immunol, vol.181, pp.2220-2226, 2008.

J. Banchereau, V. Pascual, O. Garra, and A. , From IL-2 to IL-37: the expanding spectrum of antiinflammatory cytokines, Nat Immunol, vol.13, pp.925-931, 2012.

S. Bezie, E. Picarda, J. Ossart, L. Tesson, and C. Usal, IL-34 is a Treg-specific cytokine and mediates transplant tolerance, J Clin Invest, vol.125, pp.3952-3964, 2015.
URL : https://hal.archives-ouvertes.fr/inserm-02148022

I. Brocheriou, S. Maouche, H. Durand, V. Braunersreuther, L. Naour et al., Antagonistic regulation of macrophage phenotype by M-CSF and GM-CSF: implication in atherosclerosis, vol.214, pp.316-324, 2011.

B. C. Gliniak and L. R. Rohrschneider, Expression of the M-CSF receptor is controlled posttranscriptionally by the dominant actions of GM-CSF or multi-CSF, Cell, vol.63, pp.1073-1083, 1990.

B. C. Gliniak, L. S. Park, and L. R. Rohrschneider, A GM-colony-stimulating factor (CSF) activated ribonuclease system transregulates M-CSF receptor expression in the murine FDC-P1/MAC myeloid cell line, Mol Biol Cell, vol.3, pp.535-544, 1992.

I. Espinoza-delgado, D. L. Longo, G. L. Gusella, and L. Varesio, IL-2 enhances c-fms expression in human monocytes, J Immunol, vol.145, pp.1137-1143, 1990.