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ABSTRACT

With the development of distributed, renewable energy sources, microgrids can be ex-
pected to play an important role in future power systems, not only to reduce emissions
and maximize local energy use, but also to improve system resilience. Due to the inter-
mittence and uncertainty of renewable sources (such as photovoltaics or wind turbines),
energy storage systems should also be integrated. However, determining their size and
how to operate them remains challenging, especially as the adopted control strategy
impacts sizing results, and for systems considering multiple, interdependent forms of en-
ergy. This thesis therefore contributes to solving the sizing and operation problems of
full-electric and multi-energy (electricity, gas, heat, cooling and/or hydrogen) microgrids
integrating storage systems.

First, based on the characteristics of different components, a mathematical model of a
microgrid is built. Then, the operation problem is formulated as a mixed integer linear
problem (MILP), based on an objective function (minimize the operation cost) and dif-
ferent constraints (maximum power, startup/shutdown times, state-of-charge limits, etc.).
Next, a co-optimization structure is presented to solve the sizing problem using a ge-
netic algorithm. This specific structure enables to search for sizing values based on the
operation results, which enables determining the best sizing for the selected operation
strategy.

Using the above method, four specific problems are then studied. The first one focuses on
sizing a full-electric islanded microgrid combining battery and hydrogen storage systems
for short and long-term storage, respectively. Results for two types of operation strategies
are compared: the MILP approach and a rule-based strategy. A one-hour one-year rolling
horizon simulation is used to check the validity of the sizing results.

Second, a multi-energy islanded microgrid with different types of loads is studied. Specif-
ically, the influence of three factors on sizing results is analyzed: the operation strategy,
the accuracy of load and renewable generation forecasts, and the degradation of energy
storage systems.

Third, the work focuses on a grid-connected microgrid attached to a gas, electricity and
heat hybrid network. Specifically, the resilience of the network is considered in order to
maximize resistance to contingency events. Betweenness centrality is used to find the
worst case under contingency events and analyze their impact on sizing results. Two test
systems of different sizes are used with the proposed method and a study of its sensitivity
to various parameters is carried out.

Fourth, a structure with multiple grid-connected multi-energy-supply microgrids is consid-
ered, and an algorithm for determining electricity prices is developed. This price is used
for energy exchanges between microgrids and load service entities interacting with the
utility. The proposed co-optimization method is deployed to search for the best price that
maximizes benefits to all players. Simulations on a large system show that the obtained
price returns better results than a basic time-of-use price and helps reduce the operation
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cost of the whole system. To reduce the computation time, a neural network is presented
to estimate the operation of the whole system and enable obtaining results faster with a
limited impact on performance. At last, a sizing algorithm for grid-connected multi-energy
supply microgrids operating under different prices is presented.

The obtained results on these different applications show the usefulness of the proposed
method, which is a promising contribution toward the creation of advanced design tools
for such microgrids.

Keywords: microgrid, hydrogen, optimization, sizing, multi-energy, price.



RÉSUMÉ

Avec le développement de la production décentralisée d’électricité à partir de sources
renouvelables, il est fort probable que les micro-réseaux joueront un rôle central dans les
réseaux du futur, non seulement pour réduire les émissions de gaz à effet de serre et
maximiser l’utilisation d’énergie produite localement, mais également pour améliorer la
résilience du système global. Du fait de l’intermittence et de l’incertitude sur la produc-
tion renouvelable (par exemple, photovoltaı̈que ou éolien), des systèmes de stockage de
l’énergie doivent être intégrés. Cependant, déterminer leur dimensionnement et comment
les contrôler pose plusieurs défis, en particulier parce que le dimensionnement optimal
dépend de la stratégie de gestion utilisée, ou encore lorsque différents types d’énergie
sont utilisés. Cette thèse contribue à résoudre les problèmes de dimensionnement et
de gestion de micro-réseaux électriques et multi-énergies (électricité, gaz, chaleur, froid
et/ou hydrogène) intégrant du stockage.

Tout d’abord, à l’aide des caractéristiques des différents composants, un modèle
mathématique de micro-réseau est développé. Le problème de sa gestion est ensuite
formulé comme un problème de programmation linéaire (MILP), utilisant une fonction
objectif (minimiser le coût de fonctionnement) et différentes contraintes (puissance max-
imum, durée de démarrage/arrêt, limites d’état de charge, etc.). Ensuite, une structure
permettant une co-optimisation est présentée pour résoudre le problème du dimension-
nement à l’aide d’un algorithme génétique. Cette structure permet de explorer l’espace
des valeurs de dimensionnement en fonction des résultats de la stratégie de gestion,
ce qui permet de tendre vers le meilleur dimensionnement possible pour la stratégie
sélectionnée.

A l’aide de la méthode ci-dessus, quatre problèmes spécifiques sont étudiés. Le premier
s’intéresse au dimensionnement d’un micro-réseau ı̂loté entièrement électrique, combi-
nant stockage par batteries et hydrogène-énergie pour du stockage à court et long terme,
respectivement. Les résultats pour deux stratégies de gestion sont comparés : l’approche
proposée (MILP) et une stratégie basée sur des règles. Une simulation à horizon glissant
d’une heure sur un an est ensuite utilisée pour vérifier la validité du dimensionnement
obtenu.

Un second problème s’intéresse un à micro-réseau multi-énergies ı̂loté avec différents
types de charges. L’influence de trois facteurs sur les résultats du dimensionnement est
en particulier étudiée : la stratégie de gestion, la précision des prévisions de consomma-
tion et de production renouvelable, ainsi que la dégradation des moyens de stockage.

Une troisième partie de la thèse traite du dimensionnement d’un micro-réseau connecté
aux réseaux de gaz, électricité et chaleur. La résilience du réseau est étudiée de façon à
maximiser la résistance à une panne ou un défaut. La notion de centralité intermédiaire
est utilisée pour déterminer le cas le plus défavorable pour une contingence et analyser
son impact sur le dimensionnement. Deux systèmes de test de tailles différentes sont
utilisés pour valider l’application de la méthode proposée et sa sensibilité à différents
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paramètres.

Enfin, une quatrième application s’intéresse à un ensemble de micro-réseaux multi-
énergies connectés entre eux et à un réseau principal. L’algorithme proposé est
alors appliqué à la détermination du prix utilisé pour les échanges d’énergie entre les
micro-réseaux et des fournisseurs de service en interaction avec le réseau principal.
L’algorithme détermine alors le prix qui maximise les bénéfices pour l’ensemble des
participants. Des simulations sur un réseau montrent que le prix obtenu retourne de
meilleurs résultats qu’une tarification classique de type heures creuses-heures pleines
et permet de réduire le coût global de fonctionnement. Pour réduire le temps de cal-
cul, un réseau de neurones est proposé pour accélérer la modélisation de la gestion du
système et permet d’obtenir un gain de temps tout en ayant un impact limtié sur la perfor-
mance. Enfin, un algorithme de dimensionnement pour les micro-réseaux multi-énergies
connectés au réseau à différents prix est présenté.

Les résultats obtenus sur ces différentes applications montrent l’utilité de la méthode pro-
posée, qui constitue une contribution prometteuse pour la création d’outils de conception
avancée de tels micro-réseaux.

Mots-clés: micro-réseau, hydrogène, optimisation, dimensionnement, multi-énergies,
prix.
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1
INTRODUCTION

1.1/ INTRODUCTION

Power systems are increasingly suffering from damage caused by natural disasters (e.g.,
hurricanes, storms, floods, earthquakes), which often result in blackouts and power inter-
ruptions [1]. In traditional centralized power supply systems, no alternative power source
can be used if the main distribution network is damaged by a natural disaster, which
makes traditional power systems fragile. Through distributed generation (DG), loads can
be powered by local resources, and reduce the dependence on the rest of the system
and improve overall power system resilience. Local DG and loads can be combined to
build a microgrid (MG), with multiple benefits such as the ability to enhance resistance to
natural disasters [1, 2].

We should however notice that, for local DG, diesel gensets are conventional sources
and have some drawbacks such as the emissions resulting from their operation, as well
as dependence on fuel supply [1, 2]. Generation from renewable energy sources (RES)
can also be considered to form renewable energy-based MGs. Due to the intermittence
and uncertainty on energy output (such as for photovoltaics and wind turbines), energy
storage systems should also be integrated into MG systems.

There are different types of energy storage technologies, such as batteries, supercapac-
itors, compressed air energy storage systems (CAES), flywheels, and hydrogen storage
systems (fuel cell + tanks + electrolyzer) [3]. For renewable energy-based MG, the se-
lected storage should have the ability to operate over short and long periods, up to a
year or longer, to limit unwanted and inefficient generation curtailment and load shed-
ding. The energy and power density (Wh/kg and W/kg) of the storage system should
also be high to facilitate installation. Storage dynamics should also be able to handle the
variability of RES. Hydrogen storage systems have a high energy density, but the cycle
efficiency is low due to low electrolyzer and fuel cell efficiency. Batteries, on the other
hand, have a medium energy density and a higher efficiency. The energy density of ca-
pacitors/supercapacitors and flywheels are among the lowest, below 30 Wh/kg, but their
power density is high, which makes them suitable for applications with fast responses to
handle the uncertainty of RES [3]. A power and energy density comparison of fuel cells,
batteries and capacitors can be seen in Fig. 1.1 [4].

In this dissertation, a form of hybrid storage is considered: the hydrogen storage system
(HSS, combining the fuel cell, the electrolyzer and the hydrogen tanks) is used as the
long term storage system (e.g., for seasonal trends), and the battery storage system is

3



4 CHAPTER 1. INTRODUCTION

Figure 1.1: Power and energy density comparison of fuel cell, battery and capacitor [4].

used as the short term storage system (e.g., for day/night cycles). The HSS has several
advantages, such as a high storage capacity, and a high energy per unit of mass [5]. They
are therefore expected to play an important role in future energy storage systems [6]. The
battery system is inappropriate for long-term storage, due to its low energy density and
nonnegligible self-discharge rate [7]. This hydrogen storage-based MG structure can be
seen in Fig. 1.2.

Figure 1.2: Microgrid structure.

The electrolyzer is powered by renewable energy, and produces hydrogen which can be
stored in hydrogen tanks. There are three main types of electrolyzers: solid oxide electrol-
ysis cells (SOECs), polymer electrolyte membrane cells (PEM), and alkaline electrolysis
cells (AECs). “SOECs operate at high temperatures, typically around 800oC. PEM elec-
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trolysis cells typically operate below 100oC and are becoming increasingly available com-
mercially. AECs optimally operate at high concentrations of electrolyte (KOH or potassium
carbonate) and at high temperatures, often near 200oC” [8]. A comparison of the different
electrolyzer types can be found in [8, 9]. In this dissertation, an alkaline electrolyzer is
used to convert the renewable energy output to hydrogen.

Hydrogen can then be supplied to a fuel cell to produce electricity and heat. There are
five main types of fuel cells: proton exchange membrane fuel cells (PEMFC), alkaline
fuel cells (AFC), phosphoric acid fuel cells (PAFC), molten carbonate fuel cells (MCFC),
and solid oxide fuel cells (SOFC). PEMFCs operate below 120oC, and use a proton-
conducting polymer membrane containing the electrolyte solution that separates the an-
ode and cathode sides [10]. AFCs, for which “the space between the two electrodes
is filled with a concentrated solution of KOH or NaOH which serves as an electrolyte”,
operate below 100oC [10]. PAFCs operate between 150oC and 200oC. “In these cells
phosphoric acid is used as a non-conductive electrolyte to pass positive hydrogen ions
from the anode to the cathode” [10]. MCFCs require a high operating temperature, typi-
cally 650-700oC. “MCFCs use lithium potassium carbonate salt as an electrolyte, and this
salt liquefies at high temperatures, allowing for the movement of charge within the cell”
[10]. Finally, SOFCs require high operating temperatures (800–1000oC) and can be run
on a variety of fuels including natural gas. “SOFCs use a solid material, most commonly
a ceramic material called yttria-stabilized zirconia (YSZ), as the electrolyte” [10]. A com-
parison of different fuel cell can be found in [10, 11]. In this dissertation, a PEMFC is
used to produce electricity and heat.

By enabling high penetration levels of RES, hydrogen-based MGs can be expected to play
an important role in future smart grids, not only to friendly integrate RES (based on the
energy storage system to reduce the intermittence influence of renewable energy sources
on the utility grid and the demands), but also to resist to natural disasters (islanded op-
eration ability under disasters). Moreover, integrating electricity supply with other forms
of energy, such as gas or heat, can help further improve resilience as well as emissions
reduction.

In this thesis, we focus on the planning (sizing) and operation of hydrogen storage-
based and multi-energy microgrids.

First, when building a microgrid, one needs to decide the capacity of each component.
Because renewable energy resources are nondispatchable sources, a reasonable capac-
ity of energy storage systems is needed. We need to consider load-supply power balance
to minimize the load shedding and curtailment of RES, and we also need to consider the
investment costs of the whole system to avoid wasting money. It can be seen from Fig. 1.3
that, on the one hand, if we invest lots of money to install enough capacity of renewable
energy resources and energy storage systems, the whole system certainly can operate
well and achieve minimal load shedding, but the economic viability of the microgrid is bad.
On the other hand, if we do not invest in enough capacity of renewable energy resources
and energy storage systems to primarily satisfy the economic goal, then the microgrid
may not operate well, with unacceptable load shedding. How to decide the capacity of
each component in a microgrid to achieve a cost-effective solution is therefore a problem.

Second, for the load demands, there are not only the electricity demands, but also several
other types of energy demands at the same time. For example, when people use gas to
cook, they also need electricity to serve electronic devices, and heat energy to warm up
the room. A multi-energy-supply microgrid is then needed, which can be seen in Fig. 1.2.
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Figure 1.3: Sizing values vs. Costs.

For such a microgrid, more components are needed, with for example, heating devices
to cover heat demands, and cooling devices to cover cooling demands. How to decide
the capacity of each component in the microgrid to achieve a cost-effective solution is
therefore another, more complex problem. Additionally, for the energy storage system,
long term running and frequent charging-discharging cause degradation over time. So,
how the degradation of energy storage system will influence the sizing results is also a
problem.

Third, a multi-energy-supply microgrid can connect to the electricity/heat/gas utility grids.
For this case, we need to consider the operation of the utility grid, because the microgrid
can import energy from the utility grid, which will influence the energy flow of the whole
system. So how to decide the capacity of each component in such a microgrid when
considering the utility grid is a also problem. In fact, for a large-node utility grid, the impact
of contingency events (such as the destruction of the power lines) must be considered.
When the utility grid is severely damaged under natural disasters, the islanded MG can
still operate to supply the load demands using the local renewable energy and the storage
systems. If the utility grid is partially destroyed, the MG power imports from the utility grid
are limited, due to damage on transmission lines or pipelines. This means that the impact
of contingency events will influence the MG power imports from the utility grid, and then
influence the power flow inside the MG. At last, the sizing results of the components are
different.

Finally, when large amounts of multi-energy-supply microgrids are interconnected to the
utility grid, how to operate this system well is another complex problem. Because of the
privacy concerns of each microgrid, centralized control (requiring to collect all informa-
tion from all microgrids) is not practical. If the number of microgrids is in the hundreds,
centralized control will also be impossible. So, how to operate a large numbers of multi-
energy-supply microgrids interconnected with utility grid is a challenging problem.

1.2/ OBJECTIVES OF THE DISSERTATION

In this thesis, we therefore focus on microgrid sizing and operation problems. We explore
this problem from four perspectives:
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1. Sizing of a full-electric hydrogen storage-based islanded microgrid.

2. Sizing of a multi-energy-supply islanded microgrid considering the degradation of
energy storage systems.

3. Sizing of multi-energy-supply microgrids considering the gas/electricity/heat utility
grid.

4. Sizing and price decision algorithm for multiple grid-connected multi-energy-supply
microgrids.

In short, we first research about the sizing problem of a full-electric hydrogen-
based islanded MG. Then, we expand the load demands to several types (electric-
ity/heat/cooling/hydrogen), and research about the sizing problem of such a multi-energy-
supply islanded microgrid. After that, we interconnect the microgrid into the utility grid,
and research about the sizing problem of the grid-connected microgrid. Then, for the
grid-connected microgrid, the price must be considered, and we research about the price
decision algorithm for multiple grid-connected multi-energy-supply microgrids. Also, the
sizing algorithm for grid-connected MES MGs based on the different prices is presented.

Based on the above specific aspects, the detailed objectives of the dissertation can be
listed as the following:

• Develop a strategy to control the operation of a microgrid.

• Develop a co-optimization-based sizing method.

• Present a rolling-horizon optimization method to check the sizing results.

• Integrate the degradation of energy storage systems in the sizing method.

• Consider the impact of contingency events on the sizing results of a micro-
grid.

• Develop a price decision approach for multiple grid-connected microgrids.

• Develop a sizing algorithm for grid-connected MES MGs based on the differ-
ent prices.

1.3/ OUTLINE OF THE DISSERTATION

The rest of this dissertation is structured as follows. Chapter 2 is contains a state-of-the-
art review. The sizing and operation problem of hydrogen-based microgrids is introduced
from four aspects: the model of the hydrogen-based microgrid, the operation strategy of
the microgrid, the sizing method of the microgrid and the price decision algorithm for a
grid-connected microgrid.

Chapter 3 presents the microgrid model. Two types of hydrogen-based microgrids are
modeled: the full-electric microgrid and the multi-energy supply microgrid.

Chapter 4 presents the sizing of a full-electric hydrogen storage system based
islanded microgrid. In this islanded microgrid, two storage systems are considered
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(battery storage system and hydrogen storage system). A combined sizing and energy
management methodology, formulated as a leader-follower problem, is presented. The
leader problem focuses on sizing and aims at selecting the optimal size for the microgrid
components. It is solved using a genetic algorithm (GA). The follower problem, i.e., the
energy management issue, is formulated as a unit commitment problem and is solved
with a mixed integer linear program (MILP). Uncertainties are considered using a form
of robust optimization method. Several scenarios are modeled and compared in simula-
tions to show the effectiveness of the proposed method, especially compared to a simple
rule-based strategy.

Chapter 5 presents the sizing of a multi-energy-supply islanded microgrid consid-
ering the degradation of energy storage system. A stand-alone microgrid considering
electric power, cooling/heating and hydrogen consumption is built. A unit commitment al-
gorithm, formulated as a MILP problem, is used to determine the best operation strategy
for the system. A GA is used to search for the best size of each component. The influence
of three factors (operation strategy, accuracy of load and renewable generation forecasts,
and degradation of fuel cell, electrolyzer and battery) on sizing results is discussed. A
1-h rolling horizon simulation is used to check the validity of the sizing results. A robust
optimization method is also used to handle the uncertainties and evaluate their impact on
results.

Chapter 6 presents the sizing of multi-energy-supply microgrids considering
gas/electric/heat utility grid. We focus on a gas/electricity/heat hybrid network. A hy-
drogen storage system is used as the main electricity storage system. MILP is used to
determine the optimal operation of the multi-energy hybrid system, where the goal is to
minimize shed load. A GA is used to search for the best size of each component, with
the goal to minimize the investment costs. In order to resist to contingency events, be-
tweenness centrality (describing the relative importance of each node in a graph) is then
used to find the worst case under contingency events. This worst case scenario is used
to research about the influence of contingencies on the sizing results. At last, two cases
(modified 13-node network and IEEE 30+Gas20+Heat14-nodes system) are tested using
the proposed sizing method. The results show that the renewable energy location, in-
vestment cost of components, and the structure of the whole system influence the sizing
values of each component.

Chapter 7 presents the sizing and price decision algorithm for multiple grid-
connected multi-energy-supply microgrids. Local generation, energy storage sys-
tems, and renewable energy sources can form load service entities (LSE), which can
provide ancillary services to the utility grid and consumers. On the other hand, the mi-
crogrids can also sell energy to load service entities/utility grid to obtain profits. But how
the load service entities can decide the selling electricity price to multiple microgrids, and
how the microgrids can decide the selling electricity price to load service entities are prob-
lems. In this chapter, we present a guidance price decision method for multiple microgrids
considering demand response. MILP is used to control the operation of each microgrid,
and also used to operate the load service entities. GA is used to search for the best price
for each microgrid and the load service entities. The simulation results show that the
new searched price works better than a time-of-use (TOU) price, which can reduce the
operation cost of the whole system. Also with higher penetration of renewable energy in
MGs, the energy bought from the utility grid is reduced. At last, a large system is tested,
in which 4 LSEs, 16 MGs and the IEEE 30-node network are considered. The simula-
tion results show the feasibility of the presented pricing method. After then, in order to
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reduce the GA searching time, a neural network (NN) model is presented to estimate the
operation of the whole system. Based on the NN model, the prices are obtained, and
the results show that the searching prices based on the NN model are better than with
the TOU price. After that, we present the sizing algorithm for grid-connected MES MGs
based on the different prices.

Finally, chapter 8 concludes on the thesis, by summarizing the main contributions and
highlighting possible future research areas.





2
RELATED WORKS

In this chapter, related works about the sizing and operation problem of microgrids are
reviewed. Three specific aspects are considered: 1) hydrogen-based microgrid; 2)

operation strategy of microgrid; 3) sizing method of microgrid. At last, when we consider
the grid-connected microgrid, the prices are often considered, then the related work about
the price decision approach in multiple multi-energy supply microgrids are reviewed.

2.1/ HYDROGEN-BASED MICROGRID

In order to limit global warming and reduce fossil fuel consumption, renewable energy
sources such as photovoltaic panels (PV) and wind turbines (WT) are more and more
commonly used to generate electricity. The integration of such intermittent sources is
a challenge for grid operators, as the balance between generation and demand must be
met in real-time. This is especially a concern for small power systems such as microgrids,
that can operate islanded, i.e., not connected to the main grid. Microgrids typically include
distributed generation and storage [12, 13], and are increasingly found in remote areas
[14, 15] or where power system resilience is a crucial concern [1, 16].

To enable RES integration, energy storage systems are considered as a key solution,
as they enable storing excess generation for later use [17]. Battery storage systems
(BSS) are typically used for short-term storage [18], but seem inappropriate for long-term
storage [7]. Hydrogen storage systems (HSS) have a high energy density [3], and are
used for long-term storage, such as seasonal storage. HSSs combine an electrolyzer to
produce hydrogen from electricity, a hydrogen storage tank and a fuel cell (FC) to produce
electricity from hydrogen.

Works about hydrogen-based full-electric microgrid have been presented in the liter-
ature. For example, [19] discusses FC systems, while [20] researches about the control
strategy of PV/FC hybrid systems. In [21], a Matlab/Simulink model is built to simulate
a grid-connected PV/FC hybrid system. [22] also builds a simulation model of another
PV/FC/ultacapacitors stand-alone microgrid.

On the other hand, when there are different types of load demands, such as electricity,
heat, cooling or hydrogen, “combined cooling heat and power systems” are typically used
to form multi-energy-supply microgrids. Different devices can be chosen to build a multi-
energy-supply microgrid. The main component is the prime mover (the combined heat
and power plant). For a traditional system, there are several types of prime movers, such
as internal combustion engine, combustion turbine, steam turbine, micro-turbine, stirling

11
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engine, etc. A comparison of these prime movers can be seen in [23].

Fuel cells are a promising technology for efficient and sustainable energy conversion
[24], and are expected to play an important role in future distributed energy generation
[6]. Xe adopt the fuel cell as the equivalent of a “prime mover” that produces electricity
and heat. The fuel cell consumes hydrogen, which is emissions-free when it is generated
from renewable energy and water electrolysis.

Thus, a hydrogen-based multi-energy-supply microgrid can be built. Some works
about fuel cell based multi-energy-supply microgrid have been presented. For example,
[25] investigates the feasibility of combining an SOFC and a gas turbine system for marine
applications. The efficiency of the configuration with double-effect absorption chiller can
achieve 43.2% compared to 12% for the conventional system. In [26], an SOFC with
a capacity of 215 kW is combined with a recovery cycle and is used to meet the load
demand in a hotel. The results show that based on fuel lower heating value, a maximum
efficiency of 83% for simultaneous energy generation and heat recovery cycle can be
achieved.

According to industry analysts Delta-ee, fuel cell CHP units represent 64% of the CHP
unit sale market, which doubles the results from 2011. It is becoming the most common
technology employed in micro-CHP systems [23].

The above papers show that hydrogen-based microgrids are expected to play an impor-
tant role in future smart grids. The structure of such hydrogen-based microgrid can be
seen in Fig.1.2. In the following section, the operation strategy of hydrogen-based micro-
grids is introduced.

2.2/ OPERATION STRATEGY OF MICROGRID

The operation strategy of an MG system needs to be considered from two aspects: time
scale and solution method.

Based on the selected time scale, two strategies can be considered: day-ahead schedul-
ing and short term dispatching. A day-ahead scheduler provides unit commitment solu-
tions aiming to find cost-effective combinations of generating units output, while a short
term dispatcher returns the economic dispatch aiming to minimize the operation cost of
the committed assets based on short term forecasts.

In [27], authors review the energy management of a microgrid, and point out that based
on the time scale, two scheduling strategies (unit commitment and economic dispatch)
are used together. In [28], a multi-timescale MG scheduling and dispatching strategy is
developed for the coupled multi-type energy supply in an MG. In day-ahead scheduling,
the objective function is to minimize the operation cost, and the objective of real-time
dispatching is to make the real-time actual electricity power exchange between the MG
and to make the main grid follow its day-ahead schedules as close as possible. In [29],
authors present a two-stage coordinated control approach for CCHP microgrid energy
management. The first stage is a rolling-horizon economic dispatch. The second stage
is a real-time adjustment stage, which adjusts the controllable sources to make the real-
time energy exchanged with the main grid and the state of the battery follow its economic
dispatch as closely as possible.

In our sizing problem, our goal is to decide the sizing value of each component in the MG
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system. So we not only need to consider the long-term planning (e.g. one year), namely
to make the MG system cost-effective, but we also need to consider the short-term oper-
ation (e.g. 1 hour) to make the MG system operate normally, as illustrated in Fig. 2.1. If
the selected time scale is small (such as 1 minute), the short-term operation will be more
precise, but the long-term planning will cause lots of computation burden. On the other
hand, if the selected time scale is large (such as 1 day), the short-term operation check
will be not precise, but the long-term planning will cause a small computation burden.
This relationship can be seen in Fig. 2.2.

Figure 2.1: Sizing and operation.

Figure 2.2: Computation burden, operation error vs. time scale.

Based on the above analysis, considering the tradeoff between accuracy and the compu-
tation burden, hourly profiles are adopted in the operation strategy [30].

In the following subsections, we mainly introduce the solution method of the operation
problem. We classify this from two specific aspects: 1) the operation of full-electric mi-
crogrid; 2) the operation of multi-energy supply microgrid.

2.2.1/ OPERATION OF FULL-ELECTRIC MICROGRID

In this section, we review related works about the operation problem of full-electric micro-
grids.

A simple operation strategy is often selected to operate the full-electric microgrid, namely,
the load following (LF) strategy: when there is surplus power, the excess energy is stored
in the ESS, and when there is a shortage of power, the ESS discharges, or controllable
generators (diesel gensets or FC) are turned on. Economic criteria are not considered in
most cases.
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For example, [31, 32] compare several EA for the optimal sizing of a hybrid MG system,
where the objective function is the total annual cost, and the operation strategy is the
LF strategy. Other papers use various metaheuristics to search for the sizing values for
different MG cases, and the operation principle is also LF. [33] uses ant colony optimiza-
tion (ACO) to determine the size values of a PV/wind hybrid system, where the objective
funtion is the sum of the total capital cost and total maintenance cost. In [34], artificial
bee swarm optimization (ABSO) is used to solve the sizing problem of PV/WT/FC hybrid
system considering the loss of power supply probability (LPSP). [35] studies the perfor-
mance of different particle swarm optimization (PSO) algorithm variants to determine the
size results of a hybrid (PV/wind/Batt) system.

Some papers use more advanced strategies based on rules (rule-based strategies (RBS))
to control energy flows. For example, in [36], the operation mode of the islanded MG is
determined by the SOC of the battery storage. Three operation modes are set based
on different rules to achieve the goals, such as maximize the utilization of the RES units,
or ensure the reliability and longevity of the battery storage. In [37], the energy flow is
controlled depending on the charge and discharge states, different rules are built based
on the preset parameters. In [38], authors set knowledge-based rules to control the
operation of a diesel generator for an isolated MG with diesel-wind-ESS resources. The
objective of this rule-based strategy is to minimize the diesel generation by minimizing
the power wasted through the dump load for every hour.

The main advantage of using an RBS is that it can optimize the system performance with-
out requiring an optimization function or tools, thus reducing computational complexity
[38]. However, the limits of RBS are quickly reached when more than a few components
are included in the system, as the number of required rules significantly increases. More-
over, these strategies cannot provide optimal results regarding how the state-of-charge
of storage units is controlled over time.

More advanced energy management systems (EMS) that primarily focus on economic
dispatch with EA, are also presented in the literature. [39] proposes a bilevel optimization
energy management approach of multiple microgrids. Economic dispatch is solved in
each microgrid, and then a secondary-level optimization is used to seek the minimum
operation cost for the set of microgrids. Multiperiod ABCO [40], multi-layer ACO [41] are
also used for economic dispatch applications. The objective of the economic dispatch
problem is to minimize the total production cost while satisfying generation resources
constraints.

EA-based optimization relies on stochastic search, which can give a satisfatory solution
with a reasonable computation time, but it does not guarantee obtaining an optimal solu-
tion.

An improved method for energy management that can take into account multiple objec-
tives and constraints is thus required. Model-predictive control (MPC) offers a solution,
and is commonly used in power systems in the form of unit commitment (UC). UC en-
ables scheduling the use of multiple generation units over a given time horizon [42], for
example over a day. It can also be extended to consider storage units and other devices.
For example, in [7], authors present a UC optimization method to economically schedule
BSS and HSS. [43] studies the thermal power plant UC problem integrated with a large
scale ESS. In [44], an integrated framework for a stand-alone microgrid with objectives
of increasing stability and reliability and reducing costs is described. The UC method is
used to determine generators outputs for the next day. [45] presents a two-stage planning
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and design method for microgrids. GA is used to solve the optimal design problem and a
MILP algorithm enables determining the optimal operation strategy.In [46], a mixed inte-
ger nonlinear programming (MINLP) approach for day-ahead scheduling of a combined
heat and power plant is proposed. Another MINLP-based EMS algorithm is presented
in [47]. [48] describes an approach for security-constrained UC with integrated ESS and
wind turbines.

Overall, the above research papers show that the UC method is commonly used and
adequate for scheduling the use of microgrid components, including energy storage units.
The advantage and disadvantage of UC optimization-based EMS can be concluded as
follows:

• Advantages:

1. compared to EA algorithms, UC optimization can simply consider varieties of
constraints, e.g., binary variable constraints (ON/OFF state of battery, etc.),
continuous variable constraints (ouput power of fuel cell, etc.), logical con-
straints (charging and discharging can not occur at the same time, etc.), and
so on;

2. compared to RBS strategy, UC optimization can simply set the operation pri-
ority of each component by adjusting parameters in the objective function, and
can also consider the economic criteria and different constraints as in 1).

• Disadvantages:

1. require an optimization function or tools;

2. the computation complexity and time burden is increasing as the number of
variables increases;

3. especially, when there are nonlinear constraints or variables, the UC problem
causes lots of computation burden.

A UC algorithm does however rely on forecast data to compute schedules. As forecasting
errors are inevitable, the scheduling algorithm must consider these errors. In the case
studied in this paper, errors on PV output and load impact schedules as well as sizing
results. Two main approaches to consider forcasting uncertainty are found in the litera-
ture: the scenario-based method [49, 50, 51] and robust optimization [52, 53, 54, 55]. [49]
presents a stochastic method based on cloud theory to handle uncertainty, and uses a krill
herd algorithm to solve the optimization problem. [50] describes a stochastic optimization
for microgrid energy and reserve scheduling. Wind and PV generation fluctuations for
each hour are represented by 5 interval discrete probability distribution functions. A sce-
nario tree technique is then used to combine different states of wind and PV fluctuations.
[51] presents a scenario-based robust energy management method. Taguchi’s orthogo-
nal array testing method is used to provide possible testing scenarios, and determine the
worst-case scenario. At last, the Monte Carlo method is used to verify the robustness
of the approach. In [52], uncertainty is quantified in terms of prediction intervals by a
non-dominated sorting genetic algorithm (NSGA-II) trained by a neural network. Robust
optimization is then used to seek the optimal solution to the problem. [53] uses robust
optimization-based scheduling for multiple microgrids considering uncertainty. The prob-
lem is transformed into a min-max robust problem, and is then solved using linear duality
theory and the Karush-Kuhn-Tucker (KKT) optimality conditions. [55] presents a robust
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EMS for microgrids. Authors use a fuzzy prediction interval model to obtain the uncer-
tainty boundary of wind output, and then the upper and lower boundaries of wind energy
are interpreted as the best and worst-case operating conditions.

In the above papers, scenario-based methods usually require generating many scenarios,
which can take a lot of time to simulate. On the other hand, robust methods are used
to find the worst case, which requires less computation time although results are more
conservative. As a consequence, in this thesis, a robust optimization method is selected
to find the worst case and best case based on the forecasting error.

In this section, different operation strategies are presented for full-electric MG, includ-
ing LF-EMS, RBS-EMS, EA-EMS, and UC-EMS. In the following section, the operation
strategy for CCHP MG is presented.

2.2.2/ OPERATION OF MULTI-ENERGY SUPPLY MICROGRID

Regarding the solution method (i.e., decision-making), the operation strategies of a CCHP
system can be also divided into two main types: rule-based strategies and optimization-
based strategies.

In a multi-energy system, several loads must be satisfied. This means that some priority
rules must be set, leading to traditional rule-based strategies: following the electric load
(FEL), following the thermal load (FTL) or following the cooling load (FCL). In [56], authors
review different optimization operation strategies, including basic operation strategies and
hybrid operation strategies. [57] presents a novel optimal operational strategy for a CCHP
system based on two typical operating modes: FEL and FTL. An integrated performance
criterion which considers primary energy consumption, carbon dioxide emissions and
operational cost, is used to decide which operating mode is chosen. In [58], authors
compare five strategies: electrical-equivalent load following, continuous operation, peak
shaving, and base load. In [59], five operation strategies are compared: FCL, FTL, FEL,
maximum power output, and waste heat allocation proportion. [60] presents a multi-
agent-based demand-side energy management system for autonomous polygeneration
microgrids. With three types of demands (electricity, hydrogen, potable water). The goals
are to have no potable water and hydrogen shortages, and to prevent the battery from
deep discharging. The activation of each agent is based on rules. These rule-based op-
eration strategies are however difficult to use for complex systems, where a large number
of rules are needed, especially in multiple energy system.

Due to the drawbacks of rule-based strategies, optimization methods are also commonly
used. A first category includes heuristic optimization methods, which are adequate to
solve non-linear and non-convex problems. [61] proposes a time-varying acceleration
coefficient particle swarm optimization (PSO) algorithm to solve the non-linear and non-
convex CHP economic dispatch problem. The objective is to minimize the total heat and
power production cost. [62] presents an artificial immune system algorithm for solving the
CHP economic dispatch problem. The objective is to minimize the total fuel cost. [63]
proposes a bacterial foraging-based fuzzy satisfactory optimization algorithm to solve
the multi-objective energy management problem for a CHP-based microgrid. The ob-
jectives are to minimize the total operating cost and the emissions. [64] introduces a
multi-objective PSO economic dispatch optimization method for a system that incorpo-
rates CHP and wind power units. [65] proposes a multi-objective optimization model
which aims to maximize the energy-saving ratio and minimize the energy costs of a micro-
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CCHP system. [66] presents a scenario-based scheduling method for a fuel cell-based
CHP microgrid, which aims at maximizing the expected profit. A modified firefly algorithm
is used to solve the problem.

As discussed in section 2.2.1, “EA-based optimization relies on stochastic search, which
can give a satisfatory solution with a reasonable computation time, but it does not guar-
antee obtaining an optimal solution”.

The second category corresponds to mixed integer programming optimization (MIP),
which uses deterministic methods. [67] explores opportunities for increasing the flexi-
bility of CHP units using electrical boilers and heat storage tanks for better integration of
wind power. A linear model is proposed for the centralized dispatch of integrated energy
systems. [68] presents an MILP optimization model for combined cooling, heat and power
system operation. The objective is to minimize the total operation and maintenance costs.
[69] presents the optimization of a CCHP system using MILP to determine the preliminary
design of such systems with thermal storage. The objective function is to minimize the
total annual cost. The effect of legal constraints in the design and operation of CCHP
systems is highlighted in this study. In [70], the objective of the operation strategy is to
maximize the gross operational margin and net present value, and the problem is formu-
lated as an MIP model. In [71], the optimal control problem is formulated as an MINLP,
and is solved using discrete dynamic programming. In [45], an MILP algorithm is used to
solve the optimal dispatch problem, and the objective function is to minimize the operation
cost. In [72], an operation strategy is formulated as an MILP problem aiming to maximize
greenhouse gas emissions reductions.

UC optimization, formulated as an MILP problem, can be solved using a linear-
programming based branch-and-bound algorithm [73], which is appropriate to solve en-
ergy management problems in CCHP systems. The optimal sheduling set points are
determined based on current and future conditions, which can guarantee obtaining the
global optimal results.

In a CCHP system, a rule-based operation strategy is difficult to use, because a large
number of rules would need to be built to satisfy the power flow and system constraints.
In EA operation strategies, premature convergence and reasonable computation times
need to be considered. In this thesis, we adopt the UC method to control the operation of
the CCHP microgrid system. The optimization problem is formulated as an MILP problem,
and several constraints are used to describe different operation strategies.

2.3/ SIZING METHOD OF MICROGRID

The above section 2.2 introduced the operation strategy for different types of MGs. As
shown in Fig. 2.1, after we know the operation strategy of the MGs, then we can
find a method to size the MGs. For the sizing problem, the goal is to achieve cost-
effectiveness, namely, minimize the total costs (including investment, maintenance, op-
eration and penalty costs) of the system, and at same time, satisfy different constraints
(e.g. technical criteria, logical constraints etc.).

In this section, sizing methods of microgrids are introduced. We also introduce this prob-
lem from three aspects:

1. the sizing of a full-electric microgrid;
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2. sizing of a multi-energy supply microgrid;

3. sizing of a multi-energy supply microgrid considering utility grids.

2.3.1/ SIZING OF FULL-ELECTRIC MICROGRID

The optimal sizing problem is a non-convex and non-linear combinatorial optimization
problem [32], and for the solution of this problem, various optimization methods have
been presented in [74].

Firstly, there are large numbers of simulation tools to solve the combination sizing prob-
lem. In [75], authors review 68 computer tools which can be used for analyzing RES
integration, but the results show that there is no tool that can address all aspects of hy-
brid microgrid systems.

The conventional method is the trial-and-error method: firstly, list all combinations of the
sizing values; after that, deploy these combinations in the simulation model to calculate
the annual total cost of the system; at last, the solution with the lowest annual total cost
contains the optimum sizing values. This method will be impossible to deploy, because
the combination of sizing values will be large when there are several sizing variables,
which leads to lots of computation time.

At last, the most appropriate method to solve the combination sizing problem is the evo-
lutionary algorithm (EA) [32, 74].

For example, [31, 32] compare several EAs for the optimal sizing of a hybrid system,
where the objective function is the total annual cost. Other papers use various meta-
heuristics, such as [33] which uses ACO to get size values of a PV/wind hybrid system.
In [34], ABSO is used to solve the sizing problem of a PV/WT/FC hybrid system consider-
ing loss of power supply probability. Simulated annealing and tabu search (TS) are used
in [14]. [35] studies the performance of different PSO algorithm variants to determine the
size results of a hybrid (PV/wind/battery) system.

In section 2.2.1, the operation strategy of the full-electric MG has been presented. Then
with the EA method, the sizing problem considering energy management of a full-electric
MG can be solved. This co-optimization algorithm considering the combinations of sizing
and energy management is shown in Fig. 2.1.

Several papers have considered such co-optimization algorithms. For example, in [36],
the operation mode of the islanded MG is determined by the SOC of the battery stor-
age. Three operation modes are set based on different rules. The GA method is used
to solve the sizing optimization problem with multiple objectives including the minimiza-
tion of lifecycle cost, the maximization of renewable energy source penetration and the
minimization of pollutant emissions. [76] presents a co-optimization method to size stand-
alone microgrids with two GA: one for the sizing, and another one for the scheduling. In
[77], authors present a co-optimization method for microgrid planning in electrical power
systems. The leader problem optimizes the planning decisions for the microgrids and
the main grid, and, with the proposed plan, the short-term and economic operation sub-
problems are solved to check whether constraints are met or not. In [78], authors also
present a microgrid planning model. The problem is decomposed into an investment
master problem and an operation subproblem. The two problems are linked via the ben-
ders decomposition method. Finally, in [79], the authors present a bi-level program for the
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sizing of islanded microgrids with an integrated compressed air energy storage (CAES).
The upper level problem is solved using GA, and the lower level problem is solved using
the MILP technique.

2.3.2/ SIZING OF MULTI-ENERGY SUPPLY MICROGRID

The above section presented the sizing method of the full-electric MG, and the co-
optimization method is often adopted. In this section, the sizing method of multi-energy
supply MG is presented.

The traditional sizing method for CCHP systems is the maximum rectangle method
(MRM) which uses the hourly load curve and finds the rectangle area under this curve
[80], [81]. But this method cannot represent the dynamic, changing performance of the
system.

Co-optimization methods are also adopted to search for the optimal sizing values in
CCHP MGs. Based on different sizing methods and different operation strategies, the
co-optimization methods can be classified as the following types:

a) The first type uses sizing values chosen from a set of discrete values, and the
operation strategy is based on rules. For example, [58] presents a method to design
a trigeneration plant. Operation strategies are based on rules. The objective of this
trigeneration planning model is to minimize the energy production and investment costs
over the planning horizon, achieving maximum investment returns. The sizing value of
each component is selected from a set of discrete values. [59] researches about the
operation and configuration optimization of a CCHP system. Firstly, it chooses different
configurations of sizing values, then chooses an operation strategy (FCL, FTL, FEL, and
maximum power output) and waste heat allocation proportion. At last, the daily costs are
compared, and the optimal system configuration is obtained.

b) The second type of co-optimization method has sizing values chosen from a set
of discrete values, and the operation strategy is based on an optimization method.
For example, [82] presents an optimal sizing method for cogeneration systems in two
steps: first the capacity of each equipment is selected from a set of discrete values, then
the optimal operation problem is solved using MINLP based on the above sizing values.
[83] presents a generic deterministic linear programming model (which aims to minimize
expected annual cost of the system) to determine the optimal size of a micro-CHP unit.
[70] presents an optimal design method for a hospital complex. The objective of the
operation strategy is to maximize the gross operational margin and net present value. It
is formulated as an MIP model.

c) The third type of methods uses sizing values chosen using an evolutionary al-
gorithm, and the operation strategy is based on rules. For example, in [84], authors
adopt MRM to determine the lower and higher limits for the total nominal power of the
prime mover. GA is used to search for the optimal sizing value of each component. Four
operation strategies based on rules are compared. The objective function is named rela-
tive annual benefit, and includes investment and maintenance costs of equipment, buying
and selling electricity, as well as operational and environmental costs. [85] presents an
optimization-based sizing method for CCHP. GA is used to search for the best sizing val-
ues, and the objective function is to minimize the total fossil energy consumption. Two
operation strategies (improved strategy and base FEL strategy) are compared, and the
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primary energy saving ratio is employed to evaluate the strategy. [86] describes a thermo-
dynamic performance analysis to optimize the configurations of a hybrid CCHP system
incorporating solar energy and natural gas. GA is used to search for the best configura-
tion, and the operation strategy is based on rules. The objective function is to maximize
the annual primary energy savings and the annual total cost savings.

d) The fourth type of methods relies on sizing values chosen using an evolution-
ary algorithm, and an operation strategy based on optimization. For example, [71]
presents a multi-objective model based optimization approach for the optimal sizing of all
components. GA and non-linear mesh adaptive direct search method are used to decide
the sizing values. The objectives are the capital expenditure, the levelized cost of energy,
and emissions. The optimal control problem is formulated as an MINLP, and is solved us-
ing discrete dynamic programming. In [79], authors present a bilevel program for islanded
MGs with compressed air energy storage. The upper level problem is solved using GA,
and the lower level problem is solved using the MILP technique. [45] presents a two-stage
optimal planning and design method for a CCHP microgrid system. On the first stage, a
multi-objective GA based on NSGA-II is applied to solve the optimal design problem. The
objective function is to minimize the total net present cost and carbon dioxide emissions.
On the second stage, an MILP algorithm is used to solve the optimal dispatch problem,
where the objective function is to minimize the operation cost.

In addition to the above main types, a few other co-optimization methods can be men-
tioned. For example, in [72], the authors provide an analysis that shows that CHP systems
should be sized and operated to reduce greenhouse gas emissions. A controlled random
search method is used to search for optimal sizing values, and the operation strategy
is formulated as an MILP problem aiming to maximize greenhouse gas emissions reduc-
tions. In [77], authors present a co-optimization method for microgrid planning in electrical
power systems. The leader problem optimizes the planning decisions for the MG and the
main grid. Then, with the proposed plan, the short-term and economic operation subprob-
lems are solved to check constraints violations. In [78], authors present an MG planning
model. This problem is decomposed into an investment master problem and an opera-
tion subproblem. The two problems are linked via the benders decomposition method. In
[87], a multi-objective MINLP model is formulated for the simultaneous system synthesis,
technology selection, unit sizing, and operation optimization of a large-scale CCHP sys-
tem. The objective function is to minimize the total annual cost and the annual global CO2
emissions. The augmented constraint method is applied to determine the Pareto frontier
of the design configuration.

The reviewed co-optimization methods are summarized in Table 2.1.

From the above review, we can conclude that the sizing problem is a hybrid optimization
problem. Based on a given operation strategy, different sizing combinations are gener-
ated to run the strategy. In this thesis, we therefore research about the optimal sizing
problem using the co-optimization method. Namely, GA is used to search for the sizing
values, and UC optimization is used to derive the operation strategy.

2.3.3/ SIZING OF MULTI-ENERGY SUPPLY MICROGRID CONSIDERING UTILITY
GRIDS

The above works are about the islanded microgrids, or when the utility grid is considered
as an infinite power source. In this section, we consider a more realistic utility grid, and
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Table 2.1: Selected papers on co-optimization methods.

Refs. Sizing method Operation strategy
[82] discrete values MINLP
[83] discrete values LP
[58, 59] discrete values rule-based
[84, 85, 86] GA rule-based
[70] discrete values MIP
[71] GA/NOMAD MINLP
[79] GA MILP
[87] augmented ε-constraint MINLP
[45] NSGA-II MILP
[72] controlled random search MILP

research about the sizing of grid-connected multi-energy supply MGs. When MGs are
connected into the utility grid, the import power from the utility grids should be considered,
which will influence the power flow inside the MG, and result in different sizing values. The
export power to MGs will also influence the power flow in utility grid, then the operation
state of the utility grid should be checked to ensure the security operation.

In the electricity supply system, many works have been presented about the optimal sizing
and siting of distributed generation (DG). [88] reviews classical and heuristic approaches
for optimal sizing and placement of DG units in distribution networks. In [89], DG al-
location problems are reviewed from the viewpoint of the used optimization algorithms,
objectives, decision variables, DG type, applied constraints, and kind of uncertainty mod-
els. Papers show that metaheuristic-based approaches are effective in solving the DG
allocation problem and are the most common approaches for solving this problem, but
these approaches may converge into false local optima rather than the global optimum.

In [90], authors propose an independent system operator (ISO) model for coordinating
transmission expansion planning with competitive generation capacity planning in elec-
tricity markets. The security-constrained planning problem consists of three problems:
transmission capacity planning (maximizing the investment profits), security assessment
(minimizing real power mismatch at each bus) and optimal operation (maximizing the re-
vealed surplus based on submitted bids for generation, demand, and incremental trans-
mission). At last, a modified IEEE 30-bus system is used to evaluate the method. [77]
presents an algorithm for microgrid planning as an alternative to the co-optimization of
generation and transmission expansion planning in electric power systems. The problem
is decomposed into a planning problem and an annual reliability sub problem. When the
annual reliability limits are violated, the planning decisions will be revised using proper
feasibility cuts. The method is tested on a modified IEEE 118-bus system. In [78], au-
thors present a microgrid planning model. This problem is decomposed into an invest-
ment master problem and an operation subproblem. These problems are linked via the
benders decomposition method. [91] describes an approach to address the microgrid
expansion planning problem. The master problem is to maximize the profit of individual
investors, the second layer problem is to check the reliability criteria, and the third layer
problem is to minimize the operation cost. The proposed method is examined on a four-
bus test system. [92] presents an electric expansion planning approach, which includes
three options for network expansion as generating units (i.e., wind, solar, and diesel),
ESSs, and lines. The problem is described as a two-level MILNP problem, the first level
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is to minimize the planning cost, and the second level is to minimize the operation cost.
Both problems are solved by a hybrid meta-heuristic optimization technique which collects
the benefits of particle swarm optimization (PSO), cultural algorithm, and co-evolutionary
algorithms at the same time.

The above papers use the co-optimization methods to solve the microgrid planning prob-
lem. The co-optimization method decomposes the planning problem into a master prob-
lem and a subproblem which can consider two time scales: long term planning and short
term operation. The master problem aims to search for the planning results, and the
subproblem is to evaluate the correctness of the operation problem.

Some works about the sizing problem of multi-energy microgrids have also been pub-
lished, as shown in section 2.3.2. Also the sizing problem of multi-energy microgrids
considering utility grid are presented. For example, in [93], authors present an MILP
model for the optimal design of DG systems coupled with heating, cooling, and power
distribution networks, aiming to minimize the annual overall cost. [94] presents a multi-
objective optimization approach based on GA for CHP system within microgrid system.
The two objectives are to minimize the total cost and the total gas emissions from the
main grid, boiler and DG units. The operation strategies are “following electrical load”
and “following thermal load”.

Works about the co-planning of natural gas and power electric systems are also re-
searched. For example, in [95], an integrated electricity and natural gas transportation
system planning algorithm is proposed for enhancing the power grid resilience in extreme
conditions. The first stage problem is to minimize the investment and the operation costs
for the integrated electricity and natural gas, the second stage problem is to minimize load
curtailment after the occurrence of the most severe event. The test results on the IEEE-
RTS1979 point out that the integrated planning of electricity and natural gas can improve
the power system resilience. [96] proposes a long-term co-optimization planning model
which incorporates the natural gas infrastructure planning in power system planning. The
investment problem is formulated to optimally determine appropriate candidates for gen-
erating units, transmission lines, and natural gas pipelines. The second subproblem is
the power system feasibility and optimality (minimizing the load curtailment). The third
subproblem is the natural gas transportation feasibility (minimizing the nodal natural gas
load imbalance). At last, the power system reliability is evaluated. [97] proposes an in-
tegrated expansion planning framework for gas and power systems. The model aims
to maximize the benefit/cost ratio by calculating benefits in operation reduction, carbon
emissions reduction and reliability improvement against augmentation investment costs.
[98] presents a long-term, multiarea, and multistage model for supply/interconnections
expansion planning of an integrated electricity and natural gas system. The proposed
model is formulated as an optimization problem, which minimizes the investment and op-
eration costs to determine the optimal location, technologies, and installation times of any
new facility for power generation, power interconnections, and the complete natural gas
chain value (supply/transmission/storage) as well as the optimal dispatch of existing and
new facilities over a long range planning horizon.

The co-planning method can consider the characteristics of the power system and the
natural gas system at the same time, which includes the interactions between both sys-
tems on supply and demand sides, and help achieve higher market efficiency in the cost
benefit analysis [97].

However research works about the sizing problem of gas/electricity/heat hybrid systems
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have not been given a lot of attention so far. [30] researched about the sizing problem of
an electricity/heat system, and showed that a single-node aggregate approach (namely,
ignore the interconnection structure inside the microgrid) cannot capture the internal en-
ergy transfers and the limitations of the electrical/thermal networks.

2.4/ PRICE DECISION ALGORITHM FOR GRID-CONNECTED MICRO-
GRIDS

When the MGs are connected into the utility grid, the prices must be considered. MGs
can buy energy from the utility grid, and also can sell energy to utility grid. So how to
decide the selling prices of utility grid, and selling prices of MGs are essential problems.

Then in this section, we review related works about the price decision method for MGs.
The price decision approaches can be classified into two main categories: 1) game theory
approaches; 2) bilevel approaches.

2.4.1/ GAME THEORY APPROACH

In this subsection, we introduce price decision using the game theory approach. One
function of the price is to guide the consumers to arrange their demands with the help of
demand response (DR). Based on game theory, there exists an optimal price which can
make both the supplier and demander maximize profits. So how is game theory used to
obtain the best price?

FOR PRICE-BASED DR

[99] presents a Stackelberg game-based demand response model between one utility
company and multiple users, aiming at flattening the aggregated load in the system. The
utility company acts as the leader, updates the price based on the marginal cost, and the
users play as the followers, and update the load demand based on the received price. At
last, the Stackelberg equilibrium is reached. [100] develops a model to optimize individual
storage device control in response to prices. Optimization is achieved as a function of cost
savings versus customer comfort. Two models, Cournot and supply function equilibrium
are used to describe the market competition and determine the market clearing price.

[101] presents an energy management scheme for a smart community consisting of a
large number of residential units (RUs) and a shared facility controller (SFC) using a
non-cooperative Stackelberg game. Firstly, RUs change their own energy consumption
based on the selling price to SFC, then the SFC optimizes its cost function, until the
cost of SFC is lower than the purchasing from utility grid, the optimal selling price is then
obtained. [102] presents a dispatch and bidding strategy for multiple virtual power plants
(VPP). Firstly, linear programming is used to dispatch the output of each VPP to minimize
the operation cost, then GA is used to decide the bidding price of each VPP, aiming at
minimizing the variance of profit of per kWh.

[103] develops an integrated DR program for multiple energy carriers fed into an energy
hub in a smart grid. The IDR program is formulated for the electricity and natural gas



24 CHAPTER 2. RELATED WORKS

networks. The interaction among the hubs is modeled as an ordinal potential game with
a unique Nash equilibrium. Electricity and gas utility companies update the electric and
gas prices to maximize the potential function until the stopping criterion is reached, at
last, the Nash equilibrium is obtained. Results show that when the gas price is high,
customers prefer to shift their loads. However, when the gas price is low, they convert
gas to electricity using the micro turbines to reduce the peak demand on the supplier
side.

[104] proposes a DR algorithm for customers in a smart grid to reduce the peak load of the
system. The problem is formulated as two games to maximize the utility companies profit
and customers payoff. Electricity suppliers update the bids based on the load demands,
then calculate the market clearing price; customers receive the market clearing price,
and update the load profile. This process is repeated until the stopping criterion for the
algorithm is met. Simulation results show that the algorithm increases the customers
payoff and reduces the peak load by shifting the load demand to off-peak periods. The
utility companies’ profits are also increased by participating in the DR game.

FOR INCENTIVE-BASED DR

[105] proposes a novel type of DR program. This scheme is referred as coupon incentive-
based demand response (CIDR). When a wholesale price spike is expected, the load
service entities (LSEs) offer coupon incentives to retail customers, and then consumers
respond to the coupon incentives and submit their binding demand reduction offers to the
LSEs. If the LSEs profit no longer increases (or equivalently the LSE financial loss no
longer decreases) from the previous iteration, the convergence criterion stops; otherwise,
LSEs increase the coupon price by a price step. Results show that CIDR can effectively
induce inherent demand flexibility and reduce system-wide operational cost while main-
taining a basic flat rate structure on the retail level.

[106] proposes a bidding approach for LSEs with coupon demand response considering
wind power uncertainty and customers behavior patterns toward different coupon prices.
The forecasted wind power production is expressed as a set of probabilistic scenarios. A
practical probabilistic model of demand reduction under different coupon prices is estab-
lished based on a residential energy consumption survey. The simulation steps can be
concluded as:

1. the LSE offers a coupon price to its customers;

2. the customers provide the range of corresponding demand reduction to the LSE;

3. the LSE calculates its expected net revenue through bidding this revised demand in
the ISO electricity market;

4. steps 1)-3) are repeated with different coupon prices.

[107] proposes a novel incentive-based demand response model. It includes three hierar-
chical levels of a grid operator, multiple service providers, and corresponding customers.
A two-loop Stackelberg game is proposed to capture interactions among different actors
spanning from the generators, grid operator, service providers, to end consumers.

Based on the above researches, we can see that, for the game theory model, the following
steps are often adopted. The leader proposes a price, then followers adjust their load
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profiles using DR strategies according to the price. After that, the leader updates a new
price, then followers adjust their load profiles again. This process is repeated until a
stopping criterion is satisfied. The game theory model proves that there is a best strategy
for both the leader and the followers, namely, the Nash equilibrium.

2.4.2/ BILEVEL APPROACH

The above section discusses about the price decision based on game theory. In this
subsection, the bilevel approach is introduced.

Because the price is the link between the upper-level problem (the LSE operation is the
upper-level problem) and the lower-level problem (the MGs operation is the lower-level
problem), this means that price is often the decision variable in the upper-level problem,
and is treated as a parameter in the lower-level problem. Then how to solve this problem?

Two specific problems are presented here to introduce the bilevel approach: the market
problem and the scheduling problem.

FOR THE TRADING MARKET PROBLEM

[108] presents a real-time market concept architecture for EcoGrid EU. In it, small-scale
DERs and small end-consumers can actively participate in a new real-time electricity mar-
ket by responding to 5-min. real-time electricity prices. The TSO uses a single-period op-
timization model for the deployment of up and down regulating power and determination
of real-time price. The objective function of the problem aims to minimize the regulat-
ing power cost while taking into account the prosumer response (demand and DERs) to
real-time price signals.

[109] proposes a hierarchical market structure for the smart grid paradigm which is com-
posed of a wholesale electricity market (WEM) and a distribution network electricity mar-
ket. A new load aggregator is used as the middle agent to participate in the distribution
network and the WEMs competing with microgrids and generation companies. The bid-
ding strategy chosen by each market participant is procured using bi-level problem with
the upper-level problem representing the market participant’s payoff maximization and the
lower-level problem minimizing the operation cost of the network.

[110] presents an optimal pricing design for DR integration in the distribution network.
An LSE is used to serve two types of loads, namely inflexible and flexible loads. The
interaction between the LSE and the customers is formulated as a bilevel optimization
problem where the LSE is the leader and DR aggregators are the followers. The goal of
the LSE is to maximize the profit; while the goal of the DR aggregators is to maximize the
payoff function. The bilevel problem is transferred to an MILP formulation and solved by
a branch and bound algorithm.

[111] presents a bilevel problem to decide the dynamic price for the retailer, whose goal
is to maximize the profits. The consumers shift their demands based on the dynamic
price given by the retailer. The goal is a utility function trading-off the cost of electricity
procurement and the discomfort for deviating from the reference temperature band. The
problem is reformulated as a single-level MILP.
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FOR THE OPERATION SCHEDULING PROBLEM

[112] presents a trading strategy of a proactive distribution company (PDISCO) engaged
in the transmission-level (TL) markets. The problem is formulated as a bilevel model.
The lower-level problems include the TL day-ahead market and scenario-based real-time
markets, aiming to maximize social welfare and minimize operation cost. The upper-
level problem is to maximize the PDISCO’s profit across these markets. The PDISCO’s
offering/bidding day-ahead price and real-time price are upper-level problem’s decision
variables, but treated as parameters in the lower-level problems. An equivalent primal-
dual approach is used to reformulate this bilevel model.

[113] presents a decentralized power dispatch model for the coordinated operation of
multiple MGs and a distribution system. The problem is formulated as a stochastic bi-
level problem with the distribution network operator (DNO) in the upper level and MGs in
the lower level. In the bi-level model structure, the first level problem is to minimize the
DNO’s costs, while the second level problem is to minimize the costs of all MGs. At last,
the problem is transformed into a stochastic mathematical program with complementarity
constraints (MPCC).

[114] presents a bilevel structure to solve the scheduling of multiple microgrids. A dis-
tribution network operator aims to minimize the operation costs, and each MG aims to
maximize profits based on a demand response program. MGs can exchange energy with
each other. This multiple follower bilevel problem is transferred to single level problem
based on KKT conditions.

[115] proposes an autonomous optimization model of an active distribution system with
multiple MGs. The distribution network (DN) aims to minimize the generation cost of the
units and the interaction cost with the MGs, while each MG aims to minimize the total cost.
Due to the exchanged power flow between the DN and MGs, the economic dispatching
model of the DN and MGs are coupled with each other. Then in this paper, the authors
decouple the model based on analytical target cascading theory, namely, a Lagrange
penalty function is proposed to add to the objective function of the DN and MGs. This
enables the DN and MGs to autonomously solve their dispatching optimization problem.

The bilevel problem is often converted to a single level MILP problem using the equivalent
primal-dual approach. But this method is complex to solve.

We can also note that research works about the price decision of multiple multi-energy-
supply MGs have not been given a lot of attention so far, especially, about the relationship
between the bidding price, renewable energy penetration and demand response. In this
thesis, our goal is to find the best price for both LSE and MGs that can minimize the
operation costs of MGs and maximize the profits of the LSE. We combine GA and MILP
to decide the prices. MILP is used to control the operation of LSE and MGs. GA is used
to update the price.

2.5/ CONCLUSION

In this chapter, we reviewed related works about the sizing and operation problem of mi-
crogrids. Three specific aspects were reviewed: the operation strategy of full electric mi-
crogrids and multi-energy supply microgrids; the sizing method of full electric microgrids,
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multi-energy supply microgrids and grid-connected microgrids; and the price decision
approach for grid-connected multiple multi-energy-supply microgrids.

We found that although a large number of papers have been presented to solve the
microgrid sizing problem, there are still some problems that need to be solved. These
problems can be concluded as:

1. How to size and operate hydrogen-based microgrids (combining hydrogen storage
and battery storage);

2. How to size and operate multi-energy supply microgrids (considering electric-
ity/heating/cooling/hydrogen demands);

3. How to size and operate multi-energy supply microgrid considering the electric-
ity/gas/heat utility grid;

4. How to decide the prices for grid-connected multiple multi-energy-supply microgrids.

In the following chapters, the solutions to the above problems will be discussed and ex-
plained in details.
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3
MICROGRID MODELING

In this thesis, we research about the sizing and operation of microgrids. Firstly, we need
to build the model of the microgrid system. Two types of microgrids are modeled in this

section:

1. A full-electric microgrid, where five components are contained: PV panels, a battery
storage system, a hydrogen storage system (including an electrolyzer, hydrogen
tanks and a fuel cell).

2. A multi-energy supply microgrid, where nine components are contained: PV panels,
a solar heating system, a battery storage system, a hydrogen storage system, a
heat boiler, an air conditioner, an absorption heat chiller, a heat storage system,
and electricity, heat, cooling and hydrogen loads.

In the following sections, the mathematical model of each component is introduced.

3.1/ SOLAR GENERATION COMPONENTS

The output of the PV generator can be calculated from [79, 116]:

PPV = NPV · fPV · PS TC ·
GA

GS TC
· (1 − (TC − TS TC) ·CT ) (3.1)

where NPV is the number of PV panels, fPV the conversion efficiency, PS TC the PV array
power under standard test conditions (STC), GA the global solar radiation on the PV array,
GS TC the solar radiation under STC, TC the temperature of the PV cells, TS TC the STC
temperature (298 K), and CT the PV temperature coefficient.

For the solar heating system, the output is computed with [117]:

Qsh = Nsh · ηsh ·GA (3.2)

where Nsh is the area of the heating system, and ηsh its efficiency.

3.2/ FUEL CELL MODEL

A fuel cell (FC) can produce electricity from hydrogen (H2), which can be drawn from
hydrogen tanks. In this thesis, we use the voltage electrical model presented in [118] to

31
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describe the characteristic of FC:

V f c = (EOC − r f c · i f c − A · ln(i f c) − m · en·i f c) · N f c (3.3)

where V f c is the FC voltage, EOC is the open-circuit voltage of one cell, i f c is the cur-
rent density in one cell, N f c is the number of cells, and n, r f c, A, and m are empirical
coefficients.

As an PEM FC generates electricity and heat at the same time, the produced heat can
be calculated as in [119]:

Q f c = N f c · (1.48 −
V f c

N f c
) · I f c (3.4)

Then the hydrogen consumed by the FC is computed using:

ṅcon
H2 =

N f cI f c

2FU
(3.5)

where F is the Faraday constant, and U is the utilization efficiency of hydrogen in the FC.

From the above equations, we can derive that P f c = f (ṅcon
H2 ), where f (.) is a nonlinear

function. In order to reduce the calculation time and obtain a linear model, we use lin-
ear regression to simplify this function, without significant loss of model accuracy in the
normal operation zones:

ṅcon
H2 = k f c · P f c (3.6)

where k f c is a constant.

In the following, we give an example of PEM FC model based on the above analysis. The
main parameters of the PEM FC model is shown in Tab. 3.1.

Table 3.1: PEM FC parameters.

Fuel cell [19, 21, 118, 76]
A 0.03

r f c 2.45 × 10−4

m 2.11 × 10−5

n 0.008

The voltage and current characteristic curve of one fuel cell can be seen in Fig. 3.1.

The voltage and power characteristic curve of one fuel cell stack can be seen in Fig.3.2.

The relationship between output power and consumed hydrogen of one fuel cell stack
can be seen in Fig.3.3.

The FC operates as the main power source, which means that it will run for a large
number of hours, and over time, its performance will decrease. The degradation of the
fuel cell must thus be considered [120, 121]. Here, we consider a steady-state lifetime
FC model, where the output current is a constant value, which reduces the degradation
of fuel cell. As the FC operates as a long term storage system, cycling loads (load
changes, start-stop, idling, and high power) will be the main load demands, which will
accelerate the degradation of the fuel cell [122]. But in this first planning stage, the future
operation states of the fuel cell are unknown, which means that the accelerated factors
of degradation are unknown. In other words, the future operation states can only be



3.2. FUEL CELL MODEL 33

Figure 3.1: Voltage/current characteristic of a fuel cell.

Figure 3.2: Voltage and power characteristic of a fuel cell stack.

estimated. The steady state lifetime model is therefore adopted, where it is assumed that
the FC will operate at a constant output.

The degradation of the fuel cell causes a voltage drop, which can be modeled as:

∆V f c = kvd · tday (3.7)

where ∆V f c is the voltage drop of fuel cell, tday is the operation duration, kvd is a constant
value.

The degradation of the fuel cell mainly influences the resistance r f c [120]. This means
that resistance r f c increases as the fuel cell keeps operating. This can be written as:

r f c(tday) = kr f c · kvd · tday (3.8)

where r f c(tday) is the resistance at time tday, and kr f c is a constant coefficient.



34 CHAPTER 3. MICROGRID MODELING

Figure 3.3: Relationship between output power and consumed hydrogen.

The degradation model of the fuel cell can then be written as:

V f c = (EOC − r f c(tday) · i f c − a · ln(i f c) − m · en0·i f c) · N f c (3.9)

With the above degradation model, Fig. 3.4 can be obtained, which shows the volt-
age/current characteristic of the fuel cell after different operation durations.

Figure 3.4: Voltage/current characteristic of a fuel cell after different operation durations.

From Fig. 3.4, the relationship between output power and consumed hydrogen consider-
ing the degradation model can be obtained:

ṅcon
H2 = k f c(tday) · P f c (3.10)

where k f c(tday) is the coefficient value in time tday, derived from current and voltage curves,
as shown in Fig. 3.4.
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On the other hand, the degradation of the fuel cell also decreases the maximum output
power. As a fuel cell has a maximum output current, with different voltage/current curves,
the maximum output power is also different. This can be represented as:

Pmax
f c (tday) = Pmax

ini − k f cm · tday (3.11)

where Pmax
f c (tday) is the maximum output power at time tday, Pmax

ini is the initial maximum
output power, and k f cm is the coefficient.

3.3/ ELECTROLYZER MODEL

An electrolyzer can produce hydrogen from electricity, and this hydrogen is then usually
stored in tanks. The characteristic of an electrolyzer can be described as follows [123,
124]:

Vel = Nel · Vrev + (r1 + r2 · T ) ·
Iel

Ael

+ (s1 + s2 · T + s3 · T 2) · log(1 + (t1 +
t2
T

+
t3
T 2 ) ·

Iel

Ael
)

(3.12)

where Vel is the voltage of the electrolyzer, Nel the number of cells, Vrev the reversible cell
potential, T the temperature and Iel/Ael(A/m2) the current density. r1, r2, s1, s2 , s3, t1, t2,
and t3 are empirical coefficients.

As for the FC, the theoretical production rate of hydrogen in a cell is given by:

ṅpro
H2 = ηF

NelIel

2F
(3.13)

Based on Faraday’s efficiency, we can obtain the relation between the real production
rate of hydrogen and the theoretical one, using:

ηF =
(Iel/Ael)2

f1 + (Iel/Ael)2 f2 (3.14)

where f1 and f2 are coefficients.

As for the FC, we also linearize the model to obtain:

ṅpro
H2 = kel · Pel (3.15)

where kel is a constant.

In the following, we give an example of an alkaline electrolyser model. The main param-
eters of the electrolyzer are shown in Tab. 3.2.

The voltage and power characteristic curve of one electrolyzer stack can be seen in
Fig.3.5. The relationship between input power and produced hydrogen of one electrolyzer
stack can be seen in Fig.3.6.

Contrary to the FC, the degradation of the electrolyzer will cause the cell voltage to in-
crease [125, 9], which can be represented as:

∆Vel = kvi · tday (3.16)
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Table 3.2: Alkaline electrolyzer parameters.

Electrolyzer [123, 124, 76]
r1 0.0015
r2 -6.019 × 10−6

s1 2.427
s2 -0.0307
s3 3.9 × 10−4

t1 0.214
t2 -9.87
t3 119.1
f1 150
f2 0.99

Figure 3.5: Voltage and current characteristic of one electrolyzer stack.

where ∆Vel is voltage increase of the electrolyzer, tday is the operation time, and kvi is a
constant value.

Electrolyzer degradation mainly influences the resistance r1 in equation (3.12) [9]. This
means that resistance r1 will change as the electrolyzer continues operating. This can be
written as:

r1(tday) = krele · kvi · tday (3.17)

where r1(tday) is the resistance at time tday, and krele is a coefficient.

The degradation model of the electrolyzer can then be written as:

Vel = Nel · Vrev + (r1(tday) + r2 · T ) ·
Iel

Ael

+ (s1 + s2 · T + s3 · T 2) · log
(
1 +

(
t1 +

t2
T

+
t3
T 2

)
·

Iel

Ael

) (3.18)

With the above degradation model, Fig. 3.7 can be obtained, which shows the volt-
age/current characteristic of the electrolyzer after different operation durations.
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Figure 3.6: Relationship between input power and produced hydrogen.

Figure 3.7: Voltage/current characteristic of an electrolyzer after different operation dura-
tions.

From Fig. 3.7, the relationship between input power and produced hydrogen with the
degradation model can be obtained:

ṅpro
H2 = kel(tday) · Pel (3.19)

where kel(tday) is the coefficient value at time tday.

On the other hand, the degradation of the electrolyzer also increases the maximum input
power. As the electrolyzer has a maximum input voltage, this means that with different
voltage/current curves, the maximum input power will be different. This can be repre-
sented as:

Pmax
ele (tday) = Pmax

inie − kelem · tday (3.20)

where Pmax
ele (tday) is the maximum input power in time tday, Pmax

inie is the initial maximum input
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power, and kelem is the coefficient.

3.4/ HYDROGEN TANK MODEL

A hydrogen tank is used to store the hydrogen produced by the electrolyzer, as well as
to supply hydrogen to the fuel cell. We use the level of hydrogen (LOH) to represent the
state of the hydrogen tank:

LOH(t) = LOH(t − ∆t) + ṅpro
H2 · ∆t − ṅcon

H2 · ∆t − LH2(t) (3.21)

where LH2(t) is the hydrogen load demand. Then, with the law of perfect gases (PV =

nRT ), the volume of the H2 tanks can be calculated.

3.5/ BATTERY

We use the state-of-charge (SOC) to represent the state of the battery as follows:

S OC(t) =S OC(t − ∆t) +
ηch · Pch(t) · ∆t

Cba
−
ηdis · Pdis(t) · ∆t

Cba
(3.22)

where ηch, ηdis are the charging and discharging efficiency, Pch(t) is the charging power,
Pdis(t) is the discharging power, ∆t is the interval time, and Cba is the capacity of the
battery.

For the battery, we use the same linear degradation model as for the fuel cell. Calendar
and cycling age [126] are the two main factors that cause the degradation of the battery.
Four models are used to fit the state-of-health (here, the ratio of the current usable ca-
pacity to the initial or nominal capacity) of the battery [126]. In addition, the degradation
of the battery is also caused by the cycling operation. For example, [127] shows the
degradation of the capacity with the number of cycles. Therefore, a linear model is used
to describe the degradation of the battery.

As in the first planning stage, the future operation of battery is uknown, so it is assumed
that the degradation of the battery is linear. Based on the linear model, the remaining
capacity of the battery in each day can be calculated:

Cba(cycles) = Cini −
Cini −Clast

Cyclesmax
· cycles (3.23)

3.6/ THERMAL COMPONENTS

The above sections describe the electric components, in order to serve the heat/cooling
load demands, the thermal components are needed. The thermal components use elec-
tric energy to produce heat, such as the heat boiler; or use the electric energy to produce
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Figure 3.8: Remaining capacity of battery vs. number of cycles.

cooling, such as the air conditioner; or use the heat energy to produce cooling, such as
the absorption heat chiller. In this section, different thermal components are modeled.

We use simple models for the thermal components. A heat boiler uses electricity to
produce heat, as follows:

Qhb = ηhb · Phb (3.24)

where Phb is the input power, ηhb the efficiency, and Qhb the output heat.

An air conditioner is used to cool air [128]:

Cac = ηac · Pac (3.25)

where Pac is the input power, ηac the efficiency, and Cac the cooling output power.

Similarly, the absorption heat chiller uses heat to produce cooling, so the relation is [128]:

Cahc = ηahc · Qahc (3.26)

where Qahc is the input heat, ηahc the efficiency, and Cahc the output cooling power.

Finally, the state of the heat storage system is represented by the amount of heat stored
[63]:

HS (t) = HS (t − ∆t) + ηch
hs · Q

ch
hs(t) · ∆t −

Qdis
hs (t)

ηdis
hs

· ∆t (3.27)

where HS (t) is the stored heat at time ∆t. Qch
hs(t) and Qdis

hs (t) are the charge and discharge
heating power at time t. ηch

hs and ηdis
hs are the charge and discharge efficiency, respectively.

3.7/ CONCLUSION

In this chapter, different components are modeled, to form the microgrid systems. A PEM
fuel cell and an alkline electrolyzer are used as the long term storage system, and the
characteristics of the PEMFC and alkline electrolyzer are presented. The relationship
between output power and consumed hydrogen in the fuel cell is calculated, also the
relationship between input power and produced hydrogen in the electrolyzer is formulated.
Then the linear degradation model of the fuel cell, the electrolyzer and the battery are
developed. At last, thermal components are modeled. For the following chapters, different
cases will be presented and discussed.





4
SIZING OF A FULL-ELECTRIC

ISLANDED MICROGRID

This chapter is based on the author’s published paper: Li Bei, Robin Roche, and Ab-
dellatif Miraoui. “Microgrid sizing with combined evolutionary algorithm and MILP unit
commitment.” Applied energy 188 (2017): 547-562.

In this chapter, we focus on the optimal sizing of microgrids where PV panels are used
as the primary energy source, and BSS and HSS are used as storage units (Fig. 4.1).

Figure 4.1: Microgrid architecture.

Finding the optimal size for each of these components, i.e., finding the capacity or rated
power for each component that ensures adequate supply at minimum cost, is a challenge
because the sizing result is affected not only by the architecture of the system, but also by
the adopted energy management strategy [129]. Depending on how components such
as storage units are used, the necessary capacity may change significantly, which in
turn impacts the size of other components as well as overall costs. Another aspect to
consider is the impact of uncertainty on PV output and load. Forecasting errors change
the input data profiles and lead to sub optimal scheduling results, which in turn influences
sizing results. To address these challenges, this chapter presents a leader-follower co-
optimization method to size islanded microgrids, which also considers uncertainty on
input data.

41
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This chapter introduces a general method to size a stand-alone microgrid considering
technical and economic criteria, with a combination of EA and UC optimization. A ge-
netic algorithm is used to compute the sizing of the components to minimize the total
annual cost (capital, maintenance and operation) of the system. Each candidate solution
(set of components sizes) is evaluated with a MILP UC algorithm. The designed bi-level
optimization framework is shown in Fig. 4.2.

Figure 4.2: Bi-level optimization framework.

The rest of this chapter is structured as follows. Section 4.1 describes the UC strategy
and Section 4.2 the EA-based sizing problem formulation. Finally, Section 4.3 presents
the simulation results while Section 4.4 concludes the chapter.

4.1/ SCHEDULING STRATEGY

As the results of the sizing process depend on how the different components are used
(i.e., what is their output), an appropriate control strategy is required. Contrary to classi-
cal components, ESS introduce a temporal link between time steps and scheduling algo-
rithms have to consider this link to ensure that the SOC remains within allowed bounds.
This constraint is necessary to ensure that the results of the sizing are adequate, and
components oversizing is avoided. As a consequence, it is necessary to predict the evo-
lution of the entire system, including PV generation, which is the primary source of energy
for the microgrid.

This section uses a form of MPC to plan the operation of the system in advance, using
forecasts. Due to the presence of mixed logical and integer variables, the problem is
expressed as an MILP problem.
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4.1.1/ COST FUNCTION

In order to achieve economically efficient operation, the utilization cost of the BSS and the
HSS need to be quantified and minimized over a given time horizon [7, 76, 130]. For the
BSS, aging is a major concern that limits the lifetime of the device. As a consequence,
the investment cost and the degradation of the BSS have to be taken into account in the
operation cost. For the BSS, when it discharges/charges more power, then the degrada-
tion of the BSS is more, in other words, the utilization cost is larger. Then, the utilization
cost for charge and discharge are then implemented as follows [130]:

Bch
cost(t) =

Cinv
bat · Pch(t) · ηch

2 · Ncycles
(4.1)

Bdisch
cost (t) =

Cinv
bat · Pdisch(t) · ηdis

2 · Ncycles
(4.2)

where Cinv
bat is the investment cost for the BSS, and Ncycles the number of cycles over its

lifetime.

For the HSS, the O&M and the startup costs must also be considered. The utilization cost
of the electrolyzer and the FC can be computed as follows [130]:

Hele
cost(t) =

 Cinv
ele

Nele
hours

+ Co&m
ele

 · δele(t) + Cstart
ele · ∆δele(t) (4.3)

H f c
cost(t) =

 Cinv
f c

N f c
hours

+ Co&m
f c

 · δ f c(t) + Cstart
f c · ∆δ f c(t) (4.4)

where Cinv
ele and Cinv

f c are the investment costs for the electrolyzer and the FC. Co&m
ele and

Co&m
f c are the operation and maintenance costs of both components. Similarly, Cstart

ele and
Cstart

f c are their startup cost. Nhours represents the number of hours of operation of the HSS
over its lifetime. δele(t) and δ f c(t) describe their state (i.e., 1 for on, 0 for off). Finally, ∆δi

represents whether the unit is starting or not, and is defined as:

∆δi(t) = max{δi(t) − δi(t − 1), 0}, i = {ele, f c} (4.5)

Based on the previous cost functions, the total operation cost function for the entire mi-
crogrid, over a time horizon of Thor steps, can be built:

Cop =

Thor∑
t=1

(
Bch

cost(t) + Bdis
cost(t) + Hele

cost(t) + H f c
cost(t) + α · PLS (t) + β · Pcurt(t)

)
(4.6)

where PLS (t) is the shed load, Pcurt(t) is the curtailed PV output, and α and β are the
corresponding penalty values. Load shedding (LS) and PV curtailment (PVC) are two
means of flexibility to ensure a balance between generation and demand. However, their
use has to be minimized due to their impact on customer comfort and system efficiency,
respectively. The values of penalty coefficients α and β are thus chosen to discourage the
use of LS and PVC. A form of demand response could however also be used [131, 132],
but is kept for future work.
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4.1.2/ CONSTRAINTS

The operation of the various components is subject to several constraints, as is the
islanded operation of the system. In the following equations, i = {ele, f c} and j =

{ele, f c, ch, disch}. First, all component outputs have to be between their minimum and
maximum values:

Pmin
j ≤ P j(t) ≤ Pmax

j (4.7)

In order to consider the status of each device (on or off), the above equation becomes:

δ j(t) · Pmin
j ≤Z j(t) ≤ δ j(t) · Pmax

j

Z j(t) = δ j(t) · P j(t)
(4.8)

where Z j(t) represents actual outputs of component j at time t.

Due to linearity constraints, this equation can then in turn be transformed into the following
two inequalities:

Z j(t) ≤ P j(t) − (1 − δ j(t)) · Pmin
j

Z j(t) ≥ P j(t) − (1 − δ j(t)) · Pmax
j

(4.9)

Another constraint is that the electrolyzer and the FC should not be working at the same
time, as this would mean charging and discharging at the same time. The HSS is thus
either charging or discharging:

δele(t) + δ f c(t) ≤ 1 (4.10)

A similar constraint is used for the BSS:

δch(t) + δdisch(t) ≤ 1 (4.11)

The SOC and LOH constraints also have to be verified:

S OCmin ≤ S OC(t) ≤ S OCmax (4.12)

LOHmin
H2
≤ LOHH2(t) ≤ LOHmax

H2
(4.13)

Then, equation (4.5) can be rewritten as:

∆δi(t) = δi(t) · (1 − δi(t − 1)), i = {ele, f c} (4.14)

From [133], the above nonlinear equation can be transformed into the following linear
constraints:

−δi(t) + ∆δi(t) ≤ 0 (4.15)
−(1 − δi(t − 1)) + ∆δi(t) ≤ 0 (4.16)

δi(t) + (1 − δi(t − 1)) − ∆δi(t) ≤ 1 (4.17)

Finally, as the system is islanded, the balance between generation and demand has to
be met at all time steps, so:

PPV (t) − Pcurt(t) − (Pload(t) − PLS (t)) = Zele(t) − Z f c(t) + Zch(t) − Zdis(t) (4.18)
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4.1.3/ PROBLEM FORMULATION

Using the above cost function and constraints, the microgrid UC problem can be summa-
rized as follows, where S̃ is the set of variables:

min
S̃
{Cop} s.t. (3.22), (3.15), (3.6), (3.21), (4.7) − (4.18) (4.19)

4.2/ SIZING ALGORITHM

The scheduling strategy presented in the previous section requires several input vari-
ables. Some of these variables correspond to the maximum rating or capacity of each
component, which are the results of the sizing algorithm. Other inputs are parameters set
by the user, such as the initial SOC and LOH values, and the penalty coefficients α and
β. The impact of these parameters on results will be discussed in Section 4.3.

4.2.1/ LEADER-FOLLOWER STRUCTURE

The sizing problem aims at finding the optimal size of the PV, BSS, electrolyzer and FC
components to achieve the most cost-effective solution over a given time period. Let
NPV ∈ NPV, Cbat ∈ Cbat, Vmax

H2
∈ VH2 , Pmax

el ∈ Pel, Pmax
f c ∈ Pfc. Set U represent the whole set

of sizing variables, namely, U = NPV ∪ Cbat ∪ VH2 ∪ Pel ∪ Pfc, and U ∈ U.

The problem can be formulated as a leader-follower problem [134]. The leader problem
(the sizing problem) is as follows:

min
U∈U
{F(U)} (4.20)

where F(.) is a function representing the total cost of the system over the simulation
duration.

The follower problem (the scheduling problem), is defined as:

min
U∗,S̃
{Cop} s.t. (3.22), (3.15), (3.6), (3.21), (4.7) − (4.18) (4.21)

where U∗ is the set of sizing values obtained from the leader.

In other words, the leader first returns a candidate set of values for NPV , Cbat, Vmax
H2

, Pmax
el ,

and Pmax
f c . Then the follower uses these values to calculate the total operation cost using

the algorithm described in Section 4.1. Based on this cost information, the leader adjusts
the sizing values until an optimal value that minimizes the overall cost is found.

4.2.2/ LEADER PROBLEM OBJECTIVE FUNCTION

To obtain a valid estimate of the actual cost of the system, operation cost is insufficient as
capital and maintenance costs must also be considered [32, 31, 76]. In order to convert
the initial capital cost to an annual capital cost, the capital recovery factor (CRF) is used
[32]:

CRF =
r(1 + r)ninv

(1 + r)ninv − 1
(4.22)
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where r is the real interest rate and ninv is the expected life span of the microgrid.

The total capital cost corresponds to the cost of buying the equipment, given by:

Ccap = CRF · (NPV ·Cinv
PV + Pmax

f c ·C
inv
f c + Pmax

el ·C
inv
ele + VH2 ·C

inv
tank + Cbat ·Cinv

bat) (4.23)

where Cinv variables represent the costs of the PV, FC, electrolyzer, hydrogen tanks and
battery components.

Similarly, the annual maintenance cost is given by:

Cmnt = NPV ·Cmnt
PV + VH2 ·C

mnt
tank + Cbat ·Cmnt

bat (4.24)

where Cmnt variables represent the annual maintenance costs of the PV, hydrogen tanks
and battery components. As the O&M cost of the FC and the electrolyzer are considered
in the operation strategy equations (4.3) to (4.4), they are not included in the annual cost.

The fitness function of the leader problem is thus the total cost function F(.) given by:

F = Ccap + Cop + Cmnt (4.25)

Finally, the overall sizing problem can be formulated as:

min
U∈U
{Ccap + min

U∗,S̃
{Cop} + Cmnt}

s.t. (3.22), (3.15), (3.6), (3.21), (4.7) − (4.18)
(4.26)

4.2.3/ SIMULATION PROCESS

In order to obtain the optimal sizing for the system, an MILP-based scheduling algorithm
and an EA-based sizing algorithm are combined.

A GA [37, 135] is used to solve the leader problem. GA are based on the natural selec-
tion process similar to biological evolution. Operators such as selection, crossover and
mutation enable generating candidate solutions. The decision variables of the GA are
rounded to the nearest higher value, namely sizing values, and are then used in the MILP
algorithm.

The simulation process is shown in Fig. 4.3

1. A population of N candidate solutions for the GA is randomly initialized.

2. Each of these solutions is then used with the follower problem. The UC MILP op-
timization is run. If the solution is infeasible (namely, the MILP problem can not be
solved), a new candidate solution is generated.

3. The GA fitness function value is then computed to determine the total cost of each
candidate solution.

4. The process continues until any stopping criterion is met. An adaptive method is
selected for this. Firstly, if the fitness function values for two consecutive steps are
the same, then counter Num is incremented. If Num exceeds a given maximum
value, the simulation stops as the fitness function is not improving anymore. The
second criterion is on the number of iterations, for which a maximum number is set.
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Figure 4.3: Optimization process outline.

4.3/ SIMULATION RESULTS

In order to validate the sizing methodology, we run several simulation cases. Different
operation strategies are compared to research about the influence of operation strategies
on the sizing values. Also different initial states (such as SOC, LOH) are deployed in the
operation strategy to evaluate their influence on the sizing results.

4.3.1/ SIMULATION SETUP

Simulations are performed using Matlab R2014a and Gurobi 6.5.1, running on a desktop
computer with an Intel Xeon 3.1 GHz processor, 16 GB RAM, and Microsoft Windows 7.
Input data profiles for solar radiation and load (Fig. 4.4) are obtained and adapted from a
research building (FCLAB) located on the UTBM campus in Belfort, France. In order to
analyze the sensitivity of sizing results to load levels, we use two load profiles. As shown
in Fig. 4.4, load profile 2 is 50% larger than load profile 1. Component parameters used
in the simulations are given in Table 4.1.

In order to keep simulation time to reasonable durations, weekly average data is used
for the input data. The approximate duration for each run is then of approximately 30
minutes. Although resolutions of 1 hour or more could be used, simulation durations
would increase significantly and could not be performed on a regular computer within
reasonable time.
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Figure 4.4: Weekly average solar radiation and load profiles.

4.3.2/ CASES OVERVIEW

To evaluate the impact of initial conditions and parameters, five cases are compared.
Each case assumes different values for S OCini, LOHini

1, α and β, and one of the two load
profiles. Case assumptions are summarized in Table 4.2. Cases 1A and 1B, and Cases
2A and 2B are designed to compare the influence of different initial states for SOC and
LOH on the sizing results. Case 2 is also used to analyze the influence of different load
levels on the sizing of the HSS and the BSS. Case 3 is designed to analyze the influence
of the penalty values (α and β) on sizing results, with values ranging from 101 to 105.
Results are summarized in Table 4.3.

4.3.3/ RESULTS FOR CASE 1

For Case 1A, the sizing results return 52 PV panels, a 6 kW FC, a 7 kW electrolyzer, tanks
with a capacity of 7178 Nm3, and 189 kWh of batteries, for a total cost of e201,970. Here,
unit Nm3 corresponds to the volume under standard conditions (1 bar, 0oC). Based on the
ideal gas law, we can estimate the volume for a higher pressure and temperature. For
example, under 700 bar/15oC, the above volume would amount to 10.82 m3 2. Conver-
gence results of the GA are shown in Fig. 4.5, and indicate that 200 generations seem
sufficient. Similar convergence results are obtained for other cases. Here, it should no-
tice that different runs of GA return different results, unless each run of GA converges to
optimal results. Then, in our case, we run the GA algorithm for several times, and choose
the smallest one. Tab. 4.4 shows the simulation results of GA for case 1A within 5 times
running.

Fig. 4.6 shows the scheduling results. The HSS is more frequently used than the BSS,
as the HSS is cheaper to use when the power gap between PV output and load demand

1Unit is N.m3.
2This calculation is based on the ideal gas law PV = nRT . Actually, we should notice that under high

pressure P, the ideal gas law does not apply well.
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Table 4.1: Component and simulation parameters.

Fuel cell [19, 21, 118, 76]
A 0.03

r f c 2.45 × 10−4

m 2.11 × 10−5

n 0.008
Cinv

f c 4,000 e/kW
Co&m

f c 0.2 e/h
Life cycles 30,000h

Pmin
f c 1kW

Electrolyzer [123, 124, 76]
r1 0.0015
r2 -6.019 × 10−6

s1 2.427
s2 -0.0307
s3 3.9 × 10−4

t1 0.214
t2 -9.87
t3 119.1
f1 150
f2 0.99

Cinv
ele 3,200 e/kW

Co&m
f c 0.2 e/h

Life cycles 30,000h
Pmin

ele 1kW
Battery [76]

Cinv
bat 470 e/kWh

Cmnt
bat 1 e/kW.year

Nbat,cyc 2,000
S OCmin 0.5
S OCmax 0.9

Hydrogen tanks [76]
Cinv

tank 150 e/Nm3

Cmnt
tank 10 e/Nm3.year

Vmin
H2

1Nm3

PV panels[76]
Cinv

PV 7,400 e/kW
Cmnt

PV 6 e/kW.year
CRF [76]

ninv 20 years
r 0.05

is large. Fig. 4.7 shows the change in hydrogen level in the tanks. As in winter the PV
output is insufficient, the HSS discharges mostly to supply the load, but in summer, PV
output is large enough to enable the HSS to recharge and store hydrogen. Due to the
large penalty values (105) for LS and PVC, these two options are almost not used.

Fig. 4.7 also shows the SOC profile of the BSS, that is used as an auxiliary storage system
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Table 4.2: Simulation cases assumptions.

Cases 1A 1B 2A 2B 3
S OCini 0.5 0.9 0.5 0.9 0.5
LOHini 5000 3000 8000 7000 5000
α 105 105 105 105 103

β 105 105 105 105 103

Load profile 1 1 2 2 1

Table 4.3: Sizing results.

Case Load S OCi LOHi Total Cost [e] Cop [e] Ccap [e] NPV Pmax
f c [kW] Pmax

el [kW] VH2 [N.m3] Cbat [kWh]

1A 1 0.5 5000 201970 1697.8 127980 52 6 7 7178 189
1B 1 0.9 3000 160070 1663.2 105070 52 6 7 5283 179
2A 2 0.5 8000 219410 1725.1 137210 50 11 6 8000 158
2B 2 0.9 7000 200290 1674.5 128090 54 10 7 7000 190
3 1 0.5 5000 205160 4562.2 125120 52 7 7 7515 2

RBS 1 0.5 5000 276560 151.9 174640 57 7 8 10100 407

Table 4.4: 5 times running of GA for case 1A.

Objective function NPV Pmax
f c [kW] Pmax

el [kW] VH2 [N.m3] Cbat [kWh]

214,290 52 9 14 7598 203
218,850 51 11 9 7578 373
206,950 51 14 7 7234 244
201,970 52 6 7 7178 189
232,940 54 20 22 7970 293

to ensure the balance between generation and demand, while avoiding load shedding and
PV curtailment.

For Case 1B, the initial SOC is larger and the initial LOH lower. The capacity of the
hydrogen tank decreases to 5283 Nm3, while the battery capacity decreases to 179 kWh.
Consequently, the total cost also decreases to e160,070C. The scheduling results for
Case 1B are similar to the ones obtained for Case 1A, and are thus not shown. Fig. 4.8
shows the LOH and SOC levels. As the initial SOC is larger than for 1A, the total required
capacity is lower. For the LOH, the profile is almost the same as in Case 1A. For the
SOC, in Case 1A, the initial state is the minimum SOC, so the BSS cannot discharge at
the beginning, but for Case 1B, the initial state is the maximum SOC and the BSS can
then discharge.

4.3.4/ RESULTS FOR CASE 2

For Cases 2A and 2B, the second load profile with a 50% higher demand is used. For
Case 2A, the sizing results return 50 PV panels, a 11 kW FC, a 6 kW electrolyzer, tanks
with a capacity of 8000 Nm3, and 158 kWh of batteries, for a total cost of e219,410.
Fig. 4.9 shows the scheduling results, and Fig. 4.10 the LOH and SOC profiles. The
HSS is sufficient to provide energy to the load, especially at the beginning, so the needed
battery capacity is lower. However, in Case 2B, the HSS is insufficient to meet the load,
so more PV panels and battery energy are needed. We can also see that the rating of
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Figure 4.5: GA searching results for Case 1A.

Figure 4.6: Scheduling results for Case 1A. The curve labelled “Power” corresponds to
the PV output minus the load.

the FC is larger than in Case 1. As more energy is needed, it becomes cheaper to use
the FC than the battery, hence the higher FC rating.

For Case 2B, the sizing results return 54 PV panels, a 10 kW FC, a 7 kW electrolyzer,
tanks with a capacity of 7000 Nm3, and 190 kWh of batteries, for a total cost of e200,290.
As the load is higher than that of Case 1, more storage, in the form of BSS and HSS is
needed. As the cost of the energy initially contained in the storage units is not accounted
for, the algorithm increases the size of the storage units rather than increasing the number
of PV panels. The obtained scheduling results are close to the ones shown in Fig. 4.9.
Fig. 4.11 shows the LOH and SOC profiles. Due to slight differences in the scheduling
results, the SOC curve is difference from the one in Case 2A. However, the curves for
LOH is similar, as the HSS operates as a longer term storage unit.
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Figure 4.7: LOH and SOC for Case 1A.

Figure 4.8: LOH and SOC for Case 1B.

4.3.5/ RESULTS FOR CASE 3

In this case, as the penalty values are lower (103 instead of 105), more energy is shed or
curtailed. As a consequence, the sizing results return 52 PV panels, a 7 kW FC, a 7 kW
electrolyzer, tanks with a capacity of 7515 Nm3, and 2 kWh of batteries, for a total cost of
e205,160. Detailed LS, PVC, LOH and SOC profiles are shown in Fig. 4.15.

The size of the battery is significantly smaller than in other cases. This can be explained
by the lower values of the penalties for LS and PVC, which make these two options more
competitive compared to using the BSS. In order to futher evaluate the influence of the
different penalty values, we simulate different combinations of α and β with Case 1A. The
results are shown in Table4.5 and Figs. 4.12 and 4.13, and indicate that the smaller the
values of α and β, the larger the magnitude of LS and PVC, respectively.
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Figure 4.9: Scheduling results for Case 2A. The curve labelled “Power” corresponds to
the PV output minus the load.

Figure 4.10: LOH and SOC for Case 2A.

Scheduling results are shown in Fig. 4.14, where we observe that limited LS and PVC oc-
cur, although for Cases 1 and 2 the BSS was used to supply the load (due to its cheaper
cost). As expected, the algorithm chooses the most economical way to operate the sys-
tem.

4.3.6/ DISCUSSION OF CASES 1 TO 3

From the summary of results shown in Table 4.3, it can be observed that the sizing
results and the total cost are impacted by the use of different input data and initial states.
A comparison of the breakdown of costs for all cases is shown in Fig. 4.16. Results
indicate that the capital costs are the highest, while O&M costs remain relatively small.
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Figure 4.11: LOH and SOC for Case 2B.

Figure 4.12: Load shedding vs. α & β.

As the only primary energy source is PV, these results are not surprising. The initial
energy contained in the BSS and the HSS is however not considered. Case 3 has the
largest O&M cost, due to the penalty values combined to LS and PVC. For Case 2A,
more fuel cell and hydrogen tanks are needed, which results in the largest capital and
total cost.

Simulations also show that the HSS is more appropriate for long term (seasonal) storage,
as expected. This is especially valid as FC and electrolyzers have limited dynamics, and
require BSS or other fast dynamics storage units to complement them and act as an
auxiliary unit. On the other hand, because the discharge and charge power of the HSS
are separate, the degradation of the HSS will be slower than for the BSS.

Regarding LS and PVC penalty values, results have shown that values in the range of
value [103, 105] are reasonable and enable limiting the use of LS and PVC only to neces-
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Figure 4.13: Curtailed power vs. α & β.

Table 4.5: Sizing results with different penalty values for Case 1A.

Case 3
∑Thor

t=1 PLS (t) [kW]
∑Thor

t=1 Pcurt(t) [kW] NPV Pmax
f c [kW] Pmax

el [kW] VH2 [N.m3] Cbat [kWh]

α = 105, β = 103 0 4.4576 51 7 7 6823 58
α = 105, β = 101 0 84.8847 50 7 1 5026 2
α = 104, β = 101 0 84.7377 50 7 2 5543 2
α = 104, β = 103 0.0839 2.4054 55 7 8 8341 2
α = 104, β = 104 0.0352 0 52 6 7 7601 170
α = 104, β = 105 0.1297 0 59 7 8 11123 113
α = 103, β = 101 0 84.1643 50 7 2 7015 2
α = 103, β = 103 2.209 0.7691 52 7 7 7515 2
α = 103, β = 104 3.0844 0 52 7 8 10978 11
α = 103, β = 105 1.9553 0 54 7 8 8315 38
α = 101, β = 101 57.3662 89.4729 50 2 2 5793 2
α = 101, β = 103 60.5996 0 50 2 7 9110 1
α = 101, β = 104 60.3302 0 50 2 7 9023 2
α = 101, β = 105 60.5804 0 50 2 7 9157 2

sary cases. Values larger than 105 result in no LS or PVC at all, which can be problematic
are they can be seen as flexibility means of last resort.

4.3.7/ COMPARISON WITH A RULE-BASED OPERATION STRATEGY

In order to compare the obtained results with a simpler, reference case, we implement a
rule-based operation strategy (RBS) [22, 136]. The outline of the algorithm is shown in
Fig. 4.17. The principle is to use the HSS first, and if it is unavailable, to use the BSS. It
should be noted that the algorithm does not try to maintain the SOC or LOH level for future
use, contrary to the proposed algorithm. Case 1A is run again with the RBS. Results, also
given in Table 4.3, show that because using HSS is cheaper, the operation cost is low,
but then more BSS capacity is required to ensure power balance. As a consequence, the
total capital cost is the largest of all cases.
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Figure 4.14: Scheduling results for Case 3. The curve labelled “Power” corresponds to
the PV output minus the load.

Figure 4.15: Shed and curtailed power, LOH and SOC profiles for Case 3.

4.3.8/ INFLUENCE OF TIME RESOLUTION

In the above simulation, one-week average data is used. A better time resolution (for
example, one day or one hour) may provide more accurate results; however, this would
also significantly increase computation time to several days or more. In order to check the
validity of the obtained results with more precise input data, a rolling-horizon scheduling
simulation with a 1-hour time resolution is conducted. This resolution is selected as it is
the maximum resolution available for the input data. In summary, the algorithm runs a
scheduling task with 1-hour data over 1 day, and repeats this every day for a year.

Results are shown in Figs. 4.18 (SOC, LOH, LS and PVC) and 4.19 (scheduling results
from 2000 hour to 2300 hour). From these curves, it can be observed that large LS and
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Figure 4.16: Comparison of costs for all cases.

Figure 4.17: Rule-based strategy algorithm.

PVC occur during some periods of the year. As LS and PVC use are supposed to remain
rare, this means that the sizing results are insufficient. A reason for this result is that the
average data reflects the average load in the system, but does not consider peak load
situations. A similar reasoning may be used for PV generation.

In order to adjust sizing results, the difference between PV output and load demand is
computed and shown in Fig. 4.20. Then we adopt the maximum shortage value (i.e., the
minimum value in Fig. 4.20) as the capacity of the fuel cell, and the maximum surplus
value (i.e., the maximum value in Fig. 4.20) as the capacity of the electrolyzer. The sizing
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value of the HSS is adjusted, so that Pmax
f c = 13, Pmax

ele = 37.

After this adjustment, the rolling-horizon simulation is run again. Fig. 4.21 shows the
resulting SOC, LOH, LS and PVC, and Fig. 4.22 shows the scheduling results from 2000
hour to 2300 hour with the new sizing values. After adjusting the sizing value based on
the peak load demand, no LS or PVC occur. With the adjusted sizing values, we run MILP
scheduling for Case 1A, and total cost is e212,160, the operation cost Cop is e1,788.7,
and the capital cost Ccap is e138,080.

Figure 4.18: One-hour one-day rolling horizon scheduling simulation.

Figure 4.19: One-hour one-day rolling horizon scheduling simulation (2000 h-2300 h).
The curve labelled “Power” corresponds to the PV output minus the load.
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Figure 4.20: PV output minus load demand.

Figure 4.21: One-hour one-day rolling horizon scheduling simulation with the new sizing
value of HSS.

4.3.9/ INFLUENCE OF UNCERTAINTY

As discussed earlier, uncertainty on forecasts of PV output and load can impact sizing
results. To account for this uncertainty, the upper bound and lower bounds of estimated
values are used. In the following, ˜PPV (t) and ˜Pload(t) are the actual PV output and load
values, and ErPV and Erload the error on PV output and load, respectively. The lower
and upper bounds are then obtained with ˜PPV (t) = PPV (t) ± PPV (t) · ErPV and ˜Pload(t) =

Pload(t) ± Pload(t) · Erload.

Two cases are defined. The worst case (the case where the difference between PV output
and load is the largest) is when PV output is equal to the upper bound value, and load
is equal to the lower bound value; or when PV output is equal to the lower bound value,
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Figure 4.22: One-hour one-day rolling horizon scheduling simulation with the new sizing
value of HSS (2000 h-2300 h). The curve labelled “Power” corresponds to the PV output
minus the load.

load is equal to the upper bound value. For the best case (the case where the difference
between PV output and load is the lowest), the opposite is used.

Values for ˜PPV (t) minus ˜Pload(t) are shown in Fig. 4.23. If the sizing results can satisfy
the worst and best cases, then other cases can also be satisfied by the obtained sizing
results. This means that the worst and best case data must be used to run the co-
optimization method and obtain the sizing results. Table 4.6 shows the sizing results
when ErPV = Erload = 0.1. For the worst-case, the HSS is used frequently because it is
cheaper than the BSS. For the best case, the BSS is used frequently due to limitations of
the HSS (minimum startup power), so more BSS capacity is needed.

Figure 4.23: Difference between PV output and load demand in 4 cases.
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Table 4.6: Sizing results considering uncertainty. The worst case is defined as the case
where the difference between PV output and load is the largest, and the lowest for the
best case.

Case Total Cost [e] Cop [e] Ccap [e] NPV Pmax
f c [kW] Pmax

el [kW] VH2 [N.m3] Cbat [kWh]

Worst case 279270 1761.7 166960 50 8 8 11022 11
Best case 174400 1617.2 113450 50 6 6 5875 269

4.4/ CONCLUSION

In this chapter, we presented a methodology to determine the optimal sizing for a stand-
alone microgrid. This methodology combines an EA for sizing and MILP for scheduling,
and enables considering advanced energy management strategies, capable of antici-
pating decisions (especially with respect to storage), compared to classical rule-based
approaches. Results showed that the operation strategy, initial conditions, time resolution
as well as uncertainty on input data influence the sizing of the components, and conse-
quently the total cost of the microgrid. A comparison with a rule-based operation strategy
was run, and sizing results show that co-optimization method performs better. A rolling-
horizon simulation was used to adjust the sizing values due to the influence of input data
time resolution. At last, forecasting errors are taken into account using a robust method,
to further adjust sizing results. With the proposed method and complements, the pro-
posed method can therefore be used for economically sizing a microgrid containing PV
panels, a BSS and an HSS.

For the co-optimization sizing method, the main limitation is the run time when the time
resolution of forecasted load profiles is increasing. For example, when the time resolution
increases from one week to one hour, then the time horizon of the operation optimization
increases from 52 to 8760 3. It will take much time to solve this large optimization problem.

3In our sizing problem, the time range is one year, so there are 52 weeks, 365 days, 8760 hours.





5
SIZING OF MULTI-ENERGY-SUPPLY

ISLANDED MICROGRIDS

This chapter is based on the author’s published paper: Li Bei, Robin Roche, Damien
Paire, and Abdellatif Miraoui. “Sizing of a stand-alone microgrid considering electric
power, cooling/heating, hydrogen loads and hydrogen storage degradation.” Applied En-
ergy 205 (2017): 1244-1259.

In the previous chapter, a full electric MG was sized. However, there are not only elec-
tricity demands, but also several other types of energy in the same time step. In this

chapter, we consider microgrids with multiple energies, including electric, thermal and
hydrogen loads (Fig. 5.1).

Combined heat and power (CHP) plants are typically efficient and economical, and have
applications in the residential and industrial sectors, especially when multiple energies are
considered [137, 23, 138]. Similarly, fuel cells are a promising technology for efficient and
sustainable energy conversion [24], and are expected to play an important role in future
distributed energy generation [6]. Fuel cells are thus considered for a CHP plant. A fuel
cell can operate as the main MG power plant to serve the electric and heat load demand
of the whole system. Electric loads are powered by PV panels, a fuel cell, and a battery
system; heating loads are heated by a solar heating system, a heat boiler, heat from the
fuel cell, and a heat storage system; cooling loads are cooled by an air conditioner and an
absorption heat chiller. In order to balance the intermittent and varying PV output, a HSS
and a battery are used. The fuel cell, the electrolyzer and the hydrogen tanks operate
as a long-term storage system, which has several advantages, such as a high storage
capacity, and a high energy per unit of volume [5]. The battery system is used as a short-
term storage and is inappropriate for long-term storage, due to its low energy density
and nonnegligible self-discharge rate [7]. Similarly, heat storage is used to balance heat
power (heat from the fuel cell, and intermittent heat from the solar heating system).

A multiple-energy system is a key aspect to evolve toward a cleaner and affordable energy
supply system [139] and to improve power system resilience [140]. But how to decide the
capacity of each component in this complex system with a given load profile remains a
challenge. For example, if the components are oversized, capital and operation costs will
be higher, while if the components are undersized, generation curtailment or load shed-
ding may occur. This means that the sizing results are affected not only by the architecture
of the system, but also by the operation strategy [129]. Depending on how components
are used, the necessary capacity may vary greatly, which in turn impacts sizing results.
On the other hand, input data (load demand, PV output) forecasting errors also influence

63
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Figure 5.1: Multi-energy supply microgrid structure.

how components are used. This means that forecasting errors must be considered. At
last, due to the fact that the fuel cell and the electrolyzer are used as a storage system, as
operation time goes, the performance of the fuel cell and the electrolyzer can be expected
to decrease, so this degradation process must also be considered [120, 121].

In this chapter, we decompose the sizing problem into a leader-follower problem. The
follower problem, namely, the energy management strategy, is formulated as a unit com-
mitment problem, in the form of a mixed integer problem. We use linear programming to
obtain the optimal operation strategy. The leader problem, namely, the sizing problem,
uses an evolutionary algorithm to search for the best sizing values [32].

The rest of this chapter is structured as follows. Section 5.1 describes the UC strategy
and Section 5.2 the EA-based sizing problem formulation. Finally, Section 5.3 presents
the simulation results while Section 5.4 concludes the chapter.

5.1/ OPERATION STRATEGY FOR MULTI-ENEGY-SUPPLY MICRO-
GRID

In this chapter, the operation of MES MG is formulated as an MILP problem. MILP op-
timization is based on current and future predicted information to optimize the operating
points of each component while minimizing a cost function. In this case, the predicted
information corresponds to solar radiation and loads, and the cost function is the total
cost (including capital cost, maintenance cost and operation cost).

5.1.1/ COST FUNCTION

In order to minimize the operation cost, the utilization costs of different components need
to be assessed. For the battery storage system (BSS), the utilization cost of charge and
discharge are introduced as follows [130]:

Bch,dis
cost (t) =

Cinv
ba

2 · Ncycles
· (Pch(t)ηch + Pdis(t)ηdis) (5.1)
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where Cinv
ba is the investment cost of the battery, and Ncycles is the number of cycles over

the lifetime.

The hydrogen storage system (HSS) combines an electrolyzer, a fuel cell and hydrogen
tanks. The utilization cost can be computed as follows [130]:

Hele
cost(t) =

 Cinv
ele

Nele
hours

+ Co&m
ele

 · δele(t) + Cstartup
ele · ∆δele(t) (5.2)

H f c
cost(t) =

 Cinv
f c

N f c
hours

+ Co&m
f c

 · δ f c(t) + Cstartup
f c · ∆δ f c(t) (5.3)

where Cinv
ele ,C

inv
f c are the investment costs of the electrolyzer and the fuel cell, Co&m

ele and
Co&m

f c the operation and maintenance costs, and Cstartup
ele and Cstartup

f c the startup costs.
Variables δele(t) and δ f c(t) are the state of the electrolyzer and the fuel cell. When a unit is
on, δi(t) = 1, i = {ele, f c}, otherwise it is set to 0. Equation ∆δi(t) = max{δi(t)−δi(t−1), 0}, i =

{ele, f c} represents whether the unit started or not.

The heat boiler (HB), air conditioner (AC) and absorption heat chiller (AHC) operation
costs are given by [141]:

HBcost(t) =
Cinv

hb

Nhb
li f e

· Phb(t) (5.4)

ACcost(t) =
Cinv

ac

Nac
li f e
· Pac(t) (5.5)

AHCcost(t) =
Cinv

ahc

Nahc
li f e

· Pahc(t) (5.6)

For the heat storage (HS) system, the operation cost is:

HS cost(t) =
Cinv

hs

Nhs
li f e

· (Qch
hs(t) + Qdis

hs (t)) (5.7)

5.1.2/ OPERATION COST FUNCTION

The optimization tries to minimize the overall operation costs over a given horizon of T
time steps. The total cost function is then as follows:

Cop =

T∑
t=1

{Bch,dis
cost (t) + Hele

cost(t) + H f c
cost(t) + a1 · HBcost(t)+

a2 · ACcost(t) + AHCcost(t) + HS cost(t)

+ α · (LS cooling(t) + LS heat(t) + LS power(t)

+ β · (cutPV (t) + cutsolar(t))}

(5.8)

where LS m(t) with m = {cooling, heat, power} are the shed cooling, heat and power loads,
and cutn(t) with n = {PV, solar} are the curtailed PV power and solar heating. α and
β are penalty values for load shedding and curtailed power. When there is excess PV
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generation, there are four solutions to handle the resulting surplus: using the electrolyzer
to store hydrogen, charging the battery, using the heat boiler to store heat, and using
the air conditioner to supply cooling demands. The priorities are set as follows: first
the electrolyzer, second the battery, then the heat boiler and at last, the air conditioner.
Parameters a1 and a2 are used to adjust the priorities.

5.1.3/ CONSTRAINTS

The stand-alone microgrid is subject to the following constraints, with i = {el, f c} and
j = {el, f c, bach, badis, hb, ac, ahc, hsch, hsdis}, Z j(t) = δ j(t)P j(t). Variables γ

j
1 and γ

j
2 are

constant real values used to set the minimum and maximum power range of each com-
ponent:

γ
j
1Pmax

j ≤ P j(t) ≤ γ
j
2Pmax

j (5.9)

δ j(t) · γ
j
1Pmax

j ≤ Z j(t) ≤ δ j(t) · γ
j
2Pmax

j (5.10)

Z j(t) ≤ P j(t) − (1 − δ j(t)) · γ
j
1Pmax

j

Z j(t) ≥ P j(t) − (1 − δ j(t)) · γ
j
2Pmax

j

(5.11)

δele(t) + δ f c(t) ≤ 1

δbach(t) + δbadis(t) ≤ 1

δhsch(t) + δhsdis(t) ≤ 1

(5.12)

Equation (5.12) means that the fuel cell and the electrolyzer cannot start up at the same
time. The BSS and heat storage system also cannot charge and discharge at the same
time.

∆δi(t) = max{δi(t) − δi(t − 1), 0} can be expressed as ∆δi(t) = δi(t) · (1 − δi(t − 1)).

Then, using [133], the above nonlinear equations system can be transformed into the
following linear constraints:

− δi(t) + ∆δi(t) ≤ 0

− (1 − δi(t − 1)) + ∆δi(t) ≤ 0

δi(t) + (1 − δi(t − 1)) − ∆δi(t) ≤ 1

(5.13)

In order to limit the startup/shutdown times of the fuel cell and the electrolyzer, the follow-
ing constraints are added: when a fuel cell or electrolyzer starts up, it continues to run for
at least krun time steps:

Indi(t) = δi(t) − δi(t − 1)

δi(t : t + krun) ≥ Indi(t)
(5.14)

The power balance equation is written as:

PV(t) − cutPV (t) − (Lpower(t) − LS power(t)) = Zele(t)

− Z f c(t) + Zbach(t) − Zbadis(t) + Zac(t) + Zhb(t)
(5.15)
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Similarly, for the heat and cooling balance equations:

Qsh(t) − cutsolar(t) − (Lheat(t) − LS heat(t)) + Q f c(t)

+ Qhb(t) = Qhsch(t) − Qhsdis(t) + Qahc(t)
(5.16)

Cac(t) + Cahc(t) = Lcooling(t) − LS cooling(t) (5.17)

Finally, for the SOC, LOH and HS constraints:

S OCmin ≤ S OC(t) ≤ S OCmax

LOHmin ≤ LOH(t) ≤ LOHmax

HS min ≤ HS (t) ≤ HS max

(5.18)

In summary, for the UC control strategy, the problem can be formulated as:

min
S̃
{Cop}

s.t. (3.10), (3.11), (3.19), (3.20), (3.21), (3.22), (3.23), (5.9) − (5.18)
(5.19)

where S̃ is the set of variables.

5.2/ SIZING METHODOLOGY

Based on the above section, we can describe the power flow in the microgrid sys-
tem. Our goal is to compute the optimal size value of each component, namely,
NPV ,Nsh,CB, Pmax

f c , Pmax
el ,Vmax

H2
, Pmax

hb , Pmax
ac ,Qmax

ahc , HS max. Let set U represent these sizing
variables. Then the sizing problem is minF(U), with F(.) the total cost function introduced
in the following.

In this paper, we use the co-optimization method with an EA [37] to solve the sizing
problem, and then MILP to solve the operation problem. The simulation process is shown
in Fig. 5.2:

1. First, N candidate solutions are generated for the GA.

2. Each of these solutions is then used with the operation problem. The UC MILP
optimization is run to solve problem (5.19). As a one year (8760 hours) MILP op-
timization would require a large simulation time, we adopt a method based on 12
peak demand days. Each of the 12 days is calculated with the MILP optimization. If
no solution is feasible, then a new candidate solution is generated.

3. The GA fitness function value is then computed to determine the total cost of each
candidate solution, by calculating (5.22).

4. The process continues until any stopping criterion is met. Here, an adaptive method
is selected. Firstly, if the fitness function values for two consecutive steps are the
same, then counter Num is incremented. If Num exceeds a given maximum value
(here Nummax = 30), the simulation stops as the fitness function is not improving
anymore. The second criterion is on the number of iterations, for which a maximum
number (here Genmax = 100) is set.
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Figure 5.2: Optimization process outline.

The total capital cost corresponds to the cost of buying the equipment, and is given by:

Ccap = CRF · (NPV ·Cinv
PV + Nsh ·Cinv

sh + Pmax
f c ·C

inv
f c

+ Pmax
el ·C

inv
ele + VH2 ·C

inv
tank + Cbat ·Cinv

bat

+ Pmax
hb ·C

inv
hb + Pmax

ac ·C
inv
ac + Pmax

ahc ·C
inv
ahc

+ HS max ·Cinv
hs )

(5.20)

where Cinv variables represent the prices of each component. CRF =
r(1+r)ninv

(1+r)ninv−1 is the
capital recovery factor (CRF) [32], r is the real interest rate and ninv is the expected life
span of the microgrid.

Similarly, the annual maintenance cost is given by:

Cmnt = NPV ·Cmnt
PV + VH2 ·C

mnt
tank + Cbat ·Cmnt

bat (5.21)

where Cmnt variables represent the annual maintenance costs of the PV, hydrogen tanks
and battery components. As the O&M cost of the FC and the electrolyzer are considered
in the operation strategy equations (5.2) to (5.3), they are not included in the annual cost.
The maintenance cost of the heat boiler, the air conditioner, the absorbtion heat chiller,
and the heat storage are neglected.

The total cost function F(.) is thus:

F = Ccap + Cop + Cmnt (5.22)

Finally, the overall problem can be formulated as:

min
U∈U
{Ccap + min

U∗,S̃
{Cop} + Cmnt}

s.t. (3.10), (3.11), (3.19), (3.20), (3.21), (3.22), (3.23), (5.9) − (5.18)
(5.23)
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5.3/ SIMULATION RESULTS

5.3.1/ SYSTEM SETUP

In order to research about the influence of different operation strategies, we set up three
different strategies, shown in Table 5.1. Strategies S1 and S3 are used to compare the
influence of minimum startup power of the fuel cell, the electrolyzer and the heat boiler on
the sizing results. Strategies S2 and S3 are used to compare different operation durations
of the fuel cell and the electrolyzer on the sizing results.

Table 5.1: Three different operation strategies.

Strategy γ
{ f c,ele}
1 γ

{ f c,ele}
2 krun[h]

S1 0.1 1 3
S2 0.5 1 5
S3 0.5 1 3

The other main operation parameters are shown in Table 5.2, where ”hb” means heat
boiler, ”ac” means air conditioner, ”ahc” means absorbtion heat chiller, ”hy” means hydro-
gen tanks, and ”hs” means heat storage system.

Table 5.2: Simulation parameters.

Components γ1 γ2

hb 0 1
ac 0.1 0.9
ahc 0 0.9
Components min max
battery S OCmin = 0.5 S OCmax = 0.9
hy LOHmin = 1N.m3 –
hs HS min = 0 –

We also set α = β = 1010. The initial state of hydrogen in tanks is LOHini = 106 N.m3. This
large value is chosen in order to make sure there is enough hydrogen to run the fuel cell,
and will be adjusted in the following. The initial state of the heat storage is HS ini = 3 · 103

kWh. The cost parameters are taken from [142, 128, 76]. The degradation parameters
are calculated based on [120, 121, 125, 9] and are shown in Table 5.3.

Table 5.3: Degradation parameters.

kvd[V/h] k f cm[kW/d] kvi[V/h] kelem[kW/d]
3.736 · 10−6 0.002582 3 · 10−5 0.004933

Load demand data (for cooling, heat, electric power and hydrogen) and solar radiation are
obtainted from a research building, located in Belfort, France. The 1-h one year profiles
of load demands and solar radiation are shown in Figs. 5.3 and 5.4. In order to make the
figures readable, the corresponding one day average profiles are shown in Figs. 5.5 and
5.6. Hydrogen is used to run fuel cell research experiments. As no direct data is available,
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heating and cooling loads are calculated based on temperature 1. In order to avoid long
simulation times, we adopt 12 days with one hour data as the input profiles. These days
correspond to the electricity load demand peak day, the heating load demand peak day,
and the cooling load demand peak day for each season. Then, the sizing results are
verified based on a 1-hour rolling horizon simulation, and are adjusted if necessary.

Figure 5.3: Cooling/heat/electricity/hydrogen demand (1 hour).

5.3.2/ GA-BASED SIZING RESULTS

The optimal size values shown in Table 5.4 are obtained. Here ∆VH2 = max{∆Vrd
H2
}, rd =

{1, ..., 12}, where rd represents the 12 days, and ∆Vrd
H2

= Vrd
max − Vrd

min represents the hydro-
gen volume change in tanks in the rdth day. Similarly, ∆HS = max{∆HS rd}, rd = {1, ..., 12},
rd represents the 12 days, and ∆HS rd = HS rd

max−HS rd
min represents the heat power change

in the heat storage system in the rdth day. The hydrogen energy can be expressed in an-
other way: for S1, the hydrogen volume can operate the fuel cell at 100 kW for 24.9 hours;
for S2, the duration changes to 28.5 hours; and for S3, to 44.6 hours.

Table 5.4: Sizing results.

Strategy NPV Pmax
f c [kW] Pmax

el [kW] ∆VH2 [N.m3] Cbat [kWh] Nsh [m2] Pmax
hb ∆HS [kWh] Pmax

ac Qmax
ahc

S1 121 272 396 1065 383 45 346 3000 117 1207
S2 206 114 584 1220 659 36 123 3000 129 3815
S3 327 131 690 1903 735 43 283 3000 159 686

1The following process is used: 1) Obtain the heating demand and average temperature in each 12 month;
2) Calculate the relationship between heat and temperature, i.e., determine heat=f(temperature); 3) Obtain
the 1-hour 1-year temperature data, and then based on 2), calculate the 1-hour 1-year heating demand.
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Figure 5.4: Solar radiation (1 hour).

Figure 5.5: Cooling/heat/electricity/hydrogen demand (one day average).

The cost results are shown in Table 5.5. Here, C∗total and C∗op represent real cost of the
system, namely, C∗op =

∑12
day=1

∑T
t=1{B

ch,dis
cost (t) + Hele

cost(t) + H f c
cost(t) + α · (LS cooling(t) + LS heat(t) +

LS power(t))+β·(cutPV (t)+cutsolar(t))} (operation cost of heat boiler, air conditioner, absorption
heat chiller and heat storage are not considered), C∗total = Ccap + C∗op + Cmnt.

It can be observed that with different operation strategies, the sizing value of each com-
ponent is different. In strategy S2, the minimum start power of the fuel cell and the
electrolyzer is set to be 50% of their maximum power, and the minimum run time of the
fuel cell and the electrolyzer is 5 hours. These constraints are strict and must be satisfied
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Figure 5.6: Solar radiation (one day average).

Table 5.5: Cost results.

Strategy C∗total [e] Ccap [e] C∗op [e]
S1 4.0683e+05 3.6766e+05 3.9171e+04
S2 9.6424e+05 4.7911e+05 4.8513e+05
S3 1.2729e+06 5.3004e+05 7.4290e+05

in the optimization process, leading to a smaller fuel cell, a larger PV and a larger elec-
trolyzer. In strategies S2 and S3, larger PV, electrolyzer, hydrogen tanks and battery are
needed, leading to larger capital costs.

Comparing these three operation strategies, we find that if the operation conditions of
the HSS are limited (in order to reduce its degradation), the capital cost of the related
auxiliary system increases, and the lifetime of the HSS also increases. On the contrary,
if the limitations on operation conditions of the HSS are not strict, which means that the
HSS can operate in most conditions, the related auxiliary system is smaller, but the life
time of HSS also decreases.

Based on the above sizing value, the scheduling results are obtained by running the MILP
algorithm. The MILP scheduling is run for one day (electricity peak load demand day in
summer) with strategy S2. Scheduling results are shown in Fig. 5.7, which shows the
electric power schedule. During the day, a large surplus PV output can be observed.
This may show that the number of PV panels is too large (a smaller value may be more
appropriate), but as our simulation is based on 12 days, this means that simulation results
must be satisfied for all 12 days, so the number of PV panels is chosen from the global
view. We observe that the HSS is the main storage system (the fuel cell outputs power at
night and the electrolyzer consumes the most power in the day time), with slow variations
in output, while the BSS serves as an auxiliary storage system, with shorter and more
dynamic charge and discharge periods. The heat boiler and the air conditioner also
operate to transfer electricity to heating and cooling power. The fuel cell generates more
electricity than the electric load demand, in order to supply the heating and cooling loads.

Fig. 5.8 shows the heating power schedule. During the night, the fuel cell heating and the
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heat storage system supply most of the heating load demand, and the absorption heat
chiller uses heat to serve the cooling load. During the day, the surplus heating power is
stored in the heat storage system and is transferred to cooling load using the AHC. The
heat boiler uses electricity to heat water, which can be stored or used in the absorption
heat chiller. The fuel cell also generates heat water which can be transferred to rooms
through pumps. Similarly, Fig. 5.9 shows the cooling power schedule. The absorption
heat chiller and the air conditioner supply all the cooling load.

From the scheduling results, we can see that when there is no PV power output and solar
heat output (at night), the fuel cell provides energy for the whole system. It provides
electricity to the electric load demand, to the air conditioner to serve the cooling load,
and collects heat power to serve the heat load. The heat storage tank provides heating
power to the heat load. When there is surplus energy from the PV panels and the solar
heating system (during the day), the electrolyzer is used as the main source to consume
electricity by producing hydrogen. The heat boiler is also used to consume electricity by
producing heat stored in heat tanks.

Regarding storage, Fig. 5.10 shows the change in LOH and stored heat, and Fig. 5.11
the change of SOC. It shows that when there is no PV output, the fuel cell produces power
to supply the electric load, and the heat storage tanks provide heat to the heat demand.
When there is enough PV output, surplus PV power output and solar heat output are
stored in hydrogen tanks and heat tanks, respectively.

Figure 5.7: Strategy S2, electric power schedule (Power means PV outputs minus elec-
tricity load demand; charge/discharge curves are for the battery).

5.3.3/ 1-HOUR ROLLING HORIZON SIMULATION

In order to verify the optimal sizing results, a 1-hour rolling horizon simulation is run.
This simulation repeats the 1-hour one day UC scheduling for 365 days. Strategy S2 is
adopted. We only use 12 days as the input data to obtain the optimal sizing results. In the
rolling horizon simulation, the optimization window moves from the current day to the next
day, and then repeats until the last day. So the state of the hydrogen tanks and the heat
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Figure 5.8: Strategy S2, heating power schedule (Power means solar outputs minus heat
load demand; charge/discharge curves are for the heat storage system).

Figure 5.9: Strategy S2, cooling power schedule.

storage system are based on the previous simulation results. To determine the volume
of the hydrogen tanks and the heat storage system, we adjust the initial value to a large
value. With this new value, the rolling horizon simulation is run, and the results are shown
in Fig. 5.12. From Fig. 5.12, we can see that load shedding and curtailed power occur,
which means that these sizing values must be adjusted. Firstly, we adjust the sizing value
of the heat boiler to be 123 + 209 = 332 kW, as from Table 5.4, in the second row, we
know that the sizing value of the heat boiler is 123 kW, and from Fig. 5.12, we know
that the maximum heating shedding power is 209 kW. This means that the curtailed PV
power and more fuel cell output power can be transferred to heat. Then, we adjust the
fuel cell capacity to satisfy the heat boiler demand: 114 + 209/0.9 = 347 kW, as from Table
5.4, in the second row, we know that the sizing value of the fuel cell is 114 kW, and the
efficiency of the heat boiler is 0.9. With these new sizing values, the 1-hour rolling horizon
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Figure 5.10: LOH and stored heat.

Figure 5.11: LOH and SOC.

simulation results are shown in Figs. 5.13, 5.14, 5.15, and 5.16. We can then calculate
the volume of hydrogen tanks: max(LOH) − min(LOH) = 141, 270 N.m3 2. If we do not
consider the degradation of the fuel cell, these large amounts of hydrogen can serve a
fuel cell operating at 200 kW for 1,750 hours 3. For the heat storage system, we obtain
max(ht)−min(ht) = 4, 968 kWh. After this adjustment, the capital cost of the whole system
is 2.2616e+06 e. The large volume of the hydrogen tanks leads to this large capital cost.

2Under high pressure 700bar/15oC, this volume is about 212.85 m3 ≈ 12.19m×5.96m×2.93m(length×width×
height), with a weight of 3,150 kg.

3This is 350,000 kWh= 350 MWh energy. Here, we can compare with the lithium-ion battery storage
systems. A 1 MWh lithium-ion battery can be installed in a 40-foot shipping container, and weighs 35,000 kg
[143]. A 40-foot shipping container is 40 f t × 8 f t × 9.6 f t = 12.19m × 2.44m × 2.93m [144]. This means that a
350 MWh lithium-ion battery occupies about 12.19m × (2.44m × 350) × 2.93m of volume, which is about 143.3
times larger than for hydrogen tanks.
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Figure 5.12: 1-hour rolling horizon simulation.

Figure 5.13: 1-hour rolling horizon simulation, electric power schedule (2000-2168h).

5.3.4/ INFLUENCE OF THE DEGRADATION OF THE FUEL CELL, THE ELEC-
TROLYZER AND BATTERY

In this section, the degradation models of the fuel cell, the electrolyzer and battery are
considered. 12 days are used as the input profile, and if we consider the degradation
of the fuel cell, the electrolyzer and the battery, the maximum output power of the fuel
cell, the maximum input power of the electrolyzer, the consumed hydrogen in fuel cell,
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Figure 5.14: 1-hour rolling horizon simulation, heat power schedule (2000-2168h).

Figure 5.15: 1-hour rolling horizon simulation, cooling power schedule (2000-2168h).

the produced hydrogen in the electrolyzer, the remaining capacity of battery will all be
different over these 12 days.

Based on equations (3.10) and (3.11), we can calculate the new parameters for the fuel
cell consumed hydrogen and the maximum output power in tday. For the electrolyzer, the
new parameters are updated based on (3.19) and (3.20). For the battery, the remaining
capacity in each day is updated based on (3.23).

Then the UC optimization problem can be formulated as problem (5.19), and the overall
problem is (5.23). We adopt strategy S1. The simulation results are shown in Table
5.6. Degall means that the degradation of the fuel cell, the electrolyzer and the battery
is considered. Deg means considering the degradation of fuel cell and electrolyzer. We
can see that in case Deg, due to the degradation of the fuel cell, a larger capacity of
fuel cell is needed to satisfy the load demand; a larger heat boiler and air conditioner
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Figure 5.16: 1-hour rolling horizon simulation.

are needed to transfer the PV output power to heat or cooling due to the degradation of
the electrolyzer. Then, we consider the degradation of the battery with case Degall. We
can see that the capacity of the battery will increase, also for the capacity of the fuel cell
and the electrolyzer, with the larger electrolyzer, then the capacity of the heat boiler and
the air conditioner is decreased compared to case Deg. The cost results are shown in
Table 5.7. We can see that in case Deg, the operation cost is smaller. This is because
the HSS operates more often (because of the larger capacity of the fuel cell), and the
utilization cost of the HSS is much smaller, leading to lower operation costs. In case
Degall, due to the large capacity of the storage system, the capital cost of the microgrid is
also increased.

Table 5.6: Sizing results considering degradation of the fuel cell, the electrolyzer and the
battery.

NPV Pmax
f c [kW] Pmax

el [kW] ∆VH2 [N.m3] Cbat [kWh] Nsh [m2] Pmax
hb ∆HS max[kWh] Pmax

ac Qmax
ahc

Degall 224 498 540 1159 843 43 200 3000 148 542
Deg 103 409 385 1087 101 48 671 3000 843 557
S1 121 272 396 1065 383 45 346 3000 117 1207

Table 5.7: Cost results considering degradation of the fuel cell and the electrolyzer.

Strategy C∗total [e] Ccap [e] C∗op [e]
Degall 7.8660e+05 5.3978e+05 2.4682e+05
Deg 4.0172e+05 3.8183e+05 1.9887e+04
S1 4.0683e+05 3.6766e+05 3.9171e+04

5.3.5/ INFLUENCE OF UNCERTAINTY

The forecasting errors on PV output and load demand influence the power flow on the
whole system, as well as the sizing results of the components. In this section, we adopt



5.3. SIMULATION RESULTS 79

a robust method to research about the influence of uncertainty. We use the upper bound
and lower bound to represent the uncertainty. ˜PPV (t), ˜Lpower(t), ˜Lheat(t), ˜Lcooling(t), ˜LH2(t)
and ErPV , Erpower, Erheat, Ercooling, ErH2 are used to represent the actual values and error
bounds of PV output, solar heating output, electric load demand, heating load demand,
cooling load demand, and hydrogen load demand respectively. The actual values can be
represented as:

˜PPV (t) = PPV (t) ± PPV (t) · ErPV ,˜Lpower(t) = Lpower(t) ± Lpower(t) · Erpower,˜Lheat(t) = Lheat(t) ± Lheat(t) · Erheat,˜Lcooling(t) = Lcooling(t) ± Lcooling(t) · Ercooling,˜LH2(t) = LH2(t) ± LH2(t) · ErH2

(5.24)

Two cases are defined in Fig. 5.17. The worst case (the case where the difference
between the PV output and the load is the largest) is when the PV output is equal to the
upper bound value, and the load is equal to the lower bound value; or when the PV output
is equal to the lower bound value, the load is equal to the upper bound value. For the best
case (the case where the difference between the PV output and the load is the lowest),
the opposite is used.

If the sizing results can satisfy the worst and best cases, then others cases can also be
satisfied by the obtained sizing results. This means that the worst and best case data
must be used to run the co-optimization method and obtain the sizing results. Table 5.8
shows the sizing results when ErPV = Erpower = Erheat = Ercooling = ErH2 = 0.1. Table
5.9 shows the cost results. For the worst-case, the HSS is used frequently because it
is cheaper, so larger hydrogen tanks are needed. For the best case, the BSS is used
frequently due to limitations of the HSS (minimum startup power and continuous running
time), so more BSS capacity is needed. For these two cases, a larger heat storage
system is needed to handle the uncertainty.

Figure 5.17: PV output minus load demand
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Table 5.8: Sizing results considering uncertainty. The worst case is defined as the case
where the difference between PV output and load is the largest, and the lowest for the
best case.

Strategy NPV Pmax
f c [kW] Pmax

el [kW] ∆VH2 [N.m3] Cbat [kWh] Nsh [m2] Pmax
hb ∆HS max[kWh] Pmax

ac Qmax
ahc

Worst case 109 169 307 1199 437 105 323 9072 81 531
Best case 107 191 247 952 652 124 324 8219 337 2728

S1 121 272 396 1065 383 45 346 3000 117 1207

Table 5.9: Cost results considering uncertainty.

Strategy C∗total [e] Ccap [e] C∗op [e]
Worst case 3.9060e+05 3.7248e+05 1.8123e+04
Best case 4.5288e+05 4.2616e+05 2.6729e+04
S1 4.0683e+05 3.6766e+05 3.9171e+04

5.4/ CONCLUSION

In this chapter, we introduced a co-optimization method to size the components of a
renewable energy based stand-alone microgrid which combines cooling, heat, electric
power and hydrogen loads. The UC optimization method was used for defining the op-
eration strategy, which aims at minimizing the operation cost through an MILP algorithm.
A GA was used to compute the sizing value of each component, aiming to minimize the
total cost. Three operation strategies were compared, which showed that sizing values
are different with different strategies. Then a 1-hour rolling horizon simulation was used
to adjust the sizing values of several components. The degradation of the fuel cell, the
electrolyzer and the battery was also considered and showed that the sizing values of
the fuel cell and the battery increases when considering the degradation. Uncertainty
on PV output and load demand was addressed using robust optimization, and results
showed that larger volumes of hydrogen tanks and heat storage are needed to tackle
these uncertainty factors. This co-optimization method is useful to size complex islanded
microgrids, and results show that the optimal size value and operation algorithms are
capable of scheduling multiple components and managing flows from different natures
(heat/cooling, electricity and hydrogen).

The above two chapters are discussing islanded microgrids, but do not consider the influ-
ence of the utility grid. Then, in next chapter, grid-connected microgrids are considered,
and the sizing and operation of grid-connected microgrids are presented.
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SIZING OF GRID-CONNECTED

MULTI-ENERGY-SUPPLY MICROGRIDS

This chapter is based on the author’s published paper: Li Bei, Robin Roche,
Damien Paire, and Abdellatif Miraoui. “Optimal sizing of distributed generation in
gas/electricity/heat supply networks.” Energy 151 (2018): 675-688.

Today’s energy supply systems are large transmission networks, such as the electric-
ity network and gas supply network. Normally, these energy supply networks are

planned separately. However, load demands are often with several types of energy in the
same time step. For example, when people use gas to cook, people also need electricity
to serve electronic devices, and heat energy to heat the room. When these large energy
supply systems co-operate together, it can improve the efficiency of the whole energy
supply system, because co-operating can make the whole system operate in an optimal
state, and in the same time, ensure the power balance of different energy supplies.

On the other hand, at each interconnection node, different types of energy can be con-
verted to each other through power devices. For example, fuel cells can be used to con-
vert H2 to electricity, electrolyzers can be used to convert electricity to H2, gas turbines
can be used to convert gas to heat, etc. At each node, renewable energy can also be
connected, such as with photovoltaic (PV) panels and wind turbines. In this chapter, the
focus is on the following problem: how to determine the capacity of these power devices
and renewable energy sources at each interconnection node, based on the given hybrid
energy network configuration?

In this work, a modified 13-node network is considered (the electricity network is the
IEEE 13-node network [145], and the gas and heating networks are assumed to have
the same structure as the electricity network, as shown in Fig. 6.1, and three types of
gas/electricity/heat load demands are served. In this figure, HS represents a hydrogen
storage system (fuel cell + electrolyzer + tanks), which has several advantages, such as
a high storage capacity, and a high energy per unit of volume [5]; CHP is a combined
heat and power device; ETH is a device that converts electricity to heat, for example, a
heat boiler; GTH is a device that converts gas to heat, for example, a gas boiler heater.
Black lines represent the gas supply system, blue lines are the electricity supply system,
red lines are the heat supply system.

At each node, the devices and load demands can be formed as an MG or an energy
hub (EH). In [146], authors design a combined cooling/heat/power and hydrogen MG
system, and present a combined GA and MILP method to size such MES MG. GA is
used to search for the sizing values, MILP is used to control the operation of MG. In
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[147], authors present a smart EH framework to deploy an integrated demand response
program (considering electricity and natural gas demands). The goal is to maximize
the natural gas and electricity utility companies’ profit and to minimize the customers’
consumption cost. The problem is formulated as a non-cooperative game.

For MG, the emphasis is on islanded operation ability, which can improve the system
resilience when the utility grid is damaged under natural disasters. Authors in [140] use
gas-based and hydrogen-based MG to improve resilience to disasters. A hybrid energy
supply (electricity/gas/hydrogen) system is built, and Monte Carlo simulation is used to
simulate the influence of disasters. For EH, the emphasis is on the energy dispatching
efficiency, which can reduce the waste of fuel and improve the energy utilization efficiency,
or act as a load serving entity to deploy integrated demand response [147].

In this chapter, renewable energy is integrated and an MG is formed at each node. The
detailed structure of the MG at node is shown in Fig. 6.2.

Figure 6.1: Gas/electricity/heat network.

Figure 6.2: Microgrid structure at node.

The MES MG can interconnect with the utility grid, and can also operate in islanded
mode. When the utility grid is severely damaged under natural disasters, islanded MG can
still operate to supply the load demands (using the local renewable energy and storage
system). If the utility grid is partially destroyed, the MG power imports from the utility grid
are limited, due to damage on transmission lines or pipelines. This chapter discusses
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how such large power devices and PV panels should be installed and sized in each MG.
A combined algorithm is presented to size the components in MG to resist to contingency
events (namely, some transmission lines are destroyed). Firstly, an optimization method
is used to describe the power flow in the whole system, where the objective function is to
minimize the investment cost and the unserved load. The constraints are to ensure the
power balance and meet capacity limitations. Then, a GA is used to search for the optimal
sizing value of each component. After that, two cases are simulated: the first case is a
modified 13-node hybrid system, and the second case is a IEEE20 + gas20 + heat14-
node hybrid system. Graph theory is used to find the worst case based on betweenness
centrality, when the electric system is damaged under contingency events.

The remainder of this chapter is organized as follows. Section 6.1 describes the problem
formulation, and Section 6.2, 6.3 the simulation results. Finally, Section 6.4 concludes
the paper.

6.1/ PROBLEM FORMULATION

The sizing problem is to give the sizing value of each component, then these sizing values
are checked in the operation problem. Based on the results of the operation problem,
new sizing values are updated, and this process is repeated until the stopping criterion is
satisfied (in this chapter, the stopping criteria is the maximum number of GA iterations).

Assume that a hybrid multi-energy supply network contains N nodes, and at each node
i = 1, ...,N, we connect PV panels. The capacity of a PV source at each node is noted
Pi

PV ; a fuel cell is used to convert H2 energy to electricity, the capacity of the fuel cell at
each node is Pi,max

f c ; an electrolyzer is used to convert electricity to H2, the capacity of an
electrolyzer at each node is Pi,max

ele ; H2 storage tanks are used to store H2, the capacity of
H2 storage tanks at each node is Ci

gs; an ETH device is used to convert electricity to heat,
the capacity of an ETH at each node is Pi,max

ET H ; a GTH is used to convert gas energy to
heat, the capacity of GTH at each node is Pi,max

GT H ; a CHP device is used to produce heat
and power, the capacity of CHP at each node is Pi,max

CHP . Then the problem is to decide the
sizing values of the above components.

6.1.1/ OPERATION PROBLEM

For the operation problem, the goal is to minimize the load shedding of gas/electricity/heat
demands, and ensure the reliability of the whole system. The objective function can then
be written as:

Call
op = α ·

N∑
i=1

T∑
t=1

LS i,t
gas + β ·

N∑
i=1

T∑
t=1

LS i,t
el + γ ·

N∑
i=1

T∑
t=1

LS i,t
heat (6.1)

where α, β, γ are penalty values for load shedding of gas/electricity/heat demands;
LS i,t

gas, LS i,t
el , LS i,t

heat are the load shedding of gas/electricity/heat demands at node i and
time t.
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The power devices constraints are:

− Pgas,m,n,max
line ≤ Pgas,m,n,t

line ≤ Pgas,m,n,max
line

− Pel,m,n,max
line ≤ Pel,m,n,t

line ≤ Pel,m,n,max
line

− Pheat,m,n,max
line ≤ Pheat,m,n,t

line ≤ Pheat,m,n,max
line

ono f f i,t
f c · P

i,min
f c ≤ Zi,t

f c ≤ ono f f i,t
f c · P

i,max
f c

ono f f i,t
ele · P

i,min
ele ≤ Zi,t

ele ≤ ono f f i,t
ele · P

i,max
ele

ono f f i,t
f c + ono f f i,t

ele ≤ 1

(6.2)

0 ≤ Zi,t
ET H ≤ Pi,max

ET H

0 ≤ Zi,t
GT H ≤ Pi,max

GT H

0 ≤ Zi,t
CHP ≤ Pi,max

CHP

0 ≤ Zgas,i,t
PS ≤ Zgas,i,max

PS

0 ≤ Zel,i,t
PS ≤ Zel,i,max

PS

0 ≤ Zheat,i,t
PS ≤ Zheat,i,max

PS

(6.3)

where Pgas,m,n,t
line is the gas power flow from node m to node n at time t; Pgas,m,n,max

line is the
maximum gas power flow from m to n; ono f f i,t

f c is the ON/OFF state of the fuel cell at node
i and time t; Pi,min

f c and Pi,max
f c are the minimum and maximum output of the fuel cell at node

i; Pi,min
ele and Pi,max

ele are the minimum and maximum input of the electrolyzer at node i; Zi,t
f c,

Zi,t
ele, Zi,t

ET H, Zi,t
GT H, Zi,t

CHP, are the output power of the fuel cell, electrolyzer, ETH, GTH, CHP
at node i and time t; Zgas,i,t

PS , Zel,i,t
PS , Zheat,i,t

PS are the output power of the gas source, electric
generator, and heating source at node i and time t.

The state of H2 storage tanks can be described as:

LOHi,t
gs = LOHi,t−1

gs +
(
Zi,t

ele · e f fch − Zi,t
f c

)
· ∆t/Ci

gs (6.4)

where LOHi,t
gs is the state of the H2 storage tanks at node i and time t, and ∆t is the interval

time. e f fch is the efficiency to produce H2 through the electrolyzer.

The H2 storage tanks constraint is:

LOHi,min
gs ≤ LOHi,t

gs ≤ LOHi,max
gs (6.5)

where LOHi,min
gs , LOHi,max

gs are the minimal and maximal state of the H2 storage system at
node i.

For the CHP, the following characteristics are used [128]:

• Power generation:
ZCHP = αGEQCHP + βGE; (6.6)

QCHP is the fuel combustion power, in this chapter, the fuel is natural gas; ZCHP is
the generated electric power.
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• Available waste heat value of flue gas:

qGAS = αGAS QCHP + βGAS ; (6.7)

• Available waste heat value of cylinder water:

qWA = αWAQCHP + βWA; (6.8)

• The recoverable heat from CHP is:

qCHP = e f fre · {qGAS + qWA} (6.9)

• αGE, βGE are the coefficient values to generate electricity; αGAS , βGAS are the co-
efficient values to produce waste heat from flue gas; αWA, βWA are the coefficient
values to produce waste heat from cylinder water; e f fre is the heat recovery effi-
ciency; qGAS is the available waste heat value of flue gas; qWA is the available waste
heat value of cylinder water; qCHP is the recovery heat from CHP.

The gas power balance constraint is:

Zgas,i,t
PS − Zi,t

GT H/e f fGT H − Qi,t
CHP/e f fCHP − (Li,t

gas − LS i,t
gas) = Pgas,X→i,t

line (6.10)

The electricity power balance constraint is:

Zel,i,t
PS + Pi,t

PV + Zi,t
f c + Zi,t

CHP − Zi,t
ele − Zi,t

ET H − (Li,t
el − LS i,t

el ) = Pel,X→i,t
line (6.11)

The heat power balance constraint is:

Zheat,i,t
PS + e f fheat · Z

i,t
f c + e f fET H · Z

i,t
ET H + Zi,t

GT H + qi,t
CHP − (Li,t

heat − LS i,t
heat) = Pheat,X→i,t

line (6.12)

where Pgas,X→i,t
line is the gas power flow from node X to i at time t, X represents all nodes

that connect with node i. e f fGT H is the efficiency of GTH to produce heat; e f fCHP is
the gas utilization efficiency of CHP to consume gas; e f fheat is the fuel cell efficiency
to produce heat; e f fET H is the efficiency of ETH to produce heat. Li,t

gas, L
i,t
el , L

i,t
heat are the

gas/electricity/heat load demands at node i and time t.

6.1.2/ SIZING PROBLEM

For the sizing problem, the objective is to minimize the total investment cost. So the
objective function can be written as:

Call
inv =

N∑
i=1

{CPV
inv · P

i
PV + C f c

inv · P
i,max
f c + Cele

inv · P
i,max
ele

+ Cgs
inv ·C

i
gs + CET H

inv · Pi,max
ET H + CGT H

inv · Pi,max
GT H

+ CCHP
inv · Pi,max

CHP }

(6.13)

where Cinv is the investment cost of each component.
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U is used to represent the set of the sizing problem variables, namely, U ={
Pi

PV , P
i,max
f c , Pi,max

ele ,Ci
gs, P

i,max
ET H , P

i,max
GT H , P

i,max
CHP

}
, i = 1, ...,N. S represents the set of the opera-

tion problem variables. At last, the sizing problem of the hybrid gas/electricity/heat system
can be written as:

min
U

{
Call

inv + min
U∗,S

{
Call

op

}}
s.t. (6.2), (6.3), (6.4), (6.5), (6.6), (6.7), (6.8), (6.9), (6.10), (6.11), (6.12)

(6.14)

6.1.3/ CONSIDERING THE CONTINGENCY EVENTS

In large nodes hybrid network, contingency events must be considered. In this section,
the influence of contingency events on the sizing results are developed. A large number
of contingency events can be listed, and it is impossible to consider all cases. So a robust
method can be used to find the worst case. The sizing problem can then be described
as:

min
U

{
Call

inv + m
V

ax min
U∗,S

{
Call

op

}}
s.t. (6.2), (6.3), (6.4), (6.5), (6.6), (6.7), (6.8), (6.9), (6.10), (6.11), (6.12)

(6.15)

where V represents the contingency events set.

Then the problem can be described as: search for the best sizing values U∗ from U, which
can make the whole system operate with minimal costs, and at the same time, ensure the
whole system resists the worst contingency event.

For this two stage optimization problem, the column-and-constraint generation method
[148] is used. In [149], authors use this method to solve a robust microgrid planning
problem. In [150], authors solve a distribution network planning problem to minimize the
system damage against natural disasters.

For example, in [150], the problem can be summarized as follows:

min
h∈Y

max
u∈U

min
z∈f(h,u)

∑
pld (6.16)

h ∈ Y is the hardening plans to resist to natural disasters; u ∈ U is the natural disasters
scenarios; z ∈ f(h, u) is the disruption with feasible power flow decisions;

∑
pld is the load

shedding.

Then the problem can be described as: search for the hardening plans h∗ from Y, which
can make the whole system operate with minimal load shedding, and at the same time,
ensure the whole system resists the worst natural disasters.

Load shedding of the distribution network after hardening lines and DG placement plan-
ning (h) and disaster impact (u) can be formulated as: z = (p, q, v) ∈ f(h, u). Using an
abstract form to describe this feasible set, we have:

f(h, u) = {z : Ah + Bu + Cz ≥ e} (6.17)

Problem 6.16 is a two stage robust optimization problem that can be transferred into two
optimization problems, namely, a master problem and a subproblem. The master problem
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is:

min α

s.t. h ∈ Y

α ≥
∑

pld

z ∈ f(h, û)

(6.18)

The subproblem is:
max
u∈U

min
z∈f(h,u)

∑
pld (6.19)

However, the subproblem is a maxmin problem. Then, we need to transfer this maxmin
problem into a one stage problem. We notice that the inner min problem can be trans-
ferred to a Lagrange dual problem, which can be shown as follows:

min
z∈f(h,u)

z

s.t. z ∈ f(h, û)

⇒

min
z

z + π(e − Ah − Bu −Cz) = (I − πC)z + π(e − Ah − Bu)

s.t. π ≥ 0

(6.20)

Then the above min problem can be represented as the following max problem:

max
π

π(e − Ah − Bu)

s.t. I − πC ≥ 0

π ≥ 0

(6.21)

At last, subproblem 6.19 can be transferred as the following one stage problem:

max
u∈U

min
z∈f(h,u)

∑
pld =

max
u∈U

max
π

π(e − Ah − Bu) =

max
u∈U,π

π(e − Ah − Bu)

s.t. I − πC ≥ 0

π ≥ 0

(6.22)

Based on the above master problem and subproblem, the column & constraint generation
(CCG) algorithm is developed based on [150], as follows:

1. solve subproblem 6.23 with the given plan ĥ, obtain the objective value of subprob-
lem ob jS P and disaster scenarios u∗k;

2. add u∗k to set Û, create dispatch variables zk, and add the corresponding constraints
zk ∈ f(h, u∗k) to master problem 6.18, namely,

α ≥ zk

Ah + Czk ≥ e − Buk (6.23)
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3. solve master problem 6.18, obtain the objective value of master problem ob jMP and
update the planning plan ĥ;

4. repeat this process until the gap between ob jMP and ob jS P is less than a small
value.

We can see that with the CCG algorithm, the uncertainty set is transferred based on
Lagrange dual problem, and two stage optimization is decomposed into a master and a
subproblem.

In this chapter, the uncertainty set of disasters is described based on graph theory, and
a two stage sizing problem is decomposed into a leader and a follower problem. A com-
parison between the CCG method and the presented method is summarized in Tab. 6.1.

Table 6.1: Comparison between the CCG method and our method.

Method Disasters scenarios Two stage problem Running Complexity
CCG [150] Lagrange dual problem master & sub problem iteration repeat high
Proposed graph theory leader & follower problem iteration repeat medium

In our method, the worst case is obtained based on graph theory. For the large nodes
hybrid network system, the relative importance of each node is ranked. The case where
the most important node is destroyed under the contingency event, is the worst case. The
relative importance of each node in the graph is described using betweenness centrality
[151] of the node:

CB(i) =
∑

ni,nk,nl

nk → nl, ni

nk → nl
(6.24)

where nk → nl, ni is 1 if the shortest path between nodes nk to nl goes through ni, and 0 if
nk to nl does not pass through ni.

Under the worst case, the new structure of the whole system can be obtained. Then the
sizing problem (7.31) is solved based on this new structure, and new sizing values can
be obtained.

6.2/ SIMULATION RESULTS FOR CASE I

In this section, the modified 13-node case is tested. Three cases are compared. For the
operation problem, the time step is 1 hour, and time horizon is one day (24h).

6.2.1/ SYSTEM SETUP

The penalty values are arbitrarily chosen as α = β = γ = 1010 to make sure that the
penalty cost of load shedding is larger than that of the total investment cost. Investment
costs are shown in Tab. 6.2. The cost parameters are adopted from [145, 142]. The model
is implemented in MATLAB and solved with YALMIP [152] and Gurobi. Simulations were
run on a computer with an Intel Xeon CPU E3-1220@3.1GHz.

Load demands (peak load) at each node are shown in Tab. 6.3. Source data is shown in
Tab. 6.4. The capacity of transportation lines is shown in Tab. 6.5, where the unit is MW.
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Table 6.2: Investment costs [145, 142]

Device Cost

PV 2 Me/MW
Fuel cell 4 Me/MW

Electrolyzer 3.2 Me/MW
H2 tank 1200 e/MWh

ETH 0.06 Me/MW
GTH 0.15 Me/MW
CHP 1.6 Me/MW

Here the capacity of pipelines in the heat network are assumed to be the same as power
lines. In order to reduce the computation time, four typical days (spring, summer, autumn,
winter) are used as the load block. In each hour of the typical day, the operation problem
(minimizing load shedding) is checked based on the sizing problem. If the constraints of
the operation problem are violated, then new sizing values are generated. The simulation
flow chart can be seen in Fig. 7.6.

Table 6.3: Load demand (peak load) [145]

Bus Lel[MW] Lheat[MW] Lgas[MW]

1 4.8334 3.8323 1.8251
2 7.0342 6.0123 1.0789
6 5.1668 4.1532 1.1652
7 5.8746 4.8056 1.8487
10 7 6.5642 1.0023
12 5.1668 4.1756 1.1695
13 4.9254 3.9652 1.9362

Table 6.4: Source data [145]

Bus Zel,max
PS [MW] Zheat,max

PS [MW] Zgas,max
PS [MW]

1 5 4 6
8 0 0 90
12 8 7 8

Table 6.5: Feeder data [145]

Line Pel
line[MW] Pgas

line[MW] Line Pel
line[MW] Pgas

line[MW]

1 4.9 11 7 23.6 50
2 7.2 15 8 17.4 37
3 12.2 26 9 7.2 15
4 11.6 24 10 10.8 22
5 5.4 11 11 5.4 11
6 6.2 13 12 5.4 11
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Figure 6.3: Simulation flow chart.

The efficiency parameters are shown in Table 6.6.

Table 6.6: Efficiency values

Efficiency Value Efficiency Value

e f fch 0.5 e f fGT H 0.9
e f fheat 0.19 e f fCHP 0.9
e f fET H 0.9 e f fre 0.8

Three cases are compared:

1. case 1: all nodes interconnect the PV panels;

2. case 2: we choose different candidate buses to install PV panels;

3. case 3: the investment cost of the hydrogen storage system is reduced by 50%.

case 1 and case 2 are used to evaluate the influence of PV location on the sizing results
(buses 3/4/5/8/9/11 are chosen to install PV panels, because these buses are not load
demands central, and have place to install the PV panels). case 1 and case 3 are used
to evaluate the influence of hydrogen storage investment costs on the results.

6.2.2/ GENETIC ALGORITHM BASED SIZING RESULTS

In our example, there are 13 nodes, and at each node there are 7 components, so the
number of variables is 91. Each population gives the 91 values of each component, then
the operation optimization problem is run. Based on the operation results (load shedding)
and investment costs, the population is updated.
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Tab. 6.7 shows the results of case 1. Tab. 6.8 shows the results of case 2. Tab. 6.9 shows
the results of case 3. The unit of each component (PV panels, fuel cell, electrolyzer, ETH,
GTH, CHP) in each table is MW, and the unit of H2 tanks is MWh.

Table 6.7: case1 results

Node PPV Pmax
f c Pmax

ele Pmax
ET H Pmax

GT H Pmax
CHP Cgs

1 7.10 2.41 0.21 0.29 0.72 3.33 84.77
2 2.53 0.60 0.73 3.53 1.52 0.72 57.99
3 4.77 0.02 0.95 1.64 3.49 0.39 4.91
4 3.13 2.60 4.26 0.38 0.32 0.60 63.94
5 3.53 0.01 2.95 2.55 2.72 1.01 89.28
6 8.16 4.45 1.40 0.08 3.14 0.48 89.50
7 5.91 1.92 2.67 0.04 3.65 4.59 13.97
8 2.29 0.20 0.89 2.50 0.03 0.23 19.34
9 3.90 1.47 3.66 2.80 0.16 1.08 76.84

10 6.03 3.11 1.08 2.76 1.71 3.08 15.64
11 4.79 0.81 3.09 1.72 0.98 3.97 78.53
12 6.01 3.96 1.13 4.70 2.16 2.94 30.58
13 2.65 2.20 1.78 2.24 3.41 0.07 50.46

Total 60.78 23.76 24.80 25.23 24.00 22.50 675.76

Table 6.8: case2 results

Node PPV Pmax
f c Pmax

ele Pmax
ET H Pmax

GT H Pmax
CHP Cgs

1 0.00 0.31 1.16 2.73 1.44 3.89 77.93
2 0.00 1.65 0.27 1.38 4.35 3.42 18.82
3 3.24 2.18 0.74 0.41 1.89 1.48 3.69
4 6.96 0.09 0.01 3.60 4.98 0.38 18.97
5 9.41 0.36 3.78 3.71 3.97 2.68 19.75
6 0.00 2.79 4.00 1.12 2.97 1.01 82.38
7 0.00 3.15 0.76 3.43 2.53 0.32 62.97
8 2.57 1.01 3.07 2.40 1.74 0.22 90.56
9 7.74 2.51 0.93 0.71 4.35 2.10 52.50

10 0.00 2.77 0.69 1.64 0.66 4.28 81.83
11 3.03 0.19 4.17 3.26 2.66 2.58 81.33
12 0.00 1.03 0.12 2.67 4.56 0.09 56.10
13 0.00 3.95 4.46 2.09 0.37 0.99 47.04

Total 32.95 22.00 24.15 29.15 36.46 23.43 693.85

Fig. 6.4 shows the comparison of these three cases. In case2, PV is limited to be installed
at some nodes which are not load demand centers, so the PV output power must be
transferred to the load demand centers based on the power transmission lines, but the
capacity of power transmission lines will limit the transferred power. At last, the installed
PV power is smaller than that in case1 (decreases 50%). This leads to a smaller capacity
for the electrolyzer (which is used to store surplus PV output, and decreases by 3%).
The smaller capacity of PV leads to a larger capacity for the H2 tanks (increases by 2%)
and the CHP (increases by 4%). The smaller capacity for electrolyzer leads to a larger
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Table 6.9: case3 results

Node PPV Pmax
f c Pmax

ele Pmax
ET H Pmax

GT H Pmax
CHP Cgs

1 3.19 0.56 0.83 3.16 1.08 1.06 13.99
2 8.45 1.58 3.16 2.46 0.05 1.37 59.46
3 8.25 2.95 3.24 4.62 0.84 3.79 83.83
4 3.19 1.13 1.34 4.96 1.21 4.46 64.00
5 6.26 1.65 3.51 0.14 3.96 1.22 7.27
6 4.19 1.42 0.64 3.87 2.44 3.31 81.91
7 6.13 1.69 0.20 1.58 3.48 0.34 64.67
8 2.22 2.45 1.35 4.29 2.26 3.15 2.34
9 5.40 0.81 4.09 0.85 0.28 1.11 79.54

10 4.20 2.58 1.49 2.63 0.25 0.33 77.67
11 4.94 0.67 4.09 3.78 3.96 4.59 95.33
12 6.79 1.55 3.06 2.67 1.00 1.34 59.40
13 6.06 3.70 0.97 0.22 0.40 1.27 1.78

Total 69.27 22.75 27.96 35.23 21.20 27.32 691.20

Figure 6.4: Comparison of three cases.

capacity for the ETH (increases by 15%), because both devices are used to consume
the electricity, the surplus energy can either be stored in tanks through electrolyzer, or
through the ETH to supply the heating demand.

Comparing case1 and case3, it can be seen that in case3, the capacity of PV is larger
than that in case1 (increases by 14%). This is because the hydrogen storage system
is more competitive (due to the reduction of the investment cost of the fuel cell and tne
electrolyzer) and can be used frequently, then more PV panels can be installed, which
leads to a larger capacity for the electrolyzer (increases by 13%). More power can be
produced by PV, which leads to a larger capacity for the ETH (increases by 40%). A
larger capacity for the ETH also leads to a smaller GTH (decreases 13%).

Comparing these three cases, it can be seen that the sizing results of PV, ETH, GTH, and
CHP change obviously. This is because their costs are more competitive than that of the
fuel cell and the electrolyzer, which has a larger ability to minimize the objective function.

Based on the above simulation results, it can be seen that PV panels’ location and the
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investment cost of hydrogen storage system are important parameters to influence the
sizing values of each component.

Figure 6.5: Electric power scheduling at node 7 (line is L6).

Figure 6.6: Heating power scheduling at node 7 (line is L6).

Figs. 6.5, 6.6, 6.7, 6.8 show one day scheduling results of the three energy systems in
a typical spring day. In Fig. 6.5, at node 7, electric energy is exchanged with the other
nodes through power line L6. During the night, the fuel cell, and CHP produce electricity
to supply the loads. During the day, PV and imported energy are used to supply the
loads. The electrolyzer is used to store the surplus energy. In Fig. 6.6, the CHP and GTH
produce the main heat energy, and the fuel cell and ETH produce the remaining heat.
Imported/exported heating energy through pipeline 6 is also important to keep the energy
balance at node 7. Fig. 6.7 shows that gas imports through gas pipeline 6 are the main
method to supply gas loads at node 7. Fig. 6.8 shows the state of hydrogen tanks at all
nodes. It can be seen that the storage system can be used to keep the power balance of
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Figure 6.7: Gas scheduling at node 7 (line is L6).

Figure 6.8: SOC at 13 nodes.

the whole system. Through the fuel cell, hydrogen tanks can produce electricity and heat
to supply the load demand; through the electrolyzer, the surplus electricity can be stored
in hydrogen tanks using H2.

From the scheduling results, the output of some power devices change fast, especially
the lines. For example, in Fig. 6.6, at 2 am, heating pipeline exports heating energy, but
at 3 am, heating pipeline imports heating energy. The reason for this phenomenon is that
we do not limit the ramp up and ramp down constraints of all components.
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6.2.3/ INFLUENCE OF CONTINGENCIES ON THE SIZING RESULTS

Based on section 6.1.3, the worst case can be obtained using graph theory. For this
13-node hybrid network system, we rank the relative importance of each node. The
case where the most important node is destroyed under the contingency event is the
worst case. The relative importance of each node in the graph is described using the
betweenness centrality [151] of the node.

Figure 6.9: Graph structure of the 13-node hybrid network.

Figure 6.10: Betweenness centrality of the 13-node hybrid network.

Fig. 6.9 shows the graph connection of the 13-node hybrid network. Fig. 6.10 shows the
obtained betweenness centrality of the 13-node hybrid network. It can seen that the most
important node of the whole system is node 4. The worst case for this network, is thus
when the connections between node 4 and the other nodes are removed.

As the failure probability of gas pipelines and heat pipelines are smaller than that of over-
head electric power lines [140], for the worst case, only the removal of electric power lines
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is considered. Then, the sizing problem needs to check eight cases (the normal condi-
tion with four typical days of each season, and the worst case condition with four typical
days). Tab. 6.10 shows the sizing results of the whole system when the electric connec-
tions between node 4 and the other nodes are removed, namely, we remove electric lines
en3↔ en4, en5↔ en4, en8↔ en4. This case is defined as case4.

Table 6.10: case4 results

Node PPV Pmax
f c Pmax

ele Pmax
ET H Pmax

GT H Pmax
CHP Cgs

1 5.55 0.01 2.83 2.55 0.33 3.56 49.85
2 5.58 2.02 3.42 0.74 1.62 0.21 32.59
3 3.98 0.91 2.01 4.44 1.88 0.36 31.51
4 7.30 2.72 4.83 4.67 0.20 0.22 12.83
5 6.05 3.71 0.37 1.88 1.22 1.25 87.38
6 7.25 1.67 2.00 0.77 1.77 2.37 56.29
7 4.09 4.04 3.76 3.95 3.19 1.29 61.96
8 3.92 1.76 1.37 3.09 3.02 2.91 25.46
9 6.03 3.45 3.49 4.73 1.69 1.60 19.71

10 4.86 0.52 0.25 3.81 0.62 1.59 64.03
11 2.09 0.87 3.21 4.10 4.95 3.81 27.16
12 3.45 4.12 2.96 4.20 1.91 0.93 68.01
13 7.69 0.27 2.68 2.43 3.81 1.68 3.89

Total 67.85 26.07 33.19 41.37 26.20 21.78 540.66

Figure 6.11: Comparison of case1 and case4.

Fig. 6.11 shows a comparison of results for case1 and case4. It can be seen that:
1) at node 4, because the electric loads cannot import/export energy from/to the other
nodes, so the capacity of PV, and fuel cell is larger than that in case1 (increase by 12%,
and 11% respectively); 2) this worst case divides the electric supply network into four
parts: {en1, en2, en3}, {en4}, {en5, en6, en7}, {en8, en9, en10, en11, en12, en13}. Then each part
cannot get electric power from the other parts (through electric power lines), which means
that the important task of keeping electric power balance is taken on by the fuel cell, CHP
(the main controllable power source) and PV panels. Larger PV panels lead to a larger
capacity of electrolyzer (increases by 34%) and ETH (increases by 64%) to consume the
surplus energy.
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The above simulation shows that the structure of the whole system also influences the
sizing results of each component. This is because the interconnection structure of the
system can influence the energy flow in the whole system, which will then influence the
utilization of the power devices, and at last, the sizing results will be different.

6.2.4/ DISCUSSION

Case 1 to case 3 show that the PV panels location and investment cost of hydrogen stor-
age system influence the sizing value of each component. When the installed capacity of
PV panels is reduced by 50%, the capacity of the electrolyzer decreases by 3%, capacity
for the H2 tanks increases by 2%, the CHP increases by 4%, and ETH increases by 15%.
When the investment costs of the fuel cell and the electrolyzer decrease by 50%, the
capacity of PV increases by 14%, the electrolyzer increases by 13%, ETH increases by
40%, and GTH decreases by 13%.

To resist to contingency events, betweenness centrality is used to find the most important
node (worst case). The simulation results (case 4) show that the controllable power
sources (fuel cell, CHP), PV panels and the H2 tanks are the main components to ensure
the system power balance. The capacity of PV and fuel cell increase by 12% and 11%,
and the electrolyzer increases by 34% while the ETH increases by 64%. After the hybrid
network is damaged by contingency events, the whole system is divided into small parts,
namely, smaller ’islanded’ microgrids. In each part, the main controllable power sources
are the fuel cell and CHP. So the size of the PV panels and H2 tanks is important to enable
the whole system to operate normally.

6.3/ SIMULATION RESULTS CASE II

In this section, a benchmark hybrid gas/electric/heat system is presented. The electricity
network is an IEEE 30 nodes network [153], shown in Fig. 6.12. At nodes e1 and e2, two
gas-generators are connected. MG1, MG2, MG3 and MG4 are connected at nodes e23,
e17, e14 and e7. The gas network is a 20-node system, for which the parameters can be
found in [154], [155], as shown in Fig. 6.13. A gas-generator is connected at nodes g12
and g19. A heating source is supplied by gas at nodes g11, g12 and g14. MG1, MG2,
MG3 and MG4 are connected at nodes g7, g6, g15 and g10. The heating network is a 14-
node system [153], shown in Fig. 6.14. Nodes h1, h6 and h11 are heating sources. MG1,
MG2, MG3 and MG4 are connected at nodes h9, h10, h4 and h13. The configuration of
this hybrid system is summarized in Tab. 6.11.

Two cases are simulated:

1. case5: normal operation state, namely, no connection nodes are removed;

2. case6: operation under contingency events, namely, the most important node is
removed;

The obtained sizing values of these four MGs are shown in Tab. 6.12.

Figs. 6.15, 6.16, 6.17, 6.18 show one day scheduling results of MG3 in a typical spring
day. Figs. 6.19, 6.20 show the gas flow in the gas supply system and the heat flow in
heating supply system.
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Figure 6.12: IEEE 30-node network.

Figure 6.13: Gas 20-node network.

The structure of this hybrid system is then analyzed to obtain the worst case based on
graph theory. Fig. 6.21 shows the graph structure of the hybrid system. Fig. 6.22 shows
the betweenness centrality, and indicates that the most important node is e6 (electrical
network node6). The worst case of this hybrid network is then defined, which is when the
connections between node 6 and the other nodes are removed. Here, for the operation
problem, 8 cases must be checked (the normal condition with four typical days of each
season, and the worst case condition with four typical days).

Tab. 6.13 shows the sizing results when the connections between node 6 and other nodes
is removed, namely, remove e6 ↔ e2, e6 ↔ e4, e6 ↔ e7, e6 ↔ e8, e6 ↔ e9, e6 ↔ e10,
e6 ↔ e28. Fig. 6.23 shows the comparison of case 5 and case 6. It can be seen that
after considering the damage of the electrical network, more PV panels (increases by
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Figure 6.14: Heating 14-node network.

Table 6.11: Configuration

Unit Electrical bus Gas node Heat node

Generator 1 e1 g12 -
Generator 2 e2 g19 -
Heating 1 - g14 h1
Heating 6 - g12 h6

Heating 11 - g11 h11
MG1 e23 g7 h9
MG2 e17 g6 h10
MG3 e14 g15 h4
MG4 e7 g10 h13

Table 6.12: case II results

Node PPV Pmax
f c Pmax

ele Pmax
ET H Pmax

GT H Pmax
CHP Cgs

MG1 3.25 0.97 1.90 1.21 3.78 0.88 3.02
MG2 3.75 0.20 3.22 4.40 1.07 1.32 0.68
MG3 4.29 2.40 0.07 1.73 0.16 0.73 2.87
MG4 3.60 0.46 1.57 4.89 0.21 0.90 4.02
Total 14.89 4.03 6.75 12.24 5.21 3.82 10.59

8%), fuel cell (increases by 11%) and CHP are needed to supply the electricity demands
in MGs. The total sizing value of the GTH is decreased, but the sizing value of the ETH
(increases by 18%) is increased, because the ETH is used to fill up the position of the
GTH to supplement the remaining heating demands. The total volume of hydrogen tanks
(increases by 14%) is also increased to supply the electrical demands through fuel cells.

6.4/ CONCLUSION

In this chapter, a co-optimization method was presented to size distributed generation in a
hybrid gas/electricity/heat network. MILP was used to control the operation of the whole
system, which aims to minimize load shedding. GA was used to search for the sizing
values of each component. Case 1 and case 2 showed that the PV panels location influ-
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Figure 6.15: Electric power scheduling in MG 3.

Figure 6.16: Heating power scheduling in MG 3.

Table 6.13: Case II under disasters results

Node PPV Pmax
f c Pmax

ele Pmax
ET H Pmax

GT H Pmax
CHP Cgs

MG1 4.40 2.23 0.03 4.12 0.66 3.54 2.85
MG2 3.62 1.03 3.89 2.98 1.22 0.94 3.75
MG3 4.00 0.36 4.05 3.93 0.37 0.75 3.87
MG4 4.01 0.85 2.62 3.45 0.57 2.38 1.58
Total 16.02 4.48 10.60 14.47 2.82 7.60 12.06

ence the sizing results of each component. This is because the PV panels operating as
uncontrollable power sources are playing an important role to ensure the power balance
of the whole system. The controllable power devices are all operating encompassly the
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Figure 6.17: Gas scheduling in MG 3.

Figure 6.18: SOC in four MGs (the storage system is the hydrogen storage system).

PV panels. At last, with different capacities of PV panels, the sizing results of each com-
ponent are also different. When the installed capacity of PV panels is reduced by 50%,
the capacity of the electrolyzer decreases by 3%, the capacity for the H2 tanks increases
by 2% and the CHP increases by 4% while the ETH increases by 15%.

Case 1 and case 3 showed that the investment cost of the hydrogen storage system also
influences the sizing results. This is because the investment costs impact the competi-
tivity of each component to minimize the objective function. When the investment cost of
the fuel cell and the electrolyzer decrease by 50%, the capacity of PV increases by 14%,
the electrolyzer increases by 13%, ETH increases by 40%, and the GTH decreases by
13%.

A new method based on betweenness centrality was then proposed to find the worst case
under contingency events. Case 4 showed that the controllable power sources (fuel cell,



102CHAPTER 6. SIZING OF GRID-CONNECTED MULTI-ENERGY-SUPPLY MICROGRIDS

Figure 6.19: Gas flow in gas system.

Figure 6.20: Heating flow in heat system.

CHP), PV panels and H2 tanks are the main factors that influence whether the whole
system can operate normally or not. After considering the worst case contingency event,
for case 4, the capacity of PV and fuel cell increase by 12% and 11%, and the electrolyzer
increases by 34%, while the ETH increases by 64%.

At last, an IEEE30 + Gas20 + Heat14-node network was tested (case 5 and case 6).
Case 6 showed that the structure of the power system influences the energy exchanges
between the grid and MG, and influence the sizing values in each MG. The results indicate
that more power is imported from the gas network when power supply network exports
are limited. After considering the worst case contingency event, for case II, the capacity
of PV and fuel cell increase by 8% and 11%, and the electrolyzer increases by 57% while
the ETH increases by 18%.

This co-optimization method can be used as a guidance for utility companies to build
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Figure 6.21: Graph structure of hybrid system.

Figure 6.22: Betweenness centrality of hybrid system.

large nodes hybrid gas/electricity/heat supply networks.
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Figure 6.23: Comparison of case5 and case6.



7
SIZING AND PRICE DECISION

ALGORITHM FOR GRID-CONNECTED
MICROGRIDS

The previous chapter discussed about the sizing problem of grid-connected microgrids.
But we did not consider the electricity price. Actually, when microgrids interconnect

with the utility grid, microgrids will exchange energy with it based on the price. In this
chapter, we research about the price decision approach for multiple grid-connected MES
MGs. After that, we present a sizing algorithm for grid-connected MES MGs based on
the different prices.

Firstly, we introduce the load service entity (LSE) definition. Local generation, local stor-
age systems and renewable energy sources can form an LSE, which can provide ancillary
services to the utility grid (UG) and consumers. For example, when there is unbalance
power in the regulating power market, an LSE can provide upward/downward power to
compensate the imbalances. An LSE can also provide an incentive price to consumers
to encourage them to participate in the market [131]. On the other hand, an MG can also
sell energy to the UG or LSE to earn profits. Then how the LSE can decide the electricity
selling price to multiple MGs, and how the MGs can decide the selling price to LSE are
problems. The goal of deciding the prices for LSE and MGs is because prices are the
only way to guide the operation of LSE and UGs to arrange their energy scheduling. The
operation of the LSE and MGs are significantly influenced by the prices. This means
that different goals (such as shifting peak load, or improving the efficiency of the whole
system) can be achieved by deploying different prices.

For an LSE, the goal is to maximize the profits, which includes local storage operation
costs, electricity buying costs from UG and MGs, and the profit earnings from MGs. For
each MG, the goal is to minimize the costs, which includes the operation cost of each
component, the electricity buying cost from the UG, and the profit earnings from an LSE.
In this chapter, we present a price decision method for multiple MGs considering demand
response. MILP is used to control the operation of each MG, and also used to operate the
LSE. A GA is used to search for the best price for each MG and the LSE. This combined
method is deployed in a decentralized way, namely, each MG runs its own operation
problem. Compared to centralized control, the privacy of consumers can be protected.

The structure of the UG-LSE-MGs system is shown in Fig. 7.1. The LSE can purchase
electricity from the utility grid, and with local generation and local storage systems, it can
also provide services to multiple MGs. In an LSE, renewable energy (PV) is integrated,

105
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and a battery storage system and hydrogen storage system are used to keep the power
balance. However, MGs can also sell electricity to LSEs to maximize their profits. The
goals of the LSE and MGs are in conflict, namely, the LSE prefers to choose a higher
selling price to earn more profits and a lower buying price to/from MGs to decrease costs,
but the MGs are actually aiming for the opposite. Thus we introduce an Independent
System Operator (i.e., an organization which will not give preference to either side) to
decide the reasonable price for the LSE and MGs. The LSE and each MG transfer their
costs to the ISO, and then the ISO updates the prices using GA.

Figure 7.1: Utility grid/Load service entity/microgrids.

The structure of an MES MG is shown in Fig. 7.2. Three types of demands are consid-
ered, electricity/heating/cooling. A PV, a battery storage unit, and a hydrogen storage
unit are used to provide electricity service; thermal solar, a fuel cell, a heat boiler and a
heat storage system are used to serve the heating load demand; an air conditioner and
an absorption heat chiller are used to serve the cooling load. More details about this MG
can be seen in section 5.

Figure 7.2: Multi-energy-supply microgrid.

When there is a large number of microgrids, the price searching algorithm will take lots of
time. Then we present a neural network (NN) model to estimate the performance of the
whole system. Based on the NN model, GA is used to search for the best prices.
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The remainder of this chapter is organized as follows. Section 7.1 describes the problem
formulation, and Section 7.2 and 7.3 the simulation results. Section 7.4 the neural network
model. Section 7.5, the discussion of the whole paper. Finally, Section 7.7 concludes the
paper.

7.1/ PROBLEM FORMULATION

For the UG-LSE-MGs structure, it includes three aspects: 1) the operation of the LSE; 2)
the operation of each MG; 3) prices updating by the ISO.

This structure is formulated as a bilevel structure, which can be seen in Fig. 7.3. In the
upper level problem, new prices are updated based on GA; then prices are transferred
to the lower level problem, where MGs operation problem are solved. The sold energy
and bought energy are then transferred to the LSE, which runs the operation problem,
and new prices are updated again. This process is repeated until the stopping criteria are
satisfied.

Figure 7.3: The bilevel problem structure.

7.1.1/ OPERATION OF THE LOAD SERVICE ENTITY

For the LSE, three components are included: PV panels, a battery storage system and a
hydrogen storage system (Fig. 7.1). The goal is to maximize the profits, which includes
the operation cost of storage systems, and the purchasing cost from the utility grid, the
purchasing cost from MGs, and the selling profits to MGs. The objective function can be
represented as:
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min CLS E =

min
T∑

t=1

{Bch,dis
cost (t) + Hele

cost(t) + H f c
cost(t)

+ Priceug(t) · ug(t) +

N∑
MGi=1

PriceMGi(t) · BuyMGi(t)

− PriceLS E(t) ·
N∑

MGi=1

ZS ellMGi
(t)

+ α · (LS ex(t)) + β · (cutPV (t))}

(7.1)

where the PriceLS E(t) is the selling price of LSE, PriceMGi(t) is the selling price of the ith

MG. ug(t) is the purchased energy from the utility grid, BuyMGi(t) is the bought energy from
the ith MG. ZS ellMGi

(t) is the sold energy to the ith MG. LS ex(t) is the demands that cannot
be supplied by the LSE. cutPV (t) is the curtailed power of PV in the LSE.

For the battery storage system, the utilization cost of charge and discharge can be de-
scribed as follows [142]:

Bch,dis
cost (t) =

Cinv
ba

2 · Ncycles
· (Pch(t) + Pdis(t)) (7.2)

where Cinv
ba is the investment cost of the battery, and Ncycles is the number of cycles over

the lifetime.

We use the state-of-charge (SOC) to represent the state of the battery as follows:

S OC(t) =S OC(t − ∆t)

+
ηch · Pch(t) · ∆t

CB
−
ηdis · Pdis(t) · ∆t

CB

(7.3)

where ηch is the charging efficiency, ηdis is the discharging efficiency, Pch(t) is the charging
power, Pdis(t) is the discharging power, ∆t is the interval time, and CB is the capacity of
the battery.

The hydrogen storage system includes an electrolyzer, a fuel cell and hydrogen tanks. As
for the battery storage system, its utilization cost can be computed as follows [142]:

Hele
cost(t) =

 Cinv
ele

Nele
hours

+ Co&m
ele

 · δele(t) + Cstartup
ele · ∆δele(t) (7.4)

H f c
cost(t) =

 Cinv
f c

N f c
hours

+ Co&m
f c

 · δ f c(t) + Cstartup
f c · ∆δ f c(t) (7.5)

where Cinv
ele ,C

inv
f c are the investment costs of the electrolyzer and the fuel cell, Co&m

ele and
Co&m

f c the operation and maintenance costs, and Cstartup
ele and Cstartup

f c the startup costs.
Variables δele(t) and δ f c(t) are the state of the electrolyzer and the fuel cell. When a unit is
on, δi(t) = 1, i = {ele, f c}, otherwise it is set to 0. Equation ∆δi(t) = max{δi(t)−δi(t−1), 0}, i =

{ele, f c} represents whether the unit started or not.
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A hydrogen tank is used to store the hydrogen produced by the electrolyzer, as well as
to supply hydrogen to the fuel cell. We use the level of hydrogen (LOH) to represent the
state of the hydrogen tank:

LOH(t) = LOH(t − ∆t) + ṅpro
H2 · ∆t − ṅcon

H2 · ∆t (7.6)

where ṅpro
H2 is the hydrogen produced by electrolyzer. ṅcon

H2 is the hydrogen consumed by
fuel cell. They can be calculated based on the method described in [142].

The electricity power balance equation is:

ug(t) +

N∑
MGi=1

BuyMGi(t) + PV(t) − cutPV (t)

−

 N∑
MGi=1

ZS ellMGi
(t) − LS ex(t)


= Zele(t) − Z f c(t) + Zbach(t) − Zbadis(t)

(7.7)

0 ≤ BuyMGi(t) ≤ ZBuyMGi
(t) (7.8)

where ZBuyMGi
(t) is the maximum selling energy of the ith MG at time t, which is obtained

from the results of problem (7.9). This means that at time t, an MG can sell ZBuyMGi
(t)

amounts of energy, but for the LSE, how much it wants to buy is a variable, namely
BuyMGi(t).

At last, we need to decide the prices of PriceLS E(t) and PriceMGi(t), i = 1, ...,N.

7.1.2/ OPERATION OF MICROGRID

For each MG, the goal is to minimize the operation costs, which include the operation
costs of its own components, the purchasing cost from the LSE, and the selling profits to
the LSE. The objective function can be formulated as:

min CMGi =

min
T∑

t=1

{Bch,dis
cost (t) + Hele

cost(t) + H f c
cost(t) + a1 · HBcost(t)+

a2 · ACcost(t) + AHCcost(t) + HS cost(t)

+ ω · (ZDRout (t) + ZDRin(t))

+ PriceLS E(t) · ZS ellMGi
(t) − PriceMGi(t) · ZBuyMGi

(t)

+ α · (LS cooling(t) + LS heat(t) + LS power(t))

+ β · (cutPV (t) + cutsolar(t))}

(7.9)

where HBcost(t), ACcost(t), AHCcost(t),HS cost(t) are the utilization cost of the heat boiler, the
air conditioner, the absorption heat chiller, and heat storage. ZDRout (t),ZDRin(t) are the shift
out power and shift in power, and ω is the DR cost. LS j(t), j = {cooling, heat, power} are
the load shedding of cooling, heating and electricity. cutPV (t), cutsolar(t) are the curtailed
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power of PV and thermal solar. α, β are the penalty values of load shedding and curtailed
power.

A heat boiler uses electricity to produce heat, as follows:

Qhb = ηhb · Phb (7.10)

where Phb is the input power, ηhb the efficiency, and Qhb the output heat.

An air conditioner is used to cool air [128]:

Cac = ηac · Pac (7.11)

where Pac is the input power, ηac the efficiency, and Cac the cooling output cooling power.

Similarly, the absorption heat chiller uses heat to produce cooling, so the relation is [128]:

Cahc = ηahc · Qahc (7.12)

where Qahc is the input heat, ηahc the efficiency, and Cahc the output cooling power.

The state of the heat storage system is represented by the amount of heat stored [63]:

HS (t) = HS (t − ∆t) + ηch
hs · Q

ch
hs(t) · ∆t −

Qdis
hs (t)

ηdis
hs

· ∆t (7.13)

where HS (t) is the stored heat at time ∆t. Qch
hs(t) and Qdis

hs (t) are the charge and discharge
heating power at time t. ηch

hs and ηdis
hs are the charge and discharge efficiency, respectively.

The heat boiler, air conditioner and absoption heat chiller operation costs are given by
[141]:

HBcost(t) =
Cinv

hb

Nhb
li f e

· Phb(t) (7.14)

ACcost(t) =
Cinv

ac

Nac
li f e
· Pac(t) (7.15)

AHCcost(t) =
Cinv

ahc

Nahc
li f e

· Pahc(t) (7.16)

For the heat storage system, the operation cost is:

HS cost(t) =
Cinv

hs

Nhs
li f e

· (Qch
hs(t) + Qdis

hs (t)) (7.17)

The demand response model can be written as:

0 ≤ ZDRout (t) = δDRout (t) · PDRout (t) ≤ δDRout (t) · P
max
load(t)

0 ≤ ZDRin(t) = δDRin(t) · PDRin(t) ≤ δDRin(t) · Pmax
in (t)

δDRout (t) + δDRin(t) ≤ 1

(7.18)

Shift-out power in each time step PDRout (t) is limited to Pmax
load(t); and shift-in power PDRin(t) is

limited to Pmax
in (t). δDRout (t) and δDRin(t) are binary variables that represent whether shift-out

power/shift-in power in this step is allowed or not.
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The electricity selling and buying in MG can be written as:

0 ≤ ZS ellMGi
(t) ≤ δS ellMGi

(t) · S ellmax(t)

0 ≤ ZBuyMGi
(t) ≤ δBuyMGi

(t) · Buymax(t)

δS ellMGi
(t) + δBuyMGi

(t) ≤ 1

(7.19)

where ZS ellMGi
(t) = δS ellMGi

(t) ·S ellMGi(t), ZBuyMGi
(t) = δBuyMGi

(t) ·BuyMGi(t). δS ellMGi
(t), δBuyMGi

(t)
are binary variables that represent the state of buying energy and selling energy.

The electricity power balance in an MG can be described as:

ZS ellMGi
(t) − ZBuyMGi

(t) + PV(t) − cutPV (t)

− (Lpower(t) − ZDRout (t) + ZDRin(t))

= Zele(t) − Z f c(t) + Zbach(t) − Zbadis(t)

+ Zac(t) + Zhb(t)

(7.20)

The shift-out power should be equal to the shift-in power:

T∑
t=1

ZDRout (t) =

T∑
t=1

ZDRin(t) (7.21)

Similarly, for the heat and cooling balance equations:

Qsh(t) − cutsolar(t) − (Lheat(t) − LS heat(t)) + Q f c(t)

+ Qhb(t) = Qhsch(t) − Qhsdis(t) + Qahc(t)
(7.22)

Cac(t) + Cahc(t) = Lcooling(t) − LS cooling(t) (7.23)

Finally, for the SOC, LOH and HS constraints:

S OCmin ≤ S OC(t) ≤ S OCmax

LOHmin ≤ LOH(t) ≤ LOHmax

HS min ≤ HS (t) ≤ HS max

(7.24)

7.1.3/ CONFLICTING GOALS OF LOAD SERVICE ENTITY AND MICROGRIDS

Based on the above, the objective functions of LSE and MGs are all to minimize the op-
eration cost. But from problem (7.1) and problem (7.9), we can see that the decision vari-
ables PriceLS E(t) and PriceMGi(t), i = 1, ...,N are conflicting variables from the LSE’s view
and MGs’ view. This means that the LSE prefers a higher LSE selling price PriceLS E(t)
and a lower MGs selling price PriceMGi(t), i = 1, ...,N. But MGs prefer a lower LSE selling
price PriceLS E(t) and a higher MGs selling price PriceMGi(t), i = 1, ...,N.

Here, a simulation example is adopted to describe the relationship between price
(PriceLS E(t), PriceMGi(t), i = 1, ...,N) and operation cost. The results can be seen in Fig.
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Figure 7.4: Relationship between price (PriceLS E(t), PriceMGi(t), i = 1, ...,N) and operation
cost.

7.4. We can see that, as the price increases, the operation cost of MGs increases, but
the operation cost of the LSE is decreasing.

This conflict phenomenon is presented in Fig. 7.5. When the LSE selling price PriceLS E(t)
is set at Price1, the operation cost of the LSE is large, but the operation cost of MGs
are small, then the LSE is not satisfied; When the LSE selling price PriceLS E(t) is set at
Price2, the operation cost of the LSE is small, but the operation cost of MGs is large, then
MG is not satisfied.

How to deal with this conflict goals of the LSE and MGs? Here, we choose the total cost
as the index to make both the LSE and MGs satisfied, namely, when the total cost of the
whole system is minimal, both the LSE and MGs are satisfied, and an optimal price Price∗

is decided. The total cost of LSE and MGs is a convex function, so an optimal point Price∗

is exist.

Figure 7.5: Conflict price of PriceLS E(t) in LSE and MGs.

7.1.4/ GA SEARCH FOR THE PRICE

The prices PriceLS E(t) and PriceMGi(t), i = 1, ...,N are the elements to link the LSE and
MGs together. PriceLS E(t) is a variable in the LSE optimization problem, but is treated
as parameters in MGs optimization problem. PriceMGi(t), i = 1, ...,N are variables in MGs
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optimization problem, but are treated as parameters in LSE optimization problem.

It is difficult to solve this bilevel problem. Here we adopt GA to search for the price,
namely, PriceLS E(t) and PriceMGi(t), i = 1, ...,N are updated by the GA method. This means
that in each step optimization of LSE and MGs, variables of PriceLS E(t) and PriceMGi(t), i =

1, ...,N are transferred to the decided parameters. The solving method flow chart can be
seen in Fig. 7.6.

Figure 7.6: Flow chart of the price decision problem.

In each step, firstly, GA gives the values of PriceLS E(t) and PriceMGi(t), i = 1, ...,N. These
price values are sent to each MG, then each MG runs its own optimization problem (7.9).
Based on the optimization results of each MG, the total bought energy from the LSE
Tbuy(t) =

∑N
MGi=1 S ellMGi(t) and the total sold energy to the LSE Tsell(t) =

∑N
MGi=1 BuyMGi(t)

are calculated. After that, the LSE runs its own optimization problem (7.1). Then the
objective function results of the LSE and MGs are transferred to the ISO. The ISO updates
the new prices of PriceLS E(t) and PriceMGi(t), i = 1, ...,N based on fitness function (7.25).
This process is repeated until the stopping criterion is satisfied. In our simulation, the
stopping criterion is the maximum number of iterations of GA.

The fitness function of the GA is the total cost of LSE and MGs:

F = CLS E +

N∑
i=1

CMGi (7.25)

Then whole problem can be written as:

min
Price


 N∑

i=1

{
min

price∗,exch
CMGi

}
+ min

price∗,
∑N

i=1 exch∗i
CLS E




s.t. (7.2), (7.3), (7.4), (7.5), (7.6), (7.7), (7.8), (7.13), (7.18), (7.19),

(7.20), (7.21), (7.23), (7.22), (7.24)

(7.26)

price∗ ∈ Price is the best price for each MG and LSE. exch∗ ∈ exch is the exchanged
energy between MG and LSE.

The whole simulation process can be summarized as:
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Algorithm 1 Simulation process
initialize set PriceLS E, PriceMGi , i = 1, ...,N;
for k = 1 : kmax do

each MG solves problem (7.9);
The LSE calculates Tbuy and Tsell;
The LSE solves problem (7.1);
The ISO calculates the fitness function (7.25);
The ISO updates price PriceLS E, PriceMGi , i = 1, ...,N based on GA;
k=k+1;

end for

7.1.5/ EQUILIBRIUM OF THE ABOVE METHOD

The above section presents the solving method. The mathematic flow chart of the method
can be seen in Fig. 7.7. This is a closed loop method, but the question is whether this
method can reach an equilibrium or not? Namely, whether this method can converge to
find the optimal price.

Assume a random price p̃, which is not the optimal price. Based on this price, the op-
eration cost of MGs can be calculated as C̃MGi = min g(p̃), and the exchanged energy is
Q̃ = arg min g( p̃). Then, the total exchanged energy is transferred to the LSE, and the
operation cost of LSE is calculated as C̃LS E = min f ( p̃,

∑
Q̃) = min f ( p̃,

∑
arg min g( p̃)).

After that, the operation cost of the LSE and total operation cost of MGs are trans-
ferred to GA. The fitness value is then calculated as ˜f itness = Fitness(C̃LS E ,

∑
C̃MGi) =

Fitness(min f ( p̃,
∑

arg min g( p̃)),
∑

min g(p̃)). Based on the characteristics of GA, because
the fitness value ˜f itness is not the minimum, then a new price pnew = F( ˜f itness) is updated,
F(.) represents the selection, crossover, and mutation in GA. This means that if price p̃ is
not the optimal price p∗, a new price will be updated until optimal price is reached.

This method is convergent to find the optimal price, when the operation function of MG
min g(p), the function of LSE min f (p,Q) is solvable.

7.1.6/ COMPARISON WITH THE COURNOT MODEL

In this subsection, we compare the combined GA and MILP method with a method based
on the Cournot model. In the Cournot model, each player competes on output quantity,
and there is a relationship between price p and output quantity Q: p = P(Q). In our model,
each MG and LSE also compete on the ouput quantity (exchanged energy). Thus, we
developed a price decision method based on Cournot model. The flow chart can be seen
in Fig. 7.8.

We assume that the price-quantity relationship P(p,Q) is a linear function: P : p = a−b∗Q.
This method can be summarized as follows:

1. Initialize the prices of PriceLS E and PriceMG, iteration number k = 0;

2. Each MG calculates optimization (7.9), calculates the operation cost CMGi and ob-
tains the bought energy from the LSE S ellMGi(t);
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Figure 7.7: Flow chart of the price decision mathematic solving method.

Figure 7.8: Flow chart of the price decision method based on Cournot model.

3. The LSE solves problem (7.1), calculates the operation cost CLS E, and the bought
energy from MG BuyMGi(t);

4. Each MG updates the price-quantity function based on operation cost CMGi , namely,
aMGi(k+1) = aMGi(k)+γ×

CMGi (k+1)−CMGi (k)
CMGi (k+1) , and then calculates new price PriceMGi(k+1);

5. LSE updates the price-quantity function based on operation cost CLS E, namely,
aLS E(k + 1) = aLS E(k) + γ × CLS E(k+1)−CLS E(k)

CLS E(k+1) , and then calculates the new price
PriceLS E(k + 1);

6. k = k + 1;

7. Repeat 2)-6), until the maximum iteration number kmax;

where γ is a coefficient to adjust the value a.
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The resulting simulation results are presented in Section 7.2.

7.2/ SIMULATION RESULTS

7.2.1/ SYSTEM SETUP

In our model Case I, there are four MES microgrids, the electricity/heating/cooling de-
mands in one typical day are shown in Fig. 7.9. The penalty values are arbitrarily chosen
as α = β = γ = 1010. The capacity of each component in each microgrid is shown in Ta-
ble 7.1, and is the same for the four MGs. Two different PV panel numbers are adopted to
compare the influence of renewable energy penetration on the price: PV1 = 50, PV2 = 100,
the rated power of one PV panel is 0.17kW under standard test conditions (STC). This
means that the output power of PV can be calculated as PV · 0.17 · S olar. S olar is the
global solar radiation received by the panels in kW/m2. The capacity of each component in
the LSE is: PV = 500, Pmax

f c = Pmax
ele = 100kW,Hy = 1000N.m3,Cba = 100kWh. The minimum

and maximum prices are 0.1 e/kWh and 0.5 e/kWh.

Figure 7.9: Load demand in the four microgrids.

Table 7.1: Capacity of each component in each microgrid

Component Capacity Component Capacity

Fuel cell 10kW Heat boiler 10kW
Electrolyzer 10kW Air conditioner 10kW
H2 tanks 100 N.m3 AHC 10kW
Battery 10 kWh Heat storage 80 kWh
PV-heat 10 – –
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7.2.2/ SIMULATION RESULTS

For comparisons, we deploy four cases, which is shown in Table 7.2.

• case1a: with TOU (time of use) price, we do not consider the LSE, all MGs connect
to the utility grid directly, the PV panels number in each MG is PV1 = 50;

• case1b: we deploy the new searched price in the UG-LSE-MGs system, the PV
panels number in each MG is PV1 = 50;

• case2a: TOU price, the PV panels number in each MG is PV2 = 100;

• case2b: we deploy the new searched price, the PV panels number in each MG is
PV2 = 100.

Table 7.2: Four different cases.

Case PV number price

case1a PV1 = 50 TOU
case1b PV1 = 50 new price
case2a PV2 = 100 TOU
case2b PV2 = 100 new price

Figs. 7.10, 7.11, 7.12, 7.13, 7.14, 7.15 show the simulation results for case 1b. Fig.
7.10 shows the scheduling results in MGA after deploying the new searched price. The
second figure in Fig. 7.10 shows that at each time, MGA either sells energy to the LSE or
buys energy from the LSE. Here ’Max sell’ is the maximum energy that MGA can sell at
each time step. How much the LSE will buy is decided by its operation problem, but can
not exceed ’Max sell’. Hydrogen storage system and battery storage system are used to
supply the demands inside MGA, also to sell energy outside to LSE. Heat storage system
is used to balance the power between heating demands and the thermal solar.

Fig. 7.14 shows the energy exchanged by the LSE. We can see that the LSE operates
well in an ’energy exchange pool’ role. At time 19:00, MGA, MGC and MGD sell their
energy to the LSE (the 1st, 3rd, 4th figures in Fig. 7.15), then the LSE imports the other
energy from the utility grid (the third figure in Fig. 7.14), and with its local storage systems
(the fourth and fifth figure in Fig. 7.14), sells energy to MGB (the 2nd figure in Fig. 7.15).
The third figure shows the exchanged energy with the utility grid. The fourth and fifth
figures show the energy change in hydrogen tanks and the battery system.

Fig. 7.15 shows the exchanged energy in different MGs. In each time step, each MG
either buys energy form the LSE or sells energy to the LSE, or does nothing with the
LSE. The ’Max sell’ is the maximum energy that can be sold to the LSE in the MG, which
is decided by the operation problem of each MG, and is treated as a constraint in the LSE
operation problem. The ’Actual sell’ is the actual selling energy from an MG to the LSE
(cannot exceed the ’Max sell’), which is decided by the operation of LSE (combined with
the ’Max sell’ constraint).

Table 7.3 shows the objective function results in different cases. Comparing case1a and
case1b, we can see that after deploying the new searched price, the operation cost (ob-
jective function) of each MG is reduced, which means that the new prices give a better
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Figure 7.10: Microgrid MGA.

Figure 7.11: Microgrid MGB.

Table 7.3: Objective function results in different cases.

Case Total cost MGA MGB MGC MGD

case1a 1.3534e+4 2.5376e+3 1.7478e+4 4.1445e+3 -1.0626e+4
case1b -2.8603e+4 -4.1863e+3 8.5447e+3 -1.1293e+3 -3.1832e+4
case C -1.9142e+4 -1.0981e+4 1.3052e+4 3.9076e+3 -2.9410e+4
case2a 2.1244e+3 -3.1483e+2 1.4626e+4 1.2921e+3 -1.3479e+4
case2b -5.2736e+4 -1.0079e+4 3.1080e+3 -7.6013e+3 -3.8164e+4

guidance for consumers to arrange their demands. The negative values mean that an MG
can earn profits. Comparing case1b and case2b, we can see that with higher penetration
of renewable energy, the operation cost (objective function) of each MG is reduced more.
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Figure 7.12: Microgrid MGC.

Figure 7.13: Microgrid MGD.

This is because with a higher penetration of renewable energy, on the one hand, an MG
can reduce the bought energy from the LSE, and on the other hand, an MG can also sell
more energy to the LSE, leading to a smaller operation cost.

Table 7.4: Cost of actual exchanged energy in different cases.

Case Total cost MGA MGB MGC MGD LSE

case1b 70.6965 15.9647 55.7625 15.0009 -16.0315 -57.1048
case2b 67.3723 10.8264 57.0426 11.5537 -12.0505 -36.6018

Table 7.4 shows the cost of actual exchanged energy in case1b and case2b. For MGs,
it includes the buying cost from the LSE and the selling profits to the LSE. For the LSE,
it includes the buying cost from UG, the buying cost from MGs, and the selling profits to



120CHAPTER 7. SIZING AND PRICE DECISION ALGORITHM FOR GRID-CONNECTED MICROGRIDS

Figure 7.14: Load service entity LSE.

Figure 7.15: Comparision of four microgrids.

MGs. We can see that in both cases, MGD and the LSE earn profits. But in case2b,
due to the higher penetration of renewable energy, the bought energy from the LSE will
decrease, which leads to the smaller cost of actual exchanged energy in each MG, and
also to smaller earned profits by the LSE.

7.2.3/ SIMULATION RESULTS BASED ON THE COURNOT MODEL

Based on the method described in Section 7.1.6, with γ = 0.05, kmax = 50. The simulation
results can be seen in Fig. 7.16. The operation costs are shown in Table 7.3, namely,
case C. We can see that the searching price based on the Cournot model (case C) is
better than the TOU price (case 1a), but worse than that based on GA (case 1b), from
the view of the total cost of the whole system. This is because in the GA method, the
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operation cost of LSE and MGs are considered at the same time, but in the Cournot
method, the LSE and MGs update the prices independently.

Figure 7.16: Simulation results based on the Cournot model.

The comparison between the GA method and the Cournot method are summarized in
Tab. 7.5. For the GA method, in each iteration, it needs to calculate all generations. But
for the Cournot method, in each iteration, it just needs to calculate one generation. Thus,
the simulation time of the GA method is larger than the Cournot method. An index is

defined to estimate the performance of different methods, namely, Index =
Cmodel

totalcost−CTOU
totalcost

CTOU
totalcost

.

The Index is smaller, and the total cost is smaller than that with the TOU price. This means
that the new searching prices are better than the TOU price. Thus, the performance of
the method is better.

Table 7.5: Comparison between the GA method and the Cournot method.

Model One iteration
simulation time

Solving
method

Index

GA + real model 54.092573 s branch and bound −286.35%
Cournot + real model 5.501051 s branch and bound −236.89%

7.3/ SIMULATION RESULTS FOR CASE II

In this section, we present a benchmark case. The IEEE 30-node network is taken
as the utility grid, and four LSEs are connected directly into the utility grid. In each
LSE, four MGs are connected. For this network, there are 16 MGs, and 4 LSEs, each
MG/LSE can buy/sell energy to LSE/MG, LSE can also buy energy from the utility grid.
Then the problem is how to decide the price for MGs and LSEs. The variables include
priceagg j, priceMGi j, i = {A, B,C,D}, j = {1, 2, 3, 4}.

The structure of the IEEE 30-node network can be seen in Fig. 7.17. The whole structure



122CHAPTER 7. SIZING AND PRICE DECISION ALGORITHM FOR GRID-CONNECTED MICROGRIDS

of this network can be seen in Fig. 7.18. The price range is set between 0.1 e/kWh and
0.2 e/kWh. Two cases are compared, as shown in Tab. 7.6:

Table 7.6: Four different cases.

Case PV number price

case3a PV1 = 50 TOU
case3b PV1 = 50 new price
case4a PV2 = 100 TOU
case4b PV2 = 100 new price

Figure 7.17: IEEE 30 nodes network.

Figure 7.18: IEEE 30 nodes network connecting with LSEs and MGs.

The simulation results are shown in the following. Fig. 7.19 shows the operation of load
service entity LSE1. Fig. 7.20 shows the comparison of four MGs in LSE1. Comparing
Figs. 7.19 and 7.20, it can be seen that LSE1 plays the role of “energy exchange pool”. At
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time 19:00, MGA1 and MGD1 sell enegy to LSE1, then combine with LSE1’s local storage
system, selling enegy to the other MGs (MGB1 and MGC1 buy energy from LSE1).

Figs. 7.21, 7.22, and 7.23 show the operation of LSE2, LSE3 and LSE4. It can also be
seen that the LSEs play the role of the “energy exchange pool” well. It can buy energy
from the “surplus” MGs, and sell energy to the “shortage” MGs. This control is achieved
by the real-time guidance price. Fig. 7.24 shows the voltage in utility grid, where we can
see that the voltage is in the normal range. Fig. 7.25 shows the change of the voltage of
nodes at different times.

Figure 7.19: Load service entity LSE1

Figure 7.20: Comparision of four microgrids in load service entity LSE1.

Tab. 7.7 shows the detailed objective function results in each MG and LSE. Tab. 7.8
shows the total objective function and the cost of the utility grid in each case. It can
be seen that after deploying the new real-time price, the total cost of the whole system
is reduced, which means that the new price gives a better guidance for the users to
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Figure 7.21: Load service entity LSE2

Figure 7.22: Load service entity LSE3

rearrange their load demand profiles. On the other hand, it can also be seen that not
all MGs reduce their operation cost. For example, case3a and case3b for MGB3. This
is because the fitness function in GA is the sum of all objective functions (see equation
(7.25)), we can not guarantee to reduce each objective function, but only the sum of all
objective functions can be guaranteed to be reduced. Fig. 7.26 shows the comparison of
the objective function results in case II. It can be seen that the tendency of the operation
cost in the four cases is: case3a ≥ case3b ≥ case4a ≥ case4b. Tab. 7.9 shows the cost of
actual exchanged energy.
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Figure 7.23: Load service entity LSE4

Figure 7.24: Voltage in utility grid

7.4/ SIMULATION BASED ON THE NEURAL NETWORK MODEL

After we deploy the above 16 microgrids test model, we need to consider another prob-
lem, namely that when there are hundreds of microgrids, it will take a long simulation time
to search for the price. For example, if there are 150 microgrids, in the GA, there needs
to be 150 ∗ 20 ∗ 100 = 3 ∗ 105 optimizations for the whole process (20 generations, 100
iterations), which will take a long simulation time. So how to solve this problem?

In this section, we developed a neural network based price searching model. We use a
neural network to estimate the performance of the whole system [156]. Then, GA is used
to search for the best price. This model can be seen in Fig. 7.27.

For the neural network model, firstly, we need to train the model based on the training
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Figure 7.25: Voltage in utility grid (color change)

Table 7.7: Detailed objective function results in case3 and case4.

Case MGs total MGA1 MGB1 MGC1 MGD1 LSE1

case3a 1.7201e+3 -1.4027e+3 1.7481e+4 204.9639 -1.4563e+4 968.5433
case3b -3.5613e+3 -2.7844e+3 1.5494e+4 -1.6485e+3 -1.4622e+4 1.7565e+3
case4a -9.6897e+3 -4.2551e+3 1.4628e+4 -2.6475e+3 -1.7415e+4 901.5402
case4b -1.4147e+4 -3.9681e+3 1.2044e+4 -3.2717e+3 -1.8952e+4 939.6796
Case MGs total MGA2 MGB2 MGC2 MGD2 LSE2

case3a 1.2841e+6 1.3085e+5 2.8670e+5 3.0801e+5 5.5859e+5 1.7364e+5
case3b 1.2753e+6 1.2964e+5 2.8346e+5 3.0590e+5 5.5628e+5 1.7517e+5
case4a 1.2727e+6 1.2799e+5 2.8385e+5 3.0516e+5 5.5572e+5 1.6713e+5
case4b 1.2456e+6 1.2537e+5 2.7653e+5 2.9772e+5 5.4595e+5 1.7239e+5
Case MGs total MGA3 MGB3 MGC3 MGD3 LSE3

case3a 7.4718e+5 7.3250e+4 1.5729e+5 1.8024e+5 3.3641e+5 9.5585e+4
case3b 7.4882e+5 7.2636e+4 1.5830e+5 1.7997e+5 3.3791e+5 9.7462e+4
case4a 7.3577e+5 7.0398e+4 1.5444e+5 1.7738e+5 3.3355e+5 9.2892e+4
case4b 7.2611e+5 6.8116e+4 1.5235e+5 1.7473e+5 3.3092e+5 9.1794e+4
Case MGs total MGA4 MGB4 MGC4 MGD4 LSE4

case3a -1.6521e+3 -4.7333e+3 1.1209e+4 3.4823e+3 -1.1610e+4 176.1018
case3b -7.8929e+3 -6.0900e+3 9.8742e+3 2.2700e+3 -1.3947e+4 1.4929e+3
case4a -1.3062e+4 -7.5857e+3 8.3568e+3 629.8449 -1.4463e+4 281.7876
case4b -1.7517e+4 -8.2467e+3 7.0429e+3 -188.6105 -1.6124e+4 643.2442

data. We use the prices as the input data, and the target is the optimization results
(objective function results) of each MG and LSE. The input and target matrix can be
shown as in Fig. 7.28.

The training data is obtained based on the simulation results from the real model (Fig.
7.18). There are 80 training cases, the neural network is trained based on the neural
network tool in matlab. After the training model is completed, then we can use this model
to estimate the performance of the whole system. We still use GA to search for the price.
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Table 7.8: Total objective function results in case3 and case4.

Case Total cost cost of the utility grid

case3a 2.3018e+6 1.9930e+5
case3b 2.2885e+6 1.9929e+5
case4a 2.2469e+6 1.9932e+5
case4b 2.2058e+6 1.9932e+5

Figure 7.26: Comparison of objective function results in case II.

Table 7.9: Cost of actual exchanged energy in case3 and case4.

Case MGs total MGA1 MGB1 MGC1 MGD1 LSE1

case3b 48.2784 12.6390 36.3526 12.2915 -13.0048 -46.5969
case4b 40.1218 4.2615 37.8066 7.4564 -9.4027 -38.4526
Case MGs total MGA2 MGB2 MGC2 MGD2 LSE2

case3b 700.9898 60.1388 161.6076 192.8246 286.4188 -72.4367
case4b 643.6114 51.8099 148.3537 177.0427 266.4050 -30.2215
Case MGs total MGA3 MGB3 MGC3 MGD3 LSE3

case3b 426.7232 36.9526 91.0320 122.2066 176.5319 -80.8314
case4b 386.9503 33.5274 76.5852 111.7526 165.0852 -60.9570
Case MGs total MGA4 MGB4 MGC4 MGD4 LSE4

case3b 25.2160 4.5121 15.8618 9.0177 -4.1757 -25.2160
case4b 29.3022 7.8656 20.4954 8.4728 -7.5316 -29.3022

The simulation results can be seen in Tab. 7.10. case4a is the operation results based
on time of use price, case4b is the operation results based on the real model with the GA
searching price, case5 is the operation results based on the neural network model with
the GA searching price, case6 is the operation results based on the real model with the
price from case5, namely, to check the obtained price from case5 with the real model.
It can be seen that, comparing case5 and case6, the error is about 6.5%. Comparing
case4b and case6, we can see that, based on the real model, better results are obtained.
Comparing case4a and case6, we can see that, based on the NN model, the obtained
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Figure 7.27: Neural network simulation model.

Figure 7.28: Neural network input and target matrix.

prices are still better than TOU price.

Actually, the accuracy of the NN model is highly dependent on the obtained training data
and the use of the NN model. But this method can still provide some estimated results
and provide guidance for consumers and utility grid.

Table 7.10: Total objective function results in different cases.

Case Total cost cost of the utility grid

case4a (TOU price) 2.2469e+6 1.9932e+5
case4b (Real model) 2.2058e+6 1.9932e+5

case5 (NN model) 2.0788e+6 1.9930e+5
case6 (Real model check) 2.2233e+6 1.9928e+5

The simulation results based on the real model and the neural network model are com-
pared in Tab. 7.11. For the real model (Fig. 7.18), in each iteration, GA gives the prices,
then the optimization problem of LSEs, MGs and utility grid are run to calculate the oper-
ation costs. The simulation time for one iteration is about 102.995639 seconds. For the
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neural network model, for each iteration, GA gives the prices, then the operation costs of
the whole system is calculated based on NN model, the simulation time for one iteration is
about 1.758580 seconds. This is because in the NN model, the complex system is fitted
into a hyper-function fNN based on the training cases, which means that in each iteration
of GA,the NN model is actually to calculate the results of hyper-function fNN . This leads
to a shorter simulation time.

Table 7.11: Comparison between real model and neural network model.

Model One iteration time Solving method Error

GA + real model 102.995639 s branch and bound 0%
GA + NN model 1.758580 s function fNN 6.5%

7.5/ DISCUSSION

For the future electricity grid, large numbers of renewable energy resources and storage
systems will be integrated, which will make the operation of the whole system a complex
problem. For example, a small capacity of distributed renewable energy resources will be
integrated in smart homes/smart buildings, and a large capacity of centralized renewable
energy resources will be integrated in load service entities. So how to make this system
operate is a difficult problem.

In this chapter, we provide an interesting exploration. We use the prices as the only
guidance to make the whole system operate well. Firstly, each MG runs the energy man-
agement optimization based on prices. After that, the LSE runs the energy management
optimization based on the demands from MGs and the prices. Then, the utility grid,
based on the demands from LSEs, runs the optimal power flow optimization to schedule
the generators which connect with the utility grid.

On the other hand, we can also see that, after the penetration percentage of the renew-
able energy in MGs and LSEs are increased, the bought energy from the utility grid is
reduced. This means that if we make a good guidance for MGs, we can just import small
amount of energy from the utility grid, which can improve the resilience of the whole sys-
tem. If the utility grid is damaged, MGs and LSEs can operate together to supply the load
demands.

The above method can provide better prices for the whole system to reduce the operation
cost compared to the time of use price. But when there are large numbers of microgrids,
the price searching algorithm will take a long time. Thus we presented a NN model to
estimate the performance of the whole system. The simulation results show that the error
between the real model and the NN model is about 6.5%. Although the searching price
based on NN model is not better than the searching price based on the real model, it is
better than the time of use price.
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7.6/ SIZING OF GRID-CONNECTED MICROGRID CONSIDERING

PRICE

The above sections discussed about the price decision method for multiple grid-
connected MES MGs. It should be noticed that the sizing values of each component
in each MG and LSE are given. Based on these given sizing values (rated capacity), we
can search for the best price, which can make the whole system operate in minimal cost.

In this section, we discuss about the sizing problem based on different prices. Namely,
with the given prices, we search for the best sizing values for each MG and LSE to design
the whole system under minimal total cost.

7.6.1/ PROBLEM FORMULATION

The goal is to compute the optimal size value of each component for MGs, namely,
NMG,i

PV ,NMG,i
sh ,CMG,i

bat , PMG,i,max
f c , PMG,i,max

el ,V MG,i,max
H2

, PMG,i,max
hb , PMG,i,max

ac ,QMG,i,max
ahc , HS MG,i,max,

and for the LSE, namely, NLS E
PV ,NLS E

sh ,CBLS E , PLS E,max
f c , PLS E,max

el ,VLS E,max
H2

. Let set U rep-
resent these sizing variables. Then the sizing problem is minF(U), with F(.) the total cost
function introduced in the following.

The total capital cost corresponds to the cost of buying the equipment for MG i, given by:

CMG,i
cap = CRF · (NMG,i

PV ·Cinv
PV + NMG,i

sh ·Cinv
sh + PMG,i,max

f c ·Cinv
f c

+ PMG,i,max
el ·Cinv

ele + V MG,i,max
H2

·Cinv
tank + CMG,i

bat ·C
inv
bat

+ PMG,i,max
hb ·Cinv

hb + PMG,i,max
ac ·Cinv

ac + PMG,i,max
ahc ·Cinv

ahc

+ HS MG,i,max ·Cinv
hs )

(7.27)

The capital cost for the LSE can be written as:

CLS E
cap = CRF · (NMG,i

PV ·Cinv
PV + PMG,i,max

f c ·Cinv
f c + PMG,i,max

el ·Cinv
ele + V MG,i,max

H2
·Cinv

tank + CMG,i
bat ·C

inv
bat)

(7.28)

Similarly, the annual maintenance cost is given by:

Cmnt = NPV ·Cmnt
PV + VH2 ·C

mnt
tank + Cbat ·Cmnt

bat (7.29)

The total cost function F(.) is thus:

F =

N∑
i=1

{
CMG,i

cap + CMGi + CMG,i
mnt

}
+

{
CLS E

cap + CLS E + CLS E
mnt

}
= Call

inv +

N∑
i=1

CMGi + CLS E;

Call
inv =

N∑
i=1

{
CMG,i

cap + CMG,i
mnt

}
+

{
CLS E

cap + CLS E
mnt

}
(7.30)
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Then the whole problem can be written as:

min
U

Call
inv +

 N∑
i=1

{
min

U∗,price∗,exch
CMGi

}
+ min

U∗,price∗,
∑N

i=1 exch∗i
CLS E




s.t. (7.2), (7.3), (7.4), (7.5), (7.6), (7.7), (7.8), (7.13), (7.18), (7.19),

(7.20), (7.21), (7.23), (7.22), (7.24)

(7.31)

U∗ ∈ U is the best sizing values for each MG and LSE. price∗ is the given price. exch∗ ∈
exch is the exchanged energy between MG and LSE.

This sizing problem can be described as: under the given price price∗, searching for the
best sizing values U∗ ∈ U which can make the whole system operate under minimal total
cost, and at the same time, ensure the energy exchange between MGs and LSE. It should
be pointed out that the price is a given parameter. This is because only with the given
price, the energy flow in the whole system can be decided, then the sizing values can be
searched.

The simulation flow chart can be seen in Fig. 7.29.

Figure 7.29: Flow chart for sizing problem considering price.

With the given sizing values from the GA algorithm, firstly, each MG runs its operation
problem (7.9). Then, the total bought energy Tbuy and sold energy Tsell are transferred to
the LSE. Next, the LSE runs its operation problem (7.1). After that, the fitness functions
(total cost) 7.30 are calculated; and at last, GA updates the new population of sizing
values. This process is repeated until the stopping criteria are satisfied.

7.6.2/ SIMULATION RESULTS

We take Case I as the example. In Case I, there are 4 MGs and 1 LSE. GA generates the
sizing values for 4 MG and 1 LSE, there are 45 variables (10 components in each MG, 5
components in the LSE). Two cases are compared:
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• case s1: The given price is the TOU, namely, Priceug = PriceLS E = PriceA = PriceB =

PriceC = PriceD;

• case s2: The given price is the searching price from case 1b.

To reduce the simulation time, we just adopt one day (Fig. 7.9) to check the sizing results
(in practice, several typical days should be checked). Sizing results of each MG and LSE
are shown in Tab. 7.12 and Tab. 7.13.

Table 7.12: Sizing results for case s1.

Strategy NPV Pmax
f c [kW] Pmax

el [kW] VH2 [N.m3] Cbat [kWh] Nsh [m2] Pmax
hb HS [kWh] Pmax

ac Qmax
ahc

MGA 57.1 97.5 12.5 318.5 31.1 17.8 64.1 47.9 84.6 41.7
MGB 56.8 42.0 29.2 905.5 43.3 11.0 64.9 56.0 92.2 41.3
MGC 55.2 9.2 37.3 165.1 35.6 13.2 36.7 51.1 34.6 30.5
MGD 54.3 68.7 42.0 219.2 33.5 14.3 60.8 76.0 14.2 76.9
LES 419.8 176.1 110.8 1853.9 143.8 – – – – –

Table 7.13: Sizing results for case s2.

Strategy NPV Pmax
f c [kW] Pmax

el [kW] VH2 [N.m3] Cbat [kWh] Nsh [m2] Pmax
hb HS [kWh] Pmax

ac Qmax
ahc

MGA 64.1 103.7 121.3 287.9 388.8 30.9 81.5 98.6 59.6 7.2
MGB 63.4 103.7 10.8 676.1 231.6 17.6 38.4 69.4 36.2 9.4
MGC 58.2 13.9 182.7 282.7 42.7 11.8 12.3 77.8 7.1 30.3
MGD 79.1 14.4 61.4 353.9 797.9 5.7 57.8 53.3 90.8 23.8
LES 343.6 118.0 81.5 731.5 159.7 – – – – –

We compare the sizing results of the two cases. Fig. 7.30 shows the sizing results for
MGA under two different prices (TOU price and searching price from case 1b). We can
see that, with different given prices, the sizing results are significantly different. This is
because the price decides the power flow inside MGs and LSE, which then influences the
sizing results. Fig. 7.31 shows the sizing results for the LSE under two different prices
(TOU price and searching price from case 1b). We can see that the sizing results for
the LSE in case 2s is smaller than that in case 1s. This is because in case 2s, the LSE
bought more power from utility grid (because it is cheaper than utilizing its own storage
energy), leading to a smaller capapcity of installed power source and storage system.

Figure 7.30: Sizing results for MGA under two different prices (TOU price and searching
price from case 1b).
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Figure 7.31: Sizing results for LSE under two different prices (TOU price and searching
price from case 1b).

7.7/ CONCLUSION

In this chapter, we presented a bidding price decision approach for multiple MES micro-
grids considering DR. The LSE was introduced to play a middle agent role, which can
benefit both utility grid and consumers. The LSE integrates the local generation, energy
storage systems and renewable energy, which can not only provide auxiliary service to
regulating power market, but also provide an incentive price to consumers. On the other
hand, the MG integrates with renewable energy can also sell energy to UG/LSE. Then
how to decide the electricity selling prices for LSE and each MG are problems.

A combined GA and MILP method was proposed to solve this problem. MILP is used
to control the operation of LSE and each MG. GA is used to search for the best prices.
Then a four MES MGs model was used, and four cases were compared to research
about the influence of PV penetration and different prices on the operation costs. We
then developed a decentralized optimization method, namely, each MG just runs its own
optimization problem, then the LSE runs its own operation problem, at last, operation cost
of LSE and each MG are transferred to an ISO to update the prices based on GA. The
simulation results showed that the new searched price works better than the TOU price,
which can reduce the operation cost of the whole system. Also with higher penetration of
renewable energy in MG, the bought energy from the utility grid was reduced.

A large system was tested, in which 4 LSEs, 16 MGs and IEEE30-node network are con-
sidered. The simulation results also showed the effectiveness of the proposed algorithm.

In order to reduce the GA searching time, a neural network model was presented to
estimate the performance of the whole system, the simulation results showed that the
searching prices based on the NN model was better than the TOU price.

After that, the sizing algorithm for grid-conneted MES MGs under different prices were
presented. With different given prices, power flow inner MGs and LSE was different, then
the sizing values in MGs and LSE were different. Two different price cases were com-
pared, the results showed that, price significantly influenced the sizing values. Especially
for LSE, when selling price of MG was high, LSE preferred buying energy from utility grid,
and leading to smaller installed capacity of power source and storage system.
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8
CONCLUSION

This chapter is the conclusion of the whole dissertation. It discusses four aspects: 1) a
summary of this dissertation; 2) the list of contributions; 3) the practical application of

the proposed co-optimization sizing method; and 4) future works.

8.1/ SUMMARY

In this dissertation, we focused on the sizing and operation problem of hydrogen-based
microgrids. We considered islanded microgrids (sections 4 and 5), and grid-connected
microgrids (section 6). Then we solved this problem while considering different specific
aspects, including the operation strategy (2.2), the sizing method (2.3), the uncertainty on
load demands (2.2.1), the degradation of energy storage system (5.3.4), and the results
validation (4.3.8, 5.3.3). For grid-connected microgrids, we also considered the influence
of contingency events on the utility grid (sections 6.2.3, 6.3). Finally, a prices decision
approach was also studied (section 7).

Firstly, for the operation strategies, we determined that three methods are often used:
the rule-based strategy, the evolutionary algorithm, and the deterministic algorithm (such
as LP, MILP). We reviewed related operation strategies of microgrids in section 2.2. In
this thesis, the MILP operation strategy was adopted to control the operation of microgrid
models.

Secondly, for the sizing method, the leader-follower (co-optimization) structure is often
adopted. Related works about sizing methods was summarized in section 2.3. The
leader is typically the sizing problem, which uses a searching algorithm to search for the
best sizing values. The follower is the operation problem, which uses a deterministic
algorithm to solve the operation problem based on the sizing values from the leader. In
this thesis, GA was used as the searching algorithm, and MILP was used to control the
operation of the microgrid, solved by a branch-and-bound algorithm.

Thirdly, for the uncertainty on the load demands and PV output, robust optimization was
adopted, namely, to find the worst and the best case based on the uncertainty level, which
is presented in section 2.2.1. The worst case (the case where the difference between the
PV output and the load is the largest) is when the PV output is equal to the upper bound
value, and the load is equal to the lower bound value. For the best case (the case where
the difference between the PV output and the load is the lowest), when the PV output is
equal to the lower bound value, the load is equal to the upper bound value.
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The degradation of the energy storage system was discussed in section 5.3.4. We consid-
ered the degradation model of hydrogen storage system and the battery storage system.
The simulation results showed that after we consider the degradation model, the sizing
values were significantly influenced. We especially notice an increase in the capacity of
hydrogen storage and battery storage systems.

For the sizing results check, one-hour one-day rolling horizon optimization was adopted,
as discussed in sections 4.3.8 and 5.3.3. As in the co-optimization, we often choose
several typical days to check whether sizing values are appropriate or not. We used rolling
horizon optimization to check these obtained results, and test whether there was any
necessary load shedding or curtailed power. In cases where these occured, adjustments
to the sizing values were required.

Sixth, we looked at the influence of contingency events on the utility grid, as shown in
sections 6.2.3 and 6.3. We used the betweenness centrality index to describe the relative
importance of each node for the whole system. Then we defined a worst case, namely,
when the most important node was destroyed. We included the worst case in the sizing
problem to research about the influence of utility grid contingency events on the sizing
values.

After that, for the price decision approach, we adopted the combined GA and MILP
method to obtain the best prices to reduce the operation cost of the whole system, which
can be found in section 7. MILP was used to control the operation of the microgrid and
the load service entity, and GA was used to search for the best price. At last, a neu-
ral network was also developed to estimate the performance of the whole system and
accelerate computation time.

At last, a sizing algorithm for grid-connected MES MGs under different prices was pre-
sented, as shown in section 7.6. With different given prices, power flow between MGs and
LSE was different, and so the sizing values in MGs and LSE were different. Two different
price cases were compared, and the results showed that price significantly influenced the
sizing values.

8.2/ LIST OF CONTRIBUTIONS

Based on the previous elements, we list the main contributions of this thesis as follows:

1. A bi-level optimization method to perform microgrid sizing. A genetic algorithm is
used to compute the sizing of the components to minimize the total annual cost
(capital, maintenance and operation) of the system. Each candidate solution (set of
components sizes) is evaluated with an MILP algorithm for scheduling validation;

2. A study on two types of microgrid architectures: a full-electric hydrogen-based mi-
crogrid and a multi-energy supply hydrogen-based microgrid;

3. A model of the hydrogen storage system, integrating a degradation model for the
fuel cell and the electrolyzer;

4. An MILP model to control energy flows, which considers technical and economic
criteria, such as the operation costs of the components, the startup costs of the fuel
cell and the electrolyzer, the state-of-charge of the BSS, and the level-of-hydrogen
of hydrogen tanks.
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5. A 1-h resolution rolling-horizon simulation used to verify the validity of the obtained
sizing solutions, and to adjust the sizing values if required;

6. A multi-node gas/electricity/heat network model, where a hydrogen storage system
is used to keep the power balance;

7. In order to resist to contingency events, the use of betweenness centrality to find
the worst case under contingency events, and research about the influence of con-
tingencies on the sizing results;

8. A decentralized price decision approach for UG-LSE-MGs, in which each MG and
LSE runs its own operation problem;

9. A neural network model to estimate the performance (operation cost) of the whole
system;

10. A sizing algorithm for grid-connected MES MGs under different prices is presented.

8.3/ PRACTICAL APPLICATIONS

In this section, we discuss how to use the proposed combined GA and MILP algorithm in
practical applications. It can be used in two aspects: the planning problem and the bilevel
price decision problem.

For the planning problem, we need to find the best values of each component to make the
whole system cost-effective. This is a non-convex combinational optimization problem,
where we need to consider not only the long term planning period (such as 1 year), but
also the short term operation period (such as 1 hour), which makes the planning problem
challenging. Then we can use the presented combined planning algorithm, namely, using
GA to search for the sizing values, and the MILP (or the other operation strategy) to
control the operation of the whole system. After that, we can use the 1-hour one day
rolling horizon optimization to check the obtained sizing results, and to adjust the sizing
values if required.

For the price decision problem. We need to consider both suppliers and consumers in-
terests. The price is the link between suppliers and consumers. This is a bilevel problem,
namely, the upper-level problem (the supplier operation is the upper-level problem) and
the lower-level problem (the MGs operation is the lower-level problem), which means that
price is often the decision variable in the upper-level problem, and is treated as a pa-
rameter in the lower-level problem. We can use the presented combined GA and MILP
algorithm to solve the price decision problem. GA is used to search for the prices, and the
MILP is used to control the operation of suppliers and consumers. Based on this com-
bined method, we can obtain the best prices, which can both benefit the energy suppliers
and the consumers.

8.4/ FUTURE WORK

In this thesis, we have presented a combined GA and MILP algorithm to solve the plan-
ning and price decision problem. But there are still many problems to be solved in the
future, which can be concluded in as follows:
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1. The modeling of the hydrogen storage system. The consumed hydrogen of the
fuel cell and produced hydrogen of electrolyzer will influence the sizing volume of
hydrogen tanks. In this thesis, we use a linear model to describe the consumed
hydrogen of a fuel cell and the produced hydrogen of a electrolyzer. However, more
precise models can be built, such as nonlinear models, which will be a future work;

2. The running time of the combined algorithm. Evolutionary algorithms need to
search the “optimal” points in a large searching space, which makes the combined
algorithm cost lots of time. Especially, when the inner operation problem is complex
to solve, such as the MINLP operation problem, the whole simulation time will be
very long. Then, in the future, how to reduce the simulation time is a problem;

3. Other methods to solve the bilevel sizing problem. Two stage sizing optimization
problem can be solved based on Benders decomposition method [157]. The inner
problem is the operation MILP problem, which can be transferred into a Lagrange
dual problem. Solving the inner Lagrange dual problem, a Benders type cutting plan
can be generated based on dual variables. Then, these Benders cuts are added
to the outer level problem. Using the Benders decomposition method to solve the
sizing problem will be a future work;

4. The uncertainty of the load demands, renewable energy sources (such as PV, WT),
and failure of power devices. In this thesis, we just consider the forecasted error
of the electricity load demands and PV generation, but actually, in the multi-energy
supply microgrid, there are different types of load demands. This means that when
we consider multiple forecasted error from different types of loads, the problem is
harder to solve;

5. The artificial intelligence model to estimate the performance of the power system
integrating large numbers of renewable energy resources. In the last sections of
this thesis, we presented a neural network to estimate the performance of the IEEE
30 network integrating microgrids. The error is about 6.5%, and how to reduce the
error will be researched in the future work.
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