M. F. Ashby and K. Johnson, Materials and Design: The Art and Science of Material Selection in Product Design, 2013.

D. M. Nuruzzaman and M. A. Chowdhury, Friction and Wear of Polymer and Composites, p.14, 2012.

R. Chattopadhyay and G. Tribology, Green Surface Engineering, and Global Warming, 2014.

A. Anand, M. Irfan, U. Haq, K. Vohra, A. Raina et al., ScienceDirect Role of Green Tribology in Sustainability of Mechanical Systems : A State of the Art Survey, Mater. Today Proc, vol.4, pp.3659-3665, 2017.

S. K. Sinha and B. J. Briscoe, Polymer Tribology, 2009.

B. J. Briscoe and S. K. Sinha, Tribological applications of polymers and their compositespast, present and future prospects, Tribol. Polym. Nanocomposites, pp.1-22, 2013.

G. Stachowiak and A. W. Batchelor, Experimental Methods in Tribology, 2004.

B. Bhushan, Modern Tribology Handbook, Two Volume Set, 2000.

K. Friedrich and A. K. Schlarb, Tribology of Polymeric Nanocomposites: Friction and Wear of Bulk Materials and Coatings, 2013.

K. Friedrich and A. Schlarb, Friction and Wear of Bulk Materials and Coatings (Tribology and Interface Engineering), vol.55, 2008.

, The science of self-lubrication:Debunking the Myth of, PBC Linear TM, 2010.

R. W. Bruce, CRC Handbook of Lubrication: Theory and Practice of Tribology, Theory and Design, vol.II, 2010.

C. Guerret-piecourt, S. Bec, and D. Treheux, Electrical charges and tribology of insulating materials, Comptes Rendus l'Academie Des Sci. -Ser. IV Physics, Astrophys, vol.2, pp.761-774, 2001.
DOI : 10.1016/s1296-2147(01)01218-5

URL : https://hal.archives-ouvertes.fr/hal-00163672

W. J. Bartz, History of Tribology -The bridge between the classical antiquity and the 21st Century, Proceeding 2nd World Tribol. Congr, pp.3-12, 2001.

A. Fall, B. Weber, M. Pakpour, N. Lenoir, N. Shahidzadeh et al., Sliding friction on wet and dry sand, Phys. Rev. Lett, vol.112, 2014.
DOI : 10.1103/physrevlett.112.175502

URL : https://hal.archives-ouvertes.fr/hal-01157334

B. Bhushan-;-8sq and U. K. , Introduction to Tribology, p.19, 2013.

I. M. Hutchings, Leonardo da Vinci's studies of friction, pp.51-66, 2016.

A. A. Pitenis, D. Dowson, and W. G. Sawyer, Leonardo da Vinci's friction experiments: An old story acknowledged and repeated, Tribol. Lett, vol.56, pp.509-515, 2014.
DOI : 10.1007/s11249-014-0428-7

URL : http://eprints.whiterose.ac.uk/112962/3/dlogin.pdf

N. Fulleringer, Contribution à l'étude des phénomènes de friction : application au matériau papier, 2015.

V. L. Popov, Contact mechanics and friction: Physical principles and applications, 2010.

F. P. Bowden, D. Tabor, and F. Palmer, The Friction and Lubrication of Solids, Am. J. Phys, vol.19, pp.428-429, 1951.

. Engineering-abc and . Com, History of science friction, 2005.

L. C. Van-breemen, Contact mechanics in glassy polymers, 2009.

H. Butt and M. Kappl, Surface and Interfacial Forces, 2009.

Q. Li and M. Lovell, On the critical interfacial friction of a two-roll CWR process, J. Mater. Process. Technol, vol.160, pp.245-256, 2005.

J. C. Gerdeen, . Phd, R. A. Pe, and . Rorrer, Engineering Design with Polymers and Composites, 2011.

N. K. Myshkin, M. I. Petrokovets, and A. V. Kovalev, Tribology of polymers: Adhesion, friction, wear, and mass-transfer, Tribol. Int, vol.38, pp.910-921, 2005.

A. Abdelbary, Polymer tribology, Wear Polym. Compos, pp.1-36, 2014.

A. Seireg, Friction and Lubrication in Mechanical Design, pp.0-8247, 1998.

D. H. Cho and B. Bhushan, Friction and wear of various polymer pairs used for label and wiper in labeling machine, Tribol. Int, vol.98, pp.10-19, 2016.

I. Hutchings and P. Shipway, Tribology: Friction and Wear of Engineering Materials, 2017.

V. K. Shooter and D. Tabor, The Frictional Properties of Plastics, Proc. Phys. Soc. Sect. B, vol.65, pp.661-671, 1952.

Z. Wang, D. G. Chetwynd, and K. Mao, Friction characteristics of polymers applicable to small-scale devices, Tribol. Int, vol.119, pp.698-706, 2018.

S. F. Looijmans, P. D. Anderson, and L. C. Van-breemen, Contact mechanics of isotactic polypropylene: Effect of pre-stretch on the frictional response, pp.183-190, 2018.

G. M. Bartenev and V. V. Lavrentev, Friction and Wear of Polymers, 1981.

J. Rojsatean, P. Larpsuriyakul, N. Prakymoramas, D. Thanomjitr, S. Kaewket et al., Friction characteristics of self-lubricating ABS under different surface roughnesses and temperatures, Tribol. Int, vol.109, pp.229-237, 2017.

P. Iversen and D. J. Lacks, A life of its own: The tenuous connection between Thales of Miletus and the study of electrostatic charging, J. Electrostat, vol.70, pp.309-311, 2012.

J. F. Keithley, Story of electrical and magnetic measurements: from 500 B.C. to the 1940s, 1999.

A. K. Chakraborty, S. C. Bhattacharya, and B. G. Varma, The story of electricity, 1985.

K. L. Kaiser and E. Discharge, , 2006.

S. ?. Carr, D. K. Davies, and P. Fischer, Electrical of Polymers Properties, 1982.

V. K. Jasti, Electrostatic charge generation and dissipation on woven fabrics treated with antistatic and hydrophilic surface finishes, 2012.
DOI : 10.1080/00405000.2018.1507703

M. D. Hogue, C. R. Buhler, C. I. Calle, T. Matsuyama, W. Luo et al., Insulatorinsulator contact charging and its relationship to atmospheric pressure, J. Electrostat, vol.61, pp.259-268, 2004.
DOI : 10.1016/j.elstat.2004.03.002

L. S. Mccarty and G. M. Whitesides, Electrostatic charging due to separation of ions at interfaces: Contact electrification of ionic electrets, Angew. Chemie -Int. Ed, vol.47, pp.2188-2207, 2008.

M. Williams, What Creates Static Electricity?, Am. Sci, vol.100, p.316, 2012.
DOI : 10.1511/2012.97.316

URL : http://www.electrostatics.org/images/ESA_2008_M1.pdf

C. Guerret-piécourt, J. Vallayer, and D. Tréheux, Limitation induced by electrical charges effects on micromechanisms, Wear, vol.254, pp.299-299, 2003.

M. D. Hogue, E. R. Mucciolo, and C. I. Calle, Triboelectric, corona, and induction charging of insulators as a function of pressure, J. Electrostat, vol.65, pp.274-279, 2007.

H. D. Brewster, Electrostatics, 2009.

S. Descartes, M. Renouf, N. Fillot, B. Gautier, A. Descamps et al., A new mechanical-electrical approach to the wheel-rail contact, Wear, vol.265, pp.1408-1416, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00381393

R. S. Blacker and A. W. Birley, Electrostatic charge occurrence, significance and measurement, Polym. Test, vol.10, pp.241-262, 1991.
DOI : 10.1016/0142-9418(91)90020-x

M. Glor, Ignition hazard due to static electricity in particulate processes, Powder Technol, pp.223-233, 2003.

J. N. Chubb, A Standard proposed for assessing the electrostatic suitability of materials, J. Electrostat, vol.65, pp.607-610, 2007.

B. D. Moyle and J. F. Hughes, Powder coating -corona versus tribo charging, J. Electrostat, vol.16, pp.90051-90059, 1985.
DOI : 10.1016/0304-3886(85)90051-8

F. W. Peek, Dielectric Phenomena In High Voltage Engineering, p.9781406783377, 1915.

M. Goldman, A. Goldman, and R. S. Sigmond, The corona discharge, its properties and specific uses, Pure Appl. Chem, vol.57, pp.1353-1362, 1985.
DOI : 10.1351/pac198557091353

A. Fatihou, Amélioration des performances des matériaux fibreux non-tissés chargés par décharge couronne utilisés pour la filtration de l'air, 2016.

N. Jonassen, . Electrostatics, U. S. Springer, and M. A. Boston, , 2002.

A. Reguig, A. Bendaoud, B. Neagoe, Y. Prawatya, and L. Dascalescu, Electric potential distribution at the surface of insulating materials exposed to corona discharges from various electrode configurations, J. Electrostat, vol.82, pp.55-62, 2016.

M. Morvova, the Influence of Water Vapour and Temperature on Depletion of Carbon Monoxide in D . C . Corona Discharge, vol.49, pp.1703-1719, 1999.

A. Reguig, Contribution à l'étude expérimentale et numérique de la décharge couronne dans e s différents types de configurations d'électrodes, 2017.

Y. Kimura, Maintenance tribology : its significance and activity in Japan, vol.207, pp.63-66, 1997.

Y. Kimura and H. Okabe, The current state of tribology in Japan, Tribol. Int, vol.26, pp.275-283, 1993.

K. Holmberg, P. Andersson, N. O. Nylund, K. Mäkelä, and A. Erdemir, Global energy consumption due to friction in trucks and buses, Tribol. Int, vol.78, pp.94-114, 2014.

K. Holmberg, P. Andersson, and A. Erdemir, Global energy consumption due to friction in References -132-passenger cars, Tribol. Int, vol.47, pp.221-234, 2012.

C. Reichl, M. Schatz, and G. Zsak, World Mining Data, Fed. Minist. Sci. Res. Econ. Austria, vol.31, pp.1-255, 2016.

K. Holmberg, P. Kivikytö-reponen, P. Härkisaari, K. Valtonen, and A. Erdemir, Global energy consumption due to friction and wear in the mining industry, Tribol. Int, vol.115, pp.116-139, 2017.

K. Holmberg, R. Siilasto, T. Laitinen, P. Andersson, and A. Jäsberg, Global energy consumption due to friction in paper machines, Tribol. Int, vol.62, pp.58-77, 2013.

C. Menguy and É. Statique, , 1993.

J. M. Crowley, Electrostatic fundamentals, 1995.

M. Glor, Electrostatic ignition hazards in the process industry, J. Electrostat, vol.63, pp.447-453, 2005.

H. L. Walmsley, Electrostatic ignition hazards with plastic pipes at petrol stations, J. Loss Prev. Process Ind, vol.25, pp.263-273, 2012.

S. Egan, Learning lessons from five electrostatic incidents, J. Electrostat, vol.88, pp.183-189, 2017.

G. Lüttgens, N. Wilson, and E. Hazards, Electrost. Hazards, pp.137-149, 1997.

Z. L. Wang, Triboelectric nanogenerators as new energy technology and self-powered sensors -Principles, problems and perspectives, Faraday Discuss, vol.176, pp.447-458, 2014.

Z. Li, J. Shen, I. Abdalla, J. Yu, and B. Ding, Nanofibrous membrane constructed wearable triboelectric nanogenerator for high performance biomechanical energy harvesting, Nano Energy, vol.36, pp.341-348, 2017.

W. Gong, C. Hou, Y. Guo, J. Zhou, J. Mu et al., A wearable, fibroid, self-powered active kinematic sensor based on stretchable sheath-core structural triboelectric fibers, Nano Energy, vol.39, pp.673-683, 2017.

G. Zhu, P. Bai, J. Chen, and Z. L. Wang, Power-generating shoe insole based on triboelectric nanogenerators for self-powered consumer electronics, Nano Energy, vol.2, pp.688-692, 2013.
DOI : 10.1016/j.nanoen.2013.08.002

X. Cheng, B. Meng, X. Zhang, M. Han, Z. Su et al., Wearable electrode-free triboelectric generator for harvesting biomechanical energy, Nano Energy, vol.12, pp.19-25, 2015.
DOI : 10.1016/j.nanoen.2014.12.009

S. Lee, W. Ko, Y. Oh, J. Lee, G. Baek et al., Triboelectric energy harvester based on wearable textile platforms employing various surface morphologies, Nano Energy, vol.12, pp.410-418, 2015.
DOI : 10.1016/j.nanoen.2015.01.009

A. Ahmed, S. L. Zhang, I. Hassan, Z. Saadatnia, Y. Zi et al., A washable, stretchable, and self-powered human-machine interfacing Triboelectric nanogenerator for wireless communications and soft robotics pressure sensor arrays, Extrem. Mech. Lett, vol.13, pp.25-35, 2017.

T. Huang, C. Wang, H. Yu, H. Wang, Q. Zhang et al., Human walking-driven wearable all-fiber triboelectric nanogenerator containing electrospun polyvinylidene fluoride piezoelectric nanofibers, Nano Energy, vol.14, pp.226-235, 2014.

C. Jean-mistral, T. Vu-cong, and A. Sylvestre, Advances for dielectric elastomer generators: Replacement of high voltage supply by electret, Appl. Phys. Lett, p.101, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00798563

C. Lagomarsini, A. Sylvestre, C. Jean-mistral, and S. Monfray, Coupling of electro-active polymers for energy harvesting applications, IEEE Int. Conf. Dielectr, pp.443-446, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01345338

A. Ahmed, I. Hassan, M. Hedaya, T. El-yazid, J. Zu et al., Farms of triboelectric nanogenerators for harvesting wind energy: A potential approach towards green energy, Nano Energy, vol.36, pp.21-29, 2017.

Y. Su, G. Xie, F. Xie, T. Xie, Q. Zhang et al., Segmented wind energy harvester based on contact-electrification and as a self-powered flow rate sensor, Chem. Phys. Lett, vol.653, pp.96-100, 2016.

L. Huang, W. Xu, G. Bai, M. C. Wong, Z. Yang et al., Wind energy and blue energy harvesting based on magnetic-assisted noncontact triboelectric nanogenerator, Nano Energy, vol.30, pp.36-42, 2016.

M. L. Seol, J. H. Woo, S. B. Jeon, D. Kim, S. J. Park et al., Vertically stacked thin triboelectric nanogenerator for wind energy harvesting, Nano Energy, vol.14, pp.201-208, 2015.

Y. Xi, J. Wang, Y. Zi, X. Li, C. Han et al., High efficient harvesting of underwater ultrasonic wave energy by triboelectric nanogenerator, Nano Energy, vol.38, pp.101-108, 2017.

Y. Su, X. Wen, G. Zhu, J. Yang, J. Chen et al., Hybrid triboelectric nanogenerator for harvesting water wave energy and as a self-powered distress signal emitter, Nano Energy, vol.9, pp.186-195, 2014.

M. Taghavi, A. Sadeghi, A. Mondini, B. Mazzolai, L. Beccai et al., Triboelectric smart machine elements and self-powered encoder, Nano Energy, vol.13, pp.92-102, 2015.

S. Chen, C. Gao, W. Tang, H. Zhu, Y. Han et al., Selfpowered cleaning of air pollution by wind driven triboelectric nanogenerator, Nano Energy, vol.14, pp.217-225, 2014.

Q. Jing, G. Zhu, W. Wu, P. Bai, Y. Xie et al., Self-powered triboelectric velocity sensor for dual-mode sensing of rectified linear and rotary motions, Nano Energy, vol.10, pp.305-312, 2014.

M. Shi, H. Wu, J. Zhang, M. Han, B. Meng et al., Self-powered wireless smart patch for healthcare monitoring, Nano Energy, vol.32, pp.479-487, 2017.

X. S. Meng, H. Y. Li, G. Zhu, and Z. L. Wang, Fully enclosed bearing-structured self-powered rotation sensor based on electrification at rolling interfaces for multi-tasking motion measurement, Nano Energy, vol.12, pp.606-611, 2015.

H. R. Zhu, W. Tang, C. Z. Gao, Y. Han, T. Li et al., Self-powered metal surface anti-corrosion protection using energy harvested from rain drops and wind, Nano Energy, vol.14, pp.193-200, 2014.

F. R. Fan, Z. Q. Tian, and Z. L. Wang, Flexible triboelectric generator, Nano Energy, vol.1, pp.328-334, 2012.

V. Nguyen, R. Zhu, and R. Yang, Environmental effects on nanogenerators, Nano Energy, vol.14, pp.49-61, 2014.

A. Alahmadi, Influence of Triboelectrification on Friction Coefficient, Int. J. Sci. Eng. Res, vol.5, pp.22-29, 2014.

T. A. Burgo, C. A. Silva, L. B. Balestrin, and F. Galembeck, Friction coefficient dependence on electrostatic tribocharging, Sci. Rep, vol.3, pp.1-8, 2013.

F. Galembeck and T. A. Burgo, Chemical Electrostatics, 2017.

R. Lewis and U. Olofsson, Wheel-rail interface handbook, 2009.

G. Wypych and J. Pionteck, Handbook of Antistatics, Second, 2016.

G. W. Poll, Life Cycle Engineering and Virtual Product Development -the Role of Tribology, pp.80005-80012, 2005.

X. Zhu, Tutorial on Hertz Contact Stress, Opti 521, pp.1-8, 2012.

K. L. Johnson, K. Kendall, and A. D. Roberts, Surface Energy and the Contact of Elastic Solids, Proc. R. Soc. A Math. Phys. Eng. Sci, vol.324, pp.301-313, 1971.

Q. J. Wang, Encyclopedia of Tribology, 2013.

, Tribological Research and Design for Engineering Systems, Proceedings of the 29th Leeds-Lyon Symposium on Tribology, pp.8112-8114, 2003.

K. Hiratsuka and K. Hosotani, Effects of friction type and humidity on triboelectrification and triboluminescence among eight kinds of polymers, Tribol. Int, vol.55, pp.87-99, 2012.

Y. E. Prawatya, M. B. Neagoe, T. Zeghloul, and L. Dascalescu, Surface-Electric-Potential Characteristics of Tribo-and Corona-Charged Polymers: A Comparative Study, IEEE Trans. Ind. Appl, vol.53, pp.2423-2431, 2017.

H. T. Baytekin, A. Z. Patashinski, M. Branicki, B. Baytekin, S. Soh et al., The mosaic of surface charge in contact electrification, Science, vol.333, pp.308-312, 2011.

T. A. Burgo, T. R. Ducati, K. R. Francisco, K. J. Clinckspoor, F. Galembeck et al., Triboelectricity: Macroscopic charge patterns formed by self-arraying ions on polymer surfaces, Langmuir, vol.28, pp.7407-7416, 2012.

J. Sun, R. J. Wood, L. Wang, I. Care, and H. E. Powrie, Wear monitoring of bearing steel using electrostatic and acoustic emission techniques, Wear, vol.259, pp.1482-1489, 2005.

L. Wang, R. J. Wood, T. J. Harvey, S. Morris, H. E. Powrie et al., Wear performance of oil lubricated silicon nitride sliding against various bearing steels, Wear, vol.255, pp.657-668, 2003.

L. Liu, A. M. Seyam, and W. Oxenham, Frictional electrification on polymeric flat surfaces, J. Eng. Fiber. Fabr, vol.8, pp.126-136, 2013.

J. N. Chubb, Comments on methods for charge decay measurement, vol.62, pp.73-80, 2004.

J. Chubb, How should the electrostatic suitability of materials be assessed ?, J. Electrostat, vol.77, pp.163-165, 2015.

G. Raju, Dielectrics in Electric Fields, 2003.

W. Kaialy, A review of factors affecting electrostatic charging of pharmaceuticals and adhesive mixtures for inhalation, Int. J. Pharm, vol.503, pp.262-276, 2016.

P. Molinié, Recherches en {Electrostatique} -{Actualité} d'une science ancienne et applications à la caractérisation des matériaux, 2010.

Y. Onogi, N. Sugiura, and Y. Nakaoka, Dissipation of Triboelectric Charge into Air from Textile Surfaces, Text. Res. J, vol.66, pp.337-342, 1996.

D. C. Montgomery, D. C. Montgomery, G. C. Runger, N. F. Hubele, W. W. Hines et al., Introduction to Statistical Quality Control, 2013.

R. H. Myers, D. C. Montgomery, and C. M. Anderson-cook, Response surface methodology. Process and product optimization using designed experiments, pp.1-1247, 2009.

Y. E. Prawatya, M. B. Neagoe, T. Zeghloul, and L. Dascalescu, Optimization of continuous triboelectrification process for polymeric materials in dry contact, IOP Conf. Ser. Mater. Sci. Eng, 2017.

H. Mellouki, L. Herous, Y. Prawatya, B. Neagoe, and L. Dascalescu, Tribo and corona charging and charge decay on polymers plates, 2017 5th Int. Conf. Electr. Eng. -Boumerdes, pp.1-5, 2017.

G. Xiao and Z. Zhu, Friction materials development by using DOE/RSM and artificial neural network, Tribol. Int, vol.43, pp.218-227, 2010.

B. Chang, H. Akil, R. Nasir, and A. Khan, Optimization on wear performance of UHMWPE composites using response surface methodology, Tribol. Int, vol.88, pp.252-262, 2015.

B. Rashid, Z. Leman, M. Jawaid, M. J. Ghazali, M. R. Ishak et al., Dry sliding wear behavior of untreated and treated sugar palm fiber filled phenolic composites using factorial technique, pp.26-35, 2017.

L. Dascalescu, A. Urs, S. Bente, M. Huzau, and A. Samuila, Charging of mm-size insulating particles in vibratory devices, J. Electrostat, vol.63, pp.705-710, 2005.

L. Dascalescu, K. Medles, S. Das, M. Younes, L. Caliap et al., Using design of experiments and virtual instrumentation to evaluate the tribocharging of pulverulent materials in compressed-air devices, IEEE Trans. Ind. Appl, vol.44, pp.3-8, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00368755

M. Rezzouga, A. Tilmatine, R. Gouri, K. Medles, and L. Dascalescu, Experimental modeling of high-voltage corona discharge using design of experiments, Front. Electr. Electron. Eng. China, vol.2, pp.139-143, 2007.

K. Medles, K. Senouci, A. Tilmatine, A. Bendaoud, A. Mihalcioiu et al., Capability Evaluation and Statistical Control of Electrostatic Separation Processes, IEEE Trans. Ind. Appl, vol.45, pp.1086-1094, 2009.

K. Senouci, A. Bendaoud, K. Medles, A. Tilmatine, and L. Dascalescu, Statistical Control of Electrostatic Separation Processes, IEEE Ind. Appl. Mag, vol.16, pp.22-27, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00460229

K. Senouci, K. Medles, S. Messal, and L. Dascalescu, Multivariate control for three variables of an industrial roll-type electrostatic separator, IEEE Trans. Ind. Appl, vol.51, pp.4752-4758, 2015.

G. Buda, A. Samuila, M. Bilici, and L. Dascalescu, Premises for statistic control of a tribocharging process for granular materials, Part. Sci. Technol, vol.32, pp.138-143, 2014.

T. Zeghloul, A. Mekhalef, G. Richard, K. Medles, and L. Dascalescu, Effect of particle size on the tribo-aero-electrostatic separation of plastics, J. Electrostat, vol.88, pp.24-28, 2017.

, Association of Plastics Manufacturers in Europe, European Association of Plastics Recycling and Recovery Organisations, Plastics -the Facts, 2016.

P. Cartwright, S. Singh, A. G. Bailey, and L. J. Rose, Electrostatic Charging Characteristics of Polyethylene Powder During Pneumatic Conveying, IEEE Trans. Ind. Appl. IA, vol.21, pp.541-546, 1985.

R. Mukherjee, V. Gupta, S. Naik, S. Sarkar, V. Sharma et al., Effects of particle size on the triboelectrification phenomenon in pharmaceutical excipients : Experiments and multi-scale modeling, Asian J. Pharm. Sci, vol.11, pp.603-617, 2016.

K. W. Biegaj, M. G. Rowland, T. M. Lukas, and J. Y. Heng, Surface Chemistry and Humidity in Powder Electrostatics: A Comparative Study between Tribocharging and Corona Discharge, vol.2, pp.1576-1582, 2017.

D. Zenebe and P. Hwang, Tribology International Friction control by multi-shape textured surface under pin-on-disc test, Tribiology Int, vol.91, pp.111-117, 2015.

P. L. Menezes and S. V. Kailas, Role of surface texture and roughness parameters on friction and transfer film formation when UHMWPE sliding against steel, Biosurface and Biotribology, vol.2, pp.1-10, 2016.

P. L. Menezes, S. V. Kishore, M. R. Kailas, and . Lovell, Role of surface texture, roughness, and hardness on friction during unidirectional sliding, Tribol. Lett, vol.41, pp.1-15, 2011.

S. Karner, M. Maier, E. Littringer, and N. A. Urbanetz, Surface roughness effects on the tribocharging and mixing homogeneity of adhesive mixtures used in dry powder inhalers, Powder Technol, vol.264, pp.544-549, 2014.

D. S. Ivkovic and M. Djukdjanovic, The Influence of the Contact Surface Roughness on the Static Friction Coefficient*, Tribol. Ind, vol.22, pp.41-44, 2000.

M. F. Ashby, Materials and the Environment:Eco-informed Material Choice, 2013.

B. Neagoe, Y. Prawatya, T. Zeghloul, D. Souchet, and L. Dascalescu, Laboratory bench for the characterization of triboelectric properties of polymers, J. Phys. Conf. Ser, vol.646, p.12058, 2015.

T. Zeghloul, M. B. Neagoe, Y. E. Prawatya, and L. Dascalescu, Triboelectrical charge generated by frictional sliding contact between polymeric materials, IOP Conf. Ser. Mater. Sci. Eng, 2017.

B. Neagoe, H. Teodorescu, Y. Prawatya, L. Dascalescu, and T. Zeghloul, Experimental bench for studying the relation between the dynamic characteristics of the frictional motion and the electric potential at the surface of polymer slabs in sliding conformal contact, Tribol. Int, p.111, 2017.

T. Zeghloul, L. Dascalescu, K. Rouagdia, A. Fatihou, P. Renoux et al., Tribocharging phenomena in sliding contacts between polymeric materials, pp.1-4, 2014.

T. Zeghloul, L. Dascalescu, K. Rouagdia, A. Fatihou, P. Renoux et al., Sliding Conformal Contact Tribocharging of Polystyrene and Polyvinyl Chloride, IEEE Trans. Ind. Appl, vol.52, pp.1808-1813, 2016.

M. B. Neagoe, Y. E. Prawatya, T. Zeghloul, and L. Dascalescu, Electric-potential-measurementbased methodology for estimation of electric charge density at the surface of tribocharged insulating slabs, J. Electrostat, vol.90, pp.123-130, 2017.

C. Gao, D. Kuhlmann-wilsdorf, and D. D. Makel, Fundamentals of stick-slip, pp.90133-90140, 1993.

S. W. Yoon, M. W. Shin, W. G. Lee, and H. Jang, Effect of surface contact conditions on the stick-slip behavior of brake friction material, pp.305-312, 2012.

J. S. Park, S. M. Lee, B. S. Joo, and H. Jang, The effect of material properties on the stick-slip behavior of polymers: A case study with PMMA, PC, PTFE, and PVC, Wear, pp.11-16, 2017.

S. M. Lee, M. W. Shin, W. K. Lee, and H. Jang, The correlation between contact stiffness and stick-slip of brake friction materials, Wear, vol.302, pp.1414-1420, 2013.

L. Lee, S. Descartes, and R. R. Chromik, Comparison of fretting behaviour of electrodeposited Zn-Ni and Cd coatings, Tribol. Int, vol.120, pp.535-546, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01864686

M. B. Neagoe, Y. E. Prawatya, T. Zeghloul, and L. Dascalescu, Influence of surface roughness on the tribo-electric process for a sliding contact between polymeric plate materials, IOP Conf. Ser. Mater. Sci. Eng, 2017.

P. L. Menezes, M. Schimjith, and S. V. Kailas, Influence of Surface Texturing on Friction and Transfer Layer Formation in Mg-8Al Alloy/Steel Tribo-system, Indian Jouranl Tribol, vol.2, pp.46-54, 2007.

Y. Prawatya, B. Neagoe, T. Zeghloul, and L. Dascalescu, Comparison between the surfaceelectric-potential characteristics of tribo-and corona-charged polymers, Conf. Rec, 2015.

G. S. Castle, Contact charging between insulators, J. Electrostat, pp.13-20, 1997.
DOI : 10.1016/s0304-3886(97)00009-0

L. B. Loeb, Electrical Coronas, Their Basic Physical Mechanisms, 1965.

A. Crisci, B. Gosse, J. Gosse, and V. Ollier-duréault, Surface-potential decay due to surface conduction, Eur. Phys. J. Appl. Phys, vol.4, pp.107-116, 1998.

H. Lim, Y. Lee, S. Han, Y. Kim, J. Cho et al., Reduction in surface resistivity of polymers by plasma source ion implantation, Surf. Coatings Technol, vol.160, pp.158-164, 2002.

A. Bulletti, L. Capineri, M. Materassi, and B. D. Dunn, Surface Resistivity Characterization of New Printed Circuit Board Materials for Use in Spacecraft Electronics, IEEE Trans. Electron. Packag. Manuf, vol.30, pp.115-122, 2007.

T. Sugimoto, H. Ishii, and Y. Higashiyama, Corona Charging and Current Measurement Using Phi-Type Corona Electrodes, IEEE Trans. Ind. Appl, vol.46, pp.1175-1180, 2010.

R. F. Gunst, Response Surface Methodology: Process and Product Optimization Using Designed Experiments, Technometrics, vol.38, pp.284-286, 1996.

Y. Prawatya, K. Senouci, T. Zeghloul, B. Neagoe, L. Dascalescu et al., Statistical process control of the tribocharging of polymer slabs in frictional sliding contact, IEEE Ind. Appl. Soc. Annu. Meet, pp.1-6, 2017.