, -cyanoethyl)thio]benzoic acid II-91 (655 mg), HCTU (927 mg), iPr2NEt (1.98 mL) and ammonium II-78-Man (1.33 g) affording the desired benzamide II-92-Man, Nombre de publications Année Chapitre 1 : Introduction -Glycoscience et chimie combinatoire dynamique, vol.2, p.5

H. Nmr, 600 MHz, CDCl3): 7.60 (s, 1H, HAr), 7.47-7.38 (m, 2H, HAr), 6.99 (bs, 1H, NH), 5.34-5.26 (m, 2H, H3 +H4), vol.5

C. Nmr, 3 (CArS), MHz, vol.167, issue.150

. Hr-esi-ms, -cyanoethyl)thio]-N-[3,6-dioxa-8-(2,3,4,6-tetra-O-acetyl-?-Dglucopyranosyloxy)-oct-1-yl]benzamide II-92-Glc Prepared according to the general procedure A from 2,5-di, HOBt?H2O (36 mg), EDCI (42 ?L), iPr2NEt (158 ?L) and ammonium II-78-Glc (107 mg) affording the desired benzamide II-92-Glc, vol.2, p.5

. Ch2ogal,

C. Nmr, MHz, vol.167, issue.150

. Hr-esi-ms, found 698.1912. 2,5-Di(methylthio)-N-[3,6-dioxa-8-(2,3,4-tri-O-acetyl-?-L-fucopyranosyloxy)-oct-1-yl]benzamide II-96-Fuc 2,5-Di(methylthio

, benzamide II-96-Man

N. and N. Di, 3-triazol-4-yl}methyl)-3,6-diiodopyromellitic diimide II-123-Fuc Prepared according to the general procedure C from pyromellitic diimide II-121 (50 mg, 0.092 mmol), azide II-122-Fuc (102 mg), copper iodide (4.4 mg), iPr2NEt (40 ?L) and dry DMF (2 mL) affording the desired difucoside II-123-Fuc, vol.2

H. Nmr, 400 MHz, CDCl3): 7.78 (s, 2H, CHtriazole), 5.31 (d, J = 10.5 Hz, 2H, H2), vol.5

C. Nmr, 5 (s, 4C, CArC=O), 124.5 (s, 2C, CHtriazole), 96.4 (s, 2C, C1), MHz, vol.163, issue.100

. Hr-esi-ms,

N. and N. Di, 3-triazol-4-yl}methyl)-3,6-diiodopyromellitic diimide II-123-Man Prepared according to the general procedure C from pyromellitic diimide II-121 (200 mg, 0.367 mmol), azide II-122-Man (464 mg), copper iodide (18 mg), iPr2NEt (160 ?L) and dry DMF, vol.2, p.67

H. Nmr, 400 MHz, CDCl3): 7.85 (s, 2H, CHtriazole), 5.36-5.24 (m, 6H, H2 + H3 +H4), vol.5

C. Nmr, 5 (s, 4C, CArC=O), 124.4 (s, 2C, CHtriazole), 97.8 (s, 2C, C1), MHz, vol.163, issue.100

. Hr-esi-ms,

N. and N. Di, 3-triazol-4-yl}methyl)-3,6-diiodopyromellitic diimide II-123-Glc Prepared according to the general procedure C from pyromellitic diimide II-121 (200 mg, 0.367 mmol), azido II-122-Glc (464 mg), copper iodide (18 mg), iPr2NEt (160 ?L) and dry DMF (10 mL) affording the diglucoside II-123-Glc, vol.2

H. Nmr, 400 MHz, CDCl3): 7.83 (s, 2H, CHtriazole), 5.21 (dd, J = J' = 9.5 Hz, 2H, H3), 5.09 (dd, J = J' = 9

C. Nmr, 5 (s, 4C, CArC=O), 124.4 (s, 2C, CHtriazole), 101.0 (s, 2C, C1), 84.0 (s, 2C, CArI), MHz, vol.163, issue.100

. Hr-esi-ms, positive mode) m/z : calcd. for C56H70I2N8O28 : [M+2H] 2+ = 778.1189, found 778.1194. dioxaoct-8-yl 2,3,4,6-tetra-O-acetyl-?-D-glucopyranoside II-137-Glc and some impurities (32.4 g). The product was used in the next step without further purification

, Rf = 0.30 (Cyclohexane/EtOAc, vol.50, p.50

, At the same time, the library analysis was centrifugated (2 min, 10 000 rpm). The supernatant was collected and diluted twice with 1M HCl and analysed by HPLC (Echantillon 2, LC-A, Col-A, Grad-B) by injection of 40 ?L of the solution. The precipitate was diluted in tampon-A and 1M HCl (1:1 v/v) to afford the same volume as the reference library and analysed by HPLC (Echantillon 3, LC-A, Col-A, Grad-B) on column Col-A

X. , F. , M. Glc, ;. , F. et al., mM) dissolved in tampon-A (3 mL). The reaction was monitored by HPLC (LC-A), on column (col-A) with gradient

, mM Prepared according general procedure H with II-76-Fuc (F) (0.4 mM) dissolved in tampon-A (7 mL). The reaction was monitored by HPLC (LC-A), on column (col-A) with gradient (Grad-A) by injections of the solution

, Buffer phosphate Prepared according general procedure H with II-76-Fuc (F) (4 mM) dissolved in tampon-B (3 mL). The reaction was monitored by HPLC (LC-A), on column (col-A) with gradient (Grad-A) by injections of the solution, II-76-Fuc (F)

, II-76-Fuc (F), p.4

, Prepared according general procedure H with II-76-Fuc (F) (4 mM) dissolved in tampon-A (3 mL). The sample was placed in the fridge without stirring. The reaction was monitored by HPLC (LC-A), on column (col-A) with gradient (Grad-A) by injections of the solution

, 4 mM) dissolved in tampon-A (3 mL). The sample was oxidized and equilibrated without stirring. The reaction was monitored by HPLC (LC-A), on column (col-A) with gradient (Grad-A) by injections of the solution (4 ?L). -A (500 ?L) and ConA (0. 4 mM) The reaction was monitored by HPLC (LC-A), on column (col-A) with gradient, II-76-Fuc (F) without stirring Prepared according general procedure H with II-76-Fuc (F)

, :1) dissolved in tampon-A (510 ?L) and ConA (0. 4 mM) The reaction was monitored by HPLC (LC-A), on column (col-A) with gradient, II-76-Man + II-76-Fuc (M:F, 0.4 mM 1:1) + ConA 0.4 mM Prepared according general procedure I with M:F (0.4 mM, vol.1

, :3) dissolved in tampon-A (510 ?L) and ConA (0. 4 mM) The reaction was monitored by HPLC (LC-A), on column (col-A) with gradient, II-76-Man + II-76-Fuc (M:F, 0.4 mM 1:3) + ConA 0.4 mM Prepared according general procedure I with M:F (0.4 mM, vol.1

, :3) dissolved in tampon-A (3 mL) and ConA (0. 1 mM) The reaction was monitored by HPLC (LC-A), on column (col-A) with gradient, II-76-Man + II-76-Fuc (M:F, 0.4 mM 1:3) + ConA 0.1 mM Prepared according general procedure I with M:F (0.4 mM, vol.1

, mM Prepared according general procedure H with II-76-Fuc (F) (4 mM) dissolved in tampon-A (800 ?L). The reaction was monitored by HPLC (LC-B), on column (col-A) with gradient (Grad-A) by injections of the solution, II-76-Fuc (F) 4

, mM Prepared according general procedure H with II-76-Fuc (F) (0.4 mM) dissolved in tampon-A (800 ?L). The reaction was monitored by HPLC (LC-B), on column (col-A) with gradient (Grad-A) by injections of the solution

, II-76-Fuc (F) NaCl 500 mM Experimental section

, Prepared according general procedure H with II-76-Fuc (F) (4 mM) dissolved in tampon-D (800 ?L). The reaction was monitored by HPLC (LC-B), on column (col-A) with gradient (Grad-A) by injections of the solution

, 2M Prepared according general procedure H with II-76-Fuc (F) (4 mM) dissolved in tampon-D (800 ?L). The reaction was monitored by HPLC (LC-B), on column (col-A) with gradient (Grad-A) by injections of the solution, II-76-Fuc (F) NaCl

, 4 mM) dissolved in tampon-A (800 ?L). The mixture was allowed to oxidize and equilibrate without stirring. The reaction was monitored by HPLC (LC-B), on column (col-A) with gradient, II-76-Fuc (F) without stirring Prepared according general procedure H with II-76-Fuc (F)

, 4 mM) dissolved in tampon-A (800 ?L). The vial was enclosed with aluminium foil and placed in a closet. The reaction was monitored by HPLC (LC-B), on column (col-A) with gradient, II-76-Fuc (F) without light Prepared according general procedure H with II-76-Fuc (F)

, II-76-Fuc (F), p.4

, Prepared according general procedure H with II-76-Fuc (F) (4 mM) dissolved in tampon-A (800 ?L). The vial was placed in a fridge at 4°C. The reaction was monitored by HPLC (LC-B), on column (col-A) with gradient (Grad-A) by injections of the solution

, II-76-Fuc (F), p.37

, Prepared according general procedure H with II-76-Fuc (F) (4 mM) dissolved in tampon-A (800 ?L). The vial was heated at 7°C with an oil bath. The reaction was monitored by HPLC (LC-B), on column (col-A) with gradient

, II-76-Fuc (F) buffer acetate Prepared according general procedure H with II-76-Fuc (F) (4 mM) dissolved in tampon-C (800 ?L). The reaction was monitored by HPLC (LC-B), on column (col-A) with gradient (Grad-A) by injections of the solution

, II-76-Fuc (F) pH = 1

, Prepared according general procedure H with II-76-Fuc (F) (4 mM) dissolved in tampon-A (800 ?L). pH was adjusted to 1 by successive addition of 1M HCl. The reaction was monitored by HPLC (LC-B), on column (col-A) with gradient (Grad-A) by injections of the solution

, II-76-Fuc (F) pH = 4

, Prepared according general procedure H with II-76-Fuc (F) (4 mM) dissolved in tampon-A (800 ?L). pH was adjusted to 4 by successive addition of 1M HCl. The reaction was monitored by HPLC (LC-B), on column (col-A) with gradient (Grad-A) by injections of the solution

, Prepared according general procedure H with II-76-Fuc (F) (4 mM) dissolved in tampon-A (800 ?L). pH was adjusted to 6.4 by successive addition of 1M HCl. The reaction was monitored by HPLC (LC-B), on column (col-A) with gradient (Grad-A) by injections of the solution

, Prepared according general procedure H with II-76-Fuc (F) (4 mM) dissolved in tampon-A (800 ?L). pH was adjusted to 8.4 by successive addition of 1M NaOH. The reaction was monitored by HPLC (LC-B), on column (col-A) with gradient (Grad-A) by injections of the solution

, Prepared according general procedure H with II-76-Fuc (F) (4 mM) dissolved in tampon-A (800 ?L). pH was adjusted to 10 by successive addition of 1M NaOH. The reaction was monitored by HPLC (LC-B), on column (col-A) with gradient (Grad-A) by injections of the solution

, Prepared according general procedure H with II-76-Fuc (F) (4 mM) dissolved in tampon-A (800 ?L). pH was adjusted to 13 by successive addition of 1M NaOH. The reaction was monitored by HPLC (LC-B), on column (col-A) with gradient (Grad-A) by injections of the solution

, Prepared according general procedure H with II-93-Man (YM) (4 mM) dissolved in tampon-A (3 mL). The reaction was monitored by HPLC (LC-B), on column (col-B) with gradient (Grad-A) by injections of the solution, II-93-Man (YM)

, Prepared according general procedure H with II-93-Man (YM) (4 mM) dissolved in tampon-A (7 mL). The reaction was monitored by HPLC (LC-B), on column (col-B) with gradient (Grad-A) by injections of the solution, II-93-Man (YM) 0.4 mM

, The reaction was monitored by HPLC (LC-B), on column (col-B) with gradient (Grad-A) by injections of the solution, II-93-Gal (YG) 0.4 mM Prepared according general procedure H with II-93-Gal (YG) (4 mM) dissolved in tampon-A (7 mL)

, :1) dissolved in tampon-A (3 mL). The reaction was monitored by HPLC (LC-B), on column (col-B) with gradient, II-76-Man + II-93-Man (M:YM, 4 mM 1:1) Prepared according general procedure H with M:YM (4 mM, vol.1

. Lc-b, -. Col, and G. , Acetonitrile from fractions collected was removed by evaporation using a rotary evaporator and the remaining water was lyophilized affording a mixture of glycol-dyn[n]arenes. Purification of G3:G4 Prepared according general procedure J from II-76-Gal (G) (100 mg, 4 mM) purified by preparative HPLC (LC-C, Col-C, Grad-C) affording a mixture of G3:G4] (77 mg, 77%) as a slightly yellow powder. Purification of F3:F4 Prepared according general procedure J from II-76-Fuc (F) (100 mg, 4 mM) purified by preparative HPLC (LC-C, Col-C, Grad-D) affording a mixture of F3:F4 (38 mg, 38%) as a slightly yellow powder. Purification of M3:M4 Prepared according general procedure J from II-76-Man (M) (100 mg, 4 mM) purified by preparative HPLC, ]arenes by semi-preparative HPLC : Dithiol (100 mg, 4 mM) was dissolved in Tampon-A and was allowed to oxidize and equilibrate by stirring (400 rpm) in an open vial at r.t. Progress of the reaction was monitored by HPLC

. Iv, Isothermal titration calorimetry General procedure K for ITC measurements : Lyophilized ConA (From Canavalia ensiformis Type VI, vol.7647

. Leca, LecA was placed into the 200-?L sample cell, at 25°C. Titrations was performed with 2-?L injections of carbohydrate ligands every 120 s. Data were fitted using the "one-site Experimental section model" using MicroCal Origin 7 software according to standard procedures. Fitted data yield the stoichiometry (n), the association constante (Ka) and the enthalpy of binding (?H)

, Two or three independent titrations were performed for each ligand tested. Methyl ?-D-mannopyranoside vs ConA Prepared according general procedure K with methyl ?-D-mannopyranoside (1.8 mM) and ConA, vol.12

, II-80-Man vs ConA Prepared according general procedure K with II-80-Man (1.8 mM) and ConA (0.12 mM) (See Chapter, vol.27

, M3:M4 vs ConA Prepared according general procedure K with a mixture of M3:M4 (0.2 mM, 1:1) and ConA (0.12 mM) (See Chapter, vol.27

, G3:G4 vs ConA Prepared according general procedure K with a mixture of G3:G4 (0.2 mM, 1:1) and ConA

, :1) and LecA (0.12 mM) (See Chapter, G4 (0.2 mM, vol.3

V. Bibliographiques,

H. Joo and M. Otto, Molecular Basis of In Vivo Biofilm Formation by Bacterial Pathogens, Chem. Biol, vol.19, issue.12, pp.1503-1513, 2012.

S. Wagner, R. Sommer, S. Hinsberger, C. Lu, R. W. Hartmann et al., Novel Strategies for the Treatment of Pseudomonas aeruginosa Infections, J. Med. Chem, issue.13, pp.5929-5969, 2016.

R. M. Donlan, Biofilms: Microbial Life on Surfaces. Emerging Infect. Dis, vol.8, issue.9, pp.881-890, 2002.

G. O'toole, H. B. Kaplan, and R. Kolter, Biofilm Formation as Microbial Development, Annu. Rev. Biochem, vol.54, issue.1, pp.49-79, 2000.

G. Sharma, S. Rao, A. Bansal, S. Dang, S. Gupta et al., Pseudomonas aeruginosa biofilm: Potential therapeutic targets, Biologicals, vol.42, issue.1, pp.1-7, 2014.

A. Folkesson, L. Jelsbak, L. Yang, H. K. Johansen, O. Ciofu et al., Adaptation of Pseudomonas aeruginosa to the cystic fibrosis airway: an evolutionary perspective, Nat. Rev. Microbiol, vol.10, pp.841-851, 2012.

P. D. Lister, D. J. Wolter, and N. D. Hanson, Antibacterial-Resistant Pseudomonas aeruginosa: Clinical Impact and Complex Regulation of Chromosomally Encoded Resistance Mechanisms, Clin. Microbiol. Rev, vol.22, issue.4, pp.582-610, 2009.

R. Wilson and R. B. Dowling, Pseudomonas aeruginosa and other related species, Thorax, vol.53, issue.3, pp.213-219, 1998.

R. S. Laughlin, M. W. Musch, C. J. Hollbrook, F. M. Rocha, E. B. Chang et al., The Key Role of Pseudomonas aeruginosa PA-I Lectin on Experimental GutDerived Sepsis, Ann. Surg, vol.232, issue.1, pp.133-142, 2000.

A. M. Sousa and M. O. Pereira, Pseudomonas aeruginosa Diversification during Infection Development in Cystic Fibrosis Lungs-A Review, Pathogens, vol.3, issue.3, pp.680-703, 2014.

T. Strateva and D. Yordanov, Pseudomonas aeruginosa -a phenomenon of bacterial resistance, J. Med. Microbiol, vol.58, issue.9, pp.1133-1148, 2009.

H. Parmar, A. Dholakia, D. Vasavada, and H. Singhala, The current status of antibiotic sensitivity of Pseudomonas aeruginosa isolated from various clinical samples, Int. J. Med. Res, vol.2, pp.1-6, 2013.

D. M. Livermore, Penicillin-Binding Proteins, Porins And outer-Membrane Permeability of Carbenicillin-Resistant and -Susceptible Strains of Pseudomonas Aeruginosa, J. Med. Microbiol, vol.18, issue.2, pp.261-270, 1984.

, Global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics, 2018.

R. C. Allen, R. Popat, S. P. Diggle, and S. P. Brown, Targeting virulence: can we make evolution-proof drugs?, Nat. Rev. Microbiol, vol.12, pp.300-308, 2014.

N. Gilboa-garber, L. Mizrahi, and N. Garber, Mannose-binding hemagglutinins in extracts of Pseudomonas aeruginosa, Can. J. Biochem, vol.55, issue.9, pp.975-981, 1977.

N. Gilboa-garber, Purification and properties of hemagglutinin from Pseudomonas aeruginosa and its reaction with human blood cells, Biochim. Biophys. Acta, vol.273, issue.1, pp.165-173, 1972.

N. Sharon and H. Lis, History of lectins: from hemagglutinins to biological recognition molecules, Glycobiology, vol.14, issue.11, pp.53-62, 2004.

J. J. Lundquist and E. J. Toone, The Cluster Glycoside Effect, Chem. Rev, vol.102, issue.2, pp.555-578, 2002.

S. Cecioni, A. Imberty, and S. Vidal, Glycomimetics versus Multivalent Glycoconjugates for the Design of High Affinity Lectin Ligands, Chem. Rev, vol.115, issue.1, pp.525-561, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01146938

A. Cambi and C. G. Figdor, Levels of complexity in pathogen recognition by C-type lectins, Curr. Opin. Immunol, vol.17, issue.4, pp.345-351, 2005.

A. Imberty, M. Wimmerová, E. P. Mitchell, and N. Gilboa-garber, Structures of the lectins from Pseudomonas aeruginosa: insights into the molecular basis for host glycan recognition, Microbes Infect, vol.6, issue.2, pp.221-228, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00306814

K. Karaveg, Z. Liu, W. Tempel, R. J. Doyle, J. P. Rose et al., Crystallization and preliminary X-ray diffraction analysis of lectin-1 from Pseudomonas aeruginosa, Acta Cryst. D, vol.59, issue.7, pp.1241-1242, 2003.

G. Cioci, E. P. Mitchell, C. Gautier, M. Wimmerová, D. Sudakevitz et al., Structural basis of calcium and galactose recognition by the lectin PA-IL of Pseudomonas aeruginosa, FEBS Lett, vol.555, issue.2, pp.297-301, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00306872

M. Reynolds and S. Pérez, Thermodynamics and chemical characterization of proteincarbohydrate interactions: The multivalency issue, C. R. Chimie, vol.14, issue.1, pp.74-95, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00577113

B. Blanchard, A. Imberty, and A. Varrot, Secondary sugar binding site identified for LecA lectin from Pseudomonas aeruginosa, Proteins, vol.82, issue.6, pp.1060-1065, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01017982

N. Gilboa-garber, D. J. Katcoff, and N. C. Garber, Identification and characterization of Pseudomonas aeruginosa PA-IIL lectin gene and protein compared to PA-IL, FEMS Immunol. Med. Microbiol, vol.29, issue.1, pp.53-57, 2000.

S. Perret, C. Sabin, C. Dumon, M. Pokorná, C. Gautier et al., Structural basis for the interaction between human milk oligosaccharides and the bacterial lectin PA-IIL of Pseudomonas aeruginosa, Biochem. J, vol.389, issue.2, pp.325-332, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00305946

S. Wagner, D. Hauck, M. Hoffmann, R. Sommer, I. Joachim et al., Covalent Lectin Inhibition and Application in Bacterial Biofilm Imaging, Angew. Chem. Int. Ed, vol.2017, issue.52, pp.16559-16564

F. Biedermann and H. Schneider, Experimental Binding Energies in Supramolecular Complexes, Chem. Rev, vol.116, issue.9, pp.5216-5300, 2016.

A. Bernardi, J. Jimenez-barbero, A. Casnati, C. De-castro, T. Darbre et al., Multivalent glycoconjugates as anti-pathogenic agents, Chem. Soc. Rev, vol.42, issue.11, pp.4709-4727, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01326075

N. Garber, U. Guempel, N. Gilboa-garber, and R. J. Royle, Specificity of the fucosebinding lectin of Pseudomonas aeruginosa, FEMS. Microbiol. Lett, vol.48, issue.3, pp.331-334, 1987.

D. Sicard, S. Cecioni, M. Iazykov, Y. Chevolot, S. E. Matthews et al., AFM investigation of Pseudomonas aeruginosa lectin LecA (PA-IL) filaments induced by multivalent glycoclusters, Chem. Commun, vol.47, issue.33, pp.9483-9485, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00619415

S. Cecioni, R. Lalor, B. Blanchard, J. Praly, A. Imberty et al., Achieving High Affinity towards a Bacterial Lectin through Multivalent Topological Isomers of Calix[4]arene Glycoconjugates, Chem. Eur. J, vol.15, issue.47, pp.13232-13240, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00691524

F. Pertici and R. J. Pieters, Potent divalent inhibitors with rigid glucose click spacers for Pseudomonas aeruginosa lectin LecA, Chem. Commun, vol.2012, issue.33, pp.4008-4010

F. Pertici, N. J. De-mol, J. Kemmink, and R. J. Pieters, Optimizing Divalent Inhibitors of Pseudomonas aeruginosa Lectin LecA by Using A Rigid Spacer, Chem. Eur. J, vol.19, issue.50, pp.16923-16927, 2013.

Y. M. Chabre, D. Giguère, B. Blanchard, J. Rodrigue, S. Rocheleau et al., Combining Glycomimetic and Multivalent Strategies toward Designing Potent Bacterial Lectin Inhibitors, Chem. Eur. J, vol.17, issue.23, pp.6545-6562, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00603063

N. Kottari, Y. M. Chabre, T. C. Shiao, R. Rej, and R. Roy, Efficient and accelerated growth of multifunctional dendrimers using orthogonal thiol-ene and SN2 reactions, Chem. Commun, vol.50, issue.16, pp.1983-1985, 2014.

R. U. Kadam, M. Bergmann, D. Garg, G. Gabrieli, A. Stocker et al., Structure-Based Optimization of the Terminal Tripeptide in Glycopeptide Dendrimer Inhibitors of Pseudomonas aeruginosa Biofilms Targeting LecA, Chem. Eur. J, vol.19, issue.50, pp.17054-17063, 2013.

R. U. Kadam, D. Garg, J. Schwartz, R. Visini, M. Sattler et al., T-Shape" Interaction with Histidine Explains Binding of Aromatic Galactosides to Pseudomonas aeruginosa Lectin LecA, ACS Chem. Biol, vol.8, issue.9, pp.1925-1930, 2013.

R. U. Kadam, M. Bergmann, M. Hurley, D. Garg, M. Cacciarini et al., A Glycopeptide Dendrimer Inhibitor of the Galactose-Specific Lectin LecA and of Pseudomonas aeruginosa Biofilms, Angew. Chem. Int. Ed, vol.50, issue.45, pp.10631-10635, 2011.

M. L. Gening, D. V. Titov, S. Cecioni, A. Audfray, A. G. Gerbst et al., Synthesis of Multivalent Carbohydrate-Centered Glycoclusters as Nanomolar Ligands of the Bacterial Lectin LecA from Pseudomonas aeruginosa, Chem. Eur. J, vol.19, issue.28, pp.9272-9285, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00849902

Z. H. Soomro, S. Cecioni, H. Blanchard, J. Praly, A. Imberty et al., CuAAC synthesis of resorcin[4]arene-based glycoclusters as multivalent ligands of lectins, Org. Biomol. Chem, vol.9, issue.19, pp.6587-6597, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00691498

S. Cecioni, S. Faure, U. Darbost, I. Bonnamour, H. Parrot-lopez et al., Selectivity among Two Lectins: Probing the Effect of Topology, Multivalency and Flexibility of "Clicked" Multivalent Glycoclusters, Chem. Eur. J, vol.17, issue.7, pp.2146-2159, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00577117

M. Donnier-maréchal, N. Galanos, T. Grandjean, Y. Pascal, D. Ji et al., Perylenediimide-based glycoclusters as high affinity ligands of bacterial lectins: synthesis, binding studies and anti-adhesive properties, Org. Biomol. Chem, vol.2017, issue.47, pp.10037-10043

B. Gerland, A. Goudot, C. Ligeour, G. Pourceau, A. Meyer et al., Structure Binding Relationship of Galactosylated Glycoclusters toward Pseudomonas aeruginosa Lectin LecA Using a DNA-Based Carbohydrate Microarray, Bioconjugate Chem, vol.25, issue.2, pp.379-392, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00952679

S. Wang, L. Dupin, M. Noël, C. J. Carroux, L. Renaud et al., Toward the Rational Design of Galactosylated Glycoclusters That Target Pseudomonas aeruginosa Lectin A (LecA): Influence of Linker Arms That Lead to Low-Nanomolar Multivalent Ligands, Chem. Eur. J, vol.22, issue.33, pp.11785-11794, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02116180

K. Buffet, I. Nierengarten, N. Galanos, E. Gillon, M. Holler et al., Based Glycoclusters: Synthesis and Multivalent Binding to Pathogenic Bacterial Lectins, Chem. Eur. J, vol.22, issue.9, pp.2955-2963, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01547108

N. Galanos, E. Gillon, A. Imberty, S. E. Matthews, and S. Vidal, Pentavalent pillar[5]arene-based glycoclusters and their multivalent binding to pathogenic bacterial lectins, Org. Biomol. Chem, issue.13, pp.3476-3481, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01547077

J. Nierengarten, J. Iehl, V. Oerthel, M. Holler, B. M. Illescas et al., Fullerene sugar balls, Chem. Commun, vol.46, issue.22, pp.3860-3862, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01319252

S. Cecioni, V. Oerthel, J. Iehl, M. Holler, D. Goyard et al., Synthesis of Dodecavalent Fullerene-Based Glycoclusters and Evaluation of Their Binding Properties towards a Bacterial Lectin, Chem. Eur. J, vol.17, issue.11, pp.3252-3261, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00691514

K. Marotte, C. Préville, C. Sabin, M. Moumé-pymbock, A. Imberty et al., Synthesis and binding properties of divalent and trivalent clusters of the Lewis a disaccharide moiety to Pseudomonas aeruginosa lectin PA-IIL, Org. Biomol. Chem, vol.5, issue.18, pp.2953-2961, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00305549

K. Marotte, C. Sabin, C. Préville, M. Moumé-pymbock, M. Wimmerová et al., X-ray Structures and Thermodynamics of the Interaction of PA-IIL from Pseudomonas aeruginosa with Disaccharide Derivatives, ChemMedChem, vol.2, issue.9, pp.1328-1338, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00305550

E. M. Johansson, E. Kolomiets, F. Rosenau, K. Jaeger, T. Darbre et al., Combinatorial variation of branching length and multivalency in a large (390 625 member) glycopeptide dendrimer library: ligands for fucose-specific lectins, New J. Chem, issue.7, pp.1291-1299, 2007.

E. M. Johansson, S. A. Crusz, E. Kolomiets, L. Buts, R. U. Kadam et al., Inhibition and Dispersion of Pseudomonas aeruginosa Biofilms by Glycopeptide Dendrimers Targeting the Fucose-Specific Lectin LecB, Chem. Biol, vol.15, issue.12, pp.1249-1257, 2008.

E. Kolomiets, M. A. Swiderska, R. U. Kadam, E. M. Johansson, K. Jaeger et al., Glycopeptide Dendrimers with High Affinity for the Fucose-Binding Lectin LecB from Pseudomonas aeruginosa, vol.4, pp.562-569, 2009.

E. M. Johansson, R. U. Kadam, G. Rispoli, S. A. Crusz, K. Bartels et al., Inhibition of Pseudomonas aeruginosa biofilms with a glycopeptide dendrimer containing D-amino acids, MedChemComm, vol.2, issue.5, pp.418-420, 2011.

N. Berthet, B. Thomas, I. Bossu, E. Dufour, E. Gillon et al., High Affinity Glycodendrimers for the Lectin LecB from Pseudomonas aeruginosa, Bioconjugate Chem, vol.24, issue.9, pp.1598-1611, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00903491

R. Sommer, S. Wagner, A. Varrot, C. M. Nycholat, A. Khaledi et al., The virulence factor LecB varies in clinical isolates: consequences for ligand binding and drug discovery, Chem. Sci, vol.2016, issue.8, pp.4990-5001

R. Sommer, S. Wagner, K. Rox, A. Varrot, D. Hauck et al., Orally Bioavailable LecB Inhibitors Block Biofilm Formation of Pseudomonas aeruginosa, J. Am. Chem. Soc, vol.140, issue.7, pp.2537-2545, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02106161

A. Titz and R. Sommer, Inhibitors of Pseudomonas aeruginosa LecB, 2018.
URL : https://hal.archives-ouvertes.fr/hal-00903496

F. Morvan, A. Meyer, A. Jochum, C. Sabin, Y. Chevolot et al., Fucosylated Pentaerythrityl Phosphodiester Oligomers (PePOs): Automated Synthesis of DNA-Based Glycoclusters and Binding to Pseudomonas aeruginosa Lectin (PA-IIL), Bioconjugate Chem, vol.18, issue.5, pp.1637-1643, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00305548

B. Gerland, A. Goudot, G. Pourceau, A. Meyer, V. Dugas et al., Synthesis of a Library of Fucosylated Glycoclusters and Determination of their Binding toward Pseudomonas aeruginosa
URL : https://hal.archives-ouvertes.fr/hal-00728803

B. Lectin, PA-IIL) Using a DNA-Based Carbohydrate Microarray, Bioconjugate Chem, vol.2012, issue.8, pp.1534-1547

M. Mammen, S. Choi, and G. M. Whitesides, Polyvalent Interactions in Biological Systems: Implications for Design and Use of Multivalent Ligands and Inhibitors, Angew. Chem. Int. Ed, vol.37, issue.20, pp.2754-2794, 1998.

R. T. Lee and Y. C. Lee, Affinity enhancement by multivalent lectin-carbohydrate interaction, Glycoconj. J, vol.17, issue.7, pp.543-551, 2000.

J. E. Gestwicki, C. W. Cairo, L. E. Strong, K. A. Oetjen, and L. L. Kiessling, Influencing Receptor?Ligand Binding Mechanisms with Multivalent Ligand Architecture, J. Am. Chem. Soc, vol.124, issue.50, pp.14922-14933, 2002.

J. M. Gargano, T. Ngo, J. Y. Kim, D. W. Acheson, and W. J. Lees, Multivalent Inhibition of AB5 Toxins, J. Am. Chem. Soc, vol.123, issue.51, pp.12909-12910, 2001.

J. Huskens, A. Mulder, T. Auletta, C. A. Nijhuis, M. J. Ludden et al., A Model for Describing the Thermodynamics of Multivalent Host?Guest Interactions at Interfaces, J. Am. Chem. Soc, vol.126, issue.21, pp.6784-6797, 2004.

P. I. Kitov, J. M. Sadowska, G. Mulvey, G. D. Armstrong, H. Ling et al., Shiga-like toxins are neutralized by tailored multivalent carbohydrate ligands, Nature, vol.403, pp.669-672, 2000.

T. K. Dam, T. A. Gerken, and C. F. Brewer, Thermodynamics of Multivalent Carbohydrate?Lectin Cross-Linking Interactions: Importance of Entropy in the Bind and Jump Mechanism, vol.48, pp.3822-3827, 2009.

T. K. Dam and C. F. Brewer, Multivalent Lectin-Carbohydrate interactions : Energetics and Mechanisms of Binding In Adv, Carbohydr. Chem. Biochem, vol.63, issue.5, pp.139-164, 2010.

C. W. Cairo, J. E. Gestwicki, M. Kanai, and L. L. Kiessling, Control of Multivalent Interactions by Binding Epitope Density, J. Am. Chem. Soc, vol.124, issue.8, pp.1615-1619, 2002.

C. R. Bertozzi and . Kiessling,

L. Laura and . Glycobiology, Science, issue.5512, pp.2357-2364, 2001.

D. Bray, M. D. Levin, and C. J. Morton-firth, Receptor clustering as a cellular mechanism to control sensitivity, Nature, vol.393, pp.85-88, 1998.

J. Guiard, B. Fiege, P. I. Kitov, T. Peters, and D. R. Bundle, Double-Click" Protocol for Synthesis of Heterobifunctional Multivalent Ligands: Toward a Focused Library of Specific Norovirus Inhibitors, Chem. Eur. J, vol.17, issue.27, pp.7438-7441, 2011.

J. C. Sacchettini, L. G. Baum, and C. F. Brewer, Multivalent Protein?Carbohydrate Interactions. A New Paradigm for Supermolecular Assembly and Signal Transduction, Biochemistry, vol.40, issue.10, pp.3009-3015, 2001.

S. Pierfausto, F. Giorgio, F. Vladimir, and M. Stanislav, The Effects of Combinatorial Chemistry and Technologies on Drug Discovery and Biotechnology -a Mini Review, Nova Biotechnol. Chim, vol.13, issue.2, pp.87-108, 2014.

E. M. Gordon, R. W. Barrett, W. J. Dower, S. P. Fodor, and M. A. Gallop, Applications of Combinatorial Technologies to Drug Discovery. 2. Combinatorial Organic Synthesis, Library Screening Strategies, and Future Directions, J. Med. Chem, issue.10, pp.1385-1401, 1994.

D. J. Newman, Natural Products as Leads to Potential Drugs: An Old Process or the New Hope for Drug Discovery?, J. Med. Chem, vol.51, issue.9, pp.2589-2599, 2008.

K. C. Nicolaou, J. A. Pfefferkorn, S. Barluenga, H. J. Mitchell, A. J. Roecker et al., Natural Product-like Combinatorial Libraries Based on Privileged Structures. 3. The "Libraries from Libraries" Principle for Diversity Enhancement of Benzopyran Libraries, J. Am. Chem. Soc, vol.122, issue.41, pp.9968-9976, 2000.

K. C. Nicolaou, J. A. Pfefferkorn, H. J. Mitchell, A. J. Roecker, S. Barluenga et al., Natural Product-like Combinatorial Libraries Based on Privileged Structures. 2. Construction of a 10 000-Membered Benzopyran Library by Directed Split-and-Pool Chemistry Using NanoKans and Optical Encoding, J. Am. Chem. Soc, vol.122, issue.41, pp.9954-9967, 2000.

K. C. Nicolaou, J. A. Pfefferkorn, A. J. Roecker, G. Q. Cao, S. Barluenga et al., Natural Product-like Combinatorial Libraries Based on Privileged Structures. 1. General Principles and Solid-Phase Synthesis of Benzopyrans, J. Am. Chem. Soc, vol.122, issue.41, pp.9939-9953, 2000.

D. G. Brown and J. Boström, Where Do Recent Small Molecule Clinical Development Candidates Come From?, J. Med. Chem, 2018.

M. S. Kinch, A. Haynesworth, S. L. Kinch, and D. Hoyer, An overview of FDA-approved new molecular entities, Drug Discov. Today, vol.19, issue.8, pp.1033-1039, 2014.

J. Lehn, Dynamic Combinatorial Chemistry and Virtual Combinatorial Libraries, Chem. Eur. J, vol.5, issue.9, pp.2455-2463, 1999.

P. T. Corbett, J. Leclaire, L. Vial, K. R. West, J. Wietor et al., Dynamic Combinatorial Chemistry, Chem. Rev, vol.106, issue.9, pp.3652-3711, 2006.

A. Herrmann, Dynamic combinatorial/covalent chemistry: a tool to read, generate and modulate the bioactivity of compounds and compound mixtures, Chem. Soc. Rev, vol.43, issue.6, pp.1899-1933, 2014.

S. Otto, R. L. Furlan, and J. K. Sanders, Selection and Amplification of Hosts From Dynamic Combinatorial Libraries of Macrocyclic Disulfides, Science, vol.297, issue.5581, pp.590-593, 2002.

P. Timmerman, W. Verboom, F. C. Van-veggel, W. P. Van-hoorn, and D. N. Reinhoudt, An Organic Molecule with a Rigid Cavity of Nanosize Dimensions, Angew. Chem. Int. Ed. Engl, vol.33, issue.12, pp.1292-1295, 1994.

M. Crego-calama, P. ;. Timmerman, D. Reinhoudt, M. Crego-calama, R. Hulst et al., Libraries of non-covalent hydrogenbonded assemblies; combinatorial synthesis of supramolecular systems, Chem. Commun, issue.9, pp.1021-1022, 1998.

B. Hasenknopf, J. Lehn, N. Boumediene, A. Dupont-gervais, A. Van-dorsselaer et al., Self-Assembly of Tetra-and Hexanuclear Circular Helicates, J. Am. Chem. Soc, vol.119, issue.45, pp.10956-10962, 1997.

S. P. Black, D. M. Wood, F. B. Schwarz, T. K. Ronson, J. J. Holstein et al., Catenation and encapsulation induce distinct reconstitutions within a dynamic library of mixed-ligand Zn4L6 cages, Chem. Sci, vol.2016, issue.4, pp.2614-2620

C. Try, A. M. Harding, M. C. Try, A. M. Harding, M. G. Hamilton et al., Reversible five-component assembly of a [2]catenane from a chiral metallomacrocycle and a dinaphtho-crown ether, Chem. Commun, issue.6, pp.723-724, 1998.

K. C. Nicolaou, R. Hughes, S. Y. Cho, N. Winssinger, C. Smethurst et al., Target-Accelerated Combinatorial Synthesis and Discovery of Highly Potent Antibiotics Effective Against Vancomycin-Resistant Bacteria, Angew. Chem. Int. Ed, vol.39, issue.21, pp.3823-3828, 2000.

K. C. Nicolaou, H. J. Mitchell, N. F. Jain, N. Winssinger, R. Hughes et al., Total Synthesis of Vancomycin, Angew. Chem. Int. Ed, vol.38, pp.240-244, 2004.

R. J. Sarma, S. Otto, and J. R. Nitschke, Disulfides, Imines, and Metal Coordination within a Single System: Interplay between Three Dynamic Equilibria, Chem. Eur. J, vol.13, issue.34, pp.9542-9546, 2007.

W. Dro?d?, C. Bouillon, C. Kotras, S. Richeter, M. Barboiu et al., Generation of Multicomponent Molecular Cages using Simultaneous Dynamic Covalent Reactions, Chem. Eur. J, vol.2017, issue.71, pp.18010-18018

A. M. Belenguer, T. Fri??i?, G. M. Day, and J. K. Sanders, Solid-state dynamic combinatorial chemistry: reversibility and thermodynamic product selection in covalent mechanosynthesis, Chem. Sci, vol.2011, issue.4, pp.696-700

T. Bunyapaiboonsri, O. Ramström, S. Lohmann, J. Lehn, L. Peng et al., Dynamic Deconvolution of a Pre-Equilibrated Dynamic Combinatorial Library of Acetylcholinesterase Inhibitors, ChemBioChem, vol.2, issue.6, pp.438-444, 2001.

O. Ramström and J. Lehn, Drug discovery by dynamic combinatorial libraries, Nat. Rev. Drug Discov, vol.1, pp.26-36, 2002.

A. V. Eliseev and M. I. Nelen, Use of Molecular Recognition To Drive Chemical Evolution. 1. Controlling the Composition of an Equilibrating Mixture of Simple Arginine Receptors, J. Am. Chem. Soc, vol.119, issue.5, pp.1147-1148, 1997.

P. T. Corbett, S. Otto, and J. K. Sanders, What Are the Limits to the Size of Effective Dynamic Combinatorial Libraries?, Org. Lett, vol.6, issue.11, pp.1825-1827, 2004.

J. S. Moore and N. W. Zimmerman, Copolymer Sequences by Targeted Equilibrium-Shifting, Org. Lett, vol.2, issue.7, pp.915-918, 2000.

Z. Grote, R. Scopelliti, and K. Severin, Adaptive Behavior of Dynamic Combinatorial Libraries Generated by Assembly of Different Building Blocks, Angew. Chem. Int. Ed, vol.42, issue.32, pp.3821-3825, 2003.

P. T. Corbett, J. K. Sanders, and S. Otto, Competition between Receptors in Dynamic Combinatorial Libraries: Amplification of the Fittest?, J. Am. Chem. Soc, vol.127, issue.26, pp.9390-9392, 2005.

P. C. Kearney, L. S. Mizoue, R. A. Kumpf, J. E. Forman, A. Mccurdy et al., Molecular recognition in aqueous media. New binding studies provide further insights into the cation-?. interaction and related phenomena, J. Am. Chem. Soc, vol.115, issue.22, pp.9907-9919, 1993.

S. M. Ngola, P. C. Kearney, S. Mecozzi, K. Russell, and D. A. Dougherty, A Selective Receptor for Arginine Derivatives in Aqueous Media. Energetic Consequences of Salt Bridges That Are Highly Exposed to Water, J. Am. Chem. Soc, vol.121, issue.6, pp.1192-1201, 1999.

M. Mondal and A. K. Hirsch, Dynamic combinatorial chemistry: a tool to facilitate the identification of inhibitors for protein targets, Chem. Soc. Rev, vol.44, issue.8, pp.2455-2488, 2015.

D. Rideout, Self-assembling cytotoxins, Science, issue.4763, pp.561-563, 1986.

K. M. Sanders-jeremy, Pure Appl. Chem, vol.72, pp.2265-2274, 2000.

. Nguyen,

R. Ivan-huc, Optimizing the reversibility of hydrazone formation for dynamic combinatorial chemistry, Chem. Commun, issue.8, pp.942-943, 2003.

M. Sindelar and K. T. Wanner, Library Screening by Means of Mass Spectrometry (MS) Binding Assays-Exemplarily Demonstrated for a Pseudostatic Library Addressing ?-Aminobutyric Acid (GABA) Transporter 1 (GAT1), ChemMedChem, vol.7, issue.9, pp.1678-1690, 2012.

R. L. Cousins, G. Poulsen, S. M. Sanders, and J. , Dynamic combinatorial libraries of pseudo-peptide hydrazone macrocycles, Chem. Commun, issue.16, pp.1575-1576, 1999.

V. T. Bhat, A. M. Caniard, T. Luksch, R. Brenk, D. J. Campopiano et al., Nucleophilic catalysis of acylhydrazone equilibration for protein-directed dynamic covalent chemistry, Nat. Chem, vol.2, pp.490-497, 2010.

M. Mondal, N. Radeva, H. Fanlo-virgós, S. Otto, G. Klebe et al., Fragment Linking and Optimization of Inhibitors of the Aspartic Protease Endothiapepsin: Fragment-Based Drug Design Facilitated by Dynamic Combinatorial Chemistry, Angew. Chem. Int. Ed, vol.55, issue.32, pp.9422-9426, 2016.

M. Mondal, N. Radeva, H. Köster, A. Park, C. Potamitis et al., Structure-Based Design of Inhibitors of the Aspartic Protease Endothiapepsin by Exploiting Dynamic Combinatorial Chemistry, Angew. Chem. Int. Ed, vol.53, issue.12, pp.3259-3263, 2014.

P. Frei, L. Pang, M. Silbermann, D. Eri?, T. Mühlethaler et al., Target-directed Dynamic Combinatorial Chemistry: A Study on Potentials and Pitfalls as Exemplified on a Bacterial Target, Chem. Eur. J, vol.2017, issue.48, pp.11570-11577

R. Steudel, Properties of Sulfur-Sulfur Bonds, Angew. Chem. Int. Ed. Engl, vol.14, issue.10, pp.655-664, 1975.

L. Vial, R. F. Ludlow, J. Leclaire, R. Pérez-fernández, and S. Otto, Controlling the Biological Effects of Spermine Using a Synthetic Receptor, J. Am. Chem. Soc, vol.128, issue.31, pp.10253-10257, 2006.

P. Skowron, M. Dumartin, E. Jeamet, F. Perret, C. Gourlaouen et al., On-Demand Cyclophanes: Substituent-Directed Self-Assembling, Folding, and Binding, J. Org. Chem, vol.81, issue.2, pp.654-661, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01861706

F. B. Cougnon and J. K. Sanders, Evolution of Dynamic Combinatorial Chemistry, Acc. Chem. Res, vol.2012, issue.12, pp.2211-2221

S. Otto, R. L. Furlan, and J. K. Sanders, Dynamic Combinatorial Libraries of Macrocyclic Disulfides in Water, J. Am. Chem. Soc, vol.122, issue.48, pp.12063-12064, 2000.

L. A. Ingerman, M. E. Cuellar, and M. L. Waters, A small molecule receptor that selectively recognizes trimethyl lysine in a histone peptide with native protein-like affinity, Chem. Commun, vol.46, issue.11, pp.1839-1841, 2010.

J. Leclaire, L. Vial, S. Otto, and J. K. Sanders, Expanding diversity in dynamic combinatorial libraries: simultaneous exchange of disulfide and thioester linkages, Chem. Commun, issue.15, pp.1959-1961, 2005.

D. E. Scott, G. J. Dawes, M. Ando, C. Abell, and A. Ciulli, A Fragment-Based Approach to Probing Adenosine Recognition Sites by Using Dynamic Combinatorial Chemistry, ChemBioChem, vol.10, issue.17, pp.2772-2779, 2009.

M. T. Cancilla, M. M. He, N. Viswanathan, R. L. Simmons, M. Taylor et al., Discovery of an Aurora kinase inhibitor through site-specific dynamic combinatorial chemistry, Bioorg. Med. Chem. Lett, vol.18, issue.14, pp.3978-3981, 2008.

M. Donnier-maréchal, J. Septavaux, E. Jeamet, A. Héloin, F. Perret et al., Diastereoselective Synthesis of a Dyn[3]arene with Distinct Binding Behaviors toward Linear Biogenic Polyamines, Org. Lett, issue.8, pp.2420-2423, 2018.

A. M. Boukerb, A. Rousset, N. Galanos, J. Méar, M. Thépaut et al., Antiadhesive Properties of Glycoclusters against doi Lung Infection, J. Med. Chem, vol.57, issue.24, pp.10275-10289, 2014.

M. S. Newman and H. A. Karnes, The Conversion of Phenols to Thiophenols via Dialkylthiocarbamates, J. Org. Chem, issue.12, pp.3980-3984, 1966.

H. Kwart and E. R. Evans, The Vapor Phase Rearrangement of Thiocarbonates and Thiocarbamates, J. Org. Chem, issue.2, pp.410-413, 1966.

J. P. Gilday, P. Lenden, J. D. Moseley, and B. G. Cox, The Newman?Kwart Rearrangement: A Microwave Kinetic Study, J. Org. Chem, issue.8, pp.3130-3134, 2008.

M. Burns, G. C. Lloyd-jones, J. D. Moseley, and J. S. Renny, The Molecularity of the Newman?Kwart Rearrangement, J. Org. Chem, issue.19, pp.6347-6353, 2010.

J. N. Harvey, J. Jover, G. C. Lloyd-jones, J. D. Moseley, P. Murray et al., The Newman-Kwart Rearrangement of O-Aryl Thiocarbamates: Substantial Reduction in Reaction Temperatures through Palladium Catalysis, Angew. Chem. Int. Ed, vol.48, pp.7612-7615, 2009.

A. J. Perkowski, C. L. Cruz, and D. A. Nicewicz, Ambient-Temperature Newman-Kwart Rearrangement Mediated by Organic Photoredox Catalysis, J. Am. Chem. Soc, vol.137, issue.50, pp.15684-15687, 2015.

S. K. Pedersen, A. Ulfkjaer, M. N. Newman, S. Yogarasa, A. U. Petersen et al., Inverting the Selectivity of the Newman-Kwart Rearrangement via One Electron Oxidation at Room Temperature, J. Org. Chem, 2018.

K. Eriksen, A. Ulfkjaer, T. I. Sølling, and M. Pittelkow, Benzylic Thio and Seleno Newman-Kwart Rearrangements, J. Org. Chem, vol.83, issue.18, pp.10786-10797, 2018.

K. Takagi, A facile synthesis of sulfides using S-aryl-isothiouronium intermediates, Chem. Lett, issue.8, pp.1379-1380, 1986.

M. S. Oderinde, M. Frenette, D. W. Robbins, B. Aquila, and J. W. Johannes, Photoredox Mediated Nickel Catalyzed Cross-Coupling of Thiols With Aryl and Heteroaryl Iodides via Thiyl Radicals, J. Am. Chem. Soc, vol.138, issue.6, pp.1760-1763, 2016.

Y. Jiang, Y. Qin, S. Xie, X. Zhang, J. Dong et al., A General and Efficient Approach to Aryl Thiols: CuI-Catalyzed Coupling of Aryl Iodides with Sulfur and Subsequent Reduction, Org. Lett, issue.22, pp.5250-5253, 2009.

H. Xu, Y. Liang, Z. Cai, H. Qi, C. Yang et al., CuINanoparticles-Catalyzed Selective Synthesis of Phenols, Anilines, and Thiophenols from Aryl Halides in Aqueous Solution, J. Org. Chem, issue.7, pp.2296-2300, 2011.

D. Demeter, Nouveaux systèmes conjugués fonctionnels dérivés du thiophène. Université d'Angers, Français. <tel-00435521>, 2008.

J. C. Arnould, M. Didelot, C. Cadilhac, and M. J. Pasquet, Convenient synthesis of aromatic thiols from phenols, Tetrahedron Lett, issue.26, pp.4523-4524, 1996.

C. Lai and B. J. Backes, Efficient preparation of S-aryl thioacetates from aryl halides and potassium thioacetate, Tetrahedron Lett, issue.17, pp.3033-3037, 2007.

M. A. Fernández-rodríguez and J. F. Hartwig, One-Pot Synthesis of Unsymmetrical Diaryl Thioethers by Palladium-Catalyzed Coupling of Two Aryl Bromides and a Thiol Surrogate, Chem. Eur. J, issue.8, pp.2355-2359, 2010.

M. Kreis and S. Bräse, A General and Efficient Method for the Synthesis of Silyl-Protected Arenethiols from Aryl Halides or Triflates, Adv. Synth. Catal, vol.347, pp.313-319, 2005.

G. Sevez and J. Pozzo, Toward multi-addressable molecular systems: Efficient synthesis and photochromic performance of unsymmetrical bisthienylethenes, Dyes Pigm, vol.89, issue.3, pp.246-253, 2011.

J. R. Grunwell, Reaction of Grignard reagents with tetramethylthiuram disulfide yielding dithiocarbamates, J. Org. Chem, vol.35, issue.5, pp.1500-1501, 1970.

R. J. Leuckart and . Prakt, Chem, vol.1890, pp.179-224

L. Testaferri, M. Tingoli, and M. Tiecco, Reactions of polychlorobenzenes with alkanethiol anions in HMPA. A simple, high-yield synthesis of poly(alkylthio)benzenes, J. Org. Chem, issue.22, pp.4376-4380, 1980.

R. S. Kishore, V. Ravikumar, G. Bernardinelli, N. Sakai, and S. Matile, Rapid and Mild Synthesis of Functionalized Naphthalenediimides, J. Org. Chem, vol.73, issue.2, pp.738-740, 2008.

R. Pummerer, Über Phenyl-sulfoxyessigsäure, Ber. Dtsch. Chem. Ges, vol.42, issue.2, pp.2282-2291, 1909.

A. Pinchart, C. Dallaire, A. Van-bierbeek, and M. Gingras, Efficient formation of aromatic thiols from thiomethylated precursors, Tetrahedron Lett, issue.30, pp.5479-5482, 1999.

C. Belle, C. Bougault, M. Averbuch, A. Durif, J. Pierre et al., Paramagnetic NMR Investigations of High-Spin Nickel(II) Complexes. Controlled Synthesis, Structural, Electronic, and Magnetic Properties of Dinuclear vs Mononuclear Species, J. Am. Chem. Soc, vol.123, issue.33, pp.8053-8066, 2001.

T. Kimura, K. Amano, and T. Namauo, Preparation of Phthalocyaninato and Porphyrinato Titanium (IV) Benzenedichalcogenolates. Phosphorus, Sulfur, Silicon Relat. Elem, vol.186, issue.5, pp.1234-1237, 2011.

L. Lawson and T. Huser, Synthesis and Characterization of a Disulfide Reporter Molecule for Enhancing pH Measurements Based on Surface-Enhanced Raman Scattering, Anal. Chem, vol.2012, issue.8, pp.3574-3580

F. N. Miros, Y. Zhao, G. Sargsyan, M. Pupier, C. Besnard et al., Enolate Stabilization by Anion-? Interactions: Deuterium Exchange in Malonate Dilactones on ?-Acidic Surfaces, Chem. Eur. J, vol.22, issue.8, pp.2648-2657, 2015.

M. Akamatsu, N. Sakai, and S. Matile, Electric-Field-Assisted Anion?? Catalysis, J. Am. Chem. Soc, vol.2017, issue.19, pp.6558-6561

Y. Zhao, G. Huang, C. Besnard, J. Mareda, N. Sakai et al., Strong, Neutral, Twisted, and Chiral ? Acids, Chem. Eur. J, vol.21, issue.16, pp.6202-6207, 2015.

L. Liu, Y. Cotelle, A. Avestro, N. Sakai, and S. Matile, Asymmetric Anion?? Catalysis of Iminium/Nitroaldol Cascades To Form Cyclohexane Rings with Five Stereogenic Centers Directly on ?-Acidic Surfaces, J. Am. Chem. Soc, vol.138, issue.25, pp.7876-7879, 2016.

A. C. Thompson, H. M. Grimm, A. Gray-bé, K. J. Mcknight, and J. J. Reczek, Efficient Bromination of Naphthalene Dianhydride and Microwave-Assisted Synthesis of CoreBrominated Naphthalene Diimides, Synth. Commun, vol.45, issue.9, pp.1127-1136, 2015.

D. Cao, M. Hong, A. K. Blackburn, Z. Liu, J. M. Holcroft et al., Two-point halogen bonding between 3,6-dihalopyromellitic diimides, Chem. Sci, vol.2014, issue.11, pp.4242-4248

S. Oscarson, The Chemist's Way to Synthesize Glycosides In The Sugar Code, pp.31-51, 2009.

S. Cecioni, J. Praly, S. E. Matthews, M. Wimmerová, A. Imberty et al., Rational Design and Synthesis of Optimized Glycoclusters for Multivalent LectinCarbohydrate Interactions: Influence of the Linker Arm, Chem. Eur. J, vol.2012, issue.20, pp.6250-6263
URL : https://hal.archives-ouvertes.fr/hal-00691472

S. Cecioni, M. Almant, J. Praly, and S. Vidal, Synthesis of Azido-Functionalized Carbohydrates for the Design of Glycoconjugates In Carbohydrate Chemistry: Proven Synthetic Methods, vol.1, pp.175-180, 2012.

Z. S. Szurmai, L. Liptak, and A. Chim, , vol.126, p.259, 1989.

Y. Chevolot, C. Bouillon, S. Vidal, F. Morvan, A. Meyer et al., DNA-Based Carbohydrate Biochips: A Platform for Surface Glyco-Engineering, Angew. Chem. Int. Ed, vol.46, issue.14, pp.2398-2402, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00137357

S. Schmalisch and R. Mahrwald, Organocatalyzed Direct Glycosylation of Unprotected and Unactivated Carbohydrates, Org. Lett, issue.22, pp.5854-5857, 2013.

S. Wang, N. Galanos, A. Rousset, K. Buffet, S. Cecioni et al., Fucosylation of triethyleneglycol-based acceptors into 'clickable' ?-fucosides, Carbohydr. Res, vol.395, pp.15-18, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01147398

O. Ramström, S. Lohmann, T. Bunyapaiboonsri, and J. Lehn, Dynamic Combinatorial Carbohydrate Libraries: Probing the Binding Site of the Concanavalin A Lectin, Chem. Eur. J, vol.10, issue.7, pp.1711-1715, 2004.

O. Ramström and J. Lehn, Situ Generation and Screening of a Dynamic Combinatorial Carbohydrate Library against Concanavalin A, ChemBioChem, vol.1, issue.1, pp.41-48, 2000.

Z. Pei, R. Larsson, T. Aastrup, H. Anderson, J. Lehn et al., Quartz crystal microbalance bioaffinity sensor for rapid identification of glycosyldisulfide lectin inhibitors from a dynamic combinatorial library, Biosens. Bioelectron, vol.22, issue.1, pp.42-48, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00123177

P. Reeh and J. De-mendoza, Dynamic Multivalency for Carbohydrate-Protein Recognition through Dynamic Combinatorial Libraries Based on Fe II -Bipyridine Complexes, Chem. Eur. J, vol.19, issue.17, pp.5259-5262, 2013.

. Sigma-aldrich, , 2018.

D. T. Wong, .. Marvel, and C. S. , Aromatic polyethers, polysulfones, and polyketones as laminating resins. VIII. Aryl disulfide units as crosslinking agents, J. Polym. Sci. A. Polym. Chem, issue.7, pp.1637-1644, 1976.

M. S. Raasch, A macrocyclic tetradisulfide from tetrafluoro-1,4-benzenedithiol, J. Org. Chem, issue.15, pp.2629-2632, 1979.

M. P. Sonawane, J. Jacobs, J. Thomas, L. Van-meervelt, and W. Dehaen, Synthesis and structural exploration of disulfide bridged [2n] pillararene-like molecules, Chem. Commun, issue.56, pp.6310-6312, 2013.

E. Jeamet, J. Septavaux, A. Héloin, M. Donnier-maréchal, M. Dumartin et al., Wetting the lock and key enthalpically favours polyelectrolyte binding, Chem. Sci, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01917669

L. Vial, M. Dumartin, M. Donnier-maréchal, F. Perret, J. Francoia et al., Chirality sensing and discrimination of lysine derivatives in water with a dyn[4]arene, Chem. Commun, vol.52, issue.99, pp.14219-14221, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01533394

M. S. Collins, M. E. Carnes, B. P. Nell, L. N. Zakharov, and D. W. Johnson, A facile route to old and new cyclophanes via self-assembly and capture, Nat. Commun, vol.7, pp.11052-11059, 2016.

A. M. Whitney, S. Ladame, and S. Balasubramanian, Templated Ligand Assembly by Using G-Quadruplex DNA and Dynamic Covalent Chemistry, Angew. Chem. Int. Ed, vol.43, issue.9, pp.1143-1146, 2004.

N. Kuhnert, G. M. Rossignolo, and A. Lopez-periago, The synthesis of trianglimines: on the scope and limitations of the [3 + 3] cyclocondensation reaction between (1R,2R)-diaminocyclohexane and aromatic dicarboxaldehydes, Org. Biomol. Chem, vol.1, issue.7, pp.1157-1170, 2003.

Y. Okada, M. Sugai, and K. Chiba, Hydrogen-Bonding-Induced Fluorescence: WaterSoluble and Polarity-Independent Solvatochromic Fluorophores, J. Org. Chem, issue.22, pp.10922-10929, 2016.

. Dynasweet, Les glycodyn[n]arènes comme ligands multivalents de lectines : Une étude par chimie combinatoire dynamique

, De nombreux glycoclusters multivalents des calixarènes, des pillararènes ou des fullerènes ont été synthétisés au sein de notre laboratoire et ont montré d'excellentes affinités pour diverses lectines grâce à leur multivalence et au « glycoside cluster effect ». Nous avons cherché à approfondir ces résultats en ajoutant un degré de dynamisme à ces molécules. Pour cela, nous avons appliqué les concepts de la chimie combinatoire dynamique où des briques moléculaires s'auto-assemblent via des liaisons réversibles pour générer à l

, Leurs propriétés ont été investiguées en chimie combinatoire dynamique et la distribution d'espèces résultant de l'équilibration a montré la formation exclusive des cyclotrimères et cyclotétramères, ou dyn[3]-et dyn[4]arènes. La répétition de l'expérience en présence d'une lectine modèle (ConA) a mené à l'amplification des homodyn, Des briques moléculaires dithiophénols glycosylés sont capables de s'auto-assembler via la formation de ponts disulfures

. Mots-clés-;-multivalence, . Glycocluster, . Lectines, and A. Concanavaline, Chimie combinatoire dynamique, Dynarènes, Pseudomonas aeruginosa