H. W. Kroto, J. R. Heath, S. C. O'brien, R. F. Curl, and R. E. Smalley, Nature, vol.60, issue.6042, pp.162-163, 1985.

S. Iijima, Helical microtubules of graphitic carbon. nature, vol.354, pp.56-58, 1991.

L. Radushkevich and V. Lukyanovich, O strukture ugleroda, obrazujucegosja pri termiceskom razlozenii okisi ugleroda na zeleznom kontakte. Zurn Fisic Chim, vol.26, pp.88-95, 1952.

D. Bethune, C. Klang, M. De, G. Vries, R. Gorman et al., Cobaltcatalysed growth of carbon nanotubes with single-atomic-layer walls, 1993.

S. Iijima and T. Ichihashi, Single-shell carbon nanotubes of 1-nm diameter, Nature, vol.363, issue.6430, pp.603-605, 1993.

K. S. Novoselov, A. K. Geim, S. Morozov, D. Jiang, Y. Zhang et al., Electric field effect in atomically thin carbon films. science, vol.306, pp.666-669, 2004.

A. Hirsch, The era of carbon allotropes, Nature materials, vol.9, issue.11, pp.868-871, 2010.

J. H. Hafner, M. J. Bronikowski, B. R. Azamian, P. Nikolaev, A. G. Rinzler et al., Catalytic growth of single-wall carbon nanotubes from metal particles, Chemical Physics Letters, vol.296, issue.1, pp.195-202, 1998.

M. J. Bronikowski, P. A. Willis, D. T. Colbert, K. Smith, and R. E. Smalley, Gas-phase production of carbon single-walled nanotubes from carbon monoxide via the HiPco process: A parametric study, Journal of Vacuum Science & Technology A, vol.19, issue.4, pp.1800-1805, 2001.

P. Nikolaev, Gas-phase production of single-walled carbon nanotubes from carbon monoxide: a review of the HiPco process, Journal of nanoscience and nanotechnology, vol.4, issue.4, pp.307-316, 2004.

G. Gao, T. Cagin, W. A. Goddard, and I. , Energetics, structure, mechanical and vibrational properties of single-walled carbon nanotubes, Nanotechnology, vol.9, issue.3, p.184, 1998.

F. Li, H. Cheng, S. Bai, G. Su, and M. Dresselhaus, Tensile strength of single-walled carbon nanotubes directly measured from their macroscopic ropes. Applied physics letters, vol.77, pp.3161-3163, 1920.

M. Yu, B. S. Files, S. Arepalli, and R. S. Ruoff, Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties. Physical review letters, vol.84, p.5552, 2000.

J. N. Coleman, U. Khan, W. J. Blau, and Y. K. Gun'ko, Small but strong: a review of the mechanical properties of carbon nanotube-polymer composites, Carbon, vol.44, issue.9, pp.1624-1652, 2006.

M. E. Itkis, F. Borondics, A. Yu, and R. C. Haddon, Bolometric infrared photoresponse of suspended single-walled carbon nanotube films, Science, vol.312, issue.5772, pp.413-416, 2006.

S. Reich, C. Thomsen, and J. Maultzsch, Carbon nanotubes: basic concepts and physical properties, 2008.

L. Oudjedi, Méthodes d'Absorption pour la Microscopie de Nano-Objets Individuels, vol.1, p.152, 2012.

Y. Y. Peter, Fundamentals of semiconductors, Physics, 1996.

P. Avouris, Z. Chen, and V. Perebeinos, Carbon-based electronics, Nature nanotechnology, vol.2, issue.10, pp.605-615, 2007.

L. Van-hove, The occurrence of singularities in the elastic frequency distribution of a crystal, Physical Review, vol.89, issue.6, p.1189, 1953.

J. Mintmire and C. White, Universal density of states for carbon nanotubes, Physical Review Letters, vol.81, issue.12, p.2506, 1998.

F. Vialla, Interaction entre les nanotubes de carbone et leus environnement physico-chemique: vers un contrôle des propriétés optiques, École Doctorale 107 : Physique de la région Parisienne, pp.1-184, 2014.

L. Balents and M. P. Fisher, Correlation effects in carbon nanotubes, Physical Review B, vol.55, issue.18, p.11973, 1997.

H. Kataura, Y. Kumazawa, Y. Maniwa, I. Umezu, S. Suzuki et al., Optical properties of single-wall carbon nanotubes, Synthetic Metals, vol.103, issue.1, pp.2555-2558, 1999.

R. Saito, G. Dresselhaus, and M. S. Dresselhaus, Physical properties of carbon nanotubes, vol.4, 1998.

A. Jorio, C. Fantini, M. Pimenta, R. Capaz, G. G. Samsonidze et al., Resonance Raman spectroscopy (n, m)-dependent effects in small-diameter single-wall carbon nanotubes, Physical Review B, vol.71, issue.7, p.75401, 2005.

J. Crochet, M. Clemens, and T. Hertel, Quantum yield heterogeneities of aqueous single-wall carbon nanotube suspensions, Journal of the American Chemical Society, vol.129, issue.26, pp.8058-8059, 2007.

L. Huang, H. N. Pedrosa, and T. D. Krauss, Ultrafast ground-state recovery of single-walled carbon nanotubes. Physical review letters, vol.93, p.17403, 2004.

E. B. Barros, R. B. Capaz, A. Jorio, G. G. Samsonidze, A. G. Souza-filho et al., Selection rules for one-and twophoton absorption by excitons in carbon nanotubes, Physical Review B, vol.73, issue.24, p.241406, 2006.

S. M. Santos, Optical spectroscopy of bound excitonic states in single walled carbon nanotubes, 2012.
URL : https://hal.archives-ouvertes.fr/tel-00718696

J. Maultzsch, R. Pomraenke, S. Reich, E. Chang, D. Prezzi et al., Exciton binding energies in carbon nanotubes from two-photon photoluminescence, Physical Review B, vol.72, issue.24, p.241402, 2005.
DOI : 10.1103/physrevb.72.241402

URL : http://arxiv.org/pdf/cond-mat/0505150

F. Wang, G. Dukovic, L. E. Brus, and T. F. Heinz, The optical resonances in carbon nanotubes arise from excitons, Science, vol.308, issue.5723, pp.838-841, 2005.

S. K. Doorn, P. T. Araujo, K. Hata, and A. Jorio, Excitons and exciton-phonon coupling in metallic single-walled carbon nanotubes: Resonance Raman spectroscopy, Physical Review B, vol.78, issue.16, p.165408, 2008.
DOI : 10.1103/physrevb.78.165408

F. Wang, D. J. Cho, B. Kessler, J. Deslippe, P. J. Schuck et al., Observation of excitons in one-dimensional metallic single-walled carbon nanotubes. Physical review letters, vol.99, p.227401, 2007.

G. Turrell and J. Corset, Raman microscopy: developments and applications, 1996.

M. Dresselhaus, G. Dresselhaus, A. Jorio, A. Souza-filho, and R. Saito, Raman spectroscopy on isolated single wall carbon nanotubes. Carbon, vol.40, pp.2043-2061, 2002.

H. J. Dal, A. G. Rinzler, P. Nikolaev, A. Thess, D. T. Colbert et al., Single-wall nanotubes produced by metal-catalyzed disproportionation of carbon monoxide, Chemical Physics Letters, vol.260, issue.3-4, pp.471-475, 1996.

P. Nikolaev, M. J. Bronikowski, R. K. Bradley, F. Rohmund, D. T. Colbert et al., Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide, Chemical Physics Letters, vol.313, issue.1-2, pp.91-97, 1999.

A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit et al., Crystalline ropes of metallic carbon nanotubes, Science-AAAS, vol.273, issue.5274, pp.483-487, 1996.

V. Vinciguerra, F. Buonocore, G. Panzera, and L. Occhipinti, Growth mechanisms in chemical vapour deposited carbon nanotubes, Nanotechnology, vol.14, issue.6, pp.655-660, 2003.
DOI : 10.1088/0957-4484/14/6/317

I. W. Chiang, B. E. Brinson, A. Y. Huang, P. A. Willis, M. J. Bronikowski et al., Purification and Characterization of Single-Wall Carbon Nanotubes (SWNTs) Obtained from the Gas-Phase Decomposition of CO (HiPco Process), The Journal of Physical Chemistry B, vol.105, issue.35, pp.8297-8301, 2001.

W. Wenseleers, I. I. Vlasov, E. Goovaerts, E. D. Obraztsova, A. S. Lobach et al., Efficient Isolation and Solubilization of Pristine Single-Walled Nanotubes in Bile Salt Micelles, Advanced Functional Materials, vol.14, issue.11, pp.1105-1112, 2004.

A. Jorio, G. Dresselhaus, and M. S. Dresselhaus, Carbon nanotubes: advanced topics in the synthesis, structure, properties and applications, vol.111, 2008.

S. H. Jeong, K. K. Kim, S. J. Jeong, K. H. An, S. H. Lee et al., Optical absorption spectroscopy for determining carbon nanotube concentration in solution, Synthetic Metals, vol.157, pp.570-574, 2007.
DOI : 10.1016/j.synthmet.2007.06.012

S. Attal, R. Thiruvengadathan, and O. Regev, Determination of the concentration of single-walled carbon nanotubes in aqueous dispersions using UV-visible absorption spectroscopy, Anal Chem, vol.78, issue.23, pp.8098-104, 2006.

X. Xin, G. Xu, and H. Li, Dispersion and Property Manipulation of Carbon Nanotubes by SelfAssemibles of Amphiphilic Molecules, 2013.

M. S. Dresselhaus, G. Dresselhaus, and M. Hofmann, The big picture of Raman scattering in carbon nanotubes, Vibrational Spectroscopy, vol.45, issue.2, pp.71-81, 2007.

A. M. Rao, E. Richter, S. Bandow, B. Chase, P. C. Eklund et al., Resonance Raman spectroscopy (n, m)-dependent effects in small-diameter single-wall carbon nanotubes, Physical Review B, vol.71, issue.7, p.75401, 2005.

A. V. Naumov, S. Ghosh, D. A. Tsyboulski, S. M. Bachilo, and R. B. Weisman, Analyzing absorption backgrounds in single-walled carbon nanotube spectra, ACS nano, vol.5, issue.3, pp.1639-1648, 2011.

Y. Murakami, E. Einarsson, T. Edamura, and S. Maruyama, Polarization dependence of the optical absorption of single-walled carbon nanotubes. Physical review letters, vol.94, p.87402, 2005.

S. H. Jeong, K. K. Kim, S. J. Jeong, K. H. An, S. H. Lee et al., Optical absorption spectroscopy for determining carbon nanotube concentration in solution, Synthetic Metals, vol.157, issue.13, pp.570-574, 2007.

N. Nair, M. L. Usrey, W. Kim, R. D. Braatz, and M. S. Strano, Estimation of the (n, m) concentration distribution of single-walled carbon nanotubes from photoabsorption spectra, Analytical chemistry, vol.78, issue.22, pp.7689-7696, 2006.

D. Valadão, D. Pires, M. Alencar, J. Hickmann, C. Fantini et al., Investigation of the electronic nonlinear refraction index of single-wall carbon nanotubes wrapped with different surfactants, Optical Materials Express, vol.2, issue.6, pp.749-756, 2012.

Y. Tan and D. E. Resasco, Dispersion of single-walled carbon nanotubes of narrow diameter distribution, The Journal of Physical Chemistry B, vol.109, issue.30, pp.14454-14460, 2005.

N. Puech, C. Blanc, E. Grelet, C. Zamora-ledezma, M. Maugey et al., Highly ordered carbon nanotube nematic liquid crystals, The Journal of Physical Chemistry C, vol.115, issue.8, pp.3272-3278, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00596466

B. Yang, L. Ren, L. Li, X. Tao, Y. Shi et al., The characterization of the concentration of the single-walled carbon nanotubes in aqueous dispersion by UV-Vis-NIR absorption spectroscopy, Analyst, vol.138, issue.21, pp.6671-6676, 2013.

V. C. Moore, M. S. Strano, E. H. Haroz, R. H. Hauge, R. E. Smalley et al., Individually suspended single-walled carbon nanotubes in various surfactants, Nano Letters, vol.3, issue.10, pp.1379-1382, 2003.

B. Priya and H. Byrne, Investigation of sodium dodecyl benzene sulfonate assisted dispersion and debundling of single-wall carbon nanotubes, The Journal of Physical Chemistry C, vol.112, issue.2, pp.332-337, 2008.

M. Shtein, I. Pri-bar, and O. Regev, A simple solution for the determination of pristine carbon nanotube concentration, Analyst, vol.138, issue.5, pp.1490-1496, 2013.

P. Vichchulada, M. A. Cauble, E. A. Abdi, E. I. Obi, Q. Zhang et al., Sonication power for length control of single-walled carbon nanotubes in aqueous suspensions used for 2-dimensional network formation, The Journal of Physical Chemistry C, vol.114, issue.29, pp.12490-12495, 2010.

S. D. Bergin, V. Nicolosi, S. Giordani, A. De-gromard, L. Carpenter et al., Exfoliation in ecstasy: liquid crystal formation and concentration-dependent debundling observed for single-wall nanotubes dispersed in the liquid drug ?-butyrolactone, Nanotechnology, vol.18, issue.45, p.455705, 2007.

C. Fantini, A. Jorio, M. Souza, M. Strano, M. Dresselhaus et al., Optical transition energies for carbon nanotubes from resonant Raman spectroscopy: Environment and temperature effects. Physical review letters, vol.93, p.147406, 2004.

J. Maultzsch, H. Telg, S. Reich, and C. Thomsen, Radial breathing mode of single-walled carbon nanotubes: Optical transition energies and chiral-index assignment, Physical Review B, vol.72, p.205438, 1920.

T. Ando, Excitons in carbon nanotubes, Journal of the Physical Society of Japan, vol.66, issue.4, pp.1066-1073, 1997.

J. Maultzsch, R. Pomraenke, S. Reich, E. Chang, D. Prezzi et al., Exciton binding energies in carbon nanotubes from two-photon photoluminescence, Physical Review B, vol.72, issue.24, p.241402, 2005.
DOI : 10.1103/physrevb.72.241402

URL : http://arxiv.org/pdf/cond-mat/0505150

F. Wang, G. Dukovic, L. E. Brus, and T. F. Heinz, The optical resonances in carbon nanotubes arise from excitons, Science, vol.308, issue.5723, pp.838-841, 2005.

S. Chou, F. Plentz, J. Jiang, R. Saito, D. Nezich et al., Phonon-assisted excitonic recombination channels observed in DNAwrapped carbon nanotubes using photoluminescence spectroscopy. Physical review letters, vol.94, p.127402, 2005.

M. S. Dresselhaus, G. Dresselhaus, R. Saito, and A. Jorio, Exciton photophysics of carbon nanotubes, Annu. Rev. Phys. Chem, vol.58, pp.719-747, 2007.
DOI : 10.1146/annurev.physchem.58.032806.104628

P. Tan, A. Rozhin, T. Hasan, P. Hu, V. Scardaci et al., Photoluminescence spectroscopy of carbon nanotube bundles: Evidence for exciton energy transfer. Physical review letters, vol.99, p.137402, 2007.

H. Qian, C. Georgi, N. Anderson, A. A. Green, M. C. Hersam et al., Exciton energy transfer in pairs of single-walled carbon nanotubes, Nano letters, vol.8, issue.5, pp.1363-1367, 2008.

H. Zhao, S. Mazumdar-;-perebeinos, V. , J. Tersoff, and P. Avouris, Electron-electron interaction effects on the optical excitations of semiconducting single-walled carbon nanotubes. Physical review letters, vol.93, p.27402, 2004.

Y. Murakami, B. Lu, S. Kazaoui, N. Minami, T. Okubo et al., Photoluminescence sidebands of carbon nanotubes below the bright singlet excitonic levels, Physical Review B, vol.79, p.195407, 2009.

P. M. Vora, X. Tu, E. J. Mele, M. Zheng, and J. M. Kikkawa, Chirality dependence of the Kmomentum dark excitons in carbon nanotubes, Physical Review B, vol.81, issue.15, p.155123, 2010.

Y. Piao, B. Meany, L. R. Powell, N. Valley, H. Kwon et al., Brightening of carbon nanotube photoluminescence through the incorporation of sp3 defects, Nature chemistry, issue.5, pp.840-845, 2013.

H. Harutyunyan, T. Gokus, A. A. Green, M. C. Hersam, M. Allegrini et al., Defectinduced photoluminescence from dark excitonic states in individual single-walled carbon nanotubes, Nano letters, vol.9, issue.5, pp.2010-2014, 2009.

A. Srivastava, H. Htoon, V. I. Klimov, and J. Kono, Direct observation of dark excitons in individual carbon nanotubes: Inhomogeneity in the exchange splitting, Physical review letters, vol.101, issue.8, p.87402, 2008.

W. Zhou, D. Nakamura, H. Liu, H. Kataura, and S. Takeyama, Relative Ordering between Bright and Dark Excitons in Single-walled Carbon Nanotubes

I. Mortimer and R. Nicholas, Role of bright and dark excitons in the temperature-dependent photoluminescence of carbon nanotubes. Physical review letters, vol.98, p.27404, 2007.

Y. Wang, K. Kempa, B. Kimball, J. Carlson, G. Benham et al., Receiving and transmitting light-like radio waves: Antenna effect in arrays of aligned carbon nanotubes. Applied physics letters, vol.85, pp.2607-2609, 2004.

T. Hertel, S. Himmelein, T. Ackermann, D. Stich, and J. Crochet, Diffusion limited photoluminescence quantum yields in 1-D semiconductors: single-wall carbon nanotubes, ACS nano, vol.4, issue.12, pp.7161-7168, 2010.

R. B. Weisman and S. M. Bachilo, Dependence of optical transition energies on structure for single-walled carbon nanotubes in aqueous suspension: an empirical Kataura plot, Nano Letters, vol.3, issue.9, pp.1235-1238, 2003.

F. J. Torres-canas, C. Blanc, C. Zamora-ledezma, P. J. Silva, and E. Anglaret, Dispersion and Individualization of SWNT in Surfactant-Free Suspensions and Composites of Hydrosoluble Polymers, The Journal of Physical Chemistry C, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01202130

P. Ma, N. A. Siddiqui, G. Marom, and J. Kim, Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: a review, Composites Part A: Applied Science and Manufacturing, vol.41, issue.10, pp.1345-1367, 2010.

M. Moniruzzaman and K. I. Winey, Polymer nanocomposites containing carbon nanotubes, Macromolecules, vol.39, issue.16, pp.5194-5205, 2006.

M. J. O'connell, P. Boul, L. M. Ericson, C. Huffman, Y. Wang et al., Reversible water-solubilization of single-walled carbon nanotubes by polymer wrapping, Chemical Physics Letters, vol.342, issue.3, pp.265-271, 2001.

V. C. Moore, M. S. Strano, E. H. Haroz, R. H. Hauge, R. E. Smalley et al., Individually suspended single-walled carbon nanotubes in various surfactants, Nano Letters, vol.3, issue.10, pp.1379-1382, 2003.

G. P. Moriarty, S. De, P. J. King, U. Khan, M. Via et al., Thermoelectric behavior of organic thin film nanocomposites, Journal of Polymer Science Part B: Polymer Physics, vol.51, issue.2, pp.119-123, 2013.

W. Wenseleers, I. I. Vlasov, E. Goovaerts, E. D. Obraztsova, A. S. Lobach et al., Efficient Isolation and Solubilization of Pristine Single-Walled Nanotubes in Bile Salt Micelles, Advanced Functional Materials, vol.14, issue.11, pp.1105-1112, 2004.

C. Zamora-ledezma, C. Blanc, and E. Anglaret, Orientational order of single-wall carbon nanotubes in stretch-aligned photoluminescent composite films, Physical Review B, vol.80, issue.11, p.113407, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00807066

C. Zamora-ledezma, C. Blanc, and E. Anglaret, Controlled alignment of individual single-wall carbon nanotubes at high concentrations in polymer matrices, The Journal of Physical Chemistry C, vol.116, issue.25, pp.13760-13766, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00713317

L. Wei, L. Li, M. B. Chan-park, Y. Yang, and Y. Chen, Aggregation-dependent photoluminescence sidebands in single-walled carbon nanotube, The Journal of Physical Chemistry C, vol.114, issue.14, pp.6704-6711, 2010.

T. Hertel, A. Hagen, V. Talalaev, K. Arnold, F. Hennrich et al., Spectroscopy of single-and double-wall carbon nanotubes in different environments, Nano letters, vol.5, issue.3, pp.511-514, 2005.

M. J. O'connell, S. M. Bachilo, C. B. Huffman, V. C. Moore, M. S. Strano et al., Band gap fluorescence from individual single-walled carbon nanotubes, Science, vol.297, issue.5581, pp.593-596, 2002.

F. .. Bergler, Fluorescence Spectroscopy of Gel-Immobilized Single-Wall Carbon Nanotubes with Microfluidic Control of the Surfactant Environment, The Journal of Physical Chemistry C, vol.117, issue.25, pp.13318-13323, 2013.

Z. Fan, T. Wei, G. Luo, and F. Wei, Fabrication and characterization of multi-walled carbon nanotubes-based ink, Journal of materials science, vol.40, issue.18, pp.5075-5077, 2005.

K. Kordás, T. Mustonen, G. Tóth, H. Jantunen, M. Lajunen et al., Inkjet printing of electrically conductive patterns of carbon nanotubes, Small, issue.2, pp.1021-1025, 2006.

R. P. Tortorich and J. Choi, Inkjet printing of carbon nanotubes, Nanomaterials, issue.3, pp.453-468, 2013.

O. Kwon, H. Kim, H. Ko, J. Lee, B. Lee et al., Fabrication and characterization of inkjet-printed carbon nanotube electrode patterns on paper. Carbon, vol.58, pp.116-127, 2013.

S. Badaire, C. Zakri, M. Maugey, A. Derré, J. N. Barisci et al., Liquid crystals of DNA-stabilized carbon nanotubes, Advanced Materials, vol.17, issue.13, pp.1673-1676, 2005.

S. T. Beyer and K. Walus, Controlled orientation and alignment in films of single-walled carbon nanotubes using inkjet printing, Langmuir, vol.28, issue.23, pp.8753-8759, 2012.

C. Zamora-ledezma, C. Blanc, N. Puech, M. Maugey, C. Zakri et al., Conductivity anisotropy of assembled and oriented carbon nanotubes, Physical Review E, vol.84, issue.6, p.62701, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00682462

C. Zamora-ledezma, C. Blanc, M. Maugey, C. Zakri, P. Poulin et al., Anisotropic thin films of single-wall carbon nanotubes from aligned lyotropic nematic suspensions, Nano letters, vol.8, issue.12, pp.4103-4107, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00504366

P. D. Angelo, Inkjet-printed light-emitting devices: applying inkjet microfabrication to multilayer electronics, in Department of Chemical Engineering & Applied Chemistry, p.279, 2013.

A. Denneulin, Inkjet printing of conductive inks for RFID technology: Influence of substrate, ink and process, p.272, 2007.

A. Denneulin, J. Bras, F. Carcone, C. Neuman, and A. Blayo, Impact of ink formulation on carbon nanotube network organization within inkjet printed conductive films. Carbon, vol.49, pp.2603-2614, 2011.

Z. Yin, Y. Huang, N. Bu, X. Wang, and Y. Xiong, Inkjet printing for flexible electronics: Materials, processes and equipments, Chinese Science Bulletin, vol.55, issue.30, pp.3383-3407, 2010.

N. Puech, C. Blanc, E. Grelet, C. Zamora-ledezma, M. Maugey et al., Highly ordered carbon nanotube nematic liquid crystals, The Journal of Physical Chemistry C, vol.115, issue.8, pp.3272-3278, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00596466

A. Yarin, Drop impact dynamics: splashing, spreading, receding, bouncing?, Annu. Rev. Fluid Mech, vol.38, pp.159-192, 2006.

R. Rioboo, M. Marengo, and C. Tropea, Time evolution of liquid drop impact onto solid, dry surfaces, Experiments in Fluids, vol.33, issue.1, pp.112-124, 2002.

B. Derby, Inkjet printing of functional and structural materials: fluid property requirements, feature stability, and resolution, Annual Review of Materials Research, vol.40, pp.395-414, 2010.

R. D. Deegan, Pattern formation in drying drops, Physical Review E, vol.61, issue.1, p.475, 2000.

P. J. Yunker, T. Still, M. A. Lohr, and A. Yodh, Suppression of the coffee-ring effect by shapedependent capillary interactions, Nature, vol.476, issue.7360, pp.308-311, 2011.

C. Laurent, E. Flahaut, and A. Peigney, The weight and density of carbon nanotubes versus the number of walls and diameter. Carbon, vol.48, pp.2994-2996, 2010.

C. A. Machida, Viral vectors for gene therapy: methods and protocols, vol.76, 2003.

P. Oswald, P. Pieranski, and J. Friedel, Les cristaux liquides(concepts et propriétés physiques illustrés par des expériences. Tome 1), 2002.

E. Anglaret, A. Righi, J. Sauvajol, P. Bernier, B. Vigolo et al., Raman resonance and orientational order in fibers of single-wall carbon nanotubes, Physical Review B, vol.65, issue.16, p.165426, 2002.

G. Duesberg, I. Loa, M. Burghard, K. Syassen, and S. Roth, Polarized Raman spectroscopy on isolated single-wall carbon nanotubes. Physical review letters, vol.85, p.5436, 2000.

C. Zamora-ledezma, C. Blanc, and E. Anglaret, Orientational order of single-wall carbon nanotubes in stretch-aligned photoluminescent composite films, Physical Review B, vol.80, issue.11, p.113407, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00807066

, et en particulier de leur photoluminescence (PL) dans le proche infrarouge. La spectroscopie d'absorption nous permet de sonder la dispersion des SWNT et de mesurer leur coefficient d'absorption. Nous montrons que ce dernier est très sensible au degré d'individualisation des nanotubes. Par ailleurs, nous revisitons l'interprétation des spectres de PL excités dans le proche infrarouge (en particulier à 1,17 et 1,58 eV) et attribuons les différents pics mesurés à différents mécanismes : transitions excitoniques directes, à des couplages exciton-phonon ou à des transferts d'énergie entre nanotubes. Nous montrons que l'évolution de l'intensité de PL avec l'individualisation permet de distinguer ces différents mécanismes. La seconde partie du travail est dédiée à la préparation de suspensions aqueuses stabilisées par des polymères hydrosolubles (PVA et PVP), et de composites SWNT/polymère, sans tensio-actifs. Les suspensions de nanotubes sont mélangées à des solutions de polymère, puis dialysées pour éliminer le tensio-actif. Le rendement, i.e. la concentration de la suspension finale, est de l'ordre de 75 fois plus élevée que pour une suspension préparée directement avec des polymères. Par ailleurs, les spectres de PL sont sensibles à l'environnement diélectrique des nanotubes et leur étude permet de mettre en évidence un échange entre les agents dispersants tensio-actifs/PVA à la surface des nanotubes, échange qui n'est pas observé dans le cas du PVP. Dans la troisième partie de la thèse, nous utilisons la technique d'impression jet d'encre pour imprimer des lignes continues micrométriques de SWNT, et proposons des méthodes originales pour étudier leur morphologie et leur anisotropie. La morphologie des dépôts peut varier entre deux cas limites, le dépôt homogène et la ''paire de rails'', en faisant varier la concentration de nanotubes dans les encres, Le contrôle de la dispersion et de l'orientation des nanotubes dans ces matériaux composites nanostructurés vise à optimiser leurs propriétés, en particulier électriques et optiques. La première partie du travail est consacrée à l'optimisation de la dispersion des SWNT dans des suspensions aqueuses stabilisées par des tensio-actifs, des sels biliaires, et à l'étude de leurs propriétés optiques