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Introduction 
 

Spintronic, which involve electron’s spin for data storage and processing, has emerged 

from the discovery of Giant magnetoresistance (GMR) by A. Fert and P. Grunberg in 1988 [1 

Baibich, 2 Binasch] few years after the prediction of Tunneling magnetoresistance (TMR)  by 

M. Julliere in 1975 [3 Julliere, 4 Miyazaki, 5 Moodera]. This discovery, rewarded by a Nobel 

Prize in 2007, has revolutionized the field of sensor devices, allowing for very weak magnetic 

field detection. The highest TMR reached today at room temperature is 604% by suppression 

of Ta diffusion on CoFeB/MgO/CoFeB [6 Ikeda]. Among the numerous applications of 

magneto-resistive effects, one of the most famous is the development of Magnetic Random 

Access Memories (MRAM) for data storage and processing, developed in the 2000’s. Another 

very active topic in spintronics deals with the spin transfer torque (STT) effect [7 Slonczewski, 

8 Berger] which relates the effect of a spin polarized current upon the magnetization of a 

nanostructure. Indeed, for sufficiently high current density, one can switch the magnetization 

of a nanomagnet or induce its precession in the GHz or THz range. Similarly to magneto-

resistive effects, STT is now the basis of numbers of devices such as ST-MRAM or microwave 

devices.    

The basic mechanism of GMR and TMR relies on the spin polarization, i.e. the 

difference between majority and minority spins at the fermi level, of the material. STT effect 

also depends on spin polarization but also on the dynamic damping coefficient which opposes 

the STT. Indeed, the current density to switch the magnetization of a nanomagnet is 

proportional to the Gilbert damping constant and inversely proportional to the spin 

polarization. Therefore there is today an intense research to find materials with both high 

spin polarization and low damping coefficient. In this research field, one promising route 

concerns Heusler alloys which are predicted to be half metals, meaning theoretically 100% 

spin polarization, with a weak Gilbert damping coefficient below 10-3, about one order of 

magnitude below the usual ferromagnetic material used in microelectronic.  

After the discovery of Heusler alloys by F. Heusler [9 Heusler], half metallicity proof 

of NiMnSb half-Heusler compound was reported by de Groot et al. [10 de Groot] leading to a 

great interest in investigating different kinds of Heusler alloys. Nowadays, the improvement 

of structural and magnetic properties of Heusler alloys has become a major topic in 

spintronics.  

In this work we offer to study the correlations between the structural and magnetic 

properties of the particular Co2MnSi Heusler alloy. The interests for this material are 

multiple. First it is predicted to be half metallic when ordered in the L21 or B2 crystal phases. 

Also, it has been predicted to show very low damping coefficient down to 6x10-4 which is about 

one order of magnitude lower than the usual ferromagnetic materials. Its high Curie 

temperature up to 800° K provides stability for devices working at room temperature. Last, 

the deposition conditions of this alloy are compatible with microelectronics processes. 

Therefore it shows multiple advantages for the development of new generation of spintronic 

devices.     

To achieve our goal, we study the evolution of the static and dynamic magnetic 

parameters of the Co2MnSi when submitted to He+ ion irradiation at 150 KeV. Ion irradiation 

is a particular efficient method to control and/or modify the structure of magnetic alloys. For 
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example, the improvement of long range L10 order of FePt and FePd alloys was demonstrated 

by ion irradiation in the early 2000’s. More recently, Gaier et al. [11 Gaier] showed in 2009 

that He+ ion irradiation improves the long range B2 order in Co2MnSi. Our work is an 

extension of the one of Gaier. Our initial objectives are twofold. The first is to study the 

possibility to use ion irradiation to enhance the structural order and magnetic properties of 

the Co2MnSi, even in the most ordered L21 phase, and to decrease the microwave losses in 

the Gigahertz range. The second objective is more fundamental as it consists in studying the 

intrinsic and extrinsic contributions of the dynamic relaxation as a function of the atomic 

order. Our goal is to get a better understanding of the intrinsic mechanisms controlling the 

magnetic dynamic relaxation.  

 

To reach these different objectives, we combined several experimental techniques. We 

grow Co2MnSi Heusler alloys by magnetron sputtering on MgO substrates. These samples 

are then irradiated with light He+ ions. The structural properties of the samples are studied 

by X-ray diffraction, in normal and anomalous conditions, and with Transmission Electron 

Microscopy (TEM) techniques, in particular HAADF-STEM imaging mode. This part of our 

study has been realized in collaboration with the LAAS-CNRS Laboratory in Toulouse and 

with the INA-ARAID laboratory at the University of Zaragoza (Spain). The evolution 

of the static and dynamic magnetic properties of the samples has been measured by 

means of Magneto Optic Kerr Effect (MOKE), Physical Properties Measurements System 

(PPMS) at the LPCNO laboratory in Toulouse and Ferromagnetic Resonance (FMR). The 

FMR set-up has been developed at the CEMES during this PhD.  

 

The manuscript is organized as follow: 

 

 In chapter 1 we give an overview of the state of the art about full X2YZ Heusler alloys and 

in particular the structural and magnetic behavior of Co2MnSi. In this chapter, we also 

include some features affecting the half metallicity as well as the magnetic behavior. In 

particular a review of the effect of atomic disorder and deposition conditions on the 

magnetic properties is addressed.    

 

 In chapter 2 we present some basics of magnetism starting with the micromagnetic energy 

terms involved in the understanding of the static and magnetic behavior of ferromagnetic 

films. Then magnetization dynamics is presented and spin waves concept is introduced. 

At the end of this chapter, we introduce the concept of intrinsic and extrinsic dynamic 

relaxation mechanisms.  

 

 

 The chapter 3 presents the different experimental techniques that we used in this work 

for the deposition of thin films and irradiation processes as well as experimental methods 

for structural and magnetic characterization of the thin films. 

 

 

 In chapter 4, we present the structural and magnetic properties of 3 different series of 

CMS samples, showing different initial structural and magnetic properties. In this 

chapter we address the problem of the determination of the static and magnetic 

parameters due to the observed atomic disorder.  
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 The chapter 5 is devoted to the study of the effect of He+ ion irradiation on the three series 

of samples. We will show how the irradiation modifies both the mechanical strain in the 

material as well as the chemical arrangement. Then the effect of these structural 

modifications on the magnetic properties will be addressed, with a highlight on the 

variation of the crystal anisotropy in the samples. In the final part of this chapter, 

preliminary results on the effect of atomic disorder on the evolution of the intrinsic and 

extrinsic dynamic relaxation parameters will be presented. We will show that the B2 and 

L21 orders shows different evolution under irradiation, leading to different behavior of 

their magnetic properties.   
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Chapter 1: Heusler alloys 

State of the Art 
 

In 1903 F. Heusler has discovered a new class of intermetallic materials that exhibit 

a ferromagnetic order although none of its constituent elements are magnetic in Cu2MnAl 

alloy [1 Heusler]. These alloys are ternary compounds and divided into two categories, Half 

Heusler (XYZ) and Full Heusler alloys (X2YZ) where, X, Y are transition metals elements and 

Z belong to sp elements group (Table 1.1). 

  

 

Table 1.1: periodic table of elements showing the different species of Heusler alloys. 

Adapted from [2 Graf] 

Enormous investigations were conducted to study Heusler alloys for spintronic 

applications, in the last two decades, due to two main magnetic properties. The first one is 

the half metallic behavior which means that the material behaves as an insulator or a 

semiconductor for one spin orientation and as a metal for another orientation. The other 

important property, which is of particular interest in this thesis manuscript, is the low Gilbert 

damping coefficient that is predicted to be below 10-3. The mentioned properties were first 

investigated by ab-intio calculations [3 de Groot]. De Groot et al. have shown the half metallic 

behavior in NiMnSb Heusler compounds; this discovery led to a great interest in studying 

Heusler alloys. Since then, different atomic combinations have been tested as for example Co-

based Heusler compounds. During the last 10 years, experimental work focused on the growth 

quality and the different magnetic properties of Heusler alloys.  

The advantages of Heusler alloys are their electronic, magnetic and magneto-optical 

properties along with high thermal stability. Half Heusler alloys gained a lot of interest in 

the thermoelectric and solar applications [4 Bartholomé]. On the other hand, full Heusler 

alloys were specially investigated in spintronic applications. Examples on some applications 

of half and full Heusler alloys are given at the end of this chapter. In this work we focus on 
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the magnetic properties and especially the dynamic properties, of Co2MnSi which is predicted 

to be half metallic with a very low damping ≈ 0.6 x 10-4 [5 Liu]. Moreover, its high Curie 

temperature (around 980 K) [6 Webster] makes it compatible with micro-electronic processes 

and promotes it as a promising candidate for spintronic devices.  

In this chapter, we will present the general structural and magnetic properties of 

Heusler alloys, with a particular insight on Co-based Heusler compounds.  Half metallicity 

and magnetic behavior will be presented. Then, we will present the influence of structural 

ordering on the magnetic properties and the half metallicity. The discussion about the 

damping will be presented in chapter 2. Then, the effect of ion irradiation on the Heusler 

alloys properties will be addressed and some examples of industrial applications with half 

and full Heusler alloys will be given. Finally, we give a summary of the reported values in 

literature for several magnetic parameters of the particular Co2MnSi Heusler alloy which is 

the topic of our work. 

1.1 Crystalline structure of Co-based Heusler alloys 

Full Heusler alloys of general composition Co2YZ preferably crystallize in L21 

structure (space group Fm3̅m). The cubic unit cell is made up of four interpenetrating FCC 

sublattices and atoms are placed following Wyckoff positions. Co atoms are placed at (1/4, 1/4, 

1/4) position of the unit cell, Y and Z atoms are placed at (0, 0, 0) and (1/2, 1/2, 1/2) respectively, 

as shown in (Fig.1.1-a). L21 phase is the most ordered phase of Heusler alloys. If the atoms 

are misplaced or occupied randomly in the unit cell, the ordered phase is no longer valid.   

Heusler alloys also exist in three other crystalline phases, the partially disorder B2 and D03 

phases, and the completely disordered A2 phase. The B2 phase is formed by a random 

distribution of the Y and Z atoms positions in the unit cell but keeping Co atoms at their 

initial positions (Fig.1.1-b). The interchange of Co and Y atoms in the unit cell results in a 

formation of D03 structure (Figure 1.1-c). The completely disordered phase A2 is formed when 

all atoms are randomly occupied in the unit cell (Fig.1.1-c) [7 Bacon and Plant, 6 Webster, 8 

Trudel]. In our work we focused on the Co2MnSi alloy which preferentially grows in the L21 

order. However, it is important to note that it can grow into the chemically disordered B2 and 

(A2) structures depending on the deposition conditions. 

 

Figure 1.1: schematic presentation of Co2YZ crystalline structure: a) L21, b) B2, c) D03 and 

A2 phases.  
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The stability of L21 crystal order in Heusler alloy depends on the elements occupying 

X, Y and Z.  Kobayashi et al. showed that the B2/ L21 transition temperature for the Co2YGa 

(Y=Ti, V, Cr) alloys monotonically decreases with increasing electron concentration of the Y 

site, whereas the transition temperature is almost constant at 1100±100 K for (Y=Mn, Fe) [9 

Kobayashi]. This behavior may be related to the interaction between Y atoms and Ga. 

 Also, Z atoms can affect the ordering structure of Co based Heusler alloys, for example, 

Co2MnSi and Co2MnAl tend to crystallize in the L21 and B2 order respectively and this is due 

to different bonding energy  between Si or Al atoms and the transition metals [10 kandpal]. 

The nature of the Z atom has also an influence on the lattice parameter of Co based Heusler 

alloys. As an example ,table 1.2 presents the different lattice parameters for Co2MnZ alloys 

that ranges from 5.6 to 5.7 [6 Webster, 11 Elmers, 12 Wurmehl].  

Heusler compounds Lattice parameter a 

(𝐴̇) 

Crystalline 

structure 

Curie temperature 

(K°) 

Co2MnSi 5.654  

[6 Webster] 

L21 985  

[6 Webster,13 

Brown] 

Co2MnAl 5.756  

[6 Webster] 

B2 693  

[6 Webster,14 

Bushow] 

Co2MnGe 5.743 

[6 Webster] 

L21 905  

[6 Webster, 14 

Bushow] 

Co2FeAl 5.730  

[10 Kandpal] 

B2 1000  

[14 Bushow] 

Co2FeSi 5.640 

 [12 Wurmel] 

L21 1100 

 [12 Wurmel] 

 

Table 1.2: crystalline structure and lattice parameters of some Co based Heusler alloys. 

 

The structural properties of Co based Heusler alloy are very sensitive to the deposition 

condition and especially on the nature of the substrate in order to minimize lattice mismatch 

defined as: 
𝑎𝑑𝑒𝑝𝑜𝑠𝑖𝑡𝑒𝑑 𝑓𝑖𝑙𝑚−𝑎𝑠𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒

𝑎𝑠𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒
.  

 

In literature, different substrates have been used to grow Co-based Heusler alloys like 

Ge (001) [15 Li], n-type Ge (111) [16 Nahid], GaAs and MgO (001). One of the major interest 

of using MgO substrate is for Magnetic tunnel junctions (MTJs) applications, while GaAs 

substrates allow for spin injection in semiconductor applications. GaAs has a lattice 

parameter of 5.65 Å while that of MgO is 4.21 Å (Figure 1.2). This leads to a better lattice 

mismatch for GaAs where the Co based Heusler alloys grow cube on cube. For MgO, epitaxial 

growth is achieved via a 45° rotation of the CMS axis with respect to MgO <100> direction. 

The lattice mismatch of Co2MnSi on MgO is ≈ - 5.1% (Figure 1.2-a). 
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Figure 1.2: schematic presentation of the epitaxial growth of Co2MnSi on a) MgO and b) 

GaAs. 

 Many groups have introduced Cr as a seed layer between the substrate and the 

deposited Heusler films [17 Ortiz, 18 Gaier, 8 Trudel]. The use of seed layers [19 Magen] and 

a single crystalline substrate [20 Garcia], improves the crystalline quality of the deposited 

thin film. For example, with the Cr seed layer, the lattice mismatch between the Cr/MgO and 

for Co2MnSi/Cr is reduced to -2.4 % and -2.6 % respectively. Cr deposition is useful to reduce 

the strain at the interfaces and therefore enhance the magnetic properties of Co2MnSi 

compared to films deposited directly on MgO substrates [17 Ortiz].  

 In the next section, we provide more details about the effects of surface termination 

and interface on the half metallicity and magnetic properties of Co-based Heusler compounds 

with a particular focus on  Co2MnSi which is the material studied in the framework of this 

thesis. 

 

1.2 Half-metallic behavior  

As mentioned before, high spin polarization at the Fermi energy is crucial to realize 

efficient TMR-based spintronic devices. Half metallic materials match this criteria. Several 

materials are known to be half metallic such as Cr oxides, magnetite Fe3O4, manganite 

(La0.7Se0.3MnO3) [21 Soulen], the double perovskites (Sr2FeReO6) [22 Kato] and the pyrites 

(CoS2) [23 Shishido]. Besides these materials, Heusler alloys attracted a lot of interest for 

being half metallic. In this section, origin of band gap and some effects on half metallicity are 

discussed.  

Half-metallic materials exhibit a unique band structure. For one spin channel they are 

metallic while for the other they are semiconductors or insulators due to the gap in the density 

of states (DOS) at the Fermi energy level (Figure 1.3). This leads to a 100% spin polarization 

𝑷 of the conduction spin channel.  

𝑷 =
𝐷 ↑ (𝐸𝑓) − 𝐷 ↓ (𝐸𝑓)

𝐷 ↑ (𝐸𝑓) + 𝐷 ↓ (𝐸𝑓)
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Figure 1.3: schematic presentation of the DOS of half metallic ferromagnetic, P=1 from 

electron’s spin polarization at the Fermi level. Adapted from [24] 

The half metallic behavior of Heusler alloys were first predicted by spin-dependent 

band structure ab-initio calculations of NiMnSb and PtMnSb by de Groot et al. [3 de Groot]. 

After this discovery, many Co-based Heusler alloys were theoretically predicted to be half-

metallic. As an example, Figure 1.4 shows the total Density of States (DOS) for different 

Co2MnZ alloys. It is clearly visible that no states at the fermi level are available for minority 

spin except for Z = Ga for which the DOS is not zero at Fermi energy.   

 

 

Figure 1.4: Spin resolved DOS for Co2MnZ compounds with Z=Al,Ga,Si and Ge. Taken from 

[25 Galanakis]. 

The origin of the band gap for minority spins in these alloys have been studied in 

details by Galanakis in 2002 [25 Galanakis]. The starting point is the hybridization between 

Co-Co d-states and the Mn d-orbitals. The hybridization between Co-Co d-states is 

schematized in Figure 1.5-a leading to bonding (eg, t2g) and antibonding (eu, t1u) orbitals. 

Let’s note that this mechanism is strongly dependent on the distance between the two Co 

atoms. Then these degenerated orbitals couple with the d states of the Mn atoms (Figure 1.5-

b) to create bonding and antibonding orbitals below and above the fermi level. It is noteworthy 

that only minority spins are represented here. However for majority spins, the exchange 
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energy decreases the energy of the majority d spin states of Mn atoms which couple with the 

Co d states and avoid the energy gap.    

 

Figure 1.5: schematic presentation of the origin of band gap in Heusler alloys [26 

Galanakis]. a) Hybridization between Co-Co atoms and b) with the Mn states. d1, d2 and d3 

indicates 𝑑𝑥,𝑦 , 𝑑𝑦𝑥 and 𝑑𝑧𝑥   𝑡2𝑔   orbitals respectively. d4 and d5 stands for 𝑑𝑧2 , 𝑑𝑥2−𝑦2 𝑒𝑔  

orbitals. The number in front of the orbitals is the degeneracy of each orbital. 

The scenario proposed by Galanakis is now commonly accepted in the Heusler 

community. It is, however, interesting to note that in this mechanism the sp-elements are not 

responsible for the existence of the minority gap. This is due to the fact that Z atoms introduce 

a deep lying s-p-bands below the center of the d-bands [26 Galanakis]. However the sp 

element modifies the position of the fermi level by changing the total number of valence 

electrons as it has been shown by Galanakis et al. in Co2MnZ alloys with Z being Si, Sn, Ga, 

Ge or Al (Figure 1.4). 

 

1.3 Magnetic behavior   

1.3.1 Origin of magnetism in Heusler alloys 

Half metallic Heusler alloys exhibit an interesting magnetic behavior along with high 

curie temperatures. Heusler alloys can be ferromagnetic, ferrimagnetic or antiferromagnetic 

[27 Picket, 28 Casper]. However, the majority of Heusler alloys have a ferromagnetic 

behavior. 

 Magnetic properties of Co-based Heusler alloys will be presented with a focus on 

magnetic moments, anisotropy field, and exchange interaction constant in Co2MnSi alloys. In 

this alloy the exchange interaction responsible for the stability of ferromagnetism originates 

from the Mn-Co interaction [31 Kurtulus]. We will discuss the origin of magnetic moments in 

Co-based Heusler alloys and compare the theoretical and experimental reported values. The 

interesting characteristic of Co2MnZ Heusler alloys is that the spin magnetic moment has an 

integer value. Calculated magnetic moments of some Co2MnZ Heusler alloys are summarized 

in Table 1.3. 

 The mentioned mechanism of half metallicity, discussed in Section 1.3, explains the 

magnetic behavior and especially the value of the magnetic moment as a function of the 
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valence number of electrons in Co2MnZ alloys. Indeed, it has been demonstrated that the 

magnetic moment of such alloys follow a Slater Pauling rule with an integer number of 𝜇𝐵per 

unit cell (Figure 1.6).  

 

Figure 1.6: Slater–Pauling curve for 3d transition metals and their alloys. Experimental 

values for selected Co2-based Heusler compounds are given for comparison. (Note: the 

A1−xBx alloys are given as AB in the legend, for short.) Image adapted from [10 kandpal] 

 

The Slater-Pauling rule infers a linear dependence of the magnetic moment vs. the 

valence electron number [29 Slater and 30 Pauling]. The reason for such behavior relies on 

the finite number of minority spins electrons state. Within the mechanism proposed by 

Galanakis, the total number of minority states is 12 (2 for s states, 3 for p, 2 for eg, 3 for t2g 

and 3 for t1u). Therefore, writing the total magnetic moment of the unit cell as  𝑚 = 𝑁↑ − 𝑁↓ 
and the total number of valence electrons as 𝑁𝑣 = 𝑁↑ + 𝑁↓  one gets 𝑚 = 𝑁𝑣 − 2 ∗ 𝑁↓. Therefore 

the magnetic moment per atom is estimated by the following relation: 

𝒎 = 𝑵𝒗 − 𝟐𝟒 

While the Slater Pauling rule of Co2MnZ demonstrates that we have localized magnetic 

moments in Co based Heusler alloys, ab-initio calculations allow to get a deeper insight into 

the repartition of the magnetic moment on each atoms. For example, [25 Galanakis, 31 

Kurtulus, 32 Fujii, 6 Webster] and many others have demonstrated that most of the magnetic 

moment value is carried out by Mn atoms, ≈ (3μB), while the magnetic moment of Co atoms 

is about 1 µB. For sp atoms like Si, they possess a small negative moment and barely 

contribute to the total moment [10 Kandpal]. Then the total magnetic moment of Co2MnSi is 

expected to be around 5 μB for a perfectly L21 crystalline structure [25 Galanakis].  
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𝑚𝑠𝑝𝑖𝑛(μB)  Co Mn Z Total 

theoretical 

Co2MnAl 0.768 2.530 -0.096 3.970 

Co2MnGa 0.688 2.775 -0.093 4.058 

Co2MnSi 1.021 2.971 -0.074 4.940 

Co2MnGe 0.981 3.040 -0.061 4.941 

Co2MnSn 0.920 3.203 -0.078 4.984 

 

Table 1.3: Calculated spin magnetic moments per unit cell of some Co2MnZ alloys. [26 

Galanakis] 

 

Figure 1.7: Calculated total spin moments for Heusler alloys, the dashed line represents the 

Slater-Pauling behavior. The open circles are deviated from the curve. Adapted from [26 

Galanakis]. 

Figure 1.7 presents the total magnetic moment of several Heusler alloys as a function of the 

valence electron 𝑁𝑣 (Zt in Figure 1.7). The figure is divided into two regions; depending if the 

alloy possess a positive or negative magnetic moment. In the latter case, the spin down band 

(spin down) has more occupied states than the spin up band. 

1.3.2 Curie temperature   

The Curie temperature 𝑇𝐶 is important for the stability of magnetic materials and for 

microelectronic processes. Above 𝑇𝐶, a ferromagnetic material becomes paramagnetic, i.e. the 

net magnetic moment is zero due to random thermal fluctuations of the magnetic moments.  

 Heusler compounds exhibit remarkable high curie temperatures 𝑇𝐶 (Table 1.2). Fig 

1.8-a shows a linear dependence of the Curie temperature on the valence electrons except for 
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𝑁𝑣=27. The origin of the linear dependence between 𝑇𝐶 and 𝑁𝑣 is investigated by 𝑘𝑢̈bler et al. 

by means of ab-intio calculations [33 k𝑢̈bler]. Similarly, the same linear trend is viewed as a 

function of the magnetic moments. Figure 1.8-a and 1.8-b  show the linear trend of curie 

temperature as a function of valence electrons and magnetic moments, respectively of Co-

based Heusler alloys. The linear dependence between 𝑇𝐶 and 𝑁𝑣 is described by the following 

equation [33 Kübler]: 

𝑘𝐵𝑇𝑐 =
2

3
∑ℒ𝜏

2 [
1

𝑁
∑

1

𝑗𝑛(𝑞)
𝑞𝑛

]

−1

𝜏

 

Where ℒ𝜏 and 𝑗𝑛(𝑞) are the local moment (ℒ𝜏
2 = 𝑠(𝑠 + 1) or ℒ𝜏

2 = 𝑀𝑠
2) and the exchange 

interaction functions, respectively. 𝑇𝑐 is determined by both the magnetic moments and the 

average exchange value.  

 

Figure 1.8: calculated curie temperatures for Co-based Heusler alloys as a function of a) 

valence electrons and b) magnetic moments. Adapted from [33 K𝑢̈bler, 34 Fecher, 18 Gaier]. 

 

1.4 Several effects on half-metallicity and magnetic 

behavior of Heusler alloys.   

1.4.1 Effect of atomic disorder  

Theoretically, Heusler alloys are predicted to be half metals, however, experiments 

report a spin polarization less than 100 %. Many authors have pointed out the impact of 

atomic disorder on the half metallicity and magnetic properties [35 Ebert and Shcutz, 36, 37 

Orgassa, 38 Picozzi].  

 For example, Orgassa et al. studied two types of atomic disorder in NiMnSb: the partial 

interchange between Ni and Mn atoms and vacancies. In the first case, they show that 5 % of 

interchange decreases the spin polarization down to 52%. In the second case, vacancies have 

been shown to destroy half metallicity with a spin polarization of only 24% in NiMnSb. This 

reduction in spin polarization is due to the appearance of disorder-induced states in the 

minority spin gap, resulting in narrowing the band gap and consequently a reduction of spin 

polarization at the fermi level [36 Orgassa] [37 Orgassa]. Therefore, for half Heusler alloys, a 
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suppression of antisite disorder and structural analysis is important to obtain high spin-

polarization [2 Graf]. 

 Galanakis et al. pointed out that the sp elements are not responsible of the minority 

gap but important for the structure stability of Heusler alloys. This is illustrated by 

substituting Sb in NiMnSb by Sn,In or Te that leads  to the destruction of half metallicity [26 

Galanakis].  

 

 For full Heusler alloys, several groups also studied the effect of atomic disorder on half 

metallicity in Co2FeSi [39 Gercsi and Hono], Co2MnGe and Co2MnSi [38 Picozzi]. We will 

focus on the atomic disorder and defects effect on the half metallicity in Co2MnSi.  

 Picozzi et al. investigated different types of defects in Co2MnSi, such as antisites and 

atomic swaps in terms of energy formation and defect induced electronic and magnetic 

properties.  They have found that Mn antisites (Co atoms being replaced by Mn) have the 

lowest energy formation and retain the half metallicity character, but the magnetic moment 

is reduced by 2 𝜇𝐵. Whereas for Co antisites (Mn atoms being replaced by Co), they have a 

slightly higher energy formation and half metallicity is destroyed due to Co antisite d states 

and the total magnetic moment is also reduced. For both Mn-Si and Mn-Co swaps, they have 

high energy formation and half metallicity is unaffected but the magnetic behavior shows a 

reduction down to  4 𝜇𝐵 for Mn-Co swap while the Mn-Si one is not affected and their values 

are equal to the ideal L21 phase. [40 Picozzi]. 

Picozzi et al. have also studied the effect of changing lattice parameters in Co2MnZ 

(Z=Si, Ge, Sn) induced by applied pressure. The lattice constant increases as Z atomic number 

increases (by 1.8% substituting Ge for Si and by 3.7% substituting Sn for Ge). Thus, the 

volume compression leads to an increase of the minority band gap and the fermi energy is 

shifted from the valence band into the band gap [38 Picozzi]. 

 

1.4.2 Effect of surface and interface  

The half metallicity can be lost due to the introduction of surface and interface states 

at the fermi level in the minority spin channel. Many theoretical investigations by Ab initio 

calculations were performed for half and full Heusler alloys.  NiMnSb and Co2MnSi surface 

and interface properties were thoroughly studied by several groups [41 Galanakis, 42 Ishida, 

43 Nagao, 44 Miura, and 45 Hashemifar]. It is important to note that, experimentally, few 

groups have been able to study the surface and interface effects on half metallicity due to 

homogeneity, deposition quality conditions, and segregation of atoms to the surface during 

the growth of thin films [46 Ristoiu].  

 Galanakis studied the effect of surface termination on the properties of half (NiMnSb, 

CoMnSb and PtMnSb) and full Heusler (Co2MnSi, Co2MnGe and Co2CrAl) alloys [41 

Galanakis]. For Co terminated surfaces, a displacement in the spin down state peak near the 

fermi level results in a negative state polarization as shown in figure (1.9 c-d). In the case of 

Mn(Ge, Si or Cr) terminated surfaces, this strong peak no longer appears as shown in figure 

(1.9 a-b). Therefore, it is preferable to have Mn(Ge,Si,Cr) surface termination than  Co ones.  



     17 

 

 

Figure 1.9: DOS of Co2MnGe and Co2CrAl as function of energy for different terminated 

surfaces [41 Galanakis]. 

 Similarly, Ishida et al. have reported that, for Mn-Si surface termination, the half 

metallic character is preserved while it is destroyed for Co terminated surface [42 Ishida]. In 

their study, they considered two types of planes at the surface of (001) films, the Co and the 

MnSi planes. For the Co surface plane, no energy band gap is found for one of the two spin 

states, whereas a band gap is found for the MnSi surface plane and hence the half metallicity 

is preserved in this surface termination. Hashemifar et al. studied the stability and electronic 

structure for different termination surface for Co2MnSi. They have found that the pure Mn 

termination preserves the half metallicity of the system [45 Hashemifar].  

 Besides the surface termination effects on half metallic behavior, the interface role is 

of particular importance for spintronic devices where the transport of spin polarized electrons 

and holes from one material to another is crucial. As mentioned before, GaAs and MgO are 

the two substrates widely used for the deposition of Co2MnSi thin films. For Co2MnSi/GaAs, 

Nagao et al. obtained a high spin polarization at (110) CoSi-AsGa interface and a nearly half 

metallic behavior is monitored [43 Nagao]. Half metallicity is lost for Mn-Si surface 

termination of Co2MnSi/MgO according to Miura et al. [44 Miura]. These effects are related 

to the appearance of interface states in the half metallic gap and these states can be filled by 

the electrons from the minority valence band [18 Gaier].  

 

Effect of half metallicity on gilbert damping factor 

The damping behavior is of particular importance in this thesis and it is important to 

shed light on the relation between half metallicity and the gilbert damping factor. More 

details about gilbert damping will be discussed in the magnetization dynamics chapter. 

 In ferromagnetic materials, the Gilbert damping factor 𝛼 is generally accounted to be 

proportional to the square of spin orbit coupling, which allows for spin flip transition. The low 

damping value 𝛼 is closely related to the half metallicity since the spin gap for minority spins 
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is supposed to avoid spin-flip transition for dynamic magnetic relaxation. The lowest damping 

factor obtained theoretically, using extended Hückel tight binding (ETH-TB) model, for 

Co2MnSi is 0.6*10-4 [5 liu] and experimentally 9*10-4 [47 Qiao]. Kubota et al. have studied the 

half metallic behavior and gilbert damping factor for Co2FexMn1-xSi alloys. In their work, they 

monitored the increase in minority DOS at the fermi level and at some point the loss of half 

metallic behavior which is accompanied by an increase in gilbert damping factor [48 Kubota].  

The gilbert damping factor was found to vary from 0.005 for Co2MnSi (x=0) to 0.02 for Co2FeSi 

(x=1) and accompanied by a disappearance of half metallicity for x≥ 0.8. 

 

1.5 Ion irradiation/implantation    

In our work, we used ion irradiation to modify the structural properties of Co2MnSi 

and study the effect of the structural modifications on the magnetic properties of the alloy as 

it will be presented in chapter 5. The purpose of this section is to give an overview of the work 

done on different materials by ion irradiation/implantation and its modifications on their 

magnetic properties. Additional details about ion irradiation technique will be given in 

chapter 3.  

Controlling and pattering the magnetic properties of ferromagnetic materials is now a 

field of interest for magnonic crystal applications for example. Ion irradiation is a promising 

technique that can modify the magnetic behavior through direct modification of the structure 

of the investigated material. Irradiation can be done by either heavy or light ions depending 

on the mass to charge ratio of the selected ions and the energy of the accelerated ions. For 

example, Bonder et al. have reported that irradiation of Ar+ ions at 80 KeV with doses from 

1014 to 1016 ions/cm2,  is shown to cause intermixing of Co/Pt layers resulting in the 

magnetization switching from perpendicular to in plane direction [49 Bonder]. Structural 

properties modifications by light ion irradiation, for example, irradiation with He+ ions, of an 

energy range of 5-150 KeV due to energy loss of ions trajectory in the solid results in magnetic 

patterning as well as interfacial mixing [50 Chappert, 51, 52 Devolder, and 53 Fassebender].  

Ion irradiation/implantation have gained interest in studying the modifications of 

magnetic materials. Several groups [54 Folks, 55 Fassbender and McCord] have reported the 

modification of magnetic parameters upon implantation. For example, Folks et al. have 

reported the change in magnetic phase from ferromagnetic state of NiFe alloy films to a 

paramagnetic one by Cr ions implantation. As a result, they have patterned continuous 

Ni80Fe20 films into separate regions of ferromagnetic and paramagnetic behavior. Fassbender 

and McCord have reported a modification of static and dynamic magnetic properties in 

Ni81Fe19 by 30 KeV Ni implantation.  

Alternatively, He+ irradiation induces an enhancement in the chemical order of FePt and 

FePd thin films by increasing the long range L10 order parameter at room temperature [56 

Ravelosona, 58 Bernas]. The enhancement of the chemical ordering by He+ ions was done by 

Gaier et al. on Heusler alloys and in particular Co2MnSi. In their study they have shown an 

improvement of the long range order in the B2 phase [57 Gaier]. This enhancement has been 

attributed to the Mn-Co and Co-Si exchanges due to mobile vacancies induced by irradiation 

[58 Bernas]. As discussed in this chapter, the disorder influences the structural and magnetic 
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properties and since Heusler alloys exhibit unique magnetic properties, tailoring them is of 

particular interest for technological applications.   

Another aspect of ion implantation/irradiation is to control the magnetic gilbert damping 

coefficient. Several groups have seen an increase in gilbert damping due to ion implantation/ 

irradiation by Ni and Cr ions respectively [59 Obry, 60 King]. The origin for this increase 

relies on local modification of the chemical order in addition to modification of the local 

effective field. More details will be given in chapter 5 about the effect of ion irradiation on the 

magnetic properties of Heusler alloy Co2MnSi. 

 

1.6 Applications of Heusler alloys 

Heusler alloys are known for their high spin polarization, and they have attracted much 

interest in the field of spin electronics for their potential application for tunneling 

magnetoresistance (TMR) and Giant magnetoresistance (GMR) devices. The half metallic 

materials act as a spin filter in such devices which leads to a huge magnetoresistance (MR) 

effect [61 Yakushiji]. Tunneling devices with high MR effect can be reached nowadays either 

by an engineered insulator barrier or by developing a 100 % spin polarization electrode 

materials. The potential candidates for the latter are ferromagnetic oxides or Heusler alloys 

[2 Graf].  Several groups have studied Co-based Heusler alloys as electrodes for MTJ, GMR 

and for spin injection from ferromagnetic materials into semiconductor. Besides technological 

applications, Half Heusler alloys were investigated for energy usages such as Solar cells and 

thermoelectric convertors. In the next two paragraphs, a brief description of the mentioned 

studies is given. 

Tunneling magnetoresistance based on Heusler alloys electrodes was experimentally 

reported by Inomata in 2003. In their work,  lower Co2Cr0.6Fe0.4Al and upper CoFe electrodes 

were used with AlO barrier, thus obtaining a 16 % room temperature rate and 26.5 % at 5 K 

[62 Inomata]. Ishikawa et al. have obtained a relatively high TMR ratios of 90% at room 

temperature and 192% at 4.2 K using Co-based Heusler alloy MTJs with Co2MnSi as a lower 

electrode, MgO as a tunnel barrier prepared by sputtering and Co50Fe50 as an upper electrode 

respectively [63 Ishikawa]. Tsunegi et al., in 2009, reported a higher TMR ratio of 217 % at 

room temperature and 753 % at 2K for the Co2MnSi/MgO/CoFe TMJs with MgO as a barrier 

prepared by sputtering and electron beam evaporation system. The different in reported 

values in Co2MnSi/MgO/CoFe TMJs results from the coherent tunneling process through the 

crystalline MgO barrier [64 Tsunegi]. Another application for Heusler alloy is the spin 

polarized carriers injection into semiconductors. They are considered important in designing 

spin injection devices due to several characteristics; such as, high spin polarization at Fermi 

energy, high Curie temperature along with large magnetic moments, and their lattice 

constants that is close to the III-V semiconductors which makes them ideal for epitaxial 

contacts [65 Ambrose, 66 Dong, 67 Lund, and 68 X.Y Dong]. Dong et al. in 2005 have reported 

an electrical spin injection of 27% at 2 K for Co2MnGe into Al0.1Ga0.9As/GaAs light emitting 

diode hetero structures. However, Co2MnSi with larger minority gap might be an effective 

injector than that of Co2MnGe [68 Dong]. 

Heusler alloys are also useful for energy applications such as solar cells and 

thermoelectric convertor. First, for solar cells applications, turning sunlight into electric 

energy, Cu-based chalcopyrite semiconductors are used as light absorber materials for low 
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cost thin films. In these conventional chalcopyrite, a CdS buffer layer is sandwiched between 

the light absorber and a ZnO window layer. The use of CdS increased the performances of 

such devices with record efficiency of 19.9 %. The use of CdS meets the needs for a perfect 

contact between the absorber and the other layers with the avoidance of absorption losses, 

but CdS is found to be a very toxic material. Therefore, it is needed to replace CdS in solar 

systems with new materials of similar crystalline structure to that of chalcopyrite. LiZnP, 

LiMgZ (Z=As, P, Pb) and many other half-Heusler alloys fit such category where the electric 

conductivity has been shown to increase [69 casper]. 

Second, thermoelectric convertors (TEC) for power generation aim at reducing CO2 emission 

which converts industrial furnaces, gas pipes, waste heat generated by engines and many 

more to electricity. The importance of TEC stems from the direct conversion of heat into 

electricity leading to a decrease in the reliance on fossil fuels. The existing TEC are inefficient 

and expensive at the same time. For that, half-Heusler alloys are interesting for TEC like n-

type NiTiSn, p-type CoTiSb, Sb-doped NiTiSn materials For the latter, power factor  can be 

reached up to 70 µW (cmK2)-1 at 650 K [70 Bhattacharya]. 

 

1.7 Choice of Co2MnSi Heusler compound  

Among Heusler alloys, we are interested in studying Co2MnSi compounds because of 

their potential compatibility with microelectronic processes, high magnetic moment and 

Curie temperature and low damping coefficient. In this section, a brief overview on the 

magnetic properties such as saturation magnetization, magneto-crystalline anisotropy, 

exchange interaction and damping factor is given. 

1.7.1 Saturation Magnetization 

Saturation magnetization (Ms) can be defined as the maximum magnetization of a 

ferromagnetic material, this results when all the magnetic dipoles are aligned with an 

external field or at a remanence state for hard materials. In Table 1.4, we present experiment 

vs calculation values of the saturation magnetization of Co2MnSi. The total magnetic moment 

experimental values are slightly different from ab-intio calculations. 

Ms in Table 1.4 is expressed in 𝜇𝑏  /𝑓. 𝑢 (𝑓𝑜𝑟𝑚𝑢𝑙𝑎 𝑢𝑛𝑖𝑡) ( μB is Bohr’s magneton=9.27× 10−24 
A.m2), A/m in SI units or Tesla. To convert from μB to A/m or vice versa, we can do the 

following: 

Ms (A/m) = number of atoms/m3 × 9.27 × 10−24 ×  (the value of magnetization in μB) 

Where the number of atoms/m3 for Co2MnSi = 
4 𝑎𝑡𝑜𝑚𝑠 𝑝𝑒𝑟 𝑢𝑛𝑖𝑡 𝑐𝑒𝑙𝑙

𝑎3
=

4

5.653
= 2.21 × 1028. 

𝑚𝑠𝑝𝑖𝑛(μB /𝑓. 𝑢) 
Co2MnSi 

Calculation 

5.00 [32 

Fujii], [38 

Picozzi] 

4.96 [13 

Brown] 

4.94 [25 

Galanakis,] 

5.008 [26 

Galanakis],[71 

Galanakis] 

 

 

𝑚𝑠𝑝𝑖𝑛(μB /𝑓. 𝑢) 
Co2MnSi 

Experiment 

5.07 [6 

Webster]  

5.10±0.04 

[72 Raphael] 

4.95±0.25  

[73 Singh] 

4.7 [74 

Kämmerer] 

5.0 [ 75 

Wang] 

 

Table 1.4: calculated and experimental spin magnetic moments per unit cell for Co2MnSi.  
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1.7.2 Magneto-crystalline anisotropy constant 

In ferromagnets, the magnetization is generally aligned in a preferential direction, 

called the easy axis. The origin of this anisotropy for the direction of the magnetization can 

be either from the symmetry of the crystal (magneto crystalline anisotropy) or from dipolar 

interaction in the case of shape anisotropy. Our focus will be on the magneto-crystalline 

anisotropy of Co2MnSi obtained by several groups. 

Magneto-crystalline anisotropy is a consequence of the interaction between orbital 

moments and the spins of electrons. In Heusler, the spin-orbit interaction of the localized d-

electrons results in the magneto-crystalline anisotropy. The magnetization will preferentially 

align with symmetry axes of the crystal. Anisotropy is described by the anisotropy constant 

K which can be experimentally obtained from Ferromagnetic Resonance (FMR), Brillouin 

light scattering (BLS) and Magneto-optical Kerr effect (MOKE) and other techniques. In this 

thesis, we have employed FMR. In CMS the anisotropy is cubic and the anisotropy constant 

K is negative where the easy axis of magnetization lies in the diagonal of the cube. The values 

of K range from – 8 KJ/m3 [76 Gaier] to -25 KJ/m3 [77 Ortiz]. . The increase in the anisotropy 

constant is related to several effects such as induced strain at the MgO/Co2MnSi interfaces 

and to annealing temperatures. 

1.7.3 Exchange constant  

The origin of the exchange constant will be presented in chapter 2. The purpose of this 

paragraph is to give a comparison about the exchange constant obtained for Co2MnSi by 

several groups. Ritchie et al. [78 Ritchie] and Rameev et al. [79 Rameev] reported values of 

A= 19.3 pJ/m and A= 9.7 pJ/m. Hamrle et al., by BLS measurements, obtained an exchange 

value, A= 23.5 pJ/m [80 Hamrle]. By FMR measurements, Pandey et al., Belmeguenai et al. 

and Ortiz et al. have reported an exchange value of 21 pJ/m, 27 pJ/m and 19 pJ/m, respectively 

[81 Pandey, 82 Belmeguenai, 77 Ortiz]. The differences in reported values are generally 

assumed to rely on deposition conditions and substrates effects. 

.   

1.7.4 Magnetic damping factor  

In this thesis, a particular interest is attributed to the study of the magnetic Gilbert 

damping factor 𝛼. The latter reflects the time needed for the magnetization pointed out of its 

equilibrium position to get back to equilibrium through different kind of relaxation processes. 

The dimensionless coefficient 𝛼 is theoretically predicted to be less than 10-3 for Heusler alloys 

[5 Liu]. Experimentally, several groups have obtained the Gilbert damping factor, for 

example, in the previous work of Ortiz et al., they have found the damping factor value 

between 3*10-3 and 7*10-3 [77 Ortiz]. The mentioned values are in agreement with 

experimental review about Co-based Heusler alloys by Trudel et al. [8 Trudel]. Chapter two 

will give some basics of relaxation mechanisms and chapter 4 and 5 will present the results 

obtained on the dynamic magnetic properties and specially the Gilbert damping factor.  
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Figure 1.10: schematic presentation of Co2MnSi crystalline structure: a) L21, b) B2, c) D03 

and A2 phases.  

In conclusion of this section, the magnetic behavior of these alloys depend strongly on 

their structural properties (figure 1.10). The magnetic behavior of L21 and B2 phases are 

similar, at least for the magnetic moment and spin polarization but no information is given 

on their respective anisotropy nor on the damping in the B2 order. Theoretically Picozzi et al 

[6 Picozzi] have shown that in the L21 phase, the value of magnetization is 5 𝜇𝑏  /𝑓. 𝑢. (1.3 T) 

and also when Mn and Si swap their positions in the lattice to form the B2 phase. The half 

metallicity of CMS is shown theoretically with a band gap at the fermi level for the L21 phase 

(0.81 eV) [38 Picozzi]. Furthermore [ 5 Liu] has calculated with the Fermi Breathing 

method a low Gilbert damping coefficient of 6*10-5 for this phase. Whereas a cubic 

crystal anisotropy is present in CMS, the anisotropy constant is negative leading to a 

magnetic easy axis oriented in the diagonal of the cube (<111>) and the hard axis along the 

edge of the cube (<100>). While there are many information about the L21 and B2 phases, 

insufficient literature is conducted on both D03 and A2 phases. Theoretically, Picozzi also 

studied the effect D03 order on the average magnetization when Co and Mn swap their 

positions. He also shows a decrease in the saturation magnetization to 4.5 𝜇𝑏  /𝑓. 𝑢. (1.16 T) 

whereas no information about the cubic anisotropy nor the damping relaxation terms is given. 

For the A2 phase no information was found about the magnetic behavior of this completely 

disordered phase.  
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Chapter 2: Magnetization 

Dynamics 
 

In this chapter, we start with the Basics of magnetism presented in section 2.1, then 

the different magnetic energies in a ferromagnetic system are introduced in section 2.2. 

Section 2.3 presents the theoretical aspects of magnetization dynamics along with the 

solution equation of motion with and without relaxation mechanisms. Ferromagnetic 

resonance, magnetostatic modes and spin waves will be discussed in section 2.4. Finally we 

will focus on the extrinsic and intrinsic relaxation processes of magnetization relaxation in 

section 2.5. The reader is addressed to these several books for additional information 

regarding the mentioned topics [1 Coey, 2 Blundel, 3 Stancil and Prabhakar, 4 Gurevich and 

Melkov, 5 Vonsovskii, and 6 Getzlaff]. 

 

2.1 Basics of Magnetism  

A magnetic dipole moment is formed when an electron orbits around the nucleus, creating 

a current loop of an area A, and expressed as 𝝁 = 𝑰 𝑨 . The magnetic moment can be also 

expressed by the orbital angular momentum of electrons, L, then the magnetic dipole moment 

can be written as 𝝁 = −
𝒆

𝟐𝒎
𝑳 . For an electron, the angular momentum 𝑳 is due to orbital 

motion of the electron 𝒍 and to an intrinsic property called spin′ 𝑺⃗⃗⃗′ (Figure 2.1).  

 

 

Figure 2.1: The magnetic moment of an atom is contributed by both the orbital and spin 

magnetic motion of the electron. 

Both the orbital and spin angular momentum contribute to the magnetic moment of an 

electron. We can define  𝝁𝒍 and  𝝁𝒔 as the orbital magnetic moment and spin magnetic 
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moment, respectively. To derive both  𝝁𝒍 and 𝝁𝑺 expressions, the angular momentum 𝑳  is 

described by quantum mechanical theory, 𝑳 = 𝒎𝒍 ħ  where 𝒎𝒍 is an orbital quantum number 

that varies from - 𝒍 to 𝒍. Substituting 𝒎𝒍 ħ  in the expression of magnetic dipole moment we 

get: 

  𝝁𝒍 = − 𝝁𝑩 𝒎𝒍  is the orbital magnetic moment and  𝝁𝑩 =
𝒆 ħ

𝟐𝒎
= 9.27 × 10−24 𝐴. 𝑚2, is the Bohr 

magneton.  

 𝝁𝑺 = − 𝒈 𝝁𝑩 𝒎𝒔  is the spin magnetic moment,  𝒎𝒔 is the electron spin quantum number and 

𝒈 ≈ 𝟐. 𝟎𝟎𝟑 is the Landé factor or also called the spectroscopic splitting factor.  

Therefore, from the above two expressions we can define the total magnetic moment, due to 

both orbital and spin contribution, as:      

  𝝁𝑻𝒐𝒕𝒂𝒍 = −  𝝁𝑩( ∑ 𝒎𝒊 𝒍 
+ 𝒈∑ 𝒎𝒊 𝒔 

).       (2.1) 

The magnetization M (A.m) is defined as the sum of all magnetic moments per unit volume 

V.  

                                                             𝑴 =
∑  𝝁𝑻𝒐𝒕𝒂𝒍

𝑽
                                                   (2.2) 

Let us consider a material placed in a magnetic field, the response of the atomic 

moments to that external field will define the material’s magnetic behavior. The magnetic 

behavior of any matter in an external field is dived into the following categories (Figure 2.2):  

 

 

Figure 2.2: a) the atomic dipole moment for a a) diamagnetic and b) paramagnetic material 

with and without an external magnetic field. The alignment of magnetic moments in c) 

ferromagnetic and d) antiferromagnetic materials. 

 

Diamagnetic materials: In the absence of the external magnetic field, no dipoles exist; but 

in the presence of an external magnetic field, magnetic dipoles are induced to counterbalance 

the applied magnetic flux. They align in opposite direction to the applied field resulting in a 
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negative non-zero magnetic moment. The magnetic susceptibility is then negative for such 

materials and of the order of 10-6 to 10-5. 

Paramagnetic materials: in the absence of external magnetic field, the paramagnetic 

materials possess magnetic moments that are randomly distributed due to thermal 

agitations. When applying an external magnetic field, these atomic dipoles align with the 

applied field and a positive net magnetization appears. The susceptibility is positive with 

values between 10-5 and 10-4. 

Ferromagnetic materials:  In these materials, the exchange interaction (see below) is 

responsible for the parallel alignment of the magnetic moments on a length scale called the 

exchange length. The order of magnitude of exchange length is few nanometers (for example: 

1.5 nm for Fe and 3.37 nm for Co). At the macroscopic scale, ferromagnetic materials can 

either present a net magnetization or not. In the latter case, the magnetization is organized 

in domains with different orientations in order to minimize the magnetic stray field. So even 

with a zero net magnetization, there is a local magnetization in each domain.  

The susceptibility of ferromagnetic materials is generally from 10 to several thousands. These 

materials are classified as soft or hard depending on their ability to switch the magnetization 

from one direction to another opposite one.  

Magnetic materials can be characterized by a hysteresis loop as shown in Figure 2.3. 

Moreover, the thermal behavior of ferromagnetic materials is important; above a given 

temperature, called the Curie temperature, the exchange interaction is not sufficient to 

maintain the alignment of the magnetic moments and therefore the material becomes 

paramagnetic. 

 

 

Figure 2.3: a) A sufficient magnetic field is applied to reach saturation magnetization inside 

a ferromagnetic material, then in b), the magnetic field is being reduced until there is no 

external field where a part of the material still have a residual magnetization. In c), to 
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completely demagnetize the material a significant field is needed and is called coercive field. 

In d) the sample is saturated in the opposite direction. 

 

Ferri and Antiferro magnetic materials: these materials are generally composed of two 

ferromagnetic sub-lattices that are coupled antiparallel. If each sub-lattice presents the same 

magnetic moment (+M and –M) then the net magnetization is null and we have an 

antiferromagnetic material. Unlike ferromagnets, above a temperature called Neel 

temperature, they become paramagnetic. If the two sub-lattices moments are uncompensated 

we have then a nonzero net magnetization. These materials are called ferrimagnetic.   

2.2 Micro-magnetic energy terms of ferromagnetic thin 

films 

In a ferromagnetic material, the equilibrium position of the magnetization is found when 

the magnetization is aligned with the effective field defined as: 

                                            𝑯𝒆𝒇𝒇 = −
𝟏

𝝁𝟎

𝜹𝑬𝒕𝒐𝒕

𝜹𝑴
                                                    (2.3) 

𝑬𝒕𝒐𝒕 is the total free energy of a ferromagnetic material, 𝝁𝟎 is the vacuum permeability (𝝁𝟎 =
4𝜋 ∗ 10−7) and 𝑴 is the total magnetization. Different energy terms contribute the total 

energy of a ferromagnetic material. A stable state is reached when the energy is minimized. 

The main energy terms we will focus on are the Zeeman, exchange, demagnetization, and 

magneto-crystalline energies.  

 

𝑬𝒕𝒐𝒕 = 𝑬𝒁𝒆𝒆𝒎𝒂𝒏 + 𝑬𝒆𝒙𝒄𝒉𝒂𝒏𝒈𝒆 + 𝑬𝒅𝒆𝒎𝒂𝒈 + 𝑬𝒂𝒏𝒊𝒔𝒐𝒕𝒓𝒐𝒑𝒚                             (2.4) 

 

2.2.1 Zeeman Energy 
The magnetic moments within the sample will align parallel to an applied field to 

minimize the energy of the system. This behavior is known as the Zeeman energy expressed 

in the following equation:  

                     𝑬𝒛𝒆𝒆𝒎𝒂𝒏 = −𝝁𝟎 ∫ 𝑯⃗⃗⃗⃗𝒆𝒙𝒕. 𝑴⃗⃗⃗⃗𝒅𝑽                                                  (2.5) 

  

2.2.2 Exchange energy 
The exchange interaction is mediated by different mechanisms depending on the 

material system. In ferromagnetic material, the parallel alignment of the spins is the direct 

exchange interaction. This one comes from the competition of the coulomb interaction of the 

two electrons and the Pauli Exclusion Principle.  

Considering two spins (𝒔𝒊⃗⃗⃗⃗  𝑎𝑛𝑑 𝒔𝒋⃗⃗⃗⃗ ), the Hamiltonian of the system including the exchange 

interaction can be expressed as: 

                           𝑯𝒊𝒋 = −𝟐 𝑱 𝑺𝒊𝑺𝒋                                                      (2.6) 
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𝑯𝒊𝒋 is the exchange Hamiltonian for two interacting spins 𝑺𝒊 𝑎𝑛𝑑 𝑺𝒋, 𝑱 is the exchange integral 

that depends on the material and the interatomic distances (i.e. Orbital overlap). If 𝑱 is 

positive, then the energy is minimum for parallel alignment of the spins, leading to the 

ferromagnetic order. If  𝑱 is negative, then the minimum energy results in an antiparallel 

alignment of the spins and hence an antiferromagnetic behavior. This is illustrated by the 

Bethe-Slater curve in Figure 2.4 [6 Getzlaff].  

 

 

 

Figure 2.4: The Bethe-Slater curve. Exchange integral vs. the ratio of interatomic distance 

𝒓𝒂𝒃 to the radius of d shell 𝒓𝒅 [fundamentals of magnetism]. Mn and Cr are examples of an 

antiferromagnetic materials with negative exchange integral while Fe,Co and Ni are 

ferromagnetic with a positive exchange integral. 

 

In the general case of two spins presenting a relative angle, the cost in exchange energy can 

be expressed as:   

                              𝑬𝒆𝒙𝒄𝒉𝒂𝒏𝒈𝒆 = −𝟐 𝑱 𝑺
𝟐∑ 𝑪𝒐𝒔𝜽𝒊𝒋𝒊𝒋                                         (2.7) 

Where 𝜽𝒊𝒋 is the angle between the spins i and j. In the continuum approach defining the 

micro magnetism, the exchange energy, in a certain volume of a crystal, is written as: 

                      𝑬𝒆𝒙𝒄𝒉𝒂𝒏𝒈𝒆 = 𝑨∫(𝛁𝒎𝒙 + 𝛁𝒎𝒚 + 𝛁𝒎𝒛)
𝟐 𝒅𝑽                          (2.8) 

𝒎𝒙, 𝒎𝒚 and 𝒎𝒛 are the direction cosines of magnetization with respect to the crystal axis. 𝑨 

is the exchange stiffness constant of the material. 𝑨 = (𝒄 𝑱 𝑺𝟐)/𝒂, 𝒄 is a crystallographic 

structure dependent constant and 𝒂 is the lattice parameter. 𝑨 is expressed in Joules/meters. 

The above equation can be written as a function of the exchange field 𝐻⃗⃗⃗𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒 defined as 

follows: 

𝑬𝒆𝒙𝒄𝒉𝒂𝒏𝒈𝒆 = −𝝁𝟎 𝑯⃗⃗⃗⃗𝒆𝒙𝒄𝒉 . 𝑴⃗⃗⃗⃗     (2.9) 

𝑯⃗⃗⃗⃗𝒆𝒙𝒄𝒉 =
𝟐𝑨

𝝁𝟎𝑴𝒔
𝛁𝟐𝑴⃗⃗⃗⃗     (2.10) 
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2.2.3 Demagnetization energy 

The demagnetization energy (also called dipolar energy or magnetostatic energy) is 

related to the magnetic field generated from the magnet itself. Due to the Maxwell relation 

div B= 0, magnetic poles at the boundaries of the sample arise and create a field called 

demagnetization field 𝐻𝑑 opposite to the magnetization. The demagnetizing field is at the 

origin of domain formation in ferromagnets and it is expressed as follows: 

                              𝑯⃗⃗⃗⃗𝒅 = −μ𝟎[𝑵𝒅]. 𝑴⃗⃗⃗⃗                                                   (2.11) 

With 𝐍𝐝  is a 3x3 dimensionless demagnetizing tensor. It depends on the shape of the 

material. In the case of an ellipsoid, the coordinate system is oriented along its axis such as 
[𝐍𝐝] = 𝐍𝐱 + 𝐍𝐲 + 𝐍𝐳. In the case of a sphere, 𝐍𝐱 = 𝐍𝐲 = 𝐍𝐳 = 𝟏/𝟑. In our case, we have the 

shape of a an infinitely thin film with the normal to the surface parallel to Z-axis, then,  𝐍𝐱 =
𝐍𝐲 = 𝟎 and 𝐍𝐳=1. 

The energy associate with the demagnetizing field is expressed as follows: 

                                                 𝑬𝒅𝒆𝒎 = −
𝝁𝟎

𝟐
∫𝑯𝒅⃗⃗ ⃗⃗ ⃗⃗ . 𝑴⃗⃗⃗⃗𝒅𝑽                                                       (2.12) 

Substituting 𝑯𝒅 in (2.12), where mx,  my, and mz are the component of the magnetization in 

the x y z directions, we get the following relation: 

                            𝑬𝒅𝒆𝒎 =
𝝁𝟎𝑴

𝟐𝑽

𝟐
( 𝐍𝐱𝒎𝒙

𝟐 +  𝐍𝐲𝒎𝒚
𝟐 +  𝐍𝐳𝒎𝒛

𝟐)                         (2.13) 

Taking into account the case of thin films where 𝐍𝐱 = 𝐍𝐲 = 𝟎 and 𝐍𝐳=1, the demagnetization 

energy is written as: 

                                                       𝐄𝐝𝐞𝐦 = +
𝛍𝟎𝐕

𝟐
(𝐌𝟐)                                                 (2.14) 

                              

 

2.2.4 magneto-crystalline Anisotropy energy 

 Experimentally, the magnetization align naturally in a certain direction called easy 

axis. In the opposite case, the direction for which the applied field is maximum to align the 

magnetization is called the hard axis.   

 Magneto-crystalline anisotropy: 

The magneto-crystalline anisotropy arises from the spin-orbit interaction [15 Van 

Vleck]. This interaction is due to the coupling of the electron’s orbital moment, which reflects 

the symmetry of the crystal, and the spin angular momentum. Then, depending upon the 

symmetry of the crystal, the material will exhibit different easy axis directions. For example 

hexagonal material will show a uniaxial anisotropy while cubic materials will show four 

perpendicular easy axis directions. 

In Figure 2.5, the easy axis requires low magnetic field to saturate the sample while 

the hard axis needs a higher magnetic field to rotate the magnetic moments to the 

corresponding direction. 
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Figure 2.5: Magnetization in Fe, Co and Ni for applied fields in the easy and hard 

directions. The 110 direction for both Fe and Ni is known as the intermediate axis [2 

Blundell]. 

i) Uniaxial anisotropy 

Uniaxial anisotropy usually appears in hexagonal system and it is expressed by the 

following relation: 

                                      𝑬𝒖𝒏𝒊𝒂𝒙 = 𝒌𝒖𝟏 𝐬𝐢𝐧𝜷
𝟐 + 𝒌𝒖𝟐 𝐬𝐢𝐧𝜷

𝟐 +⋯                                             (2.15) 

𝑘𝑢𝑖 is the 𝑖𝑡ℎ order anisotropy constant and 𝛽 is the angle between the magnetization and the 

uniaxial anisotropy direction (i.e. single axis). 

  The sign of the anisotropy constant determine the direction of the easy and hard 

directions. To minimize the energy, if 𝒌𝒖𝒊 > 𝟎 , then the minimum energy is achieved 

when 𝜃 = 0 𝑜𝑟 𝜃 = 𝜋, therefore the easy axis direction will be along the anisotropy axis. But, 

if  𝒌𝒖𝒊 < 𝟎 , then the minimum energy is achieved when 𝜃 =  𝜋/2, then the easy axis lies 

perpendicular to the anisotropy axis. 

Considering Z as the anisotropy axis, Figure 2.6 presents the energy landscape in the case of 

K >0. 

 

Figure 2.6: uniaxial anisotropy with 𝒌𝒖𝒊 > 𝟎 . 
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ii) Cubic anisotropy 

In the case of cubic material the cubic anisotropy can be expressed as: 

                     𝑬𝒄𝒖𝒃𝒊𝒄 = 𝑲𝒄𝟏(𝜶𝒙
𝟐𝜶𝒚

𝟐 + 𝜶𝒚
𝟐𝜶𝒛

𝟐 + 𝜶𝒛
𝟐𝜶𝒙

𝟐) + 𝑲𝒄𝟐 𝜶𝒙
𝟐𝜶𝒚

𝟐𝜶𝒛
𝟐 +⋯                  (2.16)   

With KCi is the ith order cubic anisotropy constant and 𝛼𝑗 are the director cosines defined as 

follows: 

                                                    𝜶𝒙 =
𝑴𝒙

𝑴𝒔
= 𝐬𝐢𝐧𝜽 𝐜𝐨𝐬𝝋                                                      (2.17) 

                                                    𝜶𝒚 =
𝑴𝒚

𝑴𝒔
= 𝐬𝐢𝐧𝜽 𝐬𝐢𝐧𝝋                                                      (2.18) 

                                                      𝜶𝒙 =
𝑴𝒙

𝑴𝒔
= 𝐜𝐨𝐬𝜽                                                             (2.19) 

If we replace the above relations in the 𝑬𝒄𝒖𝒃𝒊𝒄, we get the first order 𝑬𝒄𝒖𝒃𝒊𝒄 term: 

                                   𝑬𝒄𝒖𝒃𝒊𝒄 = 𝑲𝒄𝟏 𝐬𝐢𝐧𝜽
𝟐 (𝐜𝐨𝐬 𝜽𝟐 + 𝐬𝐢𝐧𝜽𝟐 𝐜𝐨𝐬𝝋𝟐 𝐬𝐢𝐧𝝋𝟐)                           (2.20) 

The representation of the energy landscape, for 𝑲𝒄𝟏 < 𝟎 and 𝑲𝒄𝟏 > 𝟎, is shown in Figure 2.7. 

In the case of 𝑲𝒄𝟏 < 𝟎, the easy axes are the <110> directions. While for 𝑲𝒄𝟏 > 𝟎, they are 

along the <100> axes. The unit of anisotropy constant, in SI units, is J/meters3.  

In the next section, we will show how the difference in anisotropy constant sign and value 

affect the resonance frequency of a magnetic sample placed in an external magnetic field.  

 

Figure 2.7: 3D presentation of the cubic anisotropy for a) 𝑲𝒄𝟏 < 𝟎 and b) 𝑲𝒄𝟏 > 𝟎. 
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2.3 Magnetization dynamics  

In this section, the response of magnetization to a weak alternating field of several GHz 

is obtained from the Landau-Lifshitz-Gilbert equation of motion presented in subsection 

2.3.1. We will discuss the effect of the relaxation mechanism.  

2.3.1 Equation of motion LLG and its solution 

When the magnetization in a ferromagnet is removed from its equilibrium position, it 

will undergo a precession around the direction of the effective field. The torque exerted on the 

magnetization is equal to  𝑀⃗⃗⃗⃗⃗ ∧ 𝐻⃗⃗⃗𝑒𝑓𝑓. Figure 2.8-a. The equation of motion governing the 

precession is expressed by: 

               
𝐝𝐌⃗⃗⃗⃗

𝐝𝐭
= −𝜸 𝝁𝟎 𝑴⃗⃗⃗⃗ ∧ 𝑯⃗⃗⃗⃗𝒆𝒇𝒇                                                 (2.21) 

𝜸 = 𝒈
|𝐞|

𝟐𝐦
   is the gyromagnetic ratio for an electron of mass m. g is the Landé factor, without 

dimensions. It depends on the nature on the particle and on its environment via the orbital 

moment. In the case of a ferromagnetic material, the orbital moment is mainly quenched by 

the crystal field and then g is close to 2 (2.01 for Ni84Fe16 for example). In the case of a free 

electron, 𝛾/2𝜋 = 28 𝐺𝐻𝑧/𝑇.  

Equation (2.21) doesn’t take into account the energy losses, yet it shows that the 

magnetization will precess around an effective magnetic field for infinite time and this can’t 

be true. At last, the radiation of the electromagnetic field in free space will lose energy. Many 

other mechanisms in ferromagnet are responsible for the energy losses during the precession 

of the magnetization in order that it get back to equilibrium after a few ns. In order to take 

this mechanisms into account. Landau and Lifshitz in 1935, [16 Landau and Lifshitz], 

introduced a relaxation coefficient λ, equivalent to a viscosity term, in the equation of motion:
  

                                         
𝒅𝑴⃗⃗⃗⃗

𝒅𝒕
= −𝜸 𝝁𝟎 𝑴⃗⃗⃗⃗ ∧ 𝑯⃗⃗⃗⃗𝒆𝒇𝒇 −

𝜸𝝁𝟎𝝀

𝑴𝒔
𝟐 𝑴⃗⃗⃗⃗ ∧ (𝑴⃗⃗ ⃗⃗ ⃗⃗ ∧ 𝑯⃗⃗⃗⃗𝒆𝒇𝒇 )                             (2.22) 

In (LL) equation (2.22); 𝑴𝒔 is the magnetization saturation and  𝝀 is the relaxation factor and 

has the dimension of a magnetic field unit (A/m). Moreover, In 1955, and after the 

development of ferromagnetic resonance experiments [17 Bloembergen], Gilbert [18 Gilbert] 

added the phenomenological damping term, 𝛼, and the LL equation is transformed into LLG  

equation (2.23): 

                   
𝒅𝑴⃗⃗⃗⃗

𝒅𝒕
= −𝜸 𝝁𝟎 𝑴⃗⃗⃗⃗ ∧ 𝑯⃗⃗⃗⃗𝒆𝒇𝒇 +

𝜶

𝑴
(𝑴⃗⃗⃗⃗ ∧

𝒅𝑴⃗⃗⃗⃗

𝒅𝒕
)                                     (2.23) 

Where 𝜶, is a dimensionless phenomenological relaxation coefficient. The second term 

describes the time the magnetization takes to retain equilibrium position, parallel to 𝐻⃗⃗⃗𝑒𝑓𝑓, 

The LLG equation is valid mainly in the case of small (linear approximation) perturbation of 

the magnetization. For large oscillation amplitude, other models have to be considered such 

as the Bloch Bloembergen relaxation term which is derived from the nuclear magnetic 

resonance relaxation. In this model, two relaxation times are considered, T1 which 
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corresponds to the relaxation of the longitudinal component of the magnetization and T2 

which corresponds to the relaxation of the transverse component. However, in this work we 

only work in the small excitation regime and only the LLG equation will be used (Figure 2.8-

b).    

 

 

Figure 2.8: The magnetization precession on a constant orbit around an effective field a) 

without damping. The magnetization in b) is a damped motion to retain equilibrium 

position. 

We are now interested in solving the LLG equation (2.23) in the case of small 

oscillation amplitude. We will first solve the equation without the damping term and then we 

will consider the effect of relaxation [3 Stancil and Prabhakar]. 

I. Solution of equation of motion without relaxation 

mechanism: 

Let us consider a ferromagnetic material that is excited by an alternating microwave 

field applied perpendicular to the static magnetic field. Both the total external field and 

magnetization can be described as a time dependent perturbation expressions, 𝒉⃗⃗⃗(𝒕) and 𝒎⃗⃗⃗⃗(𝒕) 

as follows: 

                                                              {
𝑴⃗⃗⃗⃗ = 𝑴⃗⃗⃗⃗𝒔 + 𝒎⃗⃗⃗⃗(𝒕)

𝑯⃗⃗⃗⃗ = 𝑯⃗⃗⃗⃗𝒆𝒙𝒕 + 𝒉⃗⃗⃗(𝒕)
                               (2.24) 

Where 𝒎⃗⃗⃗⃗(𝒕) and 𝒉⃗⃗⃗(𝒕) are small perturbation to the equilibrium magnetization and static 

applied field 𝑴⃗⃗⃗⃗𝒔 and 𝑯⃗⃗⃗⃗𝒆𝒙𝒕, respectively.  

By replacing (2.24) in (2.21), we get: 

𝝏𝒎⃗⃗⃗⃗

𝝏𝒕
= − 𝜸 𝝁𝟎(𝑴⃗⃗⃗⃗𝒔 ∧ 𝑯⃗⃗⃗⃗𝒆𝒙𝒕 + 𝑴⃗⃗⃗⃗𝒔 ∧ 𝒉⃗⃗⃗(𝒕) + 𝒎⃗⃗⃗⃗(𝒕) ∧ 𝑯⃗⃗⃗⃗𝒆𝒙𝒕 + 𝒎⃗⃗⃗⃗(𝒕) ∧ 𝒉⃗⃗⃗(𝒕) )                (2.25) 

For single domain materials without anisotropy, 𝑴⃗⃗⃗⃗𝒔 and 𝑯⃗⃗⃗⃗𝒆𝒙𝒕 are aligned together and their 

cross product will cancel. Also the last term in eq. 2.25 is neglected since 𝒎⃗⃗⃗⃗(𝒕) 𝑎𝑛𝑑 𝒉⃗⃗⃗(𝒕) are 



     39 

 

small in magnitude compared to the static terms. So we keep only linear terms in  

𝒎⃗⃗⃗⃗(𝒕) 𝑎𝑛𝑑 𝒉⃗⃗⃗(𝒕) .Equation (2.25) becomes:  

                          
𝝏𝒎⃗⃗⃗⃗

𝝏𝒕
= − 𝜸 𝝁𝟎(𝑴⃗⃗⃗⃗𝒔 ∧ 𝒉⃗⃗⃗(𝒕) + 𝒎⃗⃗⃗⃗(𝒕) ∧ 𝑯⃗⃗⃗⃗𝒆𝒙𝒕)                                     (2.26) 

Assuming the static equilibrium field is along the Z axis, and the time dependence of 

𝒎⃗⃗⃗⃗(𝒕) 𝑎𝑛𝑑 𝒉⃗⃗⃗(𝒕)  is of the form 𝒆−𝒊𝝎𝒕. Then the equation of motion for 𝒎⃗⃗⃗⃗(𝒕)  can be written as 

follows: 

                              𝒊𝝎𝒎⃗⃗⃗⃗ = − 𝜸 𝝁𝟎 𝒉⃗⃗⃗ ∧ 𝑴⃗⃗⃗⃗𝒔 +  𝜸 𝝁𝟎𝒎⃗⃗⃗⃗ ∧ 𝑯⃗⃗⃗⃗𝒆𝒙𝒕                            (2.27) 

We define the following: 𝝎𝑴 =  𝜸 𝝁𝟎 𝑴𝒔 and 𝝎𝟎 =  𝜸 𝝁𝟎 𝑯𝒆𝒙𝒕. Equation 2.27 becomes: 

                     𝒊𝝎𝒎⃗⃗⃗⃗ = − 𝝎𝑴 𝒉⃗⃗⃗ ∧ 𝒆⃗⃗𝒛 +  𝝎𝟎 𝒎⃗⃗⃗⃗ ∧ 𝒆⃗⃗𝒛                                      (2.28) 

In Cartesian coordinates, we get:  

   {

𝒊𝝎𝒎⃗⃗⃗⃗𝒙 = −𝝎𝑴𝒉⃗⃗⃗𝒚 +  𝝎𝟎𝒎⃗⃗⃗⃗𝒚

𝒊𝝎𝒎⃗⃗⃗⃗𝒚 = +𝝎𝑴𝒉⃗⃗⃗𝒙 −  𝝎𝟎𝒎⃗⃗⃗⃗𝒙

𝒊𝝎𝒎⃗⃗⃗⃗𝒛 = 𝟎 

                                                 (2.29) 

It is then possible to define the susceptibility that relates the dynamic magnetization to the 

oscillating field such as: 

                   𝒎⃗⃗⃗⃗ = 𝝌̅. 𝒉⃗⃗⃗                                                                (2.30) 

𝜒̅ is the Polder tensor and is expressed as follows: 

                                              𝝌̅ = [
𝝌      

−𝒊𝜿         
𝒊𝜿
𝝌
]                                                             (2.31) 

With, 

                                       𝝌 =
𝝎𝟎𝝎𝑴

𝝎𝟎
𝟐 −𝝎𝟐

                   𝒂𝒏𝒅                    𝜿 =
𝝎𝝎𝑴

𝝎𝟎
𝟐 −𝝎𝟐

                                     (2.32) 

The resonance conditions corresponds to the discriminant of the susceptibility tensor equal to 

zero, i.e. 𝝎 = 𝝎𝟎. When the resonance conditions are fulfilled 𝝌 and 𝜿 diverge and so the 

component of the dynamic magnetization. In the next section, we demonstrate that the effect 

of damping avoids this divergence and majors the amplitude of the susceptibility component 

[3 Stancil and Prabhakar].  

II. Solution of equation of motion with relaxation mechanism: 

 Starting with the eq. (2.23) and including the damping term we get: 

                    𝒊𝝎𝒎⃗⃗⃗⃗ = − 𝜸 𝝁𝟎 𝒉⃗⃗⃗(𝒕) ∧ 𝑴⃗⃗⃗⃗𝒔 +  𝜸 𝝁𝟎𝒎⃗⃗⃗⃗(𝒕) ∧ 𝑯⃗⃗⃗⃗𝒆𝒙𝒕 +
𝒊𝝎𝜶

𝑴𝒔
𝒎⃗⃗⃗⃗ ∧ 𝑴⃗⃗⃗⃗𝒔                                (2.33) 

In analogy to equation 2.29, the above expression is written in Cartesian coordinates, and the 

static magnetic field is along the Z direction. Then 2.33 can be written: 
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              𝒊𝝎𝒎⃗⃗⃗⃗ = − 𝝎𝑴 𝒉⃗⃗⃗(𝒕) ∧ 𝒆⃗⃗𝒛 +  𝝎𝟎 𝒎⃗⃗⃗⃗(𝒕) ∧ 𝒆⃗⃗𝒛 + 𝒊𝝎𝜶 𝒎⃗⃗⃗⃗(𝒕) ∧ 𝒆⃗⃗𝒛                       (2.34) 

Likewise equation 2.29, we get: 

                                                       𝒉⃗⃗⃗  = (𝝌̅ ̅)−𝟏. 𝒎⃗⃗⃗⃗                                                                                                       

                                      (
𝒉⃗⃗⃗𝒙

𝒉⃗⃗⃗𝒙
) =

1

𝝎𝑴
(
 𝝎𝟎 + 𝒊 𝝎𝜶
−𝒊 𝝎

      
𝒊 𝝎

 𝝎𝟎 + 𝒊 𝝎𝜶
) (
𝒎⃗⃗⃗⃗𝒙

𝒎⃗⃗⃗⃗𝒚
)                      (2.35) 

The Polder susceptibility tensor 𝝌̅ ̅ including the damping can be expressed as,   

                                         𝝌̅ =
1

([ 𝝎𝟎
𝟐−𝝎𝟐(𝟏+𝜶𝟐)]𝟐+ 𝟒𝝎𝟐 𝝎𝟎

𝟐𝜶𝟐)
[
𝝌      

−𝒊𝒌         
𝒊𝜿
𝝌
]                  (2.36) 

With,  

               {
𝝌 = 𝝎𝑴 𝝎𝟎[ 𝝎𝟎

𝟐 − (𝟏 − 𝜶𝟐)𝝎𝟐] − 𝒊 (𝜶𝝎𝑴𝝎[ 𝝎𝟎
𝟐 + (𝟏 + 𝜶𝟐)𝝎𝟐])

𝒌 = 𝝎𝑴𝝎[ 𝝎𝟎
𝟐 − (𝟏 + 𝜶𝟐)𝝎𝟐] − 𝒊 (𝟐𝜶𝝎𝑴𝝎

𝟐 𝝎𝟎)
             (2.37) 

 

The susceptibility 𝝌 is divided into a real 𝝌′ and an imaginary 𝝌′′ Part. In Figure 2.9, 𝝌 is 

calculated with Permalloy sample values (  𝝁𝟎 𝑴𝒔 = 𝟏𝑻, 𝜸 = 𝟐𝟗 ∗ 𝟐𝝅
𝑮𝑯𝒛

𝑻
, 𝝎 = 𝟗 𝑮𝑯𝒛 𝑎𝑛𝑑 𝜶 =

𝟎. 𝟎𝟏 ). The real part of 𝝌 changes its sign, while the imaginary part passes through a 

maximum which indicates the resonance absorption field. 

 

Figure 2.9: Real and imaginary part of the susceptibility tensor 𝝌, adapted from [19 Ortiz].  

 

The line width in a ferromagnetic resonance experiment is directly related to the damping 

term 𝛼 through the relation:  

∆HGilbert = 
𝛼

𝜕(2𝜋𝑓)

𝜕𝐻

𝛾

𝑀𝑆
(𝐸𝜃𝜃 +

1

𝑠𝑖𝑛²𝜃𝑒𝑞
𝐸𝜑𝜑)                            (2.38)   
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The above expression is reduced to ∆HGilbert =
𝟐𝜶𝝎

𝝁𝟎𝜸
  for symmetric axes. In the case where 

additional, i.e extrinsic, contribution to the relaxation mechanisms is considered, the line 

width can be written as:   

∆H = ∆HGilbert + ∆𝐻0                                   (2.39) 

Where the extrinsic contribution, ∆𝐻0 = ∆Hinh + ∆Hmos + ∆H2mag, will be discussed in 

section 2.5. 

2.3.2 Ferromagnetic resonance in thin films 

 The ferromagnetic resonance corresponds to the uniform excitation of the 

magnetization in a ferromagnet with a small oscillating microwave field. Following equation 

2.23, one has to replace the static field by the effective field that contains the exchange, the 

demagnetizing and crystal anisotropy fields: 

       𝑯⃗⃗⃗⃗⃗𝒆𝒇𝒇 = 𝑯⃗⃗⃗⃗𝒆𝒙𝒕 + 𝑯⃗⃗⃗⃗𝒅𝒆𝒎𝒂𝒈 + 𝑯⃗⃗⃗⃗𝒂𝒏𝒊𝒔𝒐𝒕𝒓𝒐𝒑𝒚 + 𝑯⃗⃗⃗⃗𝒆𝒙𝒄𝒉𝒂𝒏𝒈𝒆                (2.40) 

The solution of the LLG equation for an arbitrary direction of the magnetization defined by 

the polar and azimuthal angle 𝜃 and 𝜑 has been given by Smit and Beljers [20 Smit and 

Belgers] and Suhl [21 Suhl]. Vectors 𝑴⃗⃗ ⃗⃗⃗, 
𝒅𝑴⃗⃗⃗⃗

𝒅𝒕
 and 𝑯⃗⃗⃗⃗𝒆𝒇𝒇 are expressed as follows: 

 

{
 
 

 
  𝑴⃗⃗ ⃗⃗⃗ = 𝑴𝒔𝒆⃗⃗𝒓

𝒅𝑴⃗⃗⃗⃗

𝒅𝒕
= 𝑴𝒔

𝒅𝜽

𝒅𝒕
𝒆⃗⃗𝜽 +𝑴𝒔 𝐬𝐢𝐧 𝜽

𝒅𝝋

𝒅𝒕
𝒆⃗⃗∅

𝑯⃗⃗⃗⃗𝒆𝒇𝒇 = −
𝟏

𝝁𝟎

𝝏𝑬𝒕𝒐𝒕

𝝏𝑴
= −

𝟏

𝝁𝟎
(
𝑬𝒕𝒐𝒕

𝑴𝒔
𝒆⃗⃗𝒓 +

𝟏

𝑴𝒔

𝝏𝑬𝒕𝒐𝒕

𝝏𝜽
𝒆⃗⃗𝜽 +

𝟏

𝑴𝒔 𝐬𝐢𝐧 𝜽

𝝏𝑬𝒕𝒐𝒕

𝝏𝝋
𝒆⃗⃗𝝋)

                        (2.41) 

 

To simplify equation (2.41), we define the following terms: 

                            {
𝜽𝑯 = −

𝟏

𝝁𝟎𝑴𝒔

𝝏𝑬𝒕𝒐𝒕

𝝏𝜽
= −

𝟏

𝝁𝟎𝑴𝒔
𝑬𝜽

𝝋𝑯 = −
𝟏

𝝁𝟎𝑴𝒔 𝐬𝐢𝐧𝜽

𝝏𝑬𝒕𝒐𝒕

𝝏𝝋
= −

𝟏

𝝁𝟎𝑴𝒔 𝐬𝐢𝐧𝜽
𝑬𝝋

                                        (2.42) 

 

LLG equation (2.23) in spherical coordinates becomes: 

(

𝟎

𝑴𝒔
𝒅𝜽

𝒅𝒕
𝒆⃗⃗𝜽

𝑴𝒔 𝐬𝐢𝐧𝜽
𝒅𝝋

𝒅𝒕
𝒆⃗⃗𝝋

) = −𝝁𝟎𝜸(

𝟎
−𝑴𝒔𝝋𝑯𝒆⃗⃗𝜽
𝑴𝒔𝜽𝑯𝒆⃗⃗𝝋

) +
𝜶

𝑴𝒔
(

𝟎

−𝑴𝒔
𝟐 𝐬𝐢𝐧𝜽

𝒅𝝋

𝒅𝒕
𝒆⃗⃗𝜽

𝑴𝒔
𝟐 𝒅𝜽

𝒅𝒕
𝒆⃗⃗𝝋

)          (2.43) 

 

Replacing equation (2.42) in (2.43), we get the LLG equation of motion in spherical 

coordinates:  
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          {

𝒅𝜽

𝒅𝒕
= (−

𝜸

𝑴𝒔 𝐬𝐢𝐧𝜽
𝑬𝝋 −

𝜶𝜸

𝑴𝒔
𝑬𝜽)𝒆⃗⃗𝜽

𝒅𝝋

𝒅𝒕
= (

𝜸

𝑴𝒔 𝐬𝐢𝐧𝜽
𝑬𝜽 −

𝜶𝜸

𝑴𝒔 (𝐬𝐢𝐧𝜽)
𝟐𝑬𝝋)𝒆⃗⃗𝝋

                                        (2.44) 

 

The interest in finding the equilibrium orientation of magnetization in the presence of an 

external field leads to the determination of the resonance frequency. The equilibrium 

conditions are achieved when the free energy of the system, F, is minimum with respect to 

the angles that determines the direction of magnetization, 𝜃𝑒𝑞 and 𝜑𝑒𝑞, such that: 

                                 𝑬𝜽 =
𝝏𝑬

𝝏𝜽
|
𝜽=𝜽𝒆𝒒,𝝋=𝝋𝒆𝒒

= 𝟎 𝑎𝑛𝑑  𝑬𝝋 =
𝝏𝑬

𝝏𝝋
|
𝜽=𝜽𝒆𝒒,𝝋=𝝋𝒆𝒒

= 𝟎                    (2.45) 

To obtain the resonance frequency, first we need to deviate the magnetization away from 

equilibrium and the above condition is not valid. In analogy to equation (2.24), 𝜽 and 𝝋 will 

be expressed by a small harmonic oscillation around the equilibrium values:  

                                                        {
𝜽 − 𝜽𝒆𝒒 = 𝜽𝑨𝒆

−𝒊𝝎𝒕

𝝋−𝝋𝒆𝒒 = 𝝋𝑨𝒆
−𝒊𝝎𝒕                                                     (2.46) 

Where 𝜃𝐴 and 𝜑𝐴 are amplitudes constants. Before proceeding with the calculation, equation 

(2.44) is converted as follows using Taylor expansion: 

                   {

𝒅𝜽

𝒅𝒕
= (−

𝜸

𝑴𝒔 𝐬𝐢𝐧 𝜽
(𝑬𝜽𝝋𝜽 + 𝑬𝝋𝝋𝝋) −

𝜶𝜸

𝑴𝒔
(𝑬𝜽𝜽𝜽 + 𝑬𝜽𝝋𝝋))

𝒅𝝋

𝒅𝒕
= (

𝜸

𝑴𝒔 𝐬𝐢𝐧 𝜽
(𝑬𝜽𝜽𝜽 + 𝑬𝜽𝝋𝝋) −

𝜶𝜸

𝑴𝒔 (𝐬𝐢𝐧 𝜽)
𝟐 (𝑬𝜽𝝋𝜽 + 𝑬𝝋𝝋𝝋))

                     (2.47) 

Where  𝑬𝜽𝝋 , 𝑬𝜽𝜽 and 𝑬𝝋𝝋 are the second derivative of the total energy with respect to 𝜽 

and 𝝋.  Expression (2.46) is inserted in (2.47) to derive the following set of equations: 

      [
−𝒊𝝎 +

𝜸

𝑴𝒔 𝐬𝐢𝐧𝜽𝒆𝒒
𝑬𝜽𝝋 +

𝜶𝜸

𝑴𝒔 𝐬𝐢𝐧𝜽𝒆𝒒
𝑬𝜽𝜽

−
𝜸

𝑴𝒔 𝐬𝐢𝐧 𝜽𝒆𝒒
𝑬𝜽𝜽 +

𝜶

𝑴𝒔(𝐬𝐢𝐧𝜽𝒆𝒒)
𝟐 𝑬𝜽𝝋

     

𝜸

𝑴𝒔 𝐬𝐢𝐧 𝜽𝒆𝒒
𝑬𝝋𝝋 +

𝜶𝜸

𝑴𝒔
𝑬𝜽𝝋

−𝒊𝝎 −
𝜸

𝑴𝒔 𝐬𝐢𝐧𝜽𝒆𝒒
𝑬𝜽𝝋 +

𝜶𝜸

𝑴𝒔(𝐬𝐢𝐧 𝜽𝒆𝒒)
𝟐 𝑬𝝋𝝋

] [
𝜽
𝝋
] = 𝟎      (2.48) 

From the above equation, we can obtain the resonance frequency when the determinant is 

zero: 

        −𝝎𝟐 + (
𝜸𝟐

𝑴𝒔
𝟐(𝐬𝐢𝐧𝜽𝒆𝒒)

𝟐
+

𝜶𝟐𝜸𝟐

𝑴𝒔
𝟐(𝐬𝐢𝐧𝜽𝒆𝒒)

𝟐
) (𝑬𝜽𝜽𝑬𝝋𝝋 − 𝑬𝜽𝝋

𝟐) − 𝒊𝝎
𝜶𝜸

𝑴𝒔
(

𝑬𝝋𝝋

(𝐬𝐢𝐧 𝜽𝒆𝒒)
𝟐 + 𝑬𝜽𝜽) = 𝟎        (2.49) 

In the case of 𝜶 = 𝟎, the resonance frequency is obtained: 

                      𝝎𝒓𝒆𝒔 =
𝜸

𝑴𝒔 𝐬𝐢𝐧𝜽𝒆𝒒
[(𝑬𝜽𝜽𝑬𝝋𝝋 − 𝑬𝜽𝝋

𝟐)]𝟏/𝟐                               (2.50) 

The above equation (2.50) is called Smit-Beljers formula. The result of this equation in the 

case of thin films considering  𝑁𝑥 = 𝑁𝑌 = 0 and 𝑁𝑍 = 1, then demagnetizaion and Zeeman 

energy becomes: 
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                                                     𝑬𝒅𝒆𝒎𝒂𝒈 =
𝟏

𝟐
𝝁𝟎𝑴𝒔

𝟐 (𝐜𝐨𝐬 𝜽)𝟐                            (2.51) 

                                     𝑬𝒛𝒆𝒎𝒂𝒏 = −𝝁𝟎𝑴𝒔𝑯𝒆𝒙𝒕[𝐜𝐨𝐬 𝜽 𝐜𝐨𝐬𝜽𝑯 + 𝐬𝐢𝐧𝜽 𝐬𝐢𝐧𝜽𝑯 𝐜𝐨𝐬(𝝋 − 𝝋𝑯)]    (2.52) 

 Where 𝜃, 𝜃𝐻, 𝜑 and 𝜑𝐻 are defined in Figure 2.10.  

 

 

Figure 2.10: representation of magnetization 𝑀⃗⃗⃗⃗⃗ and the external magentic 𝐻⃗⃗⃗𝑒𝑥𝑡 in cartesian 

coordinates. 

The total energy in thin films is written as: 

𝑬 =
𝟏

𝟐
𝝁𝟎𝑴𝒔

𝟐 (𝐜𝐨𝐬 𝜽)𝟐 − 𝝁𝟎𝑴𝒔𝑯𝒆𝒙𝒕[𝐜𝐨𝐬 𝜽 𝐜𝐨𝐬 𝜽𝑯 + 𝐬𝐢𝐧𝜽 𝐬𝐢𝐧𝜽𝑯 𝐜𝐨𝐬(𝝋 − 𝝋𝑯)] +

                                                    𝑲𝒄𝟏 𝐬𝐢𝐧𝜽
𝟐 (𝐜𝐨𝐬 𝜽𝟐 + 𝐬𝐢𝐧𝜽𝟐 𝐜𝐨𝐬𝝋𝟐 𝐬𝐢𝐧𝝋𝟐)                          (2.53) 

Substituting equation (2.53) in Smit-Beljers formula (2.50), we get: 

I. In plane magnetization: Parallel to X-axis (𝜽 =
𝝅

𝟐
, 𝝋 = 𝟎) 

                        𝝎𝒓𝒆𝒔 = 𝝁𝟎𝜸[(𝑯𝒆𝒙𝒕 +𝑯𝒌)(𝑯𝒆𝒙𝒕 −
𝑯𝒌

𝟐
+𝑴𝒔)]

𝟏/𝟐                         (2.54) 

II. In plane magnetization: 45° from the  X-axis (𝜽 =
𝝅

𝟐
, 𝝋 =

𝝅

𝟒
) 

       𝝎𝒓𝒆𝒔 = 𝝁𝟎𝜸[(𝑯𝒆𝒙𝒕 −𝑯𝒌)(𝑯𝒆𝒙𝒕 −𝑯𝒌 +𝑴𝒔)]
𝟏/𝟐                         (2.55) 

III. Out-of-Plane magnetization: : Parallel to Z-axis (𝜽 = 𝟎) 

                                        𝝎𝒓𝒆𝒔 = 𝝁𝟎𝜸(𝑯𝒆𝒙𝒕 −𝑯𝒌 −𝑴𝒔)                                        (2.56) 

With  𝑯𝒌 =
𝟐|𝑲𝒄𝟏|

𝑴𝒔
 is the anisotropy magnetic field. The above three equations are valid 

for 𝑲𝒄𝟏 < 𝟎. If 𝑲𝒄𝟏 > 𝟎, then a negative sign must be replaced in the equation before 𝑯𝒌. In 

the next paragraph, a schematic presentation of equations (2.54) and (2.55) for different 

negative 𝑲𝒄𝟏 is shown in Figures 2.11. 

In Figure 2.11, the resonance frequency is plotted as a function of the external 

magnetic field at 0 and 45° rom the x-axis. The easy and hard axes of magnetization are found 

with a 45° orientation with respect to each other.  
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Figure 2.11: Resonance frequency as a function of an applied external field for in-plane 

configuration (θ=90°). The solid black lines represent the in-plane orientations when ϕ=0°, 

while the red line represents the in-plane orientations when ϕ=45° from x-axis. Simulation 

was done with Ms=1.25 T, 
𝛾

2𝜋
= 28.7 𝐺𝐻𝑧/𝑇, and Kc=-16 Kj/m3. 

For out-of-plane magnetization, for an applied field sufficient to saturate the 

magnetization, the resonance frequency has a linear behavior following equation (2.56), Fig 

2.12. The slope of the frequency as a function of external magnetic field curve is equal to the 

gyromagnetic ratio 𝜸.  

 

Figure 2.12: Resonance frequency as a function of an external magnetic field for out-of-plane 

configuration (θ=0°). The blue line is corresponds to
𝛾

2𝜋
= 30 𝐺𝐻𝑧/𝑇, while the black line 

corresponds to 
𝛾

2𝜋
= 28.7 𝐺𝐻𝑧/𝑇 . 

2.4 Spin waves 

In the previous section, we have presented the fundamental mode or (uniform mode) 

of magnetization dynamics. This was described by the uniform precession of magnetic 
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moments around the effective field when it is subjected to a small uniform microwave 

excitation field. In this case all the spins precess in-phase at the same frequency and are not 

propagative (i.e. the wave vector 𝑲⃗⃗⃗⃗ = 𝟎) as shown in Figure 2.13-a. In the case of a non-

uniform microwave excitation, the spins will not oscillate spatially in phase anymore. The 

phase perturbation will then propagate in the material with a wave vector 𝑲⃗⃗⃗⃗ ≠ 𝟎 . That is 

what is called spin waves. In this case, the neighboring spins will precess with a phase shift 

at a given frequency which leads to a propagation of the spins as shown in Figure 2.13-b. Spin 

waves were first introduced by Bloch in 1930’s [22 Bloch] and they are described as an 

elementary excitation in a ferromagnetic material. In this section, we will briefly present the 

magnetostatic regime as well as the main contribution to spin waves theory.  

 

 

 

Figure 2.13: a) uniform mode of magnetic excitation and b) spin waves with a wave 

length 𝝀. 

2.4.1 Magnetostatic regime 

In order to obtain the dispersion relation (𝜔 = 𝑓(𝐾⃗⃗⃗)), we use both the susceptibility 

expression and the continuity conditions of Maxwell’s equation for electromagnetic waves. 

Let’s consider the spin wave amplitude to be of the following form: 

𝑨(𝒓⃗⃗) = 𝒆𝒙𝒑(𝒊𝒌⃗⃗⃗.𝒓⃗⃗)𝑼𝑲(𝒓⃗⃗)                                                 (2.57)                                                                 

𝒌⃗⃗⃗ is the wave vector and has a magnitude of |𝐾| =
𝟐𝝅

𝝀
 with 𝝀 being the spin wave wavelength. 

𝑼𝑲(𝒓⃗⃗) is a periodic function that satisfy the crystal periodicity. In the next subsection, we will 

follow the method introduce in [23 Damon and Eshbach] to find the dispersion relation in the 

magnetostatic regime. 

2.4.1.1 Magnetostatic modes   

Before, we didn’t take into consideration the electrical variable influence on the 

magnetization dynamics analysis. Here, we will show how the magnetic and electrical 

variables are related.  

Considering the Maxwell equations: 
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{
 
 

 
 𝜵⃗⃗⃗ ∧ 𝑯⃗⃗⃗⃗ =

𝝏𝑫⃗⃗⃗

𝝏𝒕
+ 𝑱⃗

𝜵⃗⃗⃗ ∧ 𝑬⃗⃗⃗ = −
𝝏𝑩⃗⃗⃗

𝝏𝒕

𝜵⃗⃗⃗ . 𝑫⃗⃗⃗ = 𝝆

𝜵 ⃗⃗⃗⃗ . 𝑩⃗⃗⃗ = 𝟎

                                                (2.58) 

    Where, 𝑯⃗⃗⃗⃗ is the magnetic field in (A/m),𝑫⃗⃗⃗ is the electric displacement in (C/m2), 𝑱⃗ is the 

electric current density in (A/m2), 𝑬⃗⃗⃗ is the electric field in (V/m), 𝝆 is the electric charge density 

in (C/m3) and 𝑩⃗⃗⃗ is the magnetic induction field in (T). 𝑩⃗⃗⃗ is related to the magnetic field 𝑯⃗⃗⃗⃗ and 

polder tensor 𝝌̅ by the following relation: 

𝑩⃗⃗⃗ = 𝝁𝟎(𝑯⃗⃗⃗⃗ + 𝑴⃗⃗⃗⃗) = 𝝁𝟎(𝑰̅ + 𝝌̅)𝑯⃗⃗⃗⃗ = 𝝁̅𝑯⃗⃗⃗⃗                           (2.59) 

Where 𝑰̅ an identity matrix and µ is the permeability. 𝑰̅ + 𝝌̅ can be expressed, after the Polder 

tensor derived in equation (2.31), as follows: 

         𝑰̅ + 𝝌̅ = 𝝁̅ = 𝝁𝟎 [
𝟏 + 𝝌      
−𝒊𝒌  
    𝟎   

𝒊𝜿 
𝟏 + 𝝌
𝟎

   
𝟎 
𝟎
𝟏
]                                    (2.60) 

 

The electric displacement and the current density are related to electric field by the following 

formula: 

{
𝑫⃗⃗⃗ = 𝝐 𝑬⃗⃗⃗

𝑱⃗ = 𝝈 𝑬⃗⃗⃗
                                        (2.61)                                                             

𝝐 is the permittivity and 𝝈  is the electrical conductivity.  

Let us consider that the different electrical and magnetic fields have a spatial and time 

dependent function of the form 𝒆𝒙𝒑𝒊(𝒌⃗⃗⃗.𝒓⃗⃗−𝝎𝒕), Maxwell’s equations can thus be written in the 

following form: 

             

{
 
 

 
 𝒊𝑲⃗⃗⃗⃗ ∧ 𝑯⃗⃗⃗⃗ = −𝒊𝝎𝑫⃗⃗⃗ + 𝑱⃗

𝑲⃗⃗⃗⃗ ∧ 𝑬⃗⃗⃗ = −𝝎𝑩⃗⃗⃗

𝒊𝑲⃗⃗⃗⃗ . 𝑫⃗⃗⃗ = 𝝆

𝑲⃗⃗⃗⃗ . 𝑩⃗⃗⃗ = 𝟎

                                                   (2.62) 

By replacing equation (2.59) and (2.61) in the first two equations of (2.62) and crossing 𝑲 into 

both sides, we get: 

𝑲⃗⃗⃗⃗ ∧ 𝑲⃗⃗⃗⃗ ∧  𝑯⃗⃗⃗⃗ = −𝝎𝟐𝝐𝝁𝟎(𝑰̅ + 𝝌̅)𝑯⃗⃗⃗⃗ − 𝒊𝝎𝝈 𝝁𝟎(𝑰̅ + 𝝌̅)𝑯⃗⃗⃗⃗                   (2.63) 

Equation (2.62) can be simplified as follows: 

𝑲⃗⃗⃗⃗ ∧ 𝑲⃗⃗⃗⃗ ∧  𝑯⃗⃗⃗⃗ = −𝒌𝟎
𝟐(𝑰̅ + 𝝌̅)𝑯⃗⃗⃗⃗                                         (2.64) 

With, 

𝒌𝟎
𝟐 = 𝝎𝟐𝝁𝟎(𝝐 +

𝒊𝝈

𝝎
)                                               (2.65)      
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Expression (2.65) refers to the wave number for a propagating wave in a non-magnetic 

medium. If 𝝐 ≫ 𝝈/𝝎, then the material is said to be dielectric with a wave number 𝒌𝟎 = 𝝎/𝒄, 
with 𝒄 is the speed of light. Whereas, if 𝝐 ≪ 𝝈/𝝎, the material behaves as a metal. 

From equation (2.64), we can calculate the norm of curl 𝑯⃗⃗⃗⃗ as follows: 

|𝜵⃗⃗⃗ ∧ 𝑯⃗⃗⃗⃗| = |𝑲⃗⃗⃗⃗ ∧ 𝑯⃗⃗⃗⃗| =
|𝑲⃗⃗⃗⃗∧𝑲⃗⃗⃗⃗∧𝑯⃗⃗⃗⃗|

|𝑲⃗⃗⃗⃗|
=
𝒌𝟎

𝟐

𝐾
|(𝑰̅ + 𝝌̅)𝑯⃗⃗⃗⃗|                                  (2.66) 

From the previous equation, we note that for high values of 𝐾 such that 𝑲 ≫  𝒌𝟎, curl 𝑯⃗⃗⃗⃗ → 𝟎. 

This approximation is called the magnetostatic approximation. In this case the magnetic and 

electric part are not coupled anymore.  Maxwell’s equations can then be written as: 

{
𝜵⃗⃗⃗ ∧ 𝒉⃗⃗⃗ = 𝟎

𝜵⃗⃗⃗ ∧ 𝒆⃗⃗ = 𝒊𝝎 𝒃⃗⃗⃗⃗

𝜵 ⃗⃗⃗⃗ . 𝒃⃗⃗⃗ = 𝟎

                                                      (2.67) 

𝒉⃗⃗⃗, 𝒃⃗⃗⃗, and 𝒆⃗⃗ are the time dependent dynamic components of 𝑯⃗⃗⃗⃗, 𝑩⃗⃗⃗, and 𝑬⃗⃗⃗, respectively. 

As curl h = 0 we can define a magnetostatic potential 𝝍 such as: 𝒉⃗⃗⃗ = −𝛁⃗⃗⃗𝝍                                                                    

  

Then 𝜵 ⃗⃗⃗⃗ . 𝒃⃗⃗⃗ can be expressed as follows:  

𝜵 ⃗⃗⃗⃗ . 𝒃⃗⃗⃗ = 𝜵 ⃗⃗⃗⃗ ((𝑰̅ + 𝝌̅)𝛁⃗⃗⃗𝝍) = 𝟎            (2.68) 

From equation (2.68) and assuming that 𝝌 and 𝒌 are independent on position, we deduce the 

following: 

(𝑰 + 𝝌) [
𝝏𝟐𝝍

𝝏𝒙𝟐
+
𝝏𝟐𝝍

𝝏𝒚𝟐
] +

𝝏𝟐𝝍

𝝏𝒛𝟐
= 𝟎                                               (2.69)   

The previous equation is called the Walker’s equation [24 Walker] and its solutions are 

referred to as the magnetostatic modes. 

If we consider that the magnetostatic potential 𝝍 can be written in the form of 𝒆𝒙𝒑(𝒊 𝑲⃗⃗⃗⃗⃗.𝒓⃗⃗), 
walker equation becomes: 

(𝑰 + 𝝌)[𝒌𝒙
𝟐 + 𝒌𝒚

𝟐] + 𝒌𝒛
𝟐 = 𝟎                                            (2.70) 

 Equation (2.70) clearly connects the wave vector 𝒌 to the frequency (𝜔) in 𝝌.  

Now if we consider that the magnetic field is applied along Z-axis (the direction of external 

magnetic field), and the spin wave propagate with angle 𝜽  with respect to Z axis. Here we 

consider an infinite medium Equation (2.70) becomes: 

{
𝒌𝒙

𝟐 + 𝒌𝒚
𝟐 = 𝒌𝟐 𝐬𝐢𝐧𝟐 𝜽

𝒌𝒛
𝟐 = 𝒌𝟐 𝐜𝐨𝐬𝟐 𝜽

                 (2.71)  

Substituting equation (2.71) in (2.70) yields to: 

𝝌𝐬𝐢𝐧𝟐 𝜽 = −𝟏                                                    (2.72) 
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This can be expressed in terms of frequency using equation (2.32) for 𝝌. This gives the 

following: 

                       𝝌 𝐬𝐢𝐧𝟐 𝜽 =
𝝎𝟎𝝎𝑴 𝐬𝐢𝐧

𝟐 𝜽

𝝎𝟎
𝟐 −𝝎𝟐

                                                                  (2.73) 

Simplifying equation (2.73), we get: 

𝝎 = [𝝎𝟎(𝝎𝟎 +𝝎𝑴 𝐬𝐢𝐧
𝟐 𝜽)]

𝟏/𝟐
                                      (2.74) 

We notice that equation (2.74) is independent of the wave vector 𝒌. This is valid for an infinite 

medium. The correspondence between 𝝎 and 𝒌 will be found by applying the boundary 

conditions in the Maxwell equation. However, important comments can already be stated 

from 2.74. Indeed, the frequency of the spin waves depends on the propagation direction θ. 

We deduce that the resonance frequency is bounded between the two values [3 Stancil and 

Prabhakar]: 

𝝎𝟎 ≤ 𝝎 ≤ [𝝎𝟎(𝝎𝟎 +𝝎𝑴)]
𝟏/𝟐                                       (2.75) 

The previous band of frequencies is called ‘spin wave manifold’. 

In thin films, the magnetostatic modes are determined by the direction of the wave vector, 𝒌, 

with respect to the applied external field in-plane or out-of-plane. 

We are now interested in solving Walker’s equation (2.69) to obtain the dispersion 

relation for magnetostatic spin waves propagating normally or tangentially in magnetized 

thin films. This leads us to the three principal configurations of magnetostatic waves in thin 

films, presented as follows: 

2.4.1.1.1 Magnetostatic Forward Volume Wave (MSFVW): 

In this case, the magnetic external field is applied perpendicular to the surface plane 

of the material and the magnetization, 𝑴⃗⃗⃗⃗ is oriented out-of-plane (𝑴 ⃗⃗ ⃗⃗⃗  ⇈  𝑯𝟎⃗⃗ ⃗⃗ ⃗⃗ ⃗). If we have a 

propagative spin wave vector in the plane of the film such that ((𝑴 ⃗⃗ ⃗⃗ ⃗  ⇈  𝑯𝟎⃗⃗ ⃗⃗ ⃗⃗ ⃗ ) ⊥  𝒌⃗⃗⃗⃗ ), then this 

configuration is known as the MSFVW.  

For spin waves propagating in a thin film with a wave vector;  𝒌⃗⃗⃗⃗ = 𝒌⃗⃗⃗𝒕 + 𝒌⃗⃗⃗𝒛 and 𝒌⃗⃗⃗𝒕 = 𝒌⃗⃗⃗𝒙 + 𝒌⃗⃗⃗𝒚; 

Kalinikos derived an explicit dispersion relation of the frequency 𝝎 for the lowest order 𝒏 = 𝟎 

, where 𝒏 is the stationary condition inside the film’s thickness [25 Kalinikos]. The dispersion 

relation is then written as follows: 

𝝎𝟐 = 𝝎𝟎[𝝎𝟎 +𝝎𝑴(𝟏 −
𝟏−𝒆𝒙𝒑−𝒌𝒕𝒅

𝒌𝒕𝒅
)]                          (2.76)    

Where d is the thickness of the film.  

2.4.1.1.2 Magneto static Backward Volume waves (MSBVW): 

In this configuration the external magnetic field is applied parallel to the sample’s 

plane. The magnetization, 𝑴⃗⃗⃗⃗ is magnetized in-plane and the wave vector propagates in such 

a way that ((𝑴 ⃗⃗ ⃗⃗ ⃗  ⇈  𝒌⃗⃗⃗⃗ ). This configuration is called MSBVW.  
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The propagation spin wave vector this time has the form of 𝒌⃗⃗⃗ = 𝒌⃗⃗⃗𝒕 + 𝒌⃗⃗⃗𝒚 with 𝒌⃗⃗⃗𝒕 = 𝒌⃗⃗⃗𝒛. Kalinikos 

also derived an explicit form of the dispersion relation for lowest order mode (fundamental 

mode) 𝒏 = 𝟏: 

𝝎𝟐 = 𝝎𝟎[𝝎𝟎 +𝝎𝑴(
𝟏−𝒆𝒙𝒑−𝒌𝒛𝒅

𝒌𝒛𝒅
)]                                      (2.77)    

Then, the phase and group velocities of MSBVW propagate in opposite direction.  

2.4.1.1.3 Magnetostatic Surface Wave (MSSW): 

We consider in this case that the propagating waves are perpendicular to an in-plane 

external magnetic field such that (𝑀⃗⃗⃗ ⊥ 𝐾⃗⃗⃗). This configuration is called the MSSW or the 

Damon-Eshbach mode [23 Damon and Eshbach]. The dispersion relation for MSSW is derived 

by solving the Walker’s equation and is written as: 

    𝝎𝟐 = 𝝎𝟎(𝝎𝟎 +𝝎𝑴) +
𝝎𝑴

𝟐

𝟒
[𝟏 − 𝒆𝒙𝒑−𝟐𝒌𝒅]                             (2.78) 

Similarly to MSBVW this dispersion relation of MSSW clearly depends on the thickness of 

the magnetic film 𝑑 and on the magnitude of the wave vector. One of the most important 

feature of MSSW is their evanescent character in the thickness of the film. This is why they 

are called surface waves. This also implies that depending on the direction of 𝐾⃗⃗⃗ with respect 

to 𝑀⃗⃗⃗⃗⃗, the wave will propagate on the upper or lower surface of the material. Finally, MSSW 

have group and phase velocities propagating in the same direction.  

The graphical presentation of all three magnetostatic waves is presented in Figure 2.14. 

 

Figure 2.14: Topology of spin wave modes in a magnetic film as a function of the direction of 

magnetization and the in-plane wave vector [26 Demokritov]. 

 

2.4.2 Spin waves in the exchange regime 

 We are now interested in solving the dispersion relation (2.78) taking into account the 

exchange interaction term. 
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Starting from equation (2.9), the operator ∇2 could be replaced by −𝒌𝟐.  Then it is possible to 

replace the resonance frequency 𝝎𝟎 by 𝝎𝟎 + 𝜸
𝟐𝑨

𝑴𝒔
𝒌𝟐 . The dispersion relation thus becomes: 

  𝝎𝟐 = (𝝎𝟎 + 𝜸
𝟐𝑨

𝑴𝒔
𝒌𝟐) + (𝝎𝟎 +𝝎𝑴 𝐬𝐢𝐧

𝟐 𝜽 + 𝜸
𝟐𝑨

𝑴𝒔
𝒌𝟐)                           (2.79) 

Rado and Weertman [27 Rado & Weertman] have studied the modification of the spin waves 

ferromagnetic resonance due to the influence of exchange interaction. The exchange 

interaction is assumed to be at the interface of the magnetic layer where a surface uniaxial 

anisotropy exist. In this configuration, boundary condition are taken into account at the 

interface of the layer in addition to the electromagnetic ones in order to solve the equation of 

motion. Soohoo et al. have proposed a general exchange boundary conditions in their paper 

[28 Soohoo] such that: 

𝝏𝒎𝒙

𝝏𝒛
+ 𝒑 𝒎𝒙  𝐜𝐨𝐬(𝟐𝜽) = 𝟎  𝒂𝒏𝒅   

𝝏𝒎𝒚

𝝏𝒛
+ 𝒑 𝒎𝒚  𝐜𝐨𝐬

𝟐 𝜽 = 𝟎                            (2.80) 

 𝒑 is the pinning factor and corresponds to the spin states at the interface. The condition 𝒑=0 

represents the free spins. A perfect pinning corresponds to 𝒑 → ∞, which means that there is 

a complete blockage of spins at the interface [29 Kittel]. 

2.4.2.1 Standing Spin waves (SSW) 

Standing Spin waves (SSW) were first predicted theoretically by Kittel [29 Kittel] and 

were first experimentally demonstrated by Seavey and Tannendwald [30 Seavey and 

Tannendwald]. SSW belongs to the stationary family of magnetostatic modes. The wave 

vector of SSW is parallel to the normal of the film. These waves undergo reflections at the 

interfaces leading to a stationary state. This state depends on the thickness of the layer "𝒅" 
and pinning conditions. Using condition (2.80), we can solve for kz the two pinning parameters 

at each interface as follows: 

           𝐜𝐨𝐭 𝒌𝒛𝒅 =
𝒌𝒛
𝟐−𝒑𝟏𝒑𝟐

𝒌𝒛(𝒑𝟏𝒑𝟐)
  (2.81) 

Where 𝒑𝟏 and 𝒑𝟐 are the pinning factors at the two films surfaces. If 𝒑𝟏 = 𝒑𝟐 = 𝒑, expression 

(2.81) becomes: 

  {
𝐜𝐨𝐭 (

𝒌𝒛𝒅

𝟐
) =

𝒌𝒛

𝒑

−𝐭𝐚𝐧 (
𝒌𝒛𝒅

𝟐
) =

𝒌𝒛

𝒑

   (2.82) 

From equation (2.79), if we consider only the exchange term into account, then the resonance 

frequency becomes: 

   𝝎𝒏 = 𝝎𝟎 −𝝎𝑴 + 𝜸
𝟐𝑨

𝑴𝒔
𝒌𝒛 𝒏
𝟐   (2.83) 

Equation (2.83) corresponds to the case when magnetization is out of plane. 
2
,nzk  (For n=1, 2, 

3 …) is the solution for the two equations in (2.82). Expression (2.83) can be written as: 
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 𝝎𝒏 = 𝝁𝟎𝜸(𝑯𝟎 −𝑴𝒔 +
𝟐𝑨

𝝁𝟎𝑴𝒔
𝒌𝒛 𝒏
𝟐 )   (2.84) 

In the case of perfect pinning, dnk nz /,  and if 0p   dnk nz /1, ,  .  

If we consider the magnetization in the plane of the film, then we get the resonance frequency 

as: 

                                                𝝎𝒏
𝟐 = (𝝎𝑴 +𝝎𝟎 + 𝜸

𝟐𝑨

𝝁𝟎𝑴𝒔
𝒌𝒛 𝒏
𝟐 )(𝝎𝟎 + 𝜸

𝟐𝑨

𝝁𝟎𝑴𝒔
𝒌𝒛 𝒏
𝟐 )       (2.85) 

One major interest in the measurement of such standing spin waves modes that it gives access 

to the exchange constant 𝑨 value. 

2.5 Magnetization relaxation mechanism  

In this section, we will focus on the different mechanisms that contribute to the intrinsic 

and extrinsic relaxation processes of magnetization relaxation. The dissipative term in 

equation (2.23) described by the phenomenological damping coefficient 𝜶, contains 

contribution from both intrinsic and extrinsic relaxation mechanisms. Experimentally, 𝜶 is 

measured through the line width of the magnetic susceptibility in equation (2.39). The 

magnetization relaxation is governed by different energy dissipation mechanisms 

summarized in Figure 2.15.  

 

 

 

Figure 2.15:  graphical presentation of the flow of energy from between the magnetic system 

and other systems when RF field excites the uniform modes [4 Gurevich and Melkov]. 
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Relaxation processes, (energy dissipation), result from the energy distribution 

between the magnetic excitations (magnons) and the crystal vibrations (phonons) or the 

conduction electrons. Magnons-magnons relaxation is another relaxation mechanisms.   

These processes are divided into two configurations: the spin-spin and spin-lattice relaxation 

processes. The spin-spin relaxation processes can be caused by defects in the crystal [4 

Gurevich and Melkov]. In most cases, the transferred energy to the lattice results in heating.  

The spin-lattice relaxation is divided into two processes: First, the direct spin-lattice process 

that is based on the direct energy transfer to the lattice upon the destruction of magnons and 

the creation of phonons. Second, the indirect spin-lattice process that is based on the energy 

transfer from magnons to the lattice by electron scattering.  

In this section, we will present the basics of relaxation mechanisms in ferromagnets. 

As this is a very complicated topic a complete description is above the goal of this manuscript. 

For more details the reader is invited to refer to the references cited below.   

2.5.1 Intrinsic relaxation processes  

The intrinsic contribution to damping corresponds to the natural mechanisms allowing 

dissipation of the energy in order that the magnetization gets back to its equilibrium position. 

For example any precessing dipole radiates energy in free space and loses energy (radiation 

losses). In ferromagnets, there are more efficient dissipative processes. Then we have two 

main contributions, one corresponds to the relaxation of magnons by scattering with the 

conduction electrons and the second one corresponds to direct coupling of the magnetic modes 

with the phonons. We will also consider other mechanisms such as the dissipation due to eddy 

current which is the most important relaxation in thick metallic sample.  

Let’s note that there is no complete theory that describes the magnetic losses in 

dynamic experiments. However, several models have been developed for ferromagnets since 

the pioneering work of Kittel, Van Vleck or more recently by Heinrich or Kamberský [34-39]. 

 Collision of magnons with itinerant electrons 

 
In a metallic ferromagnet, the major source of damping is generally the electron-magnon 

interaction. Two mechanisms arise depending if the spin of the conduction is conserved or 

not. A very complete description of the different mechanisms can be found in [40 Woltersdorf].  

   

1- s-d interaction: spin-flip scattering 

Electron-magnon collision has been described by Berger in 1970’s [31 Berger] as the 

collision of a magnon of energy 𝐸 = ℏ𝜔𝑞 with an itinerant electron of energy 𝜀𝐾 and spin state 

𝜎 (𝜎 can be ±
1

2
). Figure 2.16 can be described as the creation and annihilation of electron-hole 

pair as a result of the collision of magnons and itinerant electrons by s-d exchange interaction. 

The itinerant electron is transferred to a higher energy defined as 𝜀𝑘+𝑞 with a spin state 𝜎′. 

Due to the conservation of angular momentum, itinerant electron has to flip its spin when 

coherently scattered by a magnon. If the electron hole pair undergoes a coherent scattering 

event, with a phonon for example, a coherent magnon will be reemitted. This mechanism 

leads to a renormalization of the landé g-factor [32 Heinrich]. The g-factor is related to both 

electron hole pair excitation spin flip time 𝜏𝑠𝑓 and the momentum relaxation time 𝜏𝑚 as 

follows: 
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𝜏𝑠𝑓

𝜏𝑚
=

1

(𝑔−2)2
                                                 (2.86) 

Where time 𝜏𝑠𝑓 is the electron hole pair excitation spin flip time and 𝜏𝑚 the momentum 

relaxation time. Details of obtaining 𝜏𝑠𝑓 and 𝜏𝑚 can be found in [41 Dubois, 42 valet et Fert].  

In the case where the electrons undergoes an incoherent scattering process (with a phonon or 

a magnon), the dephasing of the reemitted magnons leads to an average loss of coherence and 

then to damping. This process leads to a linear dependence of the linewidth with the 

frequency, in agreement with a Gilbert like term and can be expressed as a function of the 

density of states at fermi level Zf , the spin flip time and the square of the g-factor [43 Pelzl].  

Where 𝜏 is the electron scattering time. 

In half metals such events are not possible due to the full spin polarization. This 

explains why the damping coefficient in these materials, such as Co2MnSi are much lower 

than usual ferromagnetic (Fe, Ni, Co). However magnon-electron relaxation without spin flip 

is still occurring.   

𝛼𝑠−𝑑 = (𝛾ℏ
2𝜋/𝜇0𝑀𝑠 )𝑍𝑓(𝑔 − 2)

2/𝜏                                 (2.87) 

 

 

 

Figure 2.16: Collision between a Spin wave (a magnon) with energy ℏ𝜔𝑞 and an itinerant 

electron with energy  𝜀𝐾  and spin state 𝜎 results in creation of an itinerant electron with 

momentum 𝑘 + 𝑞 and spin orientation 𝜎′. 

 

2- Spin-Orbit relaxation: non spin-flip scattering 

Electron-magnon scattering without spin flip is due to the spin orbit interaction.  This 

effect has been described by Kamberský [33 Kamberský].  

A classical representation of this effect is referred as the “breathing fermi surface”. 

When the magnetization precesses, the Fermi surface has to be distorted periodically. 

However such a repopulation of the energy levels for the electrons can be done only with a 

timescale equal to momentum relaxation time Tm. Then a phase lag appears between the 

precessing magnetization and the Fermi surface oscillations leading to a global loss of 

coherence and then induces damping. 
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Recent work by Kamberský [35, 36, 37 Kamberský] and Gilmore [44 Gilmore] based 

on first principle calculations showed that the spin orbit relaxation is the dominant 

mechanism in relaxation processes in ferromagnetic materials. In this model, the relaxation 

rate is proportional to the spin-orbit coupling constant 𝜆𝑆𝑂 and the damping factor. The 

corresponding damping coefficient is expressed as: 

𝛼𝑆𝑂 = (𝛾ℏ𝜋/𝜇0𝑀𝑠)𝑍𝑓𝜆𝑆𝑂
2 (𝑔 − 2)2 ∗ 𝜏                                 (2.88) 

Following the approach of Kittel, the quantity (𝑔 − 2) can be expressed as the ratio of 

the orbital to spin moment (𝑔 − 2 = 2 (
𝜇𝐿

𝜇𝑠
)). This is valid for small orbital moment but in 

ferromagnet this is valid due to the quenching of the orbital by the crystal field. Then from 

equation 2.88, we conclude that the Gilbert damping provides a sensitive probe of spin-orbit 

effects and if there is any shift in the g-factor that is related to the spin-orbit coupling [43 

Pelzl].  

 Intrinsic relaxation mechanisms induced by Eddy current 

In thick metallic sample, a major source of relaxation comes from the eddy current 

induced either by the oscillating pumping field or directly by the precessing magnetization 

itself.  

It is possible to demonstrate that they induce a component of the spin wave vector 

perpendicular to the film surface. This additional wave vector is of the form  𝑘 = 
1+i

√2│𝜹│
 with 𝜹 

the skin depth defined as: 

                                                 𝜹 = √
𝟐

𝝁𝝎𝝈
   (2.89) 

 Where 𝜎 is the conductivity of any material and 𝜇 its permeability.   

The imaginary part of the wave vector is responsible for the evanescence of the spin wave in 

the thickness of the film and then to a loss of coherence. For samples thicker than the skin 

depth 𝛅, the contribution of eddy current are taken into account by integrating Maxwell’s 

equation across the film thickness d. The contribution of the eddy current to the damping can 

be expressed as: 

                                                  𝜶𝒆𝒅𝒅𝒚 =
𝟏

𝟔
𝑴𝒔𝜸 (

𝟒𝝅

𝒄
)
𝟐
𝝈𝒅𝟐       (2.90) 

Knowing the resistivity of CMS at room temperature to be 170 𝜇Ω𝑐𝑚 [10 Kämmerer], the skin 

depth calculated at 10 GHz for CMS is in the range of 260 nm which is much bigger than our 

studied CMS films (42 and 50 nm thickness layers). Thus, the contribution of eddy current 

damping term, in our case, is negligible.   

 Magnon-phonon scattering 

The direct coupling of magnons and phonons is another source of energy dissipation 

for the precessing magnetization. A classical picture can be given as follows: let’s consider a 

chain of spin localized on atoms. When a spin is precessing, the surrounding atoms will be 

periodically either attracted or repealed due to the dipolar coupling between the spins, leading 
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to phonons. Reciprocally the propagating phonon will perturb the phase of the spin wave 

leading to decoherence and consequently damping.  

Detailed theories were developed by many groups but H. Suhl [45 Suhl] explicitly 

presented the relaxation by a phonon drag that can be applied to small geometries with 

homogeneous magnetization and lattice strain. The gilbert phonon damping is described as 

follows: 

                                                   𝜶𝒑𝒉𝒐𝒏𝒐𝒏 =
𝟐𝜼𝜸

𝑴𝒔
(
𝑩𝟐(𝟏+𝝊)

𝑬
)
𝟐
       (2.91) 

Where 𝜼 is the phonon viscosity, B2 is the magneto-elastic shear constant, E is the 

Young modulus and 𝝊 is the Poisson ratio.  

Finally one could discuss about intrinsic magnon-magnon interaction that leads to 

energy dissipation. These intrinsic mechanism are 3 and 4 magnons scattering. They have 

been described by Suhl to explain nonlinear effects in spin dynamics experiments such as 

additional absorption peaks or the saturation of the permeability.  

The three magnon process, which is responsible for the subsidiary peak in high power 

experiments, corresponds to the relaxation of a uniform magnon with 𝑘0 and energy 𝜔0 into 

two magnons with opposite wave vectors +𝑘 and −𝑘 of energy ℏ𝜔0/2. The four magnon process 

scattering corresponds to the annihilation of two magnons uniform modes with 𝑘0 and 𝜔0 into 

two magnons with wave vector +𝑘 and −𝑘 and energy ℏ𝜔0. This is the source of the saturation 

for the susceptibility.  

 However, these effects mainly arises for nonlinear excitation of the magnetization. In 

our work, we only work in the small perturbation (linear) limit and then we will not discuss 

these two mechanisms. The reader is invited to refer to [3, 4, 46, and 47] for more details.  

 

2.5.2 Extrinsic relaxation processes 

Another source of energy losses comes from structural defects, interface effects or 

inhomogeneity of the magnetic parameters. In general such mechanisms are referred as 

extrinsic contribution to the damping as they are related to imperfections of the ideal 

material. Experimentally, the extrinsic contributions to the relaxation induce a non-zero 

linewidth at zero frequency (∆𝑯𝟎).  

Different parameters can contribute to these extrinsic processes. The principal source of 

extrinsic relaxation is generally the two magnons scattering and the inhomogeneity of 

magnetic parameters. They have been described for example in Zakeri et al. [52 Zakeri]. 

 

 Inhomogeneity. 

The inhomogeneity of magnetic parameters is a main source of damping in materials. 

Indeed local variations of the effective field leads to the dephasing of the spins and then to 

the decoherence of the precession.   

The linewidth broadening due to magnetic inhomogeneity can be calculated via a 

general formula:  
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∆𝐻A = |
𝜕𝐻𝑟𝑒𝑠

𝜕𝐴
| ∆𝐴     (2.92) 

 

Where ΔA is the average spread of a magnetic parameter of interest A, such as the 

amplitude of the magnetization 𝑀𝑠 or anisotropy 𝐻𝑘. It can also correspond to the spreading 

of the easy axis direction 𝜑𝐻 due to the mosaicity of the material. This case is generally 

referred as ΔHmos. This last term is generally one of the most important sources of linewidth 

broadening but vanishes for field applied parallel to easy and hard axis directions.  

One of the most important feature of equation 2.92 is that the linewidth broadening 

due to magnetic inhomogeneity is frequency and angle independent.  

 

 Two-magnon scattering 

In the two magnon relaxation process, the uniform mode of precession (𝑘 = 0) is scattered 

by a defect into a non-zero wave vector spin wave (𝑘 ≠ 0) with the same energy. Two main 

points have to be mentioned here. First, the conservation of momentum is not required as 

long as the impurity can absorb the difference of momentum. Secondly, one crucial point is 

that the FMR mode has to be degenerated with a non-uniform mode. This implies a non-

monotonous shape of the dispersion curve as shown in Figure 2.17.  

 

Figure 2.17: spin wave dispersion curves as a function of wave vector in the case of thin 

films. The gray region represents the case of tangentially magnetized thin film while the 

dashed line represents the case of a perpendicularly magnetized film [53 Bailleul]. 

 

Two magnon scattering is generally caused by geometrical defects, crystal defects or 

boundaries, etc... It is given by the following expression [54 Arias and Mills]: 

∆𝐻2 magnon = ∑ Γ𝑥𝑖 × arcsin [
𝑓

√𝑓2+(𝑓0)
2+𝑓0

]𝑥𝑖    (2.93) 

 

With Γ𝑥𝑖 is the strength of the two –magnon scattering along the in-plane crystalline 

direction 𝑥𝑖 ,  𝑓0 =  𝛾𝑀𝑒𝑓𝑓, and 𝑀𝑒𝑓𝑓 = 𝑀𝑠 − 𝐻𝑘/4𝜋.   
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It is important to note that for perpendicular configuration, i.e. a magnetic field applied 

perpendicular to the surface of the film, the dispersion relation shows no degenerate mode of 

the uniform mode with non-zero wave vector spin waves as long as θ, the angle between the 

magnetization and the normal of the surface is <45°. Experimentally, this gives a special 

signature of the ΔH vs θ curve (figure 2.18) [48-51].  

 

  
 

Figure 2.18: Angular dependence of linewidth ∆𝐻𝑝𝑝 of FMR spectra in out of-Plane geometry 

for Co2MnSi film. Panels (a) and (b) respectively depict line-width variations versus out-of-

plane angle 𝜑𝐻 in the easy- and hard-axis directions [48 Yilgin]. 

 

After giving a brief description in this section about the intrinsic and extrinsic relaxation 
process of magnetization relaxation. A summery is given on the influence of these contribution on 
the magnetic parameters of the CMS Heusler alloys investigated in this manuscript. 
  The CMS thin films being studied later on in chapters 4 and 5 have a thickness less than 100 nm, 
and as noted earlier in this section, the eddy current contribution to the intrinsic relaxation process 
is then negligible. Whereas the magnon phonon damping factor couldn’t be evaluated for CMS due 
to unknown parameters in literature such as the magneto-elastic shear constant, we will follow the 
assumption proposed by Kamberský stating that the damping of most of ferromagnetic material is 
due to electron-magnons scattering [37 Kamberský]. This leads the spin orbit interaction to be the 
dominant intrinsic contribution to relaxation mechanism where the damping factor depends on the 
spin orbit coupling through the relation 2.88. 

The extrinsic relaxation processes are described by the frequency independent contribution 
to the linewidth. They are induced by crystal inhomogeneity such as defects, interface effects and 
magnetic inhomogeneity such as local variation of magnetization or anisotropy.  Considering 
classical values of the extrinsic contributions to the linewidth observed in many studies on similar 
materials [49 Belmeguenai, 56 Qiao], the value of ΔH0 is generally about 10 Oe. In our CMS 
samples, slightly higher values of ΔH0 will be measured (see chapters 4 and 5).  The most probable 
reason is a stronger contribution of the ∆𝑯𝒊𝒏𝒉𝒐𝒎𝒐𝒈𝒆𝒏𝒆𝒊𝒕𝒚 and ∆𝑯𝒎𝒐𝒔𝒂𝒊𝒄𝒊𝒕𝒚 as we will show that our 
samples have one or two crystal phase order as deposited. . Also 2 magnons scattering has probably 
a significant contribution to the linewidth, especially in our irradiated samples (chapter5) for which 
local defects are created at high fluence. However, this one is very difficult to estimate and requires 
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high field in and out-of-plane FMR measurements, the latter being not accessible within our stet-
up. 
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Chapter 3: Experimental 

techniques  
 

In this chapter, we will introduce the different techniques used to study the structural 

and magnetic properties of ‘as deposited’ Co2MnSi (CMS) Heusler alloy. Section 3.1 describes 

different deposition technique. In section 3.2 thin film deposition procedure of CMS will be 

presented. Section 3.3 the structural investigation by X-Ray Diffraction (XRD) and 

Transmission Electron Microscopy (TEM) is carried on the deposited CMS thin films. In 

section 3.4 Magneto Optical Kerr Effect (MOKE) and Ferromagnetic Resonance (FMR) 

spectroscopy experiments are used to study the static and dynamic magnetic properties of 

CMS. At the end of this chapter, Ion irradiation technique is introduced. 

3.1 Deposition Techniques  

Thin films fabrication are usually divided into two categories, the Chemical Vapor 

Deposition (CVD) and the Physical Vapor Deposition (PVD). In CVD process, the material to 

be deposited is in the gas or liquid form, the deposition is done by a chemical reaction on the 

substrate surface.  While, PVD technique is based on the formation of a vapor state of the 

material to be deposited as thin films onto the substrate. To convert the material from solid 

to vapor state, is done by either thermal evaporation (i.e. heating) or sputtered/bombarded 

ions.  

 PVD by thermal evaporation: 

It is one of the oldest methods to deposit thin films, metals are evaporated by heating and 

the evaporated material will form a thin layer on the used substrate. The ultra-high vacuum 

is necessary for film deposition (< 10-8 Torr). Thermal evaporation can be divided into two 

parts: Filament evaporation and Electron-beam one. Filament evaporation is done by placing 

the desired metal on the filament directly (usually Tungsten, W), then the metal is evaporated 

as we increase the temperature of the filament. The rate of deposition is directly related to 

the temperature of the filament and it should be lower than the sublimation temperature to 

avoid contamination. In the case of electron-beam evaporation, electron beam is focused on 

the material to evaporate instead of heating it. Different techniques are used to elaborate thin 

films by evaporation, such as: Molecular Bean Epitaxy (MBE) and Pulsed laser deposition 

(PLD). The reader is invited to refer to [1,2,3,4 and 5] for more details about PLD and MBE. 
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 PVD by ionic bombardment: 

In this technique, ionic bombardment attack the material to be deposited (called 

target) and ejects the atoms from its surface. There exist two ways of ionic bombardment: 

either by direct application of ion beam on the target or by accelerated ionized gas (usually 

Argon Gas) that release the atoms from the target placed at a cathode, results in creating a 

plasma.  An example of the former technique is Ion Beam Deposition (IBD) and the latter is 

the sputtering. Sputtering is the VPD technique used for elaborating CMS thin films and is 

detailed in the next paragraph. 

3.1.1 Sputtering  

This technique is used to deposit thin films by the creation of a gaseous plasma. The 

ionized gas in the plasma accelerate towards the target (the material to be deposited). Atoms 

are ejected from the target after being eroded by the energy transfer of the accelerating ions. 

After being ejected, the atoms will be deposited on a nearby surface (the substrate). The 

ionized gas used in our case is Argon, Ar. The use of neutral gas will avoid chemical reaction 

with the deposited material.  Apart from the use of Argon to deposit metals and alloys, Oxygen 

ionized gas is used to deposit oxides. Compared to MBE (deposition rate of nm/hr), the rate 

of deposition of sputtering is higher and of order of one atomic layer per second.  In this work 

we use face to face configuration for the CMS target in order to keep the stoichiometry of the 

material when it is deposited on the substrate. Now, we will present the different energy 

sources configurations to maintain the gaseous plasma. 

 DC configuration 

In the DC configuration of sputtering, the target is inside the vacuum chamber of ~ 

10-7 mbar. Two electrodes are located inside the chamber to create the plasma. The target is 

fixed on the first negatively charged electrode (cathode) that carries a negative potential 

ranges from several volts to kilovolts. The second electrode (the anode) is placed on the 

substrate, placed at few centimeters from the target. To create the plasma, we introduce the 

Argon gas of 10-4 to 10-1 mbar, then, the free electrons will accelerate from the cathode and 

approach the outer shell electrons of the Ar atoms, this leaves the Ar atoms electrically 

unbalanced and forms ions instead, Ar+ ions.  The positively charged ions will interact with 

the atoms on the negatively charged electrode (the cathode) leading to an energy transfer 

from the ions to free electrons and atoms of the target. The atoms will be deposited on the 

substrate while the free electrons will hit the outer electron shells of Ar+ ions, changing them 

into neutral gas. Due to the conservation of energy law, the Ar gas atoms that gained energy 

must be released, the released energy is in the form of photons. For this reason we see the 

glowing plasma (Figure 3.1).  
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Figure 3.1: Graphical representation of sputtering configuration. 

 

 RF configuration 

The DC configuration is adapted to deposit conducting materials but it is not 

applicable to deposit dielectrics or oxides. The reason falls behind is that Ar+ ions accumulate 

on the target surface and the electrons coming from the cathode can’t neutralize the dielectric 

materials. To overcome this problem, both electrodes should be polarized by an alternating 

radio frequency (RF) potential. This leads to attract the electrons or the positive ions who 

discharged the surface. The RF operating at frequencies higher than 1 MHz, is sufficient for 

the positive ions to reach the electrodes. Usually, the used frequency is about 13.5 MHz to 

avoid interference with telecommunication waves.  

 Face to Face configuration 

Face to face configuration involves placing the two targets electrodes facing each other 

separated by few centimeters where the substrate is placed above them (Figure3.2). In this 

configuration, the two target electrodes are biased by RF potential. This configuration lower 

the deposition rates and the probability of high energy carbon contamination is reduced. 

Those two consequences of face to face target configuration allows us to have an epitaxial 

growth from stoichiometry targets. The stoichiometry of the targets can be only reserved by 

using the face to face configuration. In this thesis, face to face configuration is used to grow 

the Co2MnSi Heusler alloys and MgO layers.  
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Figure 3.2: Graphical representation of the face to face configuration. 

 

 Magnetron configuration 

This configuration can be applied to both DC and RF energy sources. Using magnetron, 

any material can be deposited like dielectrics, oxides and conductors. This configuration 

(Figure 3.3) consists of placing a magnet below the (cathode) target. The free electrons will be 

trapped in the magnetic field above the target, causing them to not directly bombard the 

target as in the DC configuration. This will enhance the probability of deposition rate of the 

material.  

 

Figure 3.3: Graphical representation of magnetron sputtering configuration. 

 

3.1.1.1 Presentation of PLASSYS sputtering chamber 

The spattering chamber, PLASSYS-MPU-600S, located at CEMES-CNRS, Toulouse, 

is used to produce the studied samples for this thesis (Figure 3.4). It consists of the following: 
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 A cryogenic pump that ensures a high vacuum in the chamber (~10−8 

mbar). 

 Load lock high vacuum chamber (~10−7 mbar), permits to transfer the 

substrate inside the main chamber. 

 Substrate heater holder (up to 1000° C), rotates 360° degrees and can be 

transferred from one position to another. 

 Two ‘face to face’ targets connected to an alternative RF potential and 3 DC 

magnetron modes. 

 Two flow meters controls for Argon and Oxygen gas (Ar and O2). 

 An electron canon and florescent screen that enable us to control and verify 

in-situ (during the growth procedure) the crystalline quality of the thin film 

by Reflective High Energy Electron Diffraction (RHEED). 

 

 

Figure 3.4: graphical representation of PLASSYS sputtering at CEMES. 

 

3.2 CMS Thin film deposition procedure 

In this section, we will present the different procedures to prepare CMS thin films starting 

from the substrate choice, the buffer layer, the deposition condition of CMS thin films and the 

last step by depositing a capping protection layer. 

As presented in the first chapter, Heusler alloys can grow on different substrates and 

by different deposition techniques. GaAs and MgO substrates are widely used for the 

deposition of Heusler alloys. Although GaAs has a better mismatch for Heusler Co-based 

alloys, MgO substrates take advantage over GaAs for Magnetic tunnel Junctions applications. 

In our case, we use MgO substrates. CMS grows with a 45° angle rotation with respect to the 

(100) MgO plane and a lattice mismatch of -5.4 %, enabling epitaxial growth.  
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We use commercial monocrystalline MgO 10*10 or 20*20 mm3 mm2 epi-polished 

substrates, provided by NEYCO.  MgO substrates when introduced in the main chamber of 

sputtering is annealing at 700° C for 1 hour to degas and reduce the roughness of the surface.  

After annealing, a homo-epitaxial growth of MgO thin layer (~ 10 to 15 nm) is realized 

to reduce the defects and to insure a 2D thin film epitaxial growth of CMS layers. As 

mentioned in [6 Turban], a homo-epitaxial buffer layer blocks the diffusion of carbon atoms 

towards the surface substrate and consequently reduces the defects to obtain a 2D surface 

film for the epitaxial growth of CMS. MgO is deposited at 100° C using ‘the face to face’ 

configuration with a 100 Watts RF tension and a flow rate of 50  and 5.3 sccm for Ar and O2, 

respectively. The MgO buffer layer surface was controlled by RHEED. RHEED images are 

shown in Figure 3.8.  

After the deposition of the homo-epitaxial MgO layer, CMS thin films are deposited 

using also the face to face configuration. In this configuration the stoichiometry of the target 

consists of 50% Co, 25% Mn and 25% Si. The plasma in this case is formed by Ar gas only. 

The different depositions conditions (RF power of 100 w, Ar pressure flow of 50 sccm, CMS 

deposition and annealing temperatures of 600 °c and 800 °, respectively) have been optimized 

from the previous work of G. Ortiz [7 Ortiz]. 

 The deposition rate is 1.5 nm/minute. In this work, the thickness of the CMS layer is 

always about 40 nm. This value has been chosen to avoid He+ ions implantation during the 

irradiation process (see section 3.5). One crucial point in deposition procedure to achieve high 

crystalline CMS quality is the deposition and annealing temperature. The choice of the 

deposition and annealing temperature will be presented in chapter IV.  

At the end of the process, a few nanometers of capping layer of MgO is deposited to 

prevent contamination and oxidation of the CMS layer when it is exposed to the normal 

atmosphere conditions. Moreover, it is important for the ferromagnetic resonance experiment 

to have a small insulating layer to avoid contact between the transmission line and the 

metallic surface.  

In this thesis, we have fabricated many samples following the above deposition conditions. 

Among the different samples we had, even with the in-situ RHEED patterns verification, the 

decision to proceed with magnetic and structural characterization was based on the lowest 

peak to peak line width. Three samples have been selected and will be presented in the next 

chapters. . 

3.3 Structural characterization techniques 

In this section, we will present the different experimental techniques used to investigate 

the structural properties of CMS thin films. In this work, Reflection High Energy Electron 

Diffraction (RHEED) was in-situ used during the deposition procedures to control the film 

growth quality (2D vs 3D), normal and anomalous x-ray diffraction are used to define the 

structure order of the film and the probability to define the atomic positions in the unit cell. 

These characterization techniques have been correlated with Transmission Electron 

Microscopy (TEM) techniques to study, on the Nano meter scale, the crystal deformation after 
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He+ irradiation using Geometric Phase Analysis (GPA) and direct observation of the local 

order by HAADF STEM. 

We first recall some diffraction basics to introduce RHEED, X-ray diffraction techniques 

as well as describing the atomic disorder method used from x-ray diffraction peaks analysis. 

Then, TEM, HAADF STEM imaging technique is introduced and GPA analysis method is 

briefly described. 

3.3.1 Basics of crystallography diffraction 

By structural characterization, we study the topology and morphology of the crystal 

by sending beam of electrons or x-rays on the substrate surface. These methods vary from 

millimeter to nanometer scale. In this section we recall the theory of diffracted x-rays or 

electrons from a given surface for this, first we recall the crystallography basics of real and 

reciprocal space.    

  A crystal lattice is a solid material whose constituents (atoms, ions or molecules) are 

arranged in a highly ordered 3 dimensional periodic structure and symmetry. A unit cell is 

smallest volume of a crystal and defined by three neighboring atom unit vectors 𝑎⃗, 𝑏⃗⃗ and 𝑐 in 

the x,y and z axes, respectively. Atoms in the crystal can be defined as a point in the real pace 

lattice as  𝑇⃗⃗⃗⃗ = 𝑢 𝑎⃗ + 𝑣𝑏⃗⃗ + 𝑤𝑐, with [𝑢𝑣𝑤] is the real space direction integers.  

For experimental techniques, we can’t have access to the real space components of a 

crystal, but we can obtain a unit of inverse length. Thus, we define a reciprocal space lattice 

that is related to the real space. The unit vectors in the reciprocal space have a reciprocal 

relationship with the one of the real space by 𝐺⃗(ℎ𝑘𝑙) = ℎ 𝑎⃗∗ + 𝑘𝑏⃗⃗∗ + 𝑙 𝑐∗, where ℎ, 𝑘 𝑎𝑛𝑑 𝑙 are 

the miller indices of a plane (ℎ𝑘𝑙), and 𝑎⃗∗, 𝑏⃗⃗∗ and 𝑐∗ are the reciprocal unit vectors, with 

𝒂∗ = 𝟐𝝅
𝒃∧𝒄

𝒂.(𝒃∧𝒄)
  , 𝒃∗ = 𝟐𝝅

𝒄∧𝒂

𝒂.(𝒃∧𝒄)
 and 𝒄∗ = 𝟐𝝅

𝒂∧𝒃

𝒂.(𝒃∧𝒄)
. 

For diffraction experimental techniques, electrons or x-rays behave as matter waves 

following the de Broglie relation 𝜆 = ℎ/𝑝 with 𝑝 =
ℎ

2𝜋
𝐾, where K is the wave vector expressed 

as, 𝑘 = 2𝜋/𝜆. The diffraction of a wave requires an incoming wave vector KIN and a scattered 

wave vector KOUT. Now we present how the wave vector can be diffracted using Bragg’s 

relation and Ewald reconstruction.    

 

  Bragg’s Relation: 

Bragg had announced that waves behave as if they are reflected from the atomic 

planes and the wave vector K is related to the interplanar distance dhkl. In Figure 3.5, an 

incoming vector incident on the first atomic plane with an angle 𝜃𝑖𝑛 is diffracted with an 

angle 𝜃𝑜𝑢𝑡 = 𝜃𝑖𝑛 = 𝜃. If the same wave vector hits the surface and diffracted from the second 

atomic plane, then the path  length difference between the first and second ray is calculated 

as: 2𝑑ℎ𝑘𝑙 sin 𝜃. If the path-length difference is of an integer wavelength form, then we get 

Bragg’s law: 

𝟐𝒅𝒉𝒌𝒍 𝐬𝐢𝐧𝜽 = 𝒏𝝀                                             (3.1) 
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Figure 3.5: Schematic illustration of Bragg’s law. 

 

Ewald sphere 

Ewald construction defines the direction of the diffracted wave by an intersection of 

two points. The first consists of incident wave vector with  |𝐾𝑖𝑛| = 1/𝜆. The second corresponds 

to the wave vector of reciprocal space|𝑔| = |𝐾| − |𝐾𝑖𝑛|. Whenever a reciprocal lattice point 

touches the Ewald sphere, then the Bragg law is satisfied (Figure 3.6). 

 

 

 

Figure 3.6: Ewald reconstruction sphere. 

 

 

3.3.2 Reflection High Energy Electron Diffraction (RHEED) 

RHEED technique is a useful technique for monitoring in-situ the epitaxial growth of 

the film at the end of each deposition process performed in the sputtering chamber. RHEED 
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provides information about the crystal structure surface, orientation and roughness surface 

to study the surface morphology and disorder.  

The experimental principle consists of sending a coherent electron beam of kinetic 

energy, between 10 and 100 KeV, at a grazing angle (0° to 2°) relative to the plane of the layer, 

in our case a 20 KV accelerating voltage is used ( λ = 0.0086 nm). The diffracted beam is then 

recovered using a fluorescent screen placed at a distance (𝑳 = 𝟑𝟖 𝒄𝒎) from the substrate 

position.  

The fact that incoming electrons have a very small incident angle with respect to the 

sample surface implies that only few atomic planes (the top layers of the sample) will 

contribute to the response of the diffracted wave. The electron wave is diffracted by a 2D 

lattice. In reciprocal space, the two dimensional array of the surface atoms are turned into 

vertical lines which are called the reciprocal rods. In a perfect case, the intersection of Ewald 

sphere and the planes of the 2D reciprocal lattices give fringes. But using RHEED, the 

incident electron beam is not perfectly focused and for this reason, the diffracted beam forms 

sticks or rods.  

If we consider the fringes separation being M, and 𝑳 = 𝟑𝟖 𝒄𝒎, then the interplanar 

distance, 𝒅, is expressed as: 𝒅 = 𝑳𝝀/𝑴. From the previous equation, we can have an 

approximation about the interplanar distance, 𝒅, of MgO and CMS and consequently the 

lattice constant. The RHEED images are taken by a steady camera device located at few 

centimeters from the florescent screen. Figure 3.7 shows MgO RHEED patterns fulfill brag’s 

diffraction with a 2D growth with the presence of Kikuchi lines. The latter are identified as 

strong patterns generated by the subsequent diffraction of inelastic scattered electrons. 

Kikuchi lines are distinguishable from the single brag diffraction intensity as they move in 

continuous manner as the crystal rotates.  

 

 

Figure 3.7: An example of MgO RHEED pattern in the [110] direction. 

 

3.3.3 X-ray Diffraction (XRD) 

 A linearly polarized monochromatic X-ray electromagnetic wave incident on an atom 

with a free electron, induces the oscillation of the electron at the same frequency of the 
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incident wave, which in turns reemit electromagnetic radiation in all direction. This is the 

basic of the scattering of an electromagnetic wave by an atom, the so called Thomson 

scattering mechanism.  

For every atom, the amplitude of the scattered electromagnetic wave depends on the 

energy of the incoming photons and is represented by a coefficient called the scattering factors 

which are complex quantities.  

X-ray diffraction and reflectivity measurements were done at the LPCNO laboratory 

at INSA, Toulouse and LAAS-CNRS, Toulouse. A schematic presentation of the x-ray 

diffraction configuration is shown in figure 3.8. The diffractometer of LPCNO is Panalytical 

Empyrean equipped with a normal Cobalt K𝛼1 radiation source and a monochromator of 

Germanium Ge (220) with (λ=0.178 nm). LAAS diffractometer is a Bruker D8-Discover (Da-

Vinci) diffractometer equipped with an anomalous Cu Kα1 source (λ=0.154 nm).  

In anomalous scattering, the incident radiation has sufficient energy to promote an 

electronic transition in an atom and leads to a modification of the amplitude of the scattering 

factor (especially the imaginary part of the scattering factor corresponding to the absorption 

component of the incident wave).  

 

Figure 3.8: Schematic presentation of x-ray diffractometer in 𝜃 − 2𝜃 configuration.  

We will show in chapter IV and V that diffraction at high angles permits us to analyze 

the crystal phases, determine in a good precision the lattice parameter and to evaluate the 

atomic disorder between Co, Mn and Si exchange atoms of Heusler alloys. 

Using the method of Bragg-Brentano (divergent incident beam) (𝜃 − 2𝜃) [8 Brentano], 

x-rays are diffracted from a crystal and the obtained pattern represents the intensity of the 

diffracted X’ray beam as a function of the detection angle (2𝜃). In this configuration, the 

diffracted planes are parallel to the substrate atomic planes. The angular positions of the 

diffracted lines are featured parameters of the crystal lattice. From the latter, we can have 

access to the interplanar distance and the lattice constant of our sample. 
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Now, we will present the Reflectivity, 𝜃 − 2𝜃 scan, and 𝜑 scan measurements: 

 Reflectivity measurements 

Reflectivity technique is purely optical and can be applied to all kinds of materials (liquid, 

crystal or amorphous samples) to determine the thickness of the sample. Intensity 

oscillations, called Kiessig fringes, result from constructive and destructive interference of X 

rays reflected from two interfaces. By performing X-ray reflectivity measurements, we can 

estimate the thickness of the sample from the frequency of oscillations, the density, from the 

total reflection critical angle and the surface roughness from the angular intensity decay. 

Figure 3.9 presents the reflectivity spectrum and a fitting simulation curve done with 

SimulReflec program, the estimated thickness is calculated to be 42 nanometers. 

 

 

Figure 3.9: Reflectivity measurements of CMS layer. 

 

 𝜽 − 𝟐𝜽 scan 

In 𝜃 − 2𝜃 scan, the x-ray beam is scattered from crystal planes parallel to the surface 

substrate because in this configuration, the detector moves in a circular path and substrate 

is placed at its center. The incident x-rays hit the surface of the substrate at an angle 𝜽 and 

the reflect waves from its surface are collected by a detector placed at an angle 2𝜽  relative to 

the incident beam. The intensity peaks that correspond to atomic planes positions are 

detected by performing 𝟐𝜽  angular scan (Figure 3.10-a).  From Bragg’s law, the detected 

angles and the interplanar atomic distances should satisfy the diffraction conditions. This 

technique allow us to acquire information about the lattice parameter, and the degree of 

disorder in the film. 
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 𝝋 scan 

In this configuration, 𝜽 is kept constant (corresponds to a specific diffraction plane) and the 

substrate rotates 360° around its surface normal 𝝋 axis. If 𝜽 is fixed at a value equivalent to 

the 022 diffracted plane, then for symmetric hkl reflections, we observe 4 peaks in the case of 

a cubic lattice. By doing 𝝋 scan for both the MgO substrate and the CMS film on top, we can 

confirm the epitaxial relationship and the in-plane 45° orientation. We have performed on our 

sample 𝝋 scan for two directions 022 and 111, it shows clearly the 45° orientation of 

CMS with respect to the MgO substrate (Figure 3.10-b). 

 

 

Figure 3.10: a) 𝜽 − 𝟐𝜽  X-ray diffraction scan showing the 002 and 004 peaks of CMS and 

002 MgO peak. b) 𝝋 scan of the CMS with respect to the MgO substrate along the 022 

direction clearly shows the 45° orientation. 

 

 

3.3.4 Transmission Electron Microscopy (TEM) 

The need in Nano materials sciences to image and examine details down to the atomic 

level have resulted in the development of electron microscopes that overcome the resolution 

limitation of an optical microscope imposed by the light wavelength. The first transmission 

electron microscope was developed by Max Knoll and Ernst Ruska in Germany in 1932. It 

consists of a highly energetic electron beam (> 100 keV) accelerated from an electron gun. 

This electron beam interacts with a thin sample (< 100 nm thickness) for electron 

transparency, before to be visualized on a fluorescent screen or recorded by a charge-coupled 

device (CCD) camera. The resulting image gives information about the material morphology 

as well as its physical and chemical properties. In this section, we present a general 

descriptive of a TEM used in our study. A schematic illustration of a transmission electron 

microscope (TEM) is presented in figure 3.11. 
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Figure 3.11: Schematic illustration of a transmission electron microscope.  

 

The TEM column is described as: 

 An electron gun: to generate the electron beam by either thermoionic gun 

or field emission gun (FEG). The thermoionic gun consists of the filament 

(cathode), a wehnelt and the anode. The electrons are generated by heating 

the metallic filament (Tungsten or LaB6 crystal) and then accelerated 

passing them through the wehnelt, which acts as an electromagnetic lens, 

and the electron beam  converges in a point called “cross-over”, it will be 

then accelerated by an accelerator brought at the applied high tension. In 

the case of FEG, the electrons are produced by an electric potential applied 

between the source and the anode. Electrons are extracted by tunneling 

effect. Unlike the thermoionic gun, the electron beam doesn’t pass by a 

cross-over, but comes directly from a tungsten filament and accelerated by 

a second anode. The two anodes play the role of electrostatic lens (which 

permits the convergence of the beam). An image of both thermoionic and 

FEG gun is presented in Figure 3.12. 
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Figure 3.12: Schematic illustration of a) the thermoionic Gun principle 

and b) the field emission gun FEG [09 Williams and Carter]. 

 

 Electronic lenses: in the microscope, a converging electron beam is 

produced with the help of electromagnetic lenses. Three types of lenses exist 

in TEM: condenser, objective and projecting lenses. 

1- The condenser lenses: the system of condenser lenses are used to 

focus the electron beam on the studied sample either in a parallel or 

convergent configuration depending on if we are working in TEM or 

scanning transmission electron microscopy (STEM) mode, 

respectively. In addition, the use of apertures allows controlling the 

electron beam doses to reduce damage in the observed area. 

 

2- Objective lense: it is the most important lens in the column; it is 

used to form a magnified image of the specimen. But since 

electromagnetic lenses are not perfect, the image contains optical 

aberrations that limit the resolution of the microscope such as 

spherical aberration, chromatic aberration and astigmatism. 

 

3- Projector lenses: permits to transfer the image formed by the 

objective lens and project it on a fluorescent screen and the resulting 

light collected by a CCD camera. 

 

 

In a TEM, the point resolution limit is determined by the lenses performance and the nature 

of the electron wave radiation. This is established as the smallest distance between two well-

separated points and is proportional to the product Cs
1/4 *3/4, where Cs is the coefficient of 

spherical aberration and  is the electron wavelength [10 Scherzer]. Thus, the TEM resolution 

is limited by the acceleration voltage of the electron beam and the ability to correct the 
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spherical aberration of the objective lens. The most modern TEM microscopes operated at 300 

KV and equipped with Cs correctors are able to reach a point-to-point resolution down to 0.5 

Å.        

 

A transmission electron microscope has two operational modes: TEM and STEM modes. In 

the TEM mode, the image is recorded by using a parallel beam configuration where the 

electrons illuminate each point of the specimen at the same time, similar to an optical 

microscope. The beam interacts with the specimen and is magnified by the intermediate lens 

and then is focused onto an imaging device such as a fluorescent screen or a CCD camera. In 

STEM mode, the image is formed by scanning the specimen with a highly focused electron 

beam, similar to a scanning electron microscope (SEM).  

The local electron-specimen interaction produces several secondary signals that are collected 

with different detectors to create a two-dimensional image of the object or analyzed in energy 

using a spectrometer to create Electron Energy Loss Spectra (EELS). This feature allows 

(S)TEM performing quantitative analysis of the chemical composition of the sample. 

 

Electron-matter interaction: 
 

When an incident electron beam penetrates the sample, electrons undergo elastic or 

inelastic scattering.  Electrons will be diffused at (milli or micro radian) angles with respect 

to the incident electron beam. Inelastic scattering results when the incident electron beam 

interacts with the electron cloud of the sample. The energy loss due electron-electron 

interaction gives information about the chemical nature, bonding and degree of oxidation in 

the studied sample and can be detected using several techniques like Energy Dispersive X-

ray Spectroscopy (EDX), Energy Filtered TEM (EFTEM) or Energy Electron Loss 

Spectroscopy (EELS). In elastic scattering process, electrons are scattered without energy 

loss. The elastic diffusion results from Coulomb interaction of electrons with the nucleus of 

the studied sample. Elastic scattering provides information about the crystalline geometry of 

the object.  

 In this thesis, two TEM modes are used to observe our CMS thin films, the high 

resolution TEM (HRTEM) and high angle annular dark field-scanning transmission electron 

microscopy (HAADF-STEM) modes. From both techniques we can acquire information 

regarding the crystalline structure of the sample depending on the contrast mechanism 

involved in the imaging processes.  The mentioned modes are discussed in the following two 

paragraphs. 

3.3.4.1 High Resolution Electron Microscopy (HRTEM): 

Starting from the elastic scattering principle, HRTEM images are formed when the 

electron wave is phase shifted due a potential distribution within the sample. The electron 

wave contains structural characteristics of the sample.  

From a mathematical point of view, the image formation by TEM is described as 

follows: according to quantum mechanics, a high energetic electron wave that is scattered 

from the interaction with the crystalline specimen can be described by the Schrodinger 

equation (also known as Dirac equation) with 𝐸, 𝑒 𝑎𝑛𝑑 𝑚 are the energy, charge and mass of 

an electron:  
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[−
ℏ2

2𝑚
∇2 − 𝑒𝑉(𝑟)] 𝜓(𝑟) = 𝐸𝜓(𝑟)    (3.2) 

 By considering the negligible effect of the elastically scattered electrons and absorption 

by the thin specimen, the above equation is solved by considering 𝜓(𝑟) as a plane wave:   

𝜓(𝑟) = 𝐴(𝑟)𝑒𝑥𝑝𝑖𝜑(𝑟)      (3.3) 

𝐴(𝑟) and 𝜑(𝑟) being the amplitude and phase shift of the electron plane wave function. This 

electron wave propagates through the objective lens that creates a magnified image of the 

specimen in its image plane. The final image wave function, image(r), contains information 

about both the specimen and the optical system. Mathematically speaking, image(r) will 

correspond to the inverse Fourier transform of the product, in the reciprocal space, of the 

object electron wave (𝜓𝑜𝑏𝑗(𝐤)𝑇(𝐤)) and the transfer function, T(k), which contains all the 

optical transfer (including aberrations and defocus) of the microscope: 

 𝜓𝑖𝑚𝑎𝑔𝑒(𝐫) = 𝐹𝑇
−1{𝜓𝑜𝑏𝑗(𝐤)𝑇(𝐤)}     (3.4) 

where FT is the Fourier transform operator. 

 The recorded TEM image will be the intensity of 𝜓𝑖𝑚𝑎𝑔𝑒(𝑟), I(r) = 𝜓𝑖𝑚𝑎𝑔𝑒(𝑟))2. For an ideal 

microscope, the image intensity will correspond to the amplitude of image(r) only. However, a 

suitable alteration of the transfer function will allow recovering the phase shift of the image 

electron wave. In this way, high-resolution TEM mode allows to get this phase shift, needed 

to resolve atomic columns.  

 The HF3300C 300 KV Cold FEG microscope (I2TEM), developed between Hitachi and 

CEMES-CNRS, is used to acquire HRTEM images. It is equipped with a spherical aberration 

corrector located below the objective lens which achieve a spatial resolution of 80 pm [11 

Snoeck].  An example of a TEM image for CMS sample is presented in figure 3.13. 

 

 

 

Figure 3.13: Intermediate-magnification HRTEM image for a cross-sectional CMS 

layer grown on MgO substrate.  
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3.3.4.2 Scanning Transmission Electron Microscopy (STEM): 

HAADF STEM experiments were done by Dr. César Magen at LMA-INA, Zaragoza-

Spain using FEI TITAN low-base microscope equipped with a spherical probe aberration 

corrector which is localized below the condenser lens system and above the objective lens. 

In STEM mode, information is collected in a serial acquisition procedure. A small probe 

is scanned over the surface of the sample point by point. The image is formed after collecting 

signals at each position of the probe. Specific detectors will acquire the electrons scattered at 

various angle. There are three types of STEM detectors used: the Bright Field (BF) detector 

which permits to captures the unscattered electrons, the Dark Field (DF) detector collects the 

diffracted beam of angles between 10 and 40 mrad and the High Annular Dark Field (HAADF) 

detector that collects the high angles diffracted beams (angles>40 mrad) (Figure 3.14).  

 

 

Figure 3.14: various electron detectors in STEM mode [9 William and Carter]. 

 The HAADF detector collects the elastically incoherently scattered electrons resulting 

from interaction with the atomic nuclei of the sample [12 Peng]. The signal intensity collected 

by the HAADF detector is proportional to the atomic number (Z) of atoms that have interacted 

with the electron beam. It means that elements with high atomic number (Z=27 for Co) can 

be distinguished from lighter ones (Z=16 for Si). The intensity of the detector is expressed as: 

𝐼~𝑚 ∗ 𝑡 ∗ 𝑍𝜂      (3.5) 

 

Where 𝜂 is a constant between √2/3 and 2, m is a scaling constant and t is the sample 

thickness. 𝜂 depends on many parameters: for example the convergence of the beam and the 

detector, the sample and the orientation of the sample. An example of an HAADF-STEM 

image of CMS layer is shown in figure 3.15 
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For more details about STEM technique, the reader is invited to check the following 

references [13-16].  

 

 

 
 

Figure 3.15: An HAADF-STEM image of CMS layer where the atomic columns of Co, Mn Si 

are clearly shown. 

 

 

3.3.4.3 Geometric Phase Analysis (GPA): 

Geometric Phase Analysis (GPA) is a quantitative method to study the local 

deformation field in crystalline materials. This method has been developed by M. Hÿtch and 

co-workers [17 Hÿtch, 18 Snoeck, 19 Rocher and Snoeck] and is described briefly as follows:  

In a HRTEM/HAADF-STEM image, the different set of fringes can be considered as a 

Fourier series (summation of cosine functions). After applying a fast Fourier transform (FFT), 

the different sets of fringes are represented as ghkl reflections in the reciprocal space, similar 

to a diffraction pattern. A mask is then applied to a 𝑔⃗ reflection in order to isolate the 

information corresponding to a single signal and an inverse Fourier transform (FFT-1) is 

performed. A complex image is obtained from which we calculate the phase of the chosen 

signal (or set of fringes). The recovered phase information (so-called “geometric phase”) is 

related to the displacement of the lattice plane by the following expression: 

𝜑(𝑔) = −2𝜋𝑔⃗. 𝑢⃗⃗(𝑟)     (3.6) 

where 𝑔⃗ is the Bragg periodicity and 𝑟 is the position vector in the real space. The lattice 

deformation can then be calculated from the gradient of the phase image, in the direction of 

the chosen 𝑔⃗ vector. A 2D deformation field can also be calculated using at least two phase 

images reconstructed from two non-collinear 𝑔⃗ vectors. A more acquire result is obtained 

when GPA method is applied on HAADF-STEM images because of the signal-to-noise ratio 

is lower than those images obtained by HRTEM.   
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In Figure 3.16 we describe how we use GPA method for mapping the strain of the in-

plane lattice parameter through the 220 plane: in a HAADF-STEM image obtained close to 

the CMS-MgO interface (Figure 3.16 (a)), we calculate the FFT image (Figure 3.16 (b)). Here 

we have selected the 220 spot using a cosine mask, as presented by a circle in the FFT. By 

solving equation 3.6, we reconstruct an image of the phase, taking as reference the lattice 

parameters of MgO, the color variation observed in the CMS layer evidences a lattice 

parameter difference between the MgO and CMS in-plane lattice parameters (Figure 3.16 

(c)). In figure 3.16 (d) the strain is presented as the 𝜀𝑥𝑥 in-plane deformation that is calculated 

from the phase gradient. Here a deformation of -4.6 % was measured in the CMS layer relative 

to the MgO substrate lattice parameters.  

 

 

 

Figure 3.16:  a) HAADF-STEM image of CMS/MgO and its corresponding b) FFT. c) 

The phase image and the d) strain mapping.  

 

3.3.4.4 Lorentz Microscopy (LM): 

The high spatial resolution of a TEM used to investigate the crystal structure and 

chemical composition of thin specimen at nanoscale can be also used to visualize, and 

quantitatively study the magnetic configuration of magnetic materials. Electron holography 

(EH) and Lorentz Microscopy (LM) are the most popular magnetic imaging TEM techniques 

that allow reconstructing the integrated magnetic induction along the electron trajectory and 

projected to the image plane, with spatial resolutions ranging from few nanometers (in the 

case of LM) to 1 nm (in the case of EH). Both techniques obtain the magnetic information of 

a magnetic specimen by retrieving the shift of the electron wave phase after it passes through 



80    Chapter 3: Experimental techniques   

 

the sample. However, the way to get this phase shift is different in each case: in EH, the phase 

shift is recorded by making a interferometry experiment between two electron waves; in LM, 

the phase shift can be obtained by altering the transfer function of the microscope either by 

using a contrast aperture to select a particular magnetic deflection direction in the back focal 

plane (LM in Foucault mode [20 De Graef]) or by defocusing the image (LM in Fresnel mode). 

The later LM mode is a versatile method to get a rapid visualization of magnetic domains via 

the observation of magnetic domain walls (DWs). DWs were first observed by Hale in TEM in 

1959 [21 Hale] and since then Lorentz microscopy technique gained a lot of success.  The 

purpose of using this technique is to study the magnetic configuration of magnetic domains 

in our CMS thin films, as well as the determination of the exchange constant by measuring 

the DW width. In our study we use the LM in Fresnel mode and it is described as follows: 

 

LM in Fresnel mode            

From a classical approach, LM is based on the Lorentz force, FL, that experience the 

electrons travelling a velocity v when they pass through the electric (E) and magnetic (B) 

fields inside and around the ferromagnetic material: 

𝐅𝐋 = −𝑒(𝐄 + 𝐯 × 𝐁)     (3.7) 

In absence of electric fields acting parallel to the image plane, the in-plane component 

of the magnetic induction will induce a deflection of the electron trajectory which is 

perpendicular to the in-plane magnetic induction direction (B = B(x, y)), according to the 

cross product. The electron deflection angle L respect to the incoming electron trajectory can 

be calculated as:  

𝜃𝐿 =
𝑒𝜆

ℎ
𝐵⊥𝑡      (3.8) 

Where t corresponds to the sample thickness. In presence of these magnetic domains 

with different orientations, the electron deflection process creates two bright and dark lines 

with excess and lack of electrons respectively imaging the domain wall (DW) separating 

neighboring magnetic domains (see figure 3.17). Therefore, in out-of-focus condition, a DW 

will produce a brighter and/or a darker contrasts in LM image, and this magnetic contrast 

can be inversed by changing the defocus sense. A schematic representation of the magnetic 

contrast formation due to DW in LM, in Fresnel mode, is shown in Figure 3.17. Thus LM is a 

powerful tool to perform a qualitative description of the magnetic configuration of 

ferromagnetic nanostructures by a direct visualization of DWs, and its versatility allows 

developing in-situ TEM experiments to follow the evolution of these DWs by the application 

of diverse stimuli like magnetic field, electric current, temperature and strain. 

For a quantitative analysis, we need to make a more complex treatment that will 

permit getting the electron wave phase shift and understand the electron interference process 

around a DW that will allow measuring its width. 
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Figure 3.17. Schematic representation illustrating the mechanism of contrast formation by 

DWs in Fresnel mode. In top is represented the electron deflection process due to Lorentz 

force. In bottom is illustrated the resulting intensity profile traced perpendicular to DWs for 

a given defocus position f = z  0. (Adapted from [22 Lloyd])  

  

 

Quantitative magnetic information by TIE analysis 

 

In LM, the phase shift is obtained by solving the following differential equation in the limit 

of small defocus, z:  

−
2𝜋

𝜆

𝜕𝐼(𝑥,𝑦,Δ𝑧)

𝜕Δ𝑧
|
Δ𝑧→0

= ∇ ∙ [𝐼(𝑥, 𝑦, 0)∇φ(x, y)]    (3.9) 

Equation 3.9 is the so-called transport of intensity equation (TIE) [23 Beleggia], and show 

how the phase shift gradient is proportional to the derivate of the intensity with respect to 

the defocus. This equation proposed by Van Dyck et. al. [24, 25 Van Dyck] arises by calculating 

the intensity of the image electron wave, ima(r), considering a small alteration of the transfer 

function of the microscope due to a small defocus. Equation 3.9 can be solved by means of a 

focal series of Lorentz images, where images are recorded in-focus [I(x, y, 0)], under-focus [I(x, 

y, -z)] and over-focus [I(x, y, z)], conditions are used to calculate (x, y) after rewriting the 

equation 3.9: 

∇𝜑(𝑥, 𝑦) = −
𝜋

𝜆Δ𝑧
∇−2∇ [

1

𝐼(𝑥,𝑦,0)
∇{∇−2[𝐼(𝑥, 𝑦, Δ𝑧) − 𝐼(𝑥, 𝑦, −Δ𝑧)]}]  (3.10) 

where -2 is the two-dimensional inverse Laplacian operator. While Lorentz force describes 

the ‘classical’ movement of the electrons inside electromagnetic fields, in a quantum 
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mechanics approach the Aharanov-Bohm effect describes how the phase of the electron wave 

is shifted by the influence of these electromagnetic potentials: 

𝜑(𝑥, 𝑦) = 𝐶𝐸 ∫𝑉(𝑥, 𝑦, 𝑧)𝑑𝑧 −
𝑒

ℏ
∫𝐴𝑧(𝑥, 𝑦, 𝑧)𝑑𝑧    (3.11) 

where CE is a interaction constant that only depends on the acceleration voltage of the 

microscope, V is typically the electrostatic potential of the specimen and Az is the z-component 

of the magnetic potential. If we assume that the specimen is chemically homogeneous and its 

thickness is constant, the phase shift gradient calculated by TIE method can be associated 

with the in-plane magnetic induction as: 

    ∇𝜑(𝑥, 𝑦) = −
𝑒

ℏ
[𝐧𝑧 × 𝑡𝐁(𝑥, 𝑦)]    (3.12) 

where nz is the z-component of the normal vector which is perpendicular to the sample plane. 

Equation 3.12 can be also expressed in term of B(x, y) as: 

    𝐁(𝑥, 𝑦) = (𝐵𝑥 , 𝐵𝑦) =
ℏ𝑡

𝑒
(−

𝜕𝜑

𝜕𝑦
,
𝜕𝜑

𝜕𝑥
)    (3.13) 

Thus the above vector expression will allow the reconstruction of vector maps of the in-plane 

magnetic induction, providing us a quantitative description of local magnetization 

orientation.  

 

Measurement of DW width 

 

By LM in Fresnel mode we can measure the width of DWs by taking advantage of the 

linear behavior between the width of magnetic contrast (Wc) and the defocus distance, where 

the magnetic contrast width increases with the increasing of the absolute value of the defocus 

distance. As commented previously, the different magnetization orientations of neighboring 

magnetic domains can produce either a bright contrast due to the accumulation of electrons 

or a dark contrast due to the deficient of them in the DW position. Another way to see this 

phenomenon is to think that a bright contrast is produced because of two images of both 

domains are moved toward the center of the DW, overlapping them, causing a convergent 

image interference, while a dark contrast is produced because of the two image are moved 

outside the center of the DW, separating them, causing a divergent image interference. As we 

see in Figure 3.18, while a divergent image interference induces a single valley, or inverted 

peak, in the intensity profile, a convergent image interference produces a fringe pattern due 

to the superposition of two electron waves that converge in the middle of the DW. Both 

contrast can be used to measure DW widths, but the bright one is more tricky because is more 

difficult to determine the width of the fringe pattern. 

For Bloch walls, the domain wall width can be measured by using a simple analytical 

expression for convergent- and divergent-wall width versus defocus distance [26 Wade, 27 

Volkov]: 

 𝑊𝐶 = 𝑊𝐷𝑊 + 2𝜃𝐿∆𝑧      (3.14) 
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𝑊𝐷𝑊 corresponds to the DW. Thus, 𝑊𝐷𝑊 can be calculated from the above equation by a 

straightforward extrapolation to z = 0 of a linear regression of the function 𝑊𝐶(∆𝑧). In 

addition, the linear regression slope gives us information about the deflection angle 𝜃𝐿, 

parameter that can be also estimated from equation 3.8 if we know the magnetic induction of 

the specimen and the sample thickness around the DW. The main drawback of equation 3.8 

is that we have to know previously the effective thickness, parameter that is not easy to 

obtain. Fortunately, there is a way to estimate the product Bt by measuring the fringe 

spacing created in the convergent image (Figure 3.18-d) for the bright magnetic contrast at 

high defocus values. If we assume that the magnetic field away from the DW is uniform so: 

𝐵⊥𝑡 =
ℎ

𝑒

1

2𝑠
      (3.15) 

Where ‘s’ is the spacing of the fringes for a bright contrast. From equation 3.8 and 3.15 we 

can easily deduce that the slope of equation 3.14 is directly related with 1/s as: 

2𝜃𝐿 =
𝜆

𝑠
      (3.16) 

Thus, equation 3.16 can be used as an accuracy parameter of linear regression to 

determine the DW width of Bloch walls. In the case of Néel wall, the DW width determination 

is not straightforward, because its magnetic structure is more complex and we do not know if 

the DW width measured by Lorentz Microscopy corresponds to either the width of the core or 

tail Néel wall.  

 An example of the CMS layer taken at different defocus values is presented in figure 

3.18. In chapter 4, we will show the results of DW observed by LM technique. 

 

Figure 3.18: observation of domains walls in a) over-focus  ∆𝑧> 0 and c) under-focus 

( ∆𝑧< 0). Image b) corresponds to the in-focus ( ∆𝑧= 0) observation where no magnetic 

domains are observed. Figure d) shows the fringe spacing of the red box in a) 
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3.4 Magnetic characterization techniques 

Ferromagnetic resonance (FMR), Longitudinal Magneto-Optical Kerr Microscope 

(LMOKE) and Physical Property Measurement System (PPMS) are the techniques used in 

this thesis work to study the static and dynamic magnetic properties of CMS films. The 

mentioned techniques will be detailed as follows: 

3.4.1 Physical Property Measurement System (PPMS) 

Magnetic moment measurements of the CMS films have been performed at the 

“Laboratoire de Physique et Chimie des Nano-Objets” (LPCNO), Toulouse. These 

measurements have been performed with a PPMS-VSM device from Quantum Design. This 

magnetometry measurement is based on the variation of magnetic flux induced in two pickup 

coils by a vibrating sample. One of the main advantages of this device is the possibility to 

apply large fields up to 9 T and to perform measurements down to 2 K.  However, our 

experiments have been performed in magnetic fields up to 1T at room temperature.  

 

3.4.2  Magneto-Optical Kerr Effect (MOKE) 

The interaction between light and a magnetic medium is known for more than a century since 

the discovery of the Faraday Effect in 1875 and the Kerr effect in 1877. The Faraday Effect 

corresponds to the rotation of the polarization axis of a linearly polarized electromagnetic 

wave travelling through a dielectric and simultaneously submitted to an external magnetic 

field parallel to the propagation direction. This effect is due to the difference of propagation 

velocity for the right and left handed waves composing the initial wave. In a simple 

approximation, the rotating electric field of the circularly polarized wave induces a circular 

electric polarization in the material, which in turn creates a magnetic field. Depending upon 

the polarization (right or left), the additional magnetic field oppose or add up to the 

magnetization (or magnetic field) and leads to a decrease or increase in the velocity. It is 

important to note that the rotation of the polarization is reversed if the magnetic field is 

reversed.  

 

The Kerr effect is the equivalent of the Faraday Effect but for the reflected component of the 

incident wave. In the case of a magnetic sample, it is the magnetization of the sample which 

acts as the effective magnetic field. In this case we talk about the Magneto-Optical Kerr Effect 

(MOKE). In reflection, there is also a second effect that induces a rotation of the polarization 

and some ellipticity (Figure 3.19-b). It is called the Voigt effect and it is proportional to the 

square of the normalized component of the magnetization. However this effect is generally 

lower than the Kerr effect and is often neglected.  
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Figure 3.19: Schematic illustration of a polarized wave before a) and after b) the reflection. 

Therefore, in a MOKE experiment, the polarization of a linearly polarized light reflected at 

the surface of a magnetic material will depend on the direction of the magnetization with 

respect to the propagating wave vector. Three experimental configurations are possible 

depending on the orientation of the magnetization with respect to the plane of incidence (see 

Figure 3.20). In the polar configuration (PMOKE) the magnetization is perpendicular to the 

plane of the layer and in the incident plane of the light. In the longitudinal configuration 

(LMOKE) the magnetization lies in plane of the layer and in the incident plane (Fig 3.20-b). 

In the transverse configuration (TMOKE or Quadratic MOKE QMOKE) the magnetization 

lies in the plane of the layer and is perpendicular to the incident plane (Fig 3.20-c).   

 

 

 

Figure 3.20: a) Polar, b) Longitudinal and c) Transverse configurations of MOKE. 

 

In this work, the magnetization of the CMS films has been studied in the LMOKE 

configuration. The set-up is located on the ONERA campus. The experiment is schematized 

in Figure 3.21. It is composed of a Laser source He-Ne with a 5 mW power. Before the sample, 

a Glan-Thomson polarizer (P) allows to linearly polarize the light. A magnetic field is applied 

parallel to the plane of the sample by two Helmotz coils. The magnetic field can reach 450 Oe. 

The reflected wave is analyzed with an analyzer composed of a rotary retardation plate, set 



86    Chapter 3: Experimental techniques   

 

to get a rotation of the polarization at 45° with respect to the polarization at the output of (P), 

and a Wollaston bi-prism. The latter allows to separate the reflected wave into two equal 

components. Finally each component will be measured by two PIN photo-diodes and their 

difference is recorded as a function of the applied field. Prior to the experiment, the intensity 

on each diode is set to be equal in absence of external field. Then the field is applied back and 

forth in a sequence zero->+saturation-> - saturation-> +saturation.      

An example of a LMOKE measurement of the hysteresis curve on our sample is presented in 

Figure 3.22. 

 

 

Figure 3.21: schematic illustration of MOKE experimental set-up. 

 

 

Figure 3.22: An example of Hysterises loop for LMOKE measurements. 

 

3.4.3 Ferromagnetic Resonance (FMR)  

Ferromagnetic resonance (FMR) spectroscopy is one of the techniques used to probe 

electrons spin magnetic moments and study magnetic properties and spin dynamics of 
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ferromagnetic materials. FMR was first discovered in 1911 by Arkadyév after he observed the 

absorption of Ultra High Frequency radiation in ferromagnetic materials. In 1923, the results 

of Arkad’yev were explained by Dorfman as an optical transition due to Zeeman splitting from 

which it provides a way to study ferromagnetic materials. As explained in chapter 2, FMR is 

based on the absorption of microwave field of a few GHz by a ferromagnetic material. This 

section provides an overview about the experimental setup used to extract the magnetic 

parameters in this work.  

 

3.4.3.1 FMR Experimental set-up 

During this PhD work, we have developed a FMR measurement set-up at the CEMES 

Lab. We used the well-known modulation technique, first because of the easiness to set, as it 

avoids complicated calibration procedure like in vectorial measurements, and also to get a 

good signal to noise ratio.  

Our experiment is depicted and schematically illustrated in Figure 3.23. The principle 

of the measurement is the following. A microwave signal of given frequency is injected in a 

microstrip line above which the CMS sample is placed. In this work, the injected microwave 

power in the stripline is about -15 dBm. Such amplitudes of the microwave signal allows to 

stay in the linear regime of excitation of the spin dynamics. The microstrip line is placed in 

an electromagnet allowing for a static magnetic field to be applied. Additionally Helmholtz 

coils are fed with a low frequency current which allows modulating the static field. In this 

experiment the static magnetic field is swept and the frequency of the microwave signal is 

constant. At the resonance field, the magnetic sample absorbs some energy from the 

microwave field (called the pumping field). The decrease of the microwave amplitude is 

measured in transmission via a schottky diode and a lock in amplifier. All instruments are 

piloted via a homemade LabVIEW interface program. 

The maximum static magnetic field that can be applied is equal to 0.7 T for a field 

applied in the plane of the layer and 1.5 T for a perpendicular applied field. This is achieved 

by changing the poles of the electromagnet. Also, our set-up allows for a rotation of the 

electromagnet from 0 to 180°.This allows to study the angle dependence of the FMR signal in 

plane. The low frequency generator feeds a Kepco current source which is connected to the 

Helmoltz coils. The frequency of the voltage signal sent by the generator to the Kepco and 

then the frequency of magnetic modulation is set to 73 Hz. The amplitude of the modulation 

field is of 2 Oe. The same voltage signal that feeds the Kepco is injected to the reference input 

of the lock-in for the demodulation measurement.  

The microstrip line has been fabricated at ONERA-Toulouse clean room facility from 

a 350 µm thick Alumina wafer with a dielectric constant ≈ 10. The dielectric is fully covered 

by gold on one side in order to connect to the ground plane of the sample holder made of brass. 

On the other side of the dielectric, a gold line of 400 µm width has been realized by UV 

lithography. The width has been chosen in order to be as close as possible to 50 ohms and also 

to facilitate the connection with the central core of SMA connectors. As can be shown from 

the reflection and transmission measurement in Figure 3.24, the line is clearly not 50 ohms 
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adapted within all the frequency range.  The periodic modulation of the transmitted S21 or 

reflected S11 signal, measured with an Anritsu MS4642A vector network analyzer, comes 

from the impedance mismatch between the line and the connectors. The S11 and S21 

parameters corresponds to the coefficient of reflection and transmission, respectively of the 

incident microwave voltage signal. The most probable reason is a bad value of the dielectric 

constant considered to design the line. Due to the difficulty to get access to lithography 

facilities, all measurements presented in this work have been performed with this microstrip 

line.  

 

 

Figure 3.23: depicted presentation and schematic illustration of the 

FMR set-up. 
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Figure 3.24: Reflection “S11” and transmission “S12” measurements of the 

transmission line. 
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 Now let us study the response of magnetic material to electromagnetic radiation at a 

fixed frequency  𝜔0. As explained in chapter 2 (section 2.3.1), the magnetic susceptibility is 

complex and equals to 𝜒′ + 𝑖 𝜒′′ . It is the imaginary part of the susceptibility that corresponds 

to the energy losses and to microwave absorption. However, modulating the value of the static 

field, the absorption is also modulated. Experimentally it corresponds to the measurements 

of the derivative of 𝜒′′(𝜔) 

Let’s consider the pumping field to be of the form ℎ(𝑡, 𝜔) = ℎ0𝑒
𝑖𝜔𝑡. Following 𝑚(𝑡, 𝜔) =

𝑚(𝑡, 𝜔)𝑒𝑖(𝜔𝑡+𝛿), the dynamic component of the magnetization is of the form                         

 𝑚(𝑡, 𝜔) = (𝜒′ + 𝑖𝜒")ℎ0𝑒
𝑖𝜔𝑡. The variation of the free energy of the system can be written as 

dF=−μ0h.dm. Then the average power dissipated by the magnetic system can be written as:  

𝑃𝑎𝑏𝑠𝑜𝑟𝑏𝑒𝑑
𝑡𝑜𝑡 = lim

𝑇→∞

µ0

𝑇
∫ 𝑅𝑒(ℎ). 𝑅𝑒 (

𝑑𝑚

𝑑𝑡
) 𝑑𝑡 =  

1

2
μ0𝜔𝜒

′′(𝜔)
𝑇

0
ℎ0
2  (3.17) 

Experimentally, we measure the variation of the transmitted voltage in the microstrip line 

due to the absorbed power in the magnetic film. The variation of voltage is due to the inductive 

coupling between the microstrip and the magnetic sample. Figure 3.25 gives a very simplified 

vision of the transmitted signal. We see that due to modulation of the static field at 

frequency, 𝑓𝑚𝑜𝑑𝑢𝑙𝑎𝑡𝑖𝑜𝑛, the amplitude of transmitted amplitude varies also as 𝑓𝑚𝑜𝑑𝑢𝑙𝑎𝑡𝑖𝑜𝑛 and 

is proportional to 𝑑𝜒′′/𝑑ℎ. Using a Shcottky diode allows to recover the envelop function (red 

line in Fig. 3.26) as the output voltage is given by √𝑣(𝑡)2. This low frequency voltage is then 

injected at the input of the lock-in.  

Therefore, the signal measured with the lock-in is proportional to the derivative of the 

susceptibility (Figure 3.26). This technique has the major advantage of increasing the signal 

to noise ratio and it is easy to set-up as it avoids complicated calibration process that must be 

performed for example with Vector Network Analyzer.   

 

Figure 3.25: Transmitted signal with the red envelope curve. 
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Figure 3.26: Microwave absorption and FMR derivative signal as a function of the applied 

external field. 

 From the measured signal, we can obtain the resonance magnetic field 𝐻𝑟𝑒𝑠 and the 

linewidth ∆𝐻. The resonance field is measured as the field for which the signal is crossing the 

zero. The full width at half maximum, i.e. the linewidth ∆𝐻, is obtained from the peak to peak 

linewidth ∆𝐻𝑝𝑝 as expressed in the following relation: 

    ∆𝐻 = √3 ∆𝐻𝑝𝑝       (3.18) 

However, this model describes the perfect case for a perfect 50 Ω microstrip line, for which 

the propagating mode is purely TEM (transverse electromagnetic), and in the case of small 

loses induced by the magnetic material. In this case the variation of the impedance ∆Z of the 
stripline is proportional to the variation of the inductance ∆L which is related to the imaginary part 
of the susceptibility 𝜒′′. In the perfect case of an accorded cavity for example, the relation is ∆𝐿 =
𝜇0 𝜒

′′ 2𝑑∗𝑙

𝜔
, where 𝑑 and 𝑙 are the thickness of the magnetic film and its length. In reality we always 

have some mixing of the real and imaginary part of the susceptibility leading to an asymmetry 

of the measured signal. The asymmetry of the signal is due to several reasons. First, the 

propagating mode is never purely TEM and the coupling between the magnetic material and 

the microstrip modifies the propagating mode. Additionally the samples we measure are few 

mm long and so propagating effects cannot be completely neglected. By consequent, the 

measured signal are fitted with a function of the form  𝑑𝜒′/𝑑𝐻 sin(𝜀)+  𝑑𝜒′′/𝑑𝐻 cos(𝜀), with ε 

varying from 5° to 15° depending on the sample. In chapter 5, we will show some signals with 

a very pronounced asymmetry and we will show that it corresponds to the presence of multi 

resonance peaks.  
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3.5 Ion irradiation/implantation technique 

Ion implantation/irradiation consists of accelerating energetic ions into a material with a 

fixed energy. The ions which are penetrating can induce some displacement within the sample 

in the irradiation regime or to be localized/implanted inside the material in the implantation 

regime. The two regimes depends on the kinetic energy of the incoming atoms. Ionic 

bombardment was first introduced by Shockley in 1954 at Bell laboratories but later in 1970’s 

the ionic implantation technique was developed to introduce impurities in the studied 

systems.  As mentioned in chapter 1, this technique is highly desired to modify the structural 

electronic and magnetic properties for electronic systems and industrial applications. The 

main application of this technique is the doping of semiconductor materials for the fabrication 

of integrated electronic devices.  Implantation/irradiation can be done with almost all the 

elements such as Ga, He, Cr, Si and many others.  

During this thesis, the ion irradiation of Heusler alloys is carried out at room temperature 

in CEMES laboratory using an ion implanter VARIAN 200-A2F. This ion implanter (Figure 

3.27) consists of: 

 Ion source: which converts the electrically neutral atoms (Arsine, 

Phosphorus or helium…) from the gas phase into an ion plasma and 

impurities. These ions are extracted with voltage of 25 kV. 

 Mass spectrometer: consists of a magnetic sector which bends the ion beam 

through a right angle, spatially separate the different masses present in the 

beam and select desired ions species passing through a selection aperture 

before reaching the accelerator. 

 Accelerator: It will increase the ion energy up to 200 KeV to the ions to be 

implanted. 

 Focusing and Scanning system: a quadrupole lens and deflection plates in 

x and y directions to focus and scan the ion beam on the selected sample to 

produce uniform implantation/ irradiation with a desired fluence.  

 

 

 

Figure 3.27: schematic illustration of ion implanter. 
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3.5.1 Ion-Solid interaction   

When an ion beam bombards a solid material, several mechanisms will take place to 

slow down the accelerated ions and dissipate their energy. These mechanisms are divided into 

1) nuclear energy losses which occur as a result of elastic collision where the energy is 

transferred from the kinetic incident ion to the target atoms, and 2) electronic energy losses 

which occur as a result of inelastic scattering where the electrons of the ions interact with the 

electrons of the target atoms [28 Giannuzzi].  The interaction mechanism is traditionally 

divided in a nuclear and an electronic stopping power. The ion energy loss is characterized by 

the sum of both terms. The contribution of each effect varied along the trajectory of the ions. 

Finally, both mechanisms define the stopping range of an ion energy loss in a path length and 

the final ion concentration distribution (figure 3.28). The stopping power range is expressed 

as follows:  

𝑆 = (
𝑑𝐸

𝑑𝑥
)
𝑛𝑢𝑐𝑙𝑒𝑎𝑟

+ (
𝑑𝐸

𝑑𝑥
)
𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛𝑖𝑐

   (3.19) 

Nuclear energy losses are dominant to explain ion-solid interaction for low energy 

accelerated ions with high atomic number, but electronic energy losses becomes important for 

high energy accelerated ions with low atomic numbers. In nuclear energy loss process, the 

accelerated ions will transfer energy to the target atoms which can be displaced from their 

initial position (lattice sites) if the energy is high enough. These recoil atoms can also induce 

the displacement of the lattice sites as far as their energy is larger than a threshold value.  

This is known as the collision cascade. This leads to the movement of the ion to an interstitial 

site by leaving a vacancy in the target lattice site. The vacancy-interstitial pair is called the 

Frenkel pair or Frenkel defect. The displaced atoms can undergo further collisions in their 

way through the material which leads to other types of defects like dislocations characterized 

by local lattice heating of the target material. Electronic losses have less lattice disorder 

impact on the target lattice than the nuclear energy losses due to the small energy transfer 

collision [29 Gaier]. 

 

Figure 3.28: stopping range power as a function of ion velocity. 
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Chapter 4: Structural and 

magnetic properties of as 

deposited CMS samples 
 

As explained in the introduction of this thesis, the particular magnetic features of the 

Co2MnSi, such as the half metallicity and low  gilbert damping coefficient, are obtained in the 

most ordered crystal phase L21 even if half metallicity is also predicted for the B2 order. 

Therefore, high crystalline quality of the CMS films is required.  

In this work, our goal is to study how the structural order and magnetic properties in 

the CMS are correlated. Ion irradiation is used in order to modify and control the structure 

of the material and follow the evolution of the different magnetic parameters, especially in 

the dynamic range. We will show the results obtained on three series of CMS samples which, 

despite similar deposition conditions, show different structural and magnetic properties, 

either as deposited or under ion irradiation. Each series of samples corresponds to a thin film 

of CMS which is cut into few pieces, one is kept as the “reference” sample and the others 

pieces are irradiated at different fluences in order to follow the evolution of the structural and 

magnetic properties with irradiation and then with atomic disorder.  

The three series of samples are denoted samples N°1, 2 and 3, each showing different 

interest and giving different insight into the correlation between the structure and magnetic 

properties of the CMS:  

 

- Series N°1: the reference sample shows clearly two distinct crystal orders with 

distinct magnetic properties. Also the damping coefficient shows an anisotropic 

behavior for the reference sample (i.e. similar behavior in the 4 easy and hard 

axes). A complete magnetic and structural characterization of the four samples of 

this series has been performed.  

 

- Series N°2: the reference sample shows a single crystal order with a lower 

magnetization value than observed for the reference sample of series N°1, but with 

a much stronger cubic and uniaxial anisotropy fields. The damping is also found to 

be anisotropic. Unfortunately only partial structural characterization could be 

performed on this series due to the small size of the samples.   

 

- Series N° 3: it also shows two crystal orders for the reference sample with magnetic 

properties similar to those of the reference sample of series N°1. However, in 

opposite to series N°1, one of the crystal order is largely minority in the reference 

sample as it is barely visible in magnetic measurements. Furthermore, the 

reference sample shows an isotropic behavior of the damping coefficient. Here also 

only partial structural characterization could be performed on this series.  
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In this chapter we will focus on the structural and magnetic properties of the reference 

samples of each series. Those ones will be referred in this chapter as sample N°1, 2 and 3.  We 

first present the methodology to determine the deposition conditions. Then a detailed study 

of the structural properties of the reference sample of series N°1 is presented and comments 

on the structural properties of samples N°2 and N°3 are given based on partial X-ray 

diffraction studies. The last part of this chapter will be devoted to the determination of the 

magnetic parameters of the 3 different samples.  

 

4.1 Structural properties of CMS samples 

In this section, we first present the deposition conditions of the CMS films studied in this 

work. Then we investigate its crystallographic properties by X-ray diffraction and HAADF-

STEM imaging. X-ray allows getting access to the lattice parameters of the structure, degree 

of disorder. HAADF-STEM will be used for investigation of local chemical ordering of the alloy 

and the lattice mismatch with respect to the MgO substrate. 

4.1.1 Determination of deposition conditions 

 We fabricated our samples with a sputtering chamber located at the CEMES 

laboratory (see chapter 3 for details). We present in this chapter the structural and magnetic 

properties of 3 samples deposited at 600° C and annealed at 700°C for one hour.  

 

 Our first task was to optimize the deposition conditions to fabricate high crystal order 

CMS films, i.e. the deposition and annealing temperature. We start from the PhD work of G. 

Ortiz [1 Ortiz] who developed the process of CMS thin films deposition with the same 

sputtering chamber used in this work. In our study we have also optimized the deposition 

conditions of CMS. Our methodology has been the following. First, we studied the effect of the 

deposition temperature. We start with a deposition temperature ranging from 400° and up to 

700° with 50° step. Each film is annealed at 700° for 1 hour. In order to verify the “quality” of 

the film, we performed in-situ RHEED diffraction and ex-situ FMR measurements.  

The interest in these two methods is simple. First RHEED gives information about the 

surface obtained with a 2 nm penetration depth of 20 kV accelerated electrons. RHEED is 

performed at each step of the process and allows for a direct observation of the nature of the 

growth (2D, 3D). An example of RHEED images is presented in Figure 4.1 for different 

deposition temperatures. 

 

Figure 4.1: RHEED patterns of CMS at different deposition temperatures. 
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 We observe that the diffraction patterns change from rings at 400°C to dots at 500° C 

and sticks at 600° C. The sticks formed in figure 4.1 represent a 2D monocrystalline surface, 

while the dots corresponds to a 3D monocrystalline rough surface. The rings patterns formed 

in figure 4.1 indicates a polycrystalline surface with a surface mosaicity. From the RHEED 

patterns observed at different deposition temperature, it is clear that deposition must be done 

above 600° C.  

 RHEED diffraction also allows to verify that the CMS films grow on the MgO substrate 

with the expected epitaxial relationship (001)[110]CMS//(001)[100]MgO, indicating a 45° 

rotation of the CMS on the MgO substrate in order to minimize the lattice mismatch. This is 

shown in Figure 4.2. The presence of sticks for both MgO and CMS layers is an indication of 

2D growth. For the MgO substrate, the Kikuchi lines indicates the high crystalline quality. 

However, from CMS RHEED pattern at [110] direction, we observe some rings along with the 

rods and it might be explained as the film consists of textured grains in the monocrystalline 

layer. 

 

 

 
 

Figure 4.2: RHEED images of MgO buffer layer and the deposited CMS film along [110] and 

[100] directions. 

 

  Further study of the film “quality” is performed ex-situ via FMR linewidth measurement at 

7 GHz. Indeed, according to theoretical prediction, the damping coefficient, and then the 

linewidth, decreases as the material gets more into the ordered L21 phase. An example of the 

FMR signal at 7 GHz for different deposition temperature is presented in figure 4.3. We 

observe a decrease of the linewidth as the deposition temperature is at 600°C. Once the 

deposition temperature is chosen, we studied the effect of the annealing temperature in a 

range between 600°C to 750°C with 50°C step. Annealing is always performed for 1 hour to 

increase the ordered crystalline structure of CMS. 
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Figure 4.3: FMR absorption spectra for different deposition temperatures at 7GHz. 

Therefore we found that the best compromise is to grow the CMS film at 600° with an 

annealing for one hour at 700°c. 

In this manuscript, we have optimized the deposition conditions by both in-situ 

RHEED and ex-situ FMR line width measurements after many trials. We have decided to 

study three samples due to different magnetic and structural behavior although having 

similar deposition conditions (deposition and annealing temperatures, same RF power and 

Ar pressure). The three samples are named N°1, N°2 and N°3. Sample N°1 was the first to be 

fabricated, whereas samples N°2 and N°3 were fabricated after a renovation process of the 

sputtering chamber took place at CEMES laboratory in January 2015. After the renovation 

process, also an optimized study took place to retrieve the best optimized deposition 

conditions which were found to be the same as before.   

 In this chapter, we present the structural and magnetic properties for the three 

samples. A complete structural analysis, combining X-ray diffraction in normal and 

anomalous conditions and HAADF-STEM imaging, has only been performed on sample N°1 

while only partial information on samples N°2 and N°3 has been obtained by X-ray diffraction 

in anomalous conditions.  

 

4.1.2 Atomic disorder by X-ray Diffraction 

X-ray diffraction is a powerful and common technique as it gives information about the 

phase order but also on the occupation site of the different atoms.  

 

 Sample N°1: 

 

X-rays reflectivity measurement gives a thickness value of 42 nm (Figure 4.4)  
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Figure 4.4: Reflectivity measurements of CMS layer. 

 

 The expected 45° rotation of the CMS layer with respect to the MgO in order to 

minimize the lattice mismatch (-5.1 %) is verified with φ scan as shown in Figure 4.5 for two 

different family of plane {111} and {022} for both the CMS and the MgO.  

  

 

 
 

Figure 4.5: 𝜑 scan of the CMS with respect to the MgO substrate along the [022] and [111] 

directions clearly shows the 45° orientation. 

 

 The lattice parameters of the sample are obtained from the position of the reflection 

peaks in θ-2θ measurements (e.g: Figure 4.6). These values are obtained by fitting the 

diffraction peaks with (TOPAS) software. The result has shown that our film grow with a 

tetragonal symmetry with in-plane parameter a=5.63 Ǻ and an out-of-plane parameter c=5.67 

Ǻ. We recall that in the perfect cubic structure, the lattice parameter is expected to be 5.65 

Ǻ. The lower value of the in plane lattice parameter is most probably due to the lattice 
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mismatch with the MgO substrate. Here we have the mismatch defined as 
𝑎𝐶𝑀𝑆 − √2∗𝑎𝑀𝑔𝑂

√2∗𝑎𝑀𝑔𝑂
=

−5.4% wich is in good agreement with the expected value of −5.2 %. 

 

 
 

Figure 4.6: a) 𝜃 − 2𝜃  X-ray diffraction scan showing the 002 and 004 peaks of CMS and 002 

MgO peak. 

 

 

 From X-ray diffraction intensity peaks, quantitative information can be extracted 

about the crystalline order  of the CMS thin film. Different crystallographic phases of CMS 

Heusler alloys L21, B2, D03 and A2 can be identified by different  X-ray diffraction peaks. 

Fundamental diffraction peaks appear for all CMS crystal phases and are characterized by 

the set of family planes  ℎ + 𝑘 + 𝑙 = 4𝑛, n is integer, (e.g. 022 peak). In addition, superlattice 

(h,k,l) diffraction peaks when h, k and l are odd numbers, (e.g. 111), only appear when the 

L21 and/or D03 phases are present while diffraction peaks for planes  ℎ + 𝑘 + 𝑙 = 4𝑛 +2 (e.g 

002) appear for L21, D03 and B2 phases. 

 Many groups have studied the order structure of CMS films based on the intensity 

peaks in different sets of planes obtained by X-ray diffraction [2 Gaier, 3 Pandey, 4 

Belmeguanie and 5 Webster]. A majority of these studies consider that when the diffraction 

peak corresponding to the {111} family of plane is present then the material grows in the L21 

order. However, one major problem consists in differentiating the different crystal order and 

more particularly the D03 and L21 phase that allows odd diffraction (hkl) peaks. Indeed, the 

scattering factors are very close at the Cu edge and therefore diffraction with diffractometers 

equipped with Cu-Kα1 source does not give all the information needed. To overcome this issue 

we performed experiments with two different sources for which different scattering factors 

appear. In this work we made diffraction experiments with a Co-Kα1 source because, due to 

anomalous diffraction of the Co at the K-edge, the Co and Mn scattering factor becomes 

distinguished and hence Co and Mn atoms can be differentiated 

Thus, the different disorder parameters in CMS can be obtained combining diffraction 

measurements using Cu and Co Kα1 sources. The method employed here is based on a model 

proposed by Niculescu et al [6 Niculescu] and has recently been applied by Takamura et al. [7 

Takumara] for the structural characterization of Co2FeSi. In this model, 𝛼, 𝛽 and 𝛾 are three 

disorder parameters. 𝛼  corresponds to the number of Mn atoms located on Si sites and 

represents the Mn/Si substitution per CMS unit. Similarly 𝛽 and 𝛾 corresponds to the number 
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of Co atoms on Si and Mn sites, respectively. Then, the structure factors for the different peak 

of interest are expressed as:  

 

F111 ∝ (1 − 2α − β)(𝑓Mn − 𝑓Si) + (γ − β)(𝑓Co − 𝑓Mn)       (4.1) 

F002 ∝ (1 − 2β)(𝑓Co − 𝑓Si) + (1 − 2γ)(𝑓Co − 𝑓Mn)      (4.2) 

F022 = F004 ∝ 2𝑓Co + 𝑓Mn + 𝑓Si            (4.3) 

 

Where 𝑓Co, 𝑓Mn and 𝑓Si are the scattering factors of Co, Mn and Si respectively. We can 

see from equations 4.1 and 4.2, that if fCo and fMn are close, as for Cu K𝛼 source, the intensity 

of the diffraction peaks I111 (∞ │F111│2) and I002 (∞│F002│2) are not sensitive to D03 order while 

it is for Co-K𝛼1 source in anomalous conditions. This is shown in figure 4.7 for which we 

calculated the modulus of the scattering factor of the Co, Mn and Si atoms for both the Co 

and Cu sources wavelengths.  

 

To calculate the structure factor Fℎ𝑘𝑙 for every diffraction peak, we need first to 

evaluate the atomic diffusion factor 𝑓𝑖 for Co, Mn and Si atoms using the following relation: 

 

𝑓 = (𝑓0 + 𝑓′ + 𝑖𝑓′′) ∗ 𝐷𝑊ℎ𝑘𝑙                                               (4.4) 

 

𝑓0 is the Thompson factor, known as the normalized scattering curve. 𝑓0 (
sin𝜃

𝜆
) expressed as: 

𝑓0 (
sin 𝜃

𝜆
) = ∑ 𝑎𝑖𝑒

−𝑏𝑖(
sin𝜃

𝜆
)2 + 𝑐4

𝑖=1                                            (4.5) 

Equation (4.5) is fitted to 9 parameters [8 Cromer] with 𝑎𝑖, 𝑏𝑖 and c are presented in table 4.1 

for each Co, Mn and Si. They are evaluated for each atom and their values are independent 

on the wavelength 𝜆. 

 

Co (z=27) 1 2 3 4 

a 12.284 7.341 4.003 2.349 

b 4.279 0.278 13.536 71.169 

Constant C 1.012    

 

Mn (z=25) 1 2 3 4 

a 11.282 7.357 3.019 2.244 

b 5.341 0.343 17.867 83.754 

Constant C 1.090    

 

Si (z=14) 1 2 3 4 

a 6.2915 3.035 1.989 1.541 

b 2.439 32.334 0.678 81.694 

Constant C 1.141    

 

Table 4.1: Values of 𝑎𝑖, 𝑏𝑖 and c for Co (Z=27), Mn (Z=25) and Si (Z=14). Values adapted from 

NIST database search forum and [9 MacGillavryy].  

 

 f’ and f’’ are additional contribution, corresponding to absorption and diffusion 

respectively. They can be estimated from attenuation and scattering cross section tables for 
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different atomic numbers Z and energies in KeV. For Cu source, 𝜆 = 1.54 Å, the equivalent 

energy is E= hc/λ = 8.066 KeV while for Co source,  𝜆 = 1.78 Å and the equivalent energy is 

6.9435 KeV. The values of f’ and f” for Co, Mn ad Si are presented in table 4.2. 

 

 

 

Cu source 

7.902 KeV 

f’ (electron per atom) f’’ (electron per atom) 

Co -2.351 3.623 

Mn -0.5765 2.778 

Si 0.2547 0.3316 

 

Co source 

6.915 KeV 

f’ (electron per atom) f’’ (electron per atom) 

Co -2.012 0.5816 

Mn -2.035 3.592 

Si 0.3016 0.4405 

 

Table 4.2: corresponding energies, attenuation and scattering factors for Co, Mn and Si a) 

for Copper source and b) for Cobalt source. Values adapted from NIST database search 

forum and [9 MacGillavryy]. 

 

 

Finally,  𝐷𝑊ℎ𝑘𝑙  is the Debye-Waller expression with  𝛽 is the Debye-Waller factor:   

 

𝐷𝑊ℎ𝑘𝑙 = 𝑒
−𝛽(

𝑠𝑖𝑛𝜃ℎ𝑘𝑙
𝜆

)2
                                                       (4.6) 

  

 The atomic scattering factors of Co, Mn and Si atoms for both Co and Cu K𝛼1 sources 

are plotted in figure 4.1 as a function of  
𝑠𝑖𝑛𝜃ℎ𝑘𝑙

𝜆
. We notice in figure 4.1 that, 𝑓𝐶𝑂 𝑎𝑛𝑑 𝑓𝑀𝑛 are 

almost the same for Cu k𝛼 source and thus the D03 disorder structure can’t be distinguished 

from the L21 phase. On the other hand, we see a clear difference in the atomic scattering 

factors for Mn and Co using Co k𝛼 source.  
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Figure 4.7: Atomic scattering factors of Co, Mn and Si atoms as a function of  
𝑠𝑖𝑛𝜃ℎ𝑘𝑙

𝜆
 

for a) Co k𝛼1 and b) Cu k𝛼1 sources. 

 

 

Then the intensity of the hkl peaks is expressed as follows: 

 

  𝐼ℎ𝑘𝑙 ≈ 𝐿ℎ𝑘𝑙(𝜃)𝑃ℎ𝑘𝑙(𝜃)|𝐹ℎ𝑘𝑙|
2 1

sin𝜃ℎ𝑘𝑙
                                         (4.7) 

 

Where: 

 𝐿ℎ𝑘𝑙(𝜃) is the Lorentz factor equal to 𝐿ℎ𝑘𝑙(𝜃) =
1

sin 2𝜃ℎ𝑘𝑙
. 

 P is the polarization factor: 𝑃ℎ𝑘𝑙(𝜃) =
1+𝐴∗cos 2𝜃ℎ𝑘𝑙

1+𝐴
.  

 A is the Attenuation factor, for Co source A=  cos 53.13° and for Cu source A=cos 45.4°. 
 

 In order, to obtain the different disorder parameters in equation 4.1, 4.2 and 4.3, we 

compare the experimental and calculated ratio of the superlattice diffraction peaks to the 

fundamental ones.  As we have three unknown parameters we need four diffraction peaks. As 

already explained, experiments have been performed with two different diffractometers 

equipped with either a Co or Cu source to distinguish the Co/Mn exchange.  

Measurements with the Co Kα1 source have been performed in symmetric mode with a 

Panalytical Empyrean located at the LPCNO laboratory. It is equipped with a parallel plate 

collimator on the secondary lever which decreases the effect linked to the defocus of the X-ray 

beam when the sample is tilted. With this diffractometer, it has been possible to measure the 

(022) and (111) reflections in symmetric mode by tilting the sample at 45° and 54.74°, 

respectively. On the other hand, measurements with a Cu Kα1 source have been realized at 

the LAAS laboratory with a Bruker D8-Discover (Da-Vinci) diffractometer. This instrument 

does not have the same collimator. Then the (022) and (111) reflections cannot be accessed in 

the symmetric mode due to the defocus of the X-ray beam. Moreover, they are not accessible 

as well in asymmetric mode due to geometrical constraint of the instrument. Therefore, only 

(002) and (004) in symmetric mode can be measured with the Cu Kα1 source.  

 

 Taking this into account, our methodology is the following. We first calculate the ratio 

I(002)/I(004) (Figure 4.8-d) obtained with the Cu Kα1 source (λ=0.154 nm). According to equation 



104     Chapter 4: Structural and magnetic properties of “as deposited” CMS Heusler alloys 

 

4.2 and 4.3, we get the value of 𝛽 term. Let’s note that we verify that the influence of the 𝛾 

term, i.e. the exchange between the Co and Mn atoms, is negligible due to similar scattering 

factors. 

 

  Then the value of the 𝛽 is injected in the calculation of the ratio I(002)/I(022) (Figure 4.8-

a and 4.8-c) obtained with the Co Kα1 source (λ=0.179 nm). According to equation 4.2 and 4.3, 

we obtain the value of the 𝛾. Finally the value of the 𝛼 is obtained from the I(111)/I(022) ratio also 

obtained with the Co Kα1  source (according to equations 4.1 and 4.3).  

The result of our method gives the following values: 

 

{
𝛼 = 0.14 ± 0.01 𝑜𝑟 14% ± 1%
𝛽 = 0.03 ± 0.02 𝑜𝑟 3% ± 2%
𝛾 = 0.01 ± 0.01 𝑜𝑟 1% ± 1%

    (4.8) 

 

 

 Let’s note that the uncertainty is quite important. Typically we are not able to measure 

the value of Co/Mn exchange (𝛾) if less than 2%. Also, the uncertainty on 𝛽 is important as 

compared to the nominal value. These uncertainties are mainly due to the fact that we are 

not using the same optics in the Co and Cu sources diffractometers.  

 From the disorder parameters we can calculate the probability of presence of each 

atom on its original site, considering a perfect L21 order as a starting structure. Indeed the 

probability of presence is calculated as follows in table 4.3 [7 Takamura]:    

 

 

 X sites Y sites Z sites 

Co 2 – 𝛾 – 𝛽 𝛾 𝛽 

Mn 𝛾 1 – 𝛼 – 𝛾 𝛼 

Si  𝛽 𝛼 1 – 𝛼 – 𝛽  

 

Table 4.3: Probability of presence of each atom on the different atomic sites 

 

 

The factor 2 on the Co site is due to the presence of two Co atoms per formula unit. We found 

values of 98, 86 and 83 % for the Co, Mn and Si respectively. Clearly our sample does not 

grow in the perfect L21 order. The values of the disorder parameters can be compared to the 

ones that we should have for the different crystal phase. The (𝛼, 𝛽, 𝛾) parameters for the L21, 

B2, D03 and A2 phase are respectively (0, 0, 0), (1/2, 0, 0), (0, 0, 2/3) and (1/4, 1/2, 1/2). While 

the Co/Mn and Co/Si exchange is very small in our films, we clearly see the presence of Mn/Si 

exchange. Neglecting the Co/Mn and Co/Si exchange, and taking into account that a fully B2 

order sample would show 𝛼 = 0.5, we can conclude that we have about 0.14/0.5 ≈ 25% of B2 

order and ≈ 75% of L21 order in our films.   

 It is quite difficult to compare the quality of our films with the ones fabricated by other 

groups. As explained above, most of the structural studies performed with X-ray diffractions 

neglect this full analysis and consider a full L21 order of their films as long as the (111) 

diffraction peak is measured.  However, we can state that our films show a high degree of 

order with almost 75% of the perfect order. This can be compared with the study of Takamura 

et al. on Co2FeSi fabricated by rapid thermal annealing. Co2FeSi is a very similar material as 

Co2MnSi and is supposed to show similar magnetic behavior and crystal order. In figure 4 of 

Takamura article [7 Takamura], they show that (α, 𝛽, 𝛾)  is (0.12, 0.04, 0.10) for thermal 
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annealing at 700° while it decreases down to (0.06, 0.01, 0.04) for annealing at 800°. Then we 

see that for similar thermal annealing we get very similar values of disorder.   

  

 

 

Figure 4.8: 𝜃 − 2𝜃 scan for Co Kα1 and Cu Kα1 sources at different diffraction peaks. 

(Values in ordinates are raw values indicating the number of photons received by the optical 

detector. The correction factors are included in the calibration process performed prior to 

the experiment). 

 

X-ray diffraction were also performed on samples N°2 and N°3. Due to the small size 

of those samples, the obtained signal is weak and the diffraction peaks couldn’t be detected 

by the Co source diffractometer located at the INSA.   

 Therefore, sample N°2 and N°3 has been studied with a new diffractometer (D8 

discover equipped with Co micro source, berceau chi-phi,x, y z and scintillateur) installed 

recently at the CEMES Laboratory in November 2015. Reflectivity measurements gave a 

thickness of 42 ± 2 nm for sample N°2 and 50 ± 2 nm for sample N°3. The beam size of the 

diffractometer is of few mm² order allowing for the measurement of small size samples. 

However, the experiment is carried out without a monochromatic source and the X-ray beam 

is composed of both K𝛼1 and K𝛼2 edges radiation, which avoids any quantitative analysis 

about the atomic disorder on this sample.  

 The only experiment performed on the sample N°2 is a 𝜑 scan presented in figure 4.9, 

showing the (111) diffraction peak. According to the results obtained on sample N°1, we 

assume that this sample presents the L21 order. However, the amplitude of the signal is very 

weak, especially as compared to the sample N°3 (which has similar dimensions). Then, two 

assumptions can be made. Either the L21 is not the main crystal order in this sample, or it 

grows in the L21 phase but it present a high ratio of Co/Si exchange. The study of the magnetic 

parameters presented below is more favorable to the second assumption but it is most 

probable that the B2 order is present in this sample, similarly to the sample N°1 in section 

4.2.3.    

 For sample N°3, we could perform diffraction experiments with the diffractometer 

equipped with the Cu source at the LAAS and on the new diffractometer installed at CEMES. 
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The measurement of the (111) peak with the CEMES diffractometer is also an indication of 

the L21 order presence in the alloy (figure 4.10-c). Additionally, the measurements of the (002) 

and (004) diffraction peaks, shown in figures 4.10-a) and 4.10-b respectively, with the Cu 

source diffractometer, allow to determine the out-of-plane lattice parameter and the Co/Si 

exchange parameter 𝛽. The lattice parameter is found to be 5.69 Ǻ while 𝛽 =0.06, which is 

slightly higher than the value obtained for sample N°1.  

 

 
 

Figure 4.9: 𝝋 scan of N°2 sample along [111] direction using Co Kα source. 

 

 
 

Figure 4.10: (002) and (004) diffraction peaks for sample N°3 measured with Cu Kα1 source 

in a) and b) respectively.  c), (111) diffraction peak measured with the Co Kα1,2 source 

diffractometer.  

In conclusion, all of our three samples show some L21 crystal order. However, a complete 

study of the disorder parameter was only performed for sample N°1. This study have 

demonstrated that the B2 order is also present in sample N°1 and we can assume that similar 

feature is encountered for sample N°2 and N°3, with different amount of the respective crystal 

order. Additionally, Co-Si exchange is found to be slightly higher for the sample N°3 than for 

the sample N°1. Finally the crystal order for the sample N°2 is difficult to state as it is. Based 

on the results of samples N°1 and N°3, it is reasonable to think that this sample shows some 

L21 order along with the B2 order and Co/Si exchange. FMR measurements will show that 

the magnetization of this sample is lower than the two others samples, giving some credit to 

the potential strong Co/Si exchange.  

 

While the X-ray diffraction experiments give access to the atomic ordering it doesn’t 

give information about the local disorder organization in the material. For example, the 

question of a diluted disorder into a matrix or separate phase segregation cannot be answered. 
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In order to get such information, Transmission Electron Microscopy and especially High 

Resolution Transmission Electron Microscopy (HRTEM) and High Angle Annular Dark Field 

Scanning Transmission Electron Microscopy (HAADF-STEM) experiments have been 

performed to get the chemical arrangement at the atomic scale.  

 

4.1.3 Structural investigation by HRTEM and HAADF-STEM 

Electron microscopy offers numbers of complementary techniques to study the chemical 

composition, and the mechanical deformation or the crystal order at the atomic scale.  

HRTEM imaging has been performed using Hitachi HF3300 C 300KV cold FEG microscope 

(I2TEM), developed between Hitachi and CEMES-CNRS. It is equipped with a spherical 

aberration corrector located below the objective lens. An example of a HRTEM image with its 

corresponding FFT diffractogram is presented in Figure 4.11. It allows us to verify both the 

thickness homogeneity of the sample and the thickness of the interface between the MgO and 

the CMS layer. The thickness of the film on this image is found to be 41 ± 1 nm with local 

variations at the upper surface. The interface between the CMS and the MgO is observed to 

have a thickness of 1.2 nm ± 0.2 nm.  

 

 
 

Figure 4.11: a) A HRTEM image, and b) its fast Fourier transform (FFT) for a cross-

sectional CMS layer grown on MgO substrate. c) A zoom on the interface.   

        In order to make both chemical and structural analysis, HAADF-STEM experiments 

were performed at the TALEM laboratory, at the University of Zaragoza in Spain. As 

explained in chapter 3, one of the major interests for HAADF-STEM experiments is that the 

intensity of the atomic columns depends on its chemical nature. Then we have additional 

information as compared to HRTEM which is the possibility to observe the different chemical 

species on different atomic sites.  

 Measurements have been performed at 300 kV on a FEI Titan 60-300 microscope, 

equipped with a spherical aberration corrector for the probe. Samples N°1 and N°3 have been 

observed by HAADF-STEM: 
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 For sample N°1, a lamella have been prepared by FIB for observation in the [-110] 

zone axis direction. In this orientation, and for L21 order, the intensity of each atomic 

column, which increases with Z (Eq. 3.5 in chapter 3), corresponds to only one type of 

atoms.   

 

 For sample N°3, 2 lamellas have been prepared by FIB. One for the observation in the 

[-110] and the second for observation [010] zone axes. In [010] zone axis, and for the 

L21 order, the Mn and Si atoms cannot be distinguished as both atoms alternate in the 

atomic columns.  

 

An example of HAADF-STEM images of Sample N°3 is presented in Figure 4.12. The 

left column presents the reference sample observed in the [-110] zone axis while the right 

column presents the reference sample observed in the [010] zone axis. In Figure 4.12-a) and 

4.12-e, low magnification allows to observe the MgO substrate at the bottom and the CMS at 

the top of the images. Clearly one can observe a difference of contrast as a function of the 

position. As the Magnesium (Z=12) and oxygen (Z=8) atoms have lower atomic numbers than 

Cobalt (Z=27) and Manganese (Z=25) atoms, the substrate appears more black as the 

intensity of the signal is lower than for the heavier atoms of CMS. We clearly see the different 

atomic arrangement as a function of the orientations of the crystal, as sketched in Figure 

4.12-b and 4.12-f, showing the FCC structure of the material.  

Figures 4.12-c and 4.12-g show a zoom on few atomic columns for each orientation. Figure 

4.12-d and -h show the intensity profiles of STEM images taken along different lines reported 

in Figure 4.12-c and -g. In figure 4.12-d, the profiles clearly show the alternation of high and 

low peak intensities corresponding to Mn (Z = 25) and Si (Z = 14) columns, demonstrating the 

L21 order. We also note that the difference of intensity between Co and Mn columns is weak 

as expected from the Co and Mn atomic numbers (ZCo = 27). Therefore and similarly to 

classical X-ray diffraction using a Cu Kα1 source, HAADF-STEM is not very sensitive to the 

D03 disorder. In Figure 4.12-h, the intensity for the Mn/Si sites is constant. As the Wickoff 

positions of the Mn and Si atoms are (¼, ¼,¼) and (¼, ¾, ¼), respectively in the unit cell, each 

atomic column other than Co show the same intensity due to equal contribution from Si and 

Mn atoms.  
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Figure 4.12: a) and e) are examples of HAADF-STEM of the reference sample N°3. b) and f) 

Sketched of the atomic arrangement in the different zone axis, considering the perfect L21 

structure. C) and g) Zoom corresponding to the black boxes in a) and e) showing the Co, Mn 

and Si positions. D) and h) Intensity profile for the dotted lines in c) and g). 

  

To go further in the structural analysis of the material, we performed a statistical 

analysis of the amplitude of the different atomic columns. This has been done for the two 

different samples: 
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 Sample N°1 :  

 

An example of HAADF-STEM image is presented in Figure 4.13-a. The insert is a zoom 

on few atomic columns. The intensity profile of the lines denoted by the arrows in Figure 4.13- 

a shows the L21 order.  

From the study of disorder parameters by X-ray diffraction, we claim the possibility 

that the material shows about 75% of L21 order and 25 % of B2 order. In order to demonstrate 

that the L21 order is the main phase of the sample, we performed a statistical analysis of 

maximum peak intensities of the HAADF-STEM images. Let’s note that we have performed 

the statistics also on the intensity average value of pixels corresponding to the atomic columns 

with similar results. 

Three distinct intensity distributions corresponding to the Co, Mn and Si atomic 

columns are observed (Fig 4.13-c). The values are normalized by the one  of the Co intensity 

at the center of the Co distribution. The appearance of three different intensities in the 

HAADF-STEM image is in good agreement with the L21 order even if some spreading of the 

intensity distribution is observed. One source of spreading comes from the slight change of 

thickness across the lamella prepared for STEM experiment. This variation of thickness 

prevents any statistics over very large areas.  

In some particular regions of the film other intensity distributions are observed, as the 

one reported in Figure 4.13-d which corresponds to statistical analysis performed on the black 

box in Figure 4.13-a. The inset in Figure 4.13-d shows that STEM intensities corresponding 

to the Mn and Si columns are very similar. Even if the statistical analysis is performed on a 

small number of atomic columns, it clearly shows that the STEM intensities corresponding to 

Mn and Si atomic columns converge to a single value, which could be associated to the 

appearance of the B2 order. This result has been observed in 5 HAADF-STEM images taken 

at different positions in the lamella. For each image, we found some regions composed of 10 

to 15 atomic columns with similar B2 type ordering.  Therefore, and based on the result 

obtained by X-ray diffraction, we make the assumption that very small grains with B2 order 

are distributed in the L21 matrix.  

Dealing with the preliminary assumption that 25% of the layer should be in the B2 

order, a natural question is to understand why we do not observe bigger regions of the sample 

in the B2 order. However we remind that HAADF-STEM images corresponds to a projection 

of the integrated intensity along the thickness of the lamella. Then if very small grains are 

diluted in the L21 matrix, they can be too small to induce significant changes in the intensity 

of the atomic columns of L21 order, at least within the noise of the signal which is mainly due 

to local variations of the thickness.   
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Figure 4.13: (a) HAADF-STEM image of CMS. The insert at top right is a zoom over 

6x6 atomic columns. (b) Intensity profile of the lines denoted by the colored arrows in (a). (c) 

Statistical analysis of intensity profile obtained from (a) on a region of 11 x 23 atomic columns. 

(d) Statistical analysis of the area denoted by the black box in (a). In insert the intensity 

profile of the three central lines in the black box.  

 

HAADF-STEM imaging also allows for mechanical strain studies in the CMS layer 

due to the lattice mismatch with the substrate. Starting from an HAADF-STEM low 

magnification image showing both the MgO and CMS (Figure 4.14-a), we performed a GPA 

analysis to observe the strain parallel and perpendicular to the MgO interface. The diffraction 

peaks selected in the FFT are the MgO(200) and CMS(220) spots for the calculation of the strain 

parallel to the interface 𝜀𝑥𝑥, and the MgO(002) and CMS(002) for the calculation of the out of 

plain strain 𝜀𝑧𝑧.   

An example of the calculation is shown in Figure 4.14 for sample N°1. The average 𝜀𝑥𝑥 

strain is found to be -5.4 % in this zone of the lamella. Example of the difference of strain 

between the substrate and the CMS layer is shown in the profile in Figures 4.14-d and 4.14-

e. Repeating the measurement on different images, it allows us to estimate an average value 

of the in-plane strain for the CMS to be -5.3% ± 0.3%. This result is in very good agreement 

with the expected lattice mismatch defined as 𝑓 =
𝑎𝐶𝑀𝑆 − √2∗𝑎𝑀𝑔𝑂

√2∗𝑎𝑀𝑔𝑂
= −5.4%. Similarly, the out 

of plane εzz strain is found to be in average 34 ± 1.2%, also in very good agreement with the 

expected value 
𝑐𝐶𝑀𝑆 − 𝑎𝑀𝑔𝑂

𝑎𝑀𝑔𝑂
= 34.9% calculated with the c parameters obtained from X-ray 

diffraction. Both 𝜀𝑥𝑥 and 𝜀𝑧𝑧 are very homogeneous within the CMS layer. We also observe at 

the interface some misfit dislocations (white points at the interface in Figure 4.14-b) with a 

quite periodic structure. The distance between two dislocations is found to range from 2.9 nm 
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and 4.3 nm on this image. This can be compared to the expected value of the periodicity of the 

dislocations defined as: 
𝑑[220]−𝐶𝑀𝑆

|𝑓|
=

5.63

√8

5.4
= 3.68 𝑛𝑚.  

This is in good agreement with our observations.  Therefore we can conclude that our CMS 

films are fully relaxed.  

 

Figure 4.14: b) In-plane and c) out-of-plane Strain mapping derived from a) an HAADF-

STEM for sample N°1. Profiles d) and e) corresponds to the strain value obtained from the 

selected box area in b) and c). 

 

 Sample N°3 :  

 

For sample N°3, the situation is very similar to sample N°1. For the lamella oriented 

in the [-110] zone axis, the statistics performed on the columns observed in Figure 4.15a 

clearly show the difference between the Si and Mn columns while the intensity for Mn and 

Co is very close. This is significant of L21 or D03 order. When the sample is observed in the 

[010] zone axis as in figure 4.15-c, the intensity of the Mn and Si columns are equal and below 

the intensity of Co. However, here the notion of Mn and Si columns is not relevant as both 

atoms are present in the same column. We simply make the statistics taking one out of every 

to atomic column as Mn and the other one as Si.    

Let’s note that we must not compare the relative intensity values between the different 

images. For example in Figure 4.15-c, the Si intensity was about 97% of the Co signal while 

in Figure 4.15-d, it is about 96%. The reason for this difference comes from the difference of 

background intensity (due to lamella thickness for example) from one image to another which 

naturally slightly modifies the relative amplitude of the atomic columns intensities with 
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respect to the Cobalt. Therefore, we must only compare the intensity of Co, Mn and Si column 

on every single image.   

The main difference between sample N°3 and sample N°1 is that, in N°3, we were not 

able to detect any regions with a clear B2 order. Therefore this sample most probably shows 

a high degree of L21 order as expected from the (111) x-ray diffraction peak in figure 4.10. 

Moreover, we expect to have a L21 order and not the D03 due to the result of atomic disorder 

obtained on sample N°1 and also based on the theoretical predictions which states that the 

L21 order is more energetically favorable than the DO3 type. The values of the magnetization 

amplitude measured by FMR will confirm that the sample shows the L21 order.  

 

 
 

Figure 4.15: a) and b) HAADF-STEM images of sample N°3 observed in [-110] and [010] 

zone axes respectively. C) and d) show the statistics of the maximum intensity for each 

atomic column obtained from the STEM images presented in a) and b), respectively. 

 

As a conclusion, XRD and TEM analysis have shown that the sample N°1 grows as a 

mixture of two phases corresponding to about 75% of L21 and 25 % B2. GPA analysis have 

shown that the sample is completely relaxed. We also measured a tetragonal distortion with 

respect to the expected perfect cubic lattice. The lattice parameters are found to be 5.63 Å in 

plane and 5.67 out of plane.   Sample N°3 is somehow similar to sample N°1. A clear L21 order 

is demonstrated but a higher ratio of Co/Si exchange is observed as compared to sample N°1. 

Magnetic measurements will show that a second minority crystal phase is also present. Based 
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on the result of sample N°1 and despite it could not be observed with HAADF-STEM, we 

believe that this one, sample N°3, most probably corresponds to the B2 order. Furthermore 

we measured a larger out of plane lattice parameter for this sample (5.69 Å); we will show 

that it has an impact on the magnetic properties. Finally, for sample N°2, partial diffraction 

measurements shows a small amplitude (111) diffraction peak, suggesting the presence of the 

L21 phase based on the result obtained for the other two samples. However we will show that 

the magnetization and anisotropies amplitudes are different from the other two samples, 

suggesting a more complex structural disorder. 

 

4.2 Magnetic properties 

 In this part, we present a study of the static and dynamic properties of the different 

CMS samples. Static measurements focused on the switching mechanism of the layers. 

Additionally, we will extract the magnetic parameters of the film such as the magnetization, 

exchange constant and anisotropy amplitudes from ferromagnetic resonance experiment. 

Finally, the last part of this section will be devoted to magnetic relaxations effects which are 

one of the most interesting features of these alloys.    

 

4.2.1 MOKE measurements: switching field mechanisms 

 

 SAMPLE N°1 :  

 
Hysteresis cycles have been measured by Magneto-Optic Kerr Effect at the NMH- 

CEMES lab located on the ONERA Toulouse Campus. An example of MOKE cycle taken for 

sample N°1 is presented in Figure 4.16 for an external field applied parallel to an easy (a) or 

hard (b) axes. The measurements were performed with the magnetic field applied in the plane 

of the CMS sample. The external field is in the plane of incident light, which corresponds to 

the L-MOKE configuration. The sample is rotated manually via homemade sample holder 

within the Helmotz coils used to apply the field.  
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Figure 4.16: Hysteresis cycle for sample N°1 measured by MOKE. The external field is 

applied in the plane of the sample and parallel to a) an easy axis and b) a hard axis. 

Raw measurements showed that coercive field values are of few Oe, typical for 

magnetic switching through nucleation/propagation of domains. However, some asymmetry 

between positive and negative fields is observed, avoiding a clear determination of the 

coercive field Hc. This is especially visible for fields applied with a non-zero relative angle 

with respect to the easy axis. This asymmetry for positive and negative fields is due to the 

quadratic contribution to the signal and due to the rotation of the magnetization 

perpendicularly to the applied field. In order to separate both the L- and Q-MOKE, we follow 

the procedure developed by Mewes et al. [10 Mewes] and also developed in O. Gaier PhD work 

[2 Gaier]. Only the basics of the symmetry process is presented here. More details can be 

found in the cited references.  

First we write the rotation of the polarization axis due to the Kerr effect 𝜃𝐾𝑒𝑟𝑟 as:  

 

𝜃𝐾𝑒𝑟𝑟 = 𝜃𝐾𝑒𝑟𝑟
𝐿𝑜𝑛𝑔

. 𝑀// + 𝜃𝐾𝑒𝑟𝑟
𝑄𝑢𝑎𝑑

. 𝑀//𝑀⊥    (4.9) 

 

Where 𝜃𝐾𝑒𝑟𝑟
𝐿𝑜𝑛𝑔

 and 𝜃𝐾𝑒𝑟𝑟
𝑄𝑢𝑎𝑑

 are the longitudinal and quadratic proportionality factors of 

the Kerr rotation. 𝑀// and 𝑀⊥ are the in-plane magnetization components parallel and 

perpendicular to the plane of incidence of light, respectively. To separate both contribution, 

we consider the symmetry of the two terms in equation 4.9.  For the same value of applied 

external field, with a 180° sample rotation, the longitudinal contribution 𝑀// to the Kerr angle 

changes sign while the quadratic contribution ( 𝑀//𝑀⊥) remains the same. Therefore, the 

authors have shown that longitudinal and quadratic contributions can be separated by 

applying the following procedure:   
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𝜃𝐾𝑒𝑟𝑟
𝑙𝑜𝑛𝑔

= [𝜃𝐾𝑒𝑟𝑟(𝛼𝐻) − 𝜃𝐾𝑒𝑟𝑟(𝛼𝐻 + 180°)]/2   (4.10) 

 

𝜃𝐾𝑒𝑟𝑟
𝑄𝑢𝑎𝑑

= [𝜃𝐾𝑒𝑟𝑟(𝛼𝐻) + 𝜃𝐾𝑒𝑟𝑟(𝛼𝐻 + 180°)]/2   (4.11) 

 

Where 𝛼𝐻 is the angle between the easy axis of the CMS and the direction of the 

applied field. The main complication of this process is that MOKE cycles have to be applied 

for directions between 0° and 360°. This is not achievable with our set-up since we have a 

180° rotation planetary. Another possibility to recover the longitudinal and quadratic 

contributions is to calculate the following quantities: 

 

𝜃𝐾𝑒𝑟𝑟
𝑙𝑜𝑛𝑔

= [𝜃𝑖𝑛𝑐(𝐻) − 𝜃𝑑𝑒𝑐(−𝐻)]/2    (4.12) 

 

𝜃𝐾𝑒𝑟𝑟
𝑄𝑢𝑎𝑑

= [𝜃𝑖𝑛𝑐(𝐻) + 𝜃𝑑𝑒𝑐(−𝐻)]/2    (4.13) 

 

The result of this process is shown in Figure 4.17, for an applied field at 𝛼𝐻= 45° from 

the easy axis, i.e. in the hard axis direction. The longitudinal and quadratic contributions are 

calculated for a field swept from negative to positive values. Two advantages come from the 

analysis of the longitudinal component. First, it allows for a direct renormalization of the 

curves without any additional treatment. Second, a precise measurement of the coercive field 

Hc can be obtained and the value of the saturation field in the direction of the hard axis, as a 

first approximation, equals to the value of the crystalline anisotropy field.  

Results of the measured coercive field for 𝛼𝐻 ranging from 0° to 180° is presented in 

Figure 4.18-a. The coercive field values range between 4.7 and 6.5 Oe (0.47 and 0.65 mT). 

Let’s note that the uncertainty due to the symmetry process is about 1 Oe. Then no clear 

variation with respect to 𝛼𝐻 is observed and the expected fourfold anisotropy is only visible 

for the saturation field Hsat, as shown in Figure 4.18-b (in the figure only a twofold symmetry 

arises since 𝛼𝐻  ranges only between 0 and 180°). Here, the saturation field along the two hard 

axes directions (i.e. 𝛼 = 45 and 135°) is evaluated to be around 350 Oe (=35 mT). However, 

when looking carefully at the hysteresis cycles, small differences arise depending on the angle 

of the external field 𝛼𝐻. For example, we can see on Figure 4.19 that for angles above 45° 

(typically between 50° and 70°), some small “plateaus” appear while they are absent for angles 

below 45° (see Figure 4.19-a and 4.19-b). This reflects the presence of a very small uniaxial 

anisotropy superposed on the easy axis 1. The difference of switching mechanism as a function 

of 𝛼 will be detailed in the switching mechanisms below.  
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Figure 4.17: Sample N°1 a) recovery of Q- and L-MOKE from Raw measurements and b) 

LMOKE cycle at different external applied field angles. 

 
 

Figure 4.18: Sample N°1 twofold symmetry for a) coercive and b) saturation fields from 0° to 

180°. 

 

Figure 4.19: a) Evolution of the LMOKE component for sample N°1 at different angle α. The 

field is swept from negative to positive fields. We clearly observe some “plateau” for angles 

between 50° and 70°. However, in b) the “plateaus” are absent for angles below 45°. 
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 SAMPLE N°2 :  

 
 MOKE measurements have been also performed on sample N°2 only in few directions 

and then similar representation of the coercive field or saturation vs. the angle α cannot be 

presented. Figure 4.20 shows different raw measurements for different directions of the 

applied field 𝛼𝐻 where 0° and 90° corresponds to the easy axis directions of the sample. 

Similarly to sample N°1, the cubic anisotropy is observed in the saturation field values at 45° 

and 135°. Here the value of the saturation field is evaluated to be around 450 Oe (45 mT). 

However, the shape of the hysteresis cycles differs from sample N°1 around the coercive field 

value, as shown in the inset of Figure 4.20. Indeed there is a clear difference between the two 

easy axes.  

 In order to compare the different cycles, we applied the symmetric procedure as 

explained for sample N°1. The result of the LMOKE signal is shown in Figure 4.21. The field 

is scanned from negative to positive values. For 𝛼𝐻=0°, we observe an abrupt decrease of the 

magnetization with an almost complete switching, which is typical for an applied field in the 

easy axis direction with a corresponding coercive field of 5 Oe (0.5 mT). However for 𝛼𝐻=90°, 

we observe that the magnetization amplitude component along the field direction goes down 

to zero at µ0H0 = - 2 Oe, so before the direction of the field is reversed. It is followed by a 

plateau with a constant value of magnetization until the field is reversed down to the coercive 

field of 6.5 Oe. This is typical for the presence of an additional uniaxial anisotropy along the 

easy axis 2 (𝛼𝐻 =0°). Indeed, the plateau corresponding to a zero net magnetization means 

that the magnetization rotates at 90° from the applied field; i.e. in the easy axis 2 direction.  

 Similarly to sample N°1, the magnetic switching process for 0° < 𝛼𝐻 < 45° and 45° < 

𝛼𝐻< 90° are different. This is observed in Figure 4.22 showing the longitudinal component of 

the magnetization for 𝛼𝐻 = 30, 45 and 60°. Typically only for 𝛼𝐻 > 45°, “plateaus” are observed. 

Here we have even observed two plateaus before saturation. Once again, this is typical due 

to the presence of a uniaxial anisotropy. Details about the switching mechanisms processes 

are given in the next sub-section.   

 

 

 
 

Figure 4.20: Hysteresis cycle for sample N°2. The inset shows the difference between two 

easy axes (0° and 90°). 
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Figure 4.21: LMOKE cycles after symmetry procedure. The magnetic field is applied in the 

four magnetic axes directions. 

 

 
 

Figure 4.22: LMOKE measurements at 𝜶𝑯= 30°, 45° and 60° showing different switching 

mechanisms. 

 

 Switching mechanisms 

 
In order to understand the different magnetic switching mechanisms observed in 

samples N°1 and N°2 as a function of 𝛼 , we have simulated the switching process with the 

micromagnetic solver OOMMF. Calculations were performed with a 3D package. The size of 
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the sample is 2 µm x 2 µm x 40 nm with a cell size of 5 nm. Due to high numbers of cells, 

calculations were running using the HPC resources from CALMIP super-calculator in 

Toulouse. The easy axes reflecting the cubic anisotropy are the X and Y directions in Figures 

4.24 and 4.25. The value of the anisotropy field is set to 𝜇0Hk = 35 mT. Moreover, a uniaxial 

anisotropy with amplitude µ0Hu is superposed with the X-axis. The sample is first saturated 

with a 100 mT external field applied with an angle 𝛼 with respect to the +X direction. The 

field is then decreased in one step down to 20 mT. For the switching process the field is 

decreased down to -50 mT by steps of 1 mT and from -50 mT to -100 mT in one step.     

 Even if the effect of the superposed uniaxial anisotropy is more visible in sample N°2 

than in sample N°1, the basic mechanisms are similar. The only difference relies on the 

amplitude of the uniaxial anisotropy field µ0Hu which is more important in sample N°2 than 

in sample N°1. Here in the simulation we arbitrary set the value 𝜇0Hu = 1 mT, we will see 

that this value is in agreement with the one obtained by FMR measurements. 

 An example of the simulated switching mechanisms for fields applied at 30° or 60° 

from the easy axis 1 are presented in figures 4.24 and 4.25 respectively. The basic mechanisms 

are the same for every angle of the applied field. We start from saturation in the positive 

direction. By decreasing the field, the magnetization first rotates on the edge of the samples, 

parallel to the X or Y axis, depending if 𝛼 is inferior or superior to 45°, respectively. This leads 

to 90 degrees domain walls as expected in cubic magnetic system. When 𝛼 >45°, the effect of 

the additional anisotropy allows for switching of edge domains before the applied field is 

reversed. If 𝛼<45°, the magnetization stays in the X direction even at zero field due to the 

uniaxial anisotropy.  

 When the field is reversed (H0 < 0 mT), the situation is first similar whatever the 

angle 𝛼. Due to the additional anisotropy in the X direction, the magnetization will form 

domains in the center of the sample with magnetization pointing preferentially alternatively 

in the + and - X direction (figure 4.24-c and 4.25-c).  These domains are separated by cross 

ties domain walls as generally observed in soft magnetic systems with thickness around 50 

nm. The edge domains are separated from the central domains by 90° domain walls. This 

leads to classical flux closure magnetic configuration and corresponds to a net magnetization 

equal to zero, i.e. at the coercive field.    

 Once this magnetic configuration is reached, the situation differs depending if 𝛼 > 45° 

or 𝛼 < 45°. If 𝛼 < 45°, the switching occurs through the growing of the central magnetic domain 

pointing in the –X direction (Figure 4.24-d). As this direction is the most energetically 

favorable due to the uniaxial anisotropy, this process allows for abrupt transition. Then the 

saturation is reached with a rotation of the magnetization toward the direction of the applied 

field. Now if 𝛼 > 45°, the switching occurs through the propagation of the 90° domain walls in 

order to favor domains with magnetization pointing in the –Y direction (see figure 4.25-d and 

4.24-e). However, this is energetically less favorable since the uniaxial anisotropy tends to 

keep the magnetization in the –X direction. Therefore it is probable that the plateaus 

observed for 𝛼 = 60° in figure 4.19 and 4.22 corresponds to the field necessary to move the 90° 

domain walls to the center of the sample. Finally saturation is also reached after rotation of 

the magnetization toward the direction of the applied field.  
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Figure 4.23: The field is swept from positive to negative fields with steps of 2 mT. The insert 

is a zoom around zero field. The additional uniaxial anisotropy is aligned with the easy axis 

1 direction, i.e. the +X direction as shown in the scheme on the right. 

 

An example of the simulated hysteresis curves with OOMMF is shown in fig 4.23. The 

situation is here similar to what we observe for sample N°2. Indeed, when the field is applied 

with α>45°, the average magnetization parallel to the applied field, M, tends to zero before 

switching the applied field. This corresponds to the rotation of the magnetization toward the 

X direction (the direction of the uniaxial anisotropy). When α< 45° the magnetization still 

shows a high value at it is in a stable position.  

While we recover also the fact that the saturation is reached at higher field when α>45°, we 

observe some plateau for both directions of the applied field. Also the saturation field is almost 

an order of magnitude higher than in the experiment. We believe that such discrepancies 

comes from the size of the simulated sample. Indeed, as it is only few µm², it is much more 

difficult to saturate the edge of the sample due to the local demagnetizing field. This effect is 

also present of real samples but as they are mm², edge effects are negligible in the magnetic 

response of the sample. The second effect of the size of the simulated sample is a much lower 

density of domain walls that can be created to switch the magnetization as compared to real 

samples. These two effects naturally increase the saturation fields.  

 

 Let’s note that it is very difficult to estimate the value of this uniaxial anisotropy from 

the MOKE measurement. Indeed, as the switching occurs through domain wall nucleation 

and propagation, no direct value of 𝜇0Hu can be obtained from the measurement of µ0Hc. 

Moreover, the amplitude of this anisotropy is much lower than the value of the cubic 

anisotropy and it is very difficult to distinguish both contributions in the measurement of the 

saturation field within the uncertainty of the measurement. Finally, direct comparison with 

micromagnetic simulations is also tricky. Indeed, the measured samples are 3 x 3 mm² while 

the simulated sample is 5 x 5 µm². Size effect plays an important role for the value of the 

switching field, first because of the effect of the dipolar field and for the nucleation and 

propagation of domain walls. Then micro magnetic simulations allow to determine the basic 
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mechanisms but don’t give absolute values of the uniaxial field. FMR measurements will show 

that this additional anisotropy has an amplitude below 20 Oe.  

  

 
 

Figure 4.24: simulated switching mechanisms for fields applied at 30° from the easy axis 1. 

Switching from positive b) to negative f) applied field occurs through the growing of the 

central magnetic domain pointing in the –X direction as shown in c), d) and e). 

Finally, we need to discuss the origin of the additional uniaxial anisotropy. Up to now 

there is no clear explanation for it. In a previous work [11 Ortiz], we suggested that uniaxial 

anisotropy in CMS deposited on MgO could originate from the presence of terraces on the 

surface of MgO substrate crystals. Indeed, some studies suggest that nanometer-scale steps 

in MgO substrate induce an in-plane magnetic easy direction perpendicular to the step edge. 

This effect was also accounted for the uniaxial anisotropy in Fe3O4//MgO(001) [12 McGuigan], 

Fe//W(001), [13 Chen], Fe//Ag(001), and Fe//Au(001) thin films [14 Leeb]. The mentioned 

references, [12-14], suggested that the origin of this magnetic anisotropy can arise from the 

preferential alignment of structural defects with step edges. While Leeb et al. pointed out that 

the magnitude of the magnetic anisotropy is determined by the large lattice out-of-plane 

mismatch which gives rise to strong strain in the vicinity of monoatomic steps. 
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Figure 4.25: simulated switching mechanisms for an external field applied at 60° from the 

easy axis 1. The switching occurs through the propagation of the 90° domain walls in order 

to favor domains with magnetization pointing in the negative Y direction as shown in d) and 

e).  

 Additionally, the lattice mismatch between the substrate and the thin films is often 

accounted for a tetragonal distortion of the cell, with the product a²c constant (iso-volume 

distortion), inducing strain anisotropy. This strain anisotropy has been often considered as 

the origin of the superposed magnetic uniaxial anisotropy observed in many cubic systems. 

The uniaxial anisotropy has been found to be either in one of the cubic easy axis direction, for 

example in Co2FeAl [16 Belmeguenai], or in one of the cubic hard axis, for example in Iron 

[15 Baker]. However, Pandey et al. [3, 17 Pandey] have recently studied the magneto elastic 

anisotropy induced by lattice mismatch for thin films of CMS deposited on either MgO or STO 

substrate. In their work they observe a clear out of plane anisotropy induced in the CMS 

deposited on STO, but no significant magneto-elastic anisotropy is induced for CMS deposited 

on MgO. 

 

 As demonstrated by X-ray diffraction, our samples show also a tetragonal distortion which 

could be the origin of the uniaxial anisotropy in our sample. Even if our films are completely 

relaxed, we will see that FMR measurements prove this superposed uniaxial anisotropy. In 

the next chapter, we will show that ion irradiation increases the out of plane deformation of 

the alloy which goes along an increased amplitude and a rotation of the uniaxial anisotropy, 

supporting the idea that the tetragonal distortion is at the orgin of the uniaxial anisotropy. 

 



124     Chapter 4: Structural and magnetic properties of “as deposited” CMS Heusler alloys 

 

4.2.2 Domain walls observation by Lorentz microscopy 

 As presented in chapter 3, Lorentz microscopy is a powerful tool to image and study 

the geometry of domain and domain walls in a ferromagnetic material. Here we apply this 

technique to study the shape of the domain walls in the CMS samples and verify the validity 

of the switching mechanisms presented in the previous section.  

 

 Experiments were carried out at the CEMES laboratory by Dr. Luis Alfredo Rodriguez 

using Hitachi HF-3300 (I2TEM-Toulouse) microscope operated at 300 kV. The I2TEM 

microscope is especially dedicated to study magnetic samples by electron holography and 

Lorentz microscopy. It is equipped with an image corrector (CEOS B-COR) to correct off-axial 

aberrations and has a cold field emission gun that emits highly coherent electrons with a very 

high brightness of about ~ 107 A/cm2.sr. These two features allow resolving magnetic contrasts 

with a very good signal-to-noise ratio. Examples of TEM Lorentz mode images are presented 

in Figure 4.25 for sample N°3.  

 

This sample has been dedicated to this experiment and prepared for an in-plane view 

sample preparation. We note that, no magnetic field has been applied prior to the observation, 

so it is observed as inserted in the TEM sample holder. As explained in chapter 3, contrasts 

due to domain walls can be observed when defocusing the image as shown in Figure 4.25-b 

and 4.25-c. Clearly we observe the different features predicted by micromagnetic simulations. 

Indeed, we observe mainly 90° domain walls, especially close from the edge of the central hole 

(this is done to decrease locally the thickness of the sample so the incoming electrons are able 

to penetrate the material). Moreover, we also observe some particular contrast as shown in 

Figure 4.25-c corresponding to a zoom of the yellow box in Figure 4.25-b. Here we recognize 

the cross-tie domain walls which appear around the coercive field in the MOKE experiments.  

 

 
 

Figure 4.25: Low-magnification Lorentz images for the sample N°3 recorded at a) in-focus and 

b) out-of-focus conditions. In c), a zoom image of b) to observe the exotic magnetic contrast 

(yellow box). The intensity contrast has been forced in the defocus images to enhance the 

visualization of DWs. The yellow arrows show the direction of the magnetization deduced 

from the out of focus image in the different domains. 

A closer look of the cross-tie domain wall is presented in Figure 4.26. They can be understood 

as a succession of vortex states with the same polarity and chirality. The white contrast 

observed in Figure 4.26-a. corresponds to the zone for which spins of two surrounding vortices 
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rotates in opposite direction. In this part, the Y component of the magnetization points either 

in the + or – direction leading to a difference of contrast as sketched in Figure 4.26-d. 

 

 
Figure 4.26: (a) Defocus image recorded around a complex DW configuration. (b) Magnetic 

color map of (a) by solving TIE. White arrows represent the average magnetization orientation 

of each domain. (c) A zoom of the yellow box in (b) where white lines represent the magnetic 

flux. (d) A simple cartoon representing the magnetic structure of the DW. Color arrows 

represent the local magnetization orientation while bright/dark lines and dark spots 

correspond to the magnetic contrast observed in the defocus image. e) OOMMF simulations 

of cross tie domain walls. 

 

 

4.2.3 FMR Dynamic properties measurements 

Ferromagnetic Resonance (FMR) is a common and powerful technique which is 

used to extract the magnetic parameters of a ferromagnetic material. In this 

section we will present the different geometry used in this work to extract the 

magnetization, the gyromagnetic ratio, the anisotropy and the exchange values 

of the three samples. Then we will present the measurement of the linewidth and 

discuss the value of the Gilbert damping extracted from the FMR.   

 



126     Chapter 4: Structural and magnetic properties of “as deposited” CMS Heusler alloys 

 

4.2.3.1 Extraction of magnetic parameters. 

 

 Methodology: 

 

 As presented in chapter III, in our FMR set-up, a microwave voltage is injected in the 

stripline and a modulation technique is used to measure the absorbed power signal by the 

magnetic film placed on the stripline. This technique allows for a direct inductive coupling 

between the stripline and the sample.  The lateral dimensions of the studied samples range 

between 4*4 for samples of series N°1 and 3*3  mm² for series N°2 and N°3. These dimensions 

are bigger than the stripline width (400 µm). This leads to a non-uniform excitation field and 

thus we are not in a pure FMR geometry where the microwave excitation field is uniform over 

the sample. Indeed, we are in a configuration of surface spin waves excitation. However, 

considering the maximum wave vector that can be excited k=2π/L with L = 400 µm, and taking 

into account the corrections to the FMR frequency (chapter 2 equation 2.78), we find that that 

the effect of the finite size of the stripline shifts the resonance frequency by an amount of 

approximately 4 MHz which corresponds to a field shift of about 0.2 mT. Such a shift value is 

below the uncertainty of our measurement which is about 0.3 mT. Therefore, considering a 

uniform mode, formulas 2.54 to 2.56 will be applied to recover the magnetic parameters of the 

samples.    

    

 A typical FMR spectrum for different excitation frequencies is presented in Figure 

4.27. The magnetic field is scanned from 0 to 450 mT. We can see that the signal corresponds 

to the derivative of the imaginary part of the susceptibility. However, and as explained 

previously, signals always contain a small contribution from the real part of the susceptibility 

due to the sample length, allowing for a small propagation effect, and also because the 

propagating mode of the stripline is not purely TEM. Then our data are fitted with a function 

of the form:  

 

𝑌 ∝ 𝑐𝑠𝑡 +
𝑑𝜒′

𝑑𝐻
cos𝜑 +

𝑑𝜒′′

𝑑𝐻
sin 𝜑     (4.14) 

With φ an arbitrary dephasing angle and  𝜒 =
𝑐𝑠𝑡

(𝛾𝐻0−𝛾𝐻𝑟𝑒𝑠)−𝑖𝛼(
𝛾Δ𝐻

2𝛼
)
= 𝜒′ + 𝑖𝜒′′ =

𝑐𝑠𝑡(𝐻−𝐻𝑟𝑒𝑠)
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2+(
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2
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𝑖
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Δ𝐻

2
)
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2
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 It can be seen in figure 4.27 that the angle φ, in this case, is very small ( < 10°). The 

Symbols correspond to experimental data, while the full lines are the fit obtained from 

equation 4.14. From the fit we are able to deduce the value of the applied field at the resonance 

as well as the linewidth of the signal ΔH which allows to study the relaxation parameters, 

that will be presented in section 4.2.3.2. Interestingly, we will show that the different CMS 

samples studied in this manuscript show some clear asymmetry of the resonance peaks due 

to multiple resonance with very close resonance fields and linewidths.  
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Figure 4.27: A typical FMR spectra at different frequencies. 

 

 In our work, FMR measurements have been performed in different geometries 

depending on the applied magnetic field orientation with respect to the film’s surface. In the 

first case, the external magnetic field is applied in the plane of the sample (i.e. 𝜃𝐻 = 90°). The 

maximum external field can reach about 450 mT and the air gap is 8 cm. In this geometry the 

external field has been applied in either the easy or hard axes directions for measurements 

of Hres vs. fres (Figure 4.28-a). For this measurement the sample is rotated and the 

electromagnet is kept at a fixed angle with respect to the sample holder. It allows staying 

always in the “Surface Spin Waves configuration”. We also performed measurements of the 

resonance field Hres as a function of the angle 𝜑𝐻  of the external field with respect with one 

easy axis at constant excitation frequency (Figure 4.28-b). In the latter, the electromagnet is 

rotated with respect to the sample holder with a relative angle variation between 0 and 180°. 

Let’s note that when φ𝐻~ 90°, we are in the Magnetostatic Backward Volume Waves 

(MSBVW) configuration. However, here also the field shift due to MSBVW is close to 0 MHz. 

Moreover, we verified that we observe the same resonance field if φ𝐻 =90° or if φ𝐻=0° when 

the sample is rotated by 90°. The only difference relies on the measured amplitude signal 

which is much smaller if φ𝐻 = 90° as the pumping field is parallel to the magnetization.  

 In the second experimental geometry, the field is applied perpendicular to the plane 

of the layer (i.e. 𝜃𝐻 = 0°). An example of such measurement is presented in Figure 4.28-c). In 

this configuration, we modify the poles of the electromagnet so the magnetic field can reach a 

value of 1.6 T and the air gap is decreased to 2 cm.  

 By fitting all the different dispersion relations fres vs. µ0H0 and Hres vs. φ, we were 

able to extract the values of the gyromagnetic ratio 𝛾/2𝜋, the magnetization µ0Ms and the 

anisotropy field µ0Hk. The latter parameter being the simplest one to determine as it 

corresponds to the inflexion point in the fres s. µ0H0 curve in the in-plane hard axis direction 

(figure 4.28 a).  
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Figure 4.28: Example of measurements for the different experimental configurations used in 

this work. In a), dispersion relation fres vs. 𝜇0H0 for in-plane measurements. The points 

corresponds to experimental data and the solid lines to the fit using equations 2.54 and 

2.55. b), FMR angular measurements of 𝜇0H0 vs. 𝜑 at 13 GHz. c) Out-of-plane 

measurements of fres vs. 𝜇0H0. The line corresponds to the fit using equation 2.56. 

 

We will now present the results of FMR spectra for the reference samples of the three series 

and try to correlate the magnetic properties to the structural analysis presented in sections 

4.1.2 and 4.1.3.  

 

 Sample N°1: 

 

 Two examples of recorded absorption spectra are shown in Figure 4.29. The first one 

presents the FMR signal for an applied field parallel to the easy axes, i. e. [110] and [11̅0],  

(Fig. 4.29-b) while the second one corresponds to an applied field parallel to the hard axes, i. 

e. [100] and [010] (Fig. 4.29-c). The excitation frequency field is 16 GHz for all those mentioned 

spectra measurements.   
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 The major feature encountered in this sample is that two peaks are clearly visible for 

one easy axis direction while two peaks are always visible in the two hard axis directions. As 

these measurements are carried out in the saturated regime, the two peaks cannot be 

accounted for the non-saturated modes like edge modes for example. Our assumption is that 

they correspond to two distinct crystal order phases with different magnetic parameters. This 

assumption is supported by the structural investigation presented in sections 4.1.2 and 4.1.3. 

Indeed, we showed that this sample presents about 75% of L21 order and about 25% of B2 

phases. Then we believe that these two crystal orders present two different set of magnetic 

parameters. Our assumption is also supported by FMR measurements on other kind of 

materials such as Co2MnGe [18 Belmegeunai] for example which exhibit multiple peaks due 

to different crystal orders. Let’s note that even if FMR is an inductive technique, and so the 

amplitude of the signal is supposed to be proportional to the magnetic volume of the crystal 

order, it is very difficult to relate one peak to one crystal order as it is. Indeed, the amplitude 

of the signal strongly depends on its linewidth. 

  

 
 

Figure 4.29: a) a schematic presentation of easy and hard axes directions in CMS sample. 

FMR absorption spectra of N°1 at 16 GHz for both b) and c) with two modes along easy and 

hard axis. 

 

 Another interesting feature is the shape of the different peaks. Indeed, while we can 

observe two peaks for the easy axis 2, we observe only a single asymmetric peak for the easy 

axis 1 for all excitations frequencies. The asymmetry shape of the peak reflects the fact that 

the two modes are “mixed”. Similarly, for the hard axis, the amplitude of the two respective 

peaks seems to be inverted when the sample is rotated from one hard axis to the other. This 

result can only be explained if something is breaking the fourfold symmetry of the system, at 

least for one of the two crystal orders. Indeed, it is sufficient that only one mode shows an 

asymmetric behavior to modify the entire spectrum.  
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 Naturally, one can think about the uniaxial anisotropy detected by MOKE 

measurements. If the anisotropy is aligned with the easy axes, one expects a shift of the 

resonance fields between the two easy axes while the FMR signals in the hard axes are at the 

same positions. This is what we observe, within the uncertainty of our measurement, a shift 

in the easy axis resonance at least for the mode 2 as shown in figure 4.30.  

 Moreover, another difference we observe when fitting the experimental data, is 

that the amplitude of the different peaks are always different. For example, the 

amplitude ratio of the primary peak/ secondary peak in  the fitted curves has a value 

of 1.5 in figure 4.30-a) and 6 for the blue fitted curve in 4.30-b. Despite different 

amplitude ratios depending on the orientation of the field, we always observe a peak 

with lower amplitude in agreement with the fact that we have different crystal order 

in the sample with different volume. Therefore we believe that the two resonance modes 

exhibit anisotropy of the linewidth as a function of the direction of the applied field. This 

effect is expected in crystals as the damping tensor reflects the symmetry of the system. 

However the two hard axes on one hand and the two easy axes on the other hand should be 

equivalent. Here, we believe that the relaxation differs for every direction of the applied field. 

We will develop this point in the next subsection 4.2.3.2 devoted to the damping and 

relaxation mechanisms.  

 Let’s note that it is more difficult to define the value of the linewidth for each mode 

when the field is applied in the easy axis 1. Indeed we show in Figure 4.30-b two examples 

(red and blue lines) of simulated signals which are in very good agreement with the 

experimental data. While the resonance fields are the same as for the easy 1, the amplitude 

and linewidths of the two modes are different, especially for mode 2. Then it is extremely 

difficult to get a precise measurement of the linewidth of the two modes if the peaks are not 

sufficiently resolved. To show how much the two peaks are mixed, we also fitted this curve 

with a single peak (green line), and the agreement is also very good. However the dephasing 

between the real and imaginary part φ reaches 18°, which is quite important. This is why we 

can state that when a peak is very asymmetric, it contains most probably two resonant modes. 

The situation is quite similar when the field is applied in the hard axis 1 direction. Even if 

the mode 1 is clearly visible, it is very difficult to determine with a good precision the value 

of the linewidth if the peak is not well resolved.   
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Figure 4.30:  absorption spectra at 16 GHz as a function of external field for CMS N°1 along 

the two easy axes in a) and b) and the two hard axes in c). Experimental data are presented 

as points and the solid lines correspond to linear fit with different adjustment parameters 

using equation 4.14.  

 

In order to determine the magnetic parameters corresponding to the two modes, we 

use the spectra for which the peaks are well resolved. The evolution of the resonance field as 

a function of frequency for in-plane and out-of-plane configuration are presented in Figure 

4.31-a) and 4.31-d, respectively. Only one easy and one hard axes are drawn here. Figure 

4.31-b is a zoom on the black box in Figure 4.31-a, to show the small difference between the 

two phases. Figure 4.31-c corresponds to the angle measurement of the resonant field as a 

function of the in-plane angle between the applied field and the easy axis at 13 GHz. The solid 

lines in the different curves correspond to the adjustment using equations 2.54 to 2.56.   

 In figure 4.31-a, we also show the first standing spin wave modes (SSW) measured in 

the direction of the easy axis 1 and hard axis 1 direction. This mode is an exchange dominated 

excitation in the thickness of the layer that appears at lower magnetic fields than the uniform 

mode as shown in Figure 4.31-e. It allows to extract the value of the exchange constant, A, 

Indeed, in the in-plane configuration and for an external field applied either parallel to the 

easy or hard axis, the dispersion relation that relates the resonance frequency of the SSW to 

the applied field (following equation 2.85 in chapter 2) is expressed as:  

 

  SSW Easy axis:      𝒇𝒓𝒆𝒔 =
𝝁𝟎𝜸

𝟐𝝅
[(𝑯𝟎 +𝑯𝒌 +

𝟐𝑨

𝝁𝟎𝑴𝒔
𝒌𝒛,𝒏
𝟐 ) (𝑯𝟎 −

𝑯𝒌

𝟐
+

𝟐𝑨

𝝁𝟎𝑴𝒔
𝒌𝒛,𝒏
𝟐 +𝑴𝒔)]

𝟏/𝟐
        (4.15) 

 

   SSW Hard axis:      𝒇𝒓𝒆𝒔 =
𝝁𝟎𝜸

𝟐𝝅
[(𝑯𝟎 −𝑯𝒌 +

𝟐𝑨

𝝁𝟎𝑴𝒔
𝒌𝒛,𝒏
𝟐 ) (𝑯𝟎 −𝑯𝒌 +

𝟐𝑨

𝝁𝟎𝑴𝒔
𝒌𝒛,𝒏
𝟐 +𝑴𝒔)]

𝟏/𝟐
      (4.16) 
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Where 𝒌𝒛,𝒏
𝟐 =

𝒏𝝅

𝒅
, with 𝒅 being the thickness of the CMS layer (≈42 ±1 nm), n corresponds to 

the pinning mode and A is the exchange stiffness constant. To calculate the exchange value, 

we consider the first excitation mode with n=1. Moreover we consider a perfect pinning at the 

surfaces.  These assumptions are supported by the fact that, even if the film thickness is well 

below the skin depth, the amplitude of the microwave field is slightly different between the 

two surfaces of the sample. The pumping field being non-uniform in the thickness of the layer, 

it allows for the excitation of the first mode. Rigorously, the pinning parameters p and the 

mode index n in equation 2.84 could be determined if we could have observed at least 3 

standing spin waves modes [19 Wigen]. However, the frequencies of the modes with n>1 are 

higher than 30 GHz, the limit of our microwave source. Finally, as the signal is very small it 

is impossible to distinguish the contribution of the two respective phases and the exchange 

value is calculated considering the parameters of mode 1.   

 

The deduced parameters for µ0Ms, µ0Hk, the gyromagnetic ratio 𝛾/2𝜋 and the 

exchange value A are presented in table 4.4. We obtain very similar values of the magnetic 

parameters for each mode observed in the FMR spectrum. First the magnetization values are 

very close from the theoretical prediction. Taking into account the lattice parameters obtained 

by X-ray diffraction, we get 4.88 and 4.85 𝜇𝐵/𝑓. 𝑢 for modes 1 and 2 respectively, to compare 

with the theoretical prediction of 5 µB for perfect L21 or B2 structure. This result is also in 

very good agreement with the structural studies. Then we attribute the two resonance modes 

to the B2 and L21 crystal order. The small decrease of the magnetic moment as compared to 

theoretical value is most probably due to a small amount of Co-Si exchange in each phase (we 

remind that the Co/Si exchange parameters has been found to be around 0.04 for this sample). 

We confirm the average value of the magnetization with PPMS measurement (Figure 4.32). 

We obtain average magnetization amplitude of 1.26 ± 0.02 T for CMS Heusler alloy. The 

uncertainty on the PPMS measurement is due to the uncertainty on the exact dimension of 

the sample.  

 

The main difference between the two modes concerns the anisotropy. First we 

succeeded to fit the angle dependence of the resonant field of mode 2 taking into account a 

very small uniaxial anisotropy of µ0Hu ~0.9 mT in the easy axis 2 direction, as expected from 

MOKE measurement. This superposed anisotropy seems to be absent for mode 1. In order to 

fit this uniaxial anisotropy for mode 2, we include in the calculation of the total energy of the 

system a term of the form Ku.Sin²(𝛽), with 𝛽 the angle of the magnetization with respect to 

easy axis 1.    

 

We also deduced cubic anisotropy values which are more important than the values 

generally reported for CMS deposited on MgO, for example, [20 Yilgin, 21 Gaier] but 

equivalent to the ones previously reported by Ortiz et al. This can be related to the deduced 

value of the g factor calculated from g =
𝜸∗𝟐𝒎𝒆

|𝒆|
. Indeed we obtain values of g ≈ 2.05 (considering 

the mass of a free electron) for both modes. This value is in agreement with reported values 

in literature for CMS ([4 Belmeguenai, 2 Rameev, 23 Hamrle and 1 Ortiz]) of 2.05 or 2.04.   
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Figure 4.31: Dispersion relation fres vs. µ0H0 in CMS N°1 for a) in-plane and d) out-of-plane 

configuration. Figure b) corresponds to a zoom on the two modes for the black box in a). c) 

Angular dependence of the resonance field at 13 GHz. e) FMR signal at 22 GHz in the easy 

direction showing both the FMR and SSW modes. 

 

 

  According to the Kittel formalism for ferromagnetic material with small orbital 

moment, 𝑔 can be related to the ratio of orbital over spin moment such as (g − 2) = 2 (
µL

µs
). 

Then we believe that our sample shows a small contribution from orbital moment. As the 

anisotropy relates the orbital and spin moment through the spin-orbit coupling, the orbital 
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contribution is maybe the origin of the large value of the cubic anisotropy. This assumption 

will be supported by the effect of ion irradiation on the cubic anisotropy in chapter V. 

Moreover, the slightly lower value of the anisotropy constant for the mode 2 could be expected 

in the B2 phase due to the disorder on the Mn and Si sites which change the local environment 

of the Mn atoms carrying most of the magnetic moment. Therefore, we attribute the mode 2 

to the B2 order and the mode 1 to the L21 order. Further study of the FMR linewidth (see next 

subsection) wil support this assumption.  

 Finally, we found a value of the exchange constant, A, close to the values reported in 

literature for L21 structure. Indeed the exchange constant is found to range between 19 and 

23 pJ/m as mentioned in [24 Ritchie, 23 Hamrle and 3 Pandey]. This exchange constant value 

is in a good agreement with the values of the magnetization. Indeed the magnetization 

depends on the splitting of spin up and down energy states which is related to the strength of 

the exchange spitting.    

 
CMS 

sample 

N°1 

Magnetization 

saturation Ms 

(T) 

Anisotropy 

field Hk 

(mT) 

Anisotropy 

constant 

Kc=
𝑯𝑲∗𝝁𝟎𝑴𝒔

𝟐
 

(KJ/m3) 

Uniaxial 

Anisotropy 

field (mT) 

Gyromagnetic 

ratio 
𝛾

2𝝅
 

(GHz/T) 

Exchange 

constant 

A (PJ/m) 

Phase 

1 

1.26 ±0.02 36±0.2 -18.042±0.2  28.7±0.1 19±0.5 

Phase 

2 

1.25 ±0.02 33±0.2 -16.91±0.2 0.9 28.7±0.1  

 

Table 4.4: Magnetic parameters of the CMS reference sample N°1 for the two phase measured 

by FMR.  

 

 
 

Figure 4.32: PPMS measurements on CMS N°1 with an average magnetization of 1.26 T. 

 

 

 Sample N°2: 

 

Similar treatment has been conducted on sample N°2. Examples of the different 

measurements are shown in Figure 4.33. For this sample we were only able to distinguish 

one resonance peak. However, we still notice an asymmetry of the peak shape which could 

mean that we have two modes with very similar magnetic parameters that are mixed in the 
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measured spectra. We also note a small shift of the resonant field of 1.7 mT for the easy axis 

2. This shift does not exist for the hard axes (within the precision of the alignment of the 

applied field with respect to the hard axis, which is less than 1°). This means that we have a 

uniaxial anisotropy superposed to the easy axis 2, confirming the MOKE experiment. The 

presence of the additional uniaxial anisotropy allows fitting the angle dependence of the 

resonance field as a function of the angle φ (Figure 4.33-e).  

 

 
 

Figure 4.33: FMR absorption spectra for CMS N°2 for in-plane configuration along a) easy 

axes at 18 GHz and b) hard axes at 17 GHz.  fres vs 𝝁𝟎H0 for c) in-plane and d) out-of-plane 

configurations. In e), angular dependence of resonance fields at 20 GHz. 

 

The magnetic parameters extracted from the simulation are presented in table 4.5. The 

amplitude of the uniaxial anisotropy µ0Hu is found to be about 1.5 mT. While we observe the 
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same value of gyromagnetic ratio as for sample N°1, the cubic anisotropy constant is much 

higher while the exchange constant is almost half of sample N°1. It is surprising to have an 

increased value of the cubic anisotropy without any change of the gyromagnetic ratio. The 

value of the gyromagnetic ratio 𝛾/2𝜋 means that the amplitude of the orbital and spin moment 

are similar to sample N°1. The increased cubic anisotropy signifies an increased spin orbit 

interaction. Then it is most probably the value of the spin orbit constant, λSO, which must 

differ from sample N°1.  

Moreover, the magnetization amplitude and exchange constant are found to be lower 

than for the sample N°1. Even if no quantitative study of atomic disorder have been conducted 

on this sample we already stated that it shows some degree of L21 order but Co/Mn, Co/Si and 

Mn/Si exchanges are fairly to be considered. Dealing with the Mn/Si disorder (B2 type 

disorder), Gaier et al. have obtained an exchange value of 18 pJ/m for the pure B2 phase. 

Therefore, we assume the reduced value of the magnetization and exchange amplitudes to be 

related to an important Co/Mn and/or Co/Si disorders.    

 

 Magnetizati

on 

saturation 

Ms (T) 

Anisotropy 

field Hk 

(mT) 

Anisotropy 

constant 

Kc=
𝑯𝑲∗𝝁𝟎𝑴𝒔

𝟐
 

(KJ/m3) 

Uniaxial 

anisotropy 

field Hu 

(mT) 

Gyromagnet

ic ratio 
𝛾

2𝝅
 

(GHz/T) 

Exchange 

constant 

A (PJ/m) 

CMS 

sample 

N°2 
1.24 ±0.02 53±0.2 -26.14±0.2 1.5±0.2 28.8±0.1 10±0.5 

 

Table 4.5: Magnetic parameters of sample N°2 deduced from FMR measurements presented 

in figure 4.33.  

 

 

 

 Sample N°3: 

 

 The situation for sample N°3 is somewhere between samples N°1 and N°2. Indeed, as 

shown in Figure 4.34-a and 4.34-b, two modes are visible for the applied field parallel to the 

hard 2 direction while it is barely visible above 19 GHz in the easy axis 1 direction. For the 

two other magnetic directions only a single resonance peak is observed.  

 The main difference with sample N°1 is that not only the amplitude of the peaks 

change when going from the hard axis 1 to the hard axis 2, but also the position of the peaks 

with a clear shift of mode 1 of about 5 mT at 19 GHz. Even if HAADF-STEM only shows L21 

order for this sample, we believe that it most probably shows some inclusions of B2 order in 

the matrix. The L21 order being clearly predominant over the B2 phase in terms of volume. 

Due to the difficulty to separate both contributions in the FMR spectra (except for the hard 

axis 2), only the magnetic parameters will be extracted for the main mode corresponding to 

the L21 phase.   

 Once again, the shift of resonance field when going from one hard axis to the other can 

be explained by the presence of an additional uniaxial anisotropy. However this time it is 

superposed with the hard axis 1 (let’s note that most probably the minority mode shows no 

additional anisotropy). Our assumption is also supported by angle measurements that are 

perfectly fitted considering the main mode with a superposed uniaxial anisotropy (figure 34-

d) in the hard axis 1 direction. As already mentioned, tetragonal distortion of the cell has been 
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proved to induce such kind of anisotropy in Iron for example in the case of doping with Dy 

atoms. This situation is different from sample N°1 and N°2 for which we observed a uniaxial 

anisotropy superposed to the easy axis. The first explanation for this difference could be the 

amplitude of the out of plane lattice parameter which is higher for the sample N°3 than for 

sample N°1. Another possibility relies on the nature of the atomic plane being either the Co 

planes or the Mn-Si planes in contact with the MgO substrate. However, further structural 

characterization studies would be necessary to clarify this point.    

 The values for the different magnetic parameters obtained from the different fits are 

presented in table 4.6. The cubic anisotropy, exchange and gyromagnetic factor values are 

similar to sample N°1 while the magnetization is slightly lower. This can be due to the higher 

Co-Si exchange deduced from by X-ray diffraction with Cu source.  

  

 
 

Figure 4.34: FMR absorption spectra for CMS N°3 for in-plane configuration along a) easy 

axes and b) hard axes at 19 GHz.  c)  fres vs. H0  for in-plane SSW and uniform mode 

configurations.  In d), angular dependence of resonance fields at 13 GHz.  
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Magnetization 

saturation Ms 

(T) 

Anisotropy 

field Hk 

(mT) 

Anisotropy 

constant 

Kc=
𝑯𝑲∗𝝁𝟎𝑴𝒔

𝟐
 

(KJ/m3) 

Uniaxial 

anisotropy 

field Hu 

(mT) 

Gyromagnetic 

ratio 
𝛾

2𝝅
 

(GHz/T) 

Exchange 

constant 

A (PJ/m) 

CMS 

sample 

N°3 
1.25 ±0.01 29±0.5 -14.4±0.2 2±0.1 28.7±0.1 18±0.5 

 

Table 4.6: Magnetic parameters obtained for sample N°3 from FMR measurements 

presented in figure 4.34. 

 

In the next subsection, the different measurements of the linewidth in different 

configurations and the deduced value of the gilbert damping coefficient 𝛼 are presented for 

the three studied samples.  

 

 

4.2.3.2 Study of dynamic relaxation: anisotropic damping 

Heusler alloy and especially Co2MnSi is supposed to show very small damping 

coefficient as compared to other ferromagnetic materials. This hypothesis is based on the half 

metallic behavior of these compounds which limits spin-flip events. Theoretical calculations 

have predicted Gilbert damping constant 𝛼 down to 0.6*10-4 [25 Liu]. To our knowledge, 

values reported in literature for 𝛼 in CMS range between 2.10-3 and 3.10-3 for best. However, 

recently, two studies have reported lower damping values. The first one by Qiao et al. [26 

Qiao] with  𝛼 ~ 9.9*10-4 for one easy axis direction without mentioning the other directions. 

Moreover they have reported that their sample grow in a L21 crystalline order but the deduced 

magnetic moment is only 2.8 𝜇𝐵/𝑓. 𝑢 which is much below the theoretical prediction. Also in 

Qiao et al. study, they have linked the possible lower values of gilbert damping to a lower 

values of magneto-crystalline cubic anisotropy constant as in their study they have a value of 

5.1*104 erg/cc (5.1 KJ/m3) for the in-plane four fold anisotropy constant K. The second study 

was done in the PhD work of A. Neggache on electronic properties on Co1.5Fe1.5Ge and CMS 

alloys. They claim values of 𝛼 ~1*10-3 [27 Andrieu].  

An interesting feature in literature is that only very few studies report any eventual 

anisotropy of the Gilbert damping constant. In Yilgin et al. [20 Yilgin], they show a damping 

constant of 3*10-3 for one easy axis and 6*10-3 for one hard axis. It is useful to remind that, in 

crystal, the damping is normally described as a matrix reflecting the symmetry of the crystal. 

Anisotropic damping is generally reported in uniaxial materials. However, it is generally 

assumed in cubic systems that the damping factor is equal for equivalent crystal directions. 

In our work we show that our samples must probably present different values of 𝛼 constant 

even for equivalent crystal directions.   

 

 

 Sample N°1: 

 

As already explained, it is very difficult to give precise values of the linewidth for the 

two modes when the resonance peaks are mixed up, as shown in figure 4.30. This is the reason 

why in the easy axis 1 direction, we consider only a single resonant peak and we attribute the 
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linewidth to the mode 1 (which will be shown to correspond to the most predominant L21 

order). In addition, the mixing of the two peaks makes difficult the measurement of the 

linewidth in the hard axis 1 direction for the mode 1, as can be seen by the strong variations 

of the green dots in figure 4.35 c. Then for this crystal direction we do not give value of the 

damping coefficient of the mode 1. Also we do not present the linewidth of the two modes for 

the out of plane configuration due to the small number of point measured in the saturated 

regime as shown in Figure 4.28-e.   

 

 
 

Figure 4.35: line width measurements as a function of the applied frequency along easy and 

hard axes for the two observed L21 and B2 phases of sample N°1. In a) and b) the two modes 

are distinguished for easy 2 and hard 2 axes, respectively. While in c) and d), line width 

values (∆𝑯) of L21 and B2 phases and their linear fit are traced for each easy and hard axis 

showing their corresponding damping coefficient 𝜶 and ∆𝑯𝟎.  

 

In Figure 4.35-a) and 4.35-b we compare the linewidth of the two resonance peaks 

measured either in the 2 easy or in the 2 hard directions. Clearly, the mode 1 shows lower 

values of the linewidths than the mode 2, reinforcing the idea that the mode 1 corresponds to 

the L21 order and the mode 2 to the B2, as the latter grows in the form of crystallites in the 

L21 matrix. Then in the following we will consider the two peaks to correspond to the L21 and 

B2 modes and we will refer the mode 1 as the L21 mode and the mode 2 as the B2 mode. 

 The linewidths in the different directions of the crystal are presented in figure 4.35-c 

for the L21 mode and in figure 4.35-d for the B2 mode. For both modes, it appears that the 

linewidth amplitudes depend on the direction of the applied field. However, for both the L21 

and B2 modes, it appears that the damping coefficient is roughly constant for each direction. 
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Then the difference in the linewidth seems to be essentially related to the variation of the 

extrinsic contributions ΔH0. Indeed, for the L21 order, the 𝛼 value is equivalent for the easy 

axis 2 and the hard axis 2. We found values of 1.5 and 1.6*10-3 ± 0.1*10-3, respectively. These 

values are very good with respect to other reported values for CMS and are similar to the ones 

reported for Co2FeAl [16 Belmeguenai]. In the hard axis 1, the dispersion is pretty important 

which avoids a precise value of 𝛼. Finally, 𝛼 is found to increase for the easy axis 1 with a 

value of about 2.1*10-3. The difference between the two easy axes is most probably due to the 

fact that in the easy axis 1 direction, the L21 and B2 peaks are hardly dissociated and then it 

naturally increases the measured linewidth. Similarly, the 𝛼 value for the B2 order in the 

easy axis 2 appears to be higher than for the hard axes. However, we can see in Figure 4.35-

c that the dispersion in the experimental data is very important as the amplitude of the peak 

in the FMR signal is weak and mixed up with the L21 mode. Then it is difficult to clearly state 

about a potential anisotropic behavior of 𝛼 in the B2 order. In conclusion, from these 

measurements, we do not observe neither the expected cubic symmetry nor a clear difference 

between the damping coefficient in the easy and hard axis directions, as reported by others. 

Further insight can be obtained from the evolution of the linewidth as a function of the 

in plane angle φ of the applied field (φ scan) presented in figure 4.36-c and 4.36-d for the L21 

and B2 modes, respectively. The determination of the exact value in this configuration is very 

difficult for two reasons. As both peaks does not show the same dependence with the angle φ 

(as shown by the simulations in Figure 4.31-c), the mixing of the mode and then uncertainty 

on the linewidth values, is reinforced for most of the angle φ. The second reason is due to the 

decrease of signal amplitude with φ. Indeed, in these measurements we change the 

orientation of the field as sketched in the figure 4.36. As already stated, the microwave 

magnetic field generated by the stripline turns from the magnetization perpendicular to 

parallel when φ = 90°. This last configuration corresponds to the excitation of backward 

volume waves and the coupling between the microwave field and the magnetization is 

minimum. An example of such effect is shown in fig 4.36-a. Then it becomes very complicated 

to get a precise measurement of the different linewidth when the signal is almost of the order 

of the experimental noise. 

Despite the experimental limitations, we clearly observe some variations of the 

linewidth as a function of φ for both modes. In principle, the linewidth as a function of φ is 

supposed to reflect the cubic anisotropy [16 Belmeguenai] due to the 
𝜕𝑓

𝜕𝐻
 term in equation 2.38. 

For the L21 mode, we observe two minima of the linewidth, one at 45° corresponding to the 

hard axis 2, and one at 110° with the smallest linewidth. Additionally, the linewidth at 0° 

(easy axis 1) and 135° (hard axis 1) are similar while it is lower around 90° (easy axis 2). 

While we already explained that the linewidth in hard axis 1 is difficult to obtain with 

precision, we do not have a clear explanation why a minimum appears at 110°. For the B2 

mode, the expected fourfold symmetry is observed with minima at 45° and 135° and some 

“plateau” appearing for the easy 2 direction which may be related to the superposed uniaxial 

anisotropy. 

While the main expected feature of the dependence of the linewidth as a function of 

the angle is recovered in the φ scans, the study of the angular dependence of 𝛼 requires further 

analytical simulations. Indeed, a full treatment of the linewidth amplitude as a function of 

either the angle φ or as a function of the resonance frequency must be carried out taking into 

account different contributions. In literature the linewidth in FMR measurement is expressed 

as:  

 

∆H = ∆HGilbert + ∆Hinh + ∆Hmos + ∆H2mag    (4.17) 
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With:  

 ∆HGilbert = 
𝛼

𝜕(2𝜋𝑓)

𝜕𝐻

𝛾

𝑀𝑆
(𝐸𝜃𝜃 +

1

𝑠𝑖𝑛²𝜃𝑒𝑞
𝐸𝜑𝜑), which is angle dependent but reduced to 

𝛼2𝜋𝑓

𝛾
 for 

symmetry axes.  

 ∆Hmos = |
𝜕𝐻𝑟𝑒𝑠

𝜕𝜑ℎ
|
𝑟𝑒𝑠
∆𝜑ℎ, where ∆𝜑ℎ is the average spread of easy axis anisotropy direction. 

This term is evaluated at the resonance. This contribution vanishes along the easy and 

hard axis directions.  

  ∆Hinh reflects the inhomogeneous contribution to the linewidth due to local fluctuations 

such as roughness, thickness, local defects etc… It is frequency and angle dependent and 

its contribution is generally adjusted experimentally.  

 ∆H2mag  is the 2 magnons contribution presented in chapter 2 section 2.5. This term is 

linear in frequency and angle dependent. It is more important in the easy axis than in 

the hard axis. It vanishes in the out of plane configuration.   

 

 An example of a complete treatment of the different term has been performed by 

Belmeguenai et al. on Co2FeAl Heusler alloy [16 Belmeguenai]. An interesting feature of their 

work is that the damping constant 𝛼 measured from the ΔH vs. 𝑓𝑟𝑒𝑠 curves in the symmetry 

axes is of the form 𝛼 +
Γ0

𝐻𝑒𝑓𝑓
, where 𝛼 is the intrinsic damping constant and Γ0 is a constant due 

to 2 magnons scattering. Therefore, the values presented in our work must be seen as 

effective damping, and upper limits of the real intrinsic values of 𝜶.  

 However one limitation of this treatment is that 𝛼 is always considered as a constant 

and angular dependence of the linewidths is adjusted through a full set of constant 

parameters. In order to fit all these parameters it is necessary to have measurement of the 

linewidth vs. the out of plane angle 𝜃ℎ which is not accessible with our set-up. It is also worth 

mentioning that a lower limit of 𝛼 can be obtained from the measurement of ΔH vs. 𝑓𝑟𝑒𝑠 in the 

out of plane configuration since the extrinsic broadening due to 2 magnons is avoided.  

 

 In conclusion, the measured values of the damping coefficient for the L21 phase are 

found to be better than most of the reported values up to now. Additional measurements are 

needed in order to state about the intrinsic value of the damping parameter and its possible 

anisotropic character. The variations of the linewidth amplitude as a function of the crystal 

directions are then accounted to come mainly from variations of the extrinsic contributions 

ΔH0. This term is generally accounted for all the inhomogeneous contribution to the linewidth 

related to the structure of the material, i.e. from atomic dislocations to the mosaicity effect. It 

is worth noting that this constant seems to be always higher for easy axes than for hard axes, 

whatever the L21 or B2 order. We believe that this is due to the presence of the misfit 

dislocation array (see Figure 4.14 for example) in the [100] and [01̅0] directions of the CMS 

to relax the strain with the MgO substrate. These dislocations are sites for spin waves 

scattering leading to an increased extrinsic contribution to the linewidth. The large values of 

ΔH0 seen for all measurements can be accounted also for the crystal inhomogeneity.   
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Figure 4.36: Sketch of the experimental configuration where the external field is rotated in 

the plane of the sample. In a), FMR spectra of sample N°1 at 10 and 100° from the easy axis 

1 showing the decreasing amplitude of the signal when the applied external field gets 

perpendicular to the RF field. b) and c) corresponds to linewidths as a function of 𝝋 for L21 

and B2 phases (experimental data are presented as points with connected lines to visualize 

the evolution of ∆𝑯).   

 

 

 Sample N°2: 

 

 The results of ΔH vs. 𝑓𝑟𝑒𝑠  and ΔH vs. φ treatments are shown in figure 4.37-a) and 

4.37-b. Even if the asymmetry of the FMR peak makes us believe that this sample also shows 

some inhomogeneity of the crystal order, we treated it as a single phase. However, the 

potential mixing of the different resonance peaks could be the origin of an overestimation of 

the linewidth and then of 𝛼.   

 Globally, the linewidths in the four crystal directions are quite similar, except for the 

hard axis 2 which shows the smallest 𝛼 (2.3*10-3). In addition, the highest α value is found for 

the other hard axis. All 𝛼 values are found to be higher than for the L21 phase measured in 

sample N°1. This confirms that the L21 order is not the predominant phase in this sample 

and that the atomic disorder increases the average damping in the alloy.  
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 Further insight can be found in the φ scan measurement performed at 20 GHz 

presented in Figure 4.37-b). Interestingly, the fourfold symmetry is recovered even if the 

symmetry of the curve is not perfect. This measurement does not completely reflects the 

evolution of the ΔH vs. 𝑓𝑟𝑒𝑠  curves at 20 GHz in Figure 4.37-a. One possible explanation for 

this difference relies on the coupling between the magnetization and the RF field. Indeed if, 

as we believe, this sample shows some minority crystal order,   the contribution to the signal 

of this one most probably vanishes with φ, leaving only the contribution of the main phase for 

angles different from 0° or 180°. However, this effect could explain the difference of linewidth 

amplitude between the two easy axes but not between the two hard axes, for which the 

orientation of the pumping field with respect to the magnetization is similar (45 and 135°).  

 Then we wonder if the difference observed in the φ scans reflect some magneto-

mechanic coupling, in relation with the presence of the uniaxial anisotropy in the easy axis 2 

direction. To validate this assumption it is necessary to reproduce the phi scan measurement 

starting from another crystal direction. For example, starting with the sample oriented in one 

hard direction, the two easy axes would be equivalently excited at 45° and 135° and so the 

effect of the minority crystal order on the linewidth will be equivalent. Unfortunately such 

measurements could not be performed on this sample before the end of this thesis.  

 

 
 

Figure 4.37: a) sample N°2 line width measurements as a function of the applied frequency 

along the two easy and hard axes with their corresponding damping coefficient 𝜶 and ∆𝑯𝟎. 

b) Anguar dependence of the line width at 20 GHz. Experimental data are presented as 

squares. The line is a guide for the eyes. 

 

In conclusion, the linewidth of this sample seems to be mainly governed by the chemical 

disorder in the matrix which increases the damping value as compared to the L21 order. 

However some differences in the damping value are observed as a function of the direction, 

for example between the two hard axis, and difference in the linewidth amplitudes are 

recovered in φ scans. As for the sample N°1, inhomogeneity contributions have most probably 

to be considered but additional magneto-mechanic effects could be at the origin of the 

observations. At this point we cannot discriminate between these different contributions.    
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 Sample N°3: 

 Results of the ΔH vs. 𝑓𝑟𝑒𝑠  and ΔH vs. φ for sample N°3 are presented in figures 4.38-

a,b and 4.38-c. φ scans have been performed starting either in an easy axis direction or in a 

hard axis direction.  

 The best 𝛼 value is down to 1.9* 10-3, which is very good taking into account the 

presence of a second minority crystal order, as shown in figures 4.34-a and 4.34-b. We clearly 

observe that the linewidth amplitudes for the easy axes are higher than for the hard axes. It 

appears that both the damping and the extrinsic contributions ΔH0 are always higher for 

easy axes than for hard axes. For the ΔH0, we assume that it comes from the organization of 

the lattice mismatch as proposed for the sample N°1.Then this sample seems to exhibit an 

anisotropic behavior of its linewidth and a possible cubic anisotropy of the damping 

parameter. 

 We notice that the values of the linewidth and of the damping are very close for the 

two hard directions. Then it seems that no correlation appears between the uniaxial 

anisotropy (aligned with the hard axis 1) and the linewidth in the hard axes. However we 

observe some difference of the linewidth and of the damping coefficient between the two easy 

axes (considering the uncertainty of the calculation of α from the dispersion of the 

experimental values of ΔH)1. This behavior is also recovered in the φ scans performed at 13 

GHz presented in figure 4.38 b and c. To verify that the difference of linewidth between the 

two easy axis in the φ scans in 4.38 b were not related to the variation of the amplitude of the 

pumping field with φ, we did the same experiment starting with the sample oriented in a hard 

axis direction (4.38 c), allowing for the same amplitude of the excitation field for both easy 

axis. The clear fourfold symmetry is recovered in each case, with a pronounced difference 

between the two easy axes. 

   

 

 Then it is clear that this sample shows an anisotropic behavior of its linewidth and we 

believe that it is also the case for the damping coefficient. In any case our result is not in 

agreement with other reported work. First, we find that the damping is lower for the hard 

axes directions than for the easy axes directions, in opposite to the work of Yilgin et al. In 

addition, we believe that the damping coefficient for the two easy directions is slightly 

different. As for sample N°2, we wonder if magneto mechanic effects could be at the origin of 

this behavior. Indeed, a clear difference in the damping value of the two hard axes was 

observed for sample N°2 when the uniaxial anisotropy was aligned with an easy axis. For the 

sample N°3 the situation is inversed as the difference of damping is observed in the easy axes 

when the uniaxial anisotropy is aligned with a hard axis.  

  

  

                                                            
1 Let’s note that one source of dispersion of the experimental points for the determination of the 

linewidth in the easy axis 2 direction comes from the mixing of the L21 majority mode and the 

minority one. 
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Figure 4.38: a) sample N°3 linewidth measurements as a function of the resonance 

frequency along the four magnetic directions. Figures b) and c) show the line width values 

(experimental data are presented as points with connected lines to visualize the evolution 

of ∆𝑯) as a function of φ at 13 GHz starting from easy and hard axis, respectively.  
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At the end of this section, a summary of the extracted relaxation parameters for the three 

samples is given in the following table.  

Sample Easy axis1 Easy axis 2 Hard axis 1 Hard axis 2 

N°1 

Phase L21 

 

Phase B2 

𝜶 = (2.1±𝟎. 𝟏)*10-3 
∆𝑯𝟎 = 𝟐. 𝟏 𝐦𝐓 

− 

𝜶 = (1.5±𝟎. 𝟑)*10-3 
∆𝑯𝟎 = 𝟑. 𝟏 𝐦𝐓 

𝛼 = (3.2±0.1)*10-3 
∆𝐻0 = 4.1 mT 

− 

 
𝜶 = (2.6±𝟎. 𝟏)*10-3 

∆𝑯𝟎 = 𝟏. 𝟔 𝐦𝐓 

𝜶 =(1.6±𝟎. 𝟏)*10-3 
∆𝑯𝟎 = 𝟏. 𝟔 𝐦𝐓 

𝛼 = (2.8±0.1)*10-3 
∆𝐻0 = 1.8 mT 

N°2 

 

𝜶 = (2.8±𝟎. 𝟏)*10-3 

∆𝑯𝟎 = 𝟐. 𝟑 𝐦𝐓 

𝜶 = (3. 𝟐 ± 𝟎. 𝟏)*10-3 

∆𝑯𝟎 = 𝟏. 𝟗 𝐦𝐓 

𝜶 = (3.5±𝟎. 𝟏)*10-3 

∆𝑯𝟎 = 𝟏. 𝟑 𝐦𝐓 

𝜶 = (2.3±𝟎. 𝟏)*10-3 

∆𝑯𝟎 = 𝟐. 𝟒 𝐦𝐓 

N°3 

 

𝜶 = (3±𝟎. 𝟏)*10-3 
∆𝑯𝟎 = 𝟏. 𝟗 𝐦𝐓 

𝜶 = (3.4±𝟎. 𝟏)*10-3 
∆𝑯𝟎 = 𝟐. 𝟐 𝐦𝐓 

𝜶 = (1.9±𝟎. 𝟏)*10-3 
∆𝑯𝟎 = 𝟏. 𝟓 𝐦𝐓 

𝜶 =(2.1±𝟎. 𝟏)*10-3 
∆𝑯𝟎 = 𝟏. 𝟒 𝐦𝐓 

 

Table 4.7: damping factor 𝛂 and extrinsic line width ∆𝐇𝟎 values for both the two easy and 

hard axes of the three samples N°1, N°2 and N°3.   

 

4.3 Conclusion  

 

In conclusion of this chapter, we demonstrated that our films present several 

characteristics.  

 First, the sample N°1 and N°3 present two crystal orders. For the sample N°1 the two 

phase corresponds to the L21 and B2 order phases, the first being majority. This is 

confirmed by HAADF-STEM analysis which also shows a complete relaxation of our 

sample by the presence of misfit dislocation at the interface between the CMS layer 

and the MgO substrate.  The L21 order has also been found to be the main phase in 

sample N°3. However a second resonance peak observed in FMR let us think that a 

minority B2 order is also present in this sample. Finally a small amount of Co-Si 

exchange (4 to 6 %) is found for these two samples. 

 The situation of the sample N°2 is different. While the presence of L21 order has been 

observed by X-ray, it is not the main phase in the material. Unfortunately we could 

not perform structural analysis on this series of samples. However, the smaller 

amplitude of the magnetization as compared to the other samples let us think that 

Co/Mn and or Co/Si disorder is more important than for the two other samples.  

 MOKE measurements have shown small coercive fields of about 1 mT for the reference 

samples of series N°1 and N°2. The switching process has been assumed to arise from 

the propagation of either cross tie or 90° domain walls depending on the orientation of 

the applied field with respect to the easy axis.    
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 MOKE and FMR measurements have shown that all samples exhibit a cubic 

anisotropy as expected, with an additional uniaxial anisotropy which can be aligned 

either with an easy or a hard axis. The amplitude of the cubic anisotropy is few tens 

of mT. These values are higher than the one reported in literature but in agreement 

with our previous study [11 Ortiz]. The amplitude of the uniaxial anisotropy varies 

from a few tenth to 2 mT. While the origin of this uniaxial anisotropy is still under 

debate, we attribute it to the tetragonal distortion of the cell observed by X-ray 

diffraction. 

 FMR measurements allowed extracting the static and dynamic magnetic parameters 

of the samples. The magnetization, or magnetic moment, is found to be in good 

agreement with the expected value of L21 or B2 order for samples N°1 and N°3. The 

small discrepancies with respect to theoretical predictions are accounted to the 

presence of Co/Si exchange.  

 The exchange constant value is in agreement with reported values except for sample 

N°2, for which the disorder on Co sites is believed to be responsible of the decrease 

magnetization and exchange values.  Further investigation, for example via Brillouin 

Light Scattering measurement, would be necessary to determine if it is really the 

exchange value constant which is lower than other samples or if it is related to a 

modification of the pinning constant due, for example, to surface effect.  

 The gyromagnetic ratio is found to be 28.7 GHz/T, leading to a g value of 2.05, showing 

a small magnetic contribution from orbital moment.  

 FMR linewidth studies as a function of the frequency or angle φ has been carried out. 

Based on other works, the values of the damping coefficient obtained in our samples 

are believed to be upper limits to the intrinsic damping. This is due to inhomogeneity 

contributions and 2 magnons scattering. The best value of the measured 𝛼 is 1.6*10-3, 

which is to our knowledge close from the best values reported in CMS. In most cases 

the best 𝛼 values are found in hard axis directions, unlike other work reported in 

literature.  

  ΔH vs. fres and ΔH vs. φ measurements let us think for some anisotropic behavior of 

the linewidth for all samples. However, experimental conditions, especially mixing 

modes, leads to strong uncertainty of the measurement.  Further analytical analysis, 

especially taking into account the mosaicity of the sample and the two magnon 

processes, is needed to conclude on this point and especially on an eventual anisotropy 

of the damping coefficient.   
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Chapter 5: Effect of He+ ions 

irradiation on structural and 

magnetic properties of CMS 

Heusler alloys 
 

In this chapter we investigate the effect of He+ ion irradiation on structural and magnetic 

properties of the three studied CMS samples presented in chapter 4 as follows:  

 

- Samples of series N°1: the same substrate has been cut in 4 equivalent pieces of 5 x 

5 mm². One is the reference sample presented in chapter IV and the three others have 

been irradiated at fluences of 1*1015, 5*1015 and 1*1016 ions/cm². The structural 

properties of this series of samples have been studied by X-ray diffraction for the four 

samples and by HAADF-STEM for the reference and 1*1016 irradiated samples. The 

magnetic properties have been studied by MOKE for the reference and 1*1016 

irradiated samples and by FMR and PPMS magnetometry for the four samples.  

 

- Sample of series N°2: this series of samples have been cut into 6 pieces of 3 x 3 mm². 

One piece is the reference sample presented in chapter IV. The irradiation doses for 

the other samples are 1*1014, 1*1015, 4*1015, 1.2*1016 and 1*1017 ions/cm². X-ray 

diffraction 𝜑 scan measurement was only performed on the reference sample to check 

the existence of L21
 phase, even with a weak signal, by CEMES Co source 

diffractometer (Figure 4.9). Thus, we were not able to conduct a quantitative study of 

the atomic disorder on this series. The magnetic properties have been studied by 

MOKE for the reference sample and by FMR for all samples.  

 

- Sample of series N°3: This series of samples have been cut into 5 pieces of 3 x 3 mm². 

One piece is the reference sample presented in chapter IV. The irradiation doses for 

the other samples are 1*1014, 1*1015, 1*1016 and 1*1017 ions/cm². X-ray diffraction 

measurements with Cu source has been performed on the reference, 1*1016 and 1*1017 

irradiated samples. HAADF-STEM analysis have been performed on the reference and 

1*1017 irradiated samples. The magnetic properties have been studied only by FMR 

for all the samples.   

 

 The different results obtained for the reference samples of the three series have been 

presented in the previous chapter. In this chapter we will begin with the simulations of the 

effect of irradiation with He+ ions on the structural disorder of the CMS. Then we will present 
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the structural analysis performed by X-ray diffraction and HAADF-STEM on series N°1 and 

N°3. The last part of this chapter will focus on the evolution of the magnetic parameters 

induced by the irradiation, with respect to the structural modifications.    

 

5.1 Irradiation with Helium ions (He+) at 150 keV 

In the present thesis, the species used for ion irradiation is helium ions. The main goal of 

using light ions, such as He+, was to investigate how the introduction of a controlled disorder 

is possible to promote the advent of partially disordered phases. Moreover, the high kinetic 

energy is chosen to first avoid He+ implantation in the CMS layer and also to minimize local 

defects at low doses. Indeed, ion irradiation can be considered in a very simplified approach 

to act as an annealing process for low doses which can lead to structural improvement.  He+ 

ions irradiation has been used in previous work done by [1-3 Fassbender] to modify the 

magnetic properties of Pt-Co system, resulting from ion-induced interfacial mixing. Also, an 

enhancement of chemical ordering and long-range order L10 in FePt and FePd thin films by 

130 KeV He+ irradiation was reported by Ravelosona et al.[4,5 Ravelosona]. Based on the 

mentioned magnetic and structural properties presented in the previous chapter, Ion 

irradiation of high energy (150 KeV) of different fluences doses range from 1014 to 1017 

ions/cm2 will impact our CMS thin films 

 In our experiments we focused our work on a Co2MnSi layer with a thickness of 42 and 

50 nm. Prior to the experiment, the irradiation process was simulated using either the well-

known SRIM software (Stopping and Range of Ions in Matter) or a homemade IPROS code 

[6-8]. These softwares are based on Monte-Carlo binary collision process. From the output 

results, it is then possible to estimate the Helium range and the concentration distribution of 

displaced atoms in the ternary layer.  

The starting point of the calculation was to reduce as much as possible the presence of helium 

atoms in the Heusler layer and for this reason an energy of 150 keV was chosen. In the 

following section the results of the simulation will be analyzed. 

 

5.1.1 Simulation of Co2MnSi irradiation with He+ ions 

Prior to ion irradiation, the appropriate parameters to predict the helium distribution 

as well as the damage impact of the bombardment on the structural properties of the Heusler 

layer were carried out. For this purpose, simulations of the irradiation process were 

performed using Monte-Carlo binary collision softwares [6-8].  

In the case of He+ irradiation of Co2MnSi two criteria must be fulfilled: (i) a low 

concentration of helium atoms in the active layer and (ii) a low defect density induced by ion 

bombardment. These are the major conditions to ensure a suitable improvement of the 

structural and magnetic properties of the Heusler layer, at least for low fluences. To perform 

this work an atomic density of 8.85x1022 atoms/cm3 for the Heusler film was used and about 

300000 incoming He ions with an energy of 150 keV were launched. 

Figure 5.1 shows the simulated Helium concentration profile as a function of depth for 

a fluence of 1x1014 ions/cm-2. Let’s keep in mind that the CMS layer of 42 or 50 nm thickness 
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is deposited on MgO substrate and covered by a capping layer of MgO (10 nm) to prevent 

oxidation. The simulation was performed for the CMS monolayer of stoichiometric 

composition (50% Co, 25% Mn and 25 % Si atoms). From figure 5.1, we have deduced the 

projected range Rp=486 nm of helium in CMS layer. The profile clearly shows that the peak 

of the implantation concentration is located in the MgO substrate and that the depth at which 

most of the ions stopped in the sample is far below the CMS layer.  In figure 5.2 the He ion 

concentration was plotted in log scale for 3 increasing fluences. The figure shows that in the 

CMS region the concentration of He is about 0.1% of the peak value and may be considered 

as negligible. 

 

Figure 5.1: Helium concentration as a function of depth. 

 

Figure 5.2: distribution of different concentration doses of He+ ions at 150 KeV as a 

function of CMS layer depth. 

In order to estimate the number of defects created along the helium ion trajectory, we plotted 

in figure 5.3 the vacancy concentration of each element of the CMS film as a function of depth. 

The total damage introduced into the crystal lattice at a particular fluence of 1x1014 ions/cm2 

can be estimated taking into account that most displacements resulted in creation of Frenkel 
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pairs the majority of which instantly recombines leaving only about less than 10% of surviving 

vacancies [9 Bernas]. We can notice that in this case the remaining vacancy density is in the 

range of 1019 cm-3 either for Si, Co or Mn. Then finally the experimental fluence was varied 

from 1x1014 up to 1x1017 ions/cm2. 

 

Figure 5.3: Vacancy concentration as depth or Vacancy concentration of Co,Mn and Si for 

1014 ions/cm2 at the Mgo/CMS interface. 

 

5.2 Induced atomic disorder by X-ray diffraction and 

STEM 
 

 

Sample N°1 series: 

The effect of ion irradiation on the atomic disorder of Heusler alloy has been studied 

with the same methodology as presented in chapter IV for the reference samples. A complete 

study has been performed with Cu and Co source on the four samples of N°1 series.  

Examples of the diffraction pattern recorded as a function of either Co or Cu sources 

for the different peaks of interest are summarized in figure 5.4. For each sample the 

calibration of the peak position is performed on its corresponding MgO peak. Therefore, we 

do not consider any deformation in the MgO under irradiation. This assumption is supported 

by the fact that He+ ions are stopped at several hundreds of nanometer away from the 

interface. We assume a constant value of the MgO lattice parameter at the interface with the 

CMS.  

The first observation is that the (111) diffraction peak is still observable for fluences 

up to 1016 ions/cm² meaning that either the L21 (or D03) order is still present in the material. 

We also observe a global decrease of the intensity peak as the fluence increase, which goes 

along an increased linewidth. This is typical for the presence of local defects such as vacancies 

created by the collision cascade of He+ ions.  
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Figure 5.4: X-ray diffraction 2𝜽 scan for reference and 3 irradiated samples of N°1 for Co 

and Cu diffractometer sources. a), b) and c) represents the 111,002 and 022 peaks acquired 

by Co source. d) and e) presents the 002 and 004 peaks acquired by Cu source. 

  

Interestingly, we also observe with both sources a shift in the (002) diffraction peak 

towards low angles compared to the reference sample peak position, indicating an increase of 

the out-of-plane lattice parameter of CMS with the increase of ion fluence. With the Co source, 

we also observe a shift in the (022) diffraction peak while the (111) peak is kept almost at the 

same Bragg angle (from 31.86° to 31.83°). Calculating the lattice parameters (table 5.1) from 

the 2𝜽 Bragg angle of the three peaks with the Co source, we find that only the out-of-plane 

lattice parameter c varies from 5.67 Ǻ for the reference sample to 5.69 Ǻ for the 5.1015 and 

1016 ions/cm² irradiated sample, while the in-plane parameter is kept constant and equals to 

5.63 Ǻ. Same values of the c parameters are obtained from the diffraction peaks with the Cu 

source. Then the most obvious conclusion of this observation is that the irradiation induces a 

tetragonal distortion of the cell but then the volume of the cell is not kept constant with 

respect to the reference sample.  

 GPA analysis performed on HAADF-STEM images obtained from the sample 

irradiated at 1016 ions/cm² have shown similar values of strain deformation as for the 

reference sample. An example of strain calculation is shown in Figure 5.5. As for the sample 

reference, we found the out of plane strain of the order of 34 ± 1.5% with respect to the MgO, 

and no particular additional strain effect is observed as compared to the reference sample. 

This is not surprising. Indeed, the strain in the CMS layer is calculated with respect to the 

MgO. The difference of out-of-plane lattice parameter measured by X-ray for the CMS would 

lead theoretically to a change in the strain with respect to the MgO from 𝜺𝒛𝒛 = 34.6% to 35%, 

so the variation is below the uncertainty of the GPA analysis. For the in plane deformation, 

which is supposed to be constant according to the X-ray diffraction, we found an average value 
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for the irradiated sample of 𝜺𝒙𝒙 = -5.1 ± 0.4 %. This is slightly higher than for the reference 

sample. This could be due to an eventual modification of the MgO parameters under 

irradiation. However the observed difference between the reference sample and the irradiated 

one is also of the order of the experimental uncertainty. Then, we believe that GPA analysis 

is not sensitive enough to detect such small variations of strain induced by the ion irradiation 

as the experimental uncertainty is of the order of the expected variation.  

 

 
 

Figure 5.5: GPA analysis performed on sample N°1 irradiated at 1016 ions/cm2 shows the in-

plane and out-of-plane deformation of -5.1 ±0.4 and 34.1 ±1.5, respectively. 

 

  REF (Å) 1015 (Å) 5*1015 (Å) 1*1016 (Å) 

a 5.63 5.63 5.63 5.63 

c 5.67 5.68 5.69 5.69 
 

Table 5.1: lattice parameter of sample N°1 reference and irradiated ones as a function of the 

ion fluence. 

  

In order to determine the different disorder parameters for the four series of sample 

N°1, the same methodology presented in chapter IV is used for the reference sample. The 

results for the deduced 𝛼, 𝛽 and 𝛾 are presented in figure 5.6. For all samples, we observe that 

the 𝛽 parameter, i.e. Co/Si disorder, remains almost constant (0.04 ± 0.02) whatever the ion 

fluence is used. Additionally 𝛼 increases from 0.14 ± 0.01 to 0.22 ± 0.01 for the reference 

sample and the 1016 irradiated one, respectively. There is a clear step at 5*1015 for 𝛼. Similarly 

the 𝛾 parameter, i.e. Co/Mn disorder, increases significantly for fluences above 5*1015. For 

lower fluences, the Co-Mn substitution (𝛾) is not detectable within the uncertainty of the 

measurements, meaning it is less than 0.02. 
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Figure 5.6: 𝜶,𝜷 𝒂𝒏𝒅 𝜸 atomic disorder percentage of sample N°1 series as a function of the 

irradiated fluences used. 

 

 In order to state about the organization of the induced atomic disorder observed by X-

Ray diffraction, HAADF-STEM has been performed on the sample irradiated at 1016 ions/cm².  

 While the B2 order in the reference sample is only observed in small regions of similar 

size as the black box in Figure 4.13-a in chapter IV, it can be observed in more extended areas 

for a fluence of 1016 ions/cm². This is shown in Figure 5.7-a. The B2 order can be observed 

either from the intensity profile presented in Figure 5.7-b corresponding to the lines in figure 

5.7-a or statistically over the selected area (black box in figure 5.7-a as shown in figure 5.7-c). 

Similar values for the STEM intensity of the Mn and Si columns are measured while the 

intensity corresponding to the Co columns remains higher2. On other part of the sample we 

still observe the L21 order (Figure 5.7-d). Based on this result and in addition to the observed 

increase of the 𝛼 parameter, we suggest that ion irradiation induces a L21 to B2 

transformation in this sample. Moreover we suggest that the transformation occurs around 

the initial B2 grains.  

 Dealing with the increase Co-Mn exchange, we already mentioned that HAADF-STEM 

is not sensitive to this atomic exchange as the Z numbers of both atoms are very close. 

Therefore, it is difficult to state about either D03 grains grow in the initial matrix or if this 

atomic exchange occurs as punctual defects in the entire alloy, including in the B2 phase. This 

issue can be addressed via magnetization amplitude measurements with PPMS. Indeed we 

show in Figure 5.12 that the decrease of the magnetization observed for the alloy is in 

agreement with a model in which we consider a B2 order with magnetization 1.25 T and a 

L21’3 phase with decreasing magnetization. With this model, the calculation of the average 

magnetization is done considering a volume of the B2 phase proportional to α/0.5 (𝛼 = 0.5 

corresponding to a full B2 order) and a L21’ phase proportional to 1-𝛼/0.5. The result of the 

calculation for the magnetization of this L21’ phase is presented in table 5.2. The obtained 

                                                            
2 Note here that the denotation Mn and Si does not have a real signification as we are not able to 

distinguish the two elements. Then we arbitrarily set the first atomic column in blue to be the Mn and 

the red to be the Si in figure 5.7-a. We did the same denotation in figure 5.9-a. 
3 The denotation L21’ is proposed in order to remind that the initial L21 phase has been submitted to 

atomic disorder and does not correspond anymore to a “pure” L21 order.  
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value of the magnetization is in agreement with the one obtained from the FMR measured 

presented in section 5.3.2. Then we think that the Co/Mn exchange arises only in the L21 

phase in this material. The last remaining question to answer is to know if the atomic 

exchange leads to D03 grains in the L21 matrix or if it only appears as local defects. This 

question is difficult to answer based on the measurements performed in this work. However, 

if D03 grains would grow in the initial L21 matrix, we could expect additional resonant peaks 

in FMR. This is not the case, then we believe that the Co/Mn exchange arises as local defects 

in the L21 matrix.    

 

 
 

Figure 5.7: effect of irradiation on the atomic order seen by HAADF-STEM image in a) with 

a profile intensity on two selected lines indicating L21 and B2 regions in b). Statistics were 

done on selected areas to distinguish the two phases in c) and d).  

 

Sample N°3 series: 

 

 For the samples of series N°3, only X-ray diffraction with the Cu source has been 

performed to follow the effect of the ion irradiation. This is due to the small size of the samples 

as the intensity of the diffraction peak are too small to be detected with the Co source 

diffractometer at the INSA.  
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 The evolution of the (002) and (004) peaks for samples irradiated at 1016 and 1017 

ions/cm² are shown in figure 5.8. Similarly to sample N°1, we observe an increase of the out 

of plane deformation but it is found to be more important than for the samples N°1. Indeed 

the out of plane lattice parameter is found to be 5.70, 5.72 and 5.73 Ǻ for the reference, 1016 

and 1017 ions/cm² irradiated samples respectively. These values are very important as 

compared to the expected one and bigger than for sample N°1. Unfortunately no GPA analysis 

could be performed on these samples as the MgO zone is not observable on the HAADF-STEM 

images. Then we could not study the eventual deformation of the CMS with respect to the 

substrate.  

 

 
 

Figure 5.8: Evolution of 002 and 004 diffraction peaks as a function of irradiation fluence for 

the reference, irradiated at 1016 and 1017 ions/cm2 of N°3 series samples performed by Cu 

source diffractometer. 

 As the measurements were done with the Cu source, we can calculate the evolution of 

the Co/Si exchange. The 𝛽 parameter is found to vary from 0.06 to 0.15 and 0.22 for the 

irradiated sample at 1016 and 1017 ions/cm², respectively. Comparing the samples irradiated 

at 1016 for series N°1 and N°3, we observe a clear difference in the evolution of 𝛽 disorder 

parameter. While it was found to be roughly constant for the N°1 series, it increases by more 

than a factor 2 for the N°3 series at 1016 ions/cm².   

This behavior is surprising and one of the most important conclusions we can state is that the 

different samples do not show the same behavior under irradiation. This is a potential 

problem for the reproducibility of the method and implies a full study of the structural order 

for each sample to understand their magnetic properties.  

 HAADF-STEM has been performed on the sample irradiated at 1017 ions/cm² for N°3 

series. An example of HAADF-STEM image is shown for the [110] direction of CMS in Figure 

5.9. The statistics of the maximum amplitude of each atomic column performed on a zone of 

20 x 22 atomic columns are shown in figures 5.9-e and 5.9-f. We clearly see that the Mn and 

Si intensities are very similar and below the intensity of Co. This is similar to what we 

observed for sample N°1. However, the main difference with the sample irradiated at 1016 

ions/cm² of the N°1 series is that here we do not observe variations from one zone of the sample 

to another. This sample looks quite homogeneous with only punctual variations of local 

intensities in the Mn/Si amplitude that could reflect some remaining L21 order as shown by 

the blue circles in figure 5.9-c. HAADF-STEM performed in the [100] direction presented in 
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figure 5.9-b, confirms that the Mn/Si columns have lower intensities than the Co columns 

(figure 5.9-d).  

 At first sight, this sample can then be concluded to be almost completely in the B2 

order. However this result is not in agreement neither with the value of 𝛽 determined by X-

ray nor by the FMR measurements presented in section 5.3.2, for which two crystal orders 

are well separated at 1017 ions/cm2. First, the 𝛽 value is close from the expected value for a 

pure A2 crystal order (𝛼, 𝛽 and 𝛾 are equal to ½, ¼ and ¼, respectively for A2) but this phase 

would be revealed in HAADF-STEM by having the same STEM intensities for all atomic 

columns, including the Co ones, due to the random distribution of the atoms on the different 

atomic sites. This is clearly not observed in our experiment for which the Co intensity is 

always above the one of the Si or Mn columns. Then we do not think that the A2 order is 

present.  

 

 
 

Figure 5.9: HAADF-STEM has been performed on the sample irradiated at 1017 ions/cm² for 

the series N°3 along [110] and [100] CMS directions in a) and b) respectively. Intensity 

profiles in c) show some remaining L21 regions in blue circles while in d) Mn and Si are 

indistinguishable. Statistics in e) and f) show that Co has higher intensities than Mn and Si.   
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 Based on the evolution of the disorder parameters observed in the samples of series 

N°1, we propose the following scenario, sketched on figure 5.10. We believe that starting from 

a L21 order, the effect of irradiation is to induce 2 kinds of transformation. The first one is a 

L21-B2 transition as shown for sample N°1 and in agreement with the STEM profile in sample 

N°3 and FMR measurements presented below. The second transformation concerns only the 

remaining L21 phase for which we believe that Co/Mn exchange first occurs, similarly to 

sample N°1.  Then, above a threshold fluence, Co-Si exchange takes place for the Co atoms 

being on the Mn sites. In this manner, Co atoms can be found on Si sites, leading to a high 𝛽 

value, but Si atoms are not on Co sites, explaining the remaining high intensity of Co columns 

in STEM. Indeed as Co and Mn gives the same STEM intensities (as a first approximation), 

this double exchange scenario would lead to high intensity on Co/Mn columns and lower 

intensities in randomly distributed Mn/Si/Co columns and this phase would not be very 

different in HAADF-STEM image from a B2 order. This phase could be considered as a mix 

of D03 and B2 phase, but not to the A2 order as no Si would be found on Co sites. Let’s note 

that this scenario does not avoid Co/Si exchange also in the B2 order, which most probably 

occurs at very high fluence. 

 If this double exchange scenario is right, it also means that our model for the 

calculation of the disorder parameters is incorrect, at least for fluence of 1017. Indeed, this 

model implicitly considers the symmetric exchange of the atoms positions. This would not be 

the case for double exchange. A complete model for calculating the atomic disorder 

parameters would need a set of individual rate of presence of each chemical entity on each 

atomic site. Also the presence of local defects should be taken into account in the model to 

consider the decrease of the peak amplitude. However, this approach leads to too many 

unknown parameters and is not realistic. Then the model used in this work has most probably 

to be limited to low irradiation fluence.   

  

 
Figure 5.10: proposed scenario of the irradiation effect on CMS samples starting from L21 

phase to D03 (Co-Mn disorder) and then a B’2 (Co-Si disorder) phase. 

  

 Several conclusions can be stated from the structural analysis of the 

irradiated sample. First, out of plane deformation is induced by the He+ 

irradiation. In addition, local defects in the alloy appear for ions fluence above 1016 

ions/cm².  

 The mechanical distortion is accompanied by a modification of the local 

atomic arrangement as demonstrated by the evolution of the disorder parameters 

for the sample of series N°1. Based on this series of sample we believe that, for low 

ion fluence, the B2 order is favored with respect to the L21 order, especially if the 

B2 order is already present. Additionally, we believe that above a threshold fluence, 

most probably around 5*1015 or 1016 ions/cm², Co/Mn swap occurs due to the low 
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energy formation of this kind of defects. Then ion irradiation seems to be 

inappropriate for improving the L21 order in Co2MnSi, as it nucleates most 

probably some local defects of D03 type. However ion irradiation is confirmed to 

improve the B2 order, as observed by Gaier et al. However neither HAADF-STEM 

nor X-ray diffraction allows to state about the presence of Co/Mn swap in the 

created B2 phase.   

 For higher fluences, the partial results obtained from X-ray diffraction and 

HAADF-STEM imaging performed on the samples of the series N°3 let us think that 

a potential double exchange arises in the L21/D03 order. Indeed, the only possibility 

to explain the contrast in STEM is to consider that no (or only few) Si atoms get to 

the position of Co atoms. Moreover, the presence of Co atoms on Si sites is coherent 

with both the STEM contrast and the high value of the β parameter. This 

assumption can be partially supported by the calculated energy formation of Co 

antisite realized by Piccozzi et al [10 Picozzi]. They have found relatively low value 

of 0.8 eV which, corroborated to the presence of local defects in the matrix, allow 

for the displacement of Co atoms far from their original site.  

 

 Let us now focus on the effect of ion irradiation on the magnetic properties of the alloy. 

We will first show how the basic properties of the magnetic material, such as the average 

magnetization amplitude and coercive fields are affected. Then we will present dynamic 

measurement which will allow studying more in details the effect of irradiation on local 

anisotropies and on the evolution of magnetic parameters for the different crystal order as a 

function of the ion fluence. Finally the last part of this chapter will be devoted to the 

presentation of preliminary results on the effect of ion irradiation on the dynamic relaxation.  

 

5.3 Modifications of magnetic properties by He+ ions 

irradiation  

 To study the effect of the ion irradiation on the coercive field and magnetization 

amplitude,  MOKE has been performed on the sample of the series N°1 irradiated at 1016 

ions/cm²  while  PPMS measurements have been performed on the four samples of the series. 

The results of these experiments are presented in the next subsection. 

 

5.3.1 Static magnetic properties   

  Basically, similar features as for the reference samples are recovered. However, few 

differences can be observed. The most obvious observation concerns the amplitude of the 

coercive field 𝜇0Hc. While similar values of 𝜇0Hc were observed for the reference sample as a 

function of the angle 𝛼 between the direction of the applied field and the easy axis, the 

irradiated sample shows a clear difference between the easy and hard directions as can be 

seen in Figure 5.11-a. This reflects an increase of the crystal anisotropy, in agreement with 

the values of the saturation field presented in Figure 5.11-b. This will also be confirmed by 

FMR measurements.  

 The increase of the coercive fields is typical in switching mechanisms dominated by 

the propagation field. Indeed, point defects are generally assumed to decrease the nucleation 

field of magnetic domains via a reduction of the local energy landscape. However, point defects 

acts as a friction term in the dissipative process during the propagation of the domains. 
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Therefore, an increase of the coercive fields can be accounted for an increase of the 

propagation field. This is due to the fact that the domain wall widths, being of a few tens of 

nanometer for Neel walls, average the effect of local defects over large distance. The friction 

arises from local distortion of the domain around point defects. A complete review of these 

processes can be found in the book “Magnetic Domains” by Hubert and Schäfer [12 Hubert & 

Schäfer].  

  

 

Figure 5.11: Coercive field (a) and saturation field (b) as a function of the applied field 

direction with respect to the easy axis, where the black and red curves correspond 

respectively to the reference sample of series N°1 and irradiated one at 1016 ions/cm2. C) 

Example of LMOKE signal after symmetry process, showing the different switching 

mechanisms in the different directions.  

 Additionally to the anisotropic behavior of the coercive fields, we also observe that the 

two easy axes and the two hard axes do not show similar magnetic switching mechanisms. 

This is shown in figure 5.11-c. As the four axes behave differently, one can think that some 

uniaxial anisotropy tilted with respect to the easy axis appears. FMR measurements 

presented in the next sub-section will show that no uniaxial anisotropy is present at 1016 

ions/cm2. Then the origin of these differences between the 4 axes is not clear. However, as 

demonstrated by the structural analysis and further by FMR measurements, this sample 

shows clearly two different phases with different magnetic parameters (𝜇0Ms, 𝜇0Hk). Then, 

as MOKE measures the average magnetic properties of the sample, it is extremely difficult to 

distinct the magnetic behavior of an individual phase and we believe that the observed 

differences are accounted for the different behavior of the two phases.   

 PPMS magnetometry measurements have also been performed on the four samples of 

N°1series. The result of the calculated magnetization amplitude is shown in figure 5.12. We 

clearly observe a decrease of magnetization with an ion fluence above 1015 ions/cm². The 

uncertainty of the magnetization is due to the uncertainty on the exact dimensions of each 
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sample measured with a precision of a few microns. Magnetization values are reported in 

table 5.2. Considering that the samples are made up of the B2 crystal order with a 

magnetization of 1.25 T and a second phase with varying magnetization amplitude due to D03 

type disorder, we can evaluate the magnetization of the second phase by considering the 

volume ratio of each phase. As explained in section 5.2, the volume of the B2 phase is 

calculated with respect to the full B2 order as 𝛼/0.5. The values of 𝛼 are given in figure 5.6. 

The volume of the second phase is then 1- 𝛼/0.5. Magnetization values of the second phase are 

presented in table 5.2. We will see that FMR measurements are in good agreement with this 

approach and then support our initial assumption of two distinct crystal orders, one being the 

B2 order with constant magnetization and the second one having a decreasing magnetization.  

 

 
 

Figure 5.12: PPMS average magnetization measurements for the four samples of N°1 series.  

 

N°1 sample at  

different 

Fluences 

(ions/cm²) 

µ0Ms (T) 

measured 

Proportion of 

B2 phase (1.25 

T) 

(α/0.5) 

Proportion of 

second phase 

(1 - α/0.5) 

µ0Ms second 

phase (T) 

REF 1.25 ± 0.02 0.28 0.72 1.25± 0.02 

1015 1.25 ± 0.02 0.26 0.74 1.25± 0.02 

5*1015 1.2 ±0.02 0.4 0.6 1.16± 0.02 

1016 1.16 ± 0.02 0.41 0.59 1.1± 0.02 

 

Table 5.2: magnetization values of N°1 series for both phases. 

 

5.3.2 FMR measurements of irradiated samples: effect of 

irradiation on magnetic parameters 
 

 Sample N°1 series: 

 FMR measurements have been performed on the four samples of N°1 series to extract 

the magnetic parameters of each crystal phase as a function of the ion fluence. Examples of 
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the evolution of the FMR spectra at 18 GHz in easy 2 and hard 2 directions are presented in 

figures 5.13-a and 5.13-b. The spectra are shifted vertically for convenience. As can be seen 

the evolution is quite complex. The general behavior is the separation of the two peaks 

corresponding to the L21 and B2 crystal order we stated for the reference sample. Considering 

the structural analysis presented above, we assume that the peak showing almost a constant 

resonance field value corresponds to the B2 order, as this phase seems to be favored by the 

irradiation, while the peak showing an evolution of the resonance field is assumed to 

correspond to an evolution of the L21 matrix. We will see that the extracted magnetic 

parameters support this assumption. For convenience in the following we will denote the two 

peaks as the L21 and B2 peaks.  

 

 

Figure 5.13: Evolution of FMR spectra peaks at 18 GHz of N°1 series samples as irradiation 

fluence increases for easy axis 2 in a) and hard axis 2 in b).  

  

An important feature of these measurements is that the observation of the L21 and B2 

peaks depends on the ion fluence. Starting with the fluence of 1015 ions/cm², we observe a 

strong mixing of the B2 and L21 peaks especially when the external field is applied parallel 

to the easy axis 2 and hard axis 2. This is shown in figure 5.13 and also in figure 5.14 

presenting the FMR spectra at 16 GHz in the four directions for the reference sample and 

1015 ions/cm². The zoom in figure 5.14-b shows that the B2 peak can still be observed for the 

hard axis 2 direction. For the easy axis 2, it is not possible to separate both phases. We then 

assume the same resonance field for both phases in the easy 2 direction. The mixing of the 

two modes can be accounted for either a shift of the resonance peak or for different linewidth 

of the two peaks depending on the orientation of the applied field. In fact, both effects 

participate to the mixing of the modes. 

 Fitting the fres vs. 𝜇0H0 curves (figures 5.14-c and 5.14-d) for the two peaks allows 

recovering the different magnetic parameters. Several differences are observed as compared 

to the reference sample. The first one is that one resonance peak corresponds to a crystal 

phase with lower magnetization amplitude (1.22 T). For the L21 phase, the situation is 

different. Indeed, the effect of irradiation is to strongly decrease the magnetization amplitude 

along with the exchange constant. This is in agreement with the theoretical prediction of 

reduced spin splitting caused by Co/Mn exchange by Picozzi et al. [10 Picozzi]. The second 

phase shows a magnetization of 1.25 T in agreement with our assumption that the irradiation 
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favors the B2 order in the alloy. Concerning the cubic anisotropy amplitude, both phases show 

similar values compared to the reference sample.  

 The main difference with the reference sample is the appearance of a uniaxial 

anisotropy aligned at about 23° from easy axis 2. This effect is most probably related to the 

tetragonal deformation observed by X-ray diffraction. We remind that MOKE measurements 

for the reference sample made us think that a small uniaxial anisotropy was aligned with one 

easy axis. Then we think that the tetragonal distortion allows for the rotation of the 

anisotropy direction in the plane of the layer. However, we do not know if this effect can be 

caused by an eventual interface effect with the MgO as we made the assumption that the 

MgO lattice parameter is not influenced by the irradiation.      

 

 
 

Figure 5.14: a) and b) presents the four easy and hard directions FMR spectra at 16 GHz of 

N°1 reference and irradiated at 1015 ions/cm2.In c) and d) 𝒇𝒓𝒆𝒔vs. 𝝁𝟎H0 curves for both 

phases of N°1 irradiated at 1015 ions/cm2. 

  

Similar treatment is applied for fluences of 5*1015 and 1016 ions/cm². At 5*1015 fluence, 

we now observe that the position of the peaks for the L21 and B2 phases respectively are 

superposed for the two easy axes while a shift is observed for the two hard axes (figure 5.15-

a). This means that the uniaxial anisotropy is now superposed to a hard axis (hard axis 2 in 

our case) direction. At 1016 fluence, the effect of the uniaxial anisotropy has disappeared as 

the position of both L21 and B2 peaks superpose for the two easy and the two hard axes (figure 

5.15-b). While the tetragonal distortion was found to increase between 1*1015 and 5*1015 
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ions/cm², which could explain the increased amplitude (see table 5.3) and rotation of the 

uniaxial anisotropy, the fact that the uniaxial anisotropy disappears at 1016  while the out-of-

plane parameter is the same means that the internal strain have been relaxed. Then we 

believe that the amplitude of the uniaxial anisotropy is most probably related with the 

internal mechanical strain, the relaxation of the latter being mediated by the increased 

number of vacancies by the irradiation.  

 

 
 

Figure 5.15: FMR absorption spectra obtained for the four easy and hard axes directions for 

a) N°1 irradiated at 5*1015 and b) N°1 irradiated for 1016 ions/cm2 fluence. 

 Figure 5.16 presents the evolution of the fres vs 𝜇0H0 for all fluences of N°1 series for 

each crystal order. For convenience and clarity, only one easy and one hard axis for each 

fluence is presented. The deduced magnetic parameters obtained from these curves are 

summarized in table 5.3. Despite the increasing uniaxial anisotropy, the B2 crystal order 

shows similar magnetic parameters whatever the ion fluence.  

Additionally, we observe an increase of the cubic anisotropy and of the gyromagnetic 

ratio. The latter shows that the orbital moment increases with disorder. The study of the 

linewidth presented in the next subsection will show that the spin-orbit coefficient λSO is 

roughly constant as a function of the dose. Then the increased orbital moment seems to be 

the origin of the increased anisotropy and decreased g value.  

 

 
Figure 5.16: Evolution of the 𝒇𝒓𝒆𝒔vs. 𝝁𝟎H0 curves for both phases of N°1 series. In a) shows 

the L21 phase evolution as irradiation dose increases while in b) all curves have the same 

behavior and are identified for the B2 phase. 
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N°1 series 

(ions/cm2) 

Ref Irr. at 1015 Irr. at 5*1015 Irr. at 1016 

µ0Ms1 (T) 1.26± 0.02 1.22± 0.02 1.14± 0.02 1.1± 0.02 

µ0Ms2 (T) 1.25± 0.02 1.25± 0.02 1.25± 0.02 1.25± 0.02 

µ0Hk1 (mT) 36± 0.2 34± 0.2 42± 0.2 45± 0.2 

µ0Hk2 (mT) 𝟑𝟐 ±  𝟎. 𝟐 33± 0.2 35± 0.2 36± 0.2 

𝜸1 (GHz/T) 28.7± 0.1 28.7± 0.1 28.8± 0.1 28.9± 0.5 

𝜸2 (GHz/T) 28.7± 0.1 28.7± 0.1 28.7± 0.1 28.7± 0.3 

φu 

(deg) 

0 23 ± 2 45 ± 2 0 

µ0Hu 

(mT) 

< 1 1 ± 0.2 1.9 ± 0.1 0 

A1 

(pJ/m) 

19 ± 0.1 18 ± 0.1 12.8 ± 0.1 13± 0.1 

A2 

(pJ/m) 

- - - - 

 

Table 5.3: Magnetic parameters extracted from FMR spectra for the L21 and B2 order as a 

function of the fluence for N°1 series.   

 Finally, we want to emphasize an important feature that is observable particularly for 

the 5*1015 and 1016 ions/cm² fluences. We will show that similar effect appears for the sample 

of series N°3. As already mentioned the resonant peak corresponding to the B2 order shows 

strong variations of its amplitude depending on the orientation of the applied field. As we 

already said, mode mixing is a possible reason for this, especially in the easy axes directions. 

This is particularly true for the fluence of 5*1015. However, this assumption is no longer valid 

for 1016 as no uniaxial anisotropy induces any shift of the resonant modes. Furthermore, the 

two peaks are well separated for the hard axes direction even at 5*1015. Then, we do not 

believe that mode mixing is in cause.  

 Therefore, one has to consider the different effects that contribute to the amplitude of 

the FMR signal. The first is the damping. When the linewidth increases, the FMR maximum 

amplitude decreases since the total microwave power absorbed is constant. However, and 

despite the strong uncertainty of the deduced linewidth due to the weakness of the signal, we 

did not observe a very significant difference of the linewidth for the B2 order between the two 

hard axes. The second contribution to the FMR amplitude is the volume of magnetic material 

that interacts with the pumping field. As this resonant peak corresponds to the growing B2 

phase in the matrix, this result could imply a preferential orientation of the growing 

crystallite. However, we did not observe such effect in HAADF-STEM images. Moreover we 

did not find any reasonable configurations that would break the symmetry between the two 

hard axes. It cannot be related neither to some partial relaxation of the strain since this would 

imply a shift of the resonance peaks when switching from one hard axis to the other.  We will 
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show that similar effect appears for the N°3 series. Unfortunately, at this time we do not have 

any explanation or hypothesis that could explain this observation.   

 

 Sample N°2 series: 

 

 The evolution of FMR spectra recorded at 19 GHz as a function of the irradiation 

fluence for the two easy and two hard axes are presented in Figures 15.7-a and 15.7-b, 

respectively. The most interesting feature relies on the evolution of the peak position for the 

easy axes. We start from the reference sample for which the uniaxial anisotropy is superposed 

on easy axis 2. The resonance field of easy axis 2 is lower than that of easy axis 1 while for 

both hard axes the resonance fields are superposed. At 1014 ions/cm², there is first an increase 

of the field shift for the two easy and two hard axes meaning that the uniaxial anisotropy is 

not superposed anymore with the easy axis 2. Increasing the fluence up to 1015, we observe 

that both resonance fields of the two easy axes are superposed while they are not for the two 

hard axes, meaning that now the uniaxial anisotropy is superposed to the hard axis 1. 

 At 5*1015 and 1016 ions/cm², we recover a field shift for the four axes but the position 

of the easy axis 1 and 2 is inversed as compared to the reference sample4. This means that 

now the uniaxial anisotropy is between the hard axis 1 and easy axis 1. Finally, at 1017 

ions/cm², the uniaxial anisotropy is found to be aligned with the easy axis 1.   

Then the effect of the ion irradiation for this sample is to rotate the uniaxial anisotropy 

from the easy axis 2 to the easy axis 1 (as schematically drawn in figure 5.18). Based on the 

structural properties of samples of series N°1 and N°3 with irradiation, we state that this 

rotation is linked to the increase out of plane parameter of the alloy. The values of the 

amplitude of this anisotropy obtained from the fres Vs. 𝜇0H0 curves (Figure 5.18), are presented 

in table 5.4. It shows that it first increases for fluence up to 5*1015 and then decreases for 

higher fluence. This result confirms the observation for samples of series 1, i.e. the direction 

and amplitude of the anisotropy is strongly dependent on the value of the out of plane 

deformation.  

 
 

Figure 5.17: Absorption spectra as a function of magnetic external Field H0 for N°2 series 

samples at 19 GHz along the two easy and the two hard axes in a) and b) respectively.  

                                                            
4 While we find similar values of the amplitude and orientation of the uniaxial anisotropy for 5*1015 

and 1016 ions/cm² (see table 5.4), the field shift in the hard axis appears lower at 1015 in figure 5.17-b. 

This is due to a very small misalignment of the applied external field with the hard axis. The 

misalignment is about 0.5 °.   
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The magnetic parameters extracted from the fres vs. 𝜇0H0 curves are presented in table 

5.4. As for the L21 crystal order of series N°1, we observe a decrease of the magnetization and 

exchange constant with the ion fluence which could be accounted for an increase Co/Mn and/or 

Co/Si exchange. A difference with the first series deals with the amplitude of the cubic 

anisotropy which is found here to be roughly constant up to 1017 ions/cm², the only fluence for 

which a clear increase is observed. Also, the gyromagnetic ratio is first found to jump up to 

29.1 GHz/T at 1014 and then to be constant with the fluence. Then the relation between the 

gyromagnetic value and the cubic anisotropy is slightly different as for the L21 order in series 

N°1. Indeed the increase in 𝛾 is not correlated to an increase of 𝜇0Hk at 1014 ions/cm². This 

could mean that the increase orbital moment is compensated by a decrease of the λSO coupling 

amplitude. For fluence between 1014 and 1016 there is no variations of 𝛾 while 𝜇0Hk is roughly 

constant as could be expected. Then at 1017 both 𝜇0Hk and 𝛾 are found to increase as for series 

N°1. Maybe this particular behavior has to be correlated to the Co/Si exchange as observed 

for samples of series N°3. The lack of structural information for this series of sample avoid to 

state about the origin of the behavior of the magnetic parameters.   

 

 
 

 

Figure 5.18: 𝒇𝒓𝒆𝒔 vs. H0 curves for N°2 series irradiated samples at 1014, 1015, 1016  and 1017 

ions/cm2 in a), b) c) and d) respectively. The box shows the uniaxial anisotropy rotation from 

Easy axis 2 for reference sample to Easy axis 1 at 1017 ions/cm2. 
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N°2 series 

(ions/cm2) 

Ref Irr. at 1014 Irr. at 1015 Irr. at 5*1015 Irr. at 1016 Irr. at 

1017 

µ0Ms1 (T) 1.24± 

0.02 

1.21± 0.02 1.20± 0.02 1.14 ±0.02 1.07± 0.02 1.03± 

0.02 

µ0Ms2 (T)  
  

  1.25± 

0.03 

µ0Hk1 (mT) 51± 1 52± 0.2 52± 0.2 49± 0.2 49± 0.2 60±0.2 

µ0Hk2 (mT)      60± 0.2 

𝜸1 (GHz/T) 28.8 ±0.1 29.1 ±0.1 29.1±0.1 29.1±0.1 29.1± 0.1 29.2± 0.1 

𝜸2 (GHz/T)      28.7± 0.1 

φu 

(deg) 

0 30 ± 2 45 ± 2 65 ± 2 60 ± 2 90 ± 2 

µ0Hu 

(mT) 

1.2 ±0.2 3.5± 0.2 3.5 ±0.2 3.5 ±0.2 2± 0.2 1±0.2 

A1 

(pJ/m) 

10±0.2 9.3 ±0.2 9.1 ±0.2 8.3 ±0.2 7 ±0.2 5.4 ±0.2 

 

Table 5.4: Magnetic parameters extracted from FMR spectra for N°2 series as a function of 

the fluence. 

 Finally, we also observed the apparition of a second resonant peak at high fluence, 

which most probably corresponds to a second crystal order phase. It can be seen in figure 5.19-

a) that the peak is barely visible in the hard axis 2 direction at 1016 ions/cm² (figure 5.19-a) 

while it can be detected for both hard axes at 1017 ions/cm² (figure 5.19-a). In the easy axes 

we were not able to separate this resonance peak from the main one. Then, in figure 5.19-b 

we only present the evolution of the position of the resonant peaks in the hard axes for a 

fluence of 1017 ions/cm². Combined with the small amplitude of the signal, the determination 

of the exact peak position is difficult and then the determination of the magnetization and 

gyromagnetic ratio has low precision However, the estimation of the magnetization amplitude 

and gyromagnetic ratio is in agreement with the values found for the B2 order for the samples 

of series 1 while the cubic anisotropy is the same as for the L21 phase of the reference sample.   

 

In conclusion, this series of samples show similar behavior to that of the 

series N°1 but with differences for some magnetic parameters, especially for the 

anisotropy and gyromagnetic values. These differences are most probably to be 

related to different chemical order between the references samples N°1 and N°2, as 

shown in chapter IV. While the lack of structural information avoids a better 

understanding of the evolution of the magnetic parameters as a function of the type 

of atomic disorder, it seems that ion irradiation favors again the apparition of the 

B2 order from the initial matrix.  
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Figure 5.19: FMR absorption spectra comparison  at 16 GHz of hard 1 and hard 2 axes of 

N°2 series samples irradiated at 1016 and 1017 ions/cm2 in a). In b), the evolution of hard 

axes resonant peaks of N°2 sample irradiated at 1017 ions/cm2. 

 

 Sample N°3 series: 
 

 As stated in chapter IV, the reference sample of this series exhibits a clear L21 crystal 

order. However a very small additional peak was detected in the hard axis 2 direction (the 

one supporting the uniaxial anisotropy) that we accounted for a second crystal order which is 

most probably the B2 order, based on the results of the samples of series N°1. In the following 

we will call this second peak the minority peak in reference to its very small amplitude. 

 

 The evolution of the FMR spectra with the ion fluence is shown in figure 5.20. In figure 

5.20-a only the easy axis 1 is shown for clarity as the two easy axes resonance always 

superposed at all fluence. In figure 5.20-b we show the evolution of the two hard axes. Clearly, 

the uniaxial anisotropy in the hard axis is visible for all fluence. However, the main effect of 

the irradiation is to switch the direction of the uniaxial anisotropy from the hard axis 2 to the 

hard axis 1 at 1016 ions/cm².    

We begin with the effect of ion irradiation on the magnetic properties of the main L21 

phase. Examples of fres Vs 𝜇0H0 curves for the main peaks are presented in figure 5.21. The 

values of the magnetic parameters extracted from this curves are summarized in table 5.5. 

We found typically two different behaviors depending on the ion fluence.  

 For 1014 and 1015 ions/cm², we observe a decrease of the magnetization amplitude and 

exchange constant. The values of the magnetization and exchange are roughly similar to the 

ones reported for L21 order of the samples of series N°1 at similar fluence. In addition the 

values of the cubic anisotropy are roughly constant at these fluence, as for sample of series 

N°1 and N°2, while the gyromagnetic constant slightly increases. This is similar to the 

situation encountered for the sample N°2 and is maybe due to the higher rate of Co/Si 

exchange observed for this sample as compared to the series N°1. Also the uniaxial anisotropy 

stays always aligned with hard axis 2 direction but its amplitude slightly decreases. We 

attribute this decrease to the fact that the out of plane lattice parameter of the reference 

sample of series N°3 corresponds to the maximum value of the sample irradiated at 1016 

ions/cm² of the series N°1. Then we think that the sample of series N°3 has already overpassed 
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the “elastic” limit for which the uniaxial anisotropy was found to increase. Once again, it 

confirms the relation between the amplitude of the anisotropy and of the deformation.   

 At 1016 and 1017 ions/cm², the magnetic parameters evolve drastically. Similar features 

as for the sample of series N°1 are observed for the magnetization, cubic anisotropy, 

exchange5 and gyromagnetic ratio. We note that the decrease of the magnetization and, to a 

less extent, the exchange constant is more important while the gyromagnetic ratio is found to 

increase much more than for series N°1. Here also we assume that this is due to the higher 

Co/Si exchange. One possible scenario is that the modification, with a Co atom having a higher 

atomic number Z, of the local environment around the Mn atoms, that carry most of the 

magnetic moment in Co2MnSi, leads to an increase of orbital magnetic moment on the Mn 

atoms. The most striking feature appearing at these fluence concerns the direction of the 

uniaxial anisotropy which switches from the hard axis 2 to the hard axis 1 direction at 1016 

ions/cm², along with a decrease of its amplitude as expected from the relaxation of the strain. 

Increasing further the fluence to 1017 ions/cm², the anisotropy slightly rotates toward the easy 

axis 1 but its amplitude increases again to a large value of about 4.5 mT. The explanation for 

this effect is not clear. We believe that at such high fluence, in addition to the strong chemical 

reorganization in the L21 phase, some internal modifications of the cell appears such as an 

orthorhombic deformation with different in plane lattice parameters, leading to modification 

of the atomic magnetic interactions. Then we have no clue about the magnetic properties of 

such a “new” crystal order with different chemical and physical organization and further 

structural analysis, in particular a full atomic disorder model and deformation measurements 

would be necessary to state about the local arrangement of the atoms.  

 

 

Figure 5.20: Absorption spectra as a function of magnetic external field 𝝁𝟎H0 for N°3 series 

samples at 20 GHz along the two easy and the two hard axes in a) and b) respectively. The 

box shows the uniaxial anisotropy rotation from hard axis 2 for reference sample to easy 

axis 1 at 1017 ions/cm2 

                                                            
5 The exchange constant cannot be measured at fluence of 1017 ions/cm². Indeed the FMR signal 

decreases with the ion fluence and the exchange mode becomes undetectable at the microwave power 

used in this experiment.    
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Figure 5.21: 𝒇𝒓𝒆𝒔 vs. 𝝁𝟎H0 curves for N°3 series for reference in a) and irradiated samples at 

1015, 1016 and 1017 ions/cm2 in b), c) and d) respectively. 

 Now let’s return to the behavior of the minority peaks as a function of the ion fluence. 

Between 1014 and 1016 ions/cm², we are not able to detect it anymore, neither in hard axis 2 

nor in easy axis 1 (as for the reference sample). Most probably because it is mixed up with the 

majority peak. Reaching 1016 ions/cm², it is visible again in the hard axis 2 direction. 

Increasing further the fluence to 1017, both peaks become detectable in the hard axis 2 and 

easy axis 1 directions, as for the reference sample. This is shown in figures 5.22-a and 5.22-b. 

Likewise the samples of N°1 series, here we were not able to detect the second peak for the 

two other magnetic directions. At this point we are not able to explain why we cannot observe 

it in the four directions. Interestingly, the resonance field for the minority peak at fluence of 

1017 is similar to the one of the reference sample. From the fres vs. 𝜇0H0 curve at 1017 ions/cm² 

(Figure 5.22-c) we extract the magnetic parameters of this phase. We find that they are very 

close to the magnetic parameters of the reference sample) initial crystal order. As for N°1 

series, we believe that it corresponds to the reinforcement of the B2 order, which would also 

show a small amount of Co-Si disorder as its magnetization amplitude is slightly lower than 

for the N°1 series.   
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Figure 5.22: In a) and b) Comparison of the two easy and two hard axes respectively FMR 

absorption spectra at 20 GHZ for N°3 series for reference and irradiated samples at 1016 and 

1017 ions/cm2. Figure c) 𝒇𝒓𝒆𝒔 vs. 𝝁𝟎H0 at lower magnetic fields (minority peaks) are traced 

forN°3 sample irradiated at 1017 ions/cm2. 
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N°3 series 

(ions/cm2) 

Ref Irr. at 1014 Irr. at 1015 Irr. at 1016 Irr. at 

1017 

µ0Ms1 (T) 1.25 

±0.02 

1.24±0.02 1.21± 0.02 1.06± 0.02 1.02± 

0.02 

µ0Ms2 (T)  
  

 1.24 

±0.02 

µ0Hk1 (mT) 28± 0.5 28±0.5 28± 0.5 36.5 ± 0.5 69 ± 0.5 

µ0Hk2 (mT)     25.5 ±0.5 

𝜸1 (GHz/T) 28.7± 0.1 28.8± 0.1 28.85 ± 

0.1 

29.4 ± 0.1 30.2 ±0.1 

𝜸2 (GHz/T)      28.7 ±0.2 

φu 

(deg) 

45 ±1 45 ±1 45 ± 1  135 ±1 140 ±2 

µ0Hu 

(mT) 

2 ± 0.2 1.8 ±0.2 1.8 ± 0.2 1 ± 0.2 4.5 ±0.2 

A1 

(pJ/m) 

18±0.1 18 ± 0.1 17.5± 0.1 12±0.1   

 

Table 5.5: Magnetic parameters extracted from FMR spectra for N°3 series as a function of 

the fluence.    

 

In conclusion, The L21 order of this series of samples shows similar behavior for 

the magnetic parameters than the samples of series N°1, even if the variations as a 

function of the fluence are more pronounced here. Also, this series shows some 

interesting behavior of the uniaxial anisotropy which has to be related to the cell 

distortion induced by the irradiation, and also the chemical modification of the 

main phase. A full understanding of the evolution of the magnetic parameters 

implies a complete structural analysis for fluence above 1016 ions/cm².  

 

 It is very interesting as it allows to state about the structural origin of the 

uniaxial anisotropy observed in many systems, especially in Co2MnSi or Co2FeSi 

but most probably also for Iron and others that show cubic anisotropy. In addition 

the fact that the amplitude of the anisotropy decreases at fluence above 1016 

ions/cm² is also in agreement with a relaxation of the starin for high deformation 

and high density of local defects. 
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5.3.3 Effect of He+ irradiation on the Gilbert Damping 
 

 Sample N°1 series: 

 The study of the linewidth as a function of the ion fluence for the L21 and B2 order for 

the series of N°1 sample is presented in figure 5.23. In this figure we only present the 

evolution of the linewidth for the magnetic directions for which the two peaks are sufficiently 

well resolved to avoid a too important uncertainty, as for example of strong mixing of the two 

modes. This is why we do not show the linewidth of the B2 order in the easy directions for 

fluence of 5*1015 ions/cm².  The values of the damping factor with the extrinsic linewidth of 

N°1 series are presented in table 5.6 

  

 Two main features are observed depending on the crystal order. For the B2 order, the 

linewidth first decrease for a fluence of 1015 ions/cm², with a very clear improvement of the 

extrinsic contribution ΔH0. It is also accompanied by an enhancement of the effective damping 

coefficient, especially in the easy axis direction for which the value is almost divided by 2. 

This behavior for relatively low fluence is most probably to be related to the improvement of 

the long range order of the B2 phase as demonstrated by Gaier et al [10 Gaier]. As already 

mentioned, irradiation acts similarly as a local temperature annealing at low fluences. Then, 

as the size of the B2 crystallite grows, the coherence of the precession for this crystal phase 

is improved, decreasing the extrinsic linewidth. Then we believe that it is the inhomogeneity 

contribution (variation of µ0Ms, µ0Hk, crystallite size etc...) to the extrinsic damping coefficient 

that decreases. For higher fluences, the damping coefficient is found to be roughly equivalent 

as for the reference sample while the ΔH0 increases. This is in agreement with the inclusion 

of local point defects induced by the irradiation which is probably at the origin of two magnons 

scattering process.   

 For the L21 phase, the situation is different. Irradiation is found to increase both the 

effective damping coefficient and the ΔH0 contribution for the easy and the hard axis 

directions. The increase of the extrinsic contribution is most probably of the same origin as 

for the B2 order. However, the origin of the evolution of the intrinsic contribution 𝛼 is most 

probably to be related to the chemical disorder in the matrix. Indeed, the 𝛼 parameter is 

strongly dependent on the local atomic arrangement as it can modify either the spin-orbit 

mediated relaxation mechanisms (see chap II) or the orbital and spin magnetic moments and 

then the g values for example. We recall that in the Kamberský model of relaxation in 

ferromagnets [13, 14 Kamberský and 15 pelzl], the damping coefficient is related to the 

Gilbert relaxation coefficient G through the relation 𝛼=G*4𝜋/(µ0Ms𝛾). In addition, the Gilbert 

damping coefficient G depends on the g value and on the spin-orbit coupling coefficient λSO 

through the relation 𝐺𝑜𝑠 = (𝛾ℏ/2)
2𝑍𝑓𝜆𝑠𝑜

2 (𝑔 − 2)2𝜏. In figure 5.24, we report on the evolution of 

the Gilbert damping constant G as a function of (g-2)² calculated with the values of table 5.3. 

For this crystal order, the g value increases for all fluences. Of course, we have only a few 

points but we can see that either for the easy or hard axis, the relation is almost linear, 

meaning that the amplitude of the spin-orbit coupling λSO is probably constant with the ion 

fluence. This result shows that the damping coefficient is here dominated by spin-orbit 

interaction without spin-flip interaction (what is called ordinary damping in the Kamberský 

model).  

This interesting result has to be emphasized on as one could expect some spin flip 

scattering at the Fermi level. Indeed, the decrease of the magnetization amplitude was 

accounted for a the Co/Mn exchange and so on the closure of the energy band gap for spin up 

and spin down states. This result also impacts the understanding of the evolution of the 
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crystal anisotropy. Indeed, in the model of Bruno [16 Bruno], the crystal anisotropy is roughly 

proportional to λ²SO, as for the Gilbert damping. As this parameter is found constant we can 

assume that the increase anisotropy is related to the increase of orbital moment µL as g 

increases with the ration µL/µS.  

Therefore, our conclusion is that the Co-Mn exchange induces in this sample 

an increase of the orbital moment in the L21 phase which goes along with an 

increase of the g values and of the anisotropy. For the B2 order, ion irradiation is 

found to be an interesting technique to improve the microwave linewidth as long 

as the fluence is kept relatively low. Based on the results of Gaier et al we assume 

that this effect is related to the improvement of the long range order for this crystal 

phase. The other interesting feature is the fact that the effective damping of the B2 

order is not especially impacted by the irradiation while the extrinsic contribution 

is.  

From a fundamental point of view, ion irradiation is then particularly 

interesting to probe the different contributions to the dynamic relaxation 

mechanisms depending on the initial crystal order, as for example the effect of local 

defects on the extrinsic mechanisms or the relation between the energy spin gap 

and the intrinsic relaxation.  

 

 

Figure 5.23: Evolution of linewidth measurements ∆𝑯 vs. 𝒇𝒓𝒆𝒔 for N°1 series for both L21 

and B2 phases. In a) and b) we can see the evolution of damping coefficient and extrinsic 

linewidth contribution ∆𝑯𝟎 for L21 phase as irradiation dose increases, while in c) and d) the 

damping factor is kept almost constant for B2 phase with an increase in ∆𝑯𝟎. 
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N°1 series 

ions/cm2 

L21 Easy axis B2 Easy axis L21 Hard axis B2 Hard axis 

Ref 𝜶 = (1.5±𝟎. 𝟏)*10-3 
∆𝑯𝟎 = 𝟑. 𝟏 𝐦𝐓 

𝜶 = 

(3.2±𝟎. 𝟑)*10-3 

∆𝑯𝟎 = 𝟒. 𝟏 𝐦𝐓 

𝜶 = (1.7±𝟎. 𝟏)*10-

3 ∆𝑯𝟎 = 𝟏. 𝟔 𝐦𝐓 

𝜶 = (2.5±𝟎. 𝟏)*10-3 
∆𝑯𝟎 = 𝟏. 𝟔 𝐦𝐓 

Irr. at 1015 

 

𝜶 = (2.3±𝟎. 𝟏)*10-3 

∆𝑯𝟎 = 𝟐. 𝟑 𝐦𝐓 

𝜶 = 

(1.7±𝟎. 𝟏)*10-3 
∆𝑯𝟎 = 𝟐 𝐦𝐓 

𝜶 = (2.7±𝟎. 𝟏)*10-

3 ∆𝑯𝟎 = 𝟏. 𝟕 𝐦𝐓 

𝜶 = (2.1±𝟎. 𝟏)*10-3 

∆𝑯𝟎 = 𝟏 𝐦𝐓 

Irr. at 5*1015 

 

𝜶 = (4.3±𝟎. 𝟏)*10-3 

∆𝑯𝟎 = 𝟑. 𝟔 𝐦𝐓 

- 𝜶 = (5.3±𝟎. 𝟏)*10-

3 ∆𝑯𝟎 = 𝟏. 𝟓 𝐦𝐓 

𝜶 = (2.6±𝟎. 𝟏)*10-3 

∆𝑯𝟎 = 𝟏. 𝟓 𝐦𝐓 

Irr. at 1016 

 

𝜶 = (5.9±𝟎. 𝟏)*10-3 

∆𝑯𝟎 = 𝟒. 𝟗 𝐦𝐓 

𝜶 = 

(3.7±𝟎. 𝟏)*10-3 
∆𝑯𝟎 = 𝟑 𝐦𝐓 

𝜶 = (6.7±𝟎. 𝟏)*10-

3 ∆𝑯𝟎 = 𝟑. 𝟕 𝐦𝐓 

𝜶 = (2.3±𝟎. 𝟏)*10-3 

∆𝑯𝟎 = 𝟑. 𝟐 𝐦𝐓 

 

Table 5.6: damping factor 𝛂 and extrinsic line width ∆𝐇𝟎 values for both one easy and one 

hard axis of L21 and B2 phases in the series of sample N°1 reference and irradiated 

samples.   

 
 

Figure 5.24: Gilbert coefficient G/𝝀𝑺𝑶
𝟐  as a function of (g-2)² for the L21 order in the easy 

(black) and hard (red) directions. The values given on the graph corresponds to the different 

fluence at which (g-2)² has been calculated.  

. 

 Sample N°2 series: 

 The evolution of the linewidth for each magnetic direction as a function of the fluence 

is shown in figure 5.25. Basically, the damping coefficient in every direction is found to be 
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roughly constant for fluence up to 5*1015 ions/cm², similarly as for the B2 crystal order of 

series N°1. However, it increases at higher fluence, as for the L21 crystal order in series N°1. 

This behavior is similar to the one observed for the samples of series N°3 (see below). The 

increase at high fluence is most probably to be related to the strong increase of the atomic 

disorder above 5*1015 in agreement with the sharp decrease of the magnetization of the L21 

phase. Concerning the extrinsic contribution ΔH0, it is found to increase with the ion fluence, 

especially above 5*1015, in agreement with enhanced scattering events due to the increased 

density of defects. 

 We also notice that for fluences of 1014 and 1015 ions/cm², for which the internal 

structure is barely modified, the damping coefficient is found to improve in the hard 1 

direction as compared to the reference sample but the ΔH0 is at the same time increased by 

almost a factor of two. The observed difference of 𝛼 are well above the uncertainty of the 

measurement. However, the origin of this effect is not clear. Indeed, we know that the order 

of the L21 phase is not improved at this fluence since the magnetization amplitude decreases. 

So the improvement of α cannot be related to some improvement of the chemical ordering. If 

the origin relies on inhomogeneity in the samples, both the ΔH0 and α would show the same 

behavior, which is not the case. It is also particularly surprising that such effect appears only 

in one direction. It is maybe to be related to the rotation of the uniaxial anisotropy toward the 

hard axis 1 at 1015 ions/cm² meaning that mechanical strain could plays a role in the 

amplitude of the intrinsic damping in Co2MnSi. However, further experiments are needed to 

validate this hypothesis, especially phi scans that are not performed on the irradiated 

samples of this series.    

 In conclusion, as compared to the series of sample N°1, the series of N°2 

shows some feature similar to the B2 and L21 crystal order. Additionally, it is 

possible that the presence of the uniaxial anisotropy modifies the intrinsic 

damping in particular magnetic axis. However, the global behavior at high fluence 

is in agreement with the first series. 
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Figure 5.25: Evolution of damping coefficient and extrinsic linewidth contribution ∆𝑯𝟎 as a 

function of irradiation dose from ∆𝑯 vs. 𝒇𝒓𝒆𝒔 measurements for N°2 series along the two easy 

and two hard axes. 

 Finally we compare, the value of the linewidths in the hard axes direction for the two 

modes observed at 1017 ions/cm². We clearly observe, in Figure 5.26, that the second phase 

presents a lower linewidth with lower damping and ΔH0, as expected from the improvement 

of B2 order. However, the values of the damping are higher than for the samples of series N°1 

exhibiting clear B2 order. This is in agreement with our assumption that this sample exhibit 

Co/Si exchange even in the B2 phase. The damping factor and extrinsic line width values of 

N°2 are presented in Table 5.7. 
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Figure 5.26: Comparison between the two phases in hard axis 1 and 2 for sample N°2 

irradiated at 1017 ions/cm2 as the damping factor 𝜶 and extrinsic linewidth ∆𝑯𝟎 is lower for 

the second phase than the main phase. 

 

N°2 series 

(ions/cm2) 

Easy axis1 Easy axis 2 Hard axis 1 Hard axis 2 

Ref 𝜶 = (2.8±𝟎. 𝟏)*10-3 
∆𝑯𝟎 = 𝟐. 𝟑 𝐦𝐓 

𝜶 = (3.2±𝟎. 𝟑)*10-3 
∆𝑯𝟎 = 𝟏. 𝟗 𝐦𝐓 

𝜶 = (3.5±𝟎. 𝟏)*10-3 
∆𝑯𝟎 = 𝟏. 𝟑 𝐦𝐓 

𝜶 =(2.3±𝟎. 𝟏)*10-3 
∆𝑯𝟎 = 𝟐. 𝟒 𝐦𝐓 

Irr. at 1014 

 

𝜶 = (2.6±𝟎. 𝟏)*10-3 

∆𝑯𝟎 = 𝟐. 𝟓 𝐦𝐓 

𝜶 = (3±𝟎. 𝟏)*10-3 

∆𝑯𝟎 = 𝟐. 𝟕 𝐦𝐓 

𝜶 = (2.6±𝟎. 𝟏)*10-3 

∆𝑯𝟎 = 𝟐. 𝟔 𝐦𝐓 

- 

Irr. at 1015 

 

𝜶 = (2.6±𝟎. 𝟏)*10-3 
∆𝑯𝟎 = 𝟐. 𝟗 𝐦𝐓 

𝜶 = (2.7±𝟎. 𝟏)*10-3 
∆𝑯𝟎 = 𝟐 𝐦𝐓 

(2.4±𝟎. 𝟏)*10-3 
∆𝑯𝟎 = 𝟐. 𝟑 𝐦𝐓 

𝜶 =(2.5±𝟎. 𝟏)*10-3 
∆𝑯𝟎 = 𝟐. 𝟒 𝐦𝐓 

Irr. at 5*1015 

 

𝜶 = (3.4±𝟎. 𝟏)*10-3 

∆𝑯𝟎 = 𝟐. 𝟒 𝐦𝐓 

𝜶 = (3.7±𝟎. 𝟏)*10-3 

∆𝑯𝟎 = 𝟐. 𝟔 𝐦𝐓 

𝜶 = (2.6±𝟎. 𝟏)*10-3 

∆𝑯𝟎 = 𝟐. 𝟔 𝐦𝐓 

𝜶 =(2.5±𝟎. 𝟏)*10-3 

∆𝑯𝟎 = 𝟐. 𝟔 𝐦𝐓 

Irr. at 1016 

 

𝜶 = (4.7±𝟎. 𝟏)*10-3 
∆𝑯𝟎 = 𝟑. 𝟔 𝐦𝐓 

𝜶 = (4.8±𝟎. 𝟑)*10-3 
∆𝑯𝟎 = 𝟑. 𝟑 𝐦𝐓 

𝜶 = (5.1±𝟎. 𝟏)*10-3 
∆𝑯𝟎 = 𝟐. 𝟒 𝐦𝐓 

𝜶 =(5.1±𝟎. 𝟏)*10-3 
∆𝑯𝟎 = 𝟐. 𝟖 𝐦𝐓 

Irr. at 1017 

 

𝜶 = (4.7±𝟎. 𝟏)*10-3 
∆𝑯𝟎 = 𝟒. 𝟑 𝐦𝐓 

𝜶 = (4.6±𝟎. 𝟏)*10-3 
∆𝑯𝟎 = 𝟒. 𝟓 𝐦𝐓 

𝜶 = (5.5±𝟎. 𝟏)*10-3 
∆𝑯𝟎 = 𝟑. 𝟕 𝐦𝐓 

𝜶 =(6.1±𝟎. 𝟏)*10-3 
∆𝑯𝟎 = 𝟑. 𝟒 𝐦𝐓 

 

Table 5.7: damping factor 𝜶 and extrinsic line width contribution ∆𝑯𝟎 values for N°2 series 

reference and irradiated samples along the two easy and two hard axes.   
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 Sample N°3 series: 

 For this series of sample we always observe that the linewidths for the easy axes are 

bigger than for the hard axes whatever the ion fluence. This is shown in figure 5.27, which 

presents the linewidths in the four magnetic directions at different fluence for the L21 order. 

Moreover the easy axis 2 shows higher linewidth and effective damping than the easy axis 1, 

except at 1016 and 1017 ions/cm² for which the situation is inversed. 

 

 

Figure 5.27: ∆𝑯 vs. 𝒇𝒓𝒆𝒔 measurements of N°3 series irradiated samples from 1014 to 1017 

ions/cm2 along the 4 axes directions shows clearly that the easy axes have higher ∆𝑯 than 

hard axes.   

 In figure 5.28 we present the evolution of the linewidth in each magnetic direction as 

a function of the ion fluence of sample N°3 series. Same general tendencies as for the samples 

of series N°1 and N°2 are visible, i.e., an increase of the effective damping coefficient and 

extrinsic contribution ΔH0 with the ion fluence up to 1016 ions/cm². However at 1017, the 

damping coefficient tends to saturate while the ΔH0 becomes very important, the latter point 

being in agreement with the expectation of the TRIM simulations (figure 5.3). 

  

 At 1014 and 1015 ions/cm², the evolution of the linewidth is similar to the situation 

encountered for the samples of series N°2. Indeed for all directions, the linewidths are roughly 
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similar as a function of the fluence, except for the hard axis 2 for which a clear increase at 

1014 of the 𝛼 is observed. This increase is accounted for the mixing of the L21 and B2 resonance 

at this fluence, as shown in figure 5.20-b. The values of damping factor and extrinsic line 

width of N°3 are presented in Table 5.8. 

 At 1016 some particular feature appears. In addition to the fact that the linewidth of 

the easy axis 1 becomes more important than the linewidth of the easy axis 2, we observe that 

the increase damping coefficient for the hard and easy axes 1 increase much more than the 

one of the hard and easy axes 2. Interestingly this change arises for the fluence for which the 

uniaxial anisotropy is found to switch from one hard axis to the other. It is possible that this 

measurement shows the effect of the mechanical deformation of the value of the intrinsic 

damping in the Co2MnSi. However this tendency is not observed anymore at 1017 ions/cm². 

Maybe it is due to the fact that the material has suffered strong internal chemical and 

mechanical deformation at this fluence, changing drastically the relaxation mechanisms. 

Then it is possible that this measurement shows the effect of the mechanical deformation of 

the value of the intrinsic damping in the Co2MnSi but it is very difficult to conclude of this 

point as the effect at very high fluence does not confirm the tendency. Further measurements 

at some intermediate fluence between 5*1015 and 1017 should be necessary to follow the 

evolution of the damping with more precision. Also, a full structural characterization of the 

lattice parameter and deformation is needed.  

 

 As the gyromagnetic ratio and cubic anisotropy were found to increase with the 

fluence, we also studied the evolution of G/𝝀𝑺𝑶
𝟐  as a function of (g-2)². The result is shown in 

Figure 5.29 for fluence up to 1016 ions/cm². We consider only the L21 crystal order and we 

compare it with the one calculated for the samples of series N°1 and N°3 in the hard axis. 

Clearly, for the sample of series N°3, we do not observe the same linear variation as for series 

N°1. This demonstrates that the damping is not governed only by ordinary scattering in this 

sample and spin flip scattering processes are allowed. The difference between the series N°1 

and N°3 may have to be related to the different Co/Si exchange that arises for sample N°3, 

meaning that this kind of disorder strongly modifies the intrinsic relaxation mechanisms. 
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Figure 5.28: Evolution of damping coefficient and extrinsic linewidth contribution ∆𝑯𝟎 as a 

function of irradiation dose from ∆𝑯 vs. 𝒇𝒓𝒆𝒔 measurements for N°3 series along the two easy 

and two hard axes. 

 

Figure 5.29: A comparison between the evolution of G/𝝀𝑺𝑶
𝟐  as a function of (g-2)² along one 

hard axis for N°1 series and two hard axis for N°3 series. 
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 Finally, the values of the linewidth for the two crystal orders at 1017 ions/cm² in figure 

5.30 are compared. Clearly, the expected B2 order shows much narrower linewidths as 

compared to the main phase. Indeed, we find some values of the effective damping down to 

1.5*10-3 in the hard axis direction, which is very good taking into account the induced disorder 

by irradiation.   

N°3 series 

ions/cm2 

Easy axis1 Easy axis 2 Hard axis 1 Hard axis 2 

Ref 𝜶 =(3±𝟎. 𝟏)*10-3 

∆𝑯𝟎 = 𝟏. 𝟗 𝐦𝐓 

𝜶 =(3.𝟒 ± 𝟎. 𝟏)*10-3 

∆𝑯𝟎 = 𝟐. 𝟐 𝐦𝐓 

𝜶 = (1.9±𝟎. 𝟏)*10-3 

∆𝑯𝟎 = 𝟏. 𝟓 𝐦𝐓 

𝜶 =(2.1±𝟎. 𝟏)*10-3 

∆𝑯𝟎 = 𝟏. 𝟒 𝐦𝐓 

Irr. at 1014 

 

𝜶 = (3.5±𝟎. 𝟏)*10-3 

∆𝑯𝟎 = 𝟐. 𝟓 𝐦𝐓 

𝜶 = (4±𝟎. 𝟏)*10-3 

∆𝑯𝟎 = 𝟐. 𝟐 𝐦𝐓 

𝜶 = (2.3±𝟎. 𝟏)*10-3 

∆𝑯𝟎 = 𝟐 𝐦𝐓 

𝜶 =(3.2±𝟎. 𝟏)*10-3 

∆𝑯𝟎 = 𝟏. 𝟏 𝐦𝐓 

Irr. at 1015 

 

𝜶 = (3.5±𝟎. 𝟏)*10-3 

∆𝑯𝟎 = 𝟐. 𝟒 𝐦𝐓 

𝜶 =(5.3±𝟎. 𝟏)*10-3 

∆𝑯𝟎 = 𝟏. 𝟖 𝐦𝐓 

(1.7±𝟎. 𝟏)*10-3 

∆𝑯𝟎 = 𝟐. 𝟑 𝐦𝐓 

𝜶 =(3.8±𝟎. 𝟏)*10-3 

∆𝑯𝟎 = 𝟎. 𝟖 𝐦𝐓 

Irr. at 1016 

 

𝜶 = (5±𝟎. 𝟏)*10-3 
∆𝑯𝟎 = 𝟐. 𝟕 𝐦𝐓 

𝜶 =(6.𝟔 ± 𝟎. 𝟏)*10-3 
∆𝑯𝟎 = 𝟑 𝐦𝐓 

𝜶 = (5.7±𝟎. 𝟏)*10-3 
∆𝑯𝟎 = 𝟏. 𝟑 𝐦𝐓 

𝜶 =(4.9±𝟎. 𝟏)*10-3 
∆𝑯𝟎 = 𝟏. 𝟔 𝐦𝐓 

Irr. at 1017 

 

𝜶 = (5±𝟎. 𝟏)*10-3 
∆𝑯𝟎 = 𝟏𝟐. 𝟓 𝐦𝐓 

𝜶 = (5.5±𝟎. 𝟏)*10-3 
∆𝑯𝟎 = 𝟗. 𝟓 𝐦𝐓 

𝜶 = (4.2±𝟎. 𝟐)*10-3 
∆𝑯𝟎 = 𝟔 𝐦𝐓 

𝜶 =(5.3±𝟎. 𝟑)*10-3 
∆𝑯𝟎 = 𝟓. 𝟑 𝐦𝐓 

 

Table 5.8: damping factor 𝜶 and extrinsic line width ∆𝑯𝟎 values for N°3 series reference and 

irradiated samples along the two easy and two hard axes.   

 

 

Figure 5.30: A comparison of the damping factor 𝜶 and the linewidth ∆𝐻0 for two crystal 

order of N°3 sample irradiated at 1017 ions/cm2. 
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 In conclusion, this series of samples shows similar behavior as the sample of series 

N°1 and N°2 with an increased intrinsic and extrinsic contribution at fluence above 1016 

ions/cm². However the study of the Gilbert coefficient shows that relaxation mechanisms must 

differ in this series as compared to the series N°1. We also observed that the intrinsic damping 

of the B2 order induced by ion irradiation is much lower than for the modified L21’ phase, as 

we reach values of 1.5*10-3 in the hard axis direction. Finally, it is possible that the 

mechanical strain play a role in the value of the damping coefficient but further experiments 

at intermediate fluence are required to validate our assumption.   

  

 

Conclusion  
 

In conclusion, we have presented three series of samples which shows different magnetic 

behaviors and different initial atomic disorder. The main observations are summarized below:  

 

- Structural analysis performed by X-ray and HAADF-STEM imaging have shown that 

ion irradiation induces atomic disorder in Co2MnSi alloys, especially for fluence above 

5*1015 ions/cm². For the three series of samples we assume that ion irradiation favors 

the B2 crystal order to the cost of the L21 order. On the other hand, the structural 

analysis performed on the series N°1 and N°3 shows that the L21 order is submitted 

to a Co-Mn (D03 type) disorder and/or Co-Si exchange. 

 

- Ion irradiation has been found to increase the out of plane lattice parameter of the 

alloy. This induces a tetragonal (and maybe orthorhombic at fluence of 1017 ions/cm² 

for the series N°3) distortion of the unit cell. At the same time, in each series of 

samples, we observe the rotation and modification of the amplitude of the uniaxial 

anisotropy when increasing the fluence, until the material is fully relaxed. Then we 

believe that structural deformation and uniaxial anisotropy must be related, the latter 

being a consequence of the mechanical strain induced by lattice deformation.  

 

- The local defects induced by ion irradiation have been showed to increase the coercive 

field of the samples of series N°1, meaning that the switching mechanism of this series 

is governed by propagation effects.   

 

- The static magnetic parameters (Ms, Hk, A) has been found to be unaffected by 

irradiation for the B2 order. For the L21 order, ion irradiation induces a decrease of 

the magnetization and exchange amplitude while the cubic anisotropy and 

gyromagnetic ratio increases. We assume that it is due to the modification of the local 

environment of the Mn atoms. We believe that atomic disorder on Co sites (i.e. Co/Mn 

or Co/Si exchange) leads to a closing of the spin splitting at the Fermi level, inducing 

a lower magnetization and exchange values, in agreement with theoretical predictions 

in literature. Moreover the atomic disorder is assumed to increase the orbital moment 

on the Mn atoms and the spin-orbit coupling, explaining the behavior of the 

gyromagnetic ratio and anisotropy.  

 

The effect of ion irradiation on the FMR linewidth has been found to depend on the initial 

crystal order:  
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- For the B2 order, we observe on series N°1 a clear improvement of the extrinsic 

contribution ΔH0 for fluence up to 1015 ions/cm², which is in agreement with previous 

report by Gaier et al of the improvement of long range order in B2 phase at low fluence. 

At higher fluence the ΔH0 increases in agreement with the creation of local defects 

such as vacancies and interstitial in the alloy. We also observed that the effective 

damping α was roughly constant, even at high fluence such as 1017 for the series N°2 

and N°3. This means that most probably the B2 order is not summited to strong 

chemical atomic disorder. On the samples of series N°2 and N°3, the value of the 

effective damping of the expected B2 order at 1017 ions/cm² has been found in very good 

agreement with the value of the B2 phase for the series N°1.  

 

- For the L21 phase, the general tendency is an increase of the effective damping with 

the fluence. This is in agreement with the reduced magnetization if spin-flip scattering 

relaxation is allowed, and also with the increased spin-orbit interaction observed for 

the cubic anisotropy.  Beside this, the effective 𝛼 was found to be improved in the 

direction of the uniaxial anisotropy for the series N°2 at low fluence, while  it was 

found to be degraded for the series N°3. Finally, we were not able to state about the 

possible relation between the mechanical deformation induced in the matrix and the 

evolution of the effective damping. Further studies such as angle dependence of the 

linewidths, and measurements are intermediate fluence for which the relaxation 

appear are required to conclude on this point.   
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Conclusion and Perspective 
 

 

 Heusler alloys are known to exhibit very special magnetic features, such as half 

metallicity and low damping coefficient, as a function of the degree of atomic order in the 

material. These properties are highly required for the development of spintronics devices 

based on magnetoresistance or spin torque effects. In this work, we offered to get a deeper 

insight into the correlation between the magnetic and structural properties of the Co2MnSi 

alloy by studying the evolution of its static and dynamic magnetic parameters when 

submitted to He+ ion irradiation at 150 KeV. Our work was based on the results obtained by 

Gaier et al. showing that He+ ion irradiation at low fluences improves the long range B2 order 

in Co2MnSi. In addition to the fundamental aspect of our approach, one of our goals was to 

study the possibility of improving the atomic order, even in the L21 phase, and then 

decreasing the dynamic damping of the material down to the theoretical predictions by Liu et 

al. (~0.6 ∗ 10−4). Another goal was to study the effect of atomic disorder on the fundamental 

dynamic relaxation mechanisms by a proper control of the structure of the material.  

 For this purpose, several experimental techniques have been combined. Structural 

characterization has been achieved through X-ray diffraction in normal and anomalous 

conditions for a quantitative description of atomic disorder, while electron microscopy and 

especially HAADF-STEM imaging has been used to study the local organization of the atomic 

structure. Beside this, ferromagnetic resonance, MOKE and PPMS magnetometry allowed 

the determination of the static and dynamic magnetic parameters of the alloy. In this 

manuscript, we have chosen to present the experimental results observed for three series of 

samples. This choice is due to the difference of evolution of the structural and magnetic 

properties for each series.   

  

 In chapter IV, we first studied the structure and the magnetic properties of the 

reference samples of each series. Each sample is a thin film, with a thickness between 40 and 

50 nm, grown on MgO substrate by sputtering. The CMS films verify the expected epitaxial 

relationship (001)[110] // MgO(001)[100] ], indicating a 45° rotation of the CMS on the MgO 

substrate in order to minimize the lattice mismatch. Moreover, GPA analysis, performed from 

HAADF-STEM images, on the reference sample of series N°1 shows that the films are fully 

relaxed.  

 One of the major results presented in this chapter is that the structure of the three 

reference samples is slightly different. First, X-ray diffraction demonstrated that the unit cell 

is tetragonal with an out-of-plane lattice parameter of 5.67 and 5.69 Ǻ for the reference 

samples of series N°1 and N°3, respectively. Moreover, the chemical atomic disorder was 

found to be different from one sample to the other. For example, the reference sample of series 

N°1 exhibits small crystallites with B2 order inside a L21 matrix. The rate of Co-Si exchange 

for this sample has been found to be below the uncertainty of the measurement, i.e. below 2%. 

L21 order was also found for the reference sample of series N°3 but the Co-Si exchange rate 

was found to be about 6% while no B2 order was observable in HAADF-STEM images. This 

means that the B2 order is either absent or that crystallites are too small to induce a variation 

of contrast in HAADF-STEM images. Unfortunately a complete structural analysis could not 

be performed on the reference sample of series N°2. Only X-ray diffraction performed with a 
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diffractometer equipped for small samples has been carried out. A very small amplitude of 

the (111) superlattice diffraction peak was observed for this sample. Based on the results 

obtained for the two other samples, it is possible that it grows either mainly in the B2 phase 

and/or in the L21 phase with strong Co-Si exchange.    

 The three reference samples also show different magnetic behaviors. For example, in 

FMR measurements, the reference samples of series N°1 and N°3 exhibit two resonance 

peaks, that we attribute to the L21 and B2 crystal order, while the reference sample of N°2 

series exhibit only a single peak that we attributed to a disordered L21 phase. The values of 

the magnetization, exchange and gyromagnetic ratio for the three samples are in good 

agreement with reported values in the literature for L21 and B2 crystal order. One interesting 

feature of our samples concerns the anisotropy. Indeed the amplitude of the cubic anisotropy 

is more important than the one reported in literature for CMS deposited on MgO substrate. 

In addition, we observe the presence of a small uniaxial anisotropy which is aligned either 

with an easy axis for the samples of series N°1 and N°2 or with a hard axis for sample N°3. 

The origin of this additional anisotropy is accounted for the out-of-plane deformation of the 

unit cell but it is worth to mention that the effect of the chemical disorder cannot be 

eliminated.  

 We also studied the FMR linewidth of the three samples. Interestingly, we observe an 

anisotropic behavior of the linewidth and of the intrinsic damping coefficient. As explained in 

chapter 4, we measure in fact an effective damping coefficient that takes into account several 

contributions. Then further analytical analysis, especially taking into account the mosaicity 

of the sample and the two magnon processes, is needed to state about the origin of this 

anisotropy and conclude about an isotropic or anisotropic damping constant. One important 

result of this chapter is that the best effective damping coefficient is found for the reference 

sample of series N°1 for which we were able to separate the contribution of the B2 and the 

L21 order. We obtained an effective damping down to 1.6*10-3, which is better than most of 

the reported work up till now. Then, two main conclusions for this part can be emphasized 

on. The first one is that the understanding of the magnetic behavior and the determination 

of the static and dynamic parameters of the Co2MnSi must include a full structural analysis 

of the material, including a study of the atomic disorder and mechanical strain in the 

material. To our knowledge such kinds of studies are rarely performed. In addition, we believe 

that the presence of the atomic disorder is at the origin for the reported values of 𝛼 in 

literature which are generally between 6*10-3 and 3*10-3, almost one order of magnitude above 

the theoretical predictions. In our case we also believe that the values of 𝛼 determined by the 

ΔH vs. fres curves are the upper limit of the intrinsic coefficient, as many contributions to the 

linewidth arise. Then, if improving the crystallinity of our samples, we could expect to reach 

intrinsic damping coefficient down to 10-3, as recently reported by Andrieu et al. in Co2MnSi 

grown by MBE on MgO substrate.  

 

 In chapter 5, we studied the effect of ion irradiation on the structural and magnetic 

properties of the alloy. In the first part of this chapter we present simulations of the expected 

damages induced by the irradiation. While these simulations give the order of magnitude of 

the maximum damage that can be induced, it shows that local point defects such as vacancies 

or interstitial cannot be neglected for fluence above 1016 ions/cm².  

 The effect of irradiation on the structure of the alloy is found to depend on the original 

structure of the material. Indeed, for the samples of series N°1, we demonstrated that the 

irradiation favors the B2 order to the cost of the L21 phase. In addition, Co-Mn exchange is 

found to rise in the L21 matrix while Co-Si exchange is kept roughly constant up to 1016 

ions/cm². The study of the magnetic parameters for the three series of samples makes us 
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believe that ion irradiation always favors the B2 order in every sample. This confirms the 

result obtained by Gaier et al. For the samples of series N°3, only X-ray diffraction with a Cu 

source have been performed so only the Co-Si exchange rate could be studied. We found a 

strong increase of this parameter with the ion fluence. However, such atomic exchange was 

not detected in the HAADF-STEM analysis. Indeed we observed a very uniform contrast, 

similar to the one expected for B2 order. Therefore, we propose a scenario in which a double 

exchange mechanism appears in the L21 matrix. We believe that Co-Mn and Mn-Si exchange 

are first induced at low fluences, similarly as for N°1 series. Then we believe that it is the Co 

atoms which are on the Mn sites that switch their position with Si atoms. Further structural 

analysis will be needed to validate our assumption.     

 In addition to the chemical disorder, we observe that the irradiation increases the out-

of-plane lattice parameter of the samples of series N°1 and N°3. For the samples of series N°3 

only the out-of-plane parameters have been measured due to the experimental configuration 

of the diffractometer. However, for the series of sample N°1, we could verify that the in-plane 

lattice parameters are kept constant for fluences up to 1016 ions/cm², meaning that the volume 

of the unit cell (a²c) is not constant during the deformation.  

 The effect of the ion irradiation on the magnetic parameters of the alloy is presented 

in the last part of chapter 5. We find two different effects depending on the crystal order. The 

general tendencies are the following. Surprisingly the magnetic parameters of the B2 order 

are almost constant whatever the fluence. The only effect of irradiation is an increase of the 

extrinsic contributions ΔH0 to the FMR linewidth, in agreement with the increased numbers 

of local defects. This again confirms that ion irradiation favors the B2 order in Co2MnSi. For 

the L21 order the situation is different. Due to the induced atomic disorder, the values of the 

magnetization and exchange are found to decrease, in agreement with theoretical predictions 

of the loss of half metallicity with structural disorder. More interestingly we observed an 

increase of the gyromagnetic ratio and cubic anisotropy which reflects an increase of the 

orbital magnetic moment and spin-orbit interaction in the material.  

 In addition, one of the most striking features in our experiments is that the uniaxial 

anisotropy is found to rotate in the plane of the layer when increasing the ion fluence. 

Moreover its amplitude is found to increase for fluence up to 5*1015 ions/cm². At 1016 ions/cm² 

the uniaxial anisotropy amplitude decreases. We believe that the increase of the anisotropy 

amplitude is related to an elastic deformation of the unit cell when the decrease at 1016 can 

be accounted for the relaxation of the internal strain, which can be mediated by the structural 

defects induced by irradiation. Finally the anisotropy amplitude increases again for fluence 

of 1017 ions/cm². For such high fluence, the strong internal modifications of the chemical order 

along with some irreversible mechanical distortions (such as orthorhombic deformations for 

example) have to be considered. The possibility offered by ion irradiation to follow the 

evolution of the uniaxial anisotropy as a function of the deformation allows to clarify the 

origin of the uniaxial anisotropy. This result is of particular interest since it can be extended 

to other magnetic systems presenting the same behavior.  

 Finally, we studied the effect of ion irradiation on the linewidth of the different 

samples. As already stated, the intrinsic effective damping for the B2 order seems to be 

constant with the fluence. The extrinsic contributions were even found to be improved for the 

samples of series N°1 at fluence below 1015 ions/cm², reflecting the improvement of the long 

range order of this phase. For the L21 order, the general tendency is an increased of the 

damping coefficient, especially at high fluence due to the modification of the local 

environment around the Mn atoms. However, we also observed that for the samples of series 

N°2 and N°3, there could be some relation between the evolution of the uniaxial anisotropy 

and a potential improvement of the damping in some particular magnetic directions. This 
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appears only at fluence below 1015 ions/cm². At this point, it is not possible to state clearly on 

this assumption. Additional experiments are needed. Especially it would be necessary to 

study the linewidth in directions close to the direction of the uniaxial anisotropy.  

 Finally we would like to emphasize on some strange features observed for the second 

resonant peak appearing in the samples of N°2 and N°3 series at high fluence, and to a less 

extent in N°1 series. From the dispersion curves fres vs H0 in one easy and one hard axis 

directions obtained for this resonance,, we deduced  in agreement with the reported values 

for a B2 order. However, this resonance shows strong variations of its amplitude depending 

on the magnetic directions and ion fluence. It is even completely undetectable for two 

directions for the samples of N°3 series. At the time we write this manuscript we do not have 

any explanations for these observations.    

 

 

 

 In conclusion, it is clear that ion irradiation at low fluences can be a very efficient tool 

to improve the B2 order in Co2MnSi. This technique can be of particular interest since this 

crystal order is supposed to show a half metallic behavior. Therefore, we believe that it can 

be a credible complementary technique to temperature annealing to improve the order of this 

crystal phase in Heusler alloy. We also demonstrated that the atomic disorder and maybe 

mechanical strain are two key parameters to optimize the magnetic properties of Co2MnSi in 

view of spintronic applications. While a much better control of the growing condition must be 

fulfilled to get reproducible effects, the very low damping measured in our work demonstrates 

the potential of Co2MnSi to develop low energy consumption microwave devices, or spin 

torque memories. We believe that damping coefficient down to 10-3 or below are achievable in 

a very “pure” crystal, making of this material one of the most interesting ferromagnetic 

materials compatible with microelectronics processes.  

 From a fundamental point of view, ion irradiation is also very interesting to study 

the effect of disorder on the dynamic relaxation mechanisms. For example, starting from a 

thin film with B2 order, ion irradiation can be used to control the density of defects and 

study the evolution of the extrinsic contributions to the linewidth. The main interest being 

that, all the other magnetic parameters would be kept constant. It is also an interesting 

technique to probe fundamental interaction in the material such as the correlation between 

the spin-orbit interaction and the intrinsic damping coefficient. In this work we only get 

very preliminary results on this entanglement for N°1 series samples. In addition, ion 

irradiation offers the possibility to study the spin-flip and non spin-flip relaxation 

mechanisms by controlling the atomic disorder, and so the energy bandgap for spin up and 

spin down, in the material. For this the best configuration would be to start with a single 

crystal of L21 order. The main difficulty encountered in our work to get a deeper 

understanding of these different contributions was to separate the contributions to the 

linewidth of the different crystal order present in the as deposited material. One key issue 

for the future of this work will be the improvement of deposition condition to reduce the 

atomic disorder and phase mixing in the alloy.   



Sommaire Thèse 

 

Les matériaux demi-métalliques sont aujourd’hui particulièrement attractif pour les 

dispositifs à électronique de spin ainsi que les dispositifs micro-ondes.. Ces matériaux ont une 

propriété unique, ils se comportent comme métal pour une orientation du spin et en tant que 

semi-conducteur pour  l'autre avec un écart au niveau de fermi qui conduit à une polarisation 

de spin de 100%. Un exemple de  de matériaux demi-métalliques est la famille des alliages d’ 

Heusler. Ces alliages ont été découverts en 1903 par F. Heusler [1 Heusler] en combinant 3 

éléments non magnétiques tel que Cu2MnAl qui se comporte comme un matériau 

ferromagnétique. Après cette découverte, de nombreux autres composés ont également été 

ajoutés à cette famille. En 1983, De Groot et al. [2 De Groot] ont montré le comportement 

demi-métallique du composé NiMnSb; cette découverte a conduit à un grand intérêt pour 

l'étude des alliages Heusler. Une autre propriété importante, qui est d'un intérêt particulier 

dans ce manuscrit de thèse,  est le faible coefficient d'amortissement Gilbert dans ces 

composés qui est prévu pour être en dessous de 10-3 dans certains cas comme le Co2MnSi, soit 

un ordre de grandeur environ meilleur que la plupart des métaux ferromagnétiques 

classiques. La combinaison de la polarisation en spin et du faible  amortissement de Gilbert 

sont importants pour le retournement de l'aimantation dans les dispositifs STT MRAM.  

Depuis lors, diverses combinaisons atomiques ont été testées comme par exemple des 

composés à base de cobalt Heusler. Au cours des 10 dernières années, le travail expérimental 

est axé sur la qualité de la croissance et les différentes propriétés magnétiques des alliages 

d’Heusler. Dans ce travail, nous sommes intéressés à l'étude des propriétés magnétiques et 

structurales des alliages Co2MnSi. 

 

Bien que le grand intérêt dans ces alliages ont été démontrées théoriquement (polarisation 

de spin élevée et faible Gilbert facteur d'amortissement 0,6 * 10-4 [3 Liu])  expérimentalement 

ces propriétés ont rarement été observées. Une raison possible de ces écarts réside dans la 

présence de désordre cristallin dans les matériaux réels. En effet,  

Les alliages d’Heusler cristallisent en 4 phases différentes (pour les « full Heusler ») et en 

fonction de la position des atomes dans le réseau, le comportement magnétique est impacté. 

 

Les alliages de type full Heusler à base de cobalt ont une composition chimique de type  Co2YZ. 

Ils cristallisent de préférence dans la structure L21 (groupe d’espace Fm3m). La cellule 

unitaire cubique est composée de quatre sous-réseaux interpénétrés de type FCC et les 

atomes sont placés suivant des positions de Wyckoff (1/4, 1/4, 1/4) pour le Co et  la (0, 0, 0) et 

(1/2, 1/2, 1 / 2), pour Y et Z respectivement. La phase L21 est la phase la plus ordonnée des 

alliages d’Heusler. Si les atomes sont mal placés ou occupés de façon aléatoire dans la cellule 

unitaire, la phase ordonnée est modifiée. Trois autres phases cristallines, peuvent ainsi ête 

cristallisée, les phases B2 et D03 partiellement ordonnée et la phase A2 complètement 

désordonnée. La phase B2 correspond à une répartition aléatoire des atomes Y et Z dans la 

cellule unitaire, mais en gardant les atomes de Co dans leurs positions initiales. L'échange de 

Co et d’atomes Y  donne la structure D03. La phase complètement désordonné A2 est formée 

lorsque tous les atomes sont occupés de façon aléatoire dans la cellule unité [4 Bacon and 



Plant, 5 Webster, 6 Trudel]. La figure 1 donne une présentation schématique des quatre 

phases différentes du CMS. 

 

  

Figure1: présentation schématique des quatre phases cristalline pour le Co2MnSi a) L21, b) 

B2, c) D03 et A2.  

 

Les propriétés structurales de l'alliage à base de Co sont très sensibles aux conditions 

de dépôt et en particulier la nature du substrat, afin de minimiser le désaccord de maille 

définie comme:  
𝑎𝑑𝑒𝑝𝑜𝑠𝑖𝑡𝑒𝑑 𝑓𝑖𝑙𝑚−𝑎𝑠𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒

𝑎𝑠𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒
. Ou a est le paramètre de maille 

 

Dans la littérature, les substrats les plus connus pour déposer des alliages d’Heusler 

sont le MgO et le GaAs. L'un des principaux intérêts de l'utilisation de substrat MgO concerne 

les jonctions tunnel magnétiques (MTJ), tandis que des substrats de GaAs permettent 

l'injection de spin dans des semi-conducteurs. GaAs a un paramètre de maille de 5,65 Å tandis 

que celle de MgO est 4.21 Å (Figure 1.2). Ceci conduit à un meilleur accord de maille  pour 

GaAs où les alliages à base de Co Heusler croissent cube sur cube. Pour MgO, la croissance 

épitaxiale est réalisée par une rotation de l'axe du CMS à 45 ° par rapport à la direction <100> 

du MgO. Le désaccord de maille théorique entre le Co2MnSi et le MgO est ≈ - 5,1% (Figure 2). 

 

 

Figure 2: e présentation schématique de la croissance épitaxial du Co2MnSi sur a) MgO et b) 

GaAs. 

 



Le comportement magnétique de ces alliages dépend fortement de la phase structurale 

dans laquelle il croît. Théoriquement Picozzi et al [7 Picozzi] ont montré que dans les phases 

L21 et B2, ont une  valeur de l'aimantation d’environ 5 μb /f.u. (1,3 T), même lorsque le Mn et 

le Si échangent leurs positions dans le réseau pour former la phase B2. Le comportement 

demi-métallique du CMS est montré théoriquement avec une “ band gap“  au niveau de fermi 

pour la phase L21 avec un faible Gilbert coefficient d'amortissement de 6 * 10-5. Le CMS 

présente une anisotropie cubique avec une constante d'anisotropie  négative. Ainsi l'axe de 

facile aimantation est orienté dans les diagonales du cube (directions <111>) et l'axe de 

difficile aimantation  est le long des arêtes du cube (directions <100>). Beaucoup d’études ont 

été menées  sur les phases L21 et B2. Cependant peu d’études ont été menées s sur les phases 

de D03 et A2. Théoriquement, Picozzi et al. ont également étudié l'effet de la réorganisation 

atomique sur l'aimantation moyenne lorsque en présence d’échange de type Co/Mn (échange 

de type D03). Ils ont montré une diminution de l'aimantation à saturation à 4,5 μb /f.u. (1,16 

T) mais aucune information sur les variations de l’anisotropie ou du facteur d’amortissement 

ne sont donnés. Pour la phase A2 aucune information n'a été trouvée sur le comportement 

magnétique de cette phase. 

 

Ainsi l’objectif de ce travail consiste à étudier et comprendre les corrélations entre les 

propriétés structurales et magnétiques du CMS à l'échelle atomique. Pour atteindre cet 

objectif, nous avons utilisé la technique d'irradiation ionique. Dans ce processus des ions sont 

accélérés et pénètrent dans un solide pour modifier les propriétés physiques et chimiques par 

interaction nucléaire et électronique. Dans une vision simplifiée, l'irradiation ionique peut 

être considérée comme un transfert d’énergie cinétique des ions incidents  aux atomes du 

réseau. La fluence est définie comme le nombre d’ions / cm2. A faible fluence, l'irradiation agit 

comme un recuit local où le transfert d'énergie cinétique conduira à un léger mouvement des 

atomes localement pouvant amener une réorganisation chimique locale. Pour les fortes 

fluences, l’accumulation d’énergie transmise aux  atomes du cristal leur permettra de se 

déplacer sur de plus grandes distances  et créer des défauts ponctuels de types lacunes ou 

interstitielles dans le matériau.  

Dans ce travail nous avons utilisé des ions He+ accélérés par une tension de 150 KeV. 

Nous avons déterminé les fluences de travail à partir de simulations d’endommagement du 

CMS avec le logiciel IPROS développé dans notre laboratoire. Ce logiciel permet de simuler 

l’endommagement d’un matériau amorphe et de composition stœchiométrique (50% de Co, 

25% de Mn et 25% Si). En plus les simulations sont réalisées à 0K et négligent les potentielles 

recombinaisons atomiques à température ambiante. A partir des simulations deux 

caractéristiques importantes peuvent être obtenues (figures 3-a et 3-b). La première est 

quelles ions parcourent environ 600 nm dans le MgO (dans notre cas 42 nm),  Le deuxième  

est le nombre de lacunes créées. Par exemple pour une fluence de 1016 ions/cm², nous obtenons 

presque 1 lacunes pour 100 atomes de CMS. Cependant, du fait des limitations évoquées ci-

dessus, ce chiffre est surévalué et ne donne qu’une limite haute de l’endommagement possible.   



 

Figure 3-a: concentration d’Hélium en fonction de la profondeur. 

 

Figure 3-b: concentration de lacunes  de Co, Mn et Si pour une fluence de 1014 ions / cm2.. 

 

Plusieurs techniques expérimentales ont été utilisées pour étudier les propriétés 

structurales et magnétiques de nos échantillons Nous avons déposé par pulvérisation 

cathodique des films minces de 40 nm d’épaisseur de CMS sur des substrats de MgO. Notre 

bâti est équipé d'un RHEED pour contrôler in situ le type de croissance du CMS. Les 

conditions de dépôt (température de dépôt et de recuit, Tdeposition et Trecuit) ont été optimisées 

après contrôle in situ de la croissance 2D par RHEED, comme illustré sur la figure 4. Les 

conditions optimales ont été définies comme Tdep = 600 ° C et Trecuit = 750 ° C. 

 

Figure 4: cliché RHEED de CMS à des températures de dépôt différentes. 

 



L’épaisseur du CMS varie de 40 à 50 nm et à la fin du procédé, une couche de 10 nm de MgO 

a été déposée pour empêcher l'oxydation de l'échantillon. Après avoir réalisé l’échantillon, la 

diffraction par rayons X et la microscopie électronique en transmission (TEM)  sont utilisés 

pour étudier la structure et le désordre atomique de nos échantillons. La diffraction de rayons 

X est un outil qui permet de caractériser la structure à l'échelle macroscopique. La première 

chose que nous avons vérifiée est la relation d’épitaxie du CMS avec le MgO  avec une rotation 

de la maille du CMS par rapport au MgO. De plus, la diffraction de rayons X permet d’avoir 

accès au différents échange atomique et donc aux phases cristallines en présence. En effet, 

dans le CMS, certains pics de diffraction apparaissent quel que soit la phase cristalline. On 

les appelle les pics fondamentaux (par exemple (220)). Cependant des pics de sur-structure 

peuvent apparaitre en fonction du type de désordre présent dans le matériau. Par exemple le 

pic de diffraction (111) apparait en présence des ordres cristallins L21 ou D03. Un problème 

majeur dans la littérature est que la présence de ce pic de diffraction est généralement 

attribuée directement à la présence de la phase L21, ce qui est faux. Ainsi, afin d’avoir accès 

à l’ensemble des types de désordre présent dans nos échantillons nous avons suivis l’approche 

développé par Niculescu et al. [8 Niculesci] et employé par Takamura [9 Takamura] dans le 

cas du Co2FeSi. Dans ce modèle trois paramètres de désordre sont définis 𝛼, 𝛽 et 𝛾. α 

corresponds au nombre d’atome de Mn sur les sites de Si par formule unité, β est le nombre 

d’atome de Co sur les sites de Si et γ est le nombre d’atomes de Co sur les sites du Mn. Ces 

paramètres de désordre sont ensuite introduit dans le calcul des facteurs de structures des 

différents plans de diffraction et dans le calcul de l’intensité diffractée tel que : 

𝐼ℎ𝑘𝑙 ≈ 𝐿ℎ𝑘𝑙(𝜃)𝑃ℎ𝑘𝑙(𝜃)|𝐹ℎ𝑘𝑙|
2 1

sin𝜃ℎ𝑘𝑙
                                                   Eq.1 

F111 ∝ (1 − 2α − β)(𝑓Mn − 𝑓Si) + (γ − β)(𝑓Co − 𝑓Mn)                           Eq.2 

F002 ∝ (1 − 2β)(𝑓Co − 𝑓Si) + (1 − 2γ)(𝑓Co − 𝑓Mn)                                 Eq.3 

F022 = F004 ∝ 2𝑓Co + 𝑓Mn + 𝑓Si                                                         Eq.4 

Dans cette méthode, trois rapports d’intensités entre les pics de sur-structure hkl et le pic 

fondamental doivent être évalués afin d'obtenir 𝛼, 𝛽 et 𝛾.  

Afin d'obtenir ces trois paramètres, nous avons utilisé deux diffractomètres, l’un équipé avec 

une source de cuivre au seuil Kα et l’un équipé d’une source de cobalt au seuil Kα. L’utilisation 

du premier permet d’obtenir α et β car le facteur de diffusion du Co et du Mn à cette énergie 

étant très proches (figure 5-a) le second terme du membre de droite des équations 2 et 3 

disparaissent. En revanche ces termes réapparaissent au seuil Kα du Co, permettant ainsi de 

retrouver le paramètre γ.  

Pour étudier l'effet de l'irradiation, l'échantillon déposé a été coupé en 4 morceaux, la 

référence et 3 échantillons irradiés à 150 keV de fluences 1015, 5 * 1015 et 1016 ions/cm2, 

respectivement.  

La figure 6 présente différents pics de diffraction de l’échantillon de référence et des 

échantillons irradiés où l'on peut voir clairement le décalage des pics de diffraction vers des 

angles plus faibles pour les pics 022, 022 et 004. A partir de ces spectres, on peut d'abord 

obtenir le paramètre de maille du CMS. Les valeurs obtenues sont résumées dans le tableau 



1. Nous observons que l’irradiation augmente la déformation tétragonale du réseau, tout en 

gardant les paramètres dans le plan constant à 5,63 Å. Cette distorsion tétragonale affectera 

l'anisotropie magnétique présentée dans la section suivante. 

 

Figure 5: facteurs de diffusion atomique du Co, Mn et Si en fonction of  
𝑠𝑖𝑛𝜃ℎ𝑘𝑙

𝜆
 pour les 

sources de a) Co kα1 et b) Cu kα1. 

 

 

Figure 6: Diffraction des rayons X . 2𝜽  scan pour l’échantillon de référence et les 3 

échantillons irradiés pour les sources de Co et Cu. a), b) et c) représente les 111,002 et 022 

pics acquis avec la source de Co. d) et e) présente les pics 002 et 004 acquis avec la source de 

Cu. 



fluence a (Å) c (Å) 

Ref 5.63 5.67 

1015 5.63 5.68 

51015 5.63 5.69 

1016 5.63 5.69 

 

Tableau 1: paramètres de maille dans le plan et hors plan en fonction de la fluence. 

 

𝛼, 𝛽 et 𝛾 ont été évalués aussi pour la référence et les échantillons irradiés. Pour l'échantillon 

de référence, nous avons mesuré 𝛼(𝑀𝑛/𝑆𝑖) = 0.14 ± 0.01, 𝛽(𝐶𝑜/𝑆𝑖)=0.03 ±0.02 et 𝛾(𝐶𝑜/𝑆𝑖) =

0.01 ± 0.01. A partir de ce résultat, nous pouvons conclure que l’échantillon de référence 

présente environ 75% de phase L21 et 25% de phase B2 (le taux de désordre CO/Si étant très 

faible nous le négligeons ici) L’évolution des taux de désordre en fonction de la fluence sont 

présentés sur la figure 7. Le désordre Mn/Si (type B2) augmente avec la fluence alors qu’à la 

plus forte fluence le désordre de type Co / Mn apparaît. Enfin le désordre de type Co / Si reste 

à peu près constant avec la fluence. . Ainsi avec l’irradiation nous avons montré qu’il était 

possible d’induire des désordres atomiques de type B2 et D03.   

Afin de comprendre l’organisation des différents désordre à l’échelle atomique, nous 

avons réalisé des mesures HAADF-STEM (High Angular Angle Dark Field Scanning 

Transmission Electron Microscopy’ ) au laboratoire INA à Saragosse. Cette technique permet 

à la fois d’observer l’organisation structurale du matériau à l’échelle atomique mais aussi 

d’avoir une information chimique puisque le contraste des colonnes atomiques est 

proportionnel au numéro atomique de l’espèce chimique. (Z~ I 1.7 to 2). De ce fait la différence 

de contraste entre le Co et le Mn, et donc l’observation du désordre de type D03,  est très 

difficile à observer. 

 



 

Figure 7: 𝜶, 𝜷 𝒂𝒏𝒅 𝜸 paramètres de désordre atomique en fonction de la fluence. 

 

Un exemple d'image STEM-HAADF est donné dans la figure 8-a. Un zoom sur une 

petite zone permet d’observer les variations d’intensité des différentes colonnes atomiques 

dénotées par les flèches de couleur (figure 8-b). Par exemple pour la ligne en noire les colonnes 

atomiques montrent un maximum d’intensité correspondant aux colonnes de Co. Pour les 

lignes rouges et vertes nous observons une alternance de haute et faible intensité, typique de 

l’alternance des atomes de Mn et Si dans une structure de type L21.  La différence d’intensité 

entre les atomes de Co et Mn étant très faible, une manière de discrétiser ces deux types 

d’atomes consiste à réaliser une étude statistique du maximum d’intensité de chaque colonne 

comme le montre sur la figure 9. Un résultat important de cette mesure est la présence de 

petite zone ou l’alternance d’intensité entre le Mn et le Si disparait. Ceci correspond à des 

zones cristallisées dans la phase B2. (Figure 9-b). 

  

  La même méthode a été appliquée sur l’échantillon le plus irradié avec une fluence de 

1016 ions/cm² La différence principale avec l’échantillon de référence concerne la taille des 

zones de type B2 qui sont beaucoup plus grande (figure 10). Ceci confirme es résultats obtenus 

par diffraction X montrant que la phase B2 est favorisée par l’irradiation ionique, en défaveur 

de la phase L21. Concernant le désordre de type D03, celui-ci est difficilement observable par 

STEM-HAADF. Cependant des mesures magnétiques permettent de statuer sur 

l’organisation de ce désordre au sein du matériau.   



 

Figure 8: a) Image STEM-HAADF du CMS. b) zoom sur 6x 6 colonnes atomiques délimité 

par le rectangle rouge en a). (C) profil d'intensité des lignes indiquées par les flèches  en b). 

 

 

Figure 9: (a) L'analyse statistique du profil d'intensité obtenu sur une région de 11 x 23 

colonnes atomiques délimité par la zone en  noire (a) ou rouge (b) dans l'image STEM.  

 

 



 

Figure 10: Image STEM-HAADF sur l’échantillon irradié à 1016 ions/cm². Les statistiques 

ont été effectuées sur les colonnes atomiques délimitées par les zones entourées en a).  

 

 La deuxième partie du travail de thèse a consisté à étudier l'effet du désordre atomique 

sur les propriétés magnétiques du CMS par résonance ferromagnétique (RFM). La RFM 

décrit la précession uniforme de l’aimantation lorsque celle-ci est mise hors de sa position 

d’équilibre définie par la direction du champ effectif  Heff (qui est défini par la somme des 

énergies magnétiques mises en jeu). L’équation du mouvement de l’aimantation est définie 

dans l'équation 5. Afin de permette le retour à l’équilibre de l'aimantation, un terme de 

relaxation de type frottement visqueux et décrit par le Gilbert facteur d'amortissement 𝛼 est 

introduit.  

𝒅𝑴⃗⃗⃗ 

𝒅𝒕
= −𝜸 𝝁𝟎( 𝑴⃗⃗⃗ ∧ 𝑯⃗⃗⃗ 𝒆𝒇𝒇)      +       

𝜶

𝑴
(𝑴⃗⃗⃗ ∧

𝒅𝑴⃗⃗⃗ 

𝒅𝒕
)                                        Eq.5 

Pour étudier les propriétés magnétiques, nous avons développé au CEMES une technique 

RFM présentée schématiquement dans la figure 11. Le principe est le suivant. L’échantillon 

de CMS est placé au-dessus d’une ligne de transmission micro-ruban constituée d'une couche 

d'or de largeur de 400 nm sur un substrat d'alumine.. Une courante micro-onde (0.1 – 30 GHz) 

est injectée dans la ligne Afin d’exciter l’aimantation. Le porte objet est placé entre les pôles 

d’un électro-aimant pouvant délivrer jusqu’à 1.5 T dans un entrefer de 2 cm ou 0.6 T dans un 

entrefer de 8 cm. La mesure consiste à balayer la valeur du champ magnétique extérieur en 

gardant une fréquence d’excitation micro-ondes constante. A la résonance, nous mesurons par 

une technique de modulation du champ externe la dérivée de la puissance électromagnétique 

absorbée par l’échantillon. Cette modulation est réalisée grâce à deux bobines de Helmholtz 

placée autour du porte objet. La figure 12 présente un spectre RFM typique qui peut être 

mesuré avec notre set-up. Le champ de résonance est définie comme la valeur pour laquelle 

le signal est égal à zéro et la largeur de raie ΔHpp définie par la largeur pic à pic dans notre 

mesure peut être reliée au facteur de relaxation  via la relation ∆𝐻𝑝𝑝 =
1

√3
∆𝐻, avec ΔH la 

valeur FMR réelle.  



 

Figure 11: illustration schématique de la configuration FMR. 

  

 

 

 

Figure 12: Signal FMR mesurée en fonction du champ extérieur appliqué. 

 

Le spectre FMR de l’échantillon de CMS de référence est présenté sur la figure 13. 

Deux pics de résonance sont clairement visibles en accord avec la présence des phases B2 et 

L21 déterminées par diffraction X et STEM-HAADF. La même chose est observée quel que 

soit la direction d’application du champ par rapport aux directions cristallines. Un point 

important à prendre en considération est le mélange des modes qui rendent difficile 



l’évaluation précise de la largeur de raie dans certaines directions d’application duc champ 

extérieur.  

 

En effet, alors que nous pouvons observer clairement deux pics pour l’axe de difficile 

aimantation N° 2 (dans le CMS il y a deux axes faciles et deux axes difficiles orientés tous les 

45°), on observe un seul pic asymétrique pour l’autre axe difficile N°1. Cependant la forme 

asymétrique du pic reflète le fait que les deux modes sont "mélangés". De même, pour l'axe 

facile, l'amplitude des deux pics respectifs semble être inversée lorsque le champ extérieur 

est appliqué d'un axe facile à l'autre. 

 

  Les mesures FMR sont réalisées avec un champ magnétique parallèle ou 

perpendiculaire au plan de la couche de CMS. Dans e premier cas, notre montage permet de 

tourner le champ magnétique autour de l‘échantillon. Les paramètres magnétiques sont 

obtenus à partir des courbes de dispersion fres Vs H0 ou H0 est l’amplitude du champ appliqué. 

Pour cela, les données expérimentales (Fres vs. Hres) sont ajustées avec l'équation de Smit-

Belger ; Les paramètres magnétiques obtenus par cette méthode sont résumés dans le tableau 

2. 

𝝎𝒓𝒆𝒔 =
𝜸

𝑴𝒔 𝒔𝒊𝒏𝜽𝒆𝒒
[(𝑬𝜽𝜽𝑬𝝋𝝋 − 𝑬𝜽𝝋

𝟐)]𝟏/𝟐                                      Eq.6 

 

Figure 13: Les spectres d'absorption à 16 GHz en fonction du champ externe à deux axes 

durs.  

 

 



 

Figure 14: a) relation de dispersion Fres vs. μ0H0 pour l’échantillon de référence pour un 

champ appliqué dans le plan de la couche. A droite, zoom sur les deux modes délimitées par 

la boîte noire en a). 

 

 

Figure 15: relation de dispersion pour l'échantillon de référence pour un champ appliqué 

perpendiculairement au plan de la couche. b) dépendance angulaire du champ de résonance 

à 13 GHz pour un champ appliqué dans le plan de la couche. 

 

Les valeurs de l’aimantation à saturation sont en très bon accord avec la valeur théorique de 

la phase L21 (~ 5 μB / f.u) [10 Galanakis]. En nous basant sur les mesures de largeurs de raies 

présentées ci-dessous, nous attribuons la phase 1 à l’ordre L21 et la phase 2 à l’ordre B2. Ceci 

est en bon accord également avec l’amplitude des pics FMR, plus faible dans le cas de l’ordre 

B2 en raison d’un volume plus faible dans l’échantillon. Les valeurs d’aimantation légèrement 

plus faible que celles prédites par la théorie peuvent s’expliquer par la présence d’une très 

faible quantité de désordre Co/Si comme montré par diffraction X.  



Concernant le champ d’anisotropie cubique, nous obtenons une amplitude plus élevée 

que celles généralement reportées dans la littérature mais similaire aux celles obtenues dans 

les travaux de G. Ortiz au CEMES [11 Ortiz]. La valeur du rapport gyromagnétique de 28,7 

GHz / T (facteur de Landé g = 2.05) reflète une petite contribution du moment orbital, où, 

pour un électron libre du facteur de Landé g = 2. Le dernier paramètre magnétique à 

commenter est la constante d'échange. Pour mesurer cette constant nous mesurons le premier 

mode d’excitation non linéaire en épaisseur dans le spectre FMR. Le signal correspondant 

étant très faible, nous l’attribuons à la phase majoritairement en présence dans l’échantillon, 

à savoir la phase L21. La valeur déduite de la constante d’échange est en bon accord avec les 

autres valeurs rapportées dans la littérature [12 Ritchie, 13 Hamrlé and 14 Pandey]. 

 

Tableau 2 : valeurs magnétique de la référence pour les deux phases. 

 

La figure 16 présente l’évolution du spectre FMR à 18 GHz en fonction de la fluence.  

Alors que la position du pic correspondant à l’ordre B2 reste à une position à peu près 

constante, celle du pic correspondant à l’ordre L21 évolue vers les valeurs de champ plus 

élevées. Ceci implique une modification des paramètres magnétiques de cette phase. De plus, 

à la fluence la plus élevée, nos n’observons toujours que deux pics. Ainsi, nous pouvons 

conclure que le désordre de type D03 induit par l’irradiation doit probablement apparaitre de 

manière aléatoire dans la partie initialement L21 de l’échantillon de référence. Sinon si ce 

désordre s’organisait sous a forme de « grains » par exemple, nous pourrions attendre trois 

pics FMR (L21, B2, D03).  

 



 

Figure 16: Evolution du spectre FMR à 18 GHz en fonction de la fluence. Le champ 

extérieur est appliqué parallèlement à un axe facile. 

 

 

 

Figure 17: Evolution des courbes fres vs. μ0H0 pour les deux phases en fonction de la fluence.  

 

  Pour la phase B2, les paramètres magnétiques très des courbes de dispersion montrent 

que ceux-ci sont constants avec la fluence, excepté une petite augmentation de l’anisotropie 

cubique (tableau 3). 

 

 



CMS  B2 

phase 

Reference Irr. 1015 Irr. 51015 Irr. 1016 

Magnetization 

saturation Ms 

(T) 

1.25 0.02 1.25 0.02 1.25 0.02 1.25 0.02 

Anisotropy 

field µ0Hk 

(mT) 

32 0.2 33 0.2 35 0.2 36 0.2 

Gyromagnetic 

ratio /2 

(GHz/T) 

28.70.1 28.70.1 28.70.1 28.70.3 

Tableau 3 : valeurs magnétique de la phase B2 en fonction de la fluence. 

 

Pour la phase L21, la situation est plus complexe. En effet nous observons une diminution 

très forte de l’aimantation à saturation et du constant échange alors que la valeur de 

l’anisotropie cubique et du facteur gyromagnétique augmentent fortement (figure 18).  

A diminution de la valeur du moment magnétique et de l’échange peut s’expliquer à 

partir des travaux de Picozzi et al. [15 Picozzi] dans lequel la densité d’état pour les spins up 

et down ont été calculés ab-initio pour une structure parfaite de type L21 et pour une structure 

comprenant un échange de type Co/Mn. Ils ont ainsi démontré (figure 19) que des  états 

localisés pour les spins minoritaires apparaissent au niveau de Fermi, ce qui diminue le 

moment magnétique totale de la maille élémentaire (à 4,5 μB / fu). De plus ils ont observé un 

léger décalage en énergie des spins minoritaires qui peut s’apparenter à une diminution de 

l’échange. Il est intéressant de noter que la diminution de Ms dans nos échantillons est plus 

élevé que les valeurs attendues par le calcul.  

 



 

Figure 18: Evolution de l’aimantation à saturation et de la constante d’échange en fonction 

de la fluence. 

 

 

Figure  19: Densité d’états résolues en spins pour une structure idéale (L21) et une structure 

comprenant un désordre de type Co / Mn qui est typique pour l'ordre D03.  

 

  Afin d’expliquer l’évolution de l'anisotropie cubique et du rapport gyromagnétique en 

fonction de fluence, nous rappelons que ces deux termes dépendent de l’amplitude des 

moments magnétiques orbitaux et de spins. En effet le rapport gyromagnétique est liée au 

facteur de Landé "g" par la formule suivante: 

𝛾 =
𝑔∗|𝑒|

2𝑚𝑒
   with   (𝑔 − 2) = 2

𝜇𝐿

𝜇𝑠
 

Alors que l'augmentation de l'anisotropie cubique est due à une augmentation éventuelle des 

moments orbitaux comme décrit par Bruno et al. [16 Bruno] par cette formule: 



∆𝐸𝑆𝑂 = 𝜆[(𝐿. 𝑆)ℎ𝑎𝑟𝑑 − (𝐿. 𝑆)𝑒𝑎𝑠𝑦] =
𝜆

4𝜇𝐵
(𝜇𝐿

𝑒𝑎𝑠𝑦
− 𝜇𝐿

ℎ𝑎𝑟𝑑) > 0 

Ainsi, nous pensons que l’augmentation de l’anisotropie cubique et du facteur gyromagnétique 

sont probablement lié à l’augmentation du moment magnétique orbital avec le désordre. 

 

Figure 20: Evolution du champ d'anisotropie cubique et du rapport gyromagnétique en 

fonction de la fluence  

 

Un autre paramètre magnétique important auquel nous nous sommes intéressés est la 

présence d’une faible anisotropie uniaxiale dans le plan des couches. Bien que l’apparition 

d’une telle anisotropie est un phénomène connu dans les films minces, son origine physique 

est encore débattue. Un mécanisme souvent avancé est un effet de magnéto-mécanique induit 

par un effet de contrainte à l’interface avec le substrat. D’autres études proposent que cette 

anisotropie provienne de la morphologie du substrat (présence de terrasses par exemple). Des 

études GPA menées à partir de l’imagerie STEM-HADDF a montré que nos échantillons sont 

parfaitement relaxés et donc l’anisotropie est peut être liée à un effet d’interface avec le 

substrat.  

Dans l’échantillon de référence celle-ci  est alignée avec un axe facile mais nous 

observons que son amplitude et la direction évolue sous l’effet de l’irradiation.  

 

La figure 21 présente l'évolution de l'amplitude d'anisotropie uni-axiale μ0Hu et sa direction 

par rapport à l’axe de facile aimantation en fonction du paramètre de maille hors plan. La 

dépendance quasi linéaire observée laisse penser que l’origine de l’anisotropie réside dans la 

déformation intrinsèque de la maille de l’Heusler. Etant donné que les paramètres dans le 

plan sont constants il semblerait que la déformation induise une contrainte interne induisant 

l’anisotropie. Ceci est confirmé à la plus haute fluence, 1016, pour lequel le matériau est 

parfaitement relaxé et pour lequel l'anisotropie disparaît. Nous pensons que ce résultat 

obtenu ici sur l’alliage Co2MnSi peut être appliqué à d’autres systèmes ferromagnétiques.  



 

Figure 21: Evolution de l'amplitude de l’anisotropie uni-axiale μ0Hu (a) et de son orientation 

par rapport à l’axe facile φu (b) en fonction du paramètre du réseau hors plan.  

Enfin la dernière partie de notre étude a porté sur l’étude de la largeur de raie 

dynamique en fonction du désordre cristallin. 

 

La largeur de raie dynamique est particulièrement importante d’un point de vue 

technologique puisqu’elle représente les pertes d’'énergie. Ceci est particulièrement 

important par exemple pour des applications de type guides d’ondes micro-ondes ou pour des 

systèmes en spintronique à base de transfert de spins. Théoriquement le coefficient de 

relaxation intrinsèque α a été calculé à  0,6*10 -4 . Cependant expérimentalement  la valeur la 

plus proche  récemment rapportée est de 7 * 10-4 [17 Andrieu]. 

L'évolution de la largeur de raie ΔH  pour les pics L21 et B2 dans l’échantillon de 

référence sont présentés dans la figure 22. Ici nous ne présentons les résultats que dans le 

cas où les deux pics sont bien distincts. La dépendance en fréquence de la largeur de raie est 

généralement écrite sous la forme  

.∆𝐻= 
2 𝜋 𝑓𝛼

𝛾
+ ∆𝐻0,  

Avec α le coefficient de relaxation de Gilbert (intrinsèque) et ∆𝐻0 les pertes extrinsèques.   

Nous observons que la pente, et donc la valeur de α, est la même pour les directions faciles et 

difficiles, nous observons une différence de la contribution extrinsèque. Ce résultat n’est pas 

clair mais il se peut qu’il soit relié à l’orientation des plans de dislocations dans le MgO 

permettant de relaxer le CMS. Nous observons également que la valeur du coefficient de 

relaxation est plus faible pour la phase L21 en accord avec les prédictions théoriques.  De plus 

la valeur obtenue dans la phase L21 est une des meilleures reportées jusqu’ici dans la 

littérature.  



 

Fgure 22 : Largeur de raie en fonction de la fréquence pour un champ appliqué le long des 

axes faciles et difficiles pour les deux phases observée L21 (gauche) et B2 (droite) pour 

l’échantillon de référence.  

 

 

L’évolution de la largeur de raie pour chaque phase en fonction de la fluence est présentée sur 

les figures 23 et 24. Dans le cas de la phase L21 nous observons clairement une augmentation 

de α avec la fluence, et donc du désordre. Ici peut s’expliquer par la présence des états de spins 

minoritaires calculés par Piccozzi et al. En effet, ces derniers permettent une diffusion inter 

bandes avec retournement du spin augmentant ainsi le coefficient de relaxation (dans le 

modèle de Kamberski du la relaxation dans les métaux ferromagnétiques [18, 19 Kamberski]). 

Pour la phase B2 en revanche nous n’observons pas de variation de α, ce qui est en bon accord 

avec l’hypothèse initiale qu’aucun désordre chimique autre que Mn/Si (donc B2) n’apparait 

dans les zones de type B2. Cependant nous observons une variation importante des 

contributions extrinsèques. A faible fluence celles-ci diminuent. Une explication possible est 

l’effet de recuit local apparaissant avec l’irradiation, ce qui peut entrainer une augmentation 

du paramètre d’ordre longue portée dans les zones B2 [20 Gaier]. En revanche, à plus forte 

fluence les contributions extrinsèques augmentent fortement en raison de la création de 

défauts de structure, en accord avec les simulations IPROS.   

 



 

Figure 23: Evolution avec la fluence de la largeur de raie pour la phase L21 pour un champ 

appliqué dans une direction de difficile aimantation. 

 

 

 

Figure 24: Evolution avec la fluence de la largeur de raie pour la phase B2 pour un champ 

appliqué dans une direction de difficile aimantation. 

 

En conclusion de ce travail: 

 

  La caractérisation complète  des propriétés du Co2MnSi implique à la fois la caractérisation 

structurale et magnétique du matériau. 

 

 Intérêt pour la science des matériaux: 

 

• l’échange Mn/Si ne semble avoir aucun impact sur les propriétés magnétiques statiques 

mais la valeur du facteur d’amortissement est plus élevée que pour la phase ordonnée L21. 



 

• L’irradiation aux ions He+ favorise la phase B2: cette technique peut ainsi s’avérer 

complémentaire des techniques de recuit dans certains procédés industriels 

 

• l’échange Co/Mn affecte considérablement les paramètres magnétiques statiques et 

dynamiques, de manière plus importante que ce que des calculs ab-initio laissent prévoir.   

 Les résultats préliminaires sur l'échange Co/Si semble similaire à l'effet de Co/Mn. 

 

• la déformation tétragonale induit dans le plan une anisotropie uni-axiale. Ceci pose la 

question de la validité de notre approche pour d’autres métaux ferromagnétiques.  

 

•Les résultats préliminaires sur la relaxation dynamique: 

 

• Meilleur amortissement observé dans l'ordre L21 (1.5*10-3). 

 

• Amélioration de la largeur de raie pour la phase B2 à faible fluence.  

 

• L’anisotropie de la largeur de raie est démontrée, mais l’anisotropie du coefficient de 

relaxation ne peut pas être statuée en l’état 
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