A. Fall, B. Weber, M. Pakpour, N. Lenoir, N. Shahidzadeh et al., Sliding friction on wet and dry sand, Physical Review Letters, vol.112, issue.17, pp.3-6, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01163687

M. Burrows and G. Sutton, Interacting gears synchronize propulsive leg movements in a jumping insect, Science, vol.341, issue.6151, pp.1254-1256, 2013.

M. Piccolino, Biological machines: from mills to molecules, Nature Reviews Molecular Cell Biology, vol.1, issue.2, pp.149-152, 2000.

M. Schliwa and G. Woehlke, Molecular motors, 2003.

B. Alberts, The cell as a collection of protein machines: Preparing the next generation of molecular biologists, Cell, vol.92, issue.3, pp.291-294, 1998.

A. Baumann, A. Sánchez-ferrer, L. Jacomine, P. Martinoty, V. L. Houerou et al., Motorizing fibres with geometric zero-energy modes, Nature Materials, vol.17, issue.6, pp.523-527, 2018.

P. De-gennes, Reflexions sur un type de polymères nematiques, Sciences de Paris B, vol.281, pp.101-103, 1975.

J. Küpfer and H. Finkelmann, Nematic liquid single crystal elastomers, Makromol. Chem., Rapid Commun, vol.12, pp.717-726, 1991.

T. Tanaka, I. Nishio, S. T. Sun, and S. Ueno-nishio, Collapse of gels in an electric field, Science, vol.218, issue.4571, pp.467-469, 1982.

Y. Klein, E. Efrati, and E. Sharon, Shaping of elastic sheets by prescription of non-Euclidean metrics, Science, vol.315, issue.5815, pp.1116-1120, 2007.

J. Kim, J. A. Hanna, M. Byun, C. D. Santangelo, and R. C. Hayward, Designing responsive buckled surfaces by halftone gel lithography, Science, vol.335, issue.6073, pp.1201-1205, 2012.

M. Pezzulla, S. Shillig, P. Nardinocchi, and D. P. Holmes, Morphing of geometric composites via residual swelling, Soft Matter, vol.11, issue.29, pp.5812-5820, 2015.

R. Pelrine, R. Kornbluh, Q. Pei, and J. Joseph, High-speed electrically actuated elastomers with strain greater than 100%, Science, vol.287, issue.5454, pp.836-839, 2000.

C. S. Haines, M. D. Lima, N. Li, G. M. Spinks, J. Foroughi et al., Artificial muscles from fishing line and sewing thread, Science, vol.343, issue.6173, pp.868-872, 2014.

T. Mirfakhrai, J. D. Madden, and R. H. Baughman, Polymer artificial muscles, Materials Today, vol.10, issue.4, pp.30-38, 2007.

R. Dreyfus, J. Baudry, M. L. Roper, M. Fermigier, H. A. Stone et al., Microscopic artificial swimmers, Nature, vol.437, issue.7060, pp.862-865, 2005.
URL : https://hal.archives-ouvertes.fr/hal-02106273

M. Camacho-lopez, H. Finkelmann, P. Palffy-muhoray, and M. Shelley, Fast liquidcrystal elastomer swims into the dark, Nature Materials, vol.3, issue.5, pp.307-310, 2004.

A. Mourran, H. Zhang, R. Vinokur, and M. Möller, Soft Microrobots Employing Nonequilibrium Actuation via Plasmonic Heating, Advanced Materials, vol.29, issue.2, 2017.

S. Palagi, A. G. Mark, S. Y. Reigh, K. Melde, T. Qiu et al., Structured light enables biomimetic swimming and versatile locomotion of photoresponsive soft microrobots, Nature Materials, vol.15, issue.6, pp.647-653, 2016.

P. Satir, STUDIES ON CILIA, The Journal of Cell Biology, vol.39, issue.1, pp.77-94, 1968.

M. Abercrombie, The Crawling Movement of Metazoan Cells, Proceedings of the Royal Society B: Biological Sciences, vol.207, issue.1167, pp.129-147, 1978.

B. Alberts, A. Johnson, J. Lewis, D. Morgan, M. Raff et al., Molecular Biology of the Cell, 2014.

J. R. Howse, R. A. Jones, A. J. Ryan, T. Gough, R. Vafabakhsh et al., Self-Motile Colloidal Particles: From Directed Propulsion to Random Walk, Physical Review Letters, vol.99, issue.4, pp.8-11, 2007.

A. Bricard, J. B. Caussin, N. Desreumaux, O. Dauchot, and D. Bartolo, Emergence of macroscopic directed motion in populations of motile colloids, Nature, vol.503, issue.7474, pp.95-98, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01422384

M. Yamada, M. Kondo, J. I. Mamiya, Y. Yu, M. Kinoshita et al., Photomobile polymer materials: Towards light-driven plastic motors, Angewandte Chemie -International Edition, vol.47, issue.27, pp.4986-4988, 2008.

T. Ikegami, Y. Kageyama, K. Obara, and S. Takeda, Dissipative and Autonomous Square-Wave Self-Oscillation of a Macroscopic Hybrid Self-Assembly under Continuous Light Irradiation, Angewandte Chemie -International Edition, vol.55, issue.29, pp.8239-8243, 2016.

T. J. White, N. V. Tabiryan, S. V. Serak, U. Hrozhyk, V. P. Tondiglia et al., A high frequency photodriven polymer oscillator, Soft Matter, vol.4, issue.9, pp.1796-1798, 2008.

X. Zhang, Z. Yu, C. Wang, D. Zarrouk, J. W. Seo et al., Photoactuators and motors based on carbon nanotubes with selective chirality distributions, Nature Communications, vol.5, pp.1-8, 2014.

L. Ionov, Hydrogel-based actuators: Possibilities and limitations, Materials Today, vol.17, issue.10, pp.494-503, 2014.

P. C. Martin, O. Parodi, and P. S. Pershan, Unified hydrodynamic theory for crystals, liquid crystals, and normal fluids, Physical Review A, vol.6, issue.6, pp.2401-2420, 1972.

M. Ma, L. Guo, D. G. Anderson, and R. Langer, Bio-inspired polymer composite actuator and generator driven by water gradients, Science, vol.339, issue.6116, pp.186-189, 2013.

J. Goldstone, A. Salam, S. Weinberg, and B. Symmetries, Broken Symmetries, Physical Review, vol.127, issue.3, pp.965-970, 1962.

D. Forster, Hydrodynamic Fluctuations, Broken Symmetry, and Correlation Functions, 1990.

P. Chaikin and T. Lubensky, Principles of Condensed Matter Physics, 1995.

I. M. Kuli´ckuli´c, R. Thaokar, and H. Schiessel, Twirling DNA rings -Swimming nanomotors ready for a kickstart, Europhysics Letters, vol.72, issue.4, pp.527-533, 2005.

K. Bhattacharya and R. D. James, The material is the machine, Science, vol.307, issue.5706, pp.53-54, 2005.

B. Audoly and Y. Pomeau, Elasticity and Geometry, 2010.

M. M. Müller, M. B. Amar, and J. Guven, Conical defects in growing sheets, Physical Review Letters, vol.101, issue.15, pp.1-4, 2008.

E. L. Starostin and G. H. Van-der-heijden, The shape of a Möbius strip, Nature Materials, vol.6, issue.8, pp.563-567, 2007.

J. F. Marko, The internal 'slithering' dynamics of supercoiled DNA, Physica A: Statistical Mechanics and its Applications, vol.244, issue.1-4, pp.263-277, 1997.

H. C. Berg and R. A. Anderson, Bacteria swim by rotating their flagellar filaments, Nature, vol.245, issue.5425, pp.380-382, 1973.

F. A. Samatey, H. Matsunami, K. Imada, S. Nagashima, T. R. Shaikh et al., Structure of the bacterial flagellar hook and implication for the molecular universal joint mechanism, 2004.

H. Mohrbach, A. Johner, and I. M. Kuli´ckuli´c, Tubulin bistability and polymorphic dynamics of microtubules, Physical Review Letters, vol.105, issue.26, pp.1-4, 2010.

S. Trachtenberg, Shaping and moving a Spiroplasma, Journal of Molecular Microbiology and Biotechnology, vol.7, issue.1-2, pp.78-87, 2004.

S. Trachtenberg, The cytoskeleton of spiroplasma: A complex linear motor, Journal of Molecular Microbiology and Biotechnology, vol.11, issue.3-5, pp.265-283, 2006.

J. Kürner, A. S. Frangakis, and W. Baumeister, Cryo -Electron Tomography Reveals the Cytoskeletal Structure of Spiroplasma melliferum, Science, vol.436, pp.436-439, 2005.

J. W. Shaevitz, J. Y. Lee, and D. A. Fletcher, Spiroplasma swim by a processive change in body helicity, Cell, vol.122, issue.6, pp.941-945, 2005.

H. Wada and R. R. Netz, Model for self-propulsive helical filaments: Kink-pair propagation, Physical Review Letters, vol.99, issue.10, pp.5-8, 2007.

S. Daniel, M. K. Chaudhury, and J. C. Chen, Fast drop movements resulting from the phase change on a gradient surface, Science, vol.291, issue.5504, pp.633-636, 2001.

H. Linke, B. J. Alemán, L. D. Melling, M. J. Taormina, M. J. Francis et al., Self-propelled leidenfrost droplets, Physical Review Letters, vol.96, issue.15, pp.2-5, 2006.

E. Bormashenko, Y. Bormashenko, R. Grynyov, H. Aharoni, G. Whyman et al., Self-propulsion of liquid marbles: Leidenfrost-like levitation driven by marangoni flow, Journal of Physical Chemistry C, vol.119, issue.18, pp.9910-9915, 2015.

. Gingercat, Rolling sausage (official video), 2014.

E. Liscum, S. K. Askinosie, D. L. Leuchtman, J. Morrow, K. T. Willenburg et al., Phototropism: Growing towards an Understanding of Plant Movement, The Plant Cell, vol.26, issue.1, pp.38-55, 2014.

C. Darwin and F. Darwin, The Power of Movement in Plants, p.1880

H. Zeng, P. Wasylczyk, C. Parmeggiani, D. Martella, M. Burresi et al., Light-Fueled Microscopic Walkers, Advanced Materials, vol.27, issue.26, pp.3883-3887, 2015.

S. U. Pickering, CXCVI. -Emulsions, J. Chem. Soc. Trans, vol.91, 1907.

Y. Yang, Z. Fang, X. Chen, W. Zhang, Y. Xie et al., An overview of pickering emulsions: Solid-particle materials, classification, morphology, and applications, Frontiers in Pharmacology, vol.8, issue.MAY, pp.1-20, 2017.

F. H. Crick and J. Watson, Molecular Structure of Nucleic Acids : A Structure for Deoxyribose Nucleic Acid, Nature, vol.171, issue.4356, pp.737-738, 1953.

N. C. Seeman, Nucleic acid junctions and lattices, Journal of Theoretical Biology, vol.99, issue.2, pp.237-247, 1982.

J. Chen and N. C. Seeman, Synthesis from DNA of a molecule with the connectivity of a cube, Nature, vol.350, issue.6319, pp.631-633, 1991.

Y. Zhang and N. C. Seeman, eAccess-Service der Universitaetsbibliothek der TUM, Journal of the American Chemical Society, issue.13, pp.1661-1669, 1994.

W. M. Shih, J. D. Quispe, and G. F. Joyce, A 1.7-kilobase single-stranded DNA that folds into a nanoscale octahedron, Nature, vol.427, issue.6975, pp.618-621, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00733144

A. Chworos, I. Severcan, A. Y. Koyfman, P. Weinkam, E. Oroudjev et al., Building programmable jigsaw puzzles with RNA, Science, vol.306, issue.5704, pp.2068-2072, 2004.

N. C. Seeman and P. S. Lukeman, Nucleic acid nanostructures: Bottom-up control of geometry on the nanoscale, Reports on Progress in Physics, vol.68, issue.1, pp.237-270, 2005.

N. C. Seeman, Nanomaterials based on DNA, Annual review of biochemistry, vol.79, pp.65-87, 2010.

S. H. Park, C. Pistol, S. J. Ahn, J. H. Reif, A. R. Lebeck et al., Finite-size, fully addressable DNA tile lattices formed by hierarchical assembly procedures, Angewandte Chemie -International Edition, vol.45, issue.5, pp.735-739, 2006.

P. W. Rothemund, Folding DNA to create nanoscale shapes and patterns, Nature, vol.440, issue.7082, pp.297-302, 2006.

R. P. Feynman, There's plenty of room at the bottom: An invitation to enter a new field of physics, Caltech's Eng Sci, pp.22-36, 1960.

S. M. Douglas, H. Dietz, T. Liedl, B. Högberg, F. Graf et al., Self-assembly of DNA into nanoscale three-dimensional shapes, Nature, vol.459, issue.7245, pp.414-418, 2009.

H. Dietz, S. M. Douglas, and W. M. Shih, Folding DNA into twisted and curved nanoscale shapes, Science, vol.325, issue.5941, pp.725-730, 2009.

T. Gerling, K. F. Wagenbauer, A. M. Neuner, and H. Dietz, Dynamic DNA devices and assemblies formed by shape-complementary, non-base pairing 3D components, Science, vol.347, issue.6229, pp.1446-1452, 2015.

A. N. Schechter, K. Singer, H. Lehmann, W. Castle, T. Huisman et al., ASH 50th anniversary review Hemoglobin research and the origins of molecular medicine, Blood, vol.112, issue.10, pp.3927-3938, 2008.

K. Wang, J. M. Hamill, B. Wang, C. Guo, S. Jiang et al., Structure determined charge transport in single DNA molecule break junctions, Chemical Science, vol.5, issue.9, pp.3425-3431, 2014.

H. Mohrbach, A. Johner, and I. M. Kuli´ckuli´c, Cooperative lattice dynamics and anomalous fluctuations of microtubules, European Biophysics Journal, vol.41, issue.2, pp.217-239, 2012.

O. Kahraman, H. Mohrbach, M. M. Müller, and I. M. Kuli´ckuli´c, Confotronic dynamics of tubular filaments, Soft Matter, pp.2836-2847, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01513417

F. Ziebert, H. Mohrbach, and I. M. Kuli´ckuli´c, Why Microtubules Run in Circles: Mechanical Hysteresis of the Tubulin Lattice, Physical Review Letters, vol.114, issue.14, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01513174

T. Sanchez, I. M. Kulic, and Z. Dogic, Circularization, photomechanical switching, and a supercoiling transition of actin filaments, Physical Review Letters, vol.104, issue.9, pp.65-68, 2010.

T. Odijk, Stiff Chains and Filaments under Tension, Macromolecules, vol.28, pp.7016-7018, 1995.

S. C. Mao, X. D. Han, Z. Zhang, and M. H. Wu, The nano-and mesoscopic cooperative collective mechanisms of inhomogenous elastic-plastic transitions in polycrystalline TiNi shape memory alloys, Journal of Applied Physics, vol.101, issue.10, 2007.

J. Monod, J. Wyman, and J. P. Changeux, on the Nature of Allosteric Transitions: a Plausible Model, vol.12, pp.88-118, 1965.

W. Wang, L. M. Nocka, B. Z. Wiemann, D. M. Hinckley, I. Mukerji et al., Holliday Junction Thermodynamics and Structure: Coarse-Grained Simulations and Experiments, vol.6, pp.1-13, 2015.

Y. Liu and S. C. West, Happy Hollidays: 40th anniversary of the Holliday junction, Nature reviews. Molecular cell biology, vol.5, issue.11, pp.937-944, 2004.

R. Holliday, A mechanism for gene conversion in fungi, Genetics Research, vol.5, issue.2, pp.282-304, 1964.

E. Kitzing, D. M. Lilley, and S. Diekmann, The stereochemistry of a fourway DNA junction: A theoretical study, Nucleic Acids Research, vol.18, issue.9, pp.2671-2683, 1990.

D. R. Duckett, A. I. Murchie, and D. M. Lilley, The role of metal ions in the conformation of the four-way DNA junction, The EMBO Journal, vol.9, pp.583-590, 1990.

R. M. Clegg, .. I. Murchie, C. Zechel, S. Carlberg, D. M. Diekmann et al., Fluorescence resonance energy transfer analysis of the structure of the four-way DNA junction, Biochemistry, vol.31, issue.20, pp.4846-56, 1992.

R. M. Clegg, .. I. Murchie, and D. M. Lilley, The solution structure of the fourway DNA junction at low-salt conditions: a fluorescence resonance energy transfer analysis, Biophysical Journal, vol.66, issue.1, pp.99-109, 1994.

C. Joo, S. Mckinney, D. M. Lilley, and T. Ha, Exploring rare conformational species and ionic effects in DNA Holliday junctions using single-molecule spectroscopy, Journal of Molecular Biology, vol.341, issue.3, pp.739-751, 2004.

C. P. Mountford, .. R. Mount, S. A. Evans, T. J. Su, P. Dickinson et al., Timeresolved FRET and FLIM of four-way DNA junctions, Journal of Fluorescence, vol.16, issue.6, pp.839-845, 2006.

D. M. Lilley, Structures of helical junctions in nucleic acids, 2000.

F. Weysser, O. Benzerara, A. Johner, and I. M. Kuli´ckuli´c, Topological energy storage of work generated by nanomotors, Soft Matter, vol.11, issue.4, pp.732-740, 2015.

Q. Li, G. Fuks, E. Moulin, M. Maaloum, M. Rawiso et al., Macroscopic contraction of a gel induced by the integrated motion of light-driven molecular motors, Nature Nanotechnology, vol.10, issue.2, pp.161-165, 2015.

N. Koumura, R. W. Zijistra, R. A. Van-delden, N. Harada, and B. L. Feringa, Light-driven monodirectional molecular rotor, Nature, vol.401, issue.6749, pp.152-155, 1999.

T. M. Herne and M. J. Tarlov, Characterization of DNA Probes Immobilized on Gold Surfaces, Journal of the American Chemical Society, vol.119, issue.38, pp.8916-8920, 1997.

R. Levicky, T. M. Herne, M. J. Tarlov, and S. K. Satija, Using self-assembly to control the structure of DNA monolayers on gold: A neutron reflectivity study, Journal of the American Chemical Society, vol.120, issue.38, pp.9787-9792, 1998.

A. B. Steel, T. M. Herne, and M. J. Tarlov, Electrochemical quantitation of DNA immobilized on gold, Analytical Chemistry, vol.70, issue.22, pp.4670-4677, 1998.

M. Yang, H. C. Yau, and H. L. Chan, Adsorption Kinetics and Ligand-Binding Properties of Thiol-Modified Double-Stranded DNA on a Gold Surface, Langmuir, vol.14, issue.21, pp.6121-6129, 1998.

H. Wackerbarth, M. Grubb, J. Zhang, A. G. Hansen, and J. Ulstrup, Long-range order of organized oligonucleotide monolayers on Au(111) electrodes, Langmuir, vol.20, issue.5, pp.1647-1655, 2004.

R. Lao, S. Song, H. Wu, L. Wang, Z. Zhang et al., Electrochemical interrogation of DNA monolayers on gold surfaces, Analytical Chemistry, vol.77, issue.19, pp.6475-6480, 2005.

R. N. Love, J. C. , L. A. Estroff, J. K. Kriebel, and G. Whitesides, Self-Assembled Monolayers of Thiolates on Metals as a Form of Nanotechnology, vol.105, 2005.

Y. Xiao, R. Y. Lai, and K. W. Plaxco, Preparation of electrode-immobilized, redoxmodified oligonucleotides for electrochemical DNA and aptamer-based sensing, Nature protocols, vol.2, pp.2875-2880, 2007.

U. Rant, K. Arinaga, T. Fujiwara, S. Fujita, M. Tornow et al., Excessive Counterion Condensation on Immobilized ssDNA in Solutions of High Ionic Strength, Biophysical Journal, vol.85, issue.6, pp.3858-3864, 2003.

U. Rant, K. Arinaga, S. Fujita, N. Yokoyama, G. Abstreiter et al., Dynamic electrical switching of DNA layers on a metal surface, Nano Letters, vol.4, issue.12, pp.2441-2445, 2004.

U. Rant, K. Arinaga, M. Tornow, W. K. Yong, R. R. Netz et al., Dissimilar kinetic behavior of electrically manipulated singleand double-stranded DNA tethered to a gold surface, Biophysical Journal, vol.90, issue.10, pp.3666-3671, 2006.

U. Rant, K. Arinaga, S. Fujita, N. Yokoyama, G. Abstreiter et al., Electrical manipulation of oligonucleotides grafted to charged surfaces, Organic and Biomolecular Chemistry, vol.4, issue.18, pp.3448-3455, 2006.

U. Rant, K. Arinaga, S. Scherer, E. Pringsheim, S. Fujita et al., Switchable DNA interfaces for the highly sensitive detection of label-free DNA targets, Proc. Nat. Acad. Sci. USA, vol.104, pp.17364-17373, 2007.

W. Kaiser and U. Rant, Conformations of End-Tethered DNA Molecules on Gold Screening , and Temperature, Journal of the American Chemical Society, vol.132, issue.15, pp.7935-7945, 2010.

A. Langer, P. Hampel, W. Kaiser, J. Knezevic, T. Welte et al., Protein analysis by time-resolved measurements with an electro-switchable DNA chip, Nature Communications, vol.4, 2013.

W. Langer, M. Kaiser, P. Svejda, U. Schwertler, and . Rant, Molecular dynamics of DNA-protein conjugates on electrified surfaces: Solutions to the drift-diffusion equation, Journal of Physical Chemistry B, vol.118, issue.2, pp.597-607, 2014.

A. Langer, M. Schräml, R. Strasser, H. Daub, T. Myers et al., Polymerase/DNA interactions and enzymatic activity: Multi-parameter analysis with electro-switchable biosurfaces, Scientific Reports, vol.5, pp.1-15, 2015.

E. Kopperger, J. List, S. Madhira, F. Rothfischer, D. C. Lamb et al., A self-assembled nanoscale robotic arm controlled by electric fields, Science, vol.359, issue.6373, pp.296-301, 2018.

A. Huhle, D. Klaue, H. Brutzer, P. Daldrop, S. Joo et al., Camera-based three-dimensional real-time particle tracking at kHz rates andÅngströmandÅngström accuracy, Nature Communications, vol.6, 2015.

P. Liu, Y. Zhou, M. Guo, S. Yang, O. Félix et al., Fluorescence-enhanced bio-detection platforms obtained through controlled "stepby-step" clustering of silver nanoparticles, Nanoscale, vol.10, issue.2, pp.848-855, 2018.

G. Schneider and G. Decher, From functional core/shell nanoparticles prepared via layer-by-layer deposition to empty nanospheres, Nano Letters, vol.4, issue.10, pp.1833-1839, 2004.

R. R. Chance, A. Prock, and R. Silbey, Molecular Fluorescence and Energy Transfer Near Interfaces, Advances in Chemical Physics, pp.1-65, 1978.

B. N. Persson, Theory of the damping of excited molecules located above a metal surface, Journal of Physics C: Solid State Physics, vol.11, issue.20, pp.4251-4269, 1978.

G. Schneider, G. Decher, N. Nerambourg, R. Praho, M. H. Werts et al., Distance-dependent fluorescence quenching on gold nanoparticles ensheathed with layer-by-layer assembled polyelectrolytes, Nano Letters, vol.6, issue.3, pp.530-536, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00097902

B. J. Roxworthy, A. M. Bhuiya, S. P. Vanka, and K. C. Toussaint, Understanding and controlling plasmon-induced convection, Nature Communications, vol.5, pp.1-8, 2014.

J. S. Donner, G. Baffou, D. Mccloskey, and R. Quidant, Plasmon-assisted optofluidics, ACS Nano, vol.5, issue.7, pp.5457-5462, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00612474

M. Wang, C. Zhao, X. Miao, Y. Zhao, J. Rufo et al., Plasmofluidics: Merging Light and Fluids at the Micro-/Nanoscale, Small, vol.11, issue.35, pp.4423-4444, 2015.

L. Rayleigh, LIX. ¡i¿On convection currents in a horizontal layer of fluid, when the higher temperature is on the under side¡/i¿, Philosophical Magazine Series, vol.6, issue.192, pp.529-546, 1916.

H. Bénard, Les tourbillons cellulaires dans une nappe liquide, Revue Générale des Sciences Pures et Appliquées, vol.11, pp.1261-1271, 1900.

P. Bergé and M. Dubois, Rayleigh-bénard convection, Contemporary Physics, vol.25, issue.6, pp.535-582, 1984.

C. Millot, L. A. Fillot, O. Lame, P. Sotta, and R. Seguela, Assessment of polyamide-6 crystallinity by DSC: Temperature dependence of the melting enthalpy, Journal of Thermal Analysis and Calorimetry, vol.122, issue.1, pp.307-314, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01804735

Y. Katoh and M. Okamoto, Crystallization controlled by layered silicates in nylon 6-clay nano-composite, Polymer, vol.50, issue.19, pp.4718-4726, 2009.

K. Miyasaka and K. Makishima, Transition of nylon 6 ? phase crystals by stretching in the chain direction, Journal of Polymer Science Part A: Polymer Chemistry, vol.5, pp.3017-3027, 1967.

T. Itoh, Change with temperature in crystal structures of nylons 6, 66 and 610, Japanese Journal of Applied Physics, vol.15, issue.12, pp.2295-2306, 1976.

G. Gururajan, S. P. Sullivan, T. P. Beebe, D. B. Chase, and J. F. Rabolt, Continuous electrospinning of polymer nanofibers of Nylon-6 using an atomic force microscope tip, Nanoscale, vol.3, issue.8, pp.3300-3308, 2011.

J. H. Lienhard, ;. Iv), and J. H. Lienhard, A Heat Transfer Textbook, 2008.

M. Born and E. Wolf, Principles of Optics 7th edition, 1999.

C. G. Worley and R. W. Linton, Removing sulfur from gold using ultraviolet/ozone cleaning, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol.13, issue.4, pp.2281-2284, 1995.

J. Liu and Y. Lu, Preparation of aptamer-linked gold nanoparticle purple aggregates for colorimetric sensing of analytes, Nature Protocols, vol.1, issue.1, pp.246-252, 2006.

J. Zhang, S. Song, L. Zhang, L. Wang, H. Wu et al., Sequence-specific detection of femtomolar DNA via a chronocoulometric DNA sensor (CDS): Effects of nanoparticle-mediated amplification and nanoscale control of DNA assembly at electrodes, Journal of the American Chemical Society, vol.128, issue.26, pp.8575-8580, 2006.

J. Zhang, S. Song, L. Wang, D. Pan, and C. Fan, A gold nanoparticle-based chronocoulometric dna sensor for amplified detection of dna, Nature Protocols, vol.2, issue.11, pp.2888-2895, 2007.

K. Hu, D. Lan, X. Li, and S. Zhang, Electrochemical DNA biosensor based on nanoporous gold electrode and multifunctional encoded DNA-Au bio bar codes, Analytical Chemistry, vol.80, issue.23, pp.9124-9130, 2008.

D. B. Peckys, N. De-jonge, M. L. Simpson, and T. E. Mcknight, End-specific strategies of attachment of long double stranded DNA onto gold-coated nanofiber arrays, Nanotechnology, vol.19, issue.43, 2008.

, In addition to a constant velocity linear motion, the fiber displays a velocity modulation (yellow arrows) in phase with its rotary motion. On the right, the effective radius of the fiber is shown, deduced from the ratio of linear and angular velocity

, Thermally induced curvature as a function of temperature for a nylon-6 fiber of radius 0.3 mm. The errors bars are calculated from the standard deviation of three different specimen

, Rolling velocity as a function of the plate temperature for annealed PVDF fibers of diameter 0.5 mm. The errors bars are calculated from the standard deviations of ten measurements

, 55 3.16 fibers with decreasing radii rotate with increasing angular frequencies: experimental data for two temperatures and a power-law fit R ?? with ? = 0.75. The errors bar are calculated from the standard deviation of three different specimen, Single fibers are bidirectional motor units able to perform work, in the experiment shown here it is against their own weight on an inclined plane

, Natural confotronic systems in nature. A) At high salt, collective flipping and rotations of DNA basepairs induces a collective switch from the righthanded conformation of B-DNA to the left-handed conformation of the Z-DNA, from, vol.73

, By undergoing a yet unspecified lattice switch that induces a right-left-helical kink and actively propagates along their body they manage to rapidly swim

, C) The transition from the oxy-conformation (left) to the deoxy-conformation (right) in hemoglobin is correlated with the oxygen concentration in the blood

, 2 Propagation of a mechanical perturbation along the backbone of a model polymer -the scissor-foldamer. The connectivity between individual "scissor"-units allows for some cooperativity between neigbours, p.61

, The stacked (a) iso-I and (b) iso-II conformations predominate at moderate and high salt concentrations. (c) The open conformation is mainly observed at low salt concentration, and also potentially acts as an intermediary of conformational changes between iso-I and II, from [81], p.61

, Coarsed-grained representation of confotronic dimer. It consists of two switchable Holliday Junction-units linked together

, A Holliday junction with a palindromic sequence can undergo a branch migration in a diffusive manner. The process is accompanied with rotation of the four branches at a rate of 1 turn for every 10.5 basepairs migrated, p.63

, 15 PIV analysis of the flow induced by the two gold disks (calculated by the ImageJ pluggin)

A. , Left: The storage modulus vs. frequency for temperatures from 30 to 190 ? C. Right: The loss modulus vs. frequency for the same temperature range, vol.87

, 2D WAXS intensity profile for the annealed nylon-6 fiber at a) 120 ? C, b) 185 ? C, and c) 240 ? C showing the anisotropy of the signals before melting above 220 ? C. Note: The fiber axis lies in the vertical direction, p.88

, The red (equatorial), blue (45 degrees oblique) and dark green (meridional) curves correspond to the scattering profiles from the sections in Fig. A.2. The orange curves in c) are the amorphous peaks contributing to the signal for the polymer melt, A.3 1D WAXS intensity profile for the annealed nylon-6 fiber at a) 120 ? C, b) 185 ? C, and c) 240 ? C and the corresponding fitting curve

, Relative longitudinal strain of rolling fiber samples with diameters 0.6 mm and lengths between 10 and 12 cm

, When considering a cross section in the X-Z plane, the curvature can be assumed along the X direction. The co-rotating frame is, A fiber confined by its own weight in the X-Y plane, vol.2

, Description of the bands and fragment sizes for the Gene Ruler DNA ladder, provided by the supplier. Left: Ladder used for the agarose gels. Right : Ladder used for the polyacrylamide gels

, Detailed informations about the oligonucleotides used for the Hyperdrive project

, Emission and absorption spectra of the fluorescent dye atto 565, p.105