. Bibliographie-de-chapitre,

N. M. Duc, H. R. Kim, and K. Y. Chung, Structural mechanism of G protein activation by G protein-coupled receptor, Eur. J. Pharmacol, vol.763, pp.214-222, 2015.

J. Y. Park, S. Y. Lee, H. R. Kim, M. Seo, and K. Y. Chung, Structural mechanism of GPCRarrestin interaction: recent breakthroughs, Arch. Pharm. Res, vol.39, pp.293-301, 2016.

D. Hilger, M. Masureel, and B. K. Kobilka, Structure and dynamics of GPCR signaling complexes, Nat. Struct. Mol. Biol, vol.25, pp.4-12, 2018.

T. K. Attwood and J. B. Findlay, Fingerprinting G-protein-coupled receptors, Protein Eng. Des. Sel, vol.7, pp.195-203, 1994.

R. Fredriksson, The G-Protein-Coupled Receptors in the Human Genome Form Five Main Families. Phylogenetic Analysis, Paralogon Groups, and Fingerprints, Mol. Pharmacol, vol.63, pp.1256-1272, 2003.

A. S. Hauser, M. M. Attwood, M. Rask-andersen, H. B. Schiöth, and D. E. Gloriam, Trends in GPCR drug discovery: new agents, targets and indications, Nat. Rev. Drug Discov, vol.16, pp.829-842, 2017.

K. Palczewski, Crystal Structure of Rhodopsin: A G Protein-Coupled Receptor, vol.289, 2000.

V. Cherezov, High-Resolution Crystal Structure of an Engineered Human 2-Adrenergic G Protein-Coupled Receptor, Science, vol.318, pp.1258-1265, 2007.

V. Jaakola, The 2.6 A Crystal Structure of a Human A2A Adenosine Receptor bound to ZM241385, vol.322, pp.1211-1217, 2008.

C. Wang, Structure of the human smoothened receptor bound to an antitumour agent, Nature, vol.497, pp.338-343, 2013.

B. Carpenter and C. G. Tate, Engineering a minimal G protein to facilitate crystallisation of G protein-coupled receptors in their active conformation, Protein Eng. Des. Sel, vol.29, pp.583-594, 2016.

S. G. Rasmussen, Structure of a nanobody-stabilized active state of the ?2 adrenoceptor, Nature, vol.469, pp.175-180, 2011.

S. G. Rasmussen, Crystal structure of the ?2 adrenergic receptor-Gs protein complex, Nature, vol.477, pp.549-555, 2011.

M. Fukami, E. Suzuki, M. Igarashi, M. Miyado, and T. Ogata, Gain-of-function mutations in G-protein-coupled receptor genes associated with human endocrine disorders, Clin. Endocrinol. (Oxf.), vol.88, pp.351-359, 2018.

H. Stoy and V. V. Gurevich, How genetic errors in GPCRs affect their function: Possible therapeutic strategies, Genes Dis, vol.2, pp.108-132, 2015.

H. Tsukamoto and D. L. Farrens, A Constitutively Activating Mutation Alters the Dynamics and Energetics of a Key Conformational Change in a Ligand-free G Protein-coupled Receptor, J. Biol. Chem, vol.288, pp.28207-28216, 2013.

L. Milanos, Identification of Two Distinct Sites for Antagonist and Biased Agonist Binding to the Human Chemokine Receptor CXCR3, Angew. Chem. Int. Ed, vol.55, pp.15277-15281, 2016.

B. Delort, Coarse-Grained Prediction of Peptide Binding to G-Protein Coupled Receptors, J. Chem. Inf. Model, vol.57, pp.562-571, 2017.

N. R. Latorraca, Molecular mechanism of GPCR-mediated arrestin activation, Nature, vol.557, pp.452-456, 2018.

R. O. Dror, Activation mechanism of the ?2-adrenergic receptor, Proc. Natl. Acad. Sci, vol.108, pp.18684-18689, 2011.

Y. Miao and J. A. Mccammon, Graded activation and free energy landscapes of a muscarinic G-protein-coupled receptor, Proc. Natl. Acad. Sci, vol.113, pp.12162-12167, 2016.

S. Sorce, R. Myburgh, and K. Krause, The chemokine receptor CCR5 in the central nervous system, Prog. Neurobiol, vol.93, pp.297-311, 2011.

S. K. Singh, CCR5/CCL5 axis interaction promotes migratory and invasiveness of pancreatic cancer cells, Sci. Rep, vol.8, 2018.

X. Jiao, CCR5 Governs DNA Damage Repair and Breast Cancer Stem Cell Expansion, Cancer Res, vol.78, pp.1657-1671, 2018.

H. Deng, Identification of a major co-receptor for primary isolates of HIV-1, Nature, vol.381, pp.661-666, 1996.

C. Blanpain, Palmitoylation of CCR5 Is Critical for Receptor Trafficking and Efficient Activation of Intracellular Signaling Pathways, J. Biol. Chem, vol.276, pp.23795-23804, 2001.

M. Oppermann, M. Mack, A. E. Proudfoot, and H. Olbrich, Differential Effects of CC Chemokines on CC Chemokine Receptor 5 (CCR5) Phosphorylation and Identification of Phosphorylation Sites on the CCR5 Carboxyl Terminus, J. Biol. Chem, vol.274, pp.8875-8885, 1999.

M. Samson, Resistance to HIV-1 infection in Caucasian individuals bearing mutant alleles of the CCR-5 chemokine receptor gene, Nature, vol.382, pp.722-725, 1996.

J. Garcia-perez, Allosteric Model of Maraviroc Binding to CC Chemokine Receptor 5 (CCR5), J. Biol. Chem, vol.286, pp.33409-33421, 2011.

Q. Tan, Structure of the CCR5 Chemokine Receptor-HIV Entry Inhibitor Maraviroc Complex, Science, vol.341, pp.1387-1390, 2013.

Y. Zheng, Structure of CC Chemokine Receptor 5 with a Potent Chemokine Antagonist Reveals Mechanisms of Chemokine Recognition and Molecular Mimicry by HIV, Immunity, vol.46, p.5, 2017.

R. E. Salmas, M. Yurtsever, and S. Durdagi, Investigation of Inhibition Mechanism of Chemokine Receptor CCR5 by Micro-second Molecular Dynamics Simulations, Sci. Rep, vol.5, 2015.

P. Tamamis and C. A. Floudas, Molecular Recognition of CCR5 by an HIV-1 gp120 V3 Loop, PLoS ONE, vol.9, p.95767, 2014.

J. Garcia-perez, A single-residue change in the HIV-1 V3 loop associated with maraviroc resistance impairs CCR5 binding affinity while increasing replicative capacity, Retrovirology, vol.12, 2015.
URL : https://hal.archives-ouvertes.fr/pasteur-01174427

. Bibliographie-de-chapitre,

C. B. Wilen, J. C. Tilton, R. W. Doms, and . Hiv, Cell Binding and Entry. Cold Spring Harb. Perspect. Med, vol.2, pp.6866-006866, 2012.

P. Dorr, UK-427,857), a Potent, Orally Bioavailable, and Selective SmallMolecule Inhibitor of Chemokine Receptor CCR5 with Broad-Spectrum Anti-Human Immunodeficiency Virus Type 1 Activity, Antimicrob. Agents Chemother, vol.49, pp.4721-4732, 2005.

J. C. Tilton, A Maraviroc-Resistant HIV-1 with Narrow Cross-Resistance to Other CCR5 Antagonists Depends on both N-Terminal and Extracellular Loop Domains of Drug-Bound CCR5, J. Virol, vol.84, pp.10863-10876, 2010.

J. Garcia-perez, A single-residue change in the HIV-1 V3 loop associated with maraviroc resistance impairs CCR5 binding affinity while increasing replicative capacity, Retrovirology, vol.12, 2015.
URL : https://hal.archives-ouvertes.fr/pasteur-01174427

Q. Tan, Structure of the CCR5 Chemokine Receptor-HIV Entry Inhibitor Maraviroc Complex, Science, vol.341, pp.1387-1390, 2013.

Y. Zheng, Structure of CC Chemokine Receptor 5 with a Potent Chemokine Antagonist Reveals Mechanisms of Chemokine Recognition and Molecular Mimicry by HIV, Immunity, vol.46, p.5, 2017.

J. Garcia-perez, Allosteric Model of Maraviroc Binding to CC Chemokine Receptor 5 (CCR5), J. Biol. Chem, vol.286, pp.33409-33421, 2011.

J. Corbisier, C. Galès, A. Huszagh, M. Parmentier, and J. Springael, Biased Signaling at Chemokine Receptors, J. Biol. Chem, vol.290, pp.9542-9554, 2015.

A. Steen, Biased and Constitutive Signaling in the CC-chemokine Receptor CCR5 by Manipulating the Interface between Transmembrane Helices 6 and 7, J. Biol. Chem, vol.288, pp.12511-12521, 2013.

D. A. Arias, J. Navenot, W. Zhang, J. Broach, and S. C. Peiper, Constitutive Activation of CCR5 and CCR2 Induced by Conformational Changes in the Conserved T X P Motif in Transmembrane Helix 2, J. Biol. Chem, vol.278, pp.36513-36521, 2003.

B. Lagane, Mutation of the DRY Motif Reveals Different Structural Requirements for the CC Chemokine Receptor 5-Mediated Signaling and Receptor Endocytosis, Mol. Pharmacol, vol.67, pp.1966-1976, 2005.

C. Govaerts, The T X P Motif in the Second Transmembrane Helix of CCR5: A STRUCTURAL DETERMINANT OF CHEMOKINE-INDUCED ACTIVATION, J. Biol. Chem, vol.276, pp.13217-13225, 2001.

M. Karplus and J. A. Mccammon, Molecular dynamics simulations of biomolecules, Nat. Struct. Biol, vol.9, p.7, 2002.

S. A. Adcock and J. A. Mccammon, Molecular Dynamics: Survey of Methods for Simulating the Activity of Proteins, Chem. Rev, vol.106, pp.1589-1615, 2006.

J. N. Onuchic and P. G. Wolynes, Theory of protein folding, Curr. Opin. Struct. Biol, vol.14, pp.70-75, 2004.

K. Henzler-wildman and D. Kern, Dynamic personalities of proteins, Nature, vol.450, pp.964-972, 2007.

D. Hamelberg, J. Mongan, and J. A. Mccammon, Accelerated molecular dynamics: a promising and efficient simulation method for biomolecules, J. Chem. Phys, vol.120, pp.11919-11929, 2004.

K. W. Kastner and J. A. Izaguirre, Accelerated molecular dynamics simulations of the octopamine receptor using GPUs: discovery of an alternate agonist-binding position: AMD Simulations of a GPCR Using GPUs, Proteins Struct. Funct. Bioinforma, vol.84, pp.1480-1489, 2016.

Y. Miao, S. E. Nichols, P. M. Gasper, V. T. Metzger, and J. A. Mccammon, Activation and dynamic network of the M2 muscarinic receptor, Proc. Natl. Acad. Sci, vol.110, pp.10982-10987, 2013.

P. C. Gedeon, J. R. Thomas, and J. D. Madura, Accelerated Molecular Dynamics and Protein Conformational Change: A Theoretical and Practical Guide Using a Membrane Embedded Model Neurotransmitter Transporter, Molecular Modeling of Proteins, vol.1215, pp.253-287, 2015.

P. R. Markwick and J. A. Mccammon, Studying functional dynamics in bio-molecules using accelerated molecular dynamics, Phys. Chem. Chem. Phys, vol.13, p.20053, 2011.

J. Jin, CCR5 adopts three homodimeric conformations that control cell surface delivery, Sci. Signal, vol.11, p.2869, 2018.

C. Huang, Structures of the CCR5 N Terminus and of a Tyrosine-Sulfated Antibody with HIV-1 gp120 and CD4, Science, vol.317, pp.1930-1934, 2007.

A. ?ali and T. L. Blundell, Comparative Protein Modelling by Satisfaction of Spatial Restraints, J. Mol. Biol, vol.234, pp.779-815, 1993.

L. Qin, Crystal structure of the chemokine receptor CXCR4 in complex with a viral chemokine, Science, vol.347, pp.1117-1122, 2015.

W. G. Liang, Structural basis for oligomerization and glycosaminoglycan binding of CCL5 and CCL3, Proc. Natl. Acad. Sci, vol.113, pp.5000-5005, 2016.
DOI : 10.1073/pnas.1523981113

URL : https://www.pnas.org/content/pnas/113/18/5000.full.pdf

S. Jo, T. Kim, V. G. Iyer, W. Im, and . Charmm-gui, A web-based graphical user interface for CHARMM, J. Comput. Chem, vol.29, pp.1859-1865, 2008.
DOI : 10.1002/jcc.20945

D. A. Case, , 2018.

Y. Miao, S. E. Nichols, and J. A. Mccammon, Free energy landscape of G-protein coupled receptors, explored by accelerated molecular dynamics, Phys. Chem. Chem. Phys, vol.16, pp.6398-6406, 2014.

K. W. Kastner, Characterization of the Anopheles gambiae octopamine receptor and discovery of potential agonists and antagonists using a combined computationalexperimental approach, Malar. J, vol.13, p.434, 2014.

D. R. Roe, T. E. Cheatham, and C. Ptraj, Software for Processing and Analysis of Molecular Dynamics Trajectory Data, J. Chem. Theory Comput, vol.9, pp.3084-3095, 2013.

W. Humphrey, A. Dalke, and K. Schulten, VMD -Visual Molecular Dynamics, J. Mol. Graph, vol.14, pp.33-38, 1996.
DOI : 10.1016/0263-7855(96)00018-5

L. Skjaerven, X. Yao, G. Scarabelli, and B. J. Grant, Integrating protein structural dynamics and evolutionary analysis with Bio3D, BMC Bioinformatics, vol.15, 2014.

B. J. Grant, A. P. Rodrigues, K. M. Elsawy, J. A. Mccammon, and L. S. Caves, Bio3d: an R package for the comparative analysis of protein structures, Bioinformatics, vol.22, pp.2695-2696, 2006.

. R-core-team, R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2017.

G. Pándy-szekeres, GPCRdb in 2018: adding GPCR structure models and ligands, Nucleic Acids Res, vol.46, pp.440-446, 2018.

W. Kabsch and C. Sander, Dictionary of protein secondary structure: Pattern recognition of hydrogen-bonded and geometrical features, Biopolymers, vol.22, pp.2577-2637, 1983.

D. Silva, F. Desaphy, J. Rognan, and D. , IChem: A Versatile Toolkit for Detecting, Comparing, and Predicting Protein-Ligand Interactions, ChemMedChem, vol.13, pp.507-510, 2018.

J. H. Ward, Hierarchical Grouping to Optimize an Objective Function, J. Am. Stat. Assoc, vol.58, pp.236-244, 1963.
DOI : 10.2307/2282967

F. Murtagh and P. Legendre, Ward's Hierarchical Agglomerative Clustering Method: Which Algorithms Implement Ward's Criterion?, J. Classif, vol.31, pp.274-295, 2014.
DOI : 10.1007/s00357-014-9161-z

URL : http://arxiv.org/pdf/1111.6285

M. J. Capper and D. Wacker, How the ubiquitous GPCR receptor family selectively activates signalling pathways, Nature, vol.558, pp.529-530, 2018.
DOI : 10.1038/d41586-018-05503-4

URL : https://www.nature.com/magazine-assets/d41586-018-05503-4/d41586-018-05503-4.pdf

A. J. Venkatakrishnan, Molecular signatures of G-protein-coupled receptors, Nature, vol.494, pp.185-194, 2013.

R. E. Salmas, M. Yurtsever, and S. Durdagi, Investigation of Inhibition Mechanism of Chemokine Receptor CCR5 by Micro-second Molecular Dynamics Simulations, Sci. Rep, vol.5, 2015.

, une partie de ECL2 (résidus 171-176) et de ECL3 (résidus 266-269) et le haut de TM 6 et de TM 7 (résidus 263 et 272). Les résidus C20, vol.15, pp.19-25

, N258(6.58) et T259(6.59), qui exposent des groupements pharmacophoriques dans la cavité

, Résidus à 4,5 Å des points de la cavité sélectionnée pour le dimère I56. Les résidus colorés en bleu sont issus de la chaîne A du dimère, les résidus en rouge, de la chaîne B et les résidus en violet des deux chaînes, pp.4-12

, W190(5.34), K191(5.35) impacte de manière significative la liaison de ligand "drug-like, D'après les données de la littérature résumées par le site GPCRdb, la mutation des résidus G163(4.60), T177, C178, S180, S185, Y187(5.31)

. Bibliographie-de-chapitre,

J. Kniazeff, L. Prézeau, P. Rondard, J. Pin, and C. Goudet, Dimers and beyond: The functional puzzles of class C GPCRs, Pharmacol. Ther, vol.130, pp.9-25, 2011.

S. Y. Ng, L. T. Lee, and B. K. Chow, Receptor oligomerization: from early evidence to current understanding in class B, GPCRs. Front. Endocrinol, vol.3, 2013.

M. Margeta-mitrovic, Y. N. Jan, and L. Y. Jan, A Trafficking Checkpoint Controls GABAB Receptor Heterodimerization, Neuron, vol.27, pp.97-106, 2000.

R. Franco, E. Martínez-pinilla, J. L. Lanciego, and G. Navarro, Basic Pharmacological and Structural Evidence for Class A G-Protein-Coupled Receptor Heteromerization

. Pharmacol, , 2016.

V. Katritch, V. Cherezov, and R. C. Stevens, Structure-Function of the G Protein-Coupled Receptor Superfamily, Annu. Rev. Pharmacol. Toxicol, vol.53, pp.531-556, 2013.

J. Huang, S. Chen, J. J. Zhang, and X. Huang, Crystal structure of oligomeric ?1-adrenergic G protein-coupled receptors in ligand-free basal state, Nat. Struct. Mol. Biol, vol.20, pp.419-425, 2013.

D. Salom, Crystal structure of a photoactivated deprotonated intermediate of rhodopsin, Proc. Natl. Acad. Sci, vol.103, pp.16123-16128, 2006.

H. Wu, Structure of the human kappa opioid receptor in complex with JDTic, Nature, vol.485, pp.327-332, 2012.

A. Manglik, Crystal structure of the µ-opioid receptor bound to a morphinan antagonist, Nature, vol.485, pp.321-326, 2012.

C. Wang, Structure of the human smoothened receptor bound to an antitumour agent, Nature, vol.497, pp.338-343, 2013.

V. Cherezov, High-Resolution Crystal Structure of an Engineered Human 2-Adrenergic G Protein-Coupled Receptor, Science, vol.318, pp.1258-1265, 2007.

B. Wu, Structures of the CXCR4 Chemokine GPCR with Small-Molecule and Cyclic Peptide Antagonists, Science, vol.330, pp.1066-1071, 2010.

J. Springael, Allosteric Modulation of Binding Properties between Units of Chemokine Receptor Homo-and Hetero-Oligomers, Mol. Pharmacol, vol.69, pp.1652-1661, 2006.

D. Sohy, Hetero-oligomerization of CCR2, CCR5, and CXCR4 and the Protean Effects of "Selective, Antagonists. J. Biol. Chem, vol.284, pp.31270-31279, 2009.

H. Issafras, Constitutive Agonist-independent CCR5 Oligomerization and Antibodymediated Clustering Occurring at Physiological Levels of Receptors, J. Biol. Chem, vol.277, pp.34666-34673, 2002.

L. El-asmar, Evidence for Negative Binding Cooperativity within CCR5-CCR2b Heterodimers, Mol. Pharmacol, vol.67, pp.460-469, 2004.

L. Martinez-munoz, CCR5/CD4/CXCR4 oligomerization prevents HIV-1 gp120IIIB binding to the cell surface, Proc. Natl. Acad. Sci, vol.111, pp.1960-1969, 2014.

J. Jin, CCR5 adopts three homodimeric conformations that control cell surface delivery, Sci. Signal, vol.11, p.2869, 2018.

D. Rognan, un inventaire de molécules commercialement disponibles à des fins de criblage biologique

D. Systèmes, B. , and P. Pilot,

J. Sadowski, J. Gasteiger, and G. Klebe, Comparison of Automatic Three-Dimensional Model Builders Using 639 X-ray Structures, J. Chem. Inf. Model, vol.34, pp.1000-1008, 1994.

C. H. Schwab, Conformations and 3D pharmacophore searching, Drug Discov. Today Technol, vol.7, pp.245-253, 2010.

, 3D Structure Generator CORINA Classic. (Molecular Networks GmbH)

S. Jo, T. Kim, V. G. Iyer, W. Im, and . Charmm-gui, A web-based graphical user interface for CHARMM, J. Comput. Chem, vol.29, pp.1859-1865, 2008.

D. A. Case, , 2018.

D. R. Roe, T. E. Cheatham, and C. Ptraj, Software for Processing and Analysis of Molecular Dynamics Trajectory Data, J. Chem. Theory Comput, vol.9, pp.3084-3095, 2013.

G. Marcou and D. Rognan, Optimizing Fragment and Scaffold Docking by Use of Molecular Interaction Fingerprints, J. Chem. Inf. Model, vol.47, pp.195-207, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00195175

D. Silva, F. Desaphy, J. Rognan, and D. , IChem: A Versatile Toolkit for Detecting, Comparing, and Predicting Protein-Ligand Interactions, ChemMedChem, vol.13, pp.507-510, 2018.

D. Silva, F. Desaphy, J. Bret, G. Rognan, and D. , IChemPIC: A Random Forest Classifier of Biological and Crystallographic Protein-Protein Interfaces, J. Chem. Inf. Model, vol.55, 2005.

J. Desaphy, K. Azdimousa, E. Kellenberger, and D. Rognan, Comparison and Druggability Prediction of Protein-Ligand Binding Sites from Pharmacophore-Annotated Cavity Shapes

, J. Chem. Inf. Model, vol.52, pp.2287-2299, 2012.

P. C. Hawkins, A. G. Skillman, and A. Nicholls, Comparison of Shape-Matching and Docking as Virtual Screening Tools, J. Med. Chem, vol.50, pp.74-82, 2007.

D. Systèmes, B. , and D. Studio,

M. Studio,

A. Predictor,

J. Garcia-perez, Allosteric Model of Maraviroc Binding to CC Chemokine Receptor 5 (CCR5), J. Biol. Chem, vol.286, pp.33409-33421, 2011.

K. Maeda, Structural and Molecular Interactions of CCR5 Inhibitors with CCR5, J. Biol. Chem, vol.281, pp.12688-12698, 2006.

M. Arimont, Chemokine G Protein-Coupled Receptor (Gpcr) Mutation Data Set, 2016.

P. Tamamis and C. A. Floudas, Molecular Recognition of CCR5 by an HIV-1 gp120 V3 Loop, PLoS ONE, vol.9, p.95767, 2014.

P. Kolb, Structure-based discovery of 2-adrenergic receptor ligands, Proc. Natl. Acad. Sci, vol.106, pp.6843-6848, 2009.

D. Rodríguez, J. Brea, M. I. Loza, and J. Carlsson, Structure-Based Discovery of Selective Serotonin 5-HT 1B Receptor Ligands, Structure, vol.22, pp.1140-1151, 2014.

E. Kellenberger, Identification of Nonpeptide CCR5 Receptor Agonists by Structurebased Virtual Screening, J. Med. Chem, vol.50, pp.1294-1303, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00174008

V. J. Lim, W. Du, Y. Z. Chen, and H. Fan, A benchmarking study on virtual ligand screening against homology models of human GPCRs, Proteins Struct. Funct. Bioinforma, 2018.

M. Wieder, U. Perricone, T. Seidel, S. Boresch, and T. Langer, Comparing pharmacophore models derived from crystal structures and from molecular dynamics simulations

, Monatshefte Für Chem. -Chem. Mon, vol.147, pp.553-563, 2016.

U. Perricone, A Molecular Dynamics-Shared Pharmacophore Approach to Boost Early-Enrichment Virtual Screening: A Case Study on Peroxisome Proliferator-Activated Receptor ?, ChemMedChem, vol.12, pp.1399-1407, 2017.

, Carte de corrélations des mouvements dans CCR5. Les barres noires annotées de 1 à 7 définissent les hélices transmembranaires du récepteur. Les valeurs de corrélation des mouvements des résidus vont de 1 (couleur cyan), pour des mouvements corrélés, vol.4