S. R. Irani, S. Alexander, and P. Waters, Antibodies to Kv1 potassium channel-complex proteins leucine-rich, glioma inactivated 1 protein and contactin-associated protein-2 in limbic encephalitis, Morvan's syndrome and acquired neuromyotonia, Brain, vol.133, issue.9, pp.2734-2748, 2010.

M. P. Malter, C. Frisch, and J. C. Schoene-bake, Outcome of limbic encephalitis with VGKC-complex antibodies: relation to antigenic specificity, J Neurol, vol.261, issue.9, pp.1695-1705, 2014.

S. R. Irani, P. Pettingill, and K. A. Kleopa, Morvan syndrome: clinical and serological observations in 29 cases, Ann Neurol, vol.72, issue.2, pp.241-255, 2012.

A. Van-sonderen, M. Petit-pedrol, J. Dalmau, and M. J. Titulaer, The value of LGI1, Caspr2 and voltage-gated potassium channel antibodies in encephalitis, Nat. Rev. Neurol, vol.13, pp.290-301, 2017.

A. Chefdeville, J. Honnorat, C. S. Hampe, and V. Desestret, Neuronal central nervous system syndromes probably mediated by autoantibodies, Eur. J. Neurosci, vol.43, pp.1535-1552, 2016.

W. Liang,

J. J. Linnoila, M. R. Rosenfeld, and J. Dalmau, Neuronal surface antibody-mediated autoimmune encephalitis, Semin. Neurol, vol.34, pp.458-466, 2014.

S. R. Irani, S. Alexander, P. Waters, K. A. Kleopa, P. Pettingill et al., Antibodies to Kv1 potassium channel-complex proteins leucine-rich, glioma inactivated 1 protein and contactin-associated protein-2 in limbic encephalitis, Morvan's syndrome and acquired neuromyotonia, Brain, vol.133, pp.2734-2748, 2010.

M. Lai, M. G. Huijbers, E. Lancaster, F. Graus, L. Bataller et al., Investigation of LGI1 as the antigen in limbic encephalitis previously attributed to potassium channels: a case series, Lancet Neurol, vol.9, pp.776-785, 2010.

A. Vincent and S. R. Irani, Caspr2 antibodies in patients with thymomas, J. Thorac. Oncol, vol.5, pp.277-280, 2010.

E. B. Becker, L. Zuliani, R. Pettingill, B. Lang, P. Waters et al., Contactin-associated protein-2 antibodies in non-paraneoplastic cerebellar ataxia, J. Neurol. Neurosurg. Psychiatry, vol.83, pp.437-440, 2012.

B. Joubert, F. Gobert, L. Thomas, M. Saint-martin, V. Desestret et al., Autoimmune episodic ataxia in patients with anti-CASPR2 antibody-associated encephalitis, Neurol. Neuroimmunol. Neuroinflamm, vol.4, p.371, 2017.

C. J. Klein, V. A. Lennon, P. A. Aston, A. Mckeon, and S. J. Pittock, Chronic pain as a manifestation of potassium channel-complex autoimmunity, Neurology, vol.79, p.1136, 2012.

R. E. Rosch, A. Bamford, Y. Hacohen, E. Wraige, A. Vincent et al., Guillain-Barre syndrome associated with CASPR2 antibodies: two paediatric cases, J. Peripher. Nerv. Syst, vol.19, pp.246-249, 2014.

L. Brimberg, S. Mader, V. Jeganathan, R. Berlin, T. R. Coleman et al., Caspr2-reactive antibody cloned from a mother of an ASD child mediates an ASD-like phenotype in mice, Mol. Psychiatr, vol.21, pp.1663-1671, 2016.

F. Govert, K. Witt, R. Erro, H. Hellriegel, S. Paschen et al., Orthostatic myoclonus associated with Caspr2 antibodies, Neurology, vol.86, pp.1353-1355, 2016.

J. Suleiman, S. Wright, D. Gill, F. Brilot, P. Waters et al., Autoantibodies to neuronal antigens in children with new-onset seizures classified according to the revised ILAE organization of seizures and epilepsies, Epilepsia, vol.54, pp.2091-2100, 2013.

S. Wright, A. T. Geerts, C. M. Jol-van-der-zijde, L. Jacobson, B. Lang et al., Neuronal antibodies in pediatric epilepsy: clinical features and long-term outcomes of a historical cohort not treated with immunotherapy, Epilepsia, vol.57, pp.823-831, 2016.

G. Unverengil, E. N. Vanli-yavuz, E. Tuzun, E. Erdag, S. Kabadayi et al., Brain infiltration of immune cells in CASPR2-antibody associated mesial temporal lobe epilepsy with hippocampal sclerosis, Noro Psikiyatr Ars, vol.53, pp.344-347, 2016.

J. Song, S. Jing, C. Quan, J. Lu, X. Qiao et al., Isaacs syndrome with CASPR2 antibody: a series of three cases, J. Clin. Neurosci, vol.41, pp.63-66, 2017.

Z. Karaaslan, E. Ekizoglu, P. Tekturk, E. Erdag, E. Tuzun et al., Investigation of neuronal auto-antibodies in systemic lupus erythematosus patients with epilepsy, Epilepsy Res, vol.129, pp.132-137, 2017.

B. Joubert, M. Saint-martin, N. Noraz, G. Picard, V. Rogemond et al., Characterization of a subtype of autoimmune encephalitis with anti-contactin-associated protein-like 2 antibodies in the cerebrospinal fluid, prominent limbic symptoms, and seizures, JAMA Neurol, vol.73, pp.1115-1124, 2016.

S. Poliak, L. Gollan, R. Martinez, A. Custer, S. Einheber et al., Caspr2, a new member of the neurexin superfamily, is localized at the juxtaparanodes of myelinated axons and associates with K+ channels, Neuron, vol.24, pp.1037-1047, 1999.

T. C. Sudhof, Synaptic neurexin complexes: a molecular code for the logic of neural circuits, Cell, vol.171, pp.745-769, 2017.

G. R. Anderson, T. Galfin, W. Xu, J. Aoto, R. C. Malenka et al., Candidate autism gene screen identifies critical role for cell-adhesion molecule CASPR2 in dendritic arborization and spine development, Proc. Natl. Acad. Sci. U. S. A, vol.109, pp.18120-18125, 2012.

O. Varea, M. D. Martin-de-saavedra, K. J. Kopeikina, B. Schurmann, H. J. Fleming et al., Synaptic abnormalities and cytoplasmic glutamate receptor aggregates in contactin associated protein-like 2/Caspr2 knockout neurons, Proc. Natl. Acad. Sci. U. S. A, vol.112, pp.6176-6181, 2015.

A. Gdalyahu, M. Lazaro, O. Penagarikano, P. Golshani, J. T. Trachtenberg et al., The Autism Related Protein Contactin-Associated Protein-Like 2 (CNTNAP2) Stabilizes New Spines: an In Vivo Mouse Study, vol.10, p.125633, 2015.

K. A. Strauss, E. G. Puffenberger, M. J. Huentelman, S. Gottlieb, S. E. Dobrin et al., Recessive symptomatic focal epilepsy and mutant contactin-associated protein-like 2, N. Engl. J. Med, vol.354, pp.1370-1377, 2006.

B. Bakkaloglu, B. J. O'roak, A. Louvi, A. R. Gupta, J. F. Abelson et al., Molecular cytogenetic analysis and resequencing of contactin associated proteinlike 2 in autism spectrum disorders, Am. J. Hum. Genet, vol.82, pp.165-173, 2008.

A. J. Verkerk, C. A. Mathews, M. Joosse, B. H. Eussen, P. Heutink et al., CNTNAP2 is disrupted in a family with Gilles de la Tourette syndrome and obsessive compulsive disorder, Genomics, vol.82, pp.1-9, 2003.

M. Saint-martin, B. Joubert, V. Pellier-monnin, O. Pascual, N. Noraz et al., Contactin-associated protein-like 2, a protein of the neurexin family involved in several human diseases, Eur. J. Neurosci, vol.48, pp.1906-1923, 2018.

O. Penagarikano, B. S. Abrahams, E. I. Herman, K. D. Winden, A. Gdalyahu et al., Absence of CNTNAP2 leads to epilepsy, neuronal migration abnormalities, and core autism-related deficits, Cell, vol.147, pp.235-246, 2011.

E. Peles, M. Nativ, M. Lustig, M. Grumet, J. Schilling et al., Identification of a novel contactin-associated transmembrane receptor with multiple domains implicated in protein-protein interactions, EMBO J, vol.16, pp.978-988, 1997.

M. Poot, Connecting the CNTNAP2 networks with neurodevelopmental disorders, Mol. Syndromol, vol.6, pp.7-22, 2015.

N. Sinmaz, T. Nguyen, F. Tea, R. C. Dale, and F. Brilot, Mapping autoantigen epitopes: molecular insights into autoantibody-associated disorders of the nervous system, J. Neuroinflammation, vol.13, p.219, 2016.

D. Pinatel, B. Hivert, J. Boucraut, M. Saint-martin, V. Rogemond et al., Inhibitory axons are targeted in hippocampal cell culture by anti-Caspr2 autoantibodies associated with limbic encephalitis, Front. Cell. Neurosci, vol.9, p.265, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01201572

A. L. Olsen, Y. Lai, J. Dalmau, S. S. Scherer, and E. Lancaster, Caspr2 autoantibodies target multiple epitopes, vol.2, p.127, 2015.

Z. Lu, M. V. Reddy, J. Liu, A. Kalichava, J. Liu et al., Molecular architecture of contactin-associated protein-like 2 (CNTNAP2) and its interaction with contactin 2 (CNTN2), J. Biol. Chem, vol.291, pp.24133-24147, 2016.

E. N. Rubio-marrero, G. Vincelli, C. M. Jeffries, T. R. Shaikh, I. S. Pakos et al., Structural characterization of the extracellular domain of CASPR2 and insights into its association with the novel ligand Contactin1, J. Biol. Chem, vol.291, pp.5788-5802, 2016.

A. Dukkipati, H. H. Park, D. Waghray, S. Fischer, and K. C. Garcia, BacMam system for high-level expression of recombinant soluble and membrane glycoproteins for structural studies, Protein Expr. Purif, vol.62, pp.160-170, 2008.

H. Liu, Z. S. Juo, A. H. Shim, P. J. Focia, X. Chen et al., Structural basis of semaphorin-plexin recognition and viral mimicry from Sema7A and A39R complexes with PlexinC1, Cell, vol.142, pp.749-761, 2010.

Z. Otwinowski and W. Minor, Processing of X-ray diffraction data collected in oscillation mode, Methods Enzymol, vol.276, pp.307-326, 1997.

A. J. Mccoy, Solving structures of protein complexes by molecular replacement with phaser, Acta Crystallogr. D Biol. Crystallogr, vol.63, pp.32-41, 2007.

S. Macedo-ribeiro, W. Bode, R. Huber, M. A. Quinn-allen, S. W. Kim et al., Crystal structures of the membrane-binding C2 domain of human coagulation factor V, Nature, vol.402, pp.434-439, 1999.

P. D. Adams, P. V. Afonine, G. Bunkoczi, V. B. Chen, I. W. Davis et al., PHENIX: a comprehensive Python-based system for macromolecular structure solution, Acta Crystallogr. D Biol. Crystallogr, vol.66, pp.213-221, 2010.

P. Emsley and K. Cowtan, Coot: model-building tools for molecular graphics, Acta Crystallogr. D Biol. Crystallogr, vol.60, pp.2126-2132, 2004.

V. B. Chen, W. B. Arendall-3rd, J. J. Headd, D. A. Keedy, R. M. Immormino et al., MolProbity: all-atom structure validation for macromolecular crystallography, Acta Crystallogr. D Biol. Crystallogr, vol.66, pp.12-21, 2010.

J. V. Kringelum, C. Lundegaard, O. Lund, and M. Nielsen, Reliable B cell epitope predictions: impacts of method development and improved benchmarking, PLoS Comput. Biol, vol.8, p.1002829, 2012.

L. Holm and P. Rosenstrom, Dali server: conservation mapping in 3D, Nucleic Acids Res, vol.38, pp.545-549, 2010.

M. A. Larkin, G. Blackshields, N. P. Brown, R. Chenna, P. A. Mcgettigan et al., Clustal W and clustal X version 2.0, Bioinformatics, vol.23, pp.2947-2948, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00206210

P. Gouet, E. Courcelle, D. I. Stuart, and F. Metoz, ESPript: analysis of multiple sequence alignments in PostScript, Bioinformatics, vol.15, pp.305-308, 1999.
URL : https://hal.archives-ouvertes.fr/hal-00314288

H. Ashkenazy, S. Abadi, E. Martz, O. Chay, I. Mayrose et al., ConSurf 2016: an improved methodology to estimate and visualize evolutionary conservation in macromolecules, Nucleic Acids Res, vol.44, pp.344-350, 2016.

M. D. Winn, C. C. Ballard, K. D. Cowtan, E. J. Dodson, P. Emsley et al., Overview of the CCP4 suite and current developments, Acta Crystallogr. D Biol. Crystallogr, vol.67, pp.235-242, 2011.

G. Falivelli, A. Jaco, F. L. Favaloro, H. Kim, J. Wilson et al., Inherited genetic variants in autism-related CNTNAP2 show perturbed trafficking and ATF6 activation, Hum. Mol. Genet, vol.21, pp.4761-4773, 2012.
URL : https://hal.archives-ouvertes.fr/pasteur-00974747

B. W. Matthews, Solvent content of protein crystals, J. Mol. Biol, vol.33, p.491, 1968.

F. Carafoli, D. Bihan, S. Stathopoulos, A. D. Konitsiotis, M. Kvansakul et al., Crystallographic insight into collagen recognition by discoidin domain receptor 2, Structure, vol.17, pp.1573-1581, 2009.

P. C. Spiegel, M. Jacquemin, J. M. Saint-remy, B. L. Stoddard, and K. P. Pratt, Structure of a factor VIII C2 domain-immunoglobulin G4kappa Fab complex: identification of an inhibitory antibody epitope on the surface of factor VIII, Blood, vol.98, pp.13-19, 2001.

D. F. Obregon, Y. Y. Zhu, A. R. Bailey, S. M. Portis, H. Y. Hou et al., Potential autoepitope within the extracellular region of contactin-associated protein-like 2 in mice, Br. J. Med. Med. Res, vol.4, p.416, 2014.

Z. Lin, J. Liu, H. Ding, F. Xu, and H. Liu, Structural basis of SALM5-induced PTPÎ' dimerization for synaptic differentiation, Nat. Commun, vol.9, p.268, 2018.

J. M. Rini, U. Schulze-gahmen, and I. A. Wilson, Structural evidence for induced fit as a mechanism for antibody-antigen recognition, Science, vol.255, pp.959-965, 1992.

P. H. Plotz, The autoantibody repertoire: searching for order, Nat. Rev. Immunol, vol.3, pp.73-78, 2003.
DOI : 10.1038/nri976

Y. Arafat, G. Fenalti, J. C. Whisstock, I. R. Mackay, M. Garcia-de-la-banda et al., Structural determinants of GAD antigenicity, Mol. Immunol, vol.47, pp.493-505, 2009.

E. J. Coutinho, M. G. Pedersen, M. E. Benros, B. Nørgaard-pedersen, P. B. Mortensen et al., CASPR2 autoantibodies are raised during pregnancy in mothers of children with mental retardation and disorders of psychological development but not autism, J. Neurol. Neurosurg. Psychiatry, vol.88, p.4, 2017.

N. Chen, F. Koopmans, A. Gordon, I. Paliukhovich, R. V. Klaassen et al., Interaction proteomics of canonical Caspr2 (CNTNAP2) reveals the presence of two Caspr2 isoforms with overlapping interactomes, Biochim. Biophys. Acta, vol.1854, pp.827-833, 2015.

M. Traka, L. Goutebroze, N. Denisenko, M. Bessa, A. Nifli et al., Association of TAG-1 with Caspr2 is essential for the molecular organization of juxtaparanodal regions of myelinated fibers, J. Cell Biol, vol.162, pp.1161-1172, 2003.

K. R. Patterson, J. Dalmau, and E. Lancaster, Mechanisms of Caspr2 antibodies in autoimmune encephalitis and neuromyotonia, Ann. Neurol, vol.83, pp.40-51, 2018.

S. Poliak, L. Gollan, R. Martinez, A. Custer, S. Einheber et al., Caspr2, a new member of the neurexin superfamily, is localized at the juxtaparanodes of myelinated axons and associates with K+ channels, Neuron, vol.24, pp.1037-1047, 1999.

P. Shillito, P. C. Molenaar, A. Vincent, K. Leys, W. Zheng et al., Acquired neuromyotonia: evidence for autoantibodies directed against K+ channels of peripheral nerves, Ann. Neurol, vol.38, pp.714-722, 1995.

R. Liguori, A. Vincent, L. Clover, P. Avoni, G. Plazzi et al., Morvan's syndrome: peripheral and central nervous system and cardiac involvement with antibodies to voltage-gated potassium channels, Brain J. Neurol, vol.124, pp.2417-2426, 2001.

C. Buckley, J. Oger, L. Clover, E. Tüzün, K. Carpenter et al., Potassium channel antibodies in two patients with reversible limbic encephalitis, Ann. Neurol, vol.50, pp.73-78, 2001.

J. Newsom-davis, C. Buckley, L. Clover, I. Hart, P. Maddison et al., Autoimmune disorders of neuronal potassium channels, Ann. N. Y. Acad. Sci, vol.998, pp.202-210, 2003.

B. Joubert, M. Saint-martin, N. Noraz, G. Picard, V. Rogemond et al., Characterization of a Subtype of Autoimmune Encephalitis With Anti-Contactin-Associated Protein-like 2 Antibodies in the Cerebrospinal Fluid, Prominent Limbic Symptoms, and Seizures, vol.73, pp.1115-1124, 2016.

A. Van-sonderen, H. Ariño, M. Petit-pedrol, F. Leypoldt, P. Körtvélyessy et al., The clinical spectrum of Caspr2 antibody-associated disease, Neurology, vol.87, pp.521-528, 2016.

S. R. Irani, S. Alexander, P. Waters, K. A. Kleopa, P. Pettingill et al., Antibodies to Kv1 potassium channel-complex proteins leucine-rich, glioma inactivated 1 protein and contactin-associated protein-2 in limbic encephalitis, Morvan's syndrome and acquired neuromyotonia, Brain, vol.133, pp.2734-2748, 2010.

M. Lai, M. G. Huijbers, E. Lancaster, F. Graus, L. Bataller et al., Investigation of LGI1 as the antigen in limbic encephalitis previously attributed to potassium channels: a case series, Lancet Neurol, vol.9, pp.776-785, 2010.

M. Saint-martin, B. Joubert, V. Pellier-monnin, O. Pascual, N. Noraz et al., Contactin-associated protein-like 2, a protein of the neurexin family involved in several human diseases, Eur. J. Neurosci, vol.48, pp.1906-1923, 2018.

A. L. Olsen, Y. Lai, J. Dalmau, S. S. Scherer, and E. Lancaster, Caspr2 autoantibodies target multiple epitopes, vol.2, p.127, 2015.

D. Pinatel, B. Hivert, J. Boucraut, M. Saint-martin, V. Rogemond et al., Inhibitory axons are targeted in hippocampal cell culture by anti-Caspr2 autoantibodies associated with limbic encephalitis, Front. Cell. Neurosci, vol.9, p.265, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01201572

S. Poliak, D. Salomon, H. Elhanany, H. Sabanay, B. Kiernan et al., Juxtaparanodal clustering of ShakerHomozygous Mutants in the CNS, J. Neurosci, vol.30, pp.13943-13954, 2010.

D. Pinatel, B. Hivert, M. Saint-martin, N. Noraz, M. Savvaki et al., The Kv1-associated molecules TAG-1 and Caspr2 are selectively targeted to the axon initial segment in hippocampal neurons, J. Cell Sci, vol.130, 2017.

C. Rader, B. Kunz, R. Lierheimer, R. J. Giger, P. Berger et al., Implications for the domain arrangement of axonin-1 derived from the mapping of its NgCAM binding site, EMBO J, vol.15, pp.2056-2068, 1996.

B. Kunz, R. Lierheimer, C. Rader, M. Spirig, U. Ziegler et al., Axonin-1/TAG-1 mediates cell-cell adhesion by a cis-assisted trans-interaction, J. Biol. Chem, vol.277, pp.4551-4557, 2002.

C. Gu and Y. Gu, Clustering and activity tuning of Kv1 channels in myelinated hippocampal axons, J. Biol. Chem, vol.286, pp.25835-25847, 2011.

M. G. Huijbers, L. A. Querol, E. H. Niks, J. J. Plomp, S. M. Van-der-maarel et al., The expanding field of IgG4-mediated neurological autoimmune disorders, Eur. J. Neurol, vol.22, pp.1151-1161, 2015.

E. N. Rubio-marrero, G. Vincelli, C. M. Jeffries, T. R. Shaikh, I. S. Pakos et al., Structural Characterization of the Extracellular Domain of CASPR2 and Insights into Its Association with the Novel Ligand Contactin1, J. Biol. Chem, vol.291, pp.5788-5802, 2016.

Z. Lu, M. V. Reddy, J. Liu, A. Kalichava, J. Liu et al., Molecular Architecture of Contactin-associated Protein-like 2 (CNTNAP2) and its Interaction with Contactin 2 (CNTN2), J. Biol. Chem, 2016.

F. Chen, V. Venugopal, B. Murray, and G. Rudenko, The structure of neurexin 1? reveals features promoting a role as synaptic organizer, Struct. Lond. Engl, vol.19, pp.779-789, 1993.

C. Reissner, F. Runkel, M. Missler, and N. , Genome Biol, vol.14, p.213, 2013.

I. Horresh, V. Bar, J. L. Kissil, and E. Peles, Organization of myelinated axons by Caspr and Caspr2 requires the cytoskeletal adapter protein 4.1B, J. Neurosci. Off. J. Soc. Neurosci, vol.30, pp.2480-2489, 2010.

D. Hattan, E. Nesti, T. G. Cachero, and A. D. Morielli, Tyrosine phosphorylation of Kv1.2 modulates its interaction with the actin-binding protein cortactin, J. Biol. Chem, vol.277, pp.38596-38606, 2002.

H. C. Lai and L. Y. Jan, The distribution and targeting of neuronal voltage-gated ion channels, Nat. Rev. Neurosci, vol.7, pp.548-562, 2006.

S. L. Smart, V. Lopantsev, C. L. Zhang, C. A. Robbins, H. Wang et al., Deletion of the K(V)1.1 potassium channel causes epilepsy in mice, Neuron, vol.20, pp.809-819, 1998.

J. R. Geiger and P. Jonas, Dynamic control of presynaptic Ca(2+) inflow by fast-inactivating K(+) channels in hippocampal mossy fiber boutons, Neuron, vol.28, pp.927-939, 2000.

S. He, L. Shao, W. B. Rittase, and S. B. Bausch, Increased Kv1 Channel Expression May Contribute to Decreased sIPSC Frequency Following Chronic Inhibition of NR2B-Containing NMDAR, Neuropsychopharmacology, vol.37, pp.1338-1356, 2012.

B. S. Abrahams, D. Tentler, J. V. Perederiy, M. C. Oldham, G. Coppola et al., Genomewide analyses of human perisylvian cerebral cortical patterning, Proc. Natl. Acad. Sci. U.S.A, vol.104, pp.17849-17854, 2007.

M. L. Albert, J. C. Darnell, A. Bender, L. M. Francisco, N. Bhardwaj et al., Tumor-specific killer cells in paraneoplastic cerebellar degeneration, Nat. Med, vol.4, pp.1321-1324, 1998.
URL : https://hal.archives-ouvertes.fr/pasteur-01402438

G. R. Anderson, T. Galfin, W. Xu, J. Aoto, R. C. Malenka et al., Candidate autism gene screen identifies critical role for cell-adhesion molecule CASPR2 in dendritic arborization and spine development, Proc. Natl. Acad. Sci. U.S.A, vol.109, pp.18120-18125, 2012.

T. Armangue, F. Leypoldt, and J. Dalmau, Autoimmune encephalitis as differential diagnosis of infectious encephalitis, Curr. Opin. Neurol, vol.27, pp.361-368, 2014.

B. Bakkaloglu, B. J. O'roak, A. Louvi, A. R. Gupta, J. F. Abelson et al., Molecular cytogenetic analysis and resequencing of contactin associated protein-like 2 in autism spectrum disorders, Am. J. Hum. Genet, vol.82, pp.165-173, 2008.

L. Bataller, D. F. Wade, F. Graus, H. D. Stacey, M. R. Rosenfeld et al., Antibodies to Zic4 in paraneoplastic neurologic disorders and small-cell lung cancer, Neurology, vol.62, pp.778-782, 2004.

J. M. Bekkers and A. J. Delaney, Modulation of excitability by alpha-dendrotoxin-sensitive potassium channels in neocortical pyramidal neurons, J. Neurosci, vol.21, pp.6553-6560, 2001.

C. Bel, K. Oguievetskaia, C. Pitaval, L. Goutebroze, and C. Faivre-sarrailh, Axonal targeting of CASPR2 in hippocampal neurons via selective somatodendritic endocytosis, J. Cell. Sci, vol.122, pp.3403-3413, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00417338

J. M. Belloso, I. Bache, M. Guitart, M. R. Caballin, C. Halgren et al., Disruption of the CNTNAP2 gene in a t(7;15) translocation family without symptoms of Gilles de la Tourette syndrome, Eur. J. Hum. Genet, vol.15, pp.711-713, 2007.

C. G. Bien, Z. Mirzadjanova, C. Baumgartner, M. D. Onugoren, T. Grunwald et al., Anti-contactin-associated protein-2 encephalitis: relevance of antibody titres, presentation and outcome, Eur. J. Neurol, vol.24, pp.175-186, 2017.

C. G. Bien, A. Vincent, M. H. Barnett, A. J. Becker, I. Blümcke et al., Immunopathology of autoantibodyassociated encephalitides: clues for pathogenesis, Brain, vol.135, pp.1622-1638, 2012.

D. T. Blumenthal, K. L. Salzman, K. B. Digre, R. L. Jensen, W. A. Dunson et al., Early pathologic findings and long-term improvement in anti-Ma2-associated encephalitis, Neurology, vol.67, pp.146-149, 2006.

A. Boronat, J. M. Gelfand, N. Gresa-arribas, H. Jeong, M. Walsh et al., Encephalitis and antibodies to dipeptidyl-peptidase-like protein-6, a subunit of Kv4.2 potassium channels, Ann. Neurol, vol.73, pp.120-128, 2013.

H. M. Brew, J. X. Gittelman, R. S. Silverstein, T. D. Hanks, V. P. Demas et al., Seizures and reduced life span in mice lacking the potassium channel subunit Kv1.2, but hypoexcitability and enlarged Kv1 currents in auditory neurons, J. Neurophysiol, vol.98, pp.1501-1525, 2007.

M. S. Bridi, S. M. Park, and S. Huang, Developmental Disruption of GABAAR-Meditated Inhibition in Cntnap2 KO Mice, 2017.

L. Brimberg, S. Mader, V. Jeganathan, R. Berlin, T. R. Coleman et al., CASPR2-reactive antibody cloned from a mother of an ASD child mediates an ASD-like phenotype in mice, Mol. Psychiatry, vol.21, pp.1663-1671, 2016.

L. Brimberg, A. Sadiq, P. K. Gregersen, and B. Diamond, Brain-reactive IgG correlates with autoimmunity in mothers of a child with an autism spectrum disorder, Mol. Psychiatry, vol.18, pp.1171-1177, 2013.

A. Buchstaller, S. Kunz, P. Berger, B. Kunz, U. Ziegler et al., Cell adhesion molecules NgCAM and axonin-1 form heterodimers in the neuronal membrane and cooperate in neurite outgrowth promotion, J. Cell Biol, vol.135, pp.1593-1607, 1996.

C. Buckley, J. Oger, L. Clover, E. Tüzün, K. Carpenter et al., Potassium channel antibodies in two patients with reversible limbic encephalitis, Ann. Neurol, vol.50, pp.73-78, 2001.

E. D. Buttermore, J. L. Dupree, J. Cheng, X. An, L. Tessarollo et al., The cytoskeletal adaptor protein band 4.1B is required for the maintenance of paranodal axoglial septate junctions in myelinated axons, J. Neurosci, vol.31, pp.8013-8024, 2011.

G. Canali, M. Garcia, B. Hivert, D. Pinatel, A. Goullancourt et al., Genetic variants in autism-related CNTNAP2 impair axonal growth of cortical neurons, Hum Mol Genet, vol.27, pp.1941-1954, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01963618

F. Carafoli, D. Bihan, S. Stathopoulos, A. D. Konitsiotis, M. Kvansakul et al., Crystallographic insight into collagen recognition by discoidin domain receptor 2, Structure, vol.17, pp.1573-1581, 2009.

F. Chen, V. Venugopal, B. Murray, and G. Rudenko, The structure of neurexin 1? reveals features promoting a role as synaptic organizer, Structure, vol.19, pp.779-789, 2011.

N. Chen, F. Koopmans, A. Gordon, I. Paliukhovich, R. V. Klaassen et al., Interaction proteomics of canonical CASPR2 (CNTNAP2) reveals the presence of two CASPR2 isoforms with overlapping interactomes, Biochim. Biophys. Acta, vol.1854, pp.827-833, 2015.

C. Cifuentes-diaz, F. Chareyre, M. Garcia, J. Devaux, M. Carnaud et al., PLoS ONE, vol.6, p.25043, 2011.

E. Coutinho, D. A. Menassa, L. Jacobson, S. J. West, J. Domingos et al., Persistent microglial activation and synaptic loss with behavioral abnormalities in mouse offspring exposed to CASPR2-antibodies in utero, Acta Neuropathol, vol.134, pp.567-583, 2017.

M. C. D'adamo, L. Catacuzzeno, G. Di-giovanni, F. Franciolini, and M. Pessia, K(+) channelepsy: progress in the neurobiology of potassium channels and epilepsy, Front Cell Neurosci, vol.7, p.134, 2013.

R. C. Dale, V. Merheb, S. Pillai, D. Wang, L. Cantrill et al., Antibodies to surface dopamine-2 receptor in autoimmune movement and psychiatric disorders, Brain, vol.135, pp.3453-3468, 2012.

J. Dalmau, C. Geis, and F. Graus, Autoantibodies to Synaptic Receptors and Neuronal Cell Surface Proteins in Autoimmune Diseases of the Central Nervous System, Physiol. Rev, vol.97, pp.839-887, 2017.

J. Dalmau, A. J. Gleichman, E. G. Hughes, J. E. Rossi, X. Peng et al., Anti-NMDA-receptor encephalitis: case series and analysis of the effects of antibodies, Lancet Neurol, vol.7, pp.1091-1098, 2008.

J. Dalmau and F. Graus, Antibody-Mediated Encephalitis, N. Engl. J. Med, vol.378, pp.840-851, 2018.

J. Dalmau, F. Graus, A. Villarejo, J. B. Posner, D. Blumenthal et al., Clinical analysis of anti-Ma2-associated encephalitis, Brain, vol.127, pp.1831-1844, 2004.

J. Dalmau and M. R. Rosenfeld, Paraneoplastic syndromes of the CNS, Lancet Neurol, vol.7, pp.327-340, 2008.

J. Dalmau, E. Tüzün, H. Wu, J. Masjuan, J. E. Rossi et al., Paraneoplastic anti-N-methyl-D-aspartate receptor encephalitis associated with ovarian teratoma, Ann. Neurol, vol.61, pp.25-36, 2007.

P. Dalton, R. Deacon, A. Blamire, M. Pike, I. Mckinlay et al., Maternal neuronal antibodies associated with autism and a language disorder, Ann. Neurol, vol.53, pp.533-537, 2003.

J. M. Dawes, G. A. Weir, S. J. Middleton, R. Patel, K. I. Chisholm et al., Immune or Genetic-Mediated Disruption of CASPR2 Causes, vol.97, pp.806-822, 2018.

P. De-camilli, A. Thomas, R. Cofiell, F. Folli, B. Lichte et al., The synaptic vesicleassociated protein amphiphysin is the 128-kD autoantigen of Stiff-Man syndrome with breast cancer, J. Exp. Med, vol.178, pp.2219-2223, 1993.

E. De-graaff, P. Maat, E. Hulsenboom, . Van-den, R. Berg et al., Identification of delta/notch-like epidermal growth factor-related receptor as the Tr antigen in paraneoplastic cerebellar degeneration, Ann. Neurol, vol.71, pp.815-824, 2012.

I. Deluca, N. E. Blachère, B. Santomasso, and R. B. Darnell, Tolerance to the neuron-specific paraneoplastic HuD antigen, PLoS ONE, vol.4, p.5739, 2009.

M. Denaxa, C. Chan, M. Schachner, J. G. Parnavelas, and D. Karagogeos, The adhesion molecule TAG-1 mediates the migration of cortical interneurons from the ganglionic eminence along the corticofugal fiber system, Development, vol.128, pp.4635-4644, 2001.

N. Denisenko-nehrbass, K. Oguievetskaia, L. Goutebroze, T. Galvez, H. Yamakawa et al., Protein 4.1B associates with both Caspr/paranodin and CASPR2 at paranodes and juxtaparanodes of myelinated fibres, Eur. J. Neurosci, vol.17, pp.411-416, 2003.

T. Derfuss, K. Parikh, S. Velhin, M. Braun, E. Mathey et al., Contactin-2/TAG-1-directed autoimmunity is identified in multiple sclerosis patients and mediates gray matter pathology in animals, Proc. Natl. Acad. Sci. U.S.A, vol.106, pp.8302-8307, 2009.

T. Derfuss, K. Parikh, S. Velhin, M. Braun, E. Mathey et al., Contactin-2/TAG-1-directed autoimmunity is identified in multiple sclerosis patients and mediates gray matter pathology in animals, Proc. Natl. Acad. Sci. U.S.A, vol.106, pp.8302-8307, 2009.

J. Devaux, M. Gola, G. Jacquet, and M. Crest, Effects of K+ channel blockers on developing rat myelinated CNS axons: identification of four types of K+ channels, J. Neurophysiol, vol.87, pp.1376-1385, 2002.

B. Diamond, P. T. Huerta, P. Mina-osorio, C. Kowal, and B. T. Volpe, Losing your nerves? Maybe it's the antibodies, Nat. Rev. Immunol, vol.9, pp.449-456, 2009.

A. Didelot and J. Honnorat, Update on paraneoplastic neurological syndromes, Curr Opin Oncol, vol.21, pp.566-572, 2009.

J. Dodd, S. B. Morton, D. Karagogeos, M. Yamamoto, and T. M. Jessell, Spatial regulation of axonal glycoprotein expression on subsets of embryonic spinal neurons, Neuron, issue.1, pp.105-116, 1988.

A. Duflocq, F. Chareyre, M. Giovannini, F. Couraud, and M. Davenne, Characterization of the axon initial segment (AIS) of motor neurons and identification of a para-AIS and a juxtapara-AIS, BMC Biol, vol.9, p.66, 2011.
URL : https://hal.archives-ouvertes.fr/inserm-00634721

S. Einheber, X. Meng, M. Rubin, I. Lam, N. Mohandas et al., The 4.1B cytoskeletal protein regulates the domain organization and sheath thickness of myelinated axons, Glia, vol.61, pp.240-253, 2013.

G. Falivelli, A. De-jaco, F. L. Favaloro, H. Kim, J. Wilson et al., Inherited genetic variants in autism-related CNTNAP2 show perturbed trafficking and ATF6 activation, Hum. Mol. Genet, vol.21, pp.4761-4773, 2012.
URL : https://hal.archives-ouvertes.fr/pasteur-00974747

E. Flaherty, R. M. Deranieh, E. Artimovich, I. S. Lee, A. J. Siegel et al., Patient-derived hiPSC neurons with heterozygous CNTNAP2 deletions display altered neuronal gene expression and network activity, NPJ Schizophr, vol.3, p.35, 2017.

J. Freigang, K. Proba, L. Leder, K. Diederichs, P. Sonderegger et al., The Crystal Structure of the Ligand Binding Module of Axonin-1/TAG-1 Suggests a Zipper Mechanism for, Neural Cell Adhesion. Cell, vol.101, pp.425-433, 2000.

F. Fukamauchi, O. Aihara, Y. J. Wang, K. Akasaka, Y. Takeda et al., TAG-1-deficient mice have marked elevation of adenosine A1 receptors in the hippocampus, Biochem. Biophys. Res. Commun, vol.281, pp.220-226, 2001.

A. J. Furley, S. B. Morton, D. Manalo, D. Karagogeos, J. Dodd et al., The axonal glycoprotein TAG-1 is an immunoglobulin superfamily member with neurite outgrowth-promoting activity, Cell, vol.61, pp.157-170, 1990.

V. Gautam, C. D'avanzo, M. Hebisch, D. M. Kovacs, and D. Y. Kim, BACE1 activity regulates cell surface contactin-2 levels, Mol Neurodegener, vol.9, p.4, 2014.

A. Gdalyahu, M. Lazaro, O. Penagarikano, P. Golshani, J. T. Trachtenberg et al., The Autism Related Protein Contactin-Associated Protein-Like 2 (CNTNAP2) Stabilizes New Spines: An In Vivo Mouse Study, vol.10, p.125633, 2015.

J. R. Geiger and P. Jonas, Dynamic control of presynaptic Ca(2+) inflow by fast-inactivating K(+) channels in hippocampal mossy fiber boutons, Neuron, vol.28, pp.927-939, 2000.

E. Gelpi, R. Höftberger, F. Graus, H. Ling, J. L. Holton et al., Neuropathological criteria of anti-IgLON5-related tauopathy, Acta Neuropathol, vol.132, pp.531-543, 2016.

O. Gokce and T. C. Südhof, Membrane-tethered monomeric neurexin LNS-domain triggers synapse formation, J. Neurosci, vol.33, pp.14617-14628, 2013.

A. Gordon, D. Salomon, N. Barak, Y. Pen, M. Tsoory et al., Expression of Cntnap2 (CASPR2) in multiple levels of sensory systems, Mol. Cell. Neurosci, vol.70, pp.42-53, 2016.

F. Gövert, K. Witt, R. Erro, H. Hellriegel, S. Paschen et al., Orthostatic myoclonus associated with CASPR2 antibodies, Neurology, vol.86, pp.1353-1355, 2016.

E. R. Graf, X. Zhang, S. Jin, M. W. Linhoff, and A. M. Craig, Neurexins induce differentiation of GABA and glutamate postsynaptic specializations via neuroligins, Cell, vol.119, pp.1013-1026, 2004.

F. Graus, K. B. Elkon, P. Lloberes, T. Ribalta, A. Torres et al., Neuronal antinuclear antibody (anti-Hu) in paraneoplastic encephalomyelitis simulating acute polyneuritis, Acta Neurol. Scand, vol.75, pp.249-252, 1987.

N. Gresa-arribas, J. Planagumà, M. Petit-pedrol, I. Kawachi, S. Katada et al., Human neurexin-3? antibodies associate with encephalitis and alter synapse development, Neurology, vol.86, pp.2235-2242, 2016.

N. Gresa-arribas, M. J. Titulaer, A. Torrents, E. Aguilar, L. Mccracken et al., Antibody titres at diagnosis and during follow-up of anti-NMDA receptor encephalitis: a retrospective study, Lancet Neurol, vol.13, pp.167-177, 2014.

A. V. Grizel, G. S. Glukhov, and O. S. Sokolova, Mechanisms of activation of voltage-gated potassium channels, Acta Naturae, vol.6, pp.10-26, 2014.

C. Gu and Y. Gu, Clustering and activity tuning of Kv1 channels in myelinated hippocampal axons, J. Biol. Chem, vol.286, pp.25835-25847, 2011.

R. Harel and A. H. Futerman, A newly-synthesized GPI-anchored protein, TAG-1/axonin-1, is inserted into axonal membranes along the entire length of the axon and not exclusively at the growth cone, Brain Res, vol.712, pp.345-348, 1996.

B. High, A. A. Cole, X. Chen, and T. S. Reese, Electron microscopic tomography reveals discrete transcleft elements at excitatory and inhibitory synapses, Front Synaptic Neurosci, vol.7, p.9, 2015.

B. Hivert, L. Marien, K. N. Agbam, and C. Faivre-sarrailh, ADAM22 and ADAM23 modulate the targeting of the Kv1 channel-associated protein LGI1 to the axon initial segment, p.311365, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02347189

J. Honnorat, S. Cartalat-carel, D. Ricard, J. P. Camdessanche, A. F. Carpentier et al., Onco-neural antibodies and tumour type determine survival and neurological symptoms in paraneoplastic neurological syndromes with Hu or CV2/CRMP5 antibodies, J. Neurol. Neurosurg. Psychiatry, vol.80, pp.412-416, 2009.
URL : https://hal.archives-ouvertes.fr/inserm-00321230

J. Honnorat, A. Saiz, B. Giometto, A. Vincent, L. Brieva et al., Cerebellar ataxia with anti-glutamic acid decarboxylase antibodies: study of 14 patients, Arch. Neurol, vol.58, pp.225-230, 2001.

I. Horresh, V. Bar, J. L. Kissil, and E. Peles, Organization of myelinated axons by Caspr and CASPR2 requires the cytoskeletal adapter protein 4.1B, J. Neurosci, vol.30, pp.2480-2489, 2010.

I. Horresh, S. Poliak, S. Grant, D. Bredt, M. N. Rasband et al., Multiple molecular interactions determine the clustering of CASPR2 and Kv1 channels in myelinated axons, J. Neurosci, vol.28, pp.14213-14222, 2008.

O. W. Howell, E. K. Schulz-trieglaff, D. Carassiti, S. M. Gentleman, R. Nicholas et al., Extensive grey matter pathology in the cerebellum in multiple sclerosis is linked to inflammation in the subarachnoid space, Neuropathol. Appl. Neurobiol, vol.41, pp.798-813, 2015.

H. Høyer, G. J. Braathen, A. K. Eek, G. B. Nordang, C. F. Skjelbred et al., Copy number variations in a population-based study of Charcot-Marie-Tooth disease, Biomed Res Int, p.960404, 2015.

A. Y. Huang, D. Yu, L. K. Davis, J. H. Sul, F. Tsetsos et al., Tourette Syndrome Association International Consortium for Genetics (TSAICG), & Gilles de la Tourette Syndrome GWAS Replication Initiative (GGRI) (2017) Rare Copy Number Variants in NRXN1 and CNTN6 Increase Risk for Tourette Syndrome, vol.94, pp.1101-1111

E. G. Hughes, X. Peng, A. J. Gleichman, M. Lai, L. Zhou et al., Cellular and synaptic mechanisms of anti-NMDA receptor encephalitis, J. Neurosci, vol.30, pp.5866-5875, 2010.

M. G. Huijbers, A. F. Lipka, J. J. Plomp, E. H. Niks, S. M. Van-der-maarel et al., Pathogenic immune mechanisms at the neuromuscular synapse: the role of specific antibody-binding epitopes in myasthenia gravis, J. Intern. Med, vol.275, pp.12-26, 2014.

M. G. Huijbers, L. A. Querol, E. H. Niks, J. J. Plomp, S. M. Van-der-maarel et al., The expanding field of IgG4-mediated neurological autoimmune disorders, Eur. J. Neurol, vol.22, pp.1151-1161, 2015.

M. Hutchinson, P. Waters, J. Mchugh, G. Gorman, S. O'riordan et al., Progressive encephalomyelitis, rigidity, and myoclonus: a novel glycine receptor antibody, Neurology, vol.71, pp.1291-1292, 2008.

M. C. Inda, J. Defelipe, and A. Muñoz, Voltage-gated ion channels in the axon initial segment of human cortical pyramidal cells and their relationship with chandelier cells, Proc. Natl. Acad. Sci. U.S.A, vol.103, pp.2920-2925, 2006.

S. R. Irani, S. Alexander, P. Waters, K. A. Kleopa, P. Pettingill et al., Antibodies to Kv1 potassium channel-complex proteins leucine-rich, glioma inactivated 1 protein and contactin-associated protein-2 in limbic encephalitis, Morvan's syndrome and acquired neuromyotonia, Brain, vol.133, pp.2734-2748, 2010.

L. Y. Jan and Y. N. Jan, Voltage-gated potassium channels and the diversity of electrical signalling, J. Physiol, vol.590, pp.2591-2599, 2012.

B. Joubert, F. Gobert, L. Thomas, M. Saint-martin, V. Desestret et al., Autoimmune episodic ataxia in patients with anti-CASPR2 antibody-associated encephalitis, Neurol Neuroimmunol Neuroinflamm, vol.4, p.371, 2017.

B. Joubert, M. Saint-martin, N. Noraz, G. Picard, V. Rogemond et al., Characterization of a Subtype of Autoimmune Encephalitis With Anti-Contactin-Associated Protein-like 2 Antibodies in the Cerebrospinal Fluid, Prominent Limbic Symptoms, and Seizures, vol.73, pp.1115-1124, 2016.

S. Jurgensen and P. E. Castillo, Selective Dysregulation of Hippocampal Inhibition in the Mouse Lacking Autism Candidate Gene CNTNAP2, J. Neurosci, vol.35, pp.14681-14687, 2015.

D. Karagogeos, S. B. Morton, F. Casano, J. Dodd, and T. M. Jessell, Developmental expression of the axonal glycoprotein TAG-1: differential regulation by central and peripheral neurons in vitro, Development, vol.112, pp.51-67, 1991.

G. Kirov, D. Rujescu, A. Ingason, D. A. Collier, M. C. O'donovan et al., Neurexin 1 (NRXN1) deletions in schizophrenia, Schizophr Bull, vol.35, pp.851-854, 2009.

J. D. Kocsis and S. G. Waxman, Absence of potassium conductance in central myelinated axons, Nature, vol.287, pp.348-349, 1980.

G. J. Kress and S. Mennerick, Action potential initiation and propagation: upstream influences on neurotransmission, Neuroscience, vol.158, pp.211-222, 2009.

B. Kunz, R. Lierheimer, C. Rader, M. Spirig, U. Ziegler et al., Axonin-1/TAG-1 mediates cell-cell adhesion by a cis-assisted trans-interaction, J. Biol. Chem, vol.277, pp.4551-4557, 2002.

H. C. Lai and L. Y. Jan, The distribution and targeting of neuronal voltage-gated ion channels, Nat. Rev. Neurosci, vol.7, pp.548-562, 2006.

M. Lai, E. G. Hughes, X. Peng, L. Zhou, A. J. Gleichman et al., AMPA receptor antibodies in limbic encephalitis alter synaptic receptor location, Ann Neurol, vol.65, pp.424-434, 2009.

M. Lai, M. G. Huijbers, E. Lancaster, F. Graus, L. Bataller et al., Investigation of LGI1 as the antigen in limbic encephalitis previously attributed to potassium channels: a case series, Lancet Neurol, vol.9, pp.776-785, 2010.

E. Lancaster, M. Lai, X. Peng, E. Hughes, R. Constantinescu et al., Antibodies to the GABAB receptor in limbic encephalitis with seizures: case series and characterisation of the antigen, Lancet Neurol, vol.9, pp.67-76, 2010.

E. Lancaster, E. Martinez-hernandez, M. J. Titulaer, M. Boulos, S. Weaver et al., Antibodies to metabotropic glutamate receptor 5 in the Ophelia syndrome, Neurology, vol.77, pp.1698-1701, 2011.

N. D. Lawn, B. F. Westmoreland, M. J. Kiely, V. A. Lennon, and S. Vernino, Clinical, magnetic resonance imaging, and electroencephalographic findings in paraneoplastic limbic encephalitis, Mayo Clin. Proc, vol.78, pp.1363-1368, 2003.

M. Lek, K. J. Karczewski, E. V. Minikel, K. E. Samocha, E. Banks et al., , vol.536, pp.285-291

C. Leterrier, The Axon Initial Segment: An Updated Viewpoint, J. Neurosci, vol.38, pp.2135-2145, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01736917

R. Liguori, A. Vincent, L. Clover, P. Avoni, G. Plazzi et al., Morvan's syndrome: peripheral and central nervous system and cardiac involvement with antibodies to voltage-gated potassium channels, Brain, vol.124, pp.2417-2426, 2001.

A. Liska, A. Bertero, R. Gomolka, M. Sabbioni, A. Galbusera et al., Homozygous Loss of Autism-Risk Gene CNTNAP2 Results in Reduced Local and Long-Range Prefrontal Functional Connectivity, Cereb. Cortex, vol.28, pp.1141-1153, 2018.

S. B. Long, E. B. Campbell, and R. Mackinnon, Crystal structure of a mammalian voltage-dependent Shaker family K+ channel, Science, vol.309, pp.897-903, 2005.

Z. Lu, M. V. Reddy, J. Liu, A. Kalichava, J. Liu et al., Molecular Architecture of Contactin-associated Protein-like 2 (CNTNAP2) and Its Interaction with Contactin 2 (CNTN2), J. Biol. Chem, vol.291, pp.24133-24147, 2016.

M. Lustig, T. Sakurai, and M. Grumet, Nr-CAM promotes neurite outgrowth from peripheral ganglia by a mechanism involving axonin-1 as a neuronal receptor, Dev. Biol, vol.209, pp.340-351, 1999.

J. D. Malhotra, P. Tsiotra, D. Karagogeos, and M. Hortsch, Cis-activation of L1-mediated ankyrin recruitment by TAG-1 homophilic cell adhesion, J. Biol. Chem, vol.273, pp.33354-33359, 1998.

L. N. Manganas and J. S. Trimmer, Subunit composition determines Kv1 potassium channel surface expression, J. Biol. Chem, vol.275, pp.29685-29693, 2000.

M. Manto, J. Dalmau, A. Didelot, V. Rogemond, and J. Honnorat, In vivo effects of antibodies from patients with anti-NMDA receptor encephalitis: further evidence of synaptic glutamatergic dysfunction, Orphanet J Rare Dis, vol.5, p.31, 2010.
URL : https://hal.archives-ouvertes.fr/inserm-00670158

E. Martinez-hernandez, J. Horvath, Y. Shiloh-malawsky, N. Sangha, M. Martinez-lage et al., Analysis of complement and plasma cells in the brain of patients with anti-NMDAR encephalitis, Neurology, vol.77, pp.589-593, 2011.

W. P. Mason, F. Graus, B. Lang, J. Honnorat, J. Y. Delattre et al., Small-cell lung cancer, paraneoplastic cerebellar degeneration and the Lambert-Eaton myasthenic syndrome, Brain, vol.120, pp.1279-1300, 1997.

L. Mikasova, P. De-rossi, D. Bouchet, F. Georges, V. Rogemond et al., Disrupted surface cross-talk between NMDA and Ephrin-B2 receptors in anti-NMDA encephalitis, Brain, vol.135, pp.1606-1621, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01160045

M. Missler, W. Zhang, A. Rohlmann, G. Kattenstroth, R. E. Hammer et al., Alpha-neurexins couple Ca2+ channels to synaptic vesicle exocytosis, Nature, vol.423, pp.939-948, 2003.

R. S. Møller, Y. G. Weber, L. L. Klitten, H. Trucks, H. Muhle et al., Exon-disrupting deletions of NRXN1 in idiopathic generalized epilepsy, Epilepsia, vol.54, pp.256-264, 2013.

M. Mörtl, P. Sonderegger, K. Diederichs, and W. Welte, The crystal structure of the ligand-binding module of human TAG-1 suggests a new mode of homophilic interaction, Protein Sci, vol.16, pp.2174-2183, 2007.

J. D. Murdoch, A. R. Gupta, S. J. Sanders, M. F. Walker, J. Keaney et al., No evidence for association of autism with rare heterozygous point mutations in Contactin-Associated Protein-Like 2 (CNTNAP2), or in Other Contactin-Associated Proteins or Contactins, PLoS Genet, vol.11, p.1004852, 2015.

A. D. Nelson and P. M. Jenkins, Axonal Membranes and Their Domains: Assembly and Function of the Axon Initial Segment and Node of Ranvier, Front Cell Neurosci, vol.11, p.136, 2017.

S. B. Nelson and V. Valakh, Excitatory/Inhibitory Balance and Circuit Homeostasis in Autism Spectrum Disorders, Neuron, vol.87, pp.684-698, 2015.

J. Newsom-davis, C. Buckley, L. Clover, I. Hart, P. Maddison et al., Autoimmune disorders of neuronal potassium channels, Ann. N. Y. Acad. Sci, vol.998, pp.202-210, 2003.

Y. Ogawa, I. Horresh, J. S. Trimmer, D. S. Bredt, E. Peles et al., Postsynaptic density-93 clusters Kv1 channels at axon initial segments independently of CASPR2, J. Neurosci, vol.28, pp.5731-5739, 2008.

Y. Ogawa, J. Oses-prieto, M. Y. Kim, I. Horresh, E. Peles et al., ADAM22, a Kv1 channel-interacting protein, recruits membrane-associated guanylate kinases to juxtaparanodes of myelinated axons, J. Neurosci, vol.30, pp.1038-1048, 2010.

T. Ohkawa, Y. Fukata, M. Yamasaki, T. Miyazaki, N. Yokoi et al., Autoantibodies to epilepsy-related LGI1 in limbic encephalitis neutralize LGI1-ADAM22 interaction and reduce synaptic AMPA receptors, J. Neurosci, vol.33, pp.18161-18174, 2013.

S. Oiso, Y. Takeda, T. Futagawa, T. Miura, S. Kuchiiwa et al., Contactin-associated protein (Caspr) 2 interacts with carboxypeptidase E in the CNS, J. Neurochem, vol.109, pp.158-167, 2009.

A. L. Olsen, Y. Lai, J. Dalmau, S. S. Scherer, and E. Lancaster, CASPR2 autoantibodies target multiple epitopes, vol.2, p.127, 2015.
DOI : 10.1212/nxi.0000000000000127

URL : http://nn.neurology.org/content/2/4/e127.full.pdf

S. V. Ovsepian, M. Leberre, V. Steuber, V. B. O'leary, C. Leibold et al., Distinctive role of KV1.1 subunit in the biology and functions of low threshold K(+) channels with implications for neurological disease, Pharmacol. Ther, vol.159, pp.93-101, 2016.

K. R. Patterson, J. Dalmau, and E. Lancaster, Mechanisms of CASPR2 antibodies in autoimmune encephalitis and neuromyotonia, Ann. Neurol, vol.83, pp.40-51, 2018.

O. Peñagarikano, B. S. Abrahams, E. I. Herman, K. D. Winden, A. Gdalyahu et al., Absence of CNTNAP2 leads to epilepsy, neuronal migration abnormalities, and core autismrelated deficits, Cell, vol.147, pp.235-246, 2011.

C. J. Peters, M. Vaid, A. J. Horne, D. Fedida, and E. A. Accili, The molecular basis for the actions of KVbeta1.2 on the opening and closing of the KV1.2 delayed rectifier channel, Channels (Austin), vol.3, pp.314-322, 2009.

M. Petit-pedrol, T. Armangue, X. Peng, L. Bataller, T. Cellucci et al., Encephalitis with refractory seizures, status epilepticus, and antibodies to the GABAA receptor: a case series, characterisation of the antigen, and analysis of the effects of antibodies, Lancet Neurol, vol.13, pp.276-286, 2014.

D. Pinatel, B. Hivert, J. Boucraut, M. Saint-martin, V. Rogemond et al., Inhibitory axons are targeted in hippocampal cell culture by anti-CASPR2 autoantibodies associated with limbic encephalitis, Front Cell Neurosci, vol.9, p.265, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01201572

D. Pinatel, B. Hivert, M. Saint-martin, N. Noraz, M. Savvaki et al., The Kv1-associated molecules TAG-1 and CASPR2 are selectively targeted to the axon initial segment in hippocampal neurons, J. Cell. Sci, vol.130, pp.2209-2220, 2017.

J. Planagumà, H. Haselmann, F. Mannara, M. Petit-pedrol, B. Grünewald et al., Ephrin-B2 prevents N-methyl-D-aspartate receptor antibody effects on memory and neuroplasticity, Ann. Neurol, vol.80, pp.388-400, 2016.

J. Planagumà, F. Leypoldt, F. Mannara, J. Gutiérrez-cuesta, E. Martín-garcía et al., Human N-methyl D-aspartate receptor antibodies alter memory and behaviour in mice, Brain, vol.138, pp.94-109, 2015.

M. P. Platt, D. Agalliu, and T. Cutforth, Hello from the Other Side: How Autoantibodies Circumvent the Blood-Brain Barrier in Autoimmune Encephalitis, Front Immunol, vol.8, p.442, 2017.

S. Poliak, L. Gollan, R. Martinez, A. Custer, S. Einheber et al., CASPR2, a new member of the neurexin superfamily, is localized at the juxtaparanodes of myelinated axons and associates with K+ channels, Neuron, vol.24, pp.1037-1047, 1999.

S. Poliak, D. Salomon, H. Elhanany, H. Sabanay, B. Kiernan et al., Juxtaparanodal clustering of Shaker-like K+ channels in myelinated axons depends on CASPR2 and TAG-1, J. Cell Biol, vol.162, pp.1149-1160, 2003.

M. Poot, Connecting the CNTNAP2 Networks with Neurodevelopmental Disorders, Mol Syndromol, vol.6, pp.7-22, 2015.

M. Poot, Intragenic CNTNAP2 Deletions: A Bridge Too Far?, Mol Syndromol, vol.8, pp.118-130, 2017.
DOI : 10.1159/000456021

URL : https://www.karger.com/Article/Pdf/456021

C. Rader, B. Kunz, R. Lierheimer, R. J. Giger, P. Berger et al., Implications for the domain arrangement of axonin-1 derived from the mapping of its NgCAM binding site, EMBO J, vol.15, pp.2056-2068, 1996.

M. N. Rasband, Clustered K+ channel complexes in axons, Neurosci. Lett, vol.486, pp.101-106, 2010.

M. N. Rasband, E. W. Park, D. Zhen, M. I. Arbuckle, S. Poliak et al., Clustering of neuronal potassium channels is independent of their interaction with PSD-95, J. Cell Biol, vol.159, pp.663-672, 2002.

M. N. Rasband and E. Peles, The Nodes of Ranvier: Molecular Assembly and Maintenance, Cold Spring Harb Perspect Biol, vol.8, p.20495, 2015.

A. C. Reichelt, R. J. Rodgers, and S. J. Clapcote, The role of neurexins in schizophrenia and autistic spectrum disorder, Neuropharmacology, vol.62, pp.1519-1526, 2012.

C. Reissner, F. Runkel, and M. Missler, Neurexins. Genome Biol, vol.14, p.213, 2013.

A. R. Rendall, D. T. Truong, and R. H. Fitch, Learning delays in a mouse model of, Autism Spectrum Disorder. Behav. Brain Res, vol.303, pp.201-207, 2016.

J. Rettig, S. H. Heinemann, F. Wunder, C. Lorra, D. N. Parcej et al., Inactivation properties of voltage-gated K+ channels altered by presence of beta-subunit, Nature, vol.369, pp.289-294, 1994.

T. Rispens, P. Ooijevaar-de-heer, O. Bende, and R. C. Aalberse, Mechanism of immunoglobulin G4 Fab-arm exchange, J. Am. Chem. Soc, vol.133, pp.10302-10311, 2011.

C. A. Robbins and B. L. Tempel, Kv1.1 and Kv1.2: similar channels, different seizure models, Epilepsia, vol.53, issue.1, pp.134-141, 2012.

P. Rodenas-cuadrado, J. Ho, and S. C. Vernes, Shining a light on CNTNAP2: complex functions to complex disorders, Eur. J. Hum. Genet, vol.22, pp.171-178, 2014.

P. Rodenas-cuadrado, N. Pietrafusa, T. Francavilla, A. La-neve, P. Striano et al., Characterisation of CASPR2 deficiency disorder--a syndrome involving autism, epilepsy and language impairment, BMC Med. Genet, vol.17, 2016.

I. Rojas, F. Graus, F. Keime-guibert, R. Reñé, J. Y. Delattre et al., Long-term clinical outcome of paraneoplastic cerebellar degeneration and anti-Yo antibodies, Neurology, vol.55, pp.713-715, 2000.

E. N. Rubio-marrero, G. Vincelli, C. M. Jeffries, T. R. Shaikh, I. S. Pakos et al., Structural Characterization of the Extracellular Domain of CASPR2 and Insights into Its Association with the Novel Ligand Contactin1, J. Biol. Chem, vol.291, pp.5788-5802, 2016.

M. Saint-martin, B. Joubert, V. Pellier-monnin, O. Pascual, N. Noraz et al., Contactinassociated protein-like 2, a protein of the neurexin family involved in several human diseases, Eur. J. Neurosci, vol.48, pp.1906-1923, 2018.

M. Savvaki, T. Panagiotaropoulos, A. Stamatakis, I. Sargiannidou, P. Karatzioula et al., Impairment of learning and memory in TAG-1 deficient mice associated with shorter CNS internodes and disrupted juxtaparanodes, Mol. Cell. Neurosci, vol.39, pp.478-490, 2008.

M. Savvaki, K. Theodorakis, L. Zoupi, A. Stamatakis, S. Tivodar et al., The expression of TAG-1 in glial cells is sufficient for the formation of the juxtaparanodal complex and the phenotypic rescue of tag-1 homozygous mutants in the CNS, J. Neurosci, vol.30, pp.13943-13954, 2010.

C. P. Schaaf, P. M. Boone, S. Sampath, C. Williams, P. I. Bader et al., Phenotypic spectrum and genotype-phenotype correlations of NRXN1 exon deletions, Eur. J. Hum. Genet, vol.20, pp.1240-1247, 2012.

R. Scott, A. Sánchez-aguilera, K. Van-elst, L. Lim, N. Dehorter et al., Loss of Cntnap2 Causes Axonal Excitability Deficits, Developmental Delay in Cortical Myelination, and Abnormal Stereotyped Motor Behavior, Cereb. Cortex, 2017.

A. A. Scott-van-zeeland, B. S. Abrahams, A. I. Alvarez-retuerto, L. I. Sonnenblick, J. D. Rudie et al., Altered functional connectivity in frontal lobe circuits is associated with variation in the autism risk gene CNTNAP2, Sci Transl Med, vol.2, pp.56-80, 2010.

A. Selimbeyoglu, C. K. Kim, M. Inoue, S. Y. Lee, A. S. Hong et al., Modulation of prefrontal cortex excitation/inhibition balance rescues social behavior in CNTNAP2-deficient mice, Shams'ili, vol.9, pp.1409-1418, 2003.

G. Shi, K. Nakahira, S. Hammond, K. J. Rhodes, L. E. Schechter et al., Beta subunits promote K+ channel surface expression through effects early in biosynthesis, Neuron, vol.16, pp.843-852, 1996.

P. Shillito, P. C. Molenaar, A. Vincent, K. Leys, W. Zheng et al., Acquired neuromyotonia: evidence for autoantibodies directed against K+ channels of peripheral nerves, Ann. Neurol, vol.38, pp.714-722, 1995.

P. Sillevis-smitt, A. Kinoshita, B. De-leeuw, W. Moll, M. Coesmans et al., Paraneoplastic cerebellar ataxia due to autoantibodies against a glutamate receptor, N. Engl. J. Med, vol.342, pp.21-27, 2000.

H. S. Singer, C. Morris, C. Gause, M. Pollard, A. W. Zimmerman et al., Prenatal exposure to antibodies from mothers of children with autism produces neurobehavioral alterations: A pregnant dam mouse model, J. Neuroimmunol, vol.211, pp.39-48, 2009.

H. S. Singer, C. M. Morris, C. D. Gause, P. K. Gillin, S. Crawford et al., Antibodies against fetal brain in sera of mothers with autistic children, J. Neuroimmunol, vol.194, pp.165-172, 2008.

M. Small, I. Treilleux, C. Couillault, D. Pissaloux, G. Picard et al., Genetic alterations and tumor immune attack in Yo paraneoplastic cerebellar degeneration, Acta Neuropathol, vol.135, pp.569-579, 2018.

S. L. Smart, V. Lopantsev, C. L. Zhang, C. A. Robbins, H. Wang et al., Deletion of the K(V)1.1 potassium channel causes epilepsy in mice, Neuron, vol.20, pp.809-819, 1998.

J. Song, S. Jing, C. Quan, J. Lu, X. Qiao et al., Isaacs syndrome with CASPR2 antibody: A series of three cases, J Clin Neurosci, vol.41, pp.63-66, 2017.

E. T. Stoeckli, T. B. Kuhn, C. O. Duc, M. A. Ruegg, and P. Sonderegger, The axonally secreted protein axonin-1 is a potent substratum for neurite growth, J. Cell Biol, vol.112, pp.449-455, 1991.

E. T. Stoeckli and L. T. Landmesser, Axonin-1, Nr-CAM, and Ng-CAM play different roles in the in vivo guidance of chick commissural neurons, Neuron, vol.14, pp.1165-1179, 1995.

E. T. Stoeckli, P. Sonderegger, G. E. Pollerberg, and L. T. Landmesser, Interference with axonin-1 and NrCAM interactions unmasks a floor-plate activity inhibitory for commissural axons, Neuron, vol.18, pp.209-221, 1997.

E. Stogmann, E. Reinthaler, S. Eltawil, M. A. El-etribi, M. Hemeda et al.,

R. A. Veitia, S. Caburet, and J. A. Birchler, Mechanisms of Mendelian dominance, Clin. Genet, vol.93, pp.419-428, 2018.

J. C. Velluti, A. Caputi, and O. Macadar, Limbic epilepsy induced in the rat by dendrotoxin, a polypeptide isolated from the green mamba (Dendroaspis angusticeps) venom, Toxicon, vol.25, pp.649-657, 1987.

A. Venkatesan, A. R. Tunkel, K. C. Bloch, A. S. Lauring, J. Sejvar et al., Case Definitions, Diagnostic Algorithms, Clin Infect Dis, vol.57, pp.1114-1128, 2013.

A. J. Verkerk, C. A. Mathews, M. Joosse, B. H. Eussen, P. Heutink et al., & Tourette Syndrome Association International Consortium for Genetics (2003) CNTNAP2 is disrupted in a family with Gilles de la Tourette syndrome and obsessive compulsive disorder, Genomics, vol.82, pp.1-9

G. Vidarsson, G. Dekkers, and T. Rispens, IgG subclasses and allotypes: from structure to effector functions, Front Immunol, vol.5, p.520, 2014.

D. Vogt, K. K. Cho, S. M. Shelton, A. Paul, Z. J. Huang et al., Mouse Cntnap2 and Human CNTNAP2 ASD Alleles Cell Autonomously Regulate PV+ Cortical Interneurons, Cereb. Cortex, pp.1-12, 2017.

L. Vogt, R. J. Giger, U. Ziegler, B. Kunz, A. Buchstaller et al., Continuous renewal of the axonal pathway sensor apparatus by insertion of new sensor molecules into the growth cone membrane, Curr. Biol, vol.6, pp.1153-1158, 1996.

C. M. Watson, L. A. Crinnion, A. Tzika, A. Mills, A. Coates et al., Diagnostic whole genome sequencing and split-read mapping for nucleotide resolution breakpoint identification in CNTNAP2 deficiency syndrome, Am. J. Med. Genet. A, vol.164, pp.2649-2655, 2014.

U. Weller, U. Bernhardt, D. Siemen, F. Dreyer, W. Vogel et al., Electrophysiological and neurobiochemical evidence for the blockade of a potassium channel by dendrotoxin, Naunyn Schmiedebergs Arch. Pharmacol, vol.330, pp.77-83, 1985.

R. J. Whitley, S. J. Soong, C. Linneman, C. Liu, G. Pazin et al., Herpes simplex encephalitis. Clinical Assessment. JAMA, vol.247, pp.317-320, 1982.

D. P. Wolfer, R. J. Giger, M. Stagliar, P. Sonderegger, and H. P. Lipp, Expression of the axon growthrelated neural adhesion molecule TAG-1/axonin-1 in the adult mouse brain, Anat. Embryol, vol.197, pp.177-185, 1998.

D. P. Wolfer, A. Henehan-beatty, E. T. Stoeckli, P. Sonderegger, and H. P. Lipp, Distribution of TAG-1/axonin-1 in fibre tracts and migratory streams of the developing mouse nervous system, J. Comp. Neurol, vol.345, pp.1-32, 1994.

R. A. Zuellig, C. Rader, A. Schroeder, M. B. Kalousek, F. Von-bohlen-und-halbach et al., The axonally secreted cell adhesion molecule, axonin-1. Primary structure, immunoglobulin-like and fibronectin-type-III-like domains and glycosylphosphatidylinositol anchorage, Eur. J. Biochem, vol.204, pp.453-463, 1992.

C. Zweier, E. K. De-jong, M. Zweier, A. Orrico, L. B. Ousager et al., CNTNAP2 and NRXN1 are mutated in autosomalrecessive Pitt-Hopkins-like mental retardation and determine the level of a common synaptic protein in Drosophila, Am. J. Hum. Genet, vol.85, pp.655-666, 2009.

B. S. Abrahams, D. Tentler, J. V. Perederiy, M. C. Oldham, G. Coppola et al., Genome-wide analyses of human perisylvian cerebral cortical patterning, Proceedings of the National Academy of Sciences of the United States of America, vol.104, pp.17849-17854, 2007.

A. Al-murrani, F. Ashton, S. Aftimos, A. M. George, and D. R. Love, Amino-terminal microdeletion within the CNTNAP2 gene associated with variable expressivity of speech delay, Case Reports in Genetics, p.172408, 2012.

G. R. Anderson, T. Galfin, W. Xu, J. Aoto, R. C. Malenka et al., Candidate autism gene screen identifies critical role for cell-adhesion molecule CASPR2 in dendritic arborization and spine development, Proceedings of the National Academy of Sciences of the United States of America, vol.109, pp.18120-18125, 2012.

B. Bakkaloglu, B. J. O'roak, A. Louvi, A. R. Gupta, J. F. Abelson et al., Molecular cytogenetic analysis and resequencing of contactin associated protein-like 2 in autism spectrum disorders, American Journal of Human Genetics, vol.82, p.165, 2008.

C. Bel, K. Oguievetskaia, C. Pitaval, L. Goutebroze, and C. Faivresarrailh, Axonal targeting of Caspr2 in hippocampal neurons via selective somatodendritic endocytosis, Journal of Cell Science, vol.122, pp.3403-3413, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00417338

J. M. Belloso, I. Bache, M. Guitart, M. R. Caballin, C. Halgren et al., Disruption of the CNTNAP2 gene in a t(7;15) translocation family without symptoms of Gilles de la Tourette syndrome, European Journal of Human Genetics, vol.15, pp.711-713, 2007.

C. G. Bien, Z. Mirzadjanova, C. Baumgartner, M. D. Onugoren, T. Grunwald et al., Anti-contactinassociated protein-2 encephalitis: Relevance of antibody titres, presentation and outcome, European Journal of Neurology, vol.24, pp.175-186, 2017.

M. S. Bridi, S. M. Park, and S. Huang, Developmental disruption of GABAAR-meditated inhibition in Cntnap2 KO mice. eNeuro, 4, ENEURO.0162-17, 2017.

L. Brimberg, S. Mader, V. Jeganathan, R. Berlin, T. R. Coleman et al., Caspr2-reactive antibody cloned from a mother of an ASD child mediates an ASD-like phenotype in mice, Molecular Psychiatry, vol.21, pp.1663-1671, 2016.

L. Brimberg, A. Sadiq, P. K. Gregersen, and B. Diamond, Brainreactive IgG correlates with autoimmunity in mothers of a child with an autism spectrum disorder, Molecular Psychiatry, vol.18, pp.1171-1177, 2013.

C. Buckley, J. Oger, L. Clover, E. Tüzün, K. Carpenter et al., Potassium channel antibodies in two patients with reversible limbic encephalitis, Annals of Neurology, vol.50, pp.73-78, 2001.

E. D. Buttermore, J. L. Dupree, J. Cheng, X. An, L. Tessarollo et al., The cytoskeletal adaptor protein band 4.1B is required for the maintenance of paranodal axoglial septate junctions in myelinated axons, Journal of Neuroscience, vol.31, pp.8013-8024, 2011.

G. Canali, M. Garcia, B. Hivert, D. Pinatel, A. Goullancourt et al., Genetic variants in autism-related CNTNAP2 impair axonal growth of cortical neurons, Human Molecular Genetics, vol.27, pp.1941-1954, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01963618

L. Y. Chen, M. Jiang, B. Zhang, O. Gokce, and T. C. Südhof, Conditional deletion of all neurexins defines diversity of essential synaptic organizer functions for neurexins, Neuron, vol.94, pp.611-625, 2017.

N. Chen, F. Koopmans, A. Gordon, I. Paliukhovich, R. V. Klaassen et al., Interaction proteomics of canonical Caspr2 (CNTNAP2) reveals the presence of two Caspr2 isoforms with overlapping interactomes, Biochimica et Biophysica Acta, vol.1854, pp.827-833, 2015.

|. Al,

C. Cifuentes-diaz, F. Chareyre, M. Garcia, J. Devaux, M. Carnaud et al., Protein 4.1B contributes to the organization of peripheral myelinated axons, PLoS ONE, vol.6, 2011.

E. Coutinho, D. A. Menassa, L. Jacobson, S. J. West, J. Domingos et al., Persistent microglial activation and synaptic loss with behavioral abnormalities in mouse offspring exposed to CASPR2-antibodies in utero, Acta Neuropathologica, vol.134, pp.567-583, 2017.

J. Dalmau, A. J. Gleichman, E. G. Hughes, J. E. Rossi, X. Peng et al., Anti-NMDA-receptor encephalitis: Case series and analysis of the effects of antibodies, Lancet Neurology, vol.7, pp.1091-1098, 2008.

P. Dalton, R. Deacon, A. Blamire, M. Pike, I. Mckinlay et al., Maternal neuronal antibodies associated with autism and a language disorder, Annals of Neurology, vol.53, pp.533-537, 2003.

J. M. Dawes, G. A. Weir, S. J. Middleton, R. Patel, K. I. Chisholm et al., Immune or genetic-mediated disruption of CASPR2 causes pain hypersensitivity due to enhanced primary afferent excitability, Neuron, vol.97, pp.806-822, 2018.

N. Denisenko-nehrbass, K. Oguievetskaia, L. Goutebroze, T. Galvez, H. Yamakawa et al., , 2003.

, 1B associates with both Caspr/paranodin and Caspr2 at paranodes and juxtaparanodes of myelinated fibres, European Journal of Neuroscience, vol.17, pp.411-416

J. Devaux and A. Gow, Tight junctions potentiate the insulative properties of small CNS myelinated axons, Journal of Cell Biology, vol.183, 2008.

A. Duflocq, F. Chareyre, M. Giovannini, F. Couraud, and M. Davenne, Characterization of the axon initial segment (AIS) of motor neurons and identification of a para-AIS and a juxtapara-AIS, BMC Biology, vol.9, 2011.
URL : https://hal.archives-ouvertes.fr/inserm-00634721

S. Einheber, X. Meng, M. Rubin, I. Lam, N. Mohandas et al., The 4.1B cytoskeletal protein regulates the domain organization and sheath thickness of myelinated axons, Glia, vol.61, pp.240-253, 2013.

G. Falivelli, A. D. Jaco, F. L. Favaloro, H. Kim, J. Wilson et al., Inherited genetic variants in autism-related CNTNAP2 show perturbed trafficking and ATF6 activation, Human Molecular Genetics, vol.21, p.4761, 2012.
URL : https://hal.archives-ouvertes.fr/pasteur-00974747

E. Flaherty, R. M. Deranieh, E. Artimovich, I. S. Lee, A. J. Siegel et al., Patient-derived hiPSC neurons with heterozygous CNTNAP2 deletions display altered neuronal gene expression and network activity, NPJ Schizophr, vol.3, 2017.

J. I. Friedman, T. Vrijenhoek, S. Markx, I. M. Janssen, . Van-der et al., CNTNAP2 gene dosage variation is associated with schizophrenia and epilepsy, Molecular Psychiatry, vol.13, pp.261-266, 2007.

Y. Fukata, K. L. Lovero, T. Iwanaga, A. Watanabe, N. Yokoi et al., Disruption of LGI1-linked synaptic complex causes abnormal synaptic transmission and epilepsy, Proceedings of the National Academy of Sciences of the United States of America, vol.107, p.3799, 2010.

A. Gdalyahu, M. Lazaro, O. Penagarikano, P. Golshani, J. T. Trachtenberg et al., The autism related protein contactin-associated protein-like 2 (CNTNAP2) stabilizes new spines: An in vivo mouse study, PLoS ONE, vol.10, 2015.

J. A. Van-gerpen, J. E. Ahlskog, R. Chen, V. S. Fung, M. Hallett et al., Orthostatic myoclonus associated with Caspr2 antibodies, Neurology, vol.87, pp.1187-1188, 2016.

S. Gokben, H. Onay, S. Yilmaz, T. Atik, G. Serdaroglu et al., Targeted next generation sequencing: The diagnostic value in early-onset epileptic encephalopathy, 2017.

O. Südhof and T. C. , Membrane-tethered monomeric neurexin LNS-domain triggers synapse formation, Acta Neurologica Belgica, vol.117, pp.131-138, 2013.

A. Gordon, D. Salomon, N. Barak, Y. Pen, M. Tsoory et al., Expression of Cntnap2 (Caspr2) in multiple levels of sensory systems, Molecular and Cellular Neurosciences, vol.70, pp.42-53, 2016.

F. Gövert, K. Witt, R. Erro, H. Hellriegel, S. Paschen et al., Orthostatic myoclonus associated with Caspr2 antibodies, Neurology, vol.86, pp.1353-1355, 2016.

E. R. Graf, X. Zhang, S. Jin, M. W. Linhoff, and A. M. Craig, Neurexins induce differentiation of GABA and glutamate postsynaptic specializations via neuroligins, Cell, vol.119, pp.1013-1026, 2004.

A. Gregor, B. Albrecht, I. Bader, E. K. Bijlsma, A. B. Ekici et al., Expanding the clinical spectrum associated with defects in CNTNAP2 and NRXN1, BMC Medical Genetics, vol.12, 2011.

N. Gresa-arribas, J. Planagumà, M. Petit-pedrol, I. Kawachi, S. Katada et al., Human neurexin-3? antibodies associate with encephalitis and alter synapse development, Neurology, vol.86, pp.2235-2242, 2016.

C. Gu and Y. Gu, Clustering and activity tuning of Kv1 channels in myelinated hippocampal axons, Journal of Biological Chemistry, vol.286, pp.25835-25847, 2011.

E. J. Hoffman, K. J. Turner, J. M. Fernandez, D. Cifuentes, M. Ghosh et al., Estrogens suppress a behavioral phenotype in zebrafish mutants of the autism risk gene, vol.89, pp.725-733, 2016.

I. Horresh, V. Bar, J. L. Kissil, and E. Peles, Organization of myelinated axons by Caspr and Caspr2 requires the cytoskeletal adapter protein 4.1B, Journal of Neuroscience, vol.30, pp.2480-2489, 2010.

I. Horresh, S. Poliak, S. Grant, D. Bredt, M. N. Rasband et al., Multiple molecular interactions determine the clustering of Caspr2 and Kv1 channels in myelinated axons, Journal of Neuroscience, vol.28, pp.14213-14222, 2008.

H. Høyer, G. J. Braathen, A. K. Eek, G. B. Nordang, C. F. Skjelbred et al., Copy number variations in a population-based study of Charcot-Marie-Tooth disease, BioMed Research International, p.960404, 2015.

A. Y. Huang, D. Yu, L. K. Davis, J. H. Sul, F. Tsetsos et al., Rare copy number variants in NRXN1 and CNTN6 increase risk for tourette syndrome, Neuron, vol.94, pp.1101-1111, 2017.

E. G. Hughes, X. Peng, A. J. Gleichman, M. Lai, L. Zhou et al., Cellular and synaptic mechanisms of anti-NMDA receptor encephalitis, Journal of Neuroscience, vol.30, pp.5866-5875, 2010.

M. G. Huijbers, L. A. Querol, E. H. Niks, J. J. Plomp, S. M. Van-der-maarel et al., The expanding field of IgG4-mediated neurological autoimmune disorders, European Journal of Neurology, vol.22, pp.1151-1161, 2015.

M. G. Huijbers, W. Zhang, R. Klooster, E. H. Niks, M. B. Friese et al., MuSK IgG4 autoantibodies cause myasthenia gravis by inhibiting binding between MuSK and Lrp4, Proceedings of the National Academy of Sciences of the United States of America, vol.110, pp.20783-20788, 2013.

M. C. Inda, J. Defelipe, and A. Muñoz, Voltage-gated ion channels in the axon initial segment of human cortical pyramidal cells and their relationship with chandelier cells, Proceedings of the National Academy of Sciences of the United States of America, vol.103, p.2920, 2006.

S. R. Irani, S. Alexander, P. Waters, K. A. Kleopa, P. Pettingill et al., Antibodies to Kv1 potassium channel-complex proteins leucine-rich, glioma inactivated 1 protein and contactin-associated protein-2 in limbic encephalitis, Morvan's syndrome and acquired neuromyotonia, Brain, vol.133, pp.2734-2748, 2010.

S. R. Irani, P. Pettingill, K. A. Kleopa, N. Schiza, P. Waters et al., Morvan syndrome: Clinical and serological observations in 29 cases, Annals of Neurology, vol.72, pp.241-255, 2012.

H. Isaacs, A syndrome of continuous muscle-fibre activity, Neurosurgery and Psychiatry, vol.24, pp.319-325, 1961.

B. Joubert, F. Gobert, L. Thomas, M. Saint-martin, V. Desestret et al., Autoimmune episodic ataxia in patients with anti-CASPR2 antibody-associated encephalitis, Neurology: Neuroimmunology & Neuroinflammation, vol.4, p.371, 2017.

B. Joubert, M. Saint-martin, N. Noraz, G. Picard, V. Rogemond et al., Characterization of a subtype of autoimmune encephalitis with anti-contactin-associated proteinlike 2 antibodies in the cerebrospinal fluid, prominent limbic symptoms, and seizures, JAMA Neurology, vol.73, pp.1115-1124, 2016.

S. Jurgensen and P. E. Castillo, Selective dysregulation of hippocampal inhibition in the mouse lacking autism candidate gene CNTNAP2, Journal of Neuroscience, vol.35, pp.14681-14687, 2015.

G. Kirov, D. Rujescu, A. Ingason, D. A. Collier, M. C. O'donovan et al., Neurexin 1 (NRXN1) deletions in schizophrenia, Schizophrenia Bulletin, vol.35, p.851, 2009.

B. Kunz, R. Lierheimer, C. Rader, M. Spirig, U. Ziegler et al., Axonin-1/TAG-1 mediates cell-cell adhesion by a cis-assisted trans-interaction, Journal of Biological Chemistry, vol.277, pp.4551-4557, 2002.

M. Lai, M. G. Huijbers, E. Lancaster, F. Graus, L. Bataller et al., Investigation of LGI1 as the antigen in limbic encephalitis previously attributed to potassium channels: A case series, Lancet Neurology, vol.9, issue.10, p.70137, 2010.

H. C. Lai and L. Y. Jan, The distribution and targeting of neuronal voltage-gated ion channels, Nature Reviews Neuroscience, vol.7, pp.548-562, 2006.

E. Lancaster, M. G. Huijbers, V. Bar, A. Boronat, A. Wong et al., Investigations of caspr2, an autoantigen of encephalitis and neuromyotonia, Annals of Neurology, vol.69, pp.303-311, 2011.

I. S. Lee, C. M. Carvalho, P. Douvaras, S. Ho, B. J. Hartley et al., Characterization of molecular and cellular phenotypes associated with a heterozygousCNTNAP2deletion using patient-derived hiPSC neural cells, NPJ Schizophr, vol.1, p.15019, 2015.

M. Lek, K. J. Karczewski, E. V. Minikel, K. E. Samocha, E. Banks et al., Analysis of protein-coding genetic variation in 60,706 humans, Nature, vol.536, p.285, 2016.

R. Liguori, A. Vincent, L. Clover, P. Avoni, G. Plazzi et al., Morvan's syndrome: Peripheral and central nervous system and cardiac involvement with antibodies to voltage-gated potassium channels, Brain, vol.124, pp.2417-2426, 2001.

A. Liska, A. Bertero, R. Gomolka, M. Sabbioni, A. Galbusera et al., Homozygous loss of autism-risk gene CNTNAP2 results in reduced local and long-range prefrontal functional connectivity, Cerebral Cortex, vol.28, pp.1141-1153, 2018.

Z. Lu, M. V. Reddy, J. Liu, A. Kalichava, J. Liu et al., Molecular architecture of contactinassociated protein-like 2 (CNTNAP2) and its interaction with contactin 2 (CNTN2), Journal of Biological Chemistry, vol.291, pp.24133-24147, 2016.

C. Manso, L. Querol, M. Mekaouche, I. Illa, and J. J. Devaux, , 2016.

, Contactin-1 IgG4 antibodies cause paranode dismantling and conduction defects, Brain, vol.139, pp.1700-1712

M. Manto, J. Dalmau, A. Didelot, V. Rogemond, and J. Honnorat, In vivo effects of antibodies from patients with anti-NMDA receptor encephalitis: Further evidence of synaptic glutamatergic dysfunction, Orphanet Journal of Rare Diseases, vol.5, p.31, 2010.
URL : https://hal.archives-ouvertes.fr/inserm-00670158

M. Marchese, G. Valvo, F. Moro, F. Sicca, and F. M. Santorelli, Targeted gene resequencing (Astrochip) to explore the tripartite synapse in autism-epilepsy phenotype with macrocephaly, NeuroMolecular Medicine, vol.18, pp.69-80, 2016.

H. C. Mefford, H. Muhle, P. Ostertag, S. Von-spiczak, K. Buysse et al., Genome-wide copy number variation in epilepsy: Novel susceptibility loci in idiopathic generalized and focal epilepsies, PLoS Genetics, vol.6, p.1000962, 2010.

L. Mikasova, P. De-rossi, D. Bouchet, F. Georges, V. Rogemond et al., Disrupted surface cross-talk between NMDA and Ephrin-B2 receptors in anti-NMDA encephalitis, Brain, vol.135, pp.1606-1621, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01160045

|. Al,

F. M. Mikhail, E. J. Lose, N. H. Robin, M. D. Descartes, K. D. Rutledge et al., Clinically relevant single gene or intragenic deletions encompassing critical neurodevelopmental genes in patients with developmental delay, mental retardation, and/or autism spectrum disorders, American Journal of Medical Genetics, vol.155, pp.2386-2396, 2011.

M. Missler, W. Zhang, A. Rohlmann, G. Kattenstroth, R. E. Hammer et al., Alpha-neurexins couple Ca 2+ channels to synaptic vesicle exocytosis, Nature, vol.423, pp.939-948, 2003.

R. S. Møller, Y. G. Weber, L. L. Klitten, H. Trucks, H. Muhle et al., Exon-disrupting deletions of NRXN1 in idiopathic generalized epilepsy, Epilepsia, vol.54, pp.256-264, 2013.

J. D. Murdoch, A. R. Gupta, S. J. Sanders, M. F. Walker, J. Keaney et al., No evidence for association of autism with rare heterozygous point mutations in ContactinAssociated Protein-Like 2 (CNTNAP2), or in other contactinassociated proteins or contactins, PLoS Genetics, vol.11, 2015.

V. Navarro, A. Kas, E. Apartis, L. Chami, V. Rogemond et al., Motor cortex and hippocampus are the two main cortical targets in LGI1-antibody encephalitis, Brain, vol.139, pp.1079-1093, 2016.

A. D. Nelson and P. M. Jenkins, Axonal membranes and their domains: Assembly and function of the axon initial segment and node of Ranvier, Frontiers in Cellular Neuroscience, vol.11, 2017.

S. B. Nelson, V. ;. Valakh, J. Schuurman, M. Losen, W. K. Bleeker et al., Excitatory/inhibitory balance and circuit homeostasis in autism spectrum disorders, 033 van der Neut Kolfschoten, vol.87, pp.1554-1557, 2007.
DOI : 10.1016/j.neuron.2015.07.033

URL : https://doi.org/10.1016/j.neuron.2015.07.033

J. Newsom-davis, C. Buckley, L. Clover, I. Hart, P. Maddison et al., Autoimmune disorders of neuronal potassium channels, Annals of the New York Academy of Sciences, vol.998, pp.202-210, 2003.

Y. Ogawa, I. Horresh, J. S. Trimmer, D. S. Bredt, E. Peles et al., PSD-93 clusters Kv1 channels at axon initial segments independent of Caspr2, Journal of Neuroscience, vol.28, pp.5731-5739, 2008.
DOI : 10.1523/jneurosci.4431-07.2008

URL : http://www.jneurosci.org/content/28/22/5731.full.pdf

Y. Ogawa, J. Oses-prieto, M. Y. Kim, I. Horresh, E. Peles et al., ADAM22, a Kv1 channel interacting protein, recruits maguks to juxtaparanodes of myelinated axons, Journal of Neuroscience, vol.30, 1038.

T. Ohkawa, Y. Fukata, M. Yamasaki, T. Miyazaki, N. Yokoi et al., Autoantibodies to epilepsyrelated LGI1 in limbic encephalitis neutralize LGI1-ADAM22 interaction and reduce synaptic AMPA receptors, Journal of Neuroscience, vol.33, pp.18161-18174, 2013.
DOI : 10.1523/jneurosci.3506-13.2013

URL : http://www.jneurosci.org/content/33/46/18161.full.pdf

S. Oiso, Y. Takeda, T. Futagawa, T. Miura, S. Kuchiiwa et al., Contactin-associated protein (Caspr) 2 interacts with carboxypeptidase E in the CNS, Journal of Neurochemistry, vol.109, pp.158-167, 2009.
DOI : 10.1111/j.1471-4159.2009.05928.x

A. L. Olsen, Y. Lai, J. Dalmau, S. S. Scherer, and E. Lancaster, Caspr2 autoantibodies target multiple epitopes, vol.2, p.127, 2015.
DOI : 10.1212/nxi.0000000000000127

URL : http://nn.neurology.org/content/2/4/e127.full.pdf

B. J. O'roak, P. Deriziotis, C. Lee, L. Vives, J. J. Schwartz et al., Exome sequencing in sporadic autism spectrum disorders identifies severe de novo mutations, Nature Genetics, vol.43, pp.585-589, 2011.

K. R. Patterson, J. Dalmau, and E. Lancaster, Mechanisms of Caspr2 antibodies in autoimmune encephalitis and neuromyotonia, Annals of Neurology, vol.83, pp.40-51, 2018.

O. Peñagarikano, B. S. Abrahams, E. I. Herman, K. D. Winden, A. Gdalyahu et al., Absence of CNTNAP2 leads to epilepsy, neuronal migration abnormalities, and core autism-related deficits, Cell, vol.147, pp.235-246, 2011.

A. L. Petrin, C. M. Giacheti, L. P. Maximino, D. V. Abramides, S. Zanchetta et al., Identification of a microdeletion at the 7q33-q35 disrupting the CNTNAP2 gene in a Brazilian stuttering case, American Journal of Medical Genetics. Part A, vol.152, pp.3164-3172, 2010.

D. Pinatel, B. Hivert, J. Boucraut, M. Saint-martin, V. Rogemond et al., Inhibitory axons are targeted in hippocampal cell culture by anti-Caspr2 autoantibodies associated with limbic encephalitis, Frontiers in Cellular Neuroscience, vol.9, pp.2209-2220, 2015.
DOI : 10.3389/fncel.2015.00265

URL : https://hal.archives-ouvertes.fr/hal-01201572

T. Pippucci, L. Licchetta, S. Baldassari, F. Palombo, V. Menghi et al., Epilepsy with auditory features: A heterogeneous clinico-molecular disease, Neurology: Genetics, vol.1, p.5, 2015.
DOI : 10.1212/nxg.0000000000000005

URL : http://ng.neurology.org/content/nng/1/1/e5.full.pdf

J. Planagumà, H. Haselmann, F. Mannara, M. Petit-pedrol, B. Grünewald et al., Ephrin-B2 prevents N-methyl-D-aspartate receptor antibody effects on memory and neuroplasticity, Annals of Neurology, vol.80, pp.388-400, 2016.

J. Planagumà, F. Leypoldt, F. Mannara, J. Gutiérrez-cuesta, E. Martín-garcía et al., Human N-methyl D-aspartate receptor antibodies alter memory and behaviour in mice, Brain, vol.138, pp.94-109, 2015.

S. Poliak, L. Gollan, R. Martinez, A. Custer, S. Einheber et al., Caspr2, a new member of the neurexin superfamily, is localized at the juxtaparanodes of myelinated axons and associates with K+ channels, Neuron, vol.24, pp.81049-81050, 1999.

S. Poliak, D. Salomon, H. Elhanany, H. Sabanay, B. Kiernan et al., Juxtaparanodal clustering of Shaker-like K+ channels in myelinated axons depends on Caspr2 and TAG-1, Journal of Cell Biology, vol.162, pp.1149-1160, 2003.

M. Poot, Connecting the CNTNAP2 networks with neurodevelopmental disorders, Molecular Syndromology, vol.6, pp.7-22, 2015.
DOI : 10.1159/000371594

URL : http://europepmc.org/articles/pmc4369114?pdf=render

M. Poot, Intragenic CNTNAP2 deletions: A bridge too far?, Molecular Syndromology, vol.8, pp.118-130, 2017.
DOI : 10.1159/000456021

URL : https://www.karger.com/Article/Pdf/456021

M. Poot, V. Beyer, I. Schwaab, N. Damatova, R. Van't-slot et al., Disruption of CNTNAP2 and | 17, 2010.

S. Al, additional structural genome changes in a boy with speech delay and autism spectrum disorder, Neurogenetics, vol.11, pp.81-89

M. N. Rasband, E. W. Park, D. Zhen, M. I. Arbuckle, S. Poliak et al., Clustering of neuronal potassium channels is independent of their interaction with PSD-95, Journal of Cell Biology, vol.159, pp.663-672, 2002.

M. N. Rasband, E. Peles, A. C. Reichelt, R. J. Rodgers, and S. J. Clapcote, The nodes of Ranvier: Molecular assembly and maintenance. Cold Spring Harbor Perspectives in Biology, Neuropharmacology, vol.8, pp.1519-1526, 2012.

A. R. Rendall, D. T. Truong, and R. H. Fitch, Learning delays in a mouse model of, Autism Spectrum Disorder. Behavioral Brain Research, vol.303, pp.201-207, 2016.

P. Rodenas-cuadrado, J. Ho, and S. C. Vernes, Shining a light on CNTNAP2: Complex functions to complex disorders, European Journal of Human Genetics, vol.22, pp.171-178, 2014.

P. Rodenas-cuadrado, N. Pietrafusa, T. Francavilla, A. L. Neve, P. Striano et al., Characterisation of CASPR2 deficiency disorder -a syndrome involving autism, epilepsy and language impairment, BMC Medical Genetics, vol.17, 2016.

J. Rosenbluth, A. Mierzwa, and S. Shroff, Molecular architecture of myelinated nerve fibers: Leaky paranodal junctions and paranodal dysmyelination, Neuroscientist, vol.19, pp.629-641, 2013.

E. N. Rubio-marrero, G. Vincelli, C. M. Jeffries, T. R. Shaikh, I. S. Pakos et al., Structural characterization of the extracellular domain of CASPR2 and insights into its association with the novel ligand contactin1, Journal of Biological Chemistry, vol.291, pp.5788-5802, 2016.

J. Saifetiarova, X. Liu, A. M. Taylor, J. Li, and M. A. Bhat, Axonal domain disorganization in Caspr1 and Caspr2 mutant myelinated axons affects neuromuscular junction integrity, leading to muscle atrophy, Journal of Neuroscience Research, vol.95, pp.1373-1390, 2017.

M. Savvaki, K. Theodorakis, L. Zoupi, A. Stamatakis, S. Tivodar et al., The expression of TAG-1 in glial cells is sufficient for the formation of the juxtaparanodal complex and the phenotypic rescue of tag-1 homozygous mutants in the CNS, Journal of Neuroscience, vol.30, pp.13943-13954, 2010.

C. P. Schaaf, P. M. Boone, S. Sampath, C. Williams, P. I. Bader et al., Phenotypic spectrum and genotype-phenotype correlations of NRXN1 exon deletions, European Journal of Human Genetics, vol.20, p.1240, 2012.

J. Schuurman, R. Van-ree, G. J. Perdok, H. R. Van-doorn, K. Y. Tan et al., Normal human immunoglobulin G4 is bispecific: It has two different antigen-combining sites, Immunology, vol.97, pp.693-698, 1999.

R. Scott, A. Sánchez-aguilera, K. Van-elst, L. Lim, N. Dehorter et al., Loss of Cntnap2 causes axonal excitability deficits, developmental delay in cortical myelination, and abnormal stereotyped motor behavior, Cerebral Cortex, 2017.

A. A. Scott-van-zeeland, B. S. Abrahams, A. I. Alvarez-retuerto, L. I. Sonnenblick, J. D. Rudie et al., Altered functional connectivity in frontal lobe circuits is associated with variation in the autism risk gene CNTNAP2, Science Translational Medicine, vol.2, pp.56-80, 2010.

A. Selimbeyoglu, C. K. Kim, M. Inoue, S. Y. Lee, A. S. Hong et al., Modulation of prefrontal cortex excitation/inhibition balance rescues social behavior inCNTNAP2-deficient mice, Science Translational Medicine, vol.9, 2017.

P. Shillito, P. C. Molenaar, A. Vincent, K. Leys, W. Zheng et al., Acquired neuromyotonia: Evidence for autoantibodies directed against K+ channels of peripheral nerves, Annals of Neurology, vol.38, pp.714-722, 1995.

H. S. Singer, C. M. Morris, C. D. Gause, P. K. Gillin, S. Crawford et al., Antibodies against fetal brain in sera of mothers with autistic children, Journal of Neuroimmunology, vol.194, pp.165-172, 2008.

H. S. Singer, C. Morris, C. Gause, M. Pollard, A. W. Zimmerman et al., Prenatal exposure to antibodies from mothers of children with autism produces neurobehavioral alterations: A pregnant dam mouse model, Journal of Neuroimmunology, vol.211, pp.39-48, 2009.

M. Smogavec, A. Cleall, J. Hoyer, D. Lederer, M. Nassogne et al., Eight further individuals with intellectual disability and epilepsy carrying bi-allelic CNTNAP2 aberrations allow delineation of the mutational and phenotypic spectrum, Journal of Medical Genetics, vol.53, pp.820-827, 2016.

A. Van-sonderen, H. Ariño, M. Petit-pedrol, F. Leypoldt, P. Körtvélyessy et al., The clinical spectrum of Caspr2 antibody-associated disease, Neurology, vol.87, pp.521-528, 2016.

J. Song, S. Jing, C. Quan, J. Lu, X. Qiao et al., Isaacs syndrome with CASPR2 antibody: A series of three cases, Journal of Clinical Neuroscience, vol.41, pp.63-66, 2017.

E. T. Stoeckli, T. B. Kuhn, C. O. Duc, M. A. Ruegg, and P. Sonderegger, The axonally secreted protein axonin-1 is a potent substratum for neurite growth, Journal of Cell Biology, vol.112, pp.449-455, 1991.

K. A. Strauss, E. G. Puffenberger, M. J. Huentelman, S. Gottlieb, S. E. Dobrin et al., Recessive symptomatic focal epilepsy and mutant contactin-associated protein-like 2, New England Journal of Medicine, vol.354, pp.1370-1377, 2006.

T. C. Südhof, Synaptic neurexin complexes: A molecular code for the logic of neural circuits, Cell, vol.171, pp.745-769, 2017.

Y. Tanabe, E. Fujita-jimbo, M. Y. Momoi, and T. Momoi, CASPR2 forms a complex with GPR37 via MUPP1 but not with GPR37(R558Q), an autism spectrum disorder-related mutation, Journal of Neurochemistry, vol.134, pp.783-793, 2015.

E. Torres-vega, N. Mancheño, A. Cebrián-silla, V. Herranz-pérez, M. J. Chumillas et al., Netrin-1 receptor antibodies in thymoma-associated neuromyotonia | SAINT-MARTIN ET AL. with myasthenia gravis, Neurology, vol.88, pp.1235-1242, 2017.

L. B. Townsend and S. L. Smith, Genotype-and sex-dependent effects of altered Cntnap2 expression on the function of visual cortical areas, Journal of Neurodevelopmental Disorders, vol.9, 2017.

M. Traka, J. L. Dupree, B. Popko, and D. Karagogeos, The neuronal adhesion protein TAG-1 is expressed by schwann cells and oligodendrocytes and is localized to the juxtaparanodal region of myelinated fibers, Journal of Neuroscience, vol.22, pp.3016-3024, 2002.

M. Traka, L. Goutebroze, N. Denisenko, M. Bessa, A. Nifli et al., Association of TAG-1 with Caspr2 is essential for the molecular organization of juxtaparanodal regions of myelinated fibers, Journal of Cell Biology, vol.162, pp.1161-1172, 2003.

A. Tzimourakas, S. Giasemi, M. Mouratidou, and D. Karagogeos, Structure-function analysis of protein complexes involved in the molecular architecture of juxtaparanodal regions of myelinated fibers, Biotechnology Journal, vol.2, pp.1860-7314, 2007.

I. Vabnick, J. S. Trimmer, T. L. Schwarz, S. R. Levinson, D. Risal et al., Dynamic potassium channel distributions during axonal development prevent aberrant firing patterns, Journal of Neuroscience, vol.19, pp.747-758, 1999.

O. Varea, M. D. Martin-de-saavedra, K. J. Kopeikina, B. Schürmann, H. J. Fleming et al., , 2015.

, Synaptic abnormalities and cytoplasmic glutamate receptor aggregates in contactin associated protein-like 2/Caspr2 knockout neurons, Proceedings of the National Academy of Sciences of the United States of America, vol.112, pp.6176-6181

R. A. Veitia, S. Caburet, and J. A. Birchler, Mechanisms of Mendelian dominance, Clinical Genetics, vol.93, pp.419-428, 2018.

A. J. Verkerk, C. A. Mathews, M. Joosse, B. H. Eussen, P. Heutink et al., Cntnap2 is disrupted in a family with gilles de la tourette syndrome and obsessive compulsive disorder, Genomics, vol.82, issue.03, pp.97-98, 2003.

A. Vincent and S. R. Irani, Caspr2 antibodies in patients with thymomas, Journal of Thoracic Oncology, vol.5, pp.277-280, 2010.

D. Vogt, K. K. Cho, S. M. Shelton, A. Paul, Z. J. Huang et al., Mouse Cntnap2 and human CNTNAP2 ASD alleles cell autonomously regulate PV+ cortical interneurons, Cerebral Cortex, pp.1-12, 2017.

C. M. Watson, L. A. Crinnion, A. Tzika, A. Mills, A. Coates et al., Diagnostic whole genome sequencing and split-read mapping for nucleotide resolution breakpoint identification in CNTNAP2 deficiency syndrome, American Journal of Medical Genetics. Part A, vol.164, pp.2649-2655, 2014.

E. A. Worthey, G. Raca, J. J. Laffin, B. M. Wilk, J. M. Harris et al., Serologic aspects of IgG4 antibodies. II. IgG4 antibodies form small, nonprecipitating immune complexes due to functional monovalency, Journal of Neurodevelopmental Disorders, vol.5, pp.3566-3571, 1986.

Y. Zou, W. Zhang, H. Liu, X. Li, X. Zhang et al., Structure and function of the contactin-associated protein family in myelinated axons and their relationship with nerve diseases, Neural Regeneration Research, vol.12, p.1551, 2017.

C. Zweier, E. K. De-jong, M. Zweier, A. Orrico, L. B. Ousager et al., CNTNAP2 and NRXN1 are mutated in autosomal-recessive Pitt-Hopkins-like mental retardation and determine the level of a common synaptic protein in Drosophila, American Journal of Human Genetics, vol.85, pp.655-666, 2009.

S. De-rubeis and J. D. Buxbaum, Recent advances in the genetics of autism spectrum disorder, Curr. Neurol. Neurosci. Rep, vol.15, p.36, 2015.

D. H. Geschwind and P. Levitt, Autism spectrum disorders: developmental disconnection syndromes, Curr. Opin. Neurobiol, vol.17, pp.103-111, 2007.

M. E. Vissers, M. X. Cohen, and H. M. Geurts, Brain connectivity and high functioning autism: a promising path of research that needs refined models, methodological convergence, and stronger behavioral links, Neurosci. Biobehav. Rev, vol.36, pp.604-625, 2012.

P. Rane, D. Cochran, S. M. Hodge, C. Haselgrove, D. N. Kennedy et al., Connectivity in autism: a review of MRI connectivity studies, Harv. Rev. Psychiatry, vol.23, pp.223-244, 2015.

J. Gilbert and H. Y. Man, Fundamental elements in autism: from neurogenesis and neurite growth to synaptic plasticity, Front. Cell. Neurosci, vol.11, p.359, 2017.

E. Y. Van-battum, S. Brignani, and R. J. Pasterkamp, Axon guidance proteins in neurological disorders, Lancet Neurol, vol.14, pp.532-546, 2015.

K. Mcfadden and N. J. Minshew, Evidence for dysregulation of axonal growth and guidance in the etiology of ASD, Front. Hum. Neurosci, vol.7, p.671, 2013.

P. Rodenas-cuadrado, J. Ho, and S. C. Vernes, Shining a light on CNTNAP2: complex functions to complex disorders, Eur. J. Hum. Genet, vol.22, pp.171-178, 2014.

O. Penagarikano and D. H. Geschwind, What does CNTNAP2 reveal about autism spectrum disorder?, Trends Mol. Med, vol.18, pp.156-163, 2012.

M. Poot, Connecting the CNTNAP2 Networks with Neurodevelopmental Disorders, Mol. Syndromol, vol.6, pp.7-22, 2015.

S. Poliak, D. Salomon, H. Elhanany, H. Sabanay, B. Kiernan et al., Juxtaparanodal clustering of Shaker-like Kþ channels in myelinated axons depends on Caspr2 and TAG-1, J. Cell. Biol, vol.162, pp.1149-1160, 2003.

M. Traka, L. Goutebroze, N. Denisenko, M. Bessa, A. Nifli et al., Association of TAG-1 with Caspr2 is essential for the molecular organization of juxtaparanodal regions of myelinated fibers, J. Cell. Biol, vol.162, pp.1161-1172, 2003.

S. Poliak, L. Gollan, R. Martinez, A. Custer, S. Einheber et al., Caspr2, a new member of the neurexin superfamily, is localized at the juxtaparanodes of myelinated axons and associates with Kþ channels, Neuron, vol.24, pp.1037-1047, 1999.

R. Scott, A. Sanchez-aguilera, K. Van-elst, L. Lim, N. Dehorter et al., Loss of Cntnap2 causes axonal excitability deficits, developmental delay in cortical myelination, p.1953, 2017.

, abnormal stereotyped motor behavior, Human Molecular Genetics, vol.27, issue.11, 2018.

D. Vogt, K. K. Cho, S. M. Shelton, A. Paul, Z. J. Huang et al., Mouse Cntnap2 and human CNTNAP2 ASD alleles cell autonomously regulate PVþ cortical interneurons, Cereb. Cortex, vol.28, pp.1-12, 2017.
DOI : 10.1093/cercor/bhx248

O. Penagarikano, B. S. Abrahams, E. I. Herman, K. D. Winden, A. Gdalyahu et al., Absence of CNTNAP2 leads to epilepsy, neuronal migration abnormalities, and core autism-related deficits, Cell, vol.147, pp.235-246, 2011.

G. R. Anderson, T. Galfin, W. Xu, J. Aoto, R. C. Malenka et al., Candidate autism gene screen identifies critical role for cell-adhesion molecule CASPR2 in dendritic arborization and spine development, Proc. Natl. Acad. Sci. U.S.A, vol.109, pp.18120-18125, 2012.

O. Varea, M. D. Martin-de-saavedra, K. J. Kopeikina, B. Schurmann, H. J. Fleming et al., Synaptic abnormalities and cytoplasmic glutamate receptor aggregates in contactin associated protein-like 2/Caspr2 knockout neurons, Proc. Natl. Acad. Sci. U.S.A, vol.112, pp.6176-6181, 2015.

A. Gdalyahu, M. Lazaro, O. Penagarikano, P. Golshani, J. T. Trachtenberg et al., The autism related protein contactin-associated protein-like 2 (CNTNAP2) stabilizes new spines: an in vivo mouse study, PLoS One, vol.10, p.125633, 2015.

J. D. Murdoch, A. R. Gupta, S. J. Sanders, M. F. Walker, J. Keaney et al., No evidence for association of autism with rare heterozygous point mutations in Contactin-Associated Protein-Like 2 (CNTNAP2), or in other contactin-associated proteins or contactins, PLoS Genet, vol.11, p.1004852, 2015.

B. Bakkaloglu, B. J. O'roak, A. Louvi, A. R. Gupta, J. F. Abelson et al., Molecular cytogenetic analysis and resequencing of contactin associated protein-like 2 in autism spectrum disorders, Am. J. Hum. Genet, vol.82, pp.165-173, 2008.

M. Poot, Intragenic CNTNAP2 deletions: a bridge too far?, Mol. Syndromol, vol.8, pp.118-130, 2017.

E. N. Rubio-marrero, G. Vincelli, C. M. Jeffries, T. R. Shaikh, I. S. Pakos et al., Structural characterization of the extracellular domain of CASPR2 and insights into its association with the novel ligand contactin1, J. Biol. Chem, vol.291, pp.5788-5802, 2016.

Z. Lu, M. V. Reddy, J. Liu, A. Kalichava, L. Zhang et al., Molecular architecture of contactin-associated protein-like 2 (CNTNAP2) and its interaction with contactin 2 (CNTN2), J. Biol. Chem, vol.291, pp.24133-24147, 2016.

G. Falivelli, A. De-jaco, F. L. Favaloro, H. Kim, J. Wilson et al., Inherited genetic variants in autism-related CNTNAP2 show perturbed trafficking and ATF6 activation, Hum. Mol. Genet, vol.21, pp.4761-4773, 2012.
URL : https://hal.archives-ouvertes.fr/pasteur-00974747

D. Pinatel, B. Hivert, J. Boucraut, M. Saint-martin, V. Rogemond et al., Inhibitory axons are targeted in hippocampal cell culture by anti-Caspr2 autoantibodies associated with limbic encephalitis, Front. Cell. Neurosci, vol.9, p.265, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01201572

E. Leyva-diaz and G. Lopez-bendito, In and out from the cortex: development of major forebrain connections, Neuroscience, vol.254, pp.26-44, 2013.

B. A. Barres and M. C. Raff, Proliferation of oligodendrocyte precursor cells depends on electrical activity in axons, Nature, vol.361, pp.258-260, 1993.

J. J. Wolff, G. Gerig, J. D. Lewis, T. Soda, M. A. Styner et al., Altered corpus callosum morphology associated with autism over the first 2 years of life, Brain, vol.138, pp.2046-2058, 2015.

N. Fingher, I. Dinstein, M. Ben-shachar, S. Haar, A. M. Dale et al., Toddlers later diagnosed with autism exhibit multiple structural abnormalities in temporal corpus callosum fibers, Cortex, vol.97, pp.291-305, 2017.

E. A. Vitriol and J. Q. Zheng, Growth cone travel in space and time: the cellular ensemble of cytoskeleton, adhesion, and membrane, Neuron, vol.73, pp.1068-1081, 2012.

J. P. Myers, M. Santiago-medina, and T. M. Gomez, Regulation of axonal outgrowth and pathfinding by integrin-ECM interactions, Dev. Neurobiol, vol.71, pp.901-923, 2011.

S. M. Hansen, V. Berezin, and E. Bock, Signaling mechanisms of neurite outgrowth induced by the cell adhesion molecules NCAM and N-cadherin, Cell. Mol. Life Sci, vol.65, pp.3809-3821, 2008.

P. F. Maness and M. Schachner, Neural recognition molecules of the immunoglobulin superfamily: signaling transducers of axon guidance and neuronal migration, Nat. Neurosci, vol.10, pp.19-26, 2007.

T. Sakurai, The role of NrCAM in neural development and disorders-beyond a simple glue in the brain, Mol. Cell. Neurosci, vol.49, pp.351-363, 2012.

N. Denisenko-nehrbass, K. Oguievetskaia, L. Goutebroze, T. Galvez, H. Yamakawa et al., Protein 4.1B associates with both Caspr/paranodin and Caspr2 at paranodes and juxtaparanodes of myelinated fibres, Eur. J. Neurosci, vol.17, pp.411-416, 2003.

G. Gennarini, A. Bizzoca, S. Picocci, D. Puzzo, P. Corsi et al., The role of Gpi-anchored axonal glycoproteins in neural development and neurological disorders, Mol. Cell. Neurosci, vol.81, pp.49-63, 2017.

N. Denisenko-nehrbass, L. Goutebroze, T. Galvez, C. Bonnon, B. Stankoff et al., Association of Caspr/paranodin with tumour suppressor schwannomin/merlin and beta1 integrin in the central nervous system, J. Neurochem, vol.84, pp.209-221, 2003.

N. S. Pollock, K. Atkinson-leadbeater, J. Johnston, M. Larouche, W. C. Wildering et al., Voltage-gated potassium channels regulate the response of retinal growth cones to axon extension and guidance cues, Eur. J. Neurosci, vol.22, pp.569-578, 2005.

S. Mcfarlane and N. S. Pollock, A role for voltage-gated potassium channels in the outgrowth of retinal axons in the developing visual system, J. Neurosci, vol.20, pp.1020-1029, 2000.

E. Klingler, P. M. Martin, M. Garcia, C. Moreau-fauvarque, J. Falk et al., The cytoskeleton-associated protein SCHIP1 is involved in axon guidance, and is required for piriform cortex and anterior commissure development, Development, vol.142, pp.2026-2036, 2015.

S. E. Tomlinson, M. G. Hanna, D. M. Kullmann, S. V. Tan, and D. Burke, Clinical neurophysiology of the episodic ataxias: insights into ion channel dysfunction in vivo, Clin Neurophysiol, vol.120, pp.1768-1776, 2009.

D. Hasan, S. Guglielmi, and L. , New insights into the pathogenesis and therapeutics of episodic ataxia type 1, Front Cell Neurosci, vol.9, p.317, 2015.

A. Van-sonderen, H. Ariño, and M. Petit-pedrol, The clinical spectrum of Caspr2 antibody-associated disease, Neurology, vol.87, pp.521-528, 2016.

B. Joubert, M. Saint-martin, and N. Noraz, Characterization of a subtype of autoimmune encephalitis with anti-contactin-associated protein-like 2 antibodies in the cerebrospinal fluid, prominent limbic symptoms, and seizures, JAMA Neurol, vol.73, pp.1115-1124, 2016.

D. L. Browne, S. T. Gancher, and J. G. Nutt, Episodic ataxia/myokymia syndrome is associated with point mutations in the human potassium channel gene, KCNA1, Nat Genet, vol.8, pp.136-140, 1994.

G. M. Terwindt, R. A. Ophoff, and J. Haan, Variable clinical expression of mutations in the P/Q-type calcium channel gene in familial hemiplegic migraine. Dutch Migraine Genetics Research Group, Neurology, vol.50, pp.1105-1110, 1998.

V. Navarro, A. Kas, and E. Apartis, Motor cortex and hippocampus are the two main cortical targets in LGI1-antibody encephalitis, Brain J Neurol, vol.139, pp.1079-1093, 2016.

M. Lai, M. Huijbers, and E. Lancaster, Investigation of LGI1 as the antigen in limbic encephalitis previously attributed to potassium channels: a case series, Lancet Neurol, vol.9, pp.776-785, 2010.

F. Gövert, K. Witt, and R. Erro, Orthostatic myoclonus associated with Caspr2 antibodies, Neurology, vol.86, pp.1353-1355, 2016.

E. Becker, L. Zuliani, and R. Pettingill, Contactinassociated protein-2 antibodies in non-paraneoplastic cerebellar ataxia, J Neurol Neurosurg Psychiatry, vol.83, pp.437-440, 2012.

B. Balint, J. U. Regula, S. Jarius, and B. Wildemann, Caspr2 antibodies in limbic encephalitis with cerebellar ataxia, dyskinesias and myoclonus, J Neurol Sci, vol.327, pp.73-74, 2013.

S. R. Irani, P. Pettingill, and K. A. Kleopa, Morvan syndrome: clinical and serological observations in 29 cases, Ann Neurol, vol.72, pp.241-255, 2012.

E. Lancaster, M. G. Huijbers, and V. Bar, Investigations of Caspr2, an autoantigen of encephalitis and neuromyotonia, Ann Neurol, vol.69, pp.303-311, 2011.

C. G. Bien, Z. Mirzadjanova, and C. Baumgartner, Anticontactin-associated protein-2 encephalitis: relevance of antibody titres, presentation and outcome, Eur J Neurol, vol.24, pp.175-186, 2017.

I. Horresh, S. Poliak, S. Grant, D. Bredt, M. N. Rasband et al., Multiple molecular interactions determine the clustering of Caspr2 and Kv1 channels in myelinated axons, J Neurosci, vol.28, pp.14213-14222, 2008.

S. Sinha, J. Newsom-davis, K. Mills, N. Byrne, B. Lang et al., Autoimmune aetiology for acquired neuromyotonia (Isaacs' syndrome), Lancet, vol.338, pp.75-77, 1991.

Y. Ogawa, I. Horresh, J. S. Trimmer, D. S. Bredt, E. Peles et al., Postsynaptic density-93 clusters Kv1 channels at axon initial segments independently of Caspr2, J Neurosci, vol.28, pp.5731-5739, 2008.

, Note that MPP2 colocalized in clusters with Caspr2?2 at the AIS (arrowheads). (C,D) Hippocampal neurons were transfected with MPP2-mCherry and GFP-tagged Nr-Caspr2cyt. Cells were surface labeled for GFP (blue) and fixed. The fluorescence for MPP2-mCherry (red) and Nr-Caspr2cyt (green) was directly imaged. Note, that MPP2 strongly colocalized with Nr-Caspr2cyt at the AIS (yellow arrowheads in C,D) and in intracellular vesicles, The PDZ-protein MPP2 is recruited by the Caspr2 cytoplasmic tail at the AIS of hippocampal neurons

I. Peptide, G. Domains-of-nrcam, and . Falk, NrCAM-GFP, TAG-1-Fc, TAG-1-Ig-Fc and neurofascin-186-HA were as described previously, 2004.

. Bel, The human TAG-1-GFP deletion constructs were generated by PCR amplification from the previously described TAG-1-Ig and TAG-1-Fn constructs (Tzimourakas et al., 2007), and were inserted in the XhoI/ HindIII sites of a pEGFP-C1 plasmid vector modified to contain the signal peptide of TAG-1 upstream of GFP. Caspr2-mCherry, with mCherry at the C-terminus, was generated by insertion into the EcoRI-BamHI sites of pmCherry-N1. The coding sequence of human CASK and MPP2 were obtained from OriGene, Nr-Caspr2cyt constructs with deletions of the binding site for 4.1B (?1288-1305), the PDZ-binding domain (stop at residue 1330) or the C-terminal region (stop codon at residue 1306) were generated, 2009.

. Bel, Immunostaining for Caspr2-HA, Caspr2-GFP and TAG-1-GFP was performed on live cells with antibodies against HA or GFP, diluted 1:1000 in culture medium, for 30-60 min. Cells were fixed with 4% paraformaldehyde in PBS for 10 min and permeabilized with 0.1% Triton X-100 for 10 min. Immunofluorescence staining was performed using mouse anti-ankyrinG (1:100) antibodies, and with secondary antibodies diluted in PBS containing 3% bovine serum albumin. After washing in PBS, cells were mounted in Mowiol (Calbiochem, MerckMillipore). reagents were from Gibco (ThermoFisher). HEK-293 cells, the rabbit anti-GFP antibody (A11122) from Molecular Probes (ThermoFisher, Courtaboeuf, France), the rabbit anti-RFP (antimCherry) antibody from Rockland (Limerick, USA), the rabbit anti-TAG-1 antibody (ABN1379) from Millipore, 2003.

S. Al-bassam, M. Xu, T. J. Wandless, and D. B. Arnold, Differential trafficking of transport vesicles contributes to the localization of dendritic proteins, Cell Rep, vol.2, pp.89-100, 2012.

D. Albrecht, C. M. Winterflood, M. Sadeghi, T. Tschager, . Noe? et al., Nanoscopic compartmentalization of membrane protein motion at the axon initial segment, J. Cell Biol, vol.215, pp.37-46, 2016.

C. Bel, K. Oguievetskaia, C. Pitaval, L. Goutebroze, and C. Faivre-sarrailh, Axonal targeting of Caspr2 in hippocampal neurons via selective somatodendritic endocytosis, J. Cell Sci, vol.122, pp.3403-3413, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00417338

E. D. Buttermore, J. L. Dupree, J. Cheng, X. An, L. Tessarollo et al., The cytoskeletal adaptor protein band 4.1B is required for the maintenance of paranodal axoglial septate junctions in myelinated axons, J. Neurosci, vol.31, pp.8013-8024, 2011.

C. Cifuentes-diaz, F. Chareyre, M. Garcia, J. Devaux, M. Carnaud et al., PLoS ONE, vol.6, 2011.

J. Q. Davis, S. Lambert, and V. Bennett, Molecular composition of the node of Ranvier: identification of ankyrin-binding cell adhesion molecules neurofascin (mucin+/third FNIII domain-) and NrCAM at nodal axon segments, J. Cell Biol, vol.135, pp.1355-1367, 1996.

J. J. Devaux, K. A. Kleopa, E. C. Cooper, and S. S. Scherer, KCNQ2 is a nodal K+ channel, J. Neurosci, vol.24, pp.1236-1244, 2004.

A. Duflocq, F. Chareyre, M. Giovannini, F. Couraud, and M. Davenne, Characterization of the axon initial segment (AIS) of motor neurons and identification of a para-AIS and a juxtapara-AIS, BMC Biol, vol.9, p.66, 2011.
URL : https://hal.archives-ouvertes.fr/inserm-00634721

S. Einheber, X. Meng, M. Rubin, I. Lam, N. Mohandas et al., The 4.1B cytoskeletal protein regulates the domain organization and sheath thickness of myelinated axons, Glia, vol.61, pp.240-253, 2013.

J. Falk, O. Thoumine, C. Dequidt, D. Choquet, and C. Faivre-sarrailh, NrCAM coupling to the cytoskeleton depends on multiple protein domains and partitioning into lipid rafts, Mol. Biol. Cell, vol.15, pp.4695-4709, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00311264

M. S. Grubb and J. Burrone, Activity-dependent relocation of the axon initial segment fine-tunes neuronal excitability, Nature, vol.465, pp.1070-1074, 2010.

I. Horresh, S. Poliak, S. Grant, D. Bredt, M. N. Rasband et al., Multiple molecular interactions determine the clustering of Caspr2 and Kv1 channels in myelinated axons, J. Neurosci, vol.28, pp.14213-14222, 2008.

I. Horresh, V. Bar, J. L. Kissil, and E. Peles, Organization of myelinated axons by Caspr and Caspr2 requires the cytoskeletal adapter protein 4.1B, J. Neurosci, vol.30, pp.2480-2489, 2010.

Y. Hsueh, The role of the MAGUK protein CASK in neural development and synaptic function, Curr. Med. Chem, vol.13, pp.1915-1927, 2006.

M. C. Inda, J. Defelipe, and A. Munoz, Voltage-gated ion channels in the axon initial segment of human cortical pyramidal cells and their relationship with chandelier cells, Proc. Natl. Acad. Sci. USA, vol.103, pp.2920-2925, 2006.

S. R. Irani, C. G. Bien, and B. Lang, Autoimmune epilepsies, Curr. Opin. Neurol, vol.24, pp.146-153, 2010.

S. M. Jenkins and V. Bennett, Ankyrin-G coordinates assembly of the spectrin-based membrane skeleton, voltage-gated sodium channels, and L1 CAMs at Purkinje neuron initial segments, J. Cell Biol, vol.155, pp.739-746, 2001.

A. N. King, C. F. Manning, and J. S. Trimmer, A unique ion channel clustering domain on the axon initial segment of mammalian neurons, J. Comp. Neurol, vol.522, pp.2594-2608, 2014.

M. H. Kole and G. J. Stuart, Signal processing in the axon initial segment, Neuron, vol.73, pp.235-247, 2012.

G. Krapivinsky, I. Medina, L. Krapivinsky, S. Gapon, and D. E. Clapham, SynGAP-MUPP1-CaMKII synaptic complexes regulate p38 MAP kinase activity and NMDA receptor-dependent synaptic AMPA receptor potentiation, Neuron, vol.43, pp.563-574, 2004.
URL : https://hal.archives-ouvertes.fr/inserm-00484659

H. Kuba, Y. Oichi, and H. Ohmori, Presynaptic activity regulates Na(+) channel distribution at the axon initial segment, Nature, vol.465, pp.1075-1078, 2010.

M. Labasque, J. J. Devaux, C. Le?vêquele?vêque, and C. Faivre-sarrailh, Fibronectin type III-like domains of neurofascin-186 protein mediate gliomedin binding and its clustering at the developing nodes of Ranvier, J. Biol. Chem, vol.286, pp.42426-42434, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00755678

M. Lai, M. G. Huijbers, E. Lancaster, F. Graus, L. Bataller et al., Investigation of LGI1 as the antigen in limbic encephalitis previously attributed to potassium channels: a case series, Lancet Neurol, vol.9, pp.776-785, 2010.

E. Lancaster, M. G. Huijbers, V. Bar, A. Boronat, A. Wong et al., Investigations of caspr2, an autoantigen of encephalitis and neuromyotonia, Ann. Neurol, vol.69, pp.303-311, 2011.

M. Laval, C. Bel, and C. Faivre-sarrailh, The lateral mobility of cell adhesion molecules is highly restricted at septate junctions in Drosophila, BMC Cell Biol, vol.9, p.38, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00396771

C. Leterrier, The axon initial segment, 50 years later: a nexus for neuronal organization and function, Curr. Top. Membr, vol.77, pp.185-233, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02073345

Z. Lu, M. V. Reddy, J. Liu, A. Kalichava, J. Liu et al., Molecular Architecture of, 2016.

, Contactin-associated Protein-like 2 (CNTNAP2) and Its Interaction with Contactin 2 (CNTN2), J. Biol. Chem, vol.291, pp.24133-24147

M. Lustig, T. Sakurai, and M. Grumet, Nr-CAM promotes neurite outgrowth from peripheral ganglia by a mechanism involving axonin-1 as a neuronal receptor, Dev. Biol, vol.209, pp.340-351, 1999.

Y. Ogawa, I. Horresh, J. S. Trimmer, D. S. Bredt, E. Peles et al., Postsynaptic density-93 clusters Kv1 channels at axon initial segments independently of Caspr2, J. Neurosci, vol.28, pp.5731-5739, 2008.

Y. Ogawa, J. Oses-prieto, M. Y. Kim, I. Horresh, E. Peles et al., ADAM22, a Kv1 channelinteracting protein, recruits membrane-associated guanylate kinases to juxtaparanodes of myelinated axons, J. Neurosci, vol.30, pp.1038-1048, 2010.

Z. Pan, T. Kao, Z. Horvath, J. Lemos, J. Y. Sul et al., A common ankyrin-G-based mechanism retains KCNQ and NaV channels at electrically active domains of the axon, J. Neurosci, vol.26, pp.2599-2613, 2006.

J. D. Petersen, S. Kaech, and G. Banker, Selective microtubule-based transport of dendritic membrane proteins arises in concert with axon specification, J. Neurosci, vol.34, pp.4135-4147, 2014.

D. Pinatel, B. Hivert, J. Boucraut, M. Saint-martin, V. Rogemond et al., Inhibitory axons are targeted in hippocampal cell culture by anti-Caspr2 autoantibodies associated with limbic encephalitis, Front. Cell Neurosci, vol.9, p.265, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01201572

S. Poliak, D. Salomon, H. Elhanany, H. Sabanay, B. Kiernan et al., Juxtaparanodal clustering of Shaker-like K+ channels in myelinated axons depends on Caspr2 and TAG-1, J. Cell Biol, vol.162, pp.1149-1160, 2003.

S. Rama, M. Zbili, and D. Debanne, Modulation of spike-evoked synaptic transmission: the role of presynaptic calcium and potassium channels, Biochim. Biophys. Acta, vol.1853, pp.1933-1939, 2015.

E. N. Rubio-marrero, G. Vincelli, C. M. Jeffries, T. R. Shaikh, I. S. Pakos et al., Structural characterization of the extracellular domain of CASPR2 and insights into its association with the novel ligand contactin1, J. Biol. Chem, vol.291, pp.5788-5802, 2016.

D. Sanchez-ponce, J. Defelipe, J. J. Garrido, and A. Mun-?-oz, Developmental expression of Kv potassium channels at the axon initial segment of cultured hippocampal neurons, PLoS ONE, vol.7, p.48557, 2012.

Y. Tanabe, E. Fujita-jimbo, M. Y. Momoi, and T. Momoi, CASPR2 forms a complex with GPR37 via MUPP1 but not with GPR37(R558Q), an autism spectrum disorder-related mutation, J. Neurochem, vol.134, pp.783-793, 2015.

M. Traka, L. Goutebroze, N. Denisenko, M. Bessa, A. Nifli et al., Association of TAG-1 with Caspr2 is essential for the molecular organization of juxtaparanodal regions of myelinated fibers, J. Cell Biol, vol.162, pp.1161-1172, 2003.

J. S. Trimmer, Subcellular localization of K+ channels in mammalian brain neurons: remarkable precision in the midst of extraordinary complexity, Neuron, vol.85, pp.238-256, 2015.

A. Tzimourakas, S. Giasemi, M. Mouratidou, and D. Karagogeos, Structure-function analysis of protein complexes involved in the molecular architecture of juxtaparanodal regions of myelinated fibers, Biotechnol. J, vol.2, pp.577-583, 2007.

A. Van-wart, J. S. Trimmer, and G. Matthews, Polarized distribution of ion channels within microdomains of the axon initial segment, J. Comp. Neurol, vol.500, pp.339-352, 2007.

B. Winckler, P. Forscher, and I. Mellman, A diffusion barrier maintains distribution of membrane proteins in polarized neurons, Nature, vol.397, pp.698-701, 1999.

V. M. Wu, M. H. Yu, R. Paik, S. Banerjee, Z. Liang et al., Drosophila Varicose, a member of a new subgroup of basolateral MAGUKs, is required for septate junctions and tracheal morphogenesis, Development, vol.134, pp.999-1009, 2007.

T. Yoshimura and M. N. Rasband, Axon initial segments: diverse and dynamic neuronal compartments, Curr. Opin. Neurobiol, vol.27, pp.96-102, 2014.

D. Zhou, S. Lambert, P. L. Malen, S. Carpenter, L. M. Boland et al., AnkyrinG is required for clustering of voltage-gated Na channels at axon initial segments and for normal action potential firing, J. Cell Biol, vol.143, pp.1295-1304, 1998.

, Roche Mouse anti-Kv1.2, clone K14/13, Neur oMab Mouse anti-neurofascin186, clone A12/18, NeuroMab Mouse anti-TAG-1, clone 1C12 Dilution for immunofluorescence staining 1:100 (0.2 g/ml) 1:500 1:1000 (2 g/ml) 1:2000 (0.2 g/ml) 1:1000 (0.1 g/ml) 1:500 (2 g/ml) 1:1000 (1 g/ml) 1:2000 culture. (A) Neuroblastoma N2a cells were transfected with Caspr2-mcherry (red) and surface labeled with IgGs from LE1-LE4 patients (green). (B) Teased sciatic nerve of adult mice were fixed with methanol and immunostained for Contactin-associated protein Caspr (blue) and AnkyrinG (AnkG) (green) as markers of the paranodal and nodal regions of the nodes of Ranvier, respectively. Note that autoantibodies of patients LE1, LE6 and LE7 bound the juxtaparanodes (red), p.1

;. Iggs, E. , and G. ;-blue-in-f'), Caspr2 surface staining was detected on the somato-dendritic and axonal compartments at DIV4 (C,D,D') but was mainly associated with axonal processes at DIV7 (E,F,F'). In (F), yellow arrows indicate axons that were double-stained for Caspr2 and tau, whereas white arrowheads indicate unlabeled tau-positive axons. (G) LE1 IgGs were pre-adsorbed using incubation with Caspr2-transfected HEK cells and did not bind hippocampal neurons. (H,H') Hippocampal neurons at DIV14 were surface labeled for Caspr2 using LE1 IgGs (red) and fixed and permeabilized before immunostaining with mouse-anti-Kv1.2 mAb (green) and rabbit anti-AnkyrinG antibodies (blue). The Kv1.2 channels were enriched at the axonal initial segment stained for AnkyrinG, whereas surface Caspr2 was distributed along the axon. Insets are twofold magnification images. Fluorescence microscopy (A) and confocal images (B-H). Bar is in (A), 20 ?m; in (B), 5 ?m; in C-G, 15 ?m; in (H,H'), 30 ?m. and synapses. Caspr2 strongly co-localized with GAD65-positive axons as observed using serum IgGs of all the patients analyzed, Cells were fixed with 4% paraformaldehyde, permeabilized, and double-stained for the somato-dendritic marker MAP2

, Inhibitory pre-synaptic sites labeled for GAD65 (arrowheads) were intensely stained for Caspr2 at the contact with the soma (C") or dendrites (B',C"'). Note that GAD65-positive axons surrounding the soma of pyramidal neurons were heavily stained for Caspr2 (yellow arrows). (C') This enlarged area shows Caspr2 punctate immunostaining along a GAD65-positive axon apposed to a dendrite, FIGURE 4 | Distribution of Caspr2 at pre-synaptic sites of excitatory and inhibitory axons

, Discussion In the present study, we analyzed autoantibodies against Caspr2 in a series of patients with LE. First, we determined that IgGs in the CSF of four out seven patients selectively react against the Discoïdin and LamininG1 N-terminal modules of Caspr2. Second, using live staining of hippocampal neurons in culture, we showed that autoimmunity to Caspr2 mainly Frontiers in Cellular Neuroscience | www.frontiersin.org 9, vol.9, p.265, 2015.

. Pinatel,

A. , A. &. , B. , E. , B. et al., E'), 1.5 ?m. Frontiers in Cellular Neuroscience | www.frontiersin.org FIGURE 6 | The binding sites of Caspr2-Fc are localized on the somato-dendritic compartment. Hippocampal neurons at DIV4 (A-C) and DIV7 (D,E) were incubated with 10 ?g/ml Caspr2-Fc preclustered with Alexa-conjugated anti-Fc IgGs for 30 min at 37 ? C. (A,B) DIV4 neurons bound with Caspr2-Fc (red). Cells were fixed and permeabilized before double-staining for MAP2 (blue) and GAD65 (green). (A,B) show representative images of GAD65-negative neurons (white arrow, A) and GAD65-positive neurons (green arrow, B) labeled with Caspr2-Fc. (C) Quantitative analysis of the percentage of total neurons, GAD65-positive and GAD65-negative neurons that were surface labeled for Caspr2-Fc. Means ± SEM of three independent experiments, Anti-Caspr2 autoantibodies target inhibitory neurons FIGURE 5 | (A) Neurons were transfected with Gephyrin-GFP (Geph-GFP, green) at DIV14 and labeled at DIV21 for surface Caspr2 (red) and GAD65 (blue). (A') The insets show the pre-synaptic sites double-labeled for Caspr2 and GAD65 facing post-synaptic clusters of Gephyrin-GFP (arrowheads). (B) Hippocampal neurons were transfected with Gephyrin-GFP (green) at DIV14 and incubated at DIV17 with control, LE5 conditions: incubation with culture medium (CTL), or with control, LE5 or LE6 IgGs. (D), vol.7, p.265, 2015.

. Pinatel,

, Cells were fixed, permeabilized and immunostained for Synaptophysin (blue). (A',A") Insets show the distribution of Caspr2-Fc binding sites (red) on the dendritic shaft (arrowheads) or on spines (arrow) that were contacting Synaptophysin pre-synaptic sites (blue). The green channel is turned down in (A") to visualize Synaptophysin clusters, Anti-Caspr2 autoantibodies target inhibitory neurons FIGURE 7 | The Caspr2-Fc binding sites are localized at post-synaptic contacts. (A)

±. Means and . Sem, 21 dendrites of seven neurons. Single confocal sections. Bar is in (A,B), vol.20

, Transfection of LGI-GFP and ADAM22 or ADAM23 had no effect. (D,E) DIV8 hippocampal neurons from Tag-1 ?/? mice were untransfected (D) or transfected with TAG-1-GFP (E). Caspr2-Fc strongly bound the TAG-1-GFP-expressing neuron (green) and did not bind untransfected Tag1 ? /? neurons. (H,H') DIV14 hippocampal neurons were co-transfected with TAG-1-GFP and mCherry. At DIV17, neurons were surface labeled with anti-GFP antibodies, fixed, and permeabilized before immunostaining for Synaptophysin (blue). Note that TAG-1-GFP clusters indicated with arrowheads on the shaft (H) or spines (H') were facing Synaptophysin presynaptic sites, FIGURE 8 | TAG-1 is required for Caspr2-Fc binding on hippocampal neurons. (A) N2a neuroblastoma cells were transfected with TAG-1-GFP (green) and incubated with preclustered Caspr2-Fc (red). Caspr2-Fc only bound on TAG-1-GFP expressing N2a cells

, Frontiers in Cellular Neuroscience | www.frontiersin.org, vol.13, p.265, 2015.

. Pinatel,

, Anti-Caspr2 autoantibodies target inhibitory neurons

A. Al-murrani, F. Ashton, S. Aftimos, A. M. George, and D. R. Love, , 2012.

, Amino-Terminal Microdeletion within the CNTNAP2 gene associated with variable expressivity of speech delay. Case Rep

G. R. Anderson, T. Galfin, W. Xu, J. Aoto, R. C. Malenka et al., Candidate autism gene screen identifies critical role for celladhesion molecule CASPR2 in dendritic arborization and spine development, Proc. Natl. Acad. Sci. U.S.A, vol.109, pp.18120-18125, 2012.

B. Bakkaloglu, B. J. O'roak, A. Louvi, A. R. Gupta, J. F. Abelson et al., Molecular cytogenetic analysis and resequencing of contactin associated protein-like 2 in autism spectrum disorders, Am. J. Hum. Genet, vol.82, pp.165-173, 2008.

C. Bel, K. Oguievetskaia, C. Pitaval, L. Goutebroze, and C. Faivre-sarrailh, Axonal targeting of Caspr2 in hippocampal neurons via selective somatodendritic endocytosis, J. Cell Sci, vol.122, pp.3403-3413, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00417338

M. Boillot, C. Huneau, E. Marsan, K. Lehongre, V. Navarro et al., Glutamatergic neuron-targeted loss of LGI1 epilepsy gene results in seizures, Brain, vol.137, pp.2984-2996, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01615613

E. Campanac, C. Gasselin, A. Baude, S. Rama, N. Ankri et al., Enhanced intrinsic excitability in basket cells maintains excitatoryinhibitory balance in hippocampal circuits, Neuron, vol.77, pp.712-722, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01774392

N. Chen, F. Koopmans, A. Gordon, I. Paliukhovich, R. V. Klaassen et al., Interaction proteomics of canonical Caspr2 (CNTNAP2) reveals the presence of two Caspr2 isoorms with overlapping interactomes, Biochim. Biophys. Acta, vol.1854, pp.827-833, 2015.

C. Cifuentes-diaz, F. Chareyre, M. Garcia, J. Devaux, M. Carnaud et al., Protein 4.1B contributes to the organization of peripheral myelinated axons, PLoS ONE, vol.6, 2011.

A. M. Craig, G. Banker, W. Chang, M. E. Mcgrath, and A. S. Serpinskaya, Clustering of gephyrin at GABAergic but not glutamatergic synapses in cultured rat hippocampal neurons, J. Neurosci, vol.16, pp.3166-3177, 1996.

A. M. Craig and Y. Kang, Neurexin-neurolingin signaling in synapse development, Curr. Opin. Neurobiol, vol.17, pp.43-52, 2007.

C. Dean, F. G. Scholl, J. Choih, S. Demaria, J. Berger et al., Neurexin mediates the assembly of presynaptic terminals, Nat. Neurosci, vol.6, pp.708-716, 2003.

J. Devaux and A. Gow, Tight junctions potentiate the insulative properties of small CNS myelinated axons, J. Cell Biol, vol.183, pp.909-921, 2008.

A. Duflocq, F. Chareyre, M. Giovannini, F. Couraud, and M. Davenne, Characterization of the axon initial segment (AIS) of motor neurons and identification of a para-AIS and a juxtapara-AIS, BMC Biol, vol.9, p.66, 2011.
URL : https://hal.archives-ouvertes.fr/inserm-00634721

D. P. Felsenfeld, M. A. Hynes, K. M. Skoler, A. J. Furley, and T. M. Jessell, TAG-1 can mediate homophilic binding, but neurite outgrowth on TAG-1 requires an L1-like molecule and beta 1 integrins, Neuron, vol.12, pp.675-690, 1994.

C. E. Flores, I. Nikonenko, P. Mendez, J. M. Fritschy, S. K. Tyagarajan et al., Activity-dependent inhibitory synapse remodeling through gephyrin phosphorylation, Proc. Natl. Acad. Sci. U.S.A, vol.112, 2015.

Y. Fukata, H. Adesnik, T. Iwanaga, D. S. Bredt, R. A. Nicoll et al., Epilepsy-related ligand/receptor complex LGI1 and ADAM22 regulate synaptic transmission, Science, vol.313, pp.1792-1795, 2006.

I. Horresh, S. Poliak, S. Grant, D. Bredt, M. N. Rasband et al., Multiple molecular interactions determine the clustering of Caspr2 and Kv1 channels in myelinated axons, J. Neurosci, vol.28, pp.14213-14222, 2008.

M. G. Huijbers, W. Zhang, R. Klooster, E. H. Niks, M. B. Friese et al., MuSK IgG4 autoantibodies cause myasthenia gravis by inhibiting binding between MuSK and Lrp4, Proc. Natl. Acad. Sci. U.S.A, vol.110, pp.20783-20788, 2013.

M. C. Inda, J. Defelipe, and A. Munoz, Voltage-gated ion channels in the axon initial segment of human cortical pyramidal cells and their relationship with chandelier cells, Proc. Natl. Acad. Sci. U.S.A, vol.103, pp.2920-2925, 2006.

S. R. Irani, C. G. Bien, L. , and B. , Autoimmune epilepsies, Curr. Opin. Neurol, vol.24, pp.146-153, 2010.

D. Karagogeos, S. B. Morton, F. Casano, J. Dodd, and T. M. Jessell, Developmental expression of the axonal glycoprotein TAG-1: differential regulation by central and peripheral neurons in vitro, Development, vol.112, pp.51-67, 1991.

M. Labasque, J. J. Devaux, C. Leveque, and C. Faivre-sarrailh, , 2011.

, Fibronectintype III-like domains of neurofascin-186 protein mediate gliomedin binding and its clustering at the developing nodes of Ranvier, J. Biol. Chem, vol.286, pp.42426-42434

M. Labasque, B. Hivert, G. Nogales-gadea, L. Querol, I. Illa et al., Specific contactin N-glycans are implicated in neurofascin binding and autoimmune targeting in peripheral neuropathies, J. Biol. Chem, vol.289, pp.7907-7918, 2014.

M. Lai, M. G. Huijbers, E. Lancaster, F. Graus, L. Bataller et al., Investigation of LGI1 as the antigen in limbic encephalitis previously attributed to potassium channels: a case series, Lancet Neurol, vol.9, pp.121-131, 2010.

E. Lancaster, M. G. Huijbers, V. Bar, A. Boronat, A. Wong et al., Investigations of caspr2, an autoantigen of encephalitis and neuromyotonia, Ann. Neurol, vol.69, pp.303-311, 2011.

J. M. Morante-redolat, A. Gorostidi-pagola, S. Piquer-sirerol, A. Saenz, J. J. Poza et al., Mutations in the LGI1/Epitempin gene on 10q24 cause autosomal dominant lateral temporal epilepsy, Hum. Mol. Genet, vol.11, pp.1119-1128, 2002.

J. K. Ng, J. Malotka, N. Kawakami, T. Derfuss, M. Khademi et al., Neurofascin as a target for autoantibodies in peripheral neuropathies, Neurology, vol.79, pp.2241-2248, 2012.

Y. Ogawa, I. Horresh, J. S. Trimmer, D. S. Bredt, E. Peles et al., Postsynaptic density-93 clusters Kv1 channels at axon initial segments independently of Caspr2, J. Neurosci, vol.28, pp.5731-5739, 2008.

Y. Ogawa, J. Oses-prieto, M. Y. Kim, I. Horresh, E. Peles et al., ADAM22, a Kv1 channel-interacting protein, recruits membraneassociated guanylate kinases to juxtaparanodes of myelinated axons, J. Neurosci, vol.30, pp.1038-1048, 2010.

T. Ohkawa, Y. Fukata, M. Yamasaki, T. Miyazaki, N. Yokoi et al., Autoantibodies to epilepsy-related LGI1 in limbic encephalitis neutralize LGI1-ADAM22 interaction and reduce synaptic AMPA receptors, J. Neurosci, vol.33, pp.18161-18174, 2013.

B. J. O'roak, P. Deriziotis, C. Lee, L. Vives, J. J. Schwartz et al., Exome sequencing in sporadic autism spectrum disorders identifies severe de novo mutations, Nat. Genet, vol.43, pp.585-589, 2011.

K. Owuor, N. Y. Harel, D. J. Englot, F. Hisama, H. Blumenfeld et al., LGI1-associated epilepsy through altered ADAM23-dependent neuronal morphology, Mol. Cell. Neurosci, vol.42, pp.448-457, 2009.

O. Pavlou, K. Theodorakis, J. Falk, M. Kutsche, M. Schachner et al., Analysis of interactions of the adhesion molecule TAG-1 and its domains with other immunoglobulin superfamily members, Mol. Cell. Neurosci, vol.20, pp.367-381, 2002.

O. Penagarikano, B. S. Abrahams, E. I. Herman, K. D. Winden, A. Gdalyahu et al., Absence of CNTNAP2 leads to epilepsy, neuronal migration abnormalities, and core autism-related deficits, Cell, vol.147, pp.235-246, 2011.

O. Peñagarikano and D. H. Geschwind, What does CNTNAP2 reveal about autism spectrum disorder?, Trends Mol. Med, vol.18, pp.156-163, 2012.

E. M. Petrini, T. Ravasenga, T. J. Hausrat, G. Iurilli, U. Olcese et al., Synaptic recruitment of gephyrin regulates surface GABAA receptor dynamics for the expression of inhibitory LTP, Nat. Commun, vol.4, pp.39211-39219, 2014.

S. Poliak, D. Salomon, H. Elhanany, H. Sabanay, B. Kiernan et al., Juxtaparanodal clustering of Shaker-like K + channels in myelinated axons depends on Caspr2 and TAG-1, J. Cell Biol, vol.162, pp.1149-1160, 2003.

L. Querol, G. Nogales-gadea, R. Rojas-garcia, J. Diaz-manera, J. Pardo et al., Neurofascin IgG4 antibodies in CIDP associate with disabling tremor and poor response to IVIg, Neurology, vol.82, pp.879-886, 2014.

M. N. Rasband, Clustered K + channel complexes in axons, Neurosci. Lett, vol.486, pp.101-106, 1998.

P. Rodenas-cuadrado, J. Ho, and S. C. Vernes, Shining a light on CNTNAP2: complex functions to complex disorders, Eur. J. Hum. Genet, vol.22, pp.171-178, 2013.

D. Sanchez-ponce, J. Defelipe, J. J. Garrido, and A. Munoz, Developmental expression of Kv potassium channels at the axon initial segment of cultured hippocampal neurons, PLoS ONE, vol.7, p.48557, 2012.

M. Savvaki, K. Theodorakis, L. Zoupi, A. Stamatakis, S. Tivodar et al., The expression of TAG-1 in glial cells is sufficient for the formation of the juxtaparanodal complex and the phenotypic rescue of tag-1 homozygous mutants in the CNS, J. Neurosci, vol.30, pp.13943-13954, 2010.

U. Schulte, J. O. Thumfart, N. Klocker, C. A. Sailer, W. Bildl et al., The epilepsy-linked Lgi1 protein assembles into presynaptic Kv1 channels and inhibits inactivation by Kvbeta1, Neuron, vol.49, pp.697-706, 2006.

K. A. Strauss, E. G. Puffenberger, M. J. Huentelman, S. Gottlieb, S. E. Dobrin et al., Recessive symptomatic focal epilepsy and mutant contactin-associated protein-like 2, N. Engl. J. Med, vol.354, pp.1370-1377, 2006.

M. Traka, L. Goutebroze, N. Denisenko, M. Bessa, A. Nifli et al., Association of TAG-1 with Caspr2 is essential for the molecular organization of juxtaparanodal regions of myelinated fibers, J. Cell Biol, vol.162, pp.1161-1172, 2003.

A. Viaccoz, V. Desestret, F. Ducray, G. Picard, G. Cavillon et al., Clinical specificities of adult male patients with NMDA receptor antibodies encephalitis, Neurology, vol.82, pp.556-563, 2014.

A. Vincent, C. Buckley, J. M. Schott, I. Baker, B. K. Dewar et al., Potassium channel antibody-associated encephalopathy: a potentially immunotherapy-responsive form of limbic encephalitis, Brain, vol.127, pp.701-712, 2004.

C. Zweier, E. K. De-jong, M. Zweier, A. Orrico, L. B. Ousager et al., CNTNAP2 and NRXN1 are mutated in autosomalrecessive Pitt-Hopkins-like mental retardation and determine the level of a common synaptic protein in Drosophila, Am. J. Hum. Genet, vol.85, pp.655-666, 2009.