. .. Well-posedness, 93 6.3 Error estimate for the discrete variational problem

.. .. Regularity,

. .. , 107 7.3.1 Networks on graphs generated by deterministic nodes, Networks on random inhomogeneous graphs, p.110

.. .. Numerical-results,

J. Hafiene, A. Fadili, and . Elmoataz, Nonlocal p-Laplacian Variational Problems on Graphs
URL : https://hal.archives-ouvertes.fr/hal-02268163

Y. Preprints, J. Hafiene, C. Fadili, A. Chesneau, and . Elmoataz, The Continuum Limit of the Nonlocal p-Laplacian Evolution Problem on Random Inhomogeneous Graphs submitted to, Journal of Numerical Analysis

J. Hafiene, A. Fadili, and . Elmoataz, Nonlocal p-Laplacian Evolution Problems Graphs, Conference Proceedings, vol.56, pp.1064-1090, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01589689

Y. Hafiene, J. Fadili, and A. Elmoataz, Le p-Laplacien non-local sur graphes: du discret au continu Colloque sur le Traitement du Signal et des Images (GRETSI), p.2017

Y. Hafiene, J. Fadili, and A. Elmoataz, Nonlocal p-Laplacian Evolution Problems on Graphs Colloque ORASIS, Journées Francophones des Jeunes Chercheurs en Vision par Ordinateur, 2017.

, List of Figures 1.1 Examples of images that can be represented by weighted graphs as their natural representation

, Examples of meshes that can be represented by weighted graphs as their natural representation

, Examples of networks that can be represented by weighted graphs as their natural representation

, The first column presents the original image with the initial markers super-imposed. The second one presents the result of the segmentation via a nonlocal graph

=. {1, , vol.2

, The Petersen graph, its adjacency matrix, and its pixel picture

=. {1, , vol.4

, The plot of its pixel picture. (c) The corresponding graphon, half-graph of 16 vertices. (b)

, 5 (a) A nearest-neighbour graph with 16 vertices. (b) The plot of its pixel picture. (c) The corresponding graphon, vol.2

, 6 (a) A simple-threshold graph with 16 vertices. (b) The plot of its pixel picture. (c) The corresponding graphon, vol.2

, A realization of the Erdös-Renyi random graph model with p = 0.5. (b) Its pixel picture. (c) The corresponding graphon

, A realization of the uniform attachment graph random model. (b) Its pixel picture. (c) The corresponding graphon

, Its pixel picture. (c) The corresponding graphon

Q. .. , Different regimes according to the values of p and s, p.72

A. Xavier-desquesnes, M. Elmoataz, and . Toutain, On the game p-Laplacian on weighted graphs with applications in image processing and data clustering, Eurpean Journal of Apllied Mathematics, vol.28, pp.922-948, 2017.

A. E. Alaoui, X. Cheng, A. Ramdas, M. J. Wainwright, and M. I. Jordan, Asymptotic behavior of ? p -based Laplacian regularization in semi-supervised learning, 29th Annual Conference on Learning Theory, pp.879-906, 2016.

.. I. Ya, A. N. Alber, M. V. Iusem, and . Solodov, On the projected subgradient method for nonsmooth convex optimization in a Hilbert space, Mathematical Programming, vol.81, pp.23-35, 1998.

F. Alvarez and J. Peypouquet, Asymptotic equivalence and Kobayashi-type estimates for nonautonomous monotone operators in Banach spaces, Discrete Contin. Dyn. Syst, vol.25, issue.4, pp.1109-1128, 2009.

F. Andreu, J. M. Mazón, J. D. Rossi, and J. Toledo, A nonlocal p-Laplacian evolution equation with neumann boundary conditions, Journal de Mathématiques Pures et Appliquées, vol.90, issue.2, pp.201-227, 2008.

F. Andreu, J. Mazón, J. Rossi, and J. Toledo, The Neumann problem for nonlocal nonlinear diffusion equations, Journal of Evolution Equations, vol.8, issue.1, pp.189-215, 2008.

F. Andreu-vaillo, J. M. Mazón, J. D. Rossi, and J. Toledo-melero, Nonlocal diffusion problems, Mathematical Surveys and Monographs. American Mathematical Society, vol.165, 2010.

B. Antoni, C. Bartomeu, and M. Michel, On image denoising methods, SIAM Multiscale Modeling and Simulation, vol.4, issue.2, pp.490-530, 2005.

H. Attouch and J. Peypouquet, The rate of convergence of Nesterov's accelerated ForwardBackward method is actually o(k ?2 ), SIAM Journal on Optimization, vol.26, issue.3, pp.1824-1834, 2016.

G. Aubert and P. Kornprobst, Mathematical Problems in Image Processing, Applied Mathematical Sciences, vol.147, 2002.

F. Carrillo-josé-auel, M. Alessio, . Giuseppe, J. Vázquez, D. Luisntonio et al., Nonlocal and Nonlinear Diffusions and Interactions: New Methods and Directions, vol.2186, 2016.

G. Barles, P. Cardaliaguet, O. Ley, and A. Monteillet, Uniqueness results for nonlocal hamilton-jacobi equations, Journal of Functional Analysis, vol.257, issue.5, pp.1261-1287, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00264757

J. W. Barrett and W. B. Liu, Finite element approximation of the p-laplacian, Mathematics of compuation, vol.61, issue.204, pp.523-537, 1993.

W. Peter, A. Bates, and . Chmaj, An integrodifferential model for phase transitions: Stationary solutions in higher space dimensions, Journal of Statistical Physics, vol.95, issue.5, pp.1119-1139, 1999.

W. Peter, P. C. Bates, X. Fife, X. Ren, and . Wang, Traveling waves in a convolution model for phase transitions. Archive for Rational Mechanics and, Analysis, vol.138, issue.2, pp.105-136, 1997.

H. Bauschke and P. L. Combettes, Convex analysis and monotone operator theory in Hilbert spaces, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01517477

A. Beck and M. Teboulle, A fast iterative shrinkage-thresholding algorithm for linear inverse problems, SIAM Journal on Imaging Sciences, vol.2, issue.1, pp.183-202, 2009.

. Ph, M. G. Bénilan, and . Crandall, Completely accretive operators, Semigroup Theory and Evolution Equations, vol.135, pp.41-75, 1989.

G. Bognar, Numerical and Numerical and Analytic Investigation of Some Nonlinear Problems in Fluid Mechanics. Computer and Simulation in Moderm Science, vol.2, pp.172-179, 2008.

B. Bollobás, S. Janson, and O. Riordan, The phase transition in inhomogeneous random graphs, Random Struct. Algorithms, vol.31, issue.1, pp.3-122, 2007.

B. Bollobás and O. Riordan, Metrics for sparse graphs, Sophie Huczynska, James D. Mitchell, and Colva M, pp.211-288, 2009.

B. Bollobás and O. Riordan, Sparse graphs: Metrics and random models, vol.39, pp.1-38, 2011.

C. Borgs, J. T. Chayes, L. Lovász, V. T. Sós, and K. Vesztergombi, Convergent sequences of dense graphs i: Subgraph frequencies, metric properties and testing, Advances in Mathematics, vol.219, pp.1801-1851, 2008.

C. Borgs, J. Chayes, L. Lovasz, V. T. Sos, and K. Vesztergombi, Convergent sequences of dense graphs ii: Multiway cuts and statistical physics, Annals of Mathematics, vol.176, issue.2, pp.151-219, 2012.

C. Borgs, J. Chayes, L. Lovász, V. Sós, and K. Vesztergombi, Limits of randomly grown graph sequences, European Journal of Combinatorics, vol.32, issue.7, pp.985-999, 2011.

C. Borgs, J. Chayes, L. Lovász, V. T. Sós, B. Szegedy et al., Graph Limits and Parameter Testing, Proceedings of the Thirty-eighth Annual ACM Symposium on Theory of Computing, pp.261-270, 2006.

C. Borgs, J. Chayes, L. Lovász, V. T. Sós, and K. Vesztergombi, Counting graph homomorphisms, Topics in Discrete Mathematics, pp.315-371, 2006.

C. Borgs, J. T. Chayes, H. Cohn, and Y. Zhao, An l p theory of sparse graph convergence i: limits, sparse random graph models, and power law distributions, 2014.

, Andrea Braides. ?-convergence for biginners. Oxford Lecture Series in Mathematics and Its Applications Series, 2002.

H. Brézis and A. Pazy, Convergence and approximation of semigroups of nonlinear operators in Banach spaces, Journal of Functional Analysis, vol.9, issue.1, pp.63-74, 1972.

A. Buades, B. Coll, and J. M. Morel, A review of image denoising algorithms, with a new one, Multiscale Modeling & Simulation, vol.4, issue.2, pp.490-530, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00271141

A. Buades and B. Coll, Jean michel Morel, and Catalina Sbert. Non local demosaicing, 2007.

A. Buades, B. Coll, and J. Morel, Neighborhood filters and pde's. Numerische Mathematik, vol.105, pp.1-34, 2006.

T. Bühler and M. Hein, Spectral clustering based on the graph p-Laplacian, Proceedings of the 26th Annual International Conference on Machine Learning, ICML '09, pp.81-88, 2009.

C. Carrillo and P. Fife, Spatial effects in discrete generation population models, Journal of Mathematical Biology, vol.50, issue.2, pp.161-188, 2005.

F. Catté, P. Lions, J. Morel, and T. Coll, Image selective smoothing and edge detection by nonlinear diffusion, SIAM Journal on Numerical analysis, vol.29, issue.1, pp.182-193, 1992.

A. Chambolle and C. , On the convergence of the iterates of the "fast iterative shrinkage/thresholding algorithm, Journal of Optimization Theory and Applications, vol.166, issue.3, pp.968-982, 2015.

T. F. Chan and J. Shen, Image Processing and Analysis. SIAM, 2005.

R. R. Coifman, S. Lafon, A. B. Lee, M. Maggioni, B. Nadler et al., Geometric diffusions as a tool for harmonic analysis and structure definition of data: Diffusion maps, Proceedings of the National Academy of Sciences, vol.102, issue.21, pp.7426-7431, 2005.

G. Michael, T. M. Crandall, and . Liggett, Generation of semi-groups of nonlinear transformations on general banach spaces, American Journal of Mathematics, vol.93, issue.2, pp.265-298, 1971.

A. Ronald, G. G. Devore, and . Lorentz, Constructive Approximation, volume 303 of Grundlehren der mathematischen, 1993.

J. B. Diaz and R. Výborný, On mean value theorems for strongly continuous vector valued functions, Contrib. Differential Equations, vol.3, pp.107-118, 1964.

, Graph Theory, vol.173, 2000.

P. Drábek, The p-Laplacian-mascot of nonlinear analysis, Acta Math. Univ. Comenianae, vol.76, issue.1, pp.85-98, 2007.

A. Elmoataz, X. Desquesnes, Z. Lakhdari, and O. Lézoray, Nonlocal infinity Laplacian equation on graphs with applications in image processing and machine learning, Mathematics and Computers in Simulation, vol.102, pp.153-163, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01018137

A. Elmoataz, X. Desquesnes, and O. Lezoray, Non-local morphological pdes and p-Laplacian equation on graphs with applications in image processing and machine learning, IEEE Journal of Selected Topics in Signal Processing, vol.6, issue.7, pp.764-779, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00813009

A. Elmoataz, O. Lezoray, and S. Bougleux, Nonlocal Discrete Regularization on Weighted Graphs: A Framework for Image and Manifold Processing, IEEE Transactions on Image Processing, vol.17, issue.7, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00163573

A. Elmoataz, O. Lezoray, S. Bougleux, and V. Ta, Unifying local and nonlocal processing with partial difference operators on weighted graphs, International Workshop on Local and Non-Local Approximation in Image Processing, pp.11-26, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00329521

A. Elmoataz, M. Toutain, and D. Tenbrinck, On the p-Laplacian and ?-Laplacian on graphs with applications in image and data processing, SIAM Journal on Imaging Sciences, vol.8, issue.4, pp.2412-2451, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01247314

P. Erdös and A. Rényi, On the Evolution of Random Graphs. Publication of The Mathematical Institute of The Hungarian Academy of Sciences, vol.5, pp.17-61, 1960.

L. C. Evans, Partial Differential Equations, 2010.

G. Facciolo, P. Arias, V. Caselles, and G. Sapiro, Exemplar-based interpolation of sparsely sampled images

. Schmidt, Energy Minimization Methods in Computer Vision and Pattern Recognition, pp.331-344, 2009.

M. J. Fadili and G. Peyré, Total variation projection with first order schemes, IEEE Transactions on Image Processing, vol.20, issue.3, pp.657-669, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00401251

F. Driss-meskine, K. Karami, and . Sadik, A new nonlocal model for restoration of textured images, 2018.

K. J. Falconer, Fractal geometry : mathematical foundations and applications, J. Wiley & sons, 1990.

C. Paul, X. Fife, and . Wang, A convolution model for interfacial motion: the generation and propagation of internal layers in higher space dimensions, Adv. Differential Equations, vol.3, issue.1, pp.85-110, 1998.

P. C. Fife, Some nonclassical trends in parabolic and parabolic-like evolutions, Trends in Nonlinear Analysis, 2002.

A. Figalli, I. Peral, and E. Valdinoci, Partial Differential Equations and Geometric Measure Theory, 2018.

N. García-trillos and D. Slep?ev, Continuum Limit of Total Variation on Point Clouds. Archive for Rational Mechanics and Analysis, vol.220, pp.193-241, 2016.

E. N. Gilbert, Random Graphs, The Annals of Mathematical Statistics, vol.30, issue.4, pp.1141-1144, 1959.

G. Gilboa, J. Darbon, S. Osher, and T. Chan, Nonlocal convex functionals for image regularization, UCLA CAM-report, pp.6-57, 2006.

G. Gilboa and S. Osher, Nonlocal linear image regularization and supervised segmentation, Multiscale Modeling & Simulation, vol.6, issue.2, pp.595-630, 2007.

G. Gilboa and S. Osher, Nonlocal operators with applications to image processing, SIAM J. Multiscale Modeling and Simulation, vol.7, issue.3, pp.1005-1028, 2008.

M. Gunzburger and R. B. Lehoucq, A nonlocal vector calculus with applications to nonlocal boundary value problems, SIAM J. Multiscale Modeling and Simulation, vol.8, pp.1581-1620, 2010.

Y. Hafiene, J. Fadili, C. Chesneau, and A. Elmoataz, Continuum limit of the nonlocal p-Laplacian evolution problem on random inhomogeneous graphs, 2018.

Y. Hafiene, J. Fadili, and A. Elmoataz, Nonlocal p-Laplacian evolution problems on graphs, SIAM Journal on Numerical Analysis, vol.56, issue.2, pp.1064-1090, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01866655

Y. Hafiene, J. Fadili, and A. Elmoataz, Nonlocal p-Laplacian variational problems on graphs, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02268163

B. Hinds and P. Radu, Dirichlet's principle and well-posedness of solutions for a nonlocal Laplacian system, Applied Mathematics and Computation, vol.219, p.2012

R. Ibragimov and S. Sharakhmetov, The exact constant in the Rosenthal inequality for random variables with mean zero. Theory of Probability and Its Applications, vol.46, pp.127-132, 2002.

D. Kaliuzhnyi, -. Verbovetskyi, and G. Medvedev, The semilinear heat equation on sparse random graphs, SIAM Journal on Mathematical Analysis, vol.49, issue.2, pp.1333-1355, 2017.

T. Kato, Nonlinear semigroups and evolution equations, Journal of the Mathematical Society of Japan, vol.19, pp.508-520, 1967.

B. Kawohl, Variations on the p-Laplacian. Nonlinear Elliptic Partial Differential Equations. Contemporary Mathmatics, vol.540, pp.35-46, 2011.

Y. Koabayashi, Difference approximation of Cauchy problems for quasi-dissipative operators and generation of nonlinear semigroups, J. Math. Soc. Japan, vol.27, issue.4, pp.640-665, 1975.

N. Kusolitsch, Why the theorem of Scheffé should be rather called a theorem of Riesz, Periodica Mathematica Hungarica, vol.61, issue.1, pp.225-229, 2010.

C. A. Mosquera-leandro, M. , D. Pezzo, and J. D. Rossi, Existence, uniqueness and decay rates for evolution equations on trees, 2014.

J. Lee, Digital image smoothing and the sigma filter. Computer Vision, Graphics, and Image Processing, vol.24, pp.255-269, 1983.
DOI : 10.1016/0734-189x(83)90047-6

P. Lindqvist, Notes on the p-Laplace equation, 2006.

L. Lovász, Large Networks and Graph Limits, vol.60, 2012.

L. Lovász and V. T. Sós, Generalized quasirandom graphs, Journal of Combinatorial Theory, Series B, vol.98, issue.1, pp.146-163, 2008.

L. Lovász and B. Szegedy, Limits of dense graph sequences, Journal of Combinatorial Theory, Series B, vol.96, issue.6, pp.933-957, 2006.

F. Lozes, A. Elmoataz, and O. Lézoray, Partial difference operators on weighted graphs for image processing on surfaces and point clouds, IEEE Transactions on Image Processing, vol.23, issue.9, pp.3896-3909, 2014.
DOI : 10.1109/tip.2014.2336548

URL : https://hal.archives-ouvertes.fr/hal-01096304

G. S. Medvedev, The continuum limit of the kuramoto model on sparse random graphs, 2018.

S. Georgi and . Medvedev, The nonlinear heat equation on dense graphs, SIAM J. on Mathematical Analysis, vol.46, issue.4, pp.2743-2766, 2014.

S. Georgi and . Medvedev, The nonlinear heat equation on W -random graphs, Arch. Ration. Mech. Anal, vol.212, issue.3, pp.781-803, 2014.

Y. Nesterov, A method for solving the convex programming problem with convergence rate O(1/k 2 ), Dokl. Akad. Nauk SSSR, vol.269, issue.3, pp.543-547, 1983.

Y. Nesterov, Introductory lectures on convex optimization: A basic course, vol.87, 2004.
DOI : 10.1007/978-1-4419-8853-9

. Adam-m-oberman, Finite difference methods for the infinity laplace and p-laplace equations, Journal of Computational and Applied Mathematics, vol.254, pp.65-80, 2013.

S. Osher and N. Paragios, Geometric Level Set Methods in Imaging, Vision, and Graphics, 2003.

E. Pardoux, Cours intégration et probabilité. Lecture notes (Aix-Marseille Universtité), 2009.

Y. Peres and S. Sheffield, Tug-of-War with noise: A game-theoretic view of the pLaplacian, Duke Mathematical Journal, vol.145, issue.1, pp.91-120, 2008.

M. Pérez, -. Llanos, and J. D. Rossi, Numerical approximations for a nonlocal evolution equation, SIAM J. on Numerical Analysis, vol.49, issue.5, pp.2103-2123, 2011.

G. Peyré, Image processing with nonlocal spectral bases, SIAM J. Multiscale Modeling and Simulation, vol.7, issue.2, pp.703-730, 2008.

G. Peyré, Résolution numérique d'équations intégrales exemple de la radiosité, Lecture notes, 2001.

G. Peyré, S. Bougleux, and L. Cohen, Non-local regularization of inverse problems, Inverse Problems and Imaging, vol.5, p.511, 1930.

S. Reich, Weak convergence theorems for nonexpansive mappings in Banach spaces, Journal of Mathematical Analysis and Applications, vol.67, issue.2, pp.274-276, 1979.

S. Reich and D. Shoiykhet, Nonlinear semigroups, fixed points, and geometry of domains in Banach spaces, 2005.

R. Reiss, Approximate Distributions of Order Statistics with Applications to Nonparametric Statistics, 1989.

M. Rudd, Statistical exponential formulas for homogeneous diffusion, 2014.

D. Slep?cevslep?cev and M. Thorpe, Analysis of p-Laplacian Regularization in Semi-Supervised Learning, 2017.

M. Stephen, J. Smith, and . Brady, Susan-a new approach to low level image processing, International Journal of Computer Vision, vol.23, issue.1, pp.45-78, 1997.

A. Spira, R. Kimmel, and N. Sochen, A short-time beltrami kernel for smoothing images and manifolds, IEEE Transactions on Image Processing, vol.16, issue.6, pp.1628-1636, 2007.

K. Sridharan, A Gentle Introduction to Concentration Inequalities

S. Stanley-osher, P. W. Kindermann, and . Jones, Deblurring and Denoising of Images by Nonlocal Functionals, SIAM Multiscale Modeling and Simulations, vol.4, p.25, 2006.

A. Szlam, M. Maggioni, and R. Coifman, A general framework for adaptive regularization based on diffusion processes on graphs, Journal of Machine Learning Research, vol.19, pp.1711-1739, 2008.

A. Vinh-thong-ta, O. Elmoataz, and . Lezoray, Nonlocal PDEs-Based Morphology on Weighted Graphs for Image and Data Processing, IEEE Transactions on Image Processing, vol.20, issue.6, 2011.

C. Tomasi and R. Manduchi, Bilateral filtering for gray and color images, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271), pp.839-846, 1998.

. Mathieu-toutain, EdP géométriques pour le traitement et la classification de données sur graphes, 2015.

A. Luminita, . Vese, J. Stanley, and . Osher, Modeling textures with total variation minimization and oscillating patterns in image processing, Journal of scientific computing, vol.19, issue.1-3, pp.553-572, 2003.

J. Wang and B. J. Lucier, Error bounds for finite-difference methods for rudin-osherfatemi image smoothing error Bounds for Finite-Difference Methods for Rudin-Osher-Fatemi Image Smoothing, SIAM Journal on Numerical Analysis, vol.49, 2011.

X. Wang, Metastability and stability of patterns in a convolution model for phase transitions, Journal of Differential Equations, vol.183, issue.2, pp.434-461, 2002.

H. Xu, Inequalities in Banach spaces with applications, Nonlinear Analysis: Theory, Methods & Applications, vol.16, pp.1127-1138, 1991.

Z. Yang and M. Jacob, Nonlocal regularization of inverse problems: A unified variational framework, IEEE Transactions on Image Processing, vol.22, issue.8, pp.3192-3203, 2013.

L. P. Yaroslavsky, Digital Picture Processing -an Introduction, 1985.

W. H. Young and G. C. Young, On derivatives and the theorem of the mean, Quart. J. Pure Appl. Math, vol.40, pp.1-26, 1909.

S. Sheffield, Y. Peres, O. Schramm, and D. B. Wilson, Tug-of-War and the infinity Laplacian, Journal of the American Mathematical Society, vol.22, pp.167-210, 2009.