Amélioration de la sélectivité de vitesse pour l’acquisition de signaux ENG par l’analyse spectrale spatio-temporelle
Mariam Abdallah

To cite this version:

HAL Id: tel-02068694
https://tel.archives-ouvertes.fr/tel-02068694
Submitted on 15 Mar 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Délivré par l’Université de Montpellier

Préparée au sein de l’école doctorale
Information, Structures, Systèmes

Et de l’unité de recherche
Laboratoire d’Informatique, de Robotique
et de Microélectronique de Montpellier

Spécialité doctorale
Systèmes Automatiques et Microélectroniques

Présentée par Mariam Abdallah

Amélioration de la sélectivité de vitesse pour l’acquisition de signaux ENG par l’analyse spectrale spatio-temporelle

Soutenue le 17/12/2015 devant le jury composé de :

Mme. Sylvie Renaud PU IMS- Bordeaux INP Rapporteur
M. Olivier Romain PU ETIS-Univ. Cergy Pontoise Rapporteur
M. Pascal Nouet PU LIRMM-Univ. Montpellier Examineur
M. Jean-Max Dutertre MA CMP-ENSMSE Examineur
M. Guy Cathébras PU LIRMM-Univ. Montpellier Direct. de thèse
M. Fabien Soulier MCU LIRMM-Univ. Montpellier Examineur
M. Serge Bernard CR LIRMM-CNRS Invité
Table des matières

Table des matières

Remerciements ... 5

Introduction ... 9

1 État de l'art .. 11
 1.1 Contexte .. 11
 1.2 Recueil ENG ... 11
 1.2.1 Notions de base sur le système nerveux 11
 1.2.1.1 Organisation du système nerveux 11
 1.2.1.2 Axones : structures et fonctions 13
 1.2.1.3 Propagation du potentiel d'action 14
 1.2.1.4 Vitesse de propagation du potentiel d'action 16
 1.2.2 Acquisition des signaux ENG 17
 1.2.2.1 Électrodes intra-neurales 17
 1.2.2.2 Électrodes extra-neurales 18
 1.3 Augmentation de la Sélectivité des signaux ENG 21
 1.3.1 Réjection des signaux EMG 21
 1.3.2 Sélectivité spatiale 22
 1.3.3 Sélectivité par vitesse de propagation 25
 1.4 Conclusion .. 26

2 Modélisation d'un système d'acquisition 29
 2.1 Motivations .. 29
 2.2 Modèle bio-physiologique 30
 2.2.1 Modélisation des courants membranaires des fibres nerveuses myélinisées 30
 2.2.1.1 Courants nodaux simulés 32
 2.2.1.2 Validité du modèle sur la vitesse de propagation des fibres nerveuses 33
 2.2.2 Calcul du potentiel extra-cellulaire à la surface du nerf .. 33
 2.3 Modélisation d'une électrode 35
 2.3.1 Paramètres de l’électrode 35
 2.4 Étage préamplificateur 37
 2.4.1 Potentiel extra-cellulaire mesuré à partir d’électrode modélisée 38
 2.5 Conclusion ... 41

3 Sélectivité de vitesse 43
 3.1 Représentation spatio-temporelle du signal extra-cellulaire 43
TABLE DES MATIÈRES

3.2 Étude spectrale mono-dimensionnelle ... 46
 3.2.1 Spectre temporel ... 46
 3.2.2 Spectre spatial ... 46

3.3 Étude spectrale bi-dimensionnelle ... 48
 3.3.1 Un peu de théorie ... 48
 3.3.2 Visions spectrales .. 49

3.4 Des filtres idéaux .. 50

3.5 Un peu plus de réalisme .. 57

3.6 Conclusion .. 59

4 Filtres réalistes .. 65
 4.1 Spécifications .. 65
 4.1.1 Taille d’électrode ... 65
 4.1.2 Échantillonnage temporel .. 66
 4.1.3 Données de simulation ... 67
 4.1.4 Filtres de classification ... 67

4.2 Filtre défini par sa transformée de Fourier bi-dimensionnelle 68
 4.2.1 Contexte ... 68
 4.2.2 Définition du filtre ... 68
 4.2.3 Utilisation .. 70
 4.2.4 Résultats ... 71

4.3 Filtres récursifs .. 72
 4.3.1 Rotation d’un filtre .. 72
 4.3.1.1 Changement de repère .. 72
 4.3.1.2 Transformation de filtre .. 74
 4.3.1.3 Filtre à temps et espace discrets 74
 4.3.2 Filtre du premier ordre ... 75
 4.3.3 Mise en œuvre de filtres du premier ordre 75
 4.3.3.1 Spécifications ... 75
 4.3.3.2 Résultats .. 76
 4.3.4 Filtre du second ordre ... 79
 4.3.5 Mise en œuvre de filtres du second ordre 80
 4.3.5.1 Spécifications ... 80
 4.3.5.2 Résultats .. 80

4.4 Conclusion .. 83

Conclusion .. 85

Table des figures ... 87

Liste des tableaux ... 90

Bibliographie .. 91

A Données chapitre 3 .. 99
Remerciements

A l’issue de la rédaction de ce manuscrit, je suis convaincue que la thèse est loin d’être un travail solitaire. En effet, je n’aurais jamais pu réaliser ce travail sans le soutien d’un grand nombre de personnes dont la générosité, la bonne humeur et l’intérêt manifestés à l’égard de ma recherche m’ont permis d’arriver jusqu’au bout.

Au cours de ces trois années j’ai fait parti de l’équipe « DEMAR» du INRIA au sein du LIRMM. Les discussions que j’ai pu avoir au sein de cette équipe particulièrement avec Olivier Rossel et Pawel Maciejasz, m’ont aidé énormément et m’ont même donné envie de continuer sans lâcher. Je remercie donc toutes ces personnes. Je tiens à remercier aussi Wafaa, Alejandro, Mathilde, qui font partie de l’équipe pour toutes nos discussions et leur conseils qui m’ont accompagné tout au long de ma recherche. Mohamad Boushaki, Mousaab et Gamal, je leur remercie pour le poulet rôti dont je vais manquer après mon départ.

Je remercie profondément mes amis du déjeuner qui m’ont soutenu et qui m’ont apporté la joie de la pause ; Maha ma co-bureau, Salma, Amal, Sahar, Firas et Hamdi. Je ne peux aussi oublier de remercier Romain, Anu et beaucoup de prénoms que je retiens pas. Ma vie à Montpellier n’était pas seulement au LIRMM, j’avais la chance de rencontrer Nancy, Assala, Ana Carolina, Mohamad akel, Nathalie, Pamela, Awaz, Khaled, Maryam. Vous étiez pas seulement des connaissances, vous savez bien que vous êtes beaucoup plus que ça et je peux vraiment pas exprimer ma gratitude envers vous tous.

Durant ma thèse j’ai aussi effectué pendant deux ans de nombreux enseignements à Polytech de Montpellier et je remercie Serge Dusausay, Franck Augereau pour leur aide et les conseils afin d’en avoir une expérience précieuse en enseignement. Un grand merci aussi pour leur aide et leurs encouragements. Je passe ensuite une dédicace spéciale à Alejandro Chagoya au Cime pour le support informatique et psychologique.

Pour toi, ma petite sœur d’amour Zeina, je te remercie particulièrement de me supporter malgré tes propres problèmes. Les forfaits mobiles illimités étaient super compatibles avec nos discussions !! Merci à Hiba, Pierre, walid et le petit André d’avoir été toujours là pour me donner pour leurs encouragements. Je remercie tout spécialement Bachar, mon amour dès la première année de thèse, pour son soutien sans faille et ses encouragements. Je le remercie pour avoir toujours trouvé les mots justes dans les moments les plus difficiles et m’avoir apporté le réconfort dont j’avais besoin malgré la distance entre nous.

J’en oublie certainement encore et je m’en excuse.Encore un grand merci à tous pour m’avoir conduit à ce jour mémorable.

à mes parents, baba, mama, et à tous ceux que je ne nomme pas, mais qui se reconnaîtront.
Résumé

Amélioration de la sélectivité de vitesse pour l'acquisition de signaux ENG par l'analyse spectrale spatio-temporelle.

L'amélioration de la vie des personnes en situation de handicap est un défi majeur dans notre société. Dans le cas d'un handicap dû à des déficiences du système sensori-moteur, les solutions chirurgicales ou médicamenteuses peuvent rarement restaurer les fonctions altérées. Des solutions plus technologiques peuvent, dans certains cas, être utilisées afin de contourner les problématiques de dysfonctionnement du système nerveux. Une des solutions envisageables consiste à contrôler certaines fonctions par stimulation électrique fonctionnelle. Pour que cette stimulation soit efficace et se rapproche du contrôle naturel une approche intéressante consiste à utiliser les capteurs sensoriels naturels dans la boucle de contrôle du système. Dans le cadre de ce travail de thèse, nous nous intéressons aux systèmes d'acquisition électriques des signaux neurologiques provenant du système nerveux périphérique. L'idée est que les informations issues des fibres nerveuses afférentes obtenues à l'aide d'électrodes extra-neurales (ex. Cuff) pourraient permettre de « capter » l'information sensorielle provenant de plusieurs capteurs naturels sans être trop invasif. La principale difficulté de cette technique et de discriminer l’activité d’une fibre ou d’un groupe de fibres à partir du signal composite recueilli par l’électrode. Ce signal regroupe, en effet, l’information provenant d’un grand nombre de fibres afférentes et efférentes d’origine très différentes. Une des approches envisageables consiste à discriminer l’information des différentes fibres à partir de leurs caractéristiques physiologiques ou anatomiques. Les travaux présentés dans ce manuscrit cherchent à améliorer la sélectivité du recueil en fonction de la vitesse de propagation des différentes fibres. A noter qu’aucune solution réellement viable n’existe dans la littérature sur ce principe de sélectivité. Le premier objectif a donc été de prouver que dans un cas idéal (filtre parfait), il serait possible d'effectuer une discrimination efficace. Nos travaux sont basés sur des études temporelles, spatiales et spatio-temporelles afin d'évaluer les possibilités d'extraction de l'information utile à partir des potentiels extracellulaires simulés. Les simulations ont été effectuées à partir d'un modèle de système d'acquisition réaliste développé à partir des paramètres du modèle biophysiologique et du modèle d'électrode et du préamplificateur associé. Partant des résultats prometteurs obtenus dans un cas d'un filtre idéal, des implémentations de filtres IIR et FIR spatio-temporel du premier et second ordre ont été proposées. La simplicité de ces filtres permet d'envisager une implémentation physique efficace.
Mots-clés : Électroneurographie (ENG), modélisation système d’acquisition, Analyse spectrale 2D, enregistrement sélectif de vitesse (VSR), électrode Cuff multipolaire, filtrage spatio-temporel.
Introduction

Une atteinte du système nerveux d’origine accidentelle, génétique, ou induite par certains facteurs environnementaux peut entraîner une perte ou des troubles de la motricité (paraplégie, hémiplégie, tétraplégie, épilepsie, maladie de Parkinson, etc.) ou des dysfonctionnements de certaines fonctions sensorielles (cécité, surdité, douleur chronique, etc.). Selon l’organisation mondiale de la santé, des centaines de millions de personnes dans le monde sont atteintes de troubles neurologiques. Environ 6,2 millions de personnes meurent d’un accident vasculaire cérébral chaque année, dont plus de 80 pour cents dans les pays à revenu faible ou intermédiaire. Plus de 50 millions de personnes dans le monde souffrent d’épilepsie et l’on estime que 35,6 millions de personnes souffrent de démence [94].

Souvent, les solutions chirurgicales ou médicamenteuses ne permettent pas de restaurer de façon satisfaisante les fonctions du système nerveux défectueux. Une alternative plus technologique consiste à restaurer certaines fonctions en substituant aux signaux neuronaux naturels une stimulation électrique artificielle. Appliquée au niveau du système nerveux central, des micro-électrodes implantées dans le cerveau ou dans la moelle épinière permettent de stimuler électriquement ou de recueillir des signaux neuronaux. Ces interfaces tendent actuellement vers une complexité accrue, en termes de points de mesures, constituant des « matrices d’électrodes ». Appliquée au système nerveux périphérique, cette technique cherche à reconstituer d’une façon artificielle la transmission d’information avec le système nerveux central lorsque celle-ci a été dégradée. Une voie promise à l’heure actuelle pour améliorer les bénéfices fonctionnels de la stimulation du système périphérique est de coupler celle-ci à un système de mesure des voies neurales efférentes (mesure de l’efficacité des stimuli, contrôle volontaire) ou afférentes (mises en place d’une boucle de rétroaction utilisant les organes sensoriels naturels). Ces systèmes d’acquisition reposent en général sur des interfaces prenant la forme d’électrodes implantées entourant le nerf (électrodes cuffs), ou insérées à l’intérieur de celui-ci (électrodes intrafasciculaires). Nous sommes particulièrement intéressés par l’acquisition de signaux ENG (ElectroNeuroGramme) au niveau du système nerveux périphérique qui présente la possibilité d’améliorer la stimulation électrique fonctionnelle (FES : Functionnal Electrical Stimulation) en utilisant les électrodes cuffs. Ce type d’électrode a été développé et a été largement utilisé durant les vingt dernières années. Ces électrodes qui sont par nature non-invasives pour le nerf, sont considérées comme sûres. Leur implantation est stable et permet des enregistrements chroniques fiables de signaux ENG. La problématique majeure de l’utilisation de ce type d’électrode est l’extraction des données utile. En effet, d’une part, l’activité neuronale mesurée par ces électrodes cuffs est fortement perturbée par des signaux parasites d’amplitude beaucoup plus importante. Par exemple, les électromyogrammes (EMG) générés par l’activité musculaire produisent des signaux au niveau de l’électrode d’amplitude de l’ordre du millivolt alors que les signaux ENG recueillis n’atteignent que quelques microvolts. D’autre part, l’information recueillie au niveau des
électrodes est une information globale de l’activité neurale qui circulent à l’intérieur du nerf et non pas l’information recherchée. En effet, le signal ENG est une combinaison de tous les signaux se propageant au niveau des axones. Pour être en mesure d’utiliser les différentes informations afférentes ou efférentes propagées à l’intérieur du nerf il faut être en mesure de discriminer les informations provenant de chaque axone ou groupe d’axones.

Pour rejeter les signaux parasites tels que les EMG, les architecture utilisées sont toutes basées sur des tripoles permettant d’effectuer un filtre spatial Laplacien en utilisant trois pôles équirépartis sur l’électrode. Pour permettre de discriminer les différentes sources d’activité neurale deux approches peuvent être envisagées. Une approche basée sur l’augmentation de la sélectivité spatiale qui va permettre de discriminer les axones en fonction de leur localisation par rapport aux pôles de l’électrode. Une autre approche consiste à discriminer les sources d’activité en fonction de leur vitesse de propagation. Ce manuscrit se concentre sur cette dernière approche.

Nous pouvons trouver certains travaux intéressants dans la littérature ayant pour but la sélectivité de vitesse, mais aucune solution ne permet une sélectivité réellement satisfaisante. Le premier objectif de cette thèse est d’étudier la faisabilité d’une telle approche en considérant un cas idéal de traitement de l’information. Quand la démonstration de la faisabilité sera établie, nous chercherons à donner les pistes vers une implémentation réaliste du traitement permettant l’extraction du signal utile.

Le premier chapitre de ce rapport présente les notions de base d’anatomie et de physiologie du système nerveux. En second partie, les différentes techniques d’acquisition des signaux neurologiques sortant de la partie périphérique du corps sont abordées. Par la suite, les différents types d’électrodes associées à ces techniques sont présentés ainsi que le traitement de signal associé. Dans le second chapitre, nous exposons les simulations permettant la génération des signaux extra-cellulaires à partir de la modélisation de la chaîne d’acquisition complète. Cette chaîne comporte, le modèle d’une fibre nerveuse (Courants membranaires plus tensions extra-cellulaires) ainsi que le système de recueil des signaux ENG (Electrode plus pré-amplificateur). Le troisième chapitre est consacré à l’analyse spectrale des signaux obtenus par simulation ainsi que les méthodes de filtrage idéal permettant la classification des signaux extra-cellulaires. Une étude de filtres réalisables sera enfin présentée dans le quatrième chapitre avec une estimation de leur complexité.
Chapitre 1
État de l'art

1.1 Contexte
Dans le contexte de certaines maladies neurologiques telles que l’épilepsie, la maladie de Parkinson ou de certaines déficiences du système nerveux dues à un accident vasculaire cérébral ou à une blessure de la moelle épinière, les solutions chirurgicales ou pharmacologiques ne permettent pas toujours une restauration des fonctions sensori-motrices affectées. Une des solutions alternatives envisageables consiste, dans certains cas, à interfacer le système nerveux avec une prothèse de Stimulation Électrique Fonctionnelle (SEF) qui va soit rétablir un rebouclage fonctionnel partiel, soit inhiber une activité neurale incohérente. Dans l’objectif d’améliorer l’efficacité de telles prothèses il est essentiel d’avoir un retour d’information sur l’action de stimulation exercée. La solution la plus intéressante consiste à extraire l’information circulant à l’intérieur même des nerfs périphériques. Pour y parvenir, une des problématiques majeures est que les électroneurogrammes recueillis au niveau des électrodes donnent une image de l’activité globale du nerf alors que l’information recherchée est au niveau des axones ou des fascicules du nerf. Dans ce contexte, l’objectif principale de ce travail de doctorat est de développer une solution permettant d’améliorer la sélectivité de la mesure pour être en mesure de discriminer les informations présentes au niveau des électrodes de mesure. Dans l’objectif de présenter et de comparer les solutions de l’état de l’art sur le recueil sélectif d’ENG, ce chapitre s’appuiera sur des rappels rapides des principaux éléments de la physiologie nerveuse humaine afin de mieux appréhender les contraintes prises en compte dans nos travaux.

1.2 Recueil ENG
Dans cette section nous rappelons l’organisation anatomique et la physiologie du système nerveux humain nécessaires à la compréhension des chapitres suivants et des approches proposées pour le recueil des signaux neurologiques.

1.2.1 Notions de base sur le système nerveux
1.2.1.1 Organisation du système nerveux
Le système nerveux contrôle et organise le fonctionnement des autres systèmes fonctionnels dans le corps humain. Il nous permet de recueillir des informations des différentes parties
du corps et du milieu extérieur et d’agir sur tous les éléments de l’organisme. En pratique, la transmission des messages nerveux est une succession très rapide de messages biochimiques et électriques décrites par les potentiels d’action (influx nerveux) qui se propagent dans les nerfs.

On peut distinguer deux grands ensembles dans le système nerveux : le système nerveux central et le système nerveux périphérique.

Le Système Nerveux Central (SNC) est formé de l’encéphale logé dans la boîte crânienne et de la moelle épinière protégée par les vertèbres. Le SNC est l’organe de traitement et de décision principale du corps. Une de ses actions est de recevoir et d’interpréter l’information sensorielle provenant du système nerveux périphérique et de définir la réponse motrice à renvoyer.

Le Système Nerveux Périphérique (SNP) se compose principalement des nerfs sensitifs et moteurs qui sont rattachés au système nerveux central. Les nerfs du SNP permettent la communication de l’information entre l’organisme entier et le système nerveux central.
Du point de vue physiologique, le SNP se divise en deux voies : la voie sensitive et la voie motrice (figure 1.1). La voie sensitive ou afférente est composée par des neurones afférents qui emmènent les influx provenant de la peau, des organes et capteurs sensoriels, des muscles squelettiques et des articulations. La voie motrice dite efférente comprend les neurones efférents qui transportent les influx provenant du SNC aux différents organes effecteurs comme les muscles et les glandes. Sur la base de cette organisation, la voie motrice se compose de deux sous-systèmes : le système nerveux somatique (SNS) et le système nerveux autonome (SNA).

Les neurones peuvent être classifiés selon le sens de transmission de l’influx nerveux par rapport au SNC. Il existe donc deux groupes de neurones : les neurones sensoriels ou afférents qui transportent les informations de la peau ou des organes internes vers le SNC et les neurones moteurs ou efférents qui transportent les informations du SNC vers les organes effecteurs comme les muscles et les glandes.

Les nerfs sont généralement composés d’un ensemble de fascicules qui contient des groupements de fibres (l’axone et les cellules de Schwann) afférentes et efférentes, myélinisées et amyéliniques maintenus par l’épinèvre comme le montre la figure 1.2. A l’intérieur de chaque fascicule, entre les fibres nerveuses, se trouve l’endonèvre. Un nerf peut contenir de un à cent fascicules. Le nombre de fascicules est variable selon le nerf et sa localisation. Par exemple, le nombre de fascicules augmente dans les zones proximales et a tendance à diminuer dans les zones distales. La distribution des fascicules varient tout au long du nerf à cause des fusions et des échanges de ramifications entre les fascicules.

Les axones d’un nerf périphérique sont de deux types, avec ou sans gaine de myéline. Dans le cas des axones myélinisés, on trouve les cellules de Schwann qui interviennent dans la myélinisation de l’axon, le guidage de la croissance de l’axon, la repousse axonale et dans la dégénérescence. La gaine de myéline est une gaine isolante qui entoure l’axonale et résulte de la formation de la cellule de Schwann dans des segments données de l’axon. Les emplacements séparant deux segments myélinisés sont appelés nœuds de Ranvier (voir figure 1.2).
l’intérieur du corps. Un axone long est généralement appelé fibre nerveuse. Il existe différents types de fibres nerveuses. Toutes relient les organes périphériques à la moelle épinière, mais leur diamètre diffère grandement, de même que l’épaisseur de la gaine de myéline qui entoure la fibre nerveuse ou l’axon. Le diamètre et la myélinisation influencent la vitesse de conduction de l’influx nerveux : plus le diamètre d’une fibre est grand, plus elle est alors myélinisée, et plus cette fibre conduira l’influx nerveux rapidement. Avec ces deux critères, on peut classifier les fibres sensorielles comme illustré dans le tableau 1.1.

Table 1.1 – Classification des fibres nerveuses [66]

<table>
<thead>
<tr>
<th>Types de fibres</th>
<th>Rôles</th>
<th>Myélinisation</th>
<th>Diamètre (en µm)</th>
<th>Vitesse de conduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>SENSITIVES</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A alpha beta</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ia</td>
<td>Porprioception (fuscaux neuromusculaires)</td>
<td>+</td>
<td>12-20</td>
<td>70-120</td>
</tr>
<tr>
<td>Ib</td>
<td>Organe de Golgi des tendons</td>
<td>+</td>
<td>5-12</td>
<td>30-70</td>
</tr>
<tr>
<td>II</td>
<td>Sensibilité cutanée : toucher</td>
<td>+</td>
<td>2-5</td>
<td>13-30</td>
</tr>
<tr>
<td>A delta</td>
<td>Pression cutanée : temperature douleur</td>
<td>+</td>
<td>0.4-1.2</td>
<td>0.5-2</td>
</tr>
<tr>
<td>III</td>
<td>Pression cutanée : douleur</td>
<td>-</td>
<td>15-20</td>
<td>70-120</td>
</tr>
<tr>
<td>IV</td>
<td>Pression cutanée : douleur</td>
<td>+</td>
<td>5-12</td>
<td>30-70</td>
</tr>
<tr>
<td>MOTRICES</td>
<td>Végétatives</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A alpha</td>
<td>Muscles squelettiques</td>
<td>+</td>
<td>3</td>
<td>4-15</td>
</tr>
<tr>
<td>A gamma</td>
<td>Fuscaux neuromusculaires</td>
<td>+</td>
<td>15-20</td>
<td>70-120</td>
</tr>
</tbody>
</table>

Les axones de même diamètre que les fibres *A-alpha, A-beta, A-delta* et *C* issus non pas de la peau, mais des muscles et des tendons, sont aussi désignés groupes I, II, III, et IV.

Les différentes vitesses de conduction des deux types de fibres nerveuses (*A-delta* et *C*) expliquent la façon particulière dont on ressent la douleur lorsqu’on se blesse : d’abord une douleur aiguë, vive et précise qui fait place quelques secondes plus tard à une douleur plus diffuse et plus sourde. Ce délai provient directement de la vitesse de conduction différente des fibres *A-delta* et *C* qui fait que leur message n’atteint pas le cerveau exactement en même temps. La « douleur rapide », qui disparaît assez vite, vient de la transmission d’influx nerveux dans les fibres *A-delta* (qui conduisent l’influx nerveux à la vitesse d’un cycliste !). La « douleur lente », plus persistante, est issue de la stimulation des fibres *C* non myélinisées (qui conduisent l’influx nerveux à la vitesse d’un marcheur). On estime que ces dernières comptent pour environ 70 % des fibres nerveuses responsables de la douleur.

C’est aussi la composante rapide, par les fibres *A-delta*, qui permet à nos réflexes de retrait de se développer en quelques millisecondes, lorsque l’on marche sur un clou par exemple. Le diamètre moyen des fibres nerveuses amyélinisées vaut 1,5 µm et le diamètre des fibres myélinisées varie entre 2 et 20 µm.

1.2.1.3 Propagation du potentiel d’action

La communication entre les cellules nerveuses et les différentes cellules du corps humain est assurée par la transmission du potentiel d’action. La figure 1.3 décrit l’allure générale du potentiel d’action. Ce dernier appelé aussi influx nerveux est une brusque modification du potentiel de membrane dû au changement de concentrations ioniques de part et d’autre de la membrane d’un neurone. L’amplitude maximale de ce potentiel d’action est de 100 µV. La modification du potentiel de membrane peut engendrer deux types de signaux, les potentiels gradués qui interviennent sur des courtes distances et les potentiels d’action détaillés dans cette partie.
Ce phénomène bioélectrique qui ne dure que quelques millisecondes résulte d’une dépolarisation de la membrane due à la modification de la perméabilité aux ions de la membrane du neurone et donc l’ouverture des canaux ioniques, plus précisément les canaux ioniques de Sodium (Na+) et de Potassium (K+).

La production du potentiel d’action repose sur trois phases. Tout d’abord, la phase de repos pour laquelle tous les canaux à Na+ et à K+ sont fermés. la deuxième phase est la dépolarisation avec l’ouverture les canaux de Na+. Cette ouverture de canaux permet le passage des ions Na+ de la face externe de la membrane qui devient électronégative, la face interne étant électropositive. Une fois que la dépolarisation atteint le seuil d’excitation qui est souvent situé entre $-55 \mu V$ et $-50 \mu V$, le phénomène de dépolarisation continue grâce aux courants ioniques provoqués par le passage des ions Sodium. Le potentiel de membrane passe progressivement de son état de repos jusqu’à atteindre 30 μV. En même temps que le passage de sodium diminue, les canaux ionique K+ s’ouvrent. Cette phase est appelée phase de repolarisation. Suite à cette étape et en raison de la longue période de perméabilité aux ions de potassium pour retrouver l’état de repos, on remarque qu’il aura une perte importante des ions de potassium avant la fermeture des canaux. Cette phase est appelée phase d’hyperpolarisation.

Les potentiels d’action générés par les neurones permettent de transmettre des informations d’une partie du corps à une autre. Deux propriétés remarquables s’appliquent sur le potentiel d’action. La première est la nature du signal qui est du type tout ou rien. L’information n’est pas codée par l’amplitude du signal mais par sa fréquence d’apparition. La deuxième caractéristique du PA est sa propagation sans perte le long de l’axone. L’amplitude et la vitesse ne changent pas entre le lieu de déclenchement et la terminaison axonale.

On distingue deux modes de propagation : la conduction continue dans le cas des les axones non myélinisés et la conduction saltatoire pour les axones myélinisées.
Conduction continue. Lorsqu’une dépolarisation suffisante atteint le cône d’émergence de l’axon, les canaux ioniques s’ouvrent et laissent entrer les ions Na⁺ dans le neurone. Cette entrée d’ions dépolarise la membrane provoquant d’une part la formation d’un potentiel d’action et d’autre part la genèse d’un courant local. Ce courant local provoque, à son tour, l’ouverture de canaux Na⁺ voltage-dépendants à proximité dans la membrane. Ceci permet alors la production du potentiel d’action.

Conduction saltatoire. La gaine de myéline agit comme un isolant électrique bloquant la perte de courant à travers la membrane, les nœuds de Ranvier sont les zones d’interruption de cette gaine et concentrent beaucoup de canaux ioniques Na⁺ et K⁺. Dans un axone myélénisé, le potentiel d’action produit par le cône d’émergence de l’axon génère des courants locaux qui vont se propager d’un nœud de Ranvier à un autre [55]. Ils vont introduire ainsi l’ouverture des canaux ioniques au niveau de chaque nœud de Ranvier (figure 1.4). Ce type de propagation est trente fois plus rapide que la propagation continue si l’on considère un axone ayant le même diamètre et la même longueur [29].

1. L’axon se différencie des dendrites par son aspect lisse et son diamètre uniforme le long de son trajet. Il prend généralement son origine au niveau d’une expansion conique du soma : le cône d’émergence qui est le segment initial de l’axon.

Figure 1.4 – Représentation schématique de la conduction saltatoire dans un axone myélinisé.

1.2.1.4 Vitesse de propagation du potentiel d’action

Comme on a déjà vu dans le tableau de la classification des fibres nerveuses (tableau 1.1), chaque type de fibre présente un certain rôle dans le corps humain. Généralement, dans les organes internes de l’organisme comme les vaisseaux sanguins, les glandes et les intestins, la vitesse de propagation dans l’axon n’est généralement pas perçue comme un facteur essentiel vu que leurs réactions ne nécessitent pas des réflexes rapides. Par contre, on observe dans les voies nerveuses intervenant dans certains réflexes de posture une exigence de réponse très rapide. Dans ce cas là, la vitesse de propagation du potentiel d’action observée dans l’axon est plus élevée. La vitesse de propagation s’appuie essentiellement sur deux paramètres : la gaine de myéline et le diamètre de l’axon.
Gaine de myéline La gaine de myéline constituée par les cellules de Schwann recouvre certains axones du système nerveux périphérique. La présence de cette couche isolante augmente les taux de conduction en empêchant la perte de charge et en réduisant la capacité électrique de la membrane [29, 37, 62]. La myélinisation est interrompue au niveau de nœuds de Ranvier. La dépolarisation ne peut avoir lieu qu’aux nœuds de Ranvier.

Diamètre de l’axone La détermination du diamètre axonal est un élément clé du rôle des neurones, ainsi qu’une propriété importante qui détermine la vitesse de propagation de l’influx nerveux [71] [16]. Généralement plus le diamètre de l’axone augmente, plus la résistance aux courants locaux diminue et, inversement, la vitesse des influx augmente. C’est dû au fait que les axones ayant des grands diamètres présentent une surface plus large permettant le passage plus rapide de la quantité d’ions créant le PA.

On peut constater un lien direct entre l’épaisseur de la gaine de myéline et le diamètre de l’axone. L’épaisseur de la gaine de myéline et la distance internodale augmentent conjointement avec le diamètre de l’axone.

En pratique, la vitesse de propagation dépend quasi linéairement du diamètre axonal et de l’épaisseur de la gaine de myéline.

1.2.2 Acquisition des signaux ENG

Pour comprendre les problématiques liées à la mesure de signaux nerveux il faut étudier trois sous-systèmes fonctionnels : le sous-système biochimique avec les cellules et les tissus biologiques constituant le nerfs, le sous-système permettant de définir l’interface entre le vivant et l’artificiel et enfin la chaîne d’acquisition électronique du signal. Après avoir présenté rapidement la physiologie du système nerveux humain dans la première section, nous allons nous attarder sur les électrodes permettant le recueil de ces signaux physiologiques.

Ces électrodes doivent présenter des propriétés électrochimiques particulières, notamment en conservant, dans le temps, une faible impédance et résistant à l’agression du milieu [8]. Certains types d’électrode intègrent une grande densité de contacts afin de fournir une résolution spatiale élevée et une meilleure sélectivité des signaux nerveux [39] [52].

1.2.2.1 Électrodes intra-neurales

Dans la gamme des électrodes intra-neurales, on trouve les électrodes intrafasciculaires et les électrodes sieves (voir figure 1.5). Ces dernières sont aussi appelées électrodes régénératrices d’après leur mode d’implantation assez particulier visant à insérer l’électrode après section du nerf [35]. L’idée est de laisser l’axone se reconstituer en passant par les petits trous de l’électrode, selon le principe illustré par la figure 1.5. Le tube de caoutchouc de silicone sert de guide le long duquel le nerf se régénère. Cette technique, malgré sa possibilité de discerner l’activité de fibres unitaires (amplitudes des potentiels d’actions supérieures à la centaines
de micro-volts) et de petits groupes d’axones, présente une grande difficulté concernant la maîtrise de la régénération des neurones. En pratique, cette régénération est généralement anarchique et aucun potentiel ne peut être enregistré jusqu’à ce que les fibres nerveuses soient régénérées. De plus, ce type d’électrode très invasive est peu concevable dans le domaine des neuroprothèses implantables chez l’Homme.

Figure 1.5 – Électrode SIEVE (issue de [35]).

Les électrodes intrafasciculaires illustrées dans la figure 1.6 sont intéressantes en termes de sélectivité de mesure [19, 49, 100]. Elles sont implantées dans le nerf et peuvent enregistrer de manière selective les signaux qui sont l’image de l’activité neuronale des axones en contact. L’inconvénient principal de ce type d’électrode est leur sensibilité au fascicule cible, n’ayant pas la possibilité de capter les signaux se propageant sur les autres fascicules.

Mathews et al., dans [45], démontrent qu’un réseau de microélectrodes insérées en intrafasciculaire dans le nerf pudendal pourrait être utilisé comme une interface neurale pour la surveillance selective de divers stimuli génito-urinaires, telles que le remplissage de la vessie et une stimulation tactile de la région génitale. Une telle interface neurale pourrait constituer la base d’un système implantable qui fournit un contrôle en boucle fermée de fonctions génito-urinaires sans souffrir de la détection de faux positifs de différents états de la vessie en raison de la stimulation tactile génitale sans rapport. Malheureusement ce type d’approche reste particulièrement invasive et l’implantation des électrodes n’est pas stable et ne permet pas d’utilisation en chronique.

1.2.2.2 Électrodes extra-neurales

Les électrodes extra-neurales sont généralement enroulées en circonférence du nerf (voir figure 1.7 et figure 1.8). Les plus courantes sont nommées électrodes *cuff* et sont considérées à ce jour comme le meilleur compromis entre l’invasivité et la sélectivité du signal recueilli [36, 43]. L’électrode cuff est généralement fabriquée à partir d’un tube en polymère (couche isolante). Comme le montre la figure 1.7, la couche intérieure de l’électrode cuff comporte les pôles de stimulation ou de recueil qui sont en contact avec le nerf. Les électrodes extra-neurales peuvent aussi se présenter sous la forme d’une spirale [81, 24]. Ces électrodes, moins invasives que les électrodes intraneurales, permettent l’enregistrement de l’activité de tout un nerf mais ne donnent pas accès aux informations issues d’un petit groupe de de fibres. On peut trouver plusieurs configurations d’électrodes cuff, mais elles possèdent toutes une ouverture longitudinale pour permettre l’implantation sur le nerf [3, 97, 52].
Figure 1.6 – Électrode TIME (issue de [82]).

Figure 1.7 – Électrode cuff.

En raison de la variation dans les dimensions du nerf, des électrodes cuff doivent être personnalisées pour chaque application. La taille du nerf varie non seulement entre les individus de...
la même espèce mais en fonction du site d’implantation. En outre, l’interaction avec un corps étranger, comme l’électrode produit un tissu inflammatoire (fibrose) qui a une incidence sur le diamètre des nerfs. Pour cette raison, les électrodes cuff doivent être conçues un peu plus grandes que le diamètre du nerf cible afin de tenir compte de ces changements et de prévenir la constiction des nerfs. Malheureusement, le fait d’avoir une implantation un peu lâche au niveau du nerf n’est pas sans conséquence sur la qualité de l’interface au niveau des pôles de contact. Une étude récente a été publiée par Xue et al. [95] qui propose une nouvelle architecture de l’électrode cuff en forme de C (voir figure 1.9) pour s’interfacer avec le SNP. Cette nouvelle électrode a été conçue et fabriquée sous la forme d’un sandwich polyimide-métal-polyimide. L’avantage d’une telle électrode est sa capacité d’auto-adaptation aux différentes tailles de nerf en préservant la qualité de l’interface électrode-nerf.

1.3 Augmentation de la Sélectivité des signaux ENG

L’objectif premier recherché lors du recueil des signaux ENG est la sélectivité. Cette sélectivité est traduite par la possibilité de discriminer les informations parvenant de différentes sources qui peuvent être : une simple fibre, un groupe de fibres, un fascicules ou un groupe de fascicules. Elle dépend de la position du fascicule dans un nerf ou du type de fibre.

1.3.1 Réjection des signaux EMG

Le signal recueilli à la sortie des électrodes cuff est en fait une image de l’activité neurale (ENG) et musculaire (EMG). Malheureusement, les signaux EMG, qui correspondent pour nous à des signaux parasites, ont une amplitude mille fois supérieure aux signaux ENG recherchés [87]. Pour être en mesure d’extraire les signaux ENG plusieurs configurations d’amplification et de conditionnement existent.

La première configuration exploitée afin de minimiser cet effet d’interférences physiologiques est la quasi-tripole, proposée par R. Stein et al.[78] et J.Hoffer [30]. Elle est représentée sur la figure 1.10 (a). Elle consiste à utiliser trois pôles au niveau de l’électrode, à moyenners les signaux issus des pôles extérieurs (V_{in2} et V_{in3}), et à soustraire cette valeur au signal enregistré au niveau du pôle central V_{in1}. Une autre configuration appelée true-tripole se base sur la combinaison linéaire des signaux issus des trois pôles (V_{in1}, V_{in2}, V_{in3}), en calculant les

![Figure 1.10 – Mesure tripolaire associé à deux configurations différentes : a) configuration quasi-tripole, b) configuration true-tripole.](image-url)
différences entre les signaux détectés au niveau du pôle central et le signal issu de chacun des pôles extérieurs.

\[V_{out} = A \left(V_{in1} - \frac{V_{in2} + V_{in3}}{2} \right) \]

(1.1)

Figure 1.11 – Comparaison des potentiels générés à l’intérieur de l’électrode cuff dus aux sources EMG et ENG (figure issu de [56]).

La figure 1.11 montre l’évolution des signaux EMG et ENG à l’intérieur de l’électrode cuff. On remarque que le signal EMG varie linéairement le long de l’électrode, tandis que le signal ENG n’est pas linéaire et admet un maximum au centre de l’électrode. En utilisant trois pôles et en réalisant une mesure double différentielle (équation 1.1), les variations linéaires de tension sont supprimées réduisant l’impact des EMG tout en conservant et en amplifiant légèrement l’ENG.

Pour réaliser électroniquement une structure « quasi-tripole » un seul amplificateur est utilisé (figure 1.10 (a)) alors que pour une structure « true-tripole » trois amplificateurs sont nécessaires (figure 1.10 (b)). La configuration « true-tripole » permet une meilleure réjection des signaux EMG en compensant l’influence de la variabilité de la qualité des trois interfaces pôle-tissu utilisés. Pour autant, aucune de ces deux structures ne permet la discrimination des différentes informations circulant à l’intérieur du nerf. Pour atteindre ce niveau de sélectivité, un filtrage doit être associé à la configuration tripôle afin d’être capable d’exploiter ce signal et de discriminer les différents informations.

1.3.2 Sélectivité spatiale

Toujours dans l’objectif de discriminer certaines fibres nerveuses, une approche consiste à prendre en compte leur positionnement à l’intérieur du nerf. Pour accroître cette sélectivité spatiale des électrodes plusieurs solutions ont été proposées dans le littérature [101].

Généralement, une bonne sélectivité spatiale des enregistrements des signaux neurologiques nécessite un nombre de contacts important au niveau de l’interface de mesure [70, 101, 97].
En dehors des solutions "classiques" d’électrode à configuration tripolaire, Struijk et al. [85] décrivent deux configurations différentes d’électrodes cuff multipolaires pour le recueil des signaux fasciculaires. Ces configurations conservent l’arrangement axial en 3 pôles afin de respecter le pré-traitement visant à rejeter les signaux EMG (voir section précédente). Des expérimentations ont été entreprises en utilisant ces électrodes, le principe était d’enregistrer le signal émis par l’activité du nerf sciatique là où l’électrode a été placée, avant la ramification contenant le nerf péronier et le nerf tibial. L’électrode formée de groupes de tripôles a montré sa capacité à recueillir l’activité des deux nerfs tibial et péronier, l’un des tripôles était plus sensible au nerf le plus proche. D’après ces résultats, ces travaux montrent que les enregistrements fasciculaires sélectifs utilisant la géométrie de l’électrode permet de différencier l’un ou l’autre fascicule selon leur distance de l’électrode. Cette expérimentation a été faite dans le contexte très particulier de la première ramification du nerf sciatique et l’information recueillie reste une information globale provenant de l’activité de toutes les fibres nerveuses de chaque fascicule, mais ces premiers résultats montrent la faisabilité de l’approche. Pour être en mesure de recueillir une information utilisable, il est nécessaire d’améliorer encore la sélectivité.

L’électrode FINE (Fstat Interface Nerve Electrode) proposée par Yoo et al [97] est une solution intéressante pour augmenter la capacité de l’électrode à réaliser des enregistrements ENG sélectifs. Cette électrode se compose de 13 contacts comme le montre la figure 1.14. Elle est placée sur le nerf hypopysaire au niveau de ces deux ramifications. Les résultats montrent (figure 1.16) que les treize contacts de l’électrode enregistrent des informations légèrement différentes en fonction de l’activité de chaque fascicule. Le contexte expérimentale est là aussi très particulier puisque les fascicules étaient physiquement séparés avant expérimentation. Les premières estimations de niveau de sélectivité montrent des résultats intéressants mais ne...
permettent toujours pas une discrimination suffisante de l’influence de l’activité simultanée de chaque groupe d’axones.

Plus récemment, toujours dans le but d’augmenter la sélectivité spatiale, O. Rossel et al. [68] ont proposé une électrode combinant de « petits » tripôles sur la base d’architecture d’électrode tripolaire traditionnelle. L’objectif est d’améliorer l’électrode FINE [97] décrite précédemment en substituant à chaque contact un triângle de petite dimension et en supprimant les deux anneaux externes. Ces petits tripôles sont des disques d’environ 100 µm de diamètre, espacées de 375 µm centre à centre. Cette électrode, appelée FORTE (FINE with Original Recording Tripolar Electrode) est donc une évolution de l’électrode FINE. Plusieurs configurations fasciculaires ont été utilisées pour des simulations utilisant les architectures FINE et FORTE. Les résultats montrent que l’électrode FORTE (voir figure 1.15) présente un indice de sélectivité deux fois plus grand que celui de l’électrode FINE originale présentée dans la figure 1.14.

Figure 1.13 – Deux configurations d’enregistrement : a) une configuration tripolaire de chaque côté du nerf, b) des contacts extérieurs connectés pour former une référence commune pour les contacts centraux. (Issu de [85]).

Figure 1.14 – Electrode FINE avec les 13 contacts
1.3. AUGMENTATION DE LA SÉLECTIVITÉ DES SIGNAUX ENG

Figure 1.15 - Electrode FORTE issu de [68]. Chaque contact de l’électrode FINE est remplacé par trois contacts.

Figure 1.16 - Les échantillons des enregistrements tripolaires obtenus à partir du modèle à éléments finis. Les signaux (trait plein et pointillé) correspondent à chaque fascicule et les parties solides et pleines sont numérotées en fonction de leur position par rapport au contact [97].

1.3.3 Sélectivité par vitesse de propagation

Le nerf est une structure composée de fibres nerveuses qui peuvent être classées en groupes selon leur rôle et leurs caractéristiques. De façon générale, on s’intéresse à la fonction des fibres nerveuses, qui peut être motrice ou sensitive et leur vitesse de propagation de l’influx nerveux. Quand on parle de sélectivité par rapport à la vitesse de propagation, cela revient à la sélectivité par type de fibres nerveuses. Une solution a été présentée par Farina [14] pour l’estimation de la vitesse de conduction, mais pour des signaux EMG. La méthode est basée sur l’analyse de régression entre les fréquences spatiales et temporelles de plusieurs zéros introduits dans le spectre de puissance par l’application d’un ensemble de filtres spatiaux.

Une autre technique a été utilisée pour extraire de l’ENG les signaux en fonction de la vitesse de propagation RSV (Receuil selectif de vitesse) (VSR Velocity selective recording) par Taylor et al. [86]. Cette technique est basée sur une géométrie d’électrode cuff multipolaire. Chaque groupe de trois contacts subit le pré-traitement de true-tripole déjà traité dans la section pour atténuer les signaux parasites. Après cette étape, un retard est ajouté en fonction de la localisation des anneaux du tripôle le long du nerf.
Un potentiel d’action transitant sur le nerf sera perçu de la même manière par chaque tripoôle mais avec des retards inversement proportionnels à la vitesse de propagation du potentiel d’action. Si ce décalage temporel est compensé par le retard ajouté par le système de mesure, les potentiels d’actions apparaissent simultanément en sortie des étages de retard. Ainsi, en les sommant les uns aux autres, l’amplitude du potentiel d’action est amplifié pour une vitesse considérée, alors qu’un autre potentiel d’action ayant une vitesse ou un sens de propagation différent ne sera pas amplifié. Ce système est donc sélectif pour une vitesse de propagation donnée.

La validation expérimentale de cette technique a été présentée par Yoshida en 2009 [98]. Un ver de terre a été utilisé pendant cette expérience et les résultats montrent la possibilité de différencier deux potentiels d’action se propageant à des vitesses distinctes et différentes.

Cette technique a montré son efficacité pour différencier un type de fibre par rapport à autre. Il suffit de fixer les retards à ajouter, pour qu’elle soit sélectif à une certaine fibre qui se propage avec une vitesse de propagation précise et dans un sens négatif ou positif. C’est pour ces raisons que cette technique n’a pas besoin d’être traiter hors ligne. Malgré ces avantages, l’efficacité de cette technique n’a jamais été démontrée dans un cas de nerf de mammifère comportant un grand nombre d’axones. Il est en fait très difficile de valider les approches proposées dans un cas réel simplement parce que la mesure est sensible à beaucoup de paramètre extérieurs difficilement contrôlables. A priori, la technique proposée ne permettrait qu’une discrimination très partielle de l’activité mais nous devons nous baser sur des études théorique pour pouvoir l’affirmer. Cette étude théorique basée sur des modèles sera développée au chapitre 2.

1.4 Conclusion

S’il était possible de construire un système de recueil idéal pour interfacer les nerfs périphériques, un tel système permettrait l’enregistrement de l’activité d’un l’axone unique dans le nerf. Il serait stable dans le temps de sorte que chaque axone, une fois identifié, aurait une fonction connue. À l’heure actuelle, une telle interface n’existe pas. Des méthodes intéressantes ont été proposées avec des dispositifs intra-fasciculaires comme les électrodes "aiguille" en tungstène [100]. Malheureusement, ces électrodes sont par nature très invasives et leur implantation n’est pas assez stable pour permettre une utilisation en chronique. A l’opposé, les solutions extra-fasciculaires basées sur les électrodes cuffs sont beaucoup moins invasives pour le nerf et ont une implantation stable, mais sont limitées à l’enregistrement de l’activité composite générée par tous les axones présents à l’intérieur du nerf.

En pratique, aucune solution présente dans la littérature ne permet de discriminer l’activité d’un axone, ou même un groupe de quelques axones à l’intérieur d’un nerf à l’aide d’une électrode de surface comme l’électrode cuff. Pour améliorer cette discrimination deux types de sélectivité peuvent être pris en compte : la sélectivité spatiale et la sélectivité par type de fibre. Dans le cas de la sélectivité par type de fibre, il semble particulièrement intéressant d’analyser les signatures "vues" au niveau de l’électrode en fonction de la vitesse de propagation de l’influx nerveux de chaque fibre.

Dans ce contexte, l’objectif de cette thèse est de présenter une méthode permettant d’améliorer la sélectivité des électrodes cuffs en fonction des vitesses de propagation des axones.
présents à l’intérieur du nerf. Pour être en mesure de définir le traitement du signal permettant d’améliorer cette sélectivité, il est nécessaire d’avoir un modèle complet et précis de toute la chaîne d’acquisition. Le modèle doit être structuré à partir de la modélisation des potentiels de membrane d’un axone, du signal généré par les potentiels d’actions et recueilli par les contacts de l’électrode. A partir de cette information un pré-traitement du signal peut être effectué afin de rejeter les signaux parasites présents tels que les signaux EMG. Le chapitre suivant est consacré à cette modélisation de la chaîne d’acquisition d’ENG.
Chapitre 2

Modélisation d’un système d’acquisition

L’objectif de cette étude est de proposer un méthode permettant de recueillir, d’une manière sélective et non invasive, les signaux électriques émis par les neurones du système nerveux périphérique. L’utilisation des électrodes de type cuff présentées au chapitre précédent permet de limiter l’invasivité de l’interface aux tissus biologiques. Dans ce chapitre, nous présentons un modèle de système d’acquisition complet permettant la génération des signaux recueillis à la sortie des pré-amplificateurs. Ces signaux seront utile pour une étude des traitements permettant une extraction efficace de l’information utile.

2.1 Motivations

Afin de proposer des solutions originales et de valider notre approche, nous avons besoin d’un modèle bio-physiologique de fibres ayant des vitesses de propagation différentes. La validité du modèle dépend de sa justesse à décrire les variations des potentiels extra-cellulaires pendant la conduction de l’influx nerveux, mais il est aussi important d’avoir un modèle assez simple et générique pour établir facilement des comparaisons entre différents contextes. Dans notre étude, nous avons considéré un modèle homogène et isotope du milieu composant le nerf. Ce modèle sera ensuite couplé au modèle d’un système électronique d’acquisition de bio-signalx.

La modélisation complète de la chaîne d’acquisition comporte quatre parties (fig. 2.1) que nous allons détailler dans les sections suivantes :

![Schéma de la chaîne d’acquisition modélisée.](image)
Le Modèle de la fibre qui se focalise sur les fibres myélinisées. Pour ce type de fibre la conduction est une conduction saltatoire à l’opposé de la conduction continue des fibres non-myélinisées. Le modèle de fibre proposé permet de simuler les courants transmembranaires en tenant compte de ce mode de conduction particulier qui permet de conduire les influx nerveux plus rapidement.

Le Modèle du milieu extra-cellulaire permettant de calculer le potentiel extra-cellulaire induit par les courants transmembranaires. Afin de faciliter le calcul, on considère un modèle qui repose sur un milieu supposé infini et de conductivité constante.

Le Modèle d’électrode qui est basé sur le schéma de la figure 2.5. Ce modèle permet de prendre en compte des paramètres réalistes tels que la largeur et le nombre des contacts ainsi que la distance inter-pôle. Ces paramètres correspondent à ceux d’une électrode cuff multipolaire dimensionnée pour permettre la discrimination des vitesses de propagation dans les fibres nerveuses. Ces paramètres sont généralement contraints pour des raisons anatomiques et d’amplitude attendue du signal [3].

Le Modèle du préamplificateur qui permet le pré-traitement tripolaire ou dipolaire. Ce prétraitement est nécessaire pour dissocier le signal ENG du signal EMG.

2.2 Modèle bio-physiologique

La modélisation de la chaîne d’acquisition complète se décompose en plusieurs blocs. Dans cette section, nous nous intéressons à la génération du potentiel extra-cellulaire en se basant sur les courants transmembranaires générés par les fibres nerveuses. Le cas d’étude des fibres nerveuses myélinisées implique la modélisation de la conduction saltatoire des potentiels d’action qui ne peuvent se déclencher qu’aux nœuds de Ranvier.

2.2.1 Modélisation des courants membranaires des fibres nerveuses myélinisées

Un modèle de fibre nerveuse est présenté dans la figure 2.2. Ce Modèle est extrait de la publication de Warman et al. [88] lui même basé sur le modèle de Hodgkin-Huxley [27]. Il se présente sous la forme d’un modèle de réseau d’éléments passifs et actifs. Ga représente la conductance axoplasmique séparant deux NDR (Noeud De Ranvier). Chaque partie active présente un nœud de Ranvier. Cette partie active est composée de la capacité de membrane et des conductances de canaux ioniques. Rappelons que la distance internodale l_{myel} est proportionnelle au diamètre de la fibre D et au diamètre du noeud de Ranvier (diamètre de l’axone) [88].

Ce modèle est généralement utilisé pour étudier l’activation de différents types de fibres sous une stimulation électrique donnée. Même si nous ne sommes pas dans le même contexte, ce modèle peut nous permettre d’extraire les courants transmembranaires. Ce modèle décrit qu’une stimulation extra-cellulaire peut être vue comme une stimulation en courant intranodal (eq. 2.4). Les champs électriques appliqués à une fibre sont équivalents à un ensemble de sources de courant appliqués de manière intracellulaire. La figure 2.2 (b) présente le modèle de reseau d’une fibre nerveuse dans un milieu extra-cellulaire isopotentiel qui subit un ensemble de courants intracellulaires injectés, $I_{int}(n)$. L’application de la loi de Kirchhoff sur les circuits électriques de la figure 2.2 (b) conduit à un ensemble d’équations différentielles discrètes dans l’espace et continue dans le temps comme suit:
Courants transmembranaires :

\[I_m(n, t) = i_{ion}(n, t) + i_c(n, t) \] \hspace{1cm} (2.1)

avec \(i_{ion} \) : courant ionique, \(i_c \) : courant capacitif

L'obtention de ceux-ci, nécessite la résolution de l'équation suivante :

\[i_{ion}(n, t) + i_c(n, t) + i_a(n, t) - I_{int} = 0 \] \hspace{1cm} (2.2)

avec \(i_a \) : courant axoplasmique.

Ces courants s'écrivent de la manière suivante :

\[i_{ion}(n, t) = G_m(V_m, t)V_m(n)i_c(n, t) = C_m \frac{dV_m(n)}{dt} - i_a = -G_a[V_m(n-1) - 2V_m(n) + V_m(n+1)] \] \hspace{1cm} (2.3)
L'équation différentielle à résoudre s'écrit comme suit :

\[C_m \frac{dV_m(n)}{dt} + G_m(V_m, t)V_m(n) - G_a[V_m(n-1) - 2V_m(n) + V_m(n+1)] = I_{int}(n) \quad (2.4) \]

avec \(C_m \) la capacité nodale, \(G_m(V_m, t) \) la conductance voltage dépendant et \(G_a \) la conductance internodale axoplasmique.

Les courants ioniques sont décrits par le produit de la tension transmembranaire et de la conductance voltage dépendante \(G_m(V_m, t) \). Ce modèle comprend des canaux sodique \(Na \) et des canaux de fuites \(L \) (pour "leakage" en anglais), la dynamique de ces courants est décrite avec l'équation suivante :

\[G_m(V_m, t).V_m(n, t) = \pi.dl[g_{Na}m^2h(V_m(n, t) - E_{Na}) + g_L(V_m(n, t) - E_L)] \quad (2.5) \]

Avec \(m \) et \(h \) la probabilité d’ouverture et de fermeture des canaux sodiques. \(g_{Na} \) et \(g_L \) sont les conductances des canaux sodiques et des canaux de fuite, \(E_{NA} \) et \(E_L \) la tension de Nernst des canaux.

Les dynamiques de probabilité d’ouverture \(m \) et \(h \) sont décrites par les équations différentielles ci-dessous :

\[\frac{dm}{dt} = \alpha_m(1 - m) - \beta_m m \quad (2.6) \]
\[\frac{dh}{dt} = \alpha_h(1 - h) - \beta_h h \quad (2.7) \]

L’ensemble des équations 2.4, 2.6 et 2.7 forment un système d’équations différentielles. On a recours à une résolution numérique à l’aide du logiciel Matlab pour 150 nœuds de Ranvier.

Les termes de l’équation 2.4 ont été implémentés suivant la publication de [88] :

\[\alpha_m = [97 + 0.363V_m(n, t)/1 + e^{-(V_m(n, t) - 31)/5.3}] \quad (2.8) \]
\[\beta_m = \alpha_m/e^{(V_m(n, t) - 23.8)/4.17} \quad (2.9) \]
\[\alpha_h = \beta_h/e^{(V_m(n, t) - 5.5)/5} \quad (2.10) \]
\[\beta_h = 15.6/[1 + e^{-(V_m(n, t) - 24)/10}] \quad (2.11) \]

2.2.1.1 Courants nodaux simulés

Le modèle a été implémenté dans le logiciel Matlab afin de générer les courants nodaux transmembranaires. Les paramètres utilisés pour les simulations des NDRs des différentes fibres sont présentés dans les tableaux 2.1 et 2.2. Les simulations ont permis de générer les courants transmembranaires de 150 nœuds de Ranvier en fonction du temps. Quatre échantillons d’axones ont été choisis pour des diamètres de fibres allant de 500 à 2000 µm (tableau 2.2). L’avantage du choix de ces quatre types de fibre est qu’il couvre l’ensemble des vitesses de propagation.
2.2. MODÈLE BIO-PHYSIOLOGIQUE

2.2.1. Les paramètres de la membrane issu de [88]

<table>
<thead>
<tr>
<th>Paramètre</th>
<th>Valeur</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_r</td>
<td>-80 mV</td>
</tr>
<tr>
<td>ρ_a</td>
<td>54.7 Ω cm</td>
</tr>
<tr>
<td>c_m</td>
<td>2.5 μF/cm2</td>
</tr>
<tr>
<td>g_{Na}</td>
<td>1.445 mS/cm^2</td>
</tr>
<tr>
<td>E_{Na}</td>
<td>35.64 mV</td>
</tr>
<tr>
<td>g_L</td>
<td>128 mS/cm^2</td>
</tr>
<tr>
<td>E_L</td>
<td>-0.01 mV</td>
</tr>
<tr>
<td>l</td>
<td>1.5 μm</td>
</tr>
<tr>
<td>d</td>
<td>0.6</td>
</tr>
<tr>
<td>D</td>
<td>100</td>
</tr>
</tbody>
</table>

2.2.1.2 Validité du modèle sur la vitesse de propagation des fibres nerveuses

Des résultats d’études présents dans la littérature indiquent que la vitesse de propagation des fibres nerveuses peut être proportionnelle au diamètre de la fibre, en particulier pour les fibres myélinisées présentant une similarité structurale [71, 18]. Nous considérerons dans notre modèle que la distance entre les nœuds varie de façon linéaire avec le diamètre des fibres. Pour comparer nos résultats, nous déterminons la vitesse de propagation des fibres modélisées. Ce calcul se fait en divisant la distance séparant deux nœuds de Ranvier consécutifs par le temps (δ_t) qui sépare l’enregistrement des potentiels correspondants. La distance entre deux nœuds de Ranvier correspond à la longueur de myéline (L_{myel}).

Le temps qui sépare deux potentiels δ_t peut être estimée égal à 24 μs. Dans ce contexte, la vitesse de propagation, d’une fibre ayant une longueur de myéline égale à 500 μm sera égale à 20.8 m/s. En divisant toutes les longueurs de myéline du tableau 2.2 par le temps δ_t, on obtient 20.8, 41.6, 62.5 et 83.3 m/s. Nous sommes bien dans la gamme de vitesse de propagation mesurée sur les fibres nerveuses myélinisées qui est généralement comprise entre 20 m/s et 90 m/s. Dans notre modèle il existe bien une relation linéaire entre la vitesse de propagation et le diamètre de la fibre. Les simulations ont montrés que le rapport est de 4.22, il est légèrement inférieur à celui de la littérature [41] (qui et de 6) mais reste dans le même ordre de grandeur. D’une manière générale on peut noter que la dynamique des signaux est identique quelque soit le type de fibre (même délai δ_t d’un NDR à un autre).

2.2.2 Calcul du potentiel extra-cellulaire à la surface du nerf

Après avoir calculé les courants transmembranaires de la fibre nerveuse dans la section 2.2.1, nous nous intéressons au calcul du potentiel extra-cellulaire généré en un point M à la surface du nerf par une fibre nerveuse et mesurée par l’électrode décrite dans la section précédente.
2.3. Ce calcul est la deuxième étape de la modélisation de la chaîne d’acquisition présentée dans la figure 2.1.

Il existe différents modèles pour le calcul des potentiels extra-cellulaire. Certains modèles nécessitent des calculs importants, comme les modèles à éléments finis (FEM). Ce type de modèle utilise un maillage volumique en 3D et permet de prendre en compte des morphologies réalistes, les paramètres électriques comme la conductivité et la permittivité diélectrique [93, 47, 6, 22], et enfin les configurations et les géométries des électrodes [63, 7, 102, 26]. On trouve de même dans la littérature la méthode des éléments finis de frontière (BEM) qui est dérivée des méthodes de modélisations classiques en éléments finis. Ce type de modélisation est particulièremen adapté à la modélisation dans des milieux infinis. Cette méthode utilise aussi des maillages, mais uniquement en surface (mailles triangulaires). La précision de la méthode BEM et le taux de convergence peuvent être plus élevés dans certains cas que la méthode classique d’éléments finis [Kubic05].

Les modèles cités ci-dessus sont des modèles fiables mais extrêmement gourmands en calculs. En dehors de ces techniques à éléments finis on peut trouver des méthodes alternatives comme les méthodes analytiques qui peuvent permettre des estimations précises en maintenant des temps de calcul raisonnables. Dans ce contexte, pour calculer le potentiel potentiel sur l’électrode nous utilisons les équations analytiques d’un modèle homogène infini en considérant chaque nœud de Ranvier comme une source de courant ponctuelle. Cette approximation se justifie par la taille du nœud de Ranvier qui est négligeable par rapport aux dimensions de l’électrode de mesure.

L’estimation du potentiel extra-cellulaire créé au point M à la surface du nerf nécessite la détermination de la résistance de transfert liant le potentiel aux courants générés par chaque NDR. Nous avons considéré pour ce calcul que le milieu est homogène et isotrope dans un volume infini [99]. Dans ces conditions, le champ électrique généré par un axone possède tout naturellement une symétrie de révolution autour de l’axon.

Le modèle choisi pour ce travail de thèse est donc un modèle qui repose sur un milieu considéré comme infini et de conductivité σ constante. Le modèle est présenté avec une fibre nerveuse coaxiale au nerf et possédant des nœuds de Ranvier se succédant à intervalles réguliers (de longueur \(l_{myel} \)). Partant de ce modèle, nous cherchons à calculer le potentiel généré par des sources de courant ponctuelles en un point M de l’espace.
2.3. MODÉLISATION D’UNE ÉLECTRODE

On définit le potentiel extra-cellulaire $v_z(z, n, t)$ comme le potentiel en un point M de l’espace, produit par le courant du NDR n au temps t et à l’emplacement z sur l’axe longitudinal de la fibre. On définit de plus ρ', la distance entre le point M et la fibre nerveuse. La distance r_n est définie comme la distance entre le contact M et le n-ième nœud de Ranvier. Le potentiel généré par le NDR n sera donné par l’équation suivante :

$$v_z(z, n, t) = \frac{i_n(t)}{4\pi\sigma r_n}$$ (2.12)

$$v_z(z, n, t) = \frac{i_n(t)}{4\pi\sigma \sqrt{\rho'^2 + (z - nl_{myel})^2}}$$ (2.13)

La linéarité du milieu proposé facilite le calcul du potentiel. En effet, en appliquant le principe de superposition, le potentiel $v_m(z, t)$ au point M produit par tout les NDR sera la somme des potentiels en ce point produit par chaque nœud de Ranvier à l’instant t.

$$v_m(z, t) = \sum_{n=1}^{151} v_z(z, n, t)$$ (2.14)

2.3 Modélisation d’une électrode

2.3.1 Paramètres de l’électrode

Dans cette partie, nous allons décrire le dimensionnement d’une électrode multipolaire cuff et sa modélisation. Les paramètres pris en compte sont : la taille ou largeur des pôles, la distance entre les contacts, la longueur de l’électrode, le nombre de contacts et la distance entre le contact et la fibre nerveuse.

Taille du contact : Pour rendre notre modèle plus réaliste, il faut prendre en compte la largeur L_e des pôles de l’électrode. Le calcul le plus simple consiste à échantillonné et moyenné les potentiels générés en chaque point. Nous avons choisi de discrétiser le contact en 10 points avec un pas de 100 μm (Dinterpoint) et les moyenné par la suite sur la largeur du contact comme le montre sur la figure 2.4. Ce traitement nous fournit un pôle ayant une largeur L_e de 1 mm.

La largeur du pôle peut être désignée par une fonction porte de largeur L_e et d’une amplitude de $1/L_e$. Sa réponse fréquentielle est présentée dans la figure 2.6a). La fonction largeur du pôle dans le domaine des fréquences spatiales est la réponse d’un filtre spatial passe-bas. La réponse en fréquence passera par un premier zéro à $1/L_e = 1000$ m$^{-1}$. Nous verrons l’effet de ce phénomène à la sortie d’un dipôle ou d’un tripôle dans les sections suivantes.

Distance inter-contact : La distance entre les contacts de l’électrode est un paramètre important pour le dimensionnement de l’électrode de mesure des signaux ENG. Nous avons choisi une distance inter-contact de 3 mm qui est cohérente avec l’état de l’art. Cette distance nécessite une discrétisation de 30 points toujours avec le même pas de 100 μm. L’effet de la modélisation de cette distance se révèlera plus clairement dans la partie de modélisation
de l’étage du préamplificateur. Suite aux différents résultats sur les analyses spectrales du chapitre 3, nous verrons qu’il sera intéressant de jouer sur ce paramètre.

Longueur et nombre de contacts de l’électrode : Dans l’objectif d’améliorer la sélectivité il est préférable d’avoir un maximum de contacts sur l’électrode. Pour une longueur de cuff moyenne le long du nerf de 20 mm par exemple avec une distance inter-contact de 3 mm, nous n’aurons que sept contacts possible sur l’électrode. Le choix de la longueur de l’électrode est très dépendant du type de nerf cible et les contraintes anatomiques associées. Nous avons réalisé nos simulations avec une longueur d’électrode assez grande de 10 cm, ce qui suppose qu’une électrode 10 cm peut comporter ainsi de 35 contacts pour une distance inter-contact de 3 mm. Une telle électrode n’est pas forcément viable en pratique mais cela nous permet d’écarter les problèmes d’effet de bord dans nos simulations.

Distance contact-nerf Le choix de la distance entre le contact et la surface du nerf est lié au type de nerf qu’on vise pour un recueil. Nous avons considéré une distance contact-électrode de 1 mm. Cette distance est cohérente avec les tailles moyennes de nerf.

Le tableau 2.3 résume les valeurs des paramètres que nous allons considérer dans notre modèle. Notons bien que ces valeurs sont modifiables en fonction de l’application et des résultats obtenus pour la réalisation d’un filtre.
2.4 ÉTAGE PRÉAMPLIFICATEUR

Nous nous intéressons ici à la modélisation du préamplificateur en se focalisant sur deux configurations possibles : la configuration dipolaire et la configuration tripolaire (voir figure 2.5).

Configuration dipolaire

Cette configuration nécessite qu’un seul amplificateur différentiel. Il amplifie la différence entre deux pôles d’enregistrement adjacents. Mathématiquement parlant, c’est le produit de convolution de mon signal par un vecteur de (−1, 1) dans le domaine spatiale.

Pour bien comprendre l’influence de la configuration de mesure nous proposons de faire une étude qualitative de la modification du signal dans le domaine des fréquences spatiales. Nous avons vu précédemment que la largeur du pôle aura un effet sur le signal recueilli comme illustré figure 2.6a. L’amplificateur amène lui aussi sa réponse fréquentielle (figure 2.6b). A la sortie de chaque amplificateur différentiel nous retrouverons donc le produit de ces deux réponses comme illustré figure 2.6c.

Configuration tripolaire

Généralement, le recueil de signaux ENG s’effectue à l’aide d’un configuration tripolaire pour rejeter les signaux parasites comme l’EMG. Du point de vue électronique, la configuration dite “true-tripole” (voir chapitre 1) consiste à réaliser une double amplification différentielle. Ce traitement sur les trois pôles considérés peut être illustré par l’équation suivante :

\[
V_E(E, t) = v_c(z_0 + D_{interpoint,E}, t)
\] (2.16)

\[v_c(zc, t) = \frac{1}{10} \sum_{n=1}^{10} v_m(zc + (nc - 5) * L_e / 10, n, t)
\] (2.15)

zc étant la position longitudinale du contact et *nc* le numéro d’échantillon à l’intérieur du contact.

Table 2.3 – Caractéristiques des électrodes modélisées

<table>
<thead>
<tr>
<th>Largeur du pôle</th>
<th>Distance inter-contact</th>
<th>Longueur de l’électrode</th>
<th>Nombre contacts</th>
<th>Distance contact-fibre</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 mm</td>
<td>2 – 3 mm</td>
<td>100 mm</td>
<td>35 – 50</td>
<td>1 mm</td>
</tr>
</tbody>
</table>

Partant de ces définitions de paramètres nous pouvons établir les équations des potentiels recueillis au niveau des électrodes. Le potentiel \(v_c(zc, t) \) présent sur le contact *c* est la moyenne des potentiels \(v_m \) présents au niveau de cette électrode.
Mathématiquement parlant, le signal de sortie est le produit de convolution de mon signal d’entrée par un vecteur de \((-\frac{1}{2}, 1, -\frac{1}{2})\).

La représentation fréquentielle est plus significative de la modification apportée au signal. Pour cela, la figure 2.7 présentant les trois réponses fréquentielle de mes paramètres montre bien l’effet de l’étage tripolaire combinée avec la largeur du pôle dans le domaine des fréquences spatiales.

Notons que nous avons supposé pour les deux configurations que les amplificateurs sont parfaits, sans bruit et que le gain est le même sur chaque voie.

2.4.1 Potentiel extra-cellulaire mesuré à partir d’électrode modélisée

La figure 2.8 représente l’évolution spatio-temporelles des quatre signaux que nous avons obtenus à la sortie du préamplificateur (configuration tripolaire) avec une largeur du pôle de \(L_e = 1\) mm et une distance inter-contact de 3 mm. Pour rappel, les quatre signaux d’entrée simulent des fibres de tailles différentes (voir tableau 2.2). La figure 2.8 donne les mêmes représentations spatio-temporelles mais cette fois-ci avec une période de contact de 2 mm.
2.4. ÉTAGE PRÉAMPLIFICATEUR

L’analyse détaillée de ces résultats et leur exploitation se feront dans les chapitres suivants du manuscrit mais nous pouvons déjà observer que chaque fibre donne une signature particulière. On voit, par exemple, très clairement le processus de propagation dans le domaine spatial et temporel. Notre objectif est de proposer des filtres permettant de discriminer l’activité des différentes fibres en fonction de leur vitesse de conduction. On peut voir que si on diminue la distance entre les contacts, le signal devient plus compressé et donc surement plus facile à isolé. L’amplitude des différents signaux est différente selon les fibres mais le point le plus intéressant est l’orientation des propagations. L’orientation spatio-temporelle des signaux émis par les fibres pourrait être une base intéressant pour la définition de filtres sélectifs.

Figure 2.6 – La réponse fréquentielle : (a) de la largeur du pôle ($L_p = 1mm$). (b) du filtre dipolaire seul, (c) du filtre dipolaire lorsque la largeur des pôles (L_p) est prise en compte pour une distance inter-contact de $3mm$.

Figure 2.6 – La réponse fréquentielle : (a) de la largeur du pôle ($L_p = 1mm$). (b) du filtre dipolaire seul, (c) du filtre dipolaire lorsque la largeur des pôles (L_p) est prise en compte pour une distance inter-contact de $3mm$.

FIGURE 2.7 – La réponse fréquentielle de : (a) de la largeur du pôle \((L_e = 1\ mm)\). (b) du filtre tripolaire seul, (c) du filtre tripolaire lorsque la largeur des pôles \((L_e)\) est prise en compte pour une distance inter-contact de 3\(mm \).

FIGURE 2.8 – Représentation spatio-temporelle des signaux disponibles à la sortie du préamplificateur tripolaire des quatre type de fibre avec longueur de pôle \(L_e = 1\ mm\) et la période spatiale égale à 3\(mm \).
2.5 Conclusion

Dans ce chapitre, nous avons décrit le modèle d’une chaine d’acquisition complète. Ce modèle est composé de plusieurs parties. La première partie permet de générer les potentiels extra-cellulaires à partir de la modélisation de l’évolution des courants membranaires pendant la propagation du potentiel d’action. Nous avons appliqué ce modèle à quatre fibres (voir tableau 2.2) permettant de couvrir l’ensemble de la plage de vitesses de conduction des axones. La deuxième partie concerne la modélisation de l’électrode. Ce modèle permet de simuler le signal "vu" par chaque pôle d’une électrode de type Cuff à partir des potentiels extra-cellulaires générés pendant la conduction du signal nerveux. Nous avons appliqué ce modèle à des caractéristiques d’électrodes réalistes en termes d’écart entre pôles et largeur de pôle (voir tableau 2.3). L’électrode a volontairement été choisie un peu longue pour permettre une étude objective des différentes solutions d’extraction de l’information utile. La dernière partie du modèle permet de simuler deux types de configuration de pré-amplificateur : bipolaire ou tripolaire. Au final, le modèle permet de simuler le signal obtenu à la sortie de la chaine d’acquisition pour différents types de fibre nerveuse active. Ce modèle nous permet donc d’avoir une réelle stratégie de conception de la chaine d’acquisition et du traitement permettant l’extraction de l’information. Il nous permettra aussi de valider les solutions proposées avec une retour assez objectif même si il n’est issu que de simulations.

Figure 2.9 – Représentation spatio-temporelle des signaux disponibles à la sortie du préamplificateur tripolaire des quatres type de fibre avec longueur de pôle \(L_e = 1 \text{ mm} \) et la période spatiale égale à 2 mm.
Chapitre 3

Sélectivité de vitesse

Nous avons montré, au chapitre précédent, comment nous avons choisi de modéliser une fibre nerveuse et un système de recueil de signaux ENG. Nous allons maintenant nous attacher à analyser les signaux obtenus à l’aide de ce banc de simulation. Nous nous intéresserons ensuite aux méthodes qui pourraient permettre de discriminer ces signaux sur la base des vitesses de propagation des influx nerveux dans les fibres.

3.1 Représentation spatio-temporelle du signal extra-cellulaire

La figure 3.1 représente l’évolution temporelle (axe t) de la répartition spatiale le long d’une fibre (axe z) du potentiel extra-cellulaire (axe U) à une distance radiale de 1 mm, lorsque celle-ci est le siège de la propagation d’un potentiel d’action. La fibre considérée est la fibre n°3 de la table 2.2 : diamètre 15 µm, longueur des gaines de myéline 1,5 mm. Avec ces caractéristiques, la vitesse de propagation de l’influx nerveux est environ de 63 m s$^{-1}$.

Comme nous l’avons expliqué au chapitre précédent, la taille des électrodes, leur disposition et le traitement apporté par l’étage de préamplification modifient, plus précisément filtrent spatialement, ce signal. Le résultat de ce filtrage spatial est illustré à la figure 3.2. Bien sûr, un tel signal n’est pas observable car on n’y a pas encore introduit l’effet d’échantillonnage inhérent à la structure discrète de l’électrode. Pour cette simulation, on a considéré une électrode dont les pôles ont une longueur $L_e = 1$ mm et sont espacés de 2 mm (la période spatiale d est donc de 3 mm).

Enfin, la figure 3.3 représente l’évolution temporelle de la trentaine de signaux qui pourraient être extraits, via un préamplificateur à structure « tripôle », d’une électrode cuff longue de 10 cm, et dont les pôles auraient une période spatiale de 3 mm, si cette dernière entourait la fibre que nous considérons.

Le phénomène de propagation est clairement visible sur ces figures. En pratique, seuls les signaux représentés figure 3.3 sont accessibles à la mesure. C’est donc à partir de ces derniers que nous devrons définir un traitement du signal qui permettra de discriminer l’activité de tel ou tel type de fibre nerveuse. Cependant, leur faible résolution spatiale risque de masquer certains aspects du problème. Nous allons donc travailler sur le signal virtuel de la figure 3.2, tout en gardant à l’esprit qu’il y manque une opération d’échantillonnage spatial.
CHAPITRE 3. SÉLECTIVITÉ DE VITESSE

Figure 3.1 – Évolution spatio-temporelle du signal extra-cellulaire (axe z de 0 à 100 mm; axe t de 0 à 1,45 ms; axe U de -6 à 6μV.

Figure 3.2 – Évolution spatio-temporelle du signal extra-cellulaire après filtrage spatial de type tripôle. Longueur de pôle $L_e = 1$ mm; espacement des pôles 2 mm; période spatiale 3 mm.

Figure 3.3 – Signaux disponibles à la sortie du préamplificateur. Période d’échantillonnage spatial : 3 mm.
3.1. REPRÉSENTATION SPATIO-TEMPORELLE DU SIGNAL EXTRA-CELLULAIRE

Fibre 1 : \(L_{myel} = 0,5 \text{ mm et } v \approx 20 \text{ m s}^{-1} \)

Fibre 2 : \(L_{myel} = 1 \text{ mm et } v \approx 40 \text{ m s}^{-1} \)

Fibre 3 : \(L_{myel} = 1,5 \text{ mm et } v \approx 64 \text{ m s}^{-1} \)

Fibre 4 : \(L_{myel} = 2 \text{ mm et } v \approx 84 \text{ m s}^{-1} \)

FIGURE 3.4 – Représentation spatio-temporelle du signal après filtrage spatial tripolaire pour les quatre fibres-types.

La figure 3.4 récapitule les représentations spatio-temporelles des signaux que nous souhaitons pouvoir discriminer. Sur l’aspect des signaux, il semble possible de discerner trois critères :
— l’amplitude ;
— la largeur temporelle ou spatiale ;
— la vitesse.
Pour évaluer la pertinence de ces critères, il est indispensable d’effectuer une étude spectrale du signal.
3.2 Étude spectrale mono-dimensionnelle

3.2.1 Spectre temporel

La figure 3.5 permet de comparer les déroulements temporels des signaux présents sur une sortie du préamplificateur en fonction du type de fibre activée. On y voit bien les similitudes de forme, les variations d’amplitude et une apparente contraction de la durée du signal.

Le module de la transformée de Fourier de ces signaux est donné figure 3.6. On y voit que, bien que les spectres diffèrent, ceux qui sont les plus énergétiques recouvrent largement les spectres les moins énergétiques. Il est évident, au vu de ces spectres, qu’il n’est pas raisonnable d’envisager d’utiliser un simple filtrage temporel pour arriver à discriminer les signaux issus de nos quatre fibres.

Notons en passant l’apparition d’un lobe secondaire entre 20 et 40 kHz dans le spectre associé à la fibre la plus rapide : pour cette fibre, la taille de l’électrode (3 mm) se rapproche de l’espacement entre les nœuds de Ranvier (2 mm). Il a été montré que ce phénomène peut être exploité pour réaliser une sélectivité spatiale car l’amplitude de ce lobe secondaire dépend fortement de la distance de la fibre à l’électrode [68].

3.2.2 Spectre spatial

La figure 3.7 montre la répartition spatiale du potentiel à un instant donné. Comme on pouvait s’y attendre, les projections dans le domaine temporel et le domaine spatial ont même forme (à un retournement près). Sans surprise, nous pouvons tirer des spectres spatiaux de la figure 3.8 les mêmes conclusions que celles que nous avions tirées à partir de la figure 3.6.

De plus, ces spectres spatiaux ne tiennent pas compte de l’échantillonnage spatial inhérent à la structure discrète de l’électrode. On a donc reporté sur la figure 3.8 un cadre grisé qui couvre la bande de fréquence propre à un échantillonnage spatial de période 3 mm dû à la structure de l’électrode. Il est évident que l’échantillonnage spatial entrainera un repliement de spectre qu’il ne faudra pas négliger.

\[Légende: \cdot \cdot \cdot = \text{fibre 1} ; \cdot \cdot \cdot = \text{fibre 2} ; \cdot \cdot \cdot = \text{fibre 3} ; \cdot \cdot \cdot = \text{fibre 4}. \]

FIGURE 3.5 – Déroulement temporel du signal présent sur une sortie du préamplificateur suivant le type de fibre considéré.
3.2. ÉTUDE SPECTRALE MONO-DIMENSIONNELLE

Figure 3.6 – Modules des transformées de Fourier des signaux de la figure 3.5.

Figure 3.7 – Répartition spatiale du potentiel à un instant donné suivant le type de fibre considéré.

Figure 3.8 – Modules des transformées de Fourier des répartition spatiales du potentiel un instant donné suivant le type de fibre considéré. Le cadre grisé délimite un intervalle de fréquence s’étendant de -167 m^{-1} à 167 m^{-1}.
3.3 Étude spectrale bi-dimensionnelle

Les deux brèves études précédentes viennent de nous confirmer qu’il n’est pas réaliste de vouloir discriminer des signaux extra-cellulaires sur leur seul aspect temporel ou spatial car, dans un domaine comme dans l’autre, les énergies des signaux résident dans des bandes de fréquence fortement recouvrantes. Une solution peut se trouver dans la prise en compte de la relation temps-espace inhérente à un signal qui se propage.

3.3.1 Un peu de théorie

Il est classique d’associer à un signal à espace continu et temps continu \(u(z, t) \) sa transformée de Fourier bi-dimensionnelle \(U^F(v_z, v_t) \) définie par

\[
U^F(v_z, v_t) = \int_{\mathbb{R}^2} u(z, t) e^{-i 2\pi (z v_z + t v_t)} \; dz \; dt \tag{3.1}
\]

Le carré du module de cette transformée de Fourier est la densité spectrale d’énergie du signal \(u(z, t) \). Nous la noterons dorénavant \(\text{DSE}_u \) (unité \(V^2 \cdot m^2 \cdot s^2 \) dans le cas d’un signal bi-dimensionnel temps-espace homogène à une différence de potentiel électrique).

\[
\text{DSE}_u (v_z, v_t) = |U^F(v_z, v_t)|^2
\]

L’étude de la DSE des signaux de la figure 3.4 nous permettrait de voir dans quelle mesure les énergies des signaux émis par les différentes fibres occupent des domaines de fréquences temps-espace distincts.

Malheureusement, pour être appliquée, la définition, que constitue l’équation 3.1, suppose une connaissance parfaite, c’est-à-dire à chaque instante et en tout point, de la fonction \(u(z, t) \). Or, nous n’avons pas cette connaissance parfaite, car les signaux de la figure 3.4 sont issus d’un simulateur qui ne nous en fournit qu’une version à espace discret borné et temps discret borné, une séquence à deux dimensions \(u_{n,m} \), telle que

\[
\forall (n, m) \in [1, N] \times [1, M], \quad u_{n,m} = u\left(z_0 + \frac{n}{f_z}, t_0 + \frac{m}{f_t}\right)
\]

où \(z_0 \) et \(t_0 \) situent la partie du signal observée dans le temps et dans l’espace et où \(f_z \) et \(f_t \) définissent, respectivement, la fréquence d’échantillonnage spatial et la fréquence d’échantillonnage temporel. Pour la suite de cette étude, on pourra supposer, sans que cela nuise à la généralité du propos, que \(z_0 = 0 \) et \(t_0 = 0 \), ou toute autre valeur arbitraire. En effet, ces grandeurs ne modifient la transformée de Fourier que par un facteur de phase qui disparaît totalement lors du calcul de la DSE.

Par définition, la transformée de Fourier discrète mono-dimensionnelle d’une séquence \(u_n \) de longueur \(N \) est la séquence \(U^d_p \), elle aussi de longueur \(N \), définie par :

\[
U^d_p = \sum_{n=1}^{N} u_n e^{-i 2\pi \frac{(n-1)(p-1)}{N}}
\]

De même, la transformée de Fourier discrète bi-dimensionnelle d’une séquence \(u_{n,m} \) de « surface » \(N \times M \) est la séquence \(U^d_{p,q} \) définie par :

\[
\forall (p, q) \in [1, N] \times [1, M], \quad U^d_{p,q} = \sum_{n=1}^{N} \sum_{m=1}^{M} u_{n,m} e^{-i 2\pi \left(\frac{(n-1)(p-1)}{N} + \frac{(m-1)(q-1)}{M}\right)}
\]
Si l’on fait l’hypothèse que $u(z, t)$ est à bande limitée $\left[-\frac{f_z}{2}, \frac{f_z}{2} \right] \times \left[-\frac{f_t}{2}, \frac{f_t}{2} \right]$, on peut montrer qu’il existe une relation entre $U^F (\nu_z, \nu_t)$ et $U_{p,q}^d$:

$$\forall (p, q) \in \left[1, \frac{N}{2} \right] \times \left[1, \frac{M}{2} \right], \quad U^F \left(\frac{p-1}{N} f_z, \frac{q-1}{M} f_t \right) = \frac{U_{p,q}^d}{f_z f_t}$$

Les domaines de fréquences négatives ($\nu_z < 0$ ou $\nu_t < 0$) s’obtiennent pour $\frac{N}{2} < p \leq N$ ou $\frac{M}{2} < q \leq M$ en remplaçant $(p – 1)$ par $(1 + p – N)$ ou $(q – 1)$ par $(1 + q – M)$.

Forts de ces relations, nous pouvons utiliser des outils de calcul numérique comme Matlab ou Scilab pour déterminer les valeurs de la transformée de Fourier $U^F (\nu_z, \nu_t)$, ou de la densité spectrale d’énergie $DSE_{u\nu} (\nu_z, \nu_t)$, d’un signal $u(z, t)$ connu seulement par ses échantillons (fréquences d’échantillonnage f_z et f_t) dans un domaine temps-espace de surface finie.

3.3.2 Visions spectrales

La figure 3.9 montre les densités spectrales d’énergie des signaux extra-cellulaires, après filtrage tripôle (signaux de la figure 3.4), pour les quatre fibres type. Au-delà de la différence d’amplitude évidente, on y voit un début de confirmation du fait que les énergies de ces signaux ne semblent pas occuper les mêmes domaines du plan des fréquences.

Pour le vérifier, nous avons tracé, dans ce plan, quelques lignes de niveau pour chacun des spectres (figure 3.10). On a représenté sur la figure 3.11 les lignes de niveau de la somme des densités spectrales d’énergie de nos quatre signaux-type. On y voit que, malgré quelques recouvrements, il semble possible de délimiter, pour chaque type de fibre, des zones du plan des fréquences où se concentre l’énergie du signal.

Figure 3.9 – Densités spectrales d’énergie (échelle linéaire) des signaux filtrés tripôle pour les quatre fibres-type (Cf. figure 3.4 pour un rappel des caractéristiques de chaque fibre).
3.4 Des filtres idéaux

L’étude précédente nous a montré que les densités spectrales d’énergie des signaux des fibres 1 à 4 n’occupaient pas exactement les mêmes lieux dans le plan des fréquences spatiotemporelles. Afin de vérifier l’intérêt d’un filtrage spécifique, nous allons définir quatre filtres idéaux (de type tout ou rien) nous permettant de sélectionner des portions, judicieusement choisies, de la transformée de Fourier d’un signal extra-cellulaire après traitement tripôle. Nous vérifierons ensuite, par transformée de Fourier inverse, si cette opération est suffisamment sélective.

Ces filtres, que nous appellerons aussi des masques puisqu’ils servent à masquer une partie de la transformée de Fourier d’un signal, sont représentés figure 3.12. Ils ont été construits en utilisant le graphique de la figure 3.11 comme « patron ».

Remarquons d’abord qu’ils occupent les deuxième et quatrième quadrants : ils sélectionnent donc des signaux se propageant dans le sens que nous appellerons direct, vers les valeurs positives de z lorsque t augmente. S’ils avaient occupé les premier et troisième quadrants, ils auraient sélectionné les signaux se propageant dans le sens inverse.
3.4. DES FILTRES IDÉAUX

La détermination des paramètres définissant ces filtres est illustrée sur la figure 3.13, nous avons choisi de délimiter des secteurs du plan des fréquences par des droites passant par l’origine. Ces droites sont alors parfaitement définies par la connaissance d’un autre point : nous avons décidé de fixer ce point par sa fréquence temporelle pour une fréquence spatiale fixe de 300 m\(^{-1}\) (fréquences indiquées en rouge au dessous de l’axe horizontal).

De plus, les domaines sont bornés en fréquences spatiales, vers les basses fréquences par 25 m\(^{-1}\) et vers les hautes fréquences par 250 m\(^{-1}\). Ces deux limites ont été fixées arbitrairement pour éliminer les zones où l’on n’a pas aperçu de signal significatif. De la même façon, et pour les mêmes raisons, on a borné les domaines en fréquences temporelles par 1,5 kHz et 25 kHz\(^{1}\).

Les médiatrices des secteurs définissent, chacune, une *ligne de fréquences centrales* caractérisée par une relation de la forme \(\nu_t = -v_\nu z\) où \(v\) représente la vitesse de propagation du potentiel d’action le long de la fibre pour laquelle la réponse du filtre devrait être optimale. Les valeurs de fréquence temporelle indiquées en vert au dessus de l’axe permettent de calculer

1. Si l’on examine attentivement la figure 3.13, on peut voir que cette dernière fréquence aurait pu être réduite à 20 kHz.
Figure 3.12 – Masques simulant des filtres bi-dimensionnels pour évaluer la faisabilité d’une séparation des signaux extra-cellulaires de différentes vitesses. La masque a la valeur 1 dans la zone colorée et 0 ailleurs.

ces vitesses (table 3.1) dont on peut voir qu’elles diffèrent très légèrement de celles des fibres types : une estimation graphique d’un paramètre ne permet guère d’atteindre une précision meilleure que 5 %; c’est l’ordre de grandeur des différences constatées...
Définitions filtres

Figure 3.13 – Définition des filtres de sélection de fibres.
CHAPITRE 3. SÉLECTIVITÉ DE VITESSE

FIGURE 3.14 – Signaux de sortie, en un point d’espace ($z = cte$) du filtre 3 (masque fibre 3) suivant qu’il est excité par l’une ou l’autre des quatre fibres de référence, dans le sens direct ou le sens inverse. Les échelles verticales sont identiques. La fibre 3 donne bien un signal reconnaissable par son amplitude.

TABLE 3.1 – Vérification des vitesses associées à chacun des masques.

<table>
<thead>
<tr>
<th>Masque</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>$</td>
<td>f_z</td>
<td>\</td>
<td>$</td>
<td>300 m$^{-1}$</td>
</tr>
<tr>
<td>$</td>
<td>f_t</td>
<td>\</td>
<td>$</td>
<td>6,5 kHz</td>
</tr>
<tr>
<td>$v = \frac{</td>
<td>f_t</td>
<td>}{</td>
<td>f_z</td>
<td>}\</td>
</tr>
<tr>
<td>$v_{type}\</td>
<td>$</td>
<td>20 m s$^{-1}$</td>
<td>40 m s$^{-1}$</td>
<td>64 m s$^{-1}$</td>
</tr>
<tr>
<td>écart relatif</td>
<td>8,5 %</td>
<td>4,3 %</td>
<td>1 %</td>
<td>1,1 %</td>
</tr>
</tbody>
</table>

La figure 3.14 montre le déroulement temporel d’un signal pris en un point d’espace (z constant) de la sortie du filtre correspondant à la fibre n° 3, lorsqu’il est excité par un signal, provenant de l’une ou l’autre fibre, se propageant dans le sens direct (position en z croissante avec le temps) ou dans le sens inverse (position en z décroissante avec le temps). La sortie examinée est choisie en fonction de la fibre excitatrice de façon à ce que le maximum du signal se trouve aux environs du centre de l’électrode de recueil. En pratique, on a $z = 30$ mm pour la fibre 1, $z = 45$ mm pour la fibre 2, et $z = 60$ mm pour les fibres 3 et 4.

Il est clair que l’activité de la fibre 3 provoque, en sortie de ce filtre, une activité très supérieure à toutes celles qu’induisent les autres fibres. De plus, les sorties ne fluctuent pas lorsque le signal se propage dans le sens inverse : ce type de filtrage permet donc bien de discriminer le sens de propagation.

La figure 3.15 permet d’avoir une vue moins précise, mais plus globale des résultats obtenus en sortie de ce même filtre. Comme on pouvait s’y attendre, on constate des artefacts aux
3.4. DES FILTRES IDÉAUX

périphéries des images, liés au caractère non causal (transitions infiniment abruptes) du filtre utilisé. Ceci mis à part, ces résultats confirment bien ce que l’on voyait sur la figure 3.14.

Les résultats obtenus avec les autres masques sont consultables en annexe A, page 99 et suivantes.

Pour évaluer un peu plus quantitativement la qualité du filtrage, on a calculé, sur les données de la figure 3.14 et celles des simulations équivalentes pour les autres filtres, une énergie de chacun des signaux (somme des carrés des échantillons, divisée par la fréquence d’échantillonnage f_t), ce qui nous a permis de construire le tableau de comparaison de la table 3.2. Dans ce tableau, les nombres sur une même ligne correspondent à l’énergie en sortie d’un même filtre. On a affaire à des signaux d’origine différentes qui ont tous subi le même traitement. Comparer ces grandeurs nous renseigne donc sur les performances du filtre en termes de discrimination du type de fibres. En revanche, les nombres placés dans une même colonne correspondent à des énergies en sortie de filtres différents. Ces valeurs dépendent des caractéristiques de chacun des filtres, en particulier de leurs gains respectifs. De fait, comparer ces valeurs d’une même colonne ne nous donnerait aucune information utile sur les performances du traitement…

Pour illustrer ce propos, il nous a paru intéressant de refaire ce tableau en remplaçant chaque énergie par sa valeur relative à l’énergie maximale de la même ligne. Le tableau 3.3 nous renseigne immédiatement sur la sélectivité de chaque filtre. On y voit, par exemple, qu’une fibre 2 excitant le filtre 1 lui fait produire moins de 9 % de l’énergie qu’il produirait s’il était excité par une fibre 1.

Nous avons là un dispositif qui pourra avoir des performances très honorables en termes de sélectivité de vitesse… sous réserve qu’il soit réalisable!

<table>
<thead>
<tr>
<th>Énergie</th>
<th>Sens direct</th>
<th>Sens inverse</th>
</tr>
</thead>
<tbody>
<tr>
<td>(nV² s)</td>
<td>Fibre 1</td>
<td>Fibre 2</td>
</tr>
<tr>
<td>Filtre 1</td>
<td>302,58</td>
<td>26,62</td>
</tr>
<tr>
<td>Filtre 2</td>
<td>1,24</td>
<td>1063,32</td>
</tr>
<tr>
<td>Filtre 3</td>
<td>0,07</td>
<td>31,51</td>
</tr>
<tr>
<td>Filtre 4</td>
<td>0,08</td>
<td>0,43</td>
</tr>
</tbody>
</table>

Table 3.2 – Énergie en sortie de chaque filtre (un seul point d’espace) pour chaque fibre excitatrice possible.

<table>
<thead>
<tr>
<th>Énergie relative</th>
<th>Sens direct</th>
<th>Sens inverse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fibre 1</td>
<td>100,00 %</td>
<td>8,80 %</td>
</tr>
<tr>
<td>Filtre 2</td>
<td>0,12 %</td>
<td>100,00 %</td>
</tr>
<tr>
<td>Filtre 3</td>
<td>0,01 %</td>
<td>2,17 %</td>
</tr>
<tr>
<td>Filtre 4</td>
<td>0,01 %</td>
<td>0,03 %</td>
</tr>
</tbody>
</table>

Table 3.3 – Mêmes données que pour la table 3.2, mais affichées en valeur relative à l’énergie maximale de chaque ligne.
FIGURE 3.15 – Signaux de sortie du filtre 3 (masque fibre 3) suivant qu’il est excité par l’une ou l’autre des quatre fibres de référence, dans le sens direct ou le sens inverse. Les échelles verticales sont identiques. La fibre 3 donne bien un signal reconnaissable par son amplitude.
3.5 Un peu plus de réalisme

Les filtres que nous venons de définir travaillent avec un pas d’échantillonnage de 0,1 mm. Il est clair que ceci n’est pas réalisable, tant en termes de finesse de l’électrode nécessaire, qu’en termes de complexité et de consommation de l’étage d’amplification.

Si nous regardons la bande de fréquences spatiales que nous avons considérée pour réaliser les filtres étudiés dans la section précédente, nous voyons qu’elle ne va pas au delà de 250 m⁻¹, ce qui est une bande de fréquences parfaitement compatible avec pas d’échantillonnage de 2 mm.

Initialement, nous nous étions donné, de manière parfaitement arbitraire, mais en nous appuyant néanmoins sur des dimensions de dispositifs réels, de simuler une électrode faite d’anneaux larges de 1 mm et espacés de 2 mm, soit une période d’échantillonnage de 3 mm. Nous voyons que si une telle électrode est réalisable, une électrode dans laquelle les pôles garderaient leur largeur de 1 mm et verraien seulement leur espacement réduit à 1 mm serait, elle aussi, réalisable.

Nous avons donc mené une campagne de simulation, dont les résultats sont aussi détaillés en annexe A, pour évaluer la sélectivité de filtres s’appuyant sur un signal spatio-temporel échantillonné en espace avec un pas de 2 mm ou de 3 mm.

On a, pour cela, repris les signaux extra-cellulaires issus du simulateur décrit au chapitre 2 et on leur a appliqué un filtrage tripôle de même période que l’échantillonnage spatial considéré (2 mm ou 3 mm). Le changement de fréquence d’échantillonnage spatial n’apporte pas de modification évidente à l’allure spatio-temporelle des signaux. En revanche, les densités spectrales d’énergie sont sensiblement modifiées.

La figure 3.16 montre ces densités spectrales dans le cas où la période d’échantillonnage spatial est portée à 3 mm. On y voit tout d’abord que la dimension du support suivant les fréquences spatiales est réduite à l’intervalle −167 m⁻¹ à 167 m⁻¹. De fait, il apparaît du repliement de spectre suivant les fréquences spatiales et ce repliement semble relativement important.

La figure 3.17 montre les mêmes densités spectrales dans le cas où la période d’échantillonnage spatial est réduite à 2 mm. La dimension du support s’en trouve élargie à l’intervalle −250 m⁻¹ à 250 m⁻¹. Dans le même temps, du fait du resserrement spatial du filtre tripôle, les densités spectrales d’énergie ont été quasiement divisées par trois (le maximum de l’échelle verticale passe de 900 pV² m⁻² s⁻² dans la figure 3.16 à 300 pV² m⁻² s⁻² dans la figure 3.17) et ont vu leur empreinte fréquentielle augmenter, engendrant ainsi un peu de repliement de spectre, discernable pour les fibres 1, 2 et 3.

Les figures 3.18 et 3.19 permettent de mieux voir l’ampleur des repliements de spectre pour chacune des deux périodes d’échantillonnage spatial. La méthode de conception des filtres reste la même que celle que nous avons présentée dans la section 3.4. La figure 3.20 présente les masques ainsi conçus.

Enfin, on peut comparer les résultats obtenus sur les graphes des figures 3.21 et 3.22. Sur la première, on peut voir que les repliements de spectre induisent une sensibilité aux signaux
FIGURE 3.16 – Densité spectrale d’énergie des signaux filtrés tripôle avec un pas d’échantillonnage spatial de 3 mm.

FIGURE 3.17 – Densité spectrale d’énergie des signaux filtrés tripôle avec un pas d’échantillonnage spatial de 2 mm.
inverse, c’est à dire se propageant dans le sens inverse de celui pour lequel le filtre a été conçu. Cet effet est particulièrement marqué lorsque le pas d’échantillonnage est fixé à 3 mm ; il semble beaucoup moins important dans l’autre cas.

Les tables 3.4 et 3.5 récapitulent les énergies simulées pour chacun des couples filtre-fibre possibles. Il est clair que, du fait des repliements de spectre, ces filtres sont maintenant un peu sensibles aux signaux inverse.

Les tables 3.6 et 3.7 permettent de comparer les sélectivités des deux réalisations des filtres. Il est clair que les filtres utilisant un pas d’échantillonnage de 2 mm sont les plus sélectifs. Cela se paie néanmoins par une réduction de l’amplitude des signaux mesurés.

<table>
<thead>
<tr>
<th>Énergie</th>
<th>Sens direct</th>
<th>Sens inverse</th>
</tr>
</thead>
<tbody>
<tr>
<td>(nV²s)</td>
<td>Fibre 1</td>
<td>Fibre 2</td>
</tr>
<tr>
<td>Filtre 1</td>
<td>176,36</td>
<td>25,79</td>
</tr>
<tr>
<td>Filtre 2</td>
<td>2,22</td>
<td>843,78</td>
</tr>
<tr>
<td>Filtre 3</td>
<td>0,22</td>
<td>18,90</td>
</tr>
<tr>
<td>Filtre 4</td>
<td>0,42</td>
<td>0,45</td>
</tr>
</tbody>
</table>

Table 3.4 – Énergie en sortie de chaque filtre (un seul point d’espace) pour chaque fibre excitatrice possible dans le cas où l’on a adopté un pas d’échantillonnage spatial de 3 mm.

<table>
<thead>
<tr>
<th>Énergie</th>
<th>Sens direct</th>
<th>Sens inverse</th>
</tr>
</thead>
<tbody>
<tr>
<td>(nV²s)</td>
<td>Fibre 1</td>
<td>Fibre 2</td>
</tr>
<tr>
<td>Filtre 1</td>
<td>169,73</td>
<td>7,24</td>
</tr>
<tr>
<td>Filtre 2</td>
<td>0,36</td>
<td>473,56</td>
</tr>
<tr>
<td>Filtre 3</td>
<td>0,03</td>
<td>8,02</td>
</tr>
<tr>
<td>Filtre 4</td>
<td>0,03</td>
<td>0,10</td>
</tr>
</tbody>
</table>

Table 3.5 – Énergie en sortie de chaque filtre (un seul point d’espace) pour chaque fibre excitatrice possible dans le cas où l’on a adopté un pas d’échantillonnage spatial de 2 mm.

<table>
<thead>
<tr>
<th>Énergie</th>
<th>Sens direct</th>
<th>Sens inverse</th>
</tr>
</thead>
<tbody>
<tr>
<td>relative</td>
<td>Fibre 1</td>
<td>Fibre 2</td>
</tr>
<tr>
<td>Filtre 1</td>
<td>100,00 %</td>
<td>14,62 %</td>
</tr>
<tr>
<td>Filtre 2</td>
<td>0,26 %</td>
<td>100,00 %</td>
</tr>
<tr>
<td>Filtre 3</td>
<td>0,02 %</td>
<td>1,67 %</td>
</tr>
<tr>
<td>Filtre 4</td>
<td>0,03 %</td>
<td>0,03 %</td>
</tr>
</tbody>
</table>

Table 3.6 – Mêmes données que pour la table 3.4, mais affichées en valeur relative à l’énergie maximale de chaque ligne.

3.6 Conclusion

Nous avons présenté dans ce chapitre une méthode permettant de classifier des signaux extra-cellulaires, mesurés par une électrode cuff possédant un nombre élevé d’anneaux, sur la base de leur vitesse de propagation. Nous avons ébauché la faisabilité d’un système capable de séparer quatre classes de signaux.
Figure 3.18 – Comparaison des lignes de niveau des densités spectrales d’énergie des signaux filtrés tripôle.
Échantillonnage spatial au pas de 3 mm
DSE quatre signaux

Échantillonnage spatial au pas de 2 mm
DSE quatre signaux

Figure 3.19 – Comparaison des lignes de niveau des sommes des densités spectrale d’énergie des quatre signaux type filtrés tripôle.
Échantillonnage spatial au pas de 3 mm

Échantillonnage spatial au pas de 2 mm

FIGURE 3.20 – Comparaison des masques simulant les filtres bi-dimensionnels de sélection d'activité de fibre.

FIGURE 3.21 – Signaux de sortie en un point d'espace \((z = \text{cte})\) du filtre 3 (masque fibre 3) suivant qu'il est excité par l'une ou l'autre des quatre fibres de référence, dans le cas où l'on a adopté un pas d'échantillonnage spatial de 3 mm.
3.6. CONCLUSION

Figure 3.22 – Signaux de sortie en un point d’espace \((z = \text{cte})\) du filtre 3 (masque fibre 3) suivant qu’il est excité par l’une ou l’autre des quatre fibres de référence, dans le cas où l’on a adopté un pas d’échantillonnage spatial de 2 mm.

<table>
<thead>
<tr>
<th>Énergie relative</th>
<th>Sens direct Fibre 1</th>
<th>Fibre 2</th>
<th>Fibre 3</th>
<th>Fibre 4</th>
<th>Sens inverse Fibre 1</th>
<th>Fibre 2</th>
<th>Fibre 3</th>
<th>Fibre 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filtre 1</td>
<td>100,00 %</td>
<td>4,27 %</td>
<td>0,04 %</td>
<td>0,04 %</td>
<td>9,80 %</td>
<td>0,02 %</td>
<td>0,02 %</td>
<td>0,02 %</td>
</tr>
<tr>
<td>Filtre 2</td>
<td>0,08 %</td>
<td>100,00 %</td>
<td>4,84 %</td>
<td>0,12 %</td>
<td>2,11 %</td>
<td>3,00 %</td>
<td>0,03 %</td>
<td>0,02 %</td>
</tr>
<tr>
<td>Filtre 3</td>
<td>0,01 %</td>
<td>1,40 %</td>
<td>100,00 %</td>
<td>2,46 %</td>
<td>0,18 %</td>
<td>1,97 %</td>
<td>1,32 %</td>
<td>0,03 %</td>
</tr>
<tr>
<td>Filtre 4</td>
<td>0,01 %</td>
<td>0,03 %</td>
<td>15,71 %</td>
<td>100,00 %</td>
<td>0,06 %</td>
<td>0,77 %</td>
<td>1,66 %</td>
<td>0,07 %</td>
</tr>
</tbody>
</table>

Table 3.7 – Mêmes données que pour la table 3.5, mais affichées en valeur relative à l’énergie maximale de chaque ligne.

Pour l’instant, les simulations ont été réalisées sur une électrode de 10 cm, ce qui est un peu trop long pour être réaliste. Il faudrait au moins diviser cette longueur par trois et vérifier que la méthode donne encore des résultats acceptables. Du côté de l’échantillonnage temporel, nous avons supposé une fréquence d’échantillonnage de 1 MHz. C’est, là aussi, clairement trop élevé. Les spectres manipulés s’étendent jusqu’à 20 kHz : une fréquence d’échantillonnage de 40 à 48 kHz serait certainement suffisante. Dans un souci de réduction de la complexité du système, il faudrait aussi réfléchir au nombre d’échantillons temporels à prendre en compte dans le filtre. Une première idée consisterait à dire que cette durée d’observation devrait dépendre du gabarit du filtre et être au moins égal au temps que met un signal à la vitesse considérée pour traverser la dimension spatiale du filtre (a priori 2 à 3 cm).
Nous avons montré au chapitre précédent, d’une manière empirique, qu’il est possible de classifier un signal neuroélectrique extra-cellulaire sur la base de la vitesse de propagation du potentiel d’action le long de la fibre nerveuse qui le véhicule. Les conditions qui ont été mises en évidence sont

- l’acquisition des signaux extra-cellulaires par une électrode dont la période spatiale ne dépasse pas 2 mm
- une fréquence d’échantillonnage temporel d’au moins 40 kHz

La longueur minimale d’électrode n’a pas été déterminée. Les expériences ont été menées avec une électrode simulée de 10 cm de long, mais rien n’indique encore que cette longueur soit nécessaire.

La démonstration de faisabilité de la classification a été faite en définissant des filtres spatio-temporels par des masques s’appliquant sur la transformée de Fourier bi-dimensionnelle (espace et temps) du signal extrait de l’électrode de mesure, avant de faire la transformée de Fourier inverse et l’analyse temporelle d’une sortie unique.

Dans le présent chapitre, nous allons commencer par définir le plus complètement possible le filtrage à réaliser, et le valider par la même méthode que celle que nous avons utilisée au chapitre précédent. L’inconvénient principal que nous allons trouver à ce dispositif, c’est qu’il utilise une transformée de Fourier sur des signaux dépendant du temps, et demande donc la connaissance, au moment de faire cette transformée de Fourier, d’un (trop) grand nombre d’échantillons du signal. Nous chercherons alors des façons de réaliser ce traitement en nous appuyant sur des filtres récursifs.

4.1 Spécifications

4.1.1 Taille d’électrode

Dans [74], Martin Schuettler et ses co-auteurs décrivent la réalisation d’une électrode cuff à 11 contacts, des anneaux de 1 mm de large, distribués longitudinalement le long de l’électrode avec une période spatiale de 3 mm, pour une longueur totale d’électrode de 38 mm. D’un autre côté, World Precision Instruments vend aujourd’hui des électrodes cuff tripolaires dont
les anneaux mesurent 1 mm de large et sont espacés de 1 mm (ce qui correspond à une période spatiale de 2 mm).

Sur une longueur équivalente à celle de l’électrode que présentait Schuettler en 2011, nous pouvons donc envisager de réaliser quinze, seize, voire dix-sept contacts en forme d’anneau, de 1 mm de large espacés de 1 mm.

Les traitements envisagés comprenant une transformée de Fourier discrète, nous avons intérêt, pour minimiser l’effort de calcul, à disposer d’un nombre d’échantillons spatiaux qui soit une puissance de deux (afin d’utiliser l’algorithme FFT), soit seize signaux. Ces signaux sont issus d’un filtrage spatial tripole, ce qui requiert de disposer d’un contact de plus.

Les traitements que nous allons essayer de mettre en place supposeront donc que le signal neuro-électrique extra-cellulaire est recueilli par une électrode cuff à 17 contacts annulaires de 1 mm de large, distribués longitudinalement le long de l’électrode avec une période spatiale de 2 mm, pour une longueur totale d’électrode de

\[16 \times 2 \text{ mm} + 1 \text{ mm} + 2 \times 3,5 \text{ mm} = 40 \text{ mm} \]

soit seize périodes spatiales de 2 mm, plus une largeur de contact (il y a un contact de plus que d’intervalle), plus 3,5 mm de garde à chaque extrémité de l’électrode.

4.1.2 Échantillonnage temporel

Nous avons vu au chapitre précédent que l’énergie des signaux extra-cellulaires après filtrage tripole « 2 mm » réside principalement dans une bande de fréquence temporelle qui s’étend de 1,5 kHz à 20 kHz. Ceci correspond assez bien à la bande de fréquence audio, et nous avons tout intérêt, pour pouvoir nous appuyer sur la grande gamme de matériels développés à cet usage, à envisager une fréquence d’échantillonnage de 48 kHz.

Voyons maintenant la durée d’observation du signal, c’est à dire la longueur temporelle de la réponse impulsionnelle des filtres que nous allons essayer de construire. Il faut, pour assurer un traitement équitable, observer le signal pendant un temps suffisamment long pour que le signal extra-cellulaire le plus lent ait le temps de traverser totalement la longueur de l’électrode.

Il faut, au signal qui se propage à 20 m s\(^{-1}\), 1,65 ms pour traverser les 33 mm de longueur de notre électrode à dix-sept contacts. Il s’agit là du temps qui sépare l’apparition du signal sur le contact d’une extrémité de l’électrode de son apparition sur le contact de l’autre extrémité. Pour obtenir notre temps d’observation minimal, il faut ajouter, à ce temps de propagation, la durée du signal lui-même, c’est à dire le temps qui sépare son apparition sur un contact de sa disparition sur ce même contact. En se rapportant à la figure 3.5, on voit qu’après filtrage tripole (qui a tendance à élargir l’empreinte temporelle du signal), le signal extra-cellulaire le plus lent dure environ 600 µs au niveau d’une sortie. Le temps d’observation minimal du signal est donc de 2,25 ms, soit 108 échantillons prélevés à la fréquence de 48 kHz.

Parce que les traitements envisagés comprennent une transformée de Fourier discrète, nous choisissons, ici encore pour minimiser l’effort de calcul, un nombre d’échantillons qui est une puissance de deux.
Le signal extra-cellulaire, après filtrage spatial tripole, sera donc échantillonné temporellement à la fréquence de 48 kHz et analysé sur 128 échantillons, ce qui correspond des durées d’environ 2,67 ms.

4.1.3 Données de simulation

A partir des choix précédents nous avons donc régénéré des jeux de signaux compatibles en utilisant le modèle de simulation décrit au chapitre 2. Ces jeux de signaux de test sont illustrés figure 4.1.

Figure 4.1 – Signaux utilisés pour la validation des filtres. 128 échantillons temporels \((f_t = 48\, \text{kHz})\) de chacun des 16 signaux de sortie du préamplificateur (après filtrage spatial tripole).

4.1.4 Filtres de classification

Les signaux de référence que nous venons de définir correspondent à des fibres nerveuses ayant des vitesses de propagation régulièrement réparties : 20 m s\(^{-1}\), 40 m s\(^{-1}\), 63 m s\(^{-1}\) et 83 m s\(^{-1}\).

Nous construirons nos filtres de classification de telle manière que chacune de ces fibres occupe le centre d’une classe (table 4.1).

<table>
<thead>
<tr>
<th>Filtre</th>
<th>(v_{\text{min}})</th>
<th>(v_{\text{max}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filtre 1</td>
<td>10 m s(^{-1})</td>
<td>30 m s(^{-1})</td>
</tr>
<tr>
<td>Filtre 2</td>
<td>30 m s(^{-1})</td>
<td>50 m s(^{-1})</td>
</tr>
<tr>
<td>Filtre 3</td>
<td>50 m s(^{-1})</td>
<td>70 m s(^{-1})</td>
</tr>
<tr>
<td>Filtre 4</td>
<td>70 m s(^{-1})</td>
<td>90 m s(^{-1})</td>
</tr>
</tbody>
</table>

Tableau 4.1 – Spécification des filtres de classification
4.2 Filtre défini par sa transformée de Fourier bi-dimensionnelle

4.2.1 Contexte

Considérons la transformée de Fourier bi-dimensionnelle de l’un des signaux de référence présentés figure 4.1. Il s’agit d’un tableau de nombres complexes possédant seize lignes (fréquences spatiales) et cent vingt-huit colonnes (fréquences temporelles). La figure 4.2 donne une représentation de ce tableau où les lignes correspondent aux fréquences spatiales et les colonnes aux fréquences temporelles.

Appelons n_z (spatial) et n_t (temporel) les indices du tableau. Compte tenu des paramètres déjà fixés, les correspondances entre indices et fréquences sont les suivantes :

\[
\nu_z = \begin{cases}
\frac{n_z - 1}{16} f_z & \text{si } 1 \leq n_z \leq 9 \\
\frac{n_z - 17}{16} f_z & \text{si } 10 \leq n_z \leq 16
\end{cases}
\]

\[
\nu_t = \begin{cases}
\frac{n_t - 1}{128} f_t & \text{si } 1 \leq n_t \leq 65 \\
\frac{n_t - 129}{128} f_t & \text{si } 66 \leq n_t \leq 128
\end{cases}
\]

En appliquant ces relations aux données de la figure 4.2, nous voyons que l’énergie de ce signal réside en des lieux où les fréquences temporelle et spatiale sont de signes opposés. Nous avions déjà remarqué cela au chapitre précédent et l’avions relié au sens de propagation du signal. Nous pouvons remarquer aussi que, si l’on fait exception de la ligne 1 et de la colonne 1, ce tableau présente une symétrie centrale par rapport à sa case $(9,65)$, ce qui se relie sans problème à ce que nous savons de la transformée de Fourier qui est à symétrie hermitienne lorsque la fonction originale est réelle. La connaissance de la moitié du tableau suffit donc pour le déterminer entièrement.

4.2.2 Définition du filtre

Pour réaliser l’un des filtres de vitesse définis par la table 4.1, nous devons sélectionner les points de la DFT qui satisfont la relation

\[
\forall v_z \in \left[-\frac{f_z}{2}, \frac{f_z}{2}\right], \quad \begin{cases}
-v_{\text{max}} v_z \leq v_t \leq -v_{\text{min}} v_z & \text{si } v_z > 0 \\
v_{\text{min}} v_z \leq v_t \leq v_{\text{max}} v_z & \text{si } v_z < 0
\end{cases}
\]
4.2. FILTRE DéFINI PAR SA TRANSFORMÉE DE FOURIER BI-DIMENSIONNELLE

pour les signaux se propageant dans le sens direct (position en z croissante avec le temps). Pour les signaux se propageant dans le sens inverse (position en z décroissante avec le temps), il suffit de changer les grandeurs \(v_{\text{max}} \) et \(v_{\text{min}} \) de signe. Dans ce qui suit, nous ne considérerons plus que des filtres directs. Les filtres inverses pouvant se réaliser simplement en permutant l’ordre des entrées.

Si l’on considère seulement les valeurs négatives de \(v_z \) (la DFT possède un centre de symétrie), en remarquant que \(-v_{\text{max}}v_z\) et \(-v_{\text{min}}v_z\) sont alors des grandeurs positives, nous avons les relations suivantes :

\[
\begin{align*}
 v_z &= \frac{n_z - 17}{16} f_z \quad \text{car} \quad v_z < 0 \\
 v_t &= \frac{n_t - 1}{128} f_t \quad \text{car} \quad v_t > 0
\end{align*}
\]

d’où il est facile de tirer la relation sur les indices :

\[
\forall n_z \in [10, 16], \quad 1 + \left[\frac{8v_{\text{min}}f_z}{f_t} (17 - n_z) + \varepsilon \right] \leq n_t \leq 1 + \left[\frac{8v_{\text{max}}f_z}{f_t} (17 - n_z) - \varepsilon \right]
\]

Remarque 1 : l’indice \(n_z = 9 \) a été omis de la définition du filtre car il correspond à la fréquence de Nyquist.

Remarque 2 : \(\varepsilon \) est une quantité positive, plus petite que \(1/f_t \), qui permet de forcer l’arrondi dans les cas où le résultat du calcul serait entier (car, pour \(x \in \mathbb{Z}, [x] = \lfloor x \rfloor \) et deux filtres adjacents pourraient avoir des points en commun).

Les spécifications des quatre filtres, établies d’après ces relations, sont présentées table 4.2.

La figure 4.3 permet de visualiser les positions respectives de ces masques.

Remarquons en passant que chacun de ces quatre masques sélectionne exactement 45 coefficients de la transformée de Fourier discrète (90 coefficients en prenant en compte la symétrie).

Figure 4.3 – Représentation des masques permettant de sélectionner, dans une DFT bi-dimensionnelle 16 × 128, des coefficients significatifs de signaux extra-cellulaires se propageant à une certaine vitesse. Chaque couleur correspond à un masque.

1. L’opérateur \(\lfloor \rfloor \) représente l’arrondi vers le bas (floor) et l’opérateur \(\lceil \rceil \) représente l’arrondi vers le haut (ceil).
Table 4.2 – Définitions des quatre filtres de classification de vitesse correspondant aux spécifications de la table 4.1. Ici, n_z est un indice de ligne dans la transformée de Fourier (fréquences spatiales), tandis que n_t_{min} et n_t_{max} sont des indices de colonnes (fréquences temporelles). Pour une ligne donnée (n_z), le masque correspondant au filtre doit sélectionner tous les coefficients de la TFD dont les indices de colonnes sont compris entre n_t_{min} et n_t_{max}.

4.2.3 Utilisation

Dans le chapitre précédent, nous avons envisagé d’appliquer ces masques sur la transformée de Fourier bi-dimensionnelle de nos signaux avant de retourner, par transformée de Fourier inverse, dans le domaine spatio-temporel et de sélectionner une sortie pour évaluer son énergie.

Cependant, s’il s’agit simplement de classifier des signaux en analysant leur énergie, nous pouvons faire cela aussi bien dans le domaine fréquentiel (relation de Parseval).

Finalement, la procédure de classification est simple :

- calculer la transformée de Fourier discrète bi-dimensionnelle du signal.
- pour chaque masque (direct et inverse), sommer les carrés des modules des 90 coefficients de la DFT qui sont sélectionnés par le masque.
- classifier le signal à partir des huit coefficients réels positifs ainsi obtenus.

Du point de vue de la complexité, nous savons (Cf. [60], page 141, par exemple) qu’une transformée de Fourier rapide (FFT) unidimensionnelle sur N points réclame $A_r(N)$ additions réelles et $M_r(N)$ multiplications réelles, avec

$$A_r(N) = 3N\log_2 N - 2N + 2$$

$$M_r(N) = 2N\log_2 N - 4N + 4$$
4.2. FILTRE DÉFINI PAR SA TRANSFORMÉE DE FOURIER BI-DIMENSIONNELLE

Pour une transformée de Fourier rapide bi-dimensionnelle sur $N_z \times N_t$ points, on aura

$$A_r(N_z, N_t) = N_t A_r(N_z) + N_z A_r(N_t)$$

$$M_r(N_z, N_t) = N_t M_r(N_z) + N_z M_r(N_t)$$

Soit, numériquement :

<table>
<thead>
<tr>
<th></th>
<th>$N_z = 16$</th>
<th>$N_t = 128$</th>
<th>$N_z \times N_t$</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_r</td>
<td>162</td>
<td>2434</td>
<td>59680</td>
</tr>
<tr>
<td>M_r</td>
<td>68</td>
<td>1284</td>
<td>29248</td>
</tr>
</tbody>
</table>

A côté de cela, la somme des carrés des modules de 90 coefficients complexes demande 180 multiplications-accumulations. Ceci devant être fait 8 fois (4 masques directs et quatre masques inverses), nous devons donc ajouter 1440 opérations. L’ensemble du traitement demande donc la réalisation de

$$59680 + 29248 + 1440 = 90368$$

opérations

Si l’on veut réaliser ce traitement en temps réel, il faut que ces 90368 opérations soient effectuées dans le temps d’acquisition d’une séquence de 128 échantillons, soit 2,67 ms. Il faut pour cela être capable de réaliser environ 34 millions d’opérations par seconde.

Aujourd’hui, un micro-contrôleur de la famille STM32 offre 24 voies de digitalisation sur 12 bits, avec une fréquence d’échantillonnage par voie supérieure ou égale à 100 kHz, et une vitesse de 462 millions d’opérations par seconde. Le traitement que nous venons de spécifier peut donc s’exécuter en temps réel sur un tel micro-contrôleur.

4.2.4 Résultats

L’algorithme précédent a été appliqué aux données définies à la section 4.1.3 ci-avant. La table 4.3 récapitule les résultats exprimés en nV2 m/s, obtenus en divisant par le produit $N_z f_z N_t f_t$ la somme des carrés des modules des coefficients de la DFT sélectionnés par le masque.

<table>
<thead>
<tr>
<th>Énergie</th>
<th>Sens direct</th>
<th>Sens inverse</th>
</tr>
</thead>
<tbody>
<tr>
<td>(nV2 m/s)</td>
<td>Fibre 1</td>
<td>Fibre 2</td>
</tr>
<tr>
<td>Filtre 1</td>
<td>4,779</td>
<td>0,205</td>
</tr>
<tr>
<td>Filtre 2</td>
<td>0,073</td>
<td>13,031</td>
</tr>
<tr>
<td>Filtre 3</td>
<td>0,014</td>
<td>0,553</td>
</tr>
<tr>
<td>Filtre 4</td>
<td>0,009</td>
<td>0,105</td>
</tr>
</tbody>
</table>

Tableau 4.3 – Énergie en sortie de chaque filtre pour chaque fibre excitatrice possible.

Cependant, dans la mesure où il s’agit des résultats d’un calcul numérique, et non directement de valeurs mesurées, les unités n’ont pas une importance capitale et seules comptent les valeurs relatives des résultats. C’est pourquoi nous avons dressé la table 4.4 qui exprime les mêmes résultats en valeur relative au maximum de chaque ligne. Si nous comparons ces résultats à ceux que nous avions obtenus au chapitre 3, tels qu’ils sont présentés dans la table 3.3, nous voyons que nous avons des performances tout à fait comparables pour un effort de calcul bien moindre.
TABLE 4.4 – Mêmes données que pour la table 4.3, mais affichées en valeur relative à l’énergie maximale de chaque ligne.

4.3 Filtres récursifs

Nous venons de voir une réalisation possible des filtres de classification de vitesse. Cette réalisation présente l’inconvénient de nécessiter une grande quantité de calculs et de ne pas être véritablement *temps réel*. En effet, elle suppose d’accumuler 128 échantillons temporels, de les traiter, puis d’en traiter 128 autres et ainsi de suite. Qu’en est-il alors d’un signal dont le début de la propagation aurait été capturé dans un *paquet* et la fin dans le suivant ? Une solution à ce problème peut être trouvée en travaillant sur des segments temporels recouvrants, mais elle a l’inconvénient d’augmenter significativement la quantité de calculs nécessaires (même si des techniques d’accélération peuvent être imaginées, elles ne feront pas disparaître totalement le surcoût de calcul).

Pour ces raisons, nous avons essayé d’appliquer des techniques, développées pour le traitement d’image, de filtrage bidimensionnel non séparable, utilisant des filtres récursifs (c’est à dire à réponse impulsionnelle infinie). Cette approche nous a été suggérée par les travaux de Radu et Daniela Matei présentés dans [44].

4.3.1 Rotation d’un filtre

Considérons la figure 4.4-a, extraite de la figure 3.10. Elle représente les lignes de niveaux les plus élevées de la densité spectrale d’énergie du signal extra-cellulaire, après filtrage spatial tripole, induit par la propagation d’un potentiel d’action le long d’une fibre 2 (vitesse 40 m s$^{-1}$).

Un filtre adapté à la sélection de ce signal pourrait avoir une fonction de transfert correspondant au rectangle en pointillé de la figure 4.4-b (égale à 1 à l’intérieur du rectangle et à zéro à l’extérieur). Dans le repère (O, v_x, v_y), ce filtre est séparable et correspond à un passe bas pour v_x et un passe-tout pour v_y. Reste alors à savoir comment passer d’une fonction de transfert dans l’espace (O, v_x, v_y) à une fonction de transfert dans l’espace (O, v_t, v_z)…

4.3.1.1 Changement de repère

La figure 4.5 illustre le changement de repère que nous devons effectuer. À première vue, il s’agit d’une simple rotation d’un angle ϕ. À première vue seulement, car les axes représentent des grandeurs de natures différentes : fréquence spatiales pour v_z, fréquences temporelles pour v_t, etc. Pour normaliser tout cela, nous pouvons diviser chaque dimension par sa fréquence d’échantillonnage. Nous sommes alors ramenés au cas trivial du passage d’un repère orthonormé à un autre par rotation d’un angle ϕ.

\[
\begin{pmatrix}
\frac{v_t}{f_t} \\
\frac{v_z}{f_z}
\end{pmatrix} =
\begin{pmatrix}
\cos \phi & \sin \phi \\
-\sin \phi & \cos \phi
\end{pmatrix}
\begin{pmatrix}
\frac{v_x}{f_x} \\
\frac{v_y}{f_y}
\end{pmatrix}
\]
\[(4.1) \]
4.3. FILTRES RÉCURSIFS

Figure 4.4 – (a) – Densité spectrale d’énergie associée à la fibre 2 ; (b) – Allure d’un filtre idéal susceptible de capturer spécifiquement cette énergie.

Figure 4.5 – Changement de repère

L’angle φ est bien sûr relié à la vitesse de propagation du signal que nous désirons sélectionner. Nous voyons sur la figure 4.4–b que le long de l’axe v_y (c’est à dire lorsque $v_x = 0$), nous avons $v_t = -v_z$. En reportant la condition $v_x = 0$ dans la relation de changement de repère ci-dessus (eq. 4.1), nous obtenons le système d’équations :

\[
\begin{align*}
 v_t f_y &= v_y f_z \sin \varphi \\
 v_z f_y &= v_y f_z \cos \varphi
\end{align*}
\]

D’où l’on déduit aisément

\[
\tan \varphi = \frac{\sin \varphi}{\cos \varphi} = \frac{f_z}{f_t} \frac{v}{c} = \frac{1}{\cos \varphi} = \sqrt{1 + \left(\frac{f_z}{f_t} \frac{v}{c}\right)^2} = \sqrt{1 + \left(\frac{v}{c}\right)^2}
\]

La quantité $c = \frac{f_t}{f_z}$ est homogène à une vitesse. Elle est représentative du système d’acquisition. Sous réserve de poser $f_z = f_t$ (ce qui revient à dire que v_y est un axe de fréquences *temporelles* de même échelle que v_t) et $f_y = f_z$ (ce qui revient à dire que v_y est un axe de fréquences *spatiale* de même échelle que v_z), nous avons les relations...
\[
\begin{align*}
\nu_t \sqrt{1 + \left(\frac{\nu}{c}\right)^2} &= \nu_x - \nu_y \\
\nu_z \sqrt{1 + \left(\frac{\nu}{c}\right)^2} &= \frac{\nu}{c^2} \nu_x + \nu_y \\
\nu_x \sqrt{1 + \left(\frac{\nu}{c}\right)^2} &= \nu_t + \nu \nu_z \\
\nu_y \sqrt{1 + \left(\frac{\nu}{c}\right)^2} &= -\frac{\nu}{c^2} \nu_t + \nu_z
\end{align*}
\]

\[
\begin{align*}
\nu_t \sqrt{1 + \left(\frac{\nu}{c}\right)^2} &= \nu_x - \nu_y \\
\nu_z \sqrt{1 + \left(\frac{\nu}{c}\right)^2} &= \frac{\nu}{c^2} \nu_x + \nu_y \\
\nu_x \sqrt{1 + \left(\frac{\nu}{c}\right)^2} &= \nu_t + \nu \nu_z \\
\nu_y \sqrt{1 + \left(\frac{\nu}{c}\right)^2} &= -\frac{\nu}{c^2} \nu_t + \nu_z
\end{align*}
\]

\[
\begin{align*}
&\text{avec } \begin{cases} f_t = 48 \text{kHz} \\ f_z = 500 \text{m}^{-1} \end{cases} \Rightarrow c = 96 \text{m} \text{s}^{-1}
\end{align*}
\]

4.3.1.2 Transformation de filtre

Considérons un filtre, défini dans l’espace des fréquences \((\nu_x, \nu_y)\) par sa fonction de transfert \(H_{xy}^F(\nu_x, \nu_y)\). Il lui correspond, dans l’espace des fréquences \((\nu_t, \nu_z)\), un filtre de fonction de transfert \(H_{tz}^F(\nu_t, \nu_z)\).

\[
H_{tz}^F(\nu_t, \nu_z) = H_{xy}^F \left(\frac{\nu_t + \nu \nu_z}{\sqrt{1 + \left(\frac{\nu}{c}\right)^2}}, \frac{-\frac{\nu}{c^2} \nu_t + \nu_z}{\sqrt{1 + \left(\frac{\nu}{c}\right)^2}} \right)
\]

Ceci étant, nous nous intéressons à des filtres qui sont passe-bas suivant \(\nu_x\) et passe-tout suivant \(\nu_y\). \(H_{xy}^F\) se ramène donc à une fonction de transfert \(H_{x}^F\) de la seule variable \(\nu_x\). On a donc :

\[
H_{tz}^F(\nu_t, \nu_z) = H_{x}^F \left(\frac{\nu_t + \nu \nu_z}{\sqrt{1 + \left(\frac{\nu}{c}\right)^2}} \right)
\]

(4.2)

4.3.1.3 Filtre à temps et espace discrets

Les transformations que nous avons envisagées jusqu’à maintenant, hormis lorsque nous avons défini la célérité de référence \(c\), faisaient abstraction du fait que ces traitements doivent être échantillonnés. Il faut donc passer de la fonction de transfert à temps et espace continus \(H_{tz}^F(\nu_t, \nu_z)\) à son équivalent à temps et espace discrets \(H_{tz}^Z(z_t, z_z)\) (transformée en \(Z\)). Pour ce faire, nous avons choisi d’utiliser la transformation bilinéaire. On a donc :

\[
i 2\pi \nu_t = 2f_t \frac{z_t - 1}{z_t + 1} \quad \Leftrightarrow \quad \nu_t = \frac{f_t}{\pi} \frac{z_t - 1}{z_t + 1} \quad \text{et} \quad i 2\pi \nu_z = 2f_z \frac{z_z - 1}{z_z + 1} \quad \Leftrightarrow \quad \nu_z = \frac{f_z}{\pi} \frac{z_z - 1}{z_z + 1}
\]

(4.3)

C’est à dire

\[
H_{tz}^Z(z_t, z_z) = H_{tz}^F \left(\frac{f_t}{\pi} \frac{z_t - 1}{z_t + 1}, \frac{f_z}{\pi} \frac{z_z - 1}{z_z + 1} \right)
\]

(4.4)
4.3.2 Filtre du premier ordre

Considérons, pour H^F_x, une fonction de transfert passe-bas du premier ordre

$$H^F_x = \frac{1}{1 + \frac{V_x}{V_0}} \quad \Rightarrow \quad H^F_x(v_t, v_z) = \frac{1}{1 + \frac{v_t + v_v}{v_0}} \frac{1}{\sqrt{1 + \left(\frac{v}{c}\right)^2}}$$

(4.5)

où v_0 est la fréquence de coupure du filtre. Il vient

$$H^Z_{t_z}(z_t, z_z) = \frac{1}{\pi \frac{z_t - 1}{\pi} + \frac{V_z}{\sqrt{1 + \left(\frac{v}{c}\right)^2}}} = \frac{(z_t + 1)(z_z + 1)}{(z_t + 1)(z_z + 1) + a(z_t - 1)(z_z + 1) + b(z_t + 1)(z_z - 1)}$$

avec

$$a = \frac{f_t}{\pi v_0 \sqrt{1 + \left(\frac{v}{c}\right)^2}} \quad b = \frac{v f_z}{\pi v_0 \sqrt{1 + \left(\frac{v}{c}\right)^2}}$$

(4.6)

Après développement et mise sous forme canonique, on aura :

$$H^Z_{t_z}(z_t, z_z) = \frac{1 + z_t^{-1} + z_z^{-1} + z_t^{-1} z_z^{-1}}{C_{00} + C_{10} z_t^{-1} + C_{01} z_z^{-1} + C_{11} z_t^{-1} z_z^{-1}}$$

(4.7)

avec

$$C_{00} = 1 + a + b \quad C_{01} = 1 - a + b$$
$$C_{10} = 1 + a - b \quad C_{11} = 1 - a - b$$

(4.8)

A partir de la fonction de transfert 4.7, il est facile de déduire l’équation aux différences implémentant le filtre (4.9) et l’algorithme de filtrage. Soient $E(n_t, n_z)$ et $S(n_t, n_z)$ les signaux d’entrée et de sortie du filtre ; l’équation aux différences est

$$S(n_t, n_z) = \frac{E(n_t, n_z) + E(n_t - 1, n_z) + E(n_t, n_z - 1) + E(n_t - 1, n_z - 1)}{C_{00}}$$
$$- \frac{C_{10}}{C_{00}} S(n_t - 1, n_z) - \frac{C_{01}}{C_{00}} S(n_t, n_z - 1) - \frac{C_{11}}{C_{00}} S(n_t - 1, n_z - 1)$$

(4.9)

qui doit être appliquée, dans l’ordre, pour tous les couples d’entiers (n_t, n_z) obtenus lorsque n_t varie de 1 à $N_t(= 128)$ et n_z varie de 1 à $N_z(= 16)$.

4.3.3 Mise en œuvre de filtres du premier ordre

4.3.3.1 Spécifications

En nous appuyant sur les résultats précédents, nous avons déterminé quatre filtres, correspondants aux vitesses de nos quatre fibres de référence. Les paramètres communs aux filtres sont :

$$f_z = 500 \text{ m}^{-1} \quad f_t = 48 \text{ kHz} \quad c = 96 \text{ m}\text{s}^{-1} \quad v_0 = 1 \text{ kHz}$$

Remarque : le choix de $v_0 = 1 \text{ kHz}$ est relativement arbitraire. Il a été choisi plus petit que la bande passante apparente des signaux de la figure 3.10 afin d’essayer d’assurer une certaine sélectivité.

La table 4.5 récapitule les coefficients de ces filtres.
Algorithm 1 Filtrage récursif (RII) bi-dimensionnel du premier ordre

\begin{align*}
\text{assume} \forall (n_z, n_t) \text{ tels que } n_z < 1 \parallel n_t < 1, S(n_z, n_t) = E(n_z, n_t) = 0 \\
\text{for } n_z \leftarrow 1 : N_z \text{ do} \\
\hspace{1em} \text{for } n_t \leftarrow 1 : N_t \text{ do} \\
\hspace{2em} S(n_t, n_z) = \frac{E(n_t, n_z) + E(n_t - 1, n_z) + E(n_t, n_z - 1) + E(n_t - 1, n_z - 1)}{C_{00}} \\
\hspace{2em} - \frac{C_{10}}{C_{00}} S(n_t - 1, n_z) - \frac{C_{01}}{C_{00}} S(n_t, n_z - 1) - \frac{C_{11}}{C_{00}} S(n_t - 1, n_z - 1) \\
\hspace{1em} \text{end for} \\
\text{end for}
\end{align*}

<table>
<thead>
<tr>
<th>(v)</th>
<th>20 m s(^{-1})</th>
<th>40 m s(^{-1})</th>
<th>64 m s(^{-1})</th>
<th>84 m s(^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>14,958</td>
<td>14,104</td>
<td>12,713</td>
<td>11,499</td>
</tr>
<tr>
<td>(b)</td>
<td>3,116</td>
<td>5,876</td>
<td>8,475</td>
<td>10,061</td>
</tr>
<tr>
<td>(C_{00})</td>
<td>19,074</td>
<td>20,98</td>
<td>22,188</td>
<td>22,56</td>
</tr>
<tr>
<td>(C_{01})</td>
<td>-10,842</td>
<td>-7,227</td>
<td>-3,238</td>
<td>-0,437</td>
</tr>
<tr>
<td>(C_{10})</td>
<td>12,842</td>
<td>9,227</td>
<td>5,238</td>
<td>2,437</td>
</tr>
<tr>
<td>(C_{11})</td>
<td>-17,074</td>
<td>-18,98</td>
<td>-20,188</td>
<td>-20,56</td>
</tr>
</tbody>
</table>

Table 4.5 – Coefficients filtres de vitesse récursifs du premier ordre

4.3.3.2 Résultats

Après avoir implémenté la fonction de filtrage, nous avons commencé par déterminer sa réponse impulsionnelle, à partir de laquelle nous avons pu, par transformée de Fourier, déterminer la fonction de transfert des filtres. Ces fonctions de transfert sont représentées figure 4.6 par leurs lignes de niveau (en dB relatifs à leur maximum). On a superposé ces lignes de niveau sur des zones grisées qui indiquent la localisation de la plus grande partie de l’énergie du signal de la fibre visée.

On constate une assez bonne coïncidence, avec ce défaut, néanmoins, que le filtre présente son maximum de gain aux fréquences (spatiale et temporelle) nulles alors que, du fait du filtrage spatial tripôle, les signaux attendus n’apportent pas d’énergie dans ce domaine là.

On a représenté, figure 4.7, les mêmes lignes de niveau, superposées, cette fois, à des zones grisées correspondant à la localisation de l’énergie apportée par les fibres non visées. Ceci nous permet de voir que le filtre 1 devrait être assez bien adapté à la reconnaissance de la fibre 1, mais que le filtre 3 risque de produire beaucoup de faux positifs…

La figure 4.8 illustre la réponse du filtre n°2 à des excitations directes correspondant aux quatre fibres de référence. Étant donné le mode d’application du filtre récursif (position en \(z \) croissante et temps croissant), l’endroit où l’effet du filtre se fait le plus sentir est sa sortie de plus haut rang (\(z = 32 \text{ mm} \) : cela ressort clairement de la figure.

C’est pourquoi nous avons fait choix de cette sortie (\(z = 32 \text{ mm} \) pour évaluer la sélectivité des filtres. Comme nous l’avions fait au chapitre 3, nous avons évalué l’énergie du signal disponible sur cette sortie (somme des carrés des échantillons divisée par la fréquence d’échantillonnage \(f_i \)). Cela nous a permis de construire la table de comparaison 4.6.
Cependant, dans la mesure où il s’agit des résultats d’un calcul numérique, et non directement de valeurs mesurées, les unités n’ont pas une importance capitale et seules comptent les valeurs relatives des résultats. C’est pourquoi nous avons dressé la table 4.7 qui exprime les mêmes résultats en valeur relative au maximum de chaque ligne.

Si nous comparons ces résultats à ceux que nous avions obtenus pour les filtres définis par leur transformée de Fourier bi-dimensionnelle, tels qu’ils sont présentés dans la table 4.4, nous voyons que nous avons, comme nous l’avions pressenti en examinant la figure 4.7, des
Figure 4.8 – Réponse du filtre 2 (premier ordre) à différentes excitations

<table>
<thead>
<tr>
<th>Énergie (nV² ms)</th>
<th>Sens direct</th>
<th>Sens inverse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fibre 1</td>
<td>27,893</td>
<td>0,445</td>
</tr>
<tr>
<td>Fibre 2</td>
<td>25,541</td>
<td>1,023</td>
</tr>
<tr>
<td>Fibre 3</td>
<td>4,934</td>
<td>0,941</td>
</tr>
<tr>
<td>Fibre 4</td>
<td>3,855</td>
<td>0,818</td>
</tr>
<tr>
<td>Filtre 1</td>
<td>1,260</td>
<td>0,209</td>
</tr>
<tr>
<td>Filtre 2</td>
<td>93,846</td>
<td>0,651</td>
</tr>
<tr>
<td>Filtre 3</td>
<td>25,969</td>
<td>0,705</td>
</tr>
<tr>
<td>Filtre 4</td>
<td>8,060</td>
<td>0,669</td>
</tr>
<tr>
<td>Fibre 1</td>
<td>0,413</td>
<td>0,141</td>
</tr>
<tr>
<td>Fibre 2</td>
<td>6,093</td>
<td>0,488</td>
</tr>
<tr>
<td>Fibre 3</td>
<td>106,997</td>
<td>0,589</td>
</tr>
<tr>
<td>Fibre 4</td>
<td>51,468</td>
<td>0,593</td>
</tr>
<tr>
<td>Filtre 1</td>
<td>0,267</td>
<td>0,124</td>
</tr>
<tr>
<td>Filtre 2</td>
<td>2,673</td>
<td>0,430</td>
</tr>
<tr>
<td>Filtre 3</td>
<td>19,180</td>
<td>0,549</td>
</tr>
<tr>
<td>Filtre 4</td>
<td>122,948</td>
<td>0,566</td>
</tr>
</tbody>
</table>

Table 4.6 – Énergie en sortie de chaque filtre récursif du premier ordre pour chaque fibre excitatrice possible.

performances encore insuffisantes, bien que le coût de calcul soit beaucoup moins élevé. Tout au plus, ce filtre permet-il de décider du sens de propagation des signaux…

<table>
<thead>
<tr>
<th>Énergie relative</th>
<th>Sens direct</th>
<th>Sens inverse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fibre 1</td>
<td>100,00 %</td>
<td>1,60 %</td>
</tr>
<tr>
<td>Fibre 2</td>
<td>91,57 %</td>
<td>3,67 %</td>
</tr>
<tr>
<td>Fibre 3</td>
<td>17,69 %</td>
<td>3,37 %</td>
</tr>
<tr>
<td>Fibre 4</td>
<td>13,82 %</td>
<td>2,93 %</td>
</tr>
<tr>
<td>Filtre 1</td>
<td>1,34 %</td>
<td>0,22 %</td>
</tr>
<tr>
<td>Filtre 2</td>
<td>100,00 %</td>
<td>0,69 %</td>
</tr>
<tr>
<td>Filtre 3</td>
<td>27,67 %</td>
<td>0,75 %</td>
</tr>
<tr>
<td>Filtre 4</td>
<td>8,59 %</td>
<td>0,71 %</td>
</tr>
<tr>
<td>Fibre 1</td>
<td>0,39 %</td>
<td>0,13 %</td>
</tr>
<tr>
<td>Fibre 2</td>
<td>5,69 %</td>
<td>0,46 %</td>
</tr>
<tr>
<td>Fibre 3</td>
<td>100,00 %</td>
<td>0,55 %</td>
</tr>
<tr>
<td>Fibre 4</td>
<td>48,10 %</td>
<td>0,55 %</td>
</tr>
<tr>
<td>Filtre 1</td>
<td>0,22 %</td>
<td>0,10 %</td>
</tr>
<tr>
<td>Filtre 2</td>
<td>2,17 %</td>
<td>0,35 %</td>
</tr>
<tr>
<td>Filtre 3</td>
<td>15,60 %</td>
<td>0,45 %</td>
</tr>
<tr>
<td>Filtre 4</td>
<td>100,00 %</td>
<td>0,46 %</td>
</tr>
</tbody>
</table>

Table 4.7 – Mêmes données que pour la table 4.6, mais affichées en valeur relative à l’énergie maximale de chaque ligne.
4.3.4 Filtre du second ordre

Considérons maintenant, pour H_x^F, une fonction de transfert passe-bas du second ordre.

$$H_x^F(v, v_z) = \frac{1}{1 + \frac{iv_z}{Qv_0} + \left(\frac{i v_z}{v_0}\right)^2}$$

$$H_{tz}^F(v_t, v_z) = \frac{1}{1 + \frac{v_t + vv_z}{Qv_0\sqrt{1 + \left(\frac{v_t}{v_0}\right)^2}} + i^2 \frac{(v_t + vv_z)^2}{v_0^2\left(1 + \left(\frac{v_t}{v_0}\right)^2\right)}}$$

où v_0 est la fréquence de coupure du filtre et Q son facteur de qualité. Il vient

$$H_{tz}^Z(z_t, z_z) = \frac{1}{1 + \frac{f_z z_t - 1}{\pi z_t + 1} + \frac{v f_z z_z - 1}{\pi z_z + 1} + \frac{(f_z z_t - 1 + v f_z z_z - 1)^2}{Qv_0\sqrt{1 + \left(\frac{v}{v_0}\right)^2}}}$$

$$= \frac{(z_t + 1)^2(z_z + 1)^2}{(z_t + 1)^2(z_z + 1)^2 + a(z_t + 1)^2(z_z^2 - 1) + b(z_t^2 - 1)(z_z + 1)^2 + c(z_t + 1)^2(z_z - 1)^2 + d(z_t - 1)^2(z_z + 1)^2 + e(z_z^2 - 1)(z_t - 1)^2}$$

avec

$$a = \frac{v f_z}{\pi Qv_0\sqrt{1 + \left(\frac{v}{v_0}\right)^2}}$$

$$b = \frac{f_z}{\pi Qv_0\sqrt{1 + \left(\frac{v}{v_0}\right)^2}}$$

$$c = \frac{v^2 f_z^2}{\pi^2v_0^2\left(1 + \left(\frac{v}{v_0}\right)^2\right)}$$

$$d = \frac{f_z^2}{\pi^2v_0^2\left(1 + \left(\frac{v}{v_0}\right)^2\right)}$$

$$e = \frac{2vf_zf_z}{\pi^2v_0^2\left(1 + \left(\frac{v}{v_0}\right)^2\right)}$$

Après développement et mise sous forme canonique, on aura :

$$H_{tz}^Z(z_t, z_z) = \frac{1 + 2z_t^{-1} + z_z^{-2} + 2z_t^{-1} + 4z_t^{-1}z_z^{-1} + 2z_t^{-1}z_z^{-2} + z_t^{-2} + 2z_t^{-2}z_z^{-1} + z_z^{-2}}{C_{00} + C_{01}z_t^{-1} + C_{02}z_z^{-2} + C_{10}z_t^{-1} + C_{11}z_t^{-1}z_z^{-1} + C_{12}z_t^{-1}z_z^{-2} + C_{20}z_t^{-2} + C_{21}z_t^{-2}z_z^{-1} + C_{22}z_t^{-2}z_z^{-2}}$$

avec

$$C_{00} = 1 + a + b + c + d + e \quad C_{01} = 2(1 + a + c - d) \quad C_{02} = 1 + a - b + c + d - e$$

$$C_{10} = 2(1 + b - c + d) \quad C_{11} = 4(1 - c - d) \quad C_{12} = 2(1 - b - c + d)$$

$$C_{20} = 1 - a + b + c + d - e \quad C_{21} = 2(1 - a + c - d) \quad C_{22} = 1 - a - b + c + d + e$$

Comme nous l’avons montré pour le filtre du premier ordre, il est alors facile (mais lourd) de déterminer l’équation aux différences et l’algorithme de filtrage (que nous ne reprendrons pas ici, tant l’un et l’autre ressemblent à leur équivalent du premier ordre).
4.3.5 Mise en œuvre de filtres du second ordre

4.3.5.1 Spécifications

En nous appuyant sur les résultats précédents, nous avons déterminé quatre filtres, correspondants aux vitesses de nos quatre fibres de référence. Les paramètres communs aux filtres sont :

\[f_z = 500 \text{ m}^{-1} \quad f_t = 48 \text{ kHz} \quad c = 96 \text{ m s}^{-1} \quad v_0 = 1 \text{ kHz} \quad Q = 0.577 \]

La remarque faite à la section 4.3.3.1 au sujet du caractère arbitraire de la valeur de \(v_0 \) pourrait être reprise ici. En ce qui concerne le choix du coefficient de qualité, nous avons voulu privilégier la non déformation du signal filtré en réalisant un filtre de Bessel (ce qui est peut-être illusoire car nous ne connaissons pas, a priori, l’effet de la rotation du filtre sur sa réponse impulsionnelle).

La table 4.8 récapitule les coefficients de ces filtres.

<table>
<thead>
<tr>
<th>(v)</th>
<th>20 m s(^{-1})</th>
<th>40 m s(^{-1})</th>
<th>64 m s(^{-1})</th>
<th>84 m s(^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>5,401</td>
<td>10,185</td>
<td>14,688</td>
<td>17,437</td>
</tr>
<tr>
<td>(b)</td>
<td>25,923</td>
<td>24,443</td>
<td>22,033</td>
<td>19,928</td>
</tr>
<tr>
<td>(c)</td>
<td>9,711</td>
<td>34,533</td>
<td>71,829</td>
<td>101,228</td>
</tr>
<tr>
<td>(d)</td>
<td>223,733</td>
<td>198,911</td>
<td>161,615</td>
<td>132,216</td>
</tr>
<tr>
<td>(e)</td>
<td>93,222</td>
<td>165,759</td>
<td>215,487</td>
<td>231,378</td>
</tr>
<tr>
<td>(C_{00})</td>
<td>358,990</td>
<td>434,831</td>
<td>486,652</td>
<td>503,187</td>
</tr>
<tr>
<td>(C_{01})</td>
<td>-415,244</td>
<td>-306,386</td>
<td>-148,196</td>
<td>-25,102</td>
</tr>
<tr>
<td>(C_{02})</td>
<td>120,699</td>
<td>54,427</td>
<td>11,613</td>
<td>0,575</td>
</tr>
<tr>
<td>(C_{10})</td>
<td>481,892</td>
<td>379,641</td>
<td>225,637</td>
<td>103,833</td>
</tr>
<tr>
<td>(C_{11})</td>
<td>-929,776</td>
<td>-929,776</td>
<td>-929,776</td>
<td>-929,776</td>
</tr>
<tr>
<td>(C_{12})</td>
<td>378,199</td>
<td>281,870</td>
<td>137,507</td>
<td>24,120</td>
</tr>
<tr>
<td>(C_{20})</td>
<td>161,744</td>
<td>82,943</td>
<td>26,301</td>
<td>5,557</td>
</tr>
<tr>
<td>(C_{21})</td>
<td>-436,847</td>
<td>-347,125</td>
<td>-206,949</td>
<td>-94,850</td>
</tr>
<tr>
<td>(C_{22})</td>
<td>296,342</td>
<td>365,576</td>
<td>413,210</td>
<td>428,457</td>
</tr>
</tbody>
</table>

Table 4.8 – Coefficients filtres de vitesse récursifs du second ordre

4.3.5.2 Résultats

Comme pour le filtre du premier ordre, nous avons commencé par déterminer les réponses impulsionnelles des filtres du second ordre, puis leurs transformées de Fourier pour avoir accès à la fonction de transfert des filtres. Ces fonctions de transfert sont représentées figure 4.9 par leurs lignes de niveau (en dB relatifs à leur maximum). On a superposé ces lignes de niveau sur des zones grises qui indiquent la localisation de la plus grande partie de l’énergie du signal de la fibre visée.

On constate, comme pour les filtres du premier ordre, une assez bonne coïncidence, améliorée par le fait que les réponses des filtres semblent être moins étalées en fréquences. Il reste cependant, ici encore, ce défaut : le filtre présente son maximum de gain aux fréquences (spatiale et temporelle) nulles alors que, du fait du filtrage spatial tripôle, les signaux attendus n’apportent pas d’énergie dans ce domaine là.
On a représenté, figure 4.10, les mêmes lignes de niveau, superposées, cette fois, à des zones grisées correspondant à la localisation de l’énergie apportée par les fibres non visées. Encore une fois, il est très probable que ces filtres se révèlent insuffisamment sélectifs.

Figure 4.9 – Fonctions de transfert des filtres du second ordre

Figure 4.10 – Évaluation de la sélectivité des filtres du second ordre

La figure 4.11 illustre la réponse du filtre n°2 à des excitations directes correspondant aux quatre fibres de référence. Ici encore, nous avons fait choix de la dernière sortie (z = 32 mm) pour évaluer la sélectivité des filtres. Comme nous l’avions fait au chapitre 3, nous avons évalué l’énergie du signal disponible sur cette sortie (somme des carrés des échantillons...
Énergie
(nV² m s) Fibre 1 Fibre 2 Fibre 3 Fibre 4 Fibre 1 Fibre 2 Fibre 3 Fibre 4
Filtre 1 41,807 29,993 2,529 0,922 0,118 0,350 0,247 0,336
Filtre 2 1,021 145,051 43,111 5,819 0,031 0,237 0,229 0,274
Filtre 3 0,169 8,518 162,669 80,896 0,032 0,205 0,242 0,282
Filtre 4 0,126 2,165 36,116 165,276 0,053 0,213 0,266 0,300

Table 4.9 – Énergie en sortie de chaque filtre récursif du second ordre pour chaque fibre excitatrice possible.

divisée par la fréquence d’échantillonnage \(f_t \). Cela nous a permis de construire la table de comparaison 4.9.

Cependant, dans la mesure où il s’agit des résultats d’un calcul numérique, et non directement de valeurs mesurées, les unités n’ont pas une importance capitale et seules comptent les valeurs relatives des résultats. C’est pourquoi nous avons dressé la table 4.10 qui exprime les mêmes résultats en valeur relative au maximum de chaque ligne.

Ces résultats sont assez peu différents de ceux que nous avions obtenus pour les filtres du premier ordre et ne permettent pas de conclure positivement sur l’intérêt de cette forme de réalisation de filtres de vitesse.

<table>
<thead>
<tr>
<th>Énergie relative</th>
<th>Fibre 1</th>
<th>Fibre 2</th>
<th>Fibre 3</th>
<th>Fibre 4</th>
<th>Fibre 1</th>
<th>Fibre 2</th>
<th>Fibre 3</th>
<th>Fibre 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filtre 1</td>
<td>100,00 %</td>
<td>71,74 %</td>
<td>6,05 %</td>
<td>2,20 %</td>
<td>0,28 %</td>
<td>0,84 %</td>
<td>0,59 %</td>
<td>0,80 %</td>
</tr>
<tr>
<td>Filtre 2</td>
<td>0,70 %</td>
<td>100,00 %</td>
<td>29,72 %</td>
<td>4,01 %</td>
<td>0,02 %</td>
<td>0,16 %</td>
<td>0,16 %</td>
<td>0,19 %</td>
</tr>
<tr>
<td>Filtre 3</td>
<td>0,10 %</td>
<td>5,24 %</td>
<td>100,00 %</td>
<td>49,73 %</td>
<td>0,02 %</td>
<td>0,13 %</td>
<td>0,15 %</td>
<td>0,17 %</td>
</tr>
<tr>
<td>Filtre 4</td>
<td>0,08 %</td>
<td>1,31 %</td>
<td>21,85 %</td>
<td>100,00 %</td>
<td>0,03 %</td>
<td>0,13 %</td>
<td>0,16 %</td>
<td>0,18 %</td>
</tr>
</tbody>
</table>

Table 4.10 – Mêmes données que pour la table 4.9, mais affichées en valeur relative à l’énergie maximale de chaque ligne.
4.4 Conclusion

Nous avons étudié, dans ce chapitre, deux façons de réaliser des filtres de classification de signaux neuro-électriques extra-cellulaires engendrés par la propagation d’un potentiel d’action le long d’une fibre nerveuse myélinisée. Le premier type de filtre s’appuie sur une analyse fréquentielle bi-dimensionnelle (temps et espace) de signaux échantillonnés raisonnablement (2 mm de période d’échantillonnage spatiale et 48 kHz de fréquence d’échantillonnage temporelle). Malgré la relativement faible résolution spatiale, l’évaluation de la méthode a confirmé les promesses que nous avions entrevues au chapitre précédent. Seul inconvénient de la méthode : son coût relativement élevé en moyens de calculs. Nous avons cependant vérifié que ce coût ne dépassait pas les possibilités d’un micro-contrôleur dédié au traitement du signal comme le STM32.

Dans le but de réduire ces coûts de calcul, nous avons envisagé une seconde méthode à base de filtre récursifs 2D, non séparables, obtenus par transformation d’un prototype analogique unidimensionnel. Les résultats obtenus avec ces filtres sont mitigés. En effet, si les observations des signaux permettent de voir qu’une certaine sélectivité est à l’œuvre, le critère d’énergie appliqué sur une des sorties du filtre n’a pas permis d’obtenir des résultats satisfaisants. Le coût de ces filtres est cependant beaucoup plus faible que celui de l’analyse fréquentielle bi-dimensionnelle ; au point qu’il nous paraît envisageable d’intégrer ces filtres dans un front-end analogique, à capacités commutées par exemple.

Ainsi, bien que les résultats obtenus avec ces filtres récursifs bi-dimensionnels ne soient pas encore probants, il nous semble intéressant de poursuivre leur étude, pour voir jusqu’où leur sélectivité peut être poussée et si l’ajout de quelque traitement simple, comme un filtrage temporel appliqué sur leur sortie, ne permettrait pas d’améliorer leur capacité de discrimination.
Conclusion

Le corps humain contrôle et peut utiliser chaque axone du système nerveux périphérique pour des fonctions motrices ou sensitives. Quand on veut s'interfacer avec ce système nerveux périphérique on aimerait avoir ce même niveau de contrôle. Mais, sachant qu’à l’intérieur d’un nerf, un grand nombre d’axones font circuler les informations nerveuses, vouloir stimuler un axone isolé ou recueillir l’information qu’il véhicule est impossible. Des solutions existent pour avoir le niveau de sélectivité d’un groupe d’axones mais imposent une implantation fortement invasive. La solution éthique, viable et acceptée consiste à placer une électrode autour du nerf. L’électrode utilisée, appelée électrode Cuff, n’est pas invasive pour le nerf et permet une implantation stable dans le temps compatible avec une utilisation en chronique. Malheureusement, dans le cas du recueil de signaux ENG (ElectroNeuroGramme), ce type d’électrode ne peut donner qu’une information très globale de l’information circulant à l’intérieur du nerf. Le défi est donc de trouver des solutions permettant à partir d’informations globales d’extraire des informations neurales spécifiques émanant d’un axone ou d’un groupe d’axones. Deux approches sont envisageables pour améliorer cette sélectivité : les axones peuvent être discriminés en fonction de leur localisation à l’intérieur du nerf, on parle alors de sélectivité spatiale, ou les axones peuvent être discriminés en fonction de leurs caractéristiques physiologiques, on parle alors de sélectivité par type de fibre. Une des caractéristiques physiologiques intéressantes est la vitesse de propagation de l’influx nerveux qui est spécifique à chaque axone ou groupe d’axone. Dans ce contexte, l’objectif de cette thèse était de proposer des solutions permettant d’améliorer la sélectivité d’une implantation à l’aide d’électrode de type Cuff en utilisant la vitesse de conduction des fibres comme signature discriminante.

Pour améliorer la sélectivité à un axone ou groupe d’axones, il est nécessaire d’étudier la chaîne complète d’acquisition : électrode, conditionnement, traitement du signal. Dans ce contexte, et pour être en mesure d’établir une stratégie viable et une validation de nos solutions, nous avons construit un modèle complet de la chaîne d’acquisition de signaux ENG. Ce modèle est présenté au chapitre 2. Dans ce modèle nous avons modélisé les courants générés par les nœuds de Ranvier lors de la propagation d’un potentiel d’action. A partir de ces courants nодаux, nous sommes en mesure d’estimer les potentiels extra-cellulaires générés en tout point. En appliquant ces potentiels sur un modèle d’électrode et un étage de pré-amplificateur, nous sommes en mesure de simuler le signal qui serait présent à la sortie de notre étage de pré-amplification pour tout type d’axone. L’idée est d’utiliser cette chaîne complète pour simuler différents axones de caractéristiques physiologiques différentes. En pratique, quatre types d’axones ayant des vitesses de propagation allant de 20 à 85 m/s ont été définis pour les simulations. Les premières simulations spatio-temporelles présentées dans ce chapitre laissaient espérer la faisabilité d’une discrimination des 4 fibres.
Le chapitre 3 a été consacré à l’étude des solutions permettant de discriminer des fibres en fonction de leur vitesse de propagation. L’objectif était de voir si dans un cas idéal de traitement (filtres idéaux, fréquence d’échantillonnage élevée, électrode avec un grand nombre de pôles) cette discrimination était possible. L’étude s’est basée sur les quatre classes de fibres définies précédemment. En s’appuyant sur des études spectrales, nous avons tout d’abord prouvé l’inefficacité d’un traitement uni-dimensionnel (uniquement spatial ou temporel) pour la séparation des quatre classes de fibre. A l’opposé, les analyses spectrales bi-dimensionnelles laissaient présager de possibles solutions permettant de distinguer les signaux provenant des différents types de fibre en fonction de leur vitesse de propagation. Nous avons, en effet, mis en évidence une signature spatio-temporelle fonction de la vitesse de propagation des potentiels d’action dans les fibres. Nous avons ensuite défini un masque associé à chaque classe de fibre. Nous avons aussi montré que la distance entre les pôles de l’électrode a un impact important sur le niveau de sélectivité. Les premiers résultats obtenus avec un système parfait permettent de valider la faisabilité théorique d’une approche spatio-temporelle.

Dans le chapitre 4, nous nous sommes intéressés à la faisabilité de l’implantation matérielle du système d’acquisition permettant d’atteindre un niveau de sélectivité suffisant. Partant des premières conclusions du chapitre 3, nous avons réduit la fréquence d’échantillonnage à 48 kHz et nous avons défini la distance inter-pôle à 2 mm. L’électrode a aussi été rendue plus réaliste avec une longueur de 40 mm et 17 contacts. Nous avons ensuite proposé deux approches différentes d’implantation des traitements permettant la discrimination des classes de fibres. La première approche est basée sur un calcul direct dans le domaine fréquentiel. Cette approche donne des résultats proches du cas idéal présenté au chapitre 3 pour un effort en calcul bien moindre. Le coût en calcul reste pour autant relativement important mais nous avons montré qu’il reste compatible avec des ressources matérielles classiques existantes. La deuxième approche est basée sur la définition de filtres récursifs 2D orientés. Cette approche permet de réduire considérablement les ressources matérielles nécessaires. Les filtres du premier ordre et du deuxième ordre développés permettent de discriminer assez bien les classes de fibres lentes mais ont des performances en retrait pour la discrimination des fibres rapides. Pour autant cette approche autour des filtres 2D reste une piste intéressante qui pourrait aboutir à des solutions performantes et de faible coût.
Table des figures

1.1 Organisation du système nerveux (issue de [66]) .. 12
1.2 Anatomie du nerf ... 13
1.3 Allure générale d’un potentiel d’action [42] .. 15
1.4 Conduction saltatoire dans un axone myélinisé .. 16
1.5 Électrode SIEVE (issue de [35]) .. 18
1.6 Électrode TIME (issue de [82]) ... 19
1.7 Électrode cuff .. 19
1.8 Électrode hélicoïdale ... 20
1.9 Electrode forme C issue de [95] .. 20
1.10 Deux configurations de mesure tripolaire ... 21
1.11 Potentiels à l’intérieur d’une électrode cuff ... 22
1.12 Nerfs et électrode .. 23
1.13 Deux configurations d’enregistrement ... 24
1.14 Electrode FINE avec les 13 contacts ... 24
1.15 Electrode FORTE issu de [68] .. 25
1.16 Échantillons d’enregistrements tripolaires ... 25

2.1 Schéma de la chaîne d’acquisition modélisée ... 29
2.2 Modélisation électrique d’une fibre nerveuse ... 31
2.3 Potentiel extra-cellulaire mesuré par le pôle M à la surface du nerf 34
2.4 Modélisation de la taille du contact et de l’espacement des contacts 36
2.5 Modèle d’un système d’acquisition d’ENG ... 38
2.6 Filtre dipolaire : réponses en fréquence spatiale ... 39
2.7 Filtre tripolaire : réponses en fréquence spatiale ... 40
2.8 Signaux de sortie du préamplificateur tripolaire au pas de 3 mm 40
2.9 Signaux de sortie du préamplificateur tripolaire au pas de 2 mm 41

3.1 Évolution spatio-temporelle du signal extra-cellulaire .. 44
3.2 Évolution du signal extra-cellulaire après filtrage spatial de type tripôle 44
3.3 Signaux disponibles à la sortie du préamplificateur ... 44
3.4 Signaux des quatre fibres types après filtrage spatial tripolaire 45
3.5 Déroulement temporel du signal .. 46
3.6 Modules des transformées de Fourier des signaux de la figure 3.5 47
3.7 Répartition spatiale du potentiel ... 47
3.8 Modules des transformées de Fourier dans le domaine spatial 47
3.9 Densités spectrales d’énergie ... 49
3.10 Lignes de niveau des DSE des signaux .. 50
3.11 Lignes de niveau de la somme des DSE des signaux .. 51
3.12 Masques simulant des filtres bi-dimensionnels ... 52
TABLE DES FIGURES

3.13 Définition des filtres de sélection de fibres. .. 53
3.14 Signaux de sortie, en un point d’espace, du filtre 3 .. 54
3.15 Évolutions spatio-temporelles des signaux de sortie du filtre 3 56
3.16 Densité spectrale d’énergie des signaux (pas d’échantillonnage spatial de 3 mm) 58
3.17 Densité spectrale d’énergie des signaux (pas d’échantillonnage spatial de 2 mm) 58
3.18 Comparaison des lignes de niveau des densités spectrales d’énergie 60
3.19 Comparaison des lignes de niveau des sommes des DSE des quatre signaux type 61
3.20 Comparaison des masques ... 62
3.21 Signaux de sortie du filtre 3 pour un pas d’échantillonnage de 3 mm 62
3.22 Signaux de sortie du filtre 3 pour un pas d’échantillonnage de 2 mm 63

4.1 Signaux de validation des filtres ... 67
4.2 Carré du module de la transformée de Fourier discrète (TFD) du signal « Fibre 2 » 68
4.3 Quatre masques de filtrage de vitesse .. 69
4.4 Densité spectrale d’énergie associée à la fibre 2 ... 73
4.5 Changement de repère ... 73
4.6 Fonctions de transfert des filtres du premier ordre .. 77
4.7 Sélectivité des filtres du premier ordre .. 77
4.8 Réponse du filtre 2 (premier ordre) à différentes excitations 78
4.9 Fonctions de transfert des filtres du second ordre .. 81
4.10 Sélectivité des filtres du second ordre .. 81
4.11 Réponse du filtre 2 (second ordre) à différentes excitations 82

A.1 Représentation spatio-temporelle du signal filtré tripôle, Z_e = 0,1 mm 99
A.2 Représentation spatio-temporelle du signal filtré tripôle, Z_e = 2 mm 100
A.3 Représentation spatio-temporelle du signal filtré tripôle, Z_e = 3 mm 100
A.4 Densité spectrale d’énergie, Z_e = 0,1 mm ... 101
A.5 Densité spectrale d’énergie, Z_e = 2 mm .. 101
A.6 Densité spectrale d’énergie, Z_e = 3 mm .. 102
A.7 Lignes de niveau de la DSE de la somme des signaux, Z_e = 0,1 mm 102
A.8 Lignes de niveau de la DSE de la somme des signaux, Z_e = 2 mm 103
A.9 Lignes de niveau de la DSE de la somme des signaux, Z_e = 3 mm 104
A.10 Représentation temps-espace de la sortie du filtre 1, Z_e = 0,1 mm 105
A.11 Représentation temps-espace de la sortie du filtre 2, Z_e = 0,1 mm 106
A.12 Représentation temps-espace de la sortie du filtre 3, Z_e = 0,1 mm 107
A.13 Représentation temps-espace de la sortie du filtre 4, Z_e = 0,1 mm 108
A.14 Représentation temps-espace de la sortie du filtre 1, Z_e = 2 mm 109
A.15 Représentation temps-espace de la sortie du filtre 2, Z_e = 2 mm 110
A.16 Représentation temps-espace de la sortie du filtre 3, Z_e = 2 mm 111
A.17 Représentation temps-espace de la sortie du filtre 4, Z_e = 2 mm 112
A.18 Représentation temps-espace de la sortie du filtre 1, Z_e = 3 mm 113
A.19 Représentation temps-espace de la sortie du filtre 2, Z_e = 3 mm 114
A.20 Représentation temps-espace de la sortie du filtre 3, Z_e = 3 mm 115
A.21 Représentation temps-espace de la sortie du filtre 4, Z_e = 3 mm 116
A.22 Représentation temporelle de la sortie du filtre 1, Z_e = 0,1 mm 117
A.23 Représentation temporelle de la sortie du filtre 2, Z_e = 0,1 mm 117
A.24 Représentation temporelle de la sortie du filtre 3, Z_e = 0,1 mm 118
A.25 Représentation temporelle de la sortie du filtre 4, Z_e = 0,1 mm 118
A.26 Représentation temporelle de la sortie du filtre 1, Z_e = 2 mm 119
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.27</td>
<td>Représentation temporelle de la sortie du filtre 2, $Z_e = 2$ mm</td>
<td>119</td>
</tr>
<tr>
<td>A.28</td>
<td>Représentation temporelle de la sortie du filtre 3, $Z_e = 2$ mm</td>
<td>120</td>
</tr>
<tr>
<td>A.29</td>
<td>Représentation temporelle de la sortie du filtre 4, $Z_e = 2$ mm</td>
<td>120</td>
</tr>
<tr>
<td>A.30</td>
<td>Représentation temporelle de la sortie du filtre 1, $Z_e = 3$ mm</td>
<td>121</td>
</tr>
<tr>
<td>A.31</td>
<td>Représentation temporelle de la sortie du filtre 2, $Z_e = 3$ mm</td>
<td>121</td>
</tr>
<tr>
<td>A.32</td>
<td>Représentation temporelle de la sortie du filtre 3, $Z_e = 3$ mm</td>
<td>122</td>
</tr>
<tr>
<td>A.33</td>
<td>Représentation temporelle de la sortie du filtre 4, $Z_e = 3$ mm</td>
<td>122</td>
</tr>
</tbody>
</table>
Liste des tableaux

1.1 Classification des fibres nerveuses [66] 14

2.1 Les paramètres de la membrane issu de [88] 33
2.2 Paramètres des fibres nerveuses utilisés pour la simulation (unité µm) .. 33
2.3 Caractéristiques des électrodes modélisées 37

3.1 Vérification des vitesses associées à chacun des masques. 54
3.2 Énergie en sortie de chaque filtre .. 55
3.3 Énergie relative en sortie de chaque filtre .. 55
3.4 Énergie en sortie de chaque filtre pour un pas d’échantillonnage de 3 mm 59
3.5 Énergie en sortie de chaque filtre pour un pas d’échantillonnage de 2 mm 59
3.6 Valeurs relatives de l’énergie en sortie de chaque filtre pour un pas d’échantillo-
 nage de 3 mm .. 59
3.7 Valeurs relatives de l’énergie en sortie de chaque filtre pour un pas d’échantillon-
 nage de 2 mm .. 63

4.1 Spécification des filtres de classification ... 67
4.2 Définitions des filtres ... 70
4.3 Énergie en sortie de chaque filtre .. 71
4.4 Énergie relative en sortie de chaque filtre .. 72
4.5 Coefficients filtres de vitesse récursifs du premier ordre 76
4.6 Énergie en sortie de chaque filtre récursif du premier ordre 78
4.7 Énergie relative en sortie de chaque filtre .. 78
4.8 Coefficients filtres de vitesse récursifs du second ordre 80
4.9 Énergie en sortie de chaque filtre récursif du second ordre 82
4.10 Énergie relative en sortie de chaque filtre 82
Bibliographie

Annexe A

Données chapitre 3

Les figures suivantes détaillent l’ensemble des résultats obtenus lors de l’élaboration du chapitre 3. On se référera à ce chapitre pour avoir plus d’information sur la signification de ces données.

Figure A.1 – Représentation spatio-temporelle du signal filtré tripôle, $Z_e = 0.1$ mm
FIGURE A.2 – Représentation spatio-temporelle du signal filtré tripôle, $Z_e = 2\, \text{mm}$

FIGURE A.3 – Représentation spatio-temporelle du signal filtré tripôle, $Z_e = 3\, \text{mm}$
FIGURE A.4 – Densité spectrale d’énergie, $Z_e = 0,1 \text{ mm}$

FIGURE A.5 – Densité spectrale d’énergie, $Z_e = 2 \text{ mm}$
ANNEXE A. DONNÉES CHAPITRE 3

Figure A.6 – Densité spectrale d’énergie, $Z_e = 3$ mm

Figure A.7 – Lignes de niveau de la densité spectrale d’énergie de la somme des signaux, $Z_e = 0,1$ mm
Figure A.8 – Lignes de niveau de la densité spectrale d'énergie de la somme des signaux, $Z_e = 2\text{ mm}$
Figure A.9 – Lignes de niveau de la densité spectrale d’énergie de la somme des signaux, $Z_e = 3\text{ mm}$
FIGURE A.10 - Représentation temps-espace de la sortie du filtre 1, $Z_e = 0,1$ mm
Figure A.11 – Représentation temps-espace de la sortie du filtre 2, $Z_e = 0,1 \text{ mm}$
Figure A.12 – Représentation temps-espace de la sortie du filtre 3, $Z_e = 0,1 \text{ mm}$
ANNEXE A. DONNÉES CHAPITRE 3

Figure A.13 – Représentation temps-espace de la sortie du filtre 4, $Z_e = 0,1$ mm
Figure A.14 – Représentation temps-espace de la sortie du filtre 1, $Z_e = 2$ mm
FIGURE A.15 – Représentation temps-espace de la sortie du filtre 2, $Z_e = 2$ mm
Figure A.16 – Représentation temps-espace de la sortie du filtre 3, $Z_e = 2$ mm
ANNEXE A. DONNÉES CHAPITRE 3

FIGURE A.17 – Représentation temps-espace de la sortie du filtre 4, $Z_e = 2$ mm
FIGURE A.18 – Représentation temps-espace de la sortie du filtre 1, $Z_e = 3$ mm
FIGURE A.19 – Représentation temps-espace de la sortie du filtre 2, $Z_e = 3$ mm
Figure A.20 – Représentation temps-espace de la sortie du filtre 3, $Z_e = 3\text{ mm}$
Figure A.21 – Représentation temps-espace de la sortie du filtre 4, $Z_e = 3\, \text{mm}$
FIGURE A.22 – Représentation temporelle de la sortie du filtre 1, $Z_o = 0,1$ mm

FIGURE A.23 – Représentation temporelle de la sortie du filtre 2, $Z_o = 0,1$ mm
ANNEXE A. DONNÉES CHAPITRE 3

Figure A.24 – Représentation temporelle de la sortie du filtre 3, $Z_e = 0,1$ mm

Figure A.25 – Représentation temporelle de la sortie du filtre 4, $Z_e = 0,1$ mm
Figure A.26 – Représentation temporelle de la sortie du filtre 1, $Z_e = 2$ mm

Figure A.27 – Représentation temporelle de la sortie du filtre 2, $Z_e = 2$ mm
ANNEXE A. DONNÉES CHAPITRE 3

Figure A.28 – Représentation temporelle de la sortie du filtre 3, $Z_e = 2$ mm

Figure A.29 – Représentation temporelle de la sortie du filtre 4, $Z_e = 2$ mm
Figure A.30 – Représentation temporelle de la sortie du filtre 1, $Z_e = 3 \text{ mm}$

Figure A.31 – Représentation temporelle de la sortie du filtre 2, $Z_e = 3 \text{ mm}$
ANNEXE A. DONNÉES CHAPITRE 3

Figure A.32 – Représentation temporelle de la sortie du filtre 3, \(Z_e = 3 \text{ mm} \)

Figure A.33 – Représentation temporelle de la sortie du filtre 4, \(Z_e = 3 \text{ mm} \)