P. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, Generation of optical harmonics, Physical Review Letters, vol.7, p.118, 1961.
DOI : 10.1103/physrevlett.7.118

URL : http://link.aps.org/pdf/10.1103/PhysRevLett.7.118

R. W. Boyd, Nonlinear Optics, 2008.

D. A. Kleinman, Nonlinear dielectric polarization in optical media, Physical Review, vol.126, 1962.
DOI : 10.1103/physrev.126.1977

R. D. Guenther, Modern Optics, 1990.

Y. R. Shen, The Principles of Nonlinear Optics, 1984.

M. G. Papadopoulos and A. J. Sadlej, Non-linear optical properties of matter: from molecules to condensed phases, 2006.

P. Günter, Nonlinear Optical Effects and Materials, Imprint, 2000.

V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals, 1999.
DOI : 10.1007/978-3-540-46793-9

P. D. Maker, R. W. Terhune, M. Nisenoff, and C. M. Savage, Effects of dispersion and focusing on the production of optical harmonics, Physical Review Letters, vol.8, p.21, 1962.

J. Jerphagnon and S. K. Kurtz, Maker Fringes: A Detailed Comparison of Theory and Experiment for Isotropic and Uniaxial Crystals, Journal of Applied Physics, vol.41, pp.1667-1681, 1970.

R. L. Sutherland, D. G. Mclean, and S. Kirkpatrick, Handbook of nonlinear optics, 2003.
DOI : 10.1117/1.601248

P. N. Prasad, Introduction to biophotonics, 2003.
DOI : 10.1117/1.1931672

URL : https://www.spiedigitallibrary.org/journals/Journal-of-Biomedical-Optics/volume-10/issue-3/039901/Introduction-to-Biophotonics/10.1117/1.1931672.pdf

K. Kasatani, Subpicosecond degenerate four-wave mixing and optical Kerr effect of organic dyes in excited states, Journal of Luminescence, vol.87, pp.889-891, 2000.

C. Hsu, S. Hu, T. Chen, C. Lin, S. Tsai et al., The essentials of the Kerr effect for polymer-stabilized blue phase liquid crystal, Optics Communications

K. Tram, H. Yan, H. A. Jenkins, S. Vassiliev, and D. Bruce, The synthesis and crystal structure of unsubstituted 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY), Dyes Pigments, vol.82, pp.392-395, 2009.

A. Treibs and F. Kreuzer, Difluorboryl-Komplexe von Di-und Tripyrrylmethenen, Eur. J. Org. Chem, vol.718, pp.208-223, 1968.
DOI : 10.1002/jlac.19687180119

G. Ulrich and R. Ziessel, Functional dyes: bipyridines and bipyrimidine based boradiazaindacene, Tetrahedron Lett, vol.45, pp.1949-1953, 2004.
DOI : 10.1016/j.tetlet.2003.12.122

B. J. Littler, M. A. Miller, C. Hung, R. W. Wagner, D. F. O'shea et al.,

. Lindsey, Refined synthesis of 5-substituted dipyrromethanes, J. Org. Chem, vol.64, pp.1391-1396, 1999.

W. Zhao and E. M. Carreira, Conformationally Restricted Aza-Bodipy: A Highly Fluorescent, Stable, Near-Infrared-Absorbing Dye, vol.44, pp.1677-1679, 2005.

N. S. Makarov, M. Drobizhev, and A. Rebane, Two-photon absorption standards in the 550-1600 nm excitation wavelength range, Opt. Express, vol.16, pp.4029-4047, 2008.

M. Wada, S. Ito, H. Uno, T. Murashima, N. Ono et al., Synthesis and optical properties of a new class of pyrromethene-BF2 complexes fused with rigid bicyclo rings and benzo derivatives, Tetrahedron Lett, vol.42, pp.6711-6713, 2001.

H. Lu, J. Mack, Y. Yang, and Z. Shen, Structural modification strategies for the rational design of red/NIR region BODIPYs, Chem Soc Rev, vol.43, pp.4778-4823, 2014.

M. Graser, H. Kopacka, K. Wurst, M. Ruetz, C. R. Kreutz et al., Efficient fluorophores based on pyridyl-enolato and enamido difluoroboron complexes: Simple alternatives to boron-dipyrromethene (bodipy) dyes, Inorganica Chim. Acta, vol.405, pp.116-120, 2013.

, Chapitre III Les propriétés optiques linéaires et non linéaires des matériaux organiques à base de BODIPY fonctionnalisés par des donneurs de type diméthylaminostyryle -97

A. Coskun and E. U. Akkaya, Difluorobora-s-diazaindacene dyes as highly selective dosimetric reagents for fluoride anions, Tetrahedron Lett, vol.45, pp.4947-4949, 2004.

T. Rohand, W. Qin, N. Boens, and W. Dehaen, Palladium-Catalyzed Coupling Reactions for the Functionalization of BODIPY Dyes with Fluorescence Spanning the Visible Spectrum, Eur. J. Org. Chem, pp.4658-4663, 2006.

D. Wang, L. Zhang, Q. Li, Y. Yang, Y. Wu et al., Dimeric BODIPYs with different linkages: A systematic investigation on structureproperties relationship, Tetrahedron, 2017.

P. Chen, H. Zheng, L. Niu, Y. Chen, L. Wu et al., A BODIPY analogue from the tautomerization of sodium 3-oxide BODIPY

. Lett, , vol.26, pp.631-635, 2015.

S. Kolemen and E. U. Akkaya, Reaction-based BODIPY probes for selective bio-imaging, Coord. Chem. Rev, 2017.

M. Yee, S. C. Fas, M. M. Stohlmeyer, T. J. Wandless, and K. A. Cimprich, A Cell-permeable, Activity-based Probe for Protein and Lipid Kinases, J. Biol. Chem, vol.280, pp.29053-29059, 2005.

M. D. Yilmaz, O. A. Bozdemir, and E. U. Akkaya, Light Harvesting and Efficient Energy Transfer in a Boron-dipyrrin (BODIPY) Functionalized Perylenediimide Derivative, Org. Lett, vol.8, pp.2871-2873, 2006.

J. Bañuelos, V. Martín, C. F. Gómez-durán, I. J. Córdoba, E. Peña-cabrera et al., New 8-Amino-BODIPY Derivatives: Surpassing Laser Dyes at Blue-Edge Wavelengths

, J, vol.17, pp.7261-7270, 2011.

A. Loudet and K. Burgess, BODIPY Dyes and Their Derivatives: Syntheses and Spectroscopic Properties, vol.107, pp.4891-4932, 2007.

J. Messier, F. Kajzar, and P. Prasad, Organic Molecules for Nonlinear Optics and Photonics, 2012.

B. Kulyk, A. P. Kerasidou, L. Soumahoro, C. Moussallem, F. Gohier et al., Optimization and diagnostic of nonlinear optical features of ?-conjugated Chapitre III Les propriétés optiques linéaires et non linéaires des matériaux organiques à base de BODIPY fonctionnalisés par des donneurs de type diméthylaminostyryle -98 -benzodifuran-based derivatives, RSC Adv, vol.6, pp.14439-14447, 2016.

D. S. Chemla, Nonlinear Optical Properties of Organic Molecules and Crystals, 2012.

L. R. Dalton, S. J. Benight, L. E. Johnson, D. B. Knorr, I. Kosilkin et al., Systematic Nanoengineering of Soft Matter Organic Electro-optic Materials, Chem. Mater, vol.23, pp.430-445, 2011.

L. R. Dalton, P. A. Sullivan, and D. H. Bale, Electric Field Poled Organic Electro-optic Materials: State of the Art and Future Prospects, Chem. Rev, vol.110, pp.25-55, 2010.

S. S. Thakare, M. C. Sreenath, S. Chitrambalam, I. H. Joe, and N. Sekar, Non-linear optical study of BODIPY-benzimidazole conjugate by solvatochromic, Z-scan and theoretical methods, Opt. Mater, vol.64, pp.453-460, 2017.

A. Costela, I. García-moreno, C. Gomez, R. Sastre, F. Amat-guerri et al., Bañuelos Prieto, I. López Arbeloa, Photophysical and Lasing Properties of New Analogs of the Boron?Dipyrromethene Laser Dye PM567 in Liquid Solution, J. Phys. Chem. A, vol.106, pp.7736-7742, 2002.

W. Wu, H. Guo, W. Wu, S. Ji, and J. Zhao, Organic Triplet Sensitizer Library Derived from a Single Chromophore (BODIPY) with Long-Lived Triplet Excited State for TripletTriplet Annihilation Based Upconversion, J. Org. Chem, vol.76, pp.7056-7064, 2011.

C. N. Hunter, R. Van-grondelle, and J. D. Olsen, Photosynthetic antenna proteins: 100 ps before photochemistry starts, Trends Biochem. Sci, vol.14, pp.72-76, 1989.

Y. Ni and J. Wu, Far-red and near infrared BODIPY dyes: synthesis and applications for fluorescent pH probes and bio-imaging, Org. Biomol. Chem, vol.12, p.3774, 2014.

A. Kamkaew, S. H. Lim, H. B. Lee, L. V. Kiew, L. Y. Chung et al., BODIPY dyes in photodynamic therapy, vol.42, pp.77-88, 2013.

, Chapitre III Les propriétés optiques linéaires et non linéaires des matériaux organiques à base de BODIPY fonctionnalisés par des donneurs de type diméthylaminostyryle, p.99

W. Shi, P. Lo, A. Singh, I. Ledoux-rak, and D. K. Ng, Synthesis and second-order nonlinear optical properties of push-pull BODIPY derivatives, Tetrahedron, vol.68, pp.8712-8718, 2012.

B. Kulyk, S. Taboukhat, H. Akdas-kilig, J. Fillaut, Y. Boughaleb et al., Nonlinear refraction and absorption activity of dimethylaminostyryl substituted BODIPY dyes, RSC Adv, vol.6, pp.84854-84859, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01374329

M. Zhu, L. Jiang, M. Yuan, X. Liu, C. Ouyang et al., Efficient tuning nonlinear optical properties: Synthesis and characterization of a series of novel poly(aryleneethynylene)s co-containing BODIPY, J. Polym. Sci. Part Polym

, Chem, vol.46, pp.7401-7410, 2008.

D. Zhang, Y. Wang, Y. Xiao, S. Qian, and X. Qian, Long-wavelength boradiazaindacene derivatives with two-photon absorption activity and strong emission: versatile candidates for biological imaging applications, Tetrahedron, vol.65, pp.8099-8103, 2009.

Y. Wang, D. Zhang, H. Zhou, J. Ding, Q. Chen et al., Nonlinear optical properties and ultrafast dynamics of three novel boradiazaindacene derivatives, J. Appl. Phys, vol.108, p.33520, 2010.

G. Ulrich, A. Barsella, A. Boeglin, S. Niu, and R. Ziessel, BODIPY-Bridged Push-Pull Chromophores for Nonlinear Optical Applications, ChemPhysChem, vol.15, pp.2693-2700, 2014.

D. Potamianos, P. Giannakopoulou, A. Kaloudi-chantzea, G. Pistolis, and S. Couris, Thirdorder nonlinear optical properties of some novel BODIPYs, Transparent Opt. Netw. ICTON 2014 16th Int. Conf. On, IEEE, pp.1-3, 2014.

P. Bouit, K. Kamada, P. Feneyrou, G. Berginc, L. Toupet et al., Two-Photon Absorption-Related Properties of Functionalized BODIPY Dyes in the Infrared Range up to Telecommunication Wavelengths, Adv. Mater, vol.21, pp.1151-1154, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01320606

K. Rurack, M. Kollmannsberger, and J. Daub, Molecular switching in the near infrared (NIR) with a functionalized boron-dipyrromethene dye, Angew. Chem. Int. Ed, vol.40, pp.385-387, 2001.

, Chapitre III Les propriétés optiques linéaires et non linéaires des matériaux organiques à base de BODIPY fonctionnalisés par des donneurs de type diméthylaminostyryle, p.100

E. Deniz, G. C. Isbasar, Ö. A. Bozdemir, L. T. Yildirim, A. Siemiarczuk et al., Bidirectional Switching of Near IR Emitting Boradiazaindacene Fluorophores, Org. Lett, vol.10, pp.3401-3403, 2008.

A. Schmitt, B. Hinkeldey, M. Wild, and G. Jung, Synthesis of the Core Compound of the BODIPY Dye Class: 4,4?-Difluoro-4-bora-(3a,4a)-diaza-s-indacene, J. Fluoresc, vol.19, pp.755-758, 2009.

D. W. Cho, M. Fujitsuka, J. H. Ryu, M. H. Lee, H. K. Kim et al., S2 emission from chemically modified BODIPYs, Chem. Commun, vol.48, p.3424, 2012.
DOI : 10.1039/c2cc30569k

D. K. Kölmel, A. Hörner, J. A. Castañeda, J. A. Ferencz, A. Bihlmeier et al., Linear and Nonlinear Optical Spectroscopy of Fluoroalkylated BODIPY Dyes, J. Phys. Chem. C, vol.120, pp.4538-4545, 2016.

B. Kulyk, S. Taboukhat, H. Akdas-kilig, J. Fillaut, M. Karpierz et al., Tuning the nonlinear optical properties of BODIPYs by functionalization with dimethylaminostyryl substituents, Dyes Pigments, vol.137, pp.507-511, 2017.

G. J. Lee, S. W. Cha, S. J. Jeon, J. I. Jin, and J. S. Yoon, Second-order nonlinear optical properties of unpoled bent molecules in powder and in vacuum-deposited film, J. Korean Phys. Soc, vol.39, pp.912-915, 2001.

K. Kubodera and H. Kobayashi, Determination of Third-Order Nonlinear Optical Susceptibilities for Organic Materials by Third-Harmonic Generation, Mol. Cryst. Liq

, Cryst. Inc. Nonlinear Opt, vol.182, pp.103-113, 1990.

R. W. Boyd, Nonlinear Optics, 2008.

G. I. Stegeman and R. A. Stegeman, Nonlinear Optics: Phenomena, Materials and Devices, 2012.

B. Liu, L. Li, C. Lin, J. Zhou, Z. Zhu et al., Polyacetylenes containing BODIPY pendants with different connectivities: synthesis, characterization and optoelectronic properties, Polym Chem, vol.5, pp.372-381, 2014.
DOI : 10.1039/c3py01021j

, Chapitre III Les propriétés optiques linéaires et non linéaires des matériaux organiques à base de BODIPY fonctionnalisés par des donneurs de type diméthylaminostyryle, p.101

G. S. He, L. Tan, Q. Zheng, and P. N. Prasad, Multiphoton Absorbing Materials: Molecular Designs, Characterizations, and Applications, vol.108, pp.1245-1330, 2008.
DOI : 10.1021/cr050054x

B. Küçüköz, G. Sevinç, E. Yildiz, A. Karatay, F. Zhong et al., Enhancement of two photon absorption properties and intersystem crossing by charge transfer in pentaaryl boron-dipyrromethene (BODIPY) derivatives, Phys. Chem, vol.18, pp.13546-13553, 2016.

, Références du chapitre IV

S. Arroudj, A. Aamoum, L. Messaadia, A. Bouraiou, S. Bouacida et al., Effect of the complexation on the NLO electronic contribution in film based conjugated quinoline ligand, Phys. B Condens. Matter, vol.516, pp.1-6, 2017.

B. S. Devaramani, B. A. Manjasetty, and T. R. Nair, The Novelty of Syntheses & Varied Applications of ZnO nano systems, ArXiv Prepr. ArXiv10020199, 2010.

G. Wilkinson, M. Rosenblum, M. C. Whiting, and R. B. Woodward, The structure of iron biscyclopentadienyl, J. Am. Chem. Soc, vol.74, pp.2125-2126, 1952.

C. Ho, H. Li, and W. Wong, Red to near-infrared organometallic phosphorescent dyes for OLED applications, J. Organomet. Chem, vol.751, pp.261-285, 2014.
DOI : 10.1016/j.jorganchem.2013.09.035

G. Rodríguez, M. Albrecht, J. Schoenmaker, A. Ford, M. Lutz et al., Bifunctional Pincer-type Organometallics as Substrates for Organic Transformations and as Novel Building Blocks for Polymetallic Materials, J. Am. Chem. Soc, vol.124, pp.5127-5138, 2002.

M. Albrecht, N. J. Hovestad, J. Boersma, and G. Van-koten, Multiple use of soluble metallodendritic materials as catalysts and dyes, Chem.-Eur. J, vol.7, pp.1289-1294, 2001.

R. E. Aird, J. Cummings, A. A. Ritchie, M. Muir, R. E. Morris et al.,

. Jodrell, In vitro and in vivo activity and cross resistance profiles of novel ruthenium (II) organometallic arene complexes in human ovarian cancer, Br. J. Cancer, vol.86, pp.1652-1657, 2002.

R. E. Morris, R. E. Aird, P. Del-socorro, H. Murdoch, J. Chen et al., Inhibition of Cancer Cell Growth by Ruthenium(II) Arene Complexes, J. Med. Chem, vol.44, pp.3616-3621, 2001.

A. F. Peacock, A. Habtemariam, R. Fernández, V. Walland, F. P. Fabbiani et al., Tuning the Reactivity of Osmium(II) and Ruthenium(II) Arene Complexes under Physiological Conditions, J. Am. Chem. Soc, vol.128, pp.1739-1748, 2006.

, Chapitre IV Les propriétés optiques linéaires et non linéaires des complexes organométalliques à base de Ruthénium(II) et de Fer(II, p.122

O. Maury and H. L. Bozec, Molecular Engineering of Octupolar NLO Molecules and Materials Based on Bipyridyl Metal Complexes, Acc. Chem. Res, vol.38, pp.691-704, 2005.

S. M. Kumar, S. Selvakumar, and P. Sagayaraj, Synthesis, growth and physicochemical properties of an organometallic nonlinear optical crystal: Mercury cadmium chloride thiocyanate, Opt. -Int. J. Light Electron Opt, vol.125, pp.1071-1074, 2014.

M. Nadafan, Z. Dehghani, and S. I. Fakhrinia, Synthesis and nonlinear optical studies of organometallic Cobalt (II) with polyurethane elastomer, Opt. -Int. J. Light Electron Opt, vol.127, pp.9361-9366, 2016.

H. S. Nalwa, Organometallic materials for nonlinear optics, Appl. Organomet. Chem, vol.5, pp.349-377, 1991.
DOI : 10.1002/aoc.590050502

S. Barlow and S. R. Marder, Electronic and optical properties of conjugated group 8 metallocene derivatives, Chem. Commun, pp.1555-1562, 2000.

J. C. Calabrese, L. T. Cheng, J. C. Green, S. R. Marder, and W. Tam, Molecular second-order optical nonlinearities of metallocenes, J. Am. Chem. Soc, vol.113, pp.7227-7232, 1991.

K. S. Kumar, A. Baskaran, V. Ramesh, S. Murugavel, P. Sagayaraj et al., Synthesis, growth, spectral, optical and thermal properties of a novel metal-organic family single crystal: Bis (thiocyanato) cobalt(II) di thiourea, Opt. -Int. J. Light Electron Opt, vol.127, pp.4964-4969, 2016.

M. H. Garcia, P. J. Mendes, and A. R. Dias, Synthesis and electrochemical studies of organometallic cobalt(III) complexes with substituted benzonitrile chromophores: NMR spectroscopic data as a probe on the second-order non-linear optical properties, J. Organomet. Chem, vol.690, pp.4063-4071, 2005.

K. Rajarajan, G. Mani, I. Vetha, J. G. Potheher, M. Jesudurai et al., Growth, optical, dielectric and ESR studies on tetrathiourea mercury(II) tetrathiocyanato manganate(II): An organometallic complex NLO crystal, J. Phys. Chem. Solids, vol.68, pp.2370-2375, 2007.
DOI : 10.1016/j.jpcs.2007.07.036

P. S. Liyanage, R. M. Silva, and K. M. Silva, Nonlinear optical (NLO) properties of novel organometallic complexes: high accuracy density functional theory

, Chapitre IV Les propriétés optiques linéaires et non linéaires des complexes organométalliques à base de Ruthénium(II) et de Fer(II) -123 -calculations, vol.639, pp.195-201, 2003.

M. R. Janjua, S. Jamil, T. Ahmad, Z. Yang, A. Mahmood et al., Quantum chemical perspective of efficient NLO materials based on dipolar trans-tetraammineruthenium (II) complexes with pyridinium and thiocyanate ligands: First theoretical framework, Comput. Theor. Chem, vol.1033, pp.6-13, 2014.

Y. Zhang and B. Champagne, Understanding the Second-Order Nonlinear Optical Properties of One-Dimensional Ruthenium(II) Ammine Complexes, J. Phys. Chem. C, vol.117, pp.1833-1848, 2013.

I. Aiello, U. Caruso, M. Ghedini, B. Panunzi, A. Quatela et al., NLO active Pd(II)-based organometallic side-chain polymers with C,N or N,O-chelating chromophoric ligands, Polymer, vol.44, pp.7635-7643, 2003.

M. Anis, S. S. Hussaini, A. Hakeem, M. D. Shirsat, and G. G. Muley, Synthesis, growth and optical studies of novel organometallic NLO crystal: Calcium bis-thiourea chloride, Opt. -Int. J. Light Electron Opt, vol.127, pp.2137-2142, 2016.

A. Roshan, S. , C. Joseph, and M. A. Ittyachen, Growth and characterization of a new metalorganic crystal: potassium thiourea bromide, Mater. Lett, vol.49, pp.299-302, 2001.

T. Guerrero, P. G. Lacroix, H. García-ortega, O. G. Morales-saavedra, D. Agustin et al., Enhanced NLO properties of molybdenum push-pull coordination compounds with tridentate ONO organic ligands, Inorganica Chim. Acta, vol.442, pp.10-15, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01929762

S. D. Cummings, L. Cheng, and R. Eisenberg, Metalloorganic compounds for nonlinear optics: Molecular hyperpolarizabilities of M (diimine)(dithiolate) complexes (M= Pt, Pd, Ni), vol.9, pp.440-450, 1997.

S. and D. Bella, Second-order nonlinear optical properties of transition metal complexes, Chem. Soc. Rev, vol.30, pp.355-366, 2001.

D. Osella, L. Milone, C. Nervi, and M. Ravera, Electronic interactions in organometallic dimers. An electrochemical approach, J. Organomet. Chem, vol.488, pp.1-7, 1995.

, Chapitre IV Les propriétés optiques linéaires et non linéaires des complexes organométalliques à base de Ruthénium(II) et de Fer(II, p.124

M. P. Cifuentes and M. G. Humphrey, Alkynyl compounds and nonlinear optics, J. Organomet. Chem, vol.689, pp.3968-3981, 2004.

R. E. Krebs, The History and Use of Our Earth's Chemical Elements: A Reference Guide, 2006.

T. Lazarevi?, A. Rilak, and ?. D. Bugar?i?, Platinum, palladium, gold and ruthenium complexes as anticancer agents: Current clinical uses, cytotoxicity studies and future perspectives, Eur. J. Med. Chem, vol.142, pp.8-31, 2017.

C. S. Allardyce and P. J. Dyson, Ruthenium in medicine: current clinical uses and future prospects, Platin. Met. Rev, vol.45, pp.62-69, 2001.

T. Lazarevi?, A. Rilak, and ?. D. Bugar?i?, Platinum, palladium, gold and ruthenium complexes as anticancer agents: Current clinical uses, cytotoxicity studies and future perspectives, Eur. J. Med. Chem, vol.142, pp.8-31, 2017.

C. Six, K. Beck, A. Wegner, and W. Leitner, Ligand effects in novel ruthenium-based ROMP catalysts bearing bidentate phosphines, Organometallics, vol.19, pp.4639-4642, 2000.

P. M. Maitlis, Fischer-Tropsch, organometallics, and other friends, J. Organomet. Chem, vol.689, pp.4366-4374, 2004.

G. C. Bond, B. Coq, R. Dutartre, J. G. Ruiz, A. D. Hooper et al., Effect of various pretreatments on the structure and properties of ruthenium catalysts, J. Catal, vol.161, pp.480-494, 1996.

J. Ye, H. Cui, X. Liu, T. Lim, W. Zhang et al., Preparation and Characterization of Aligned Carbon Nanotube-Ruthenium Oxide Nanocomposites for Supercapacitors, pp.560-565, 2005.

N. Jha, E. Bekyarova, P. Ramesh, M. E. Itkis, and R. C. Haddon, Ruthenium oxide-single walled carbon nanotube composite based high energy supercapacitor

, Nanomater. Emerg. Eng. Technol. ICANMEET, pp.436-439, 2013.

Q. Li, S. Zheng, Y. Xu, H. Xue, and H. Pang, Ruthenium based materials as electrode materials for supercapacitors, Chem. Eng. J, vol.333, pp.505-518, 2018.

, Chapitre IV Les propriétés optiques linéaires et non linéaires des complexes organométalliques à base de Ruthénium(II) et de Fer(II, p.125

L. Ackermann, A. V. Lygin, and N. Hofmann, Ruthenium-Catalyzed Oxidative Annulation by, Angew. Chem, vol.123, pp.6503-6506, 2011.

X. Huo, D. J. Van-hoomissen, J. Liu, S. Vyas, and T. J. Strathmann, Hydrogenation of aqueous nitrate and nitrite with ruthenium catalysts, Appl. Catal. B Environ, vol.211, pp.188-198, 2017.

G. Chelucci, S. Baldino, and W. Baratta, Ruthenium and osmium complexes containing 2-(aminomethyl)pyridine (Ampy)-based ligands in catalysis, Coord. Chem. Rev, vol.300, pp.29-85, 2015.

A. Adamczyk, Y. Xu, B. Walaszek, F. Roelofs, T. Pery et al., Solid State and Gas Phase NMR Studies of Immobilized Catalysts and Catalytic Active Nanoparticles, Top. Catal, vol.48, pp.75-83, 2008.

W. P. Halperin, Quantum size effects in metal particles, Rev. Mod. Phys, vol.58, p.533, 1986.

P. Yuan, J. Yin, G. Yu, Q. Hu, and S. H. Liu, Synthesis and Second-Order NLO Properties of Donor?Acceptor ?-Alkenyl Ruthenium Complexes, Organometallics, vol.26, pp.196-200, 2007.

S. Kaur, M. Kaur, P. Kaur, K. Clays, and K. Singh, Ferrocene chromophores continue to inspire. Fine-tuning and switching of the second-order nonlinear optical response, Coord. Chem. Rev, vol.343, pp.185-219, 2017.

Y. Umemura, A. Yamagishi, R. Schoonheydt, A. Persoons, and F. D. Schryver, Langmuir?Blodgett Films of a Clay Mineral and Ruthenium(II) Complexes with a Noncentrosymmetric Structure, J. Am. Chem. Soc, vol.124, pp.992-997, 2002.

M. Zhao and R. M. Crooks, Homogeneous hydrogenation catalysis with monodisperse, dendrimer-encapsulated Pd and Pt nanoparticles, Angew. Chem.-Int. Ed, vol.38, pp.364-365, 1999.

D. M. Burland, R. D. Miller, and C. A. Walsh, Second-order nonlinearity in poled-polymer systems, Chem. Rev, vol.94, pp.31-75, 1994.

J. Luc, Propriétés optiques non linéaires et structuration photo-induite de nouveaux complexes organométalliques à base de ruthénium, 2008.

, Chapitre IV Les propriétés optiques linéaires et non linéaires des complexes organométalliques à base de Ruthénium(II) et de Fer(II, p.126

Z. Liu, L. Feng, X. Su, C. Qin, K. Zhao et al., Micro-sized organometallic compound of ferrocene as high-performance anode material for advanced lithium-ion batteries, J. Power Sources, vol.375, pp.102-105, 2018.

J. Xiang, K. Sato, H. Tokue, K. Oyaizu, C. Ho et al., Synthesis and Charge-Discharge Properties of Organometallic Co-polymers of Ferrocene and Triphen-ylamine as Cathode Active Materials for Organic-Battery Applications, Eur. J. Inorg. Chem, vol.2016, pp.1030-1035, 2016.

K. Tamura, N. Akutagawa, M. Satoh, J. Wada, and T. Masuda, Charge/Discharge Properties of Organometallic Batteries Fabricated with Ferrocene-Containing Polymers, Macromol. Rapid Commun, vol.29, pp.1944-1949, 2008.

S. Kaur, M. Kaur, P. Kaur, K. Clays, and K. Singh, Ferrocene chromophores continue to inspire. Fine-tuning and switching of the second-order nonlinear optical response, Coord. Chem. Rev, vol.343, pp.185-219, 2017.

S. Salman, J. Brédas, S. R. Marder, V. Coropceanu, and S. Barlow, Dipolar Ferrocene and Ruthenocene Second-Order Nonlinear Optical Chromophores: A Time-Dependent Density Functional Theory Investigation of Their Absorption Spectra, Organometallics, vol.32, pp.6061-6068, 2013.

K. N. Gherab, R. Gatri, Z. Hank, B. Dick, R. Kutta et al., Design and photoinduced surface relief grating formation of photoresponsive azobenzene based molecular materials with ruthenium acetylides, J. Mater. Chem, vol.20, p.2858, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00917141

G. J. Lee, S. W. Cha, S. J. Jeon, J. I. Jin, and J. S. Yoon, Second-order nonlinear optical properties of unpoled bent molecules in powder and in vacuum-deposited film, J. Korean Phys. Soc, vol.39, pp.912-915, 2001.

K. Kubodera and H. Kobayashi, Determination of Third-Order Nonlinear Optical Susceptibilities for Organic Materials by Third-Harmonic Generation, Mol. Cryst. Liq

, Cryst. Inc. Nonlinear Opt, vol.182, pp.103-113, 1990.

, After cooling to room temperature, the reaction mixture was concentrated under reduced pressure and then subjected to silica gel column chromatography with AcOEt/Hexane (2:1). The blue fraction was collected and recrystallized from CHCl 3 /cyclohexane to give B1 as deep blue needles (230 mg, 0.50 mmol, 25 %). 1 H NMR (300 MHz, Preparation of B1: ((E)-4,4-difluoro-5-(4-(dimethyl)amino)styryl)-1,3,7-trimethyl-8-phenyl-4-bora-3a,4a-diaza-s-indacene):4,4-Difluoro-1,3,5

, 62 (s, 1 H), 6.71 (m, 2 H), vol.6

, 13 C NMR (126 MHz

. Hr-ms, Preparation of B2: ((E)-4,4-difluoro-3,5-di-(4-(dimethyl)amino)styryl)-1,7-dimethyl-8-phenyl-4-bora-3a,4a-diaza-s-indacene):The same conditions were applied to 4,4-Difluoro-1,3,5,7-tetramethyl-8-phenyl-4-bora-3a, 4a-diaza-s-indacene (650 mg, 2 mmol) and 4-dimethylaminobenzaldehyde, EI, 70 eV): m/z found 456.2452, calcd for

, (m, 6 H); 13 C NMR (126 MHz

, ? La synthèse des complexes organométalliques à base de Ruthénium(II) et de Fer(II

, Cl 2 ], (300 mg, 0.22 mmol) was added to 6 (74 mg

, KPF 6 (0.6 mmol) in CH 2 Cl 2 (25 mL) and stirred for 16 h. The dark red solution Annexe, p.133

, 6 mmol) was added to the vinylidene solution ( 31 P{ 1 H}NMR: ? (ppm) -16.7 (s, PPh 2 )) and the stirring continued for a further 2 h. The resulting red-orange solution was filtered before 20 ml of heptane was added. The solid thus obtained was isolated by filtration, washed with pentane, and dried under vacuum to give the product as a red-orange crystalline powder. Complex 2, yield 163 mg

H. Nmr, 400 MHz, CDCl 3 ) ? 7.81 (d, 7.8 Hz, 2H), 7.53-7.44 (m, 16H) 7.32 (t, 8.0 Hz, 4H)

. Hz,

J. Cp-=-11hz,

, 24 mmol), 6 (135 mg, 0.4 mmol) and KPF 6 (43.1 mg, 0.23 mmol) in 20 mL of CH 2 Cl 2 /MeOH (1/1) was stirred for 48 h at room temperature. The mixture was filtered off in celite column, concentrated to ca. 1 mL and precipitated with heptane. The solid obtained was washed with pentane, dried under vacuum and dissolved in CH 2 Cl 2 (15 mL) ( 31 P{ 1 H} NMR (162 MHz, CDCl 3 ): 20.9 ppm (singlet, PPh 3 ), ?143.92 (septet, PF 6 , 1 J PF = 710 Hz). K 2 CO 3 (2 mmol) was added and the reaction mixture was stirred for another 6 h. The crude product was purified by chromatography on silica gel eluted with CH 2 Cl 2 /petroleum ether (1/2, v/v) to give a red-orange solid identified as 3. Yield 130 mg

, 33 (s, 3H), 2.21 (s, 3H), 1.65 (s, 4H), 1.42 (s, 4H), 1.00 (s, 7.8 Hz, 6H). 13 C NMR (101 MHz, Hz, 1H), 8.22 (d, 5.5 Hz, 1H), 7.81 (d, 7.8 Hz, 2H), 7.72-7.46 (unresolved m., 20H), 7.16 -6.93 (unresolved m.,16H), 6.72 (d, 7.8 Hz, 2H), 6.63 (d, 5.5 Hz, 1H), 5.95 (d, 5.5 Hz, 1H), 3.38 (t, 7.2 Hz, 4H), vol.2

, Annexe -134 -Preparation of C: A solution of RuCl(dppe)? 5 -Cp

, Deoxygenated diethyl ether (2 x 50 mL) was added and the mixture filtered. The filtrate was dissolved in CH 2 Cl 2 (15 mL) 31 P{ 1 H} NMR (singlet at 42 ppm (PPh 3 ), ?143.87 (septet, PF 6 , 1 J PF = 709 Hz).Then K 2 CO 3 (2 mmol) was added and the reaction mixture was stirred for another 6 h. The crude product was purified by chromatography on silica gel eluted, and KPF 6 (2.5 mmol) in 15 mL of CH 2 Cl 2 was stirred for 48 h at room temperature under argon

. Mhz, PPh 3 ). 1 H NMR (400 MHz, CDCl 3 ) ? 7.83 (d, 7.8Hz, 2H), 7.70 (d., 7.8Hz, 2H), 7.51 (m, 10H ), 7.23 (m, 8H ), 7.16 (m, 12H), p.101

. Mhz, 77 (m, 1 J CP + 3 J CP = 42 Hz), vol.47

, This flask was purged three times with argon. 11 mg (60 ?mol) of copper iodide and 41 mg (60 ?mol) of bis(triphenylphosphine)palladium(II) dichloride were added and the reaction mixture was stirred overnight at 50°C. After the solvent was removed, the residue was extracted 3 times with 25 mL of CH 2 Cl 2 and washed with 50 ml of water, and then dried over Na 2 SO 4 . The resulting mixture was concentrated under reduced pressure. The crude product was purified by chromatography on silica gel eluted with ether/petroleum ether (1/4, v/v) to give 1. Redorange crystalline powder, 20 mL of THF and 20 mL of Et 3 N in a round bottom flask, p.101

. Mhz,

S. Taboukhat, M. Lougdali, Y. E. Kouari, A. Zawadzka, A. Ayadi et al., Nonlinear optical properties of some selected highly conjugated molecules based on TTF for optoelectronics applications, International Conference On, pp.1-4, 2017.

B. Kulyk, S. Taboukhat, H. Akdas-kilig, J. Fillaut, M. Karpierz et al., Tuning the nonlinear optical properties of BODIPYs by functionalization with dimethylaminostyryl substituents, Dyes and Pigments, vol.137, pp.507-511, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01438103

B. Kulyk, S. Taboukhat, H. Akdas-kilig, J. Fillaut, Y. Boughaleb et al., Nonlinear refraction and absorption activity of dimethylaminostyryl substituted BODIPY dyes, RSC Adv, vol.6, pp.84854-84859, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01374329

M. Bouchouit, Y. Elkouari, L. Messaadia, A. Bouraiou, S. Arroudj et al., Synthesis, spectral, theoretical calculations and optical properties performance of substituted-azobenzene dyes, Optical and Quantum Electronics, vol.48, 2016.

A. Karakas, M. Karakaya, Y. Ceylan, Y. E. Kouari, S. Taboukhat et al., Ab-initio and DFT methodologies for computing hyperpolarizabilities and susceptibilities of highly conjugated organic compounds for nonlinear optical applications, Optical Materials, vol.56, pp.8-17, 2016.

S. Arroudj, M. Bouchouit, K. Bouchouit, A. Bouraiou, L. Messaadia et al., Synthesis, spectral, optical properties and theoretical calculations on schiff bases ligands containing o-tolidine, Optical Materials, vol.56, pp.116-120, 2016.

S. Abed, K. Bouchouit, M. S. Aida, S. Taboukhat, Z. Sofiani et al., Nonlinear optical properties of zinc oxide doped bismuth thin films using Z-scan technique, Optical Materials, vol.56, pp.40-44, 2016.

A. Zawadzka, P. P?óciennik, D. Guichaoua, S. Taboukhat, A. Korcala et al., Optical properties of self-assembled aluminum phthalocyanine chloride thin films, Display and Imaging, vol.2, pp.93-103, 2016.

-. Taboukhat, J. Fillaut, B. Kulyk, Y. Boughaleb, and B. Sahraoui, Effect of the metal incorporation on nonlinear optical response in some specific azo-based organometallic complexes, 4th International Workshop on Nano-and Biophotonics" du 24 au 29 septembre 2017 Vogüé France. 2-Said Taboukhat, 2017.

. Mohammedia-maroc,

-. Taboukhat, M. Lougdali, Y. E. Kouari, and A. Ayadi, Abdelkrim El

Y. Ghayoury, B. Boughaleb, and . Sahraoui, Nonlinear Optical Properties of some Selected Highly Conjugated Molecules based Optoelectronics Applications, on TTF for

C. Internationale and I. , 19 th Transparent on Conference International Optical Networks, 2017.

S. Taboukhat, B. Kulyk, J. Fillaut, Y. Boughaleb, and B. Sahraoui, Study of the Nonlinear Optical Properties of Azo-based new Organometallic Ruthenium and Iron Complexes Journée doctorale de l'école doctorale 3MPL le 24 juin 2017 à Angers France

S. Taboukhat, B. Kulyk1, J. Fillaut, Y. Boughaleb, and B. Sahraoui, Nonlinear Optical Properties of Azo-based new Organometallic Ruthenium and Iron Complexes, Conférence Internationale AMPSECA 2017

C. Internationale and A. , Conference for on Advanced Materials Photonics, Sensing and Energy AppliCAtions" Mars, vol.28, 2017.

H. El-ouazzani, D. Guichaoua, S. Taboukhat, J. Mysliwiec, O. Krupka et al.,

C. Internationale and A. , Conference for, 2017.

S. Photonics and E. Applications, Mars, 28, 29, 30, 2017.

, Annexe -137

S. Taboukhat, B. Kulyk, J. Fillaut, Y. Boughaleb, and B. Sahraoui, Nonlinear Optical Properties of BODIPYs Functionalized with Dimethylaminostyryl Substituents Journées doctorales de l'école doctorale 3MPL le 23-24 juin, 2016.

S. Taboukhat, A. Migalska--zalas, A. Charaf, M. Bakasse, and Y. Boughaleb, Theoretical calculation of the optical properties of P-nitroaniline individual molecules

, Attestation du meilleur poster décernée par ICFPAM 2015 "13thinternational conference on frontiers of polymers & advanced materials, 2015.

S. Taboukhat, A. Migalska--zalas, A. Charaf, M. Bakasse, and Y. Boughaleb, Theoretical calculation of the optical properties of P-nitroaniline individual molecules

, Conférence Internationale ICFPAM 2015 "13thinternational conference on frontiers of polymers & advanced materials, 2015.

-. S. Taboukhat, Y. Boughaleb, A. Migalska-zalas, B. Sahraoui, and Z. Sofiani, Study of nonlinear optics properties of P-nitroaniline molecules

C. Internationale and C. , Functional Materials and their Technological Applications, 2014.