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Avant propos: Les systèmes neuromusculaire et musculosquelettique sont des
systèmes de systèmes complexes qui interagissent parfaitement entre eux afin de produire
le mouvemement. En y regardant de plus près, ce mouvement est la résultante d’une force
musculaire créée à partir d’une activation du muscle par le système nerveux centrale. En
parallèle de cette activité mécanique, le muscle produit aussi une activité électrique elle
aussi contrôlée par la même activation. Cette activité électrique peut être mesurée à
la surface de la peau à l’aide d’électrode, ce signal enregistré par l’électrode se nomme
le signal Electromyogramme de surface (sEMG). Comprendre comment ces résultats de
l’activation du muscle sont générés est primordiale en biomécanique ou pour des applica-
tions cliniques. Evaluer and quantifier ces interactions intervenant durant la contraction
musculaire est difficile et complexe à étudier dans des conditions expérimentales. Par
conséquent, il est nécessaire de développer un moyen pour pouvoir décrire et estimater
ces interactions. Dans la littérature de la bioingénierie, plusieurs modèles de génération
de signaux sEMG et de force ont été publiés. Ces modèles sont principalment utilisés pour
décrire une partie des résultats de la contraction musculaire. Ces modèles souffrent de
plusieurs limites telles que le manque de réalisme physiologique, la personnalisation des
paramètres, ou la représentativité lorsqu’un muscle complet est considéré. Dans ce tra-
vail de thèse, nous nous proposons de développer un modèle biofidèle, personnalisable et
rapide décrivant l’activité électrique et mécanique du muscle en contraction isométrique.
Pour se faire, nous proposons d’abord un modèle décrivant l’activité électrique du muscle
à la surfac de la peau. Cette activité électrique sera commandé par une commande volon-
taire venant du système nerveux périphérique, qui va activer les fibres musculaires qui
vont alors dépolariser leur membrane. Cette dépolarisation sera alors filtrée par le volume
conducteur afin d’obtenir l’activité électrique à la surface de la peau. Une fois cette activ-
ité obtenue, le système d’enregistrement décrivant une grille d’électrode à haute densité
(HD-sEMG) est modélisée à la surface de la peau afin d’obtenir les signaux sEMG à partir
d’une intégration surfacique sous le domaine de l’électrode. Dans ce modèle de généra-
tion de l’activité électrique, le membre est considéré cylindrique et multi couches avec la
considération des tissues musculaire, adipeux et la peau. Par la suite, nous proposons
un modèle mécanique du muscle décrit à l’échelle de l’Unité Motrice (UM). L’ensemble
des résultats mécanique de la contraction musculaire (force, raideur et déformation) sont
déterminées à partir de la même commande excitatrice du système nerveux périphérique.
Ce modèle est basé sur le modèle de coulissement des filaments d’actine-myosine proposé
par Huxley que l’on modélise à l’échelle UM en utilisant la théorie des moments utilisée
par Zahalak. Ce modèle mécanique est validé avec un profil de force enregistré sur un
sujet paraplégique avec un implant de stimulation neurale. Finalement, nous proposons
aussi trois applications des modèles proposés afin d’illustrer leurs fiabilité ainsi que leurs
utilité. Tout d’abord une analyse de sensibilité globale des paramètres de la grille HD-
sEMG est présentée. Puis, nous présenterons un travail fait en collaboration avec une
autre doctorante une nouvelle étude plus précise sur la modélisation de la relation HD-
sEMG/force en personnalisant les paramètres afin de mimer au mieux le comportement
du Biceps Brachii. Pour conclure, nous proposons un dernier modèle quasi-dynamique
décrivant l’activité électro-mécanique du muscle en contraction isométrique. Ce modèle
déformable va actualiser l’anatomie cylindrique du membre sous une hypothèse isovolu-
mique du muscle.

Mots-clés: Système de systèmes; modélisation; contraction du muscle squelettique;
activité électrique; activité mécanique; optimisation; modèle couplé; analyse de sensibilité;
relation sEMG/force
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Abstract: The neuromuscular and musculoskeletal systems are complex System of
Systems (SoS) that perfectly interact to provide motion. From this interaction, a muscular
force is generated from the muscle activation commanded by the Central Nervous System
(CNS) that pilots joint motion. In parallel an electrical activity of the muscle is generated
driven by the same command of the CNS. This electrical activity can be measured at the
skin surface using electrodes, namely the surface electromyogram (sEMG). The knowl-
edge of how these muscle outcomes are generated is highly important in biomechanical
and clinical applications. Evaluating and quantifying the interactions arising during the
muscle activation are hard and complex to investigate in experimental conditions. There-
fore, it is necessary to develop a way to describe and estimate it. In the bioengineering
literature, several models of the sEMG and the force generation are provided. They are
principally used to describe subparts of the muscular outcomes. These models suffer from
several important limitations such lacks of physiological realism, personalization, and rep-
resentability when a complete muscle is considered. In this work, we propose to construct
bioreliable, personalized and fast models describing electrical and mechanical activities of
the muscle during contraction. For this purpose, we first propose a model describing the
electrical activity at the skin surface of the muscle where this electrical activity is deter-
mined from a voluntary command of the Peripheral Nervous System (PNS), activating
the muscle fibers that generate a depolarization of their membrane that is filtered by the
limb volume. Once this electrical activity is computed, the recording system, i.e. the High
Density sEMG (HD-sEMG) grid is defined over the skin where the sEMG signals is deter-
mined as a numerical integration of the electrical activity under the electrode area. In this
model, the limb is considered as a multilayered cylinder where muscle, adipose and skin
tissues are described. Therefore, we propose a mechanical model described at the Motor
Unit (MU) scale. The mechanical outcomes (muscle force, stiffness and deformation) are
determined from the same voluntary command of the PNS, and is based on the Huxley
sliding filaments model upscale at the MU scale using the distribution-moment theory
proposed by Zahalak. This model is validated with force profile recorded from a subject
implanted with an electrical stimulation device. Finally, we proposed three applications
of the proposed models to illustrate their reliability and usefulness. A global sensitivity
analysis of the statistics computed over the sEMG signals according to variation of the
HD-sEMG electrode grid is performed. Then, we proposed in collaboration a new HD-
sEMG/force relationship, using personalized simulated data of the Biceps Brachii from
the electrical model and a Twitch based model to estimate a specific force profile corre-
sponding to a specific sEMG sensor network and muscle configuration. To conclude, a
deformable electro-mechanical model coupling the two proposed models is proposed. This
deformable model updates the limb cylinder anatomy considering isovolumic assumption
and respecting incompressible property of the muscle.

Keywords: System of systems; modeling; skeletal muscle contraction; electrical ac-
tivity; mechanical activity; optimization; coupling model; sensitivity analysis; sEMG/force
relationship
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General introduction

The neuromuscular and musculoskeletal systems are complex System of Systems (SoS)
that mutually interact during motion genesis. In fact, the human motion is managed
by the Central Nervous System (CNS) through activation of skeletal muscle fibers. The
muscle activation produces two types of responses; mechanical and electrical [2]. These
two outcomes have different properties, nevertheless they are linked through multiple in-
teractions during the contraction. The mechanical outcome of skeletal muscle contraction
manifests by a force production and the deformation of the muscle [3]. This muscle de-
formation can induce the motion of a specific joint according to the type of contraction.
Yet, movement is crucial for survival and human life, thus it is imperative to understand
all its aspects that can determine the functions and detect anomalies of the musculoskele-
tal and neuromuscular systems [3]. Accordingly, the neuromuscular and musculoskeletal
systems can be evaluated along with the diagnosis and management of both neurological
and orthopedic diseases through estimation and qualification of this mechanical response
which is the force [4]. However, as mentioned earlier, the muscle activation have another
response that is correlated to the mechanical one; the electrical activity. This electrical
response is called the Electromyogram (EMG) and can be measured in a non invasive
manner at the skin surface using surface electrodes [2].

These two phenomena occuring during the contraction of the muscle are the outcomes
of complex microscopic interactions. During muscular pathologies one or several of these
interactions are disrupted inducing serious consequences on the contractile responses.
Considering the complex underlying interactions arising during the muscle contraction
these disruptions are hardly diagnosed. For these reasons, bioreliable modeling of the
skeletal muscle during contraction is one of the leading challenges in biomechanics and
motor control. Bioreliable models can accurately describe the mechanisms controling the
muscle activation. Moreover, major interest in such models is the possibility to know all
the variables involved during the phenomenon. During experimental protocols studying
the muscle contraction, some properties of the muscle cannot be known and thus, may
be different among the subjects. These different properties can lead to misinterpret the
results of the study. In order to reduce this error due to inter-variability of the muscle
composition the number of subjects for this study must be important leading to expen-
sive and long study. Using such a model can reduce this inter-variability since all the
parameters physiologically representing the skeletal muscle are controlled by the user.

Understanding the muscle contraction and how these phenomena are created, is funda-
mental in many areas such as the study of joints and body motion. Moreover this possible
new knowledge can help practitioners with diagnosis or development of new treatments.
In this thesis we will propose three models describing, the electrical activity of the muscle,
the mechanical activity of the muscle and a deformable electro-mechanical activity of the
muscle during isometric, isotonic and anisotonic non fatiguing contractions. Since the
beginning of the 21st century, computational power significantly increased leading to the

1
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possibility to perform large and precise simulations or complex data processing using a
classical workstation. Following this drift, use of high-level programming language by the
scientific community emerges. Stimulating by the scientific community, a large ecosystem
of generic methods in several research fields (image and signal processing, multi-domain
dynamic systems dynamic, multi-channel processing, linear algebra computation, etc.) is
developed and accessible. For this purpose, the proposed models are developed in Python
programming language, providing access to several scientific libraries that allow an opti-
mized programming that will minimize the computation time of the models. Based on all
of the above, this manuscript is organized as follow:

• Chapter 1: in this chapter, we will introduce the main notions concerning the neuro-
muscular system and motion genesis, essentially the skeletal muscle properties and
architecture, the Motor Unit (MU) and the fiber types. Wherein, we describe also
the mechanisms of muscle contraction and sEMG signal generations by detailing
the generation and propagation of Fiber Action Potential (FAP), the description of
MU Action Potential (MUAP), the MU recruitment and firing and enumerating the
different types of contractions and the relations between the discharge frequency
and the generated force. Afterwards, in the next section, we introduce the HD-
sEMG technique as a innovative recording procedure that have many applications
and advantages and can improve sEMG based force estimation. In the second sec-
tion, we propose a state of the art of the electrical, mechanical and neural models
of the skeletal muscle that exist in the literature. Finally, we finish this chapter
by positioning the proposed thesis work in the face of the current skeletal muscle
modeling and indicating the objectives and innovation of the thesis;

• Chapter 2: in this chapter, we will propose a fast modeling of the electrical activity
of the skeletal muscle. This model describes the electrical muscle activity from the
firing moments of the motoneuron, to the generation, propagation and extinction of
the induced intracellular potential along muscle fibers. The muscle is considered as a
section inside a multilayered cylinder representing the limb. This electrical activity
is described as a 3D spatio-temporal map over the skin surface. Recording of the
electrode at the skin surface is defined with numerical integration under the area
of the electrode. Representing the muscle electrical activity as a 3D map allows a
decoupling between the physical phenomenon and the recording system. Thus, any
type of electrode or electrode grid can be defined over the same simulation of the
electrical activity. Concerning the model implementation, parallel computing was
considered in this model in order to significantly speedup the computation. Yet,
simulating realist muscle electrical activity during contraction implies to compute
all the fiber electrical sources leading to the determination of hundreds of thousands
sources. Even if parallel computing was used to reduce the model computation time,
realist simulation lasts several hours. For this purpose, we propose to simulate the
electrical sources at the MU scale. The proposed electrical source is MU specific
based on the fiber composing it. Use of such a model significantly reduces the
computation time of the model allowing to perform infeasible studies before such as
inverse problems or global sensitivity analysis.

• Chapter 3: in this chapter, we will propose a mechanical model of the skeletal mus-
cle. This model describes the generated force, the muscle stiffness as well as the
muscle deformation. On the contrary of most of the mechanical models, the muscle
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modeling is described at the MU scale allowing more details and knowledge on the
muscle contraction. The proposed model is driven by the same input definition as
the electrical model, i.e., a voluntary MU recruitment scheme for a desired contrac-
tion level. This model is validated using data recorded during electrical stimulation
performed on paraplegic patients. Modeling the muscle at the MU scale and its
contractile properties allows a direct access of the MU contribution in the corre-
sponding muscle force and stiffness. Furthermore, this model solves one of the main
issue in skeletal muscle mechanical modeling concerning a bioreliable definition of
the muscle activation, which is directly related to the neural drive comparing to the
widely used Hill model where the neural drive is simply represented by one scalar
parameter.

• Chapter 4: in this chapter, we will present the different possible applications of
the proposed models and exhibit preliminar study using the first deformable model
that is able to compute both electrical and mechanical activity of the muscle ac-
counting for the muscle deformation during isometric contractions. First a global
sensitivity analysis is proposed where the sensitivity of the statistics computed over
the HD-sEMG signals is assessed according to the variation of the recording system
parameters. Second, in collaboration with another PhD work, we propose a sim-
ulation study of the sEMG/force relationship. The electrical model was used and
personalized with experimental measurements and focused literature. This study
was performed for the Biceps Brachii muscle. Finally, a deformable model during
isometric contractions combining both electrical and mechanical models is presented.
This model considered in a first place the muscle deformation during the contrac-
tion, then this deformation is used to update the cylindrical representation of the
limb.
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State of the art and problematic
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6 CHAPTER 1. STATE OF THE ART AND PROBLEMATIC

1.1 Introduction

Since the early human life, man has shown unceasing interest in the organs responsible
for mobility in his own body first and those of animals after. This extreme curiosity
is due to the fact that movement is considered as the capital sign of animal life; "Il
moto è cause d’ogni vita" Leonardo Da Vinci, "the motion is the principle of all life".
Actually, part of the first ever scientific experiments were conducted on muscles to study
its functions. A lot of philosophers and scientists from Leonardo Da Vinci, Galvani to
Etienne-Jules Marey, whose findings constructed the beginning of neurophysiology and
muscle contraction dynamics studies, showed immense interest in the neuro-musculo-
skeletal system. This complex system can be decomposed into two subsystems: the
neuro-muscular system and the musculo-skeletal system. The neuro-muscular system
interprets the neural coding from the Peripheral Nervous System (PNS) into contraction
of the muscle fibers and thus, into muscle force. On the other hand, the musculo-skeletal
system transforms this muscle force into motion through the multiple joints of the body.

Figure 1.1: Illustration of the neuro-musculo-skeletal system of the Biceps Brachii. (L)
The musculo-skeletal system with the muscle attached to the bones through the tendons.
(R) The neuro-muscular system with the muscle connected to the CNS that innervates
the motor unit motoneurons.

Actually, these complex systems perfectly interact in order to provide the specific
muscle contraction needed for a specific motion. In the neuro-muscular system, the mus-
cle contraction is driven by the PNS which is controlled by the Central Nervous System
(CNS). The muscle contraction can be characterized from two phenomena, which arise
only during the muscle contraction [2]. One perceptible phenomenon is the production of
the muscle force and its deformation. Nonetheless, the other physical phenomenon invis-
ible to the eyes occurs in parallel to the force production. This phenomenon corresponds
to the depolarization of the muscle fibers when the PNS activates the muscle and thus is
an electrical phenomenon. This electrical activity can be recorded through surface elec-
trode placed over the skin [2]. This recorded signal is named the surface ElectroMyoGram
(sEMG). Understanding the muscle contraction and how these phenomena are created,
is fundamental in many areas such as the study of joints and body motion. Moreover
this possible new knowledge can help practitioners with diagnosis or development of new
treatments.
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Modestly, this thesis will continue the investigation of the neuro-muscular system by
focusing on the modeling of the interaction arising in order to provide a better under-
standing of the underlying mechanisms happening during the voluntary muscle isometric
contraction .

This work is motivated by the fact that during muscle contraction we cannot, in a
non-invasive way, experimentally quantify or analyze the underlying physiological mech-
anisms involved. In fact, too much variability such as the neural firings activating the
muscle or the precise muscle properties aren’t accessible nowadays without clinical inva-
sive procedures [5]. Consequently, it is essential to model the muscle contraction with its
electro-mechanical manifestation in agreement with the muscle physiology and variability
for a deeper understanding of its functioning. Very accurate models can be developed
to the cost of the computation time [6]. Thus, some simplifying assumptions have to
be set in order to find a compromise without greatly altering the physiological processes
meaning. At the current stage, we don’t know any fast model simulating the mechan-
ical and the electrical phenomena with their interactions. Accordingly, the majority of
the proposed models [7, 8, 9, 10, 11, 12, 13, 14] are only modeling one phenomenon of
the muscle contraction or aren’t able to realistically represent a skeletal muscle with its
physiological properties because of the complexity of such a model. Thus, in this work we
propose to develop a new model describing the voluntary isometric muscle contraction as
the mechanical outcomes and the electrical activity produced from the transcription of a
specific neural coding provided by the PNS. Furthermore, this model should be able to
compute a simulation in a reasonable computation time.

In this chapter, we propose to introduce the notions of the neuro-musculo-skeletal
system (sections 1.2) and more particularly the neuro-muscular system (section 1.3) de-
composed into the PNS (see section 1.3.1) and the muscular system (see section 1.3.2).
Then, after introducing the recording technique of HD-sEMG (section 1.4), we will detail
the existing models (section 1.5) of the neural coding provided by the PNS (see section
1.5.1), and the electrical and the mechanical activities induced (see sections 1.5.2 and
1.5.3) as well as models dealing with all this phenomena together and their interactions
(see section 1.5.4). Finally, we will conclude this chapter by presenting the problem and
the objectives of this thesis (section 1.6).

1.2 The neuro-musculo-skeletal system
This section aims at presenting the essential concepts of the neuro-musculo-skeletal sys-
tem. Description of its anatomy, as well as its functions in the human body are presented.
These notions are required in order to understand the intricate mechanisms involved in
the contraction of the skeletal muscles [2, 15]. As introduced, the neuro-musculo-skeletal
complex system can be divided into two complex sub-systems: the neuro-muscular sys-
tem and the musculo-skeletal system. The neuro-muscular system is responsible for the
translation of the neural command in order to contract the muscle and generate force as
well as electrical activity. While the musculo-skeletal is in charge for transmitting this
muscle force to the bones in order to generate a motion.

Commonly, all the voluntary movements involved in the human body are the result
of a command or firing of the nervous system. The nervous system in humans and all
vertebrates consist of the CNS that includes the brain and the spinal cord; And of the PNS
composed of the sensory (afferent) and motor (efferent) nerves innervating the organs [15].
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The neural command is generated at the level of the CNS and then transmitted to the
motor actors of the human body through the PNS. In the case of movement generation,
the targeted organs are the skeletal muscles that are commanded to generate specific
motion of the body. The signal is sent to the muscle by activating several motor neurons
each supplying a set of muscle fibers (see Fig. 1.2).

Figure 1.2: Two motoneurons from the spinal cord innervating different fibers within the
muscle.

The muscle activation and its phenomena are therefore the results of this anatomical
ensemble, commonly defined as the neuro-muscular system. When a skeletal muscle is
activated, it will produce force as well as electrical activity proportional to the intensity
of the neural firings. This force is the result of a chain of chemical reaction occurring
at the level of each skeletal fiber after each nerve firing (see section 1.3.1). To generate
the movement, the force produced by the muscle must be transmitted to its connected
tendons. Then, these tendons are shortened or elongated in order to apply a stress to the
connected bones, which then produce a movement of a particular joint. All these systems
interacting together are defined by the scientific community as the neuro-musculo-
skeletal system (see Fig. 1.1).

1.2.1 Motion genesis
The motion production is feasible because of the four essential characteristics of the
skeletal muscles:

• Excitability: is the capability of the muscle tissue to contract when stimulated by
a voluntary or involuntary neural command;

• Contractility: is the ability of the muscle tissue to respond to a stimulus by
developing a tension;

• Extensibility: refers to the ability of the muscle tissue to be stretched or increased
in length;
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• Elasticity: refers to the ability of the muscle tissue to return to its resting state
after being stretched.

By definition, all the muscles attached to two bones by tendon are defined as striated
skeletal muscles or skeletal muscles. The tendons are tough band of fibrous connective
tissues whose strong collagen fibers firmly attach muscles to bones. Tendons are able to
withstand tension. During contraction, they are put under extreme stress by the muscle,
so they are robust and are interlaced into the covering of both muscles and bones.

During the muscle contraction, the muscle may shorten, lengthen or remain the same
depending of the nature of the contraction. It is this change in muscle length that will
induce effort on the tendons and thus generate the movement of the corresponding bones.
We categorize the muscle contraction into four classes:

• Isotonic contractions (see Fig. 1.3) corresponding to constant force generate by the
muscle while the muscle length changes [16]. This type of contraction can be either
concentric (shortening) or eccentric (lengthening);

• Anisotonic contractions corresponding to non constant force generation with possi-
ble change in muscle length. As isotonic contraction, it can be either concentric or
eccentric;

• Isometric contractions (see Fig. 1.3) corresponding to constant muscle length with
possible variation of the produced force [16]. This contraction doesn’t imply the
movement of the joint;

• Anisometric contractions (see Fig.1.3 ) corresponding to non constant muscle length
during contraction with possible variation of the generated force [17]. Thus, the
contraction can be concentric or eccentric.

Considering the complexity of the muscle contraction nature and with the specified
underlying processes interacting for each kind of contraction, we decided to focus on the
modeling of the skeletal muscle during voluntary, isometric and non fatiguing contractions.

1.3 The neuro-muscular system
The skeletal muscles are the effectors of the neural system and are muscles that are
controlled voluntarily. Considering the complex structures, unknown properties and in-
teractions occurring in the CNS, we only focused this work on the transmitting signals
propagate by the PNS to the muscles.

1.3.1 The peripheral neural system

Anatomy

Transmission of the neural signal in the PNS is realized through a neural action potential
produces by an α-motoneuron (or somatic motor neuron) placed in the spinal cord and
propagates along its axon surrounded by a thick myelin sheath [15]. Each α-motoneuron
innervates several fibers composing the targeting muscle. A muscle fiber can only be
innervated by one α-motoneuron. This set of fibers innervated by the same α-motoneuron
is called amotor unit (MU) (see Fig. 1.4). Thus, we consider that the MU is the smallest
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Figure 1.3: Different types of muscle contraction.

functional entity of the muscle contraction [2]. It generates force as well as electrical
activity [2].

The axon of the α-motoneuron ends in a synapse, which is an area of communication
between the fiber and the motoneuron called the neuromuscular junction (NMJ) (see
Fig. 1.4). Usually, the NMJ is located around the middle of the muscle fibers. This
position allows a quasi-simultaneous contraction of the whole muscular fiber. There is
no direct contact between the synapse and the muscle fiber, the communication between
these two cells is made through chemical processes. At the end of the axon, there are
synaptic vesicles containing thousands of acetylcholine (ACh) molecules (see Fig. 1.4).
These ACh molecules are neurotransmitters that communicate with the fiber. The region
of the fiber facing the axonal termination is called the motor end-plate. Each motor
end-plate consists of several millions of ACh receivers. When a nerve firing arrives at
the axonal termination it causes a contraction of the fiber following several chemical
phenomena. If a new nerve firing arrives at the NMJ, all this chemical processing chain
is repeated.

Neural control of the muscular system

When a muscle is voluntary contracted, the chemical and physical phenomena are mod-
ulated by the CNS through the supra-spinal centers with two principal mechanisms: the
spatial recruitment (number and localization of recruited MUs) and the MU rate coding
(firing rate modulation). Thus, force and electrical activity intensity increase according
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Figure 1.4: Description of the PNS and its communication with the muscular system. (A)
Cell body of an α-motoneuron. (B) and (C) Myelinated axon innervating skeletal fibers.
(D) The synaptic description with its vesicles and ACh.

to the rise of the number of recruited MUs and the increase of their corresponding firing
rate.

The spatial recruitment of the MUs is modulated by the intensity of contraction and
follow a rule called the "size principle" defined by Henneman and al. [18, 19]. The
"size principle" assessed that during isometric contraction the recruitment of MUs is done
through increasing the motoneuron size and thus, the MU size. Thus, MUs are recruited
from the MU innervated by the smallest diameter motoneuron to the MU innervated by
the highest diameter. Each MU is excited according to the goal of the contraction level,
if the goal is below its intensity threshold, the MU is not recruited for this contraction.
It has been assessed that the MU recruitment law describing the evolution of the MUs
threshold according to contraction level is exponential [20]. Depending on the muscle
characteristics, all the MUs are recruited for a contraction level varying between 60 and
90% of the Maximal Voluntary Contraction (MVC) [21]. Beyond this threshold, only
increasing the MU firing rate can increase the generated force.

In complement to the MUs spatial recruitment, the CNS also controls the MU rate
coding. When a MU is recruited, the motoneuron discharges follow random point pro-
cesses at a minimal frequency that increases according to the increase of the contraction
level following a specific rise [20]. In the literature, we found studies defining different
type of rate coding strategies [20, 22, 23, 21]. These strategies can be linear or non linear
with defined minimal and maximal discharge frequencies according to the muscle char-
acteristics [23, 21]. The minimal frequency varies between 3 to 10 Hz and the maximal
frequency can vary from 7 to 150 Hz [2]. The MU firing regularity can be assessed by
computing the Coefficient of Variation (CoV) determined on the Inter Spike Intervals
(ISI), corresponding to the elapsed time between two successive firings, which is supposed
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to respect a Gaussian distribution [20].
Moreover, according to [5] during natural movements, the MU recruitment pattern

varies and doesn’t hold to the size principle. Size principle recruitment ensures that the
slowest, most fatigue resistant MUs are recruited first for any given task. In contrary, the
faster, very fatiguing MUs are therefore reserved for infrequent, high intensity tasks such
as jumping. Studies on humans have shown that auditory and visual feedback can alter
recruitment orders [24]. It has been suggested that MUs, within an individual muscle, may
form groups that can be independently activated to fulfill specific functional roles [25].
These pools of MUs have been termed "task groups" and have showed to be selectively
recruited for different kinematic conditions within a motor task such as a stride or a
grasping movement [26]. It is, therefore, likely that recruitment strategies other than
those predicted by the size principle may be used during gait.

Considering the specific focus upon the muscular contraction physical phenomena,
we decided to use a MU recruitment pattern based on the size principle that correctly
describe the MU recruitment pattern during isometric contractions [20].

1.3.2 Skeletal muscle

Macroscopic anatomy

The skeletal muscles are attached to bones by the tendons, they are in charge to produce
the body motion, to maintain the posture, to produce heat and to protect the inner organs
and the body. In the human body, the skeletal muscles have a variety of shapes depending
on its fiber orientations and on whether the tendon junction is aligned with the tendon
(fusiform muscle) or is at an angle (pennated muscle). In the case of pennated muscles,
the muscle fibers are connected to the aponeurosis of the muscle [27]. Thus, we can
classify the skeletal muscles according to their forms as illustrated in Fig 1.5.

Considering the complex shapes describing the skeletal muscles and thus, specific
interactions acting, we had to orientate the model to only one shape description as a first
modeling effort. We decided to start to describe the fusiform muscles, such as the Biceps
Brachii.

The skeletal muscles of the human body are surrounded by connective tissue, which
protects the muscles. The outermost of these connective tissues is called the hypodermis,
located just below the skin. In addition to protecting the muscles, its role is also to regulate
the heat loss generated by the muscles as well as to store the triglyceride surplus of the
human body. Below this layer is a set of connective tissues, called fascia or aponeurosis
(see Figure 1.6), continuously surrounding the muscle and some sub-parts.

These fascia are present in all the muscle up to the tendon to form what is defined
as the myotendinous junction. The tendon then extends to the bone to form what is
called the osteo-tendinous junction.

Microscopic anatomy

The most important component in the skeletal muscle is the muscle fiber which includes
several hundred nuclei. The muscle fiber diameter varies from 10 µm to 100 µm according
to the considered muscle. Similarly, its length differs depending on the muscle and varies
between 10 and 30 cm in a healthy adult human body. Like all cells in the human body,
the muscle fibers are surrounded by a plasma membrane called the sarcolemma. Com-
bined with the sarcolemma, thousands of tunnel-shaped transverses tubules connect
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Figure 1.5: Variety of muscle architecture in the human body.

Figure 1.6: Macroscopic structure of skeletal muscle.

the center of the muscle fiber with the outside. Inside the sarcolemma is the sarcoplasm,
corresponding to the cytoplasm of the fiber. Similar to the cytoplasm, the sarcoplasm
mainly holds glycogen, used for the synthesis of adenosine triphosphate (ATP) which acts
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as energitical supply for the fiber [15]. In addition, myoglobin protein is also found in sar-
coplasm. This protein only exists in the muscles of vertebrates. It stores oxygen molecules
for the formation of ATP by the mitochondria when needed. Inside the sarcoplasm there
are also numerous cylindrical subunits extending all along the muscle. These subunits
are called myofibrils (muscle fibrils) (see Figure 1.7). These myofibrils are the smallest
contractile units in the muscle, with a diameter of about 2µm. Around each fiber, myofib-
rils are fluid-filled membrane bags called the sarcosplasmic reticulum (SR). When the
muscle is at rest, the SR stores a certain amount of calcium ions (Ca2+). Then, during
muscle contraction following a neural command from the CNS, the SR will release the
Ca2+ stored in the fiber in order to realize the muscle contraction (see section 1.3.3).

Figure 1.7: Microscopic structure of a skeletal muscle fiber.

Each myofibril consists of several small structures placed in series called sarcomeres.
The sarcomere is an arrangement of several proteins defining three different filaments (see
Figure 1.8):

• The thick filaments composed of myosin with a diameter of 16 nm and a length
of 1-2 µm;

• The thin filament consisting of actin with a diameter of 8 nm and a length of 1-2
µm;

• The elastic filaments composed of titine.

To each thick filament is associated two thin filaments. Moreover, at the end of each
thick filament is embedded an elastic filament going up to the Z disk. The Z disk is the
zone that separates the sarcomeres within the myofibril. The thin and thick filaments
overlap over a certain length depending on whether the muscle is relaxed, stretched or
contracted. Thus each sarcomere can be decomposed into several visible bands using an
electronic microscope. There is the A Band extending along the thick filament. In this
band, there are two zones of superposition with the thin filaments placed at the ends.
The area where there is no superposition of thin filaments is called the H band. In the
middle of this H band, there is a line formed of proteins supporting the thick filaments,
this support is called the M line. Finally, we define the I bands which contain the parts
of the thin filaments that does not overlap and the thin filament up to the thick filament
of the neighboring sarcomere (see Figure 1.7).
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Figure 1.8: Anatomic structure of a muscle myofibril.

Fiber types

As stated in section 1.3.1, a MU is the set of fibers innervated by the same α-motoneuron.
Thus, all of the fibers composing a MU possess the same biochemical, histochemical and
contractile properties. The identification of the type of MU through its physiological
properties is still a challenge today. Most studies attempt to quantify the amount of
fibers according to their type by a histochemical study from a cross section of the muscle
[28, 29, 30] (see Figure 1.9).

Figure 1.9: Histochemical appearance of different types of fiber in the Brachialis muscle
[28].

Despite the difficulty of classification, the type of the MU is determined according to
the properties of its fibers. According to published studies, fibers can be categorized into
two main groups, type I fibers and type II fibers.

• Type I fibers (or slow fibers) are the fibers with the smallest diameter and thus,
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the fibers generating the least force. They appear dark red in the histochemical
study (see Fig. 1.9) because they contain a large amount of myoglobin and blood
capillaries. These fibers synthesize Adenosine TriPhosphate (ATP) mainly by the
aerobic respiration of cells because they are also composed of large mitochondria.
These fibers are considered to be slow because hydrolysis by the ATPase enzymes is
slower than in type II fibers. Type I fibers slowly produce low force but are highly
resistant to muscle fatigue and are therefore capable of providing prolonged activity
and maintain it for several hours. These fibers are mainly present in the muscles
responsible for maintaining the posture;

• Type II fibers (or fast fibers) have a larger diameter than type I but have less
myoglobin. Therefore, they have a clearer appearance in the histochemical study
(see Fig. 1.9). In addition, the release of calcium by the SR takes place more rapidly
as well as the hydrolysis of the ATPase enzymes. Within fast fibers, we can also
differentiate three types:

1. Type IIA fibers (or fast resistant fiber). They are similar in their composition
to slow fibers and are more resistant to fatigue than other fast fibers;

2. Type IIB fibers (or fatigable fast fibers). These fibers are the closest to the
definition of fast fiber, they produce a lot of force very quickly but are very
sensitive to muscle fatigue;

3. The fibers of type IIC (or IIX, or intermediate fiber). These fibers are called
intermediate fibers because they are in their composition and characteristics
in between the fibers of type IIA and IIB.

The set of fiber types and their characteristics are summarized in Table 1.2.

Table 1.1: Summary of the different types of fibers and their characteristics.

Type I Type IIA Type IIC Type IIB
Diameter Small Medium Medium Large
Myoglobin A lot A lot Moderate Little

Mitochondria A lot A lot Moderate Little
Histochemistry Dark red Red rose Light red White

Contraction vilocity Slow Fast Fast Very fast
Fatigue resistance High Medium Medium Low
Generated force Low Medium Medium High
Recrutment order 1st 2nd 3rd 4th

1.3.3 Muscle contraction

Electrical phenomenon

When a neural Action Potential (AP) arrives to the NMJ, a depolarization of the fiber
membrane arises. Then, an AP, called the Fiber AP (FAP), generated by this depolar-
ization varies rapidly between -70 mV and 30 mV approximately as depicted in Fig.1.10
[31]. This FAP propagates along the fiber length in the two directions with a velocity
that lies between 2 and 6 m.s−1 and an intensity of ∼ 100 mV.
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Figure 1.10: The AP of a fiber membrane when a nerve firing arrives. At rest, the
tension is at -70 mV. When the pulse arrives, a depolarization occurs rapidly followed by
a repolarization of the membrane. This repolarization falls below the voltage at rest, at
this time a phenomenon of hyperpolarization intervenes to return potential to the rest
tension. (image de c©Pearson Prentice Hall, Inc 2005)

As said above, an α-motoneuron innervates several fibers forming a MU. When a neu-
ral firing reaches the NMJ of the fibers, they all generate at the same time a FAP. Thus,
we can define a Motor Unit Action Potential (MUAP) corresponding to the sum of the
FAP generated by its corresponding fibers. During the muscle contraction, the depolar-
ization of the fibers can be recorded at the skin surface using surface EMG (sEMG)
electrodes (see section 1.4) or directly in the muscle using the needle EMG. Considering
the invasive recording of the needle EMG, we decided to focus on the modeling of sEMG,
which seems to have promising abilities. The muscle electrical activity corresponds to the
sum of the generated MUAPs.

With this definition, it is clear that the electrical activity generated by the muscle
during contraction is dependent of the fiber type composition as well as the number of
fiber within the muscle and many other muscle fiber properties. Nevertheless, the wide
variability in electrical activity description is also due to the limb anatomy. In fact, the
generated FAPs have to progress through different media (muscle, blood vessel, adipose
and skin tissues) with different electrical properties. Propagation across these media has a
filtering effect on the FAP according to the conductivity and the thickness of the materials
[2]. Summation of all these filtering effect on the generated FAP is defined as the effect
of the conductor volume leading to the conductor volume theory.

Mechanical phenomenon

As indicated above (see section 1.3.1), the contraction of the muscle fiber is realized
after the arrival of a nervous firing to the NMJ. Physiologically, it is only when the SR
releases Ca2+ that the fiber contraction starts. Once the Ca2+ is released in the cytosol,
which is the liquid interface in which the fibers are bathed, these ions will bind to the
troponin. The troponin then removes the tropomyosin present at the actin binding
sites. Once these sites are free, the cycle of contraction begins and is repeated until
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tropomyosin returns to attach to these sites. The contractile cycle consists of four steps
in the following order:

1. The ATP hydrolysis. At the top of myosin are ATP attachment sites and AT-
Pase enzymes that will perform the hydrolysis reaction that transforms the ATP
into Adenosine DiphosPhate (ADP). This reaction will then produce energy for the
myosin heads;

2. Creation of actin-myosine bridges. Due to the energy produced by the hydrol-
ysis of ATP, myosin heads will be able to attach to actin at the myosin attachment
site. When a myosin is attached to an actin during contraction, an actin-myosin
bridge is created;

3. Force generation. Once the actin-myosin bridges are formed, the myosin heads
will pull the actin filaments to the M-line of the muscle fibril, creating a superposition
of thin and thick filaments. This phenomenon will produce force and the ADP at
the head of the myosin is released.

4. Detachment of myosin from actin. After the force generation the myosin heads
remain attached to actin as long as a new ATP molecule does not attach to the
myosin site.

All these steps are repeated as long as the ATPase can hydrolyze the ATP molecules
and the Ca2+ concentration is sufficiently high in the cytosol. In order to constantly
generate force, some myosin heads are attached to actin to form bridges and generate
strength while others are detached and ready to attach to continue to generate force. The
set of stages of muscle contraction is summarized in Fig. 1.11.

Figure 1.11: The different stages of muscle fiber contraction cycle [15].

As introduced in the previous section, the generation of muscle force is done by the
creation of actin-myosin bridges with the myosin heads that will pull on the actin filaments
thus generating force and shortening the muscle.

This generation of force in response to a nerve firing is called a muscle twitch. The
general shape of a fiber muscle twitch is detailed in Fig. 1.12.
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Figure 1.12: General shape of a fiber twitch.

As we can see in Fig. 1.12, there is a delay of response between the beginning of
the arrival of the nerve firing and the generation of the force. This delay is called the
electromechanical delay and corresponds to the response time of the chemical phenomena
(membrane depolarization with Na+, and Ca2+ release by the SR in the cytosol) to the
propagation of AP along the sarcomere. Note that the three variables corresponding to
the contraction time, the relaxation time as well as the maximum force developed during a
twitch is dependent on the type of fiber (see section 1.3.2). The contraction and relaxation
times are important because they will tune the summation of the twitches. This is also
dependent on wether a nerve firing arrives before or after the mechanical activity of the
fiber returns to rest. This twitch summation phenomenon is called partial tetanus (voir
Fig. 1.13).

Figure 1.13: Different response of the twitch according to the stimulation time.

Finally, as we can see on Fig. 1.13, when new neural firings reach the NMJ before the
twitch relaxation phase occurs, a force plateau is formed. This phenomenon that creates
the plateau is called a fused or complete tetanus. Arising of a new neural firing at the
MU and thus at its fibers is controlled by the CNS. Creation of the force plateau for a
specific intent is a complex task ordered by the CNS.
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Figure 1.14: Example of MU recruitment pattern exhibiting the firing discharge of every
10th MU (Top). The corresponding simulated sEMG signal detected by bipolar surface
electrode according to the recruitment pattern (Middle). The corresponding simulated
force according to the same recruitment pattern (Bottom) [20].

1.4 Surface electromyography

The first referenced experimentation studying EMGwas in 1666 with the work of Francesco
Redi. He discovered that highly specialized muscle of the electric ray fish generates elec-
tricity. However, the first actual recording of this electric activity was made by Etienne-
Jules Marey in 1890, who also introduced the term EMG. Then, Gasser and Erlanger used
an oscilloscope to display the EMG signal from muscles. Afterwards, during this time,
similar studies appeared by different researchers among which the concentric electrode
technique was introduced [32]. Then, through the 50’s and 70’s major contributions were
achieved [33, 34, 35] including the quantitative analysis of the MUAP, EMG decomposi-
tion techniques and EMG amplitude analysis. Clinical use of sEMG for the treatment of
more specific disorders began in the 60’s [36, 37, 38]. It was introduced as a non invasive
technique that can detect the MUs activity in a large volume as opposed to the needle
EMG technique that detects the MUs activity in a small volume near the needle tip.
Hardyck and his researchers are known as the first practitioners to use sEMG technique
[39]. Then, the use of sEMG technique was spread across the scientific community in the
following years. In spite of that the sEMG signals are stochastic and non stationary sig-
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nal, it appears that this technique can assess the functional behaviors of skeletal muscles
[40, 41, 42].

1.4.1 Electrode configurations and spatial filtering

The electrodes usually used in sEMG technique are simple silver chloride discs of different
sizes. Compare to the needle electrode, their main advantages are being noninvasive and
suitable for use without causing discomfort to the subjects. Yet, the electrical conduction
between the skin and the electrodes has to be verified before recording the signals. This
can be prepared by removing first the dead cells layer and the oils of the skin in order to
reduce the skin-electrode interface impedance to ∼ 3 kΩ [43]. Using sufficient quantity
of conductive gel between the electrode and the skin should be then enough to have a
suitable conduction.

Classically, three electrodes arrangements can be used for sEMG signal recording with
each one different interests and properties. First, there is the monopolar arrangement
when the signal is recorded using differential amplifier by measuring the difference between
two signals; a signal recovered by a surface electrode placed on the skin surface above a
certain muscle (active electrode) and the signal recorded by an electrode placed in a
neutral position (a reference electrode as you can see on Fig.1.15). This arrangement
has the largest detection volume compared to the others [43]. Then, when two electrodes
placed on the skin surface over the muscle are connected to the differential amplifier,
the sEMG signal is called bipolar. The bipolar arrangement has a filtering effect on the
obtained sEMG signals [44], it eliminates the common noise between the two electrodes
and hence provide cleaner sEMG signal. This filtering effect causes a reduction of the
detection volume by altering the spatial selectivity of the electrode system [45]. Another
setup, the Laplacian configuration has the advantage to better filter the signal and the
Non Propagating Component (NPC) of the MUAPs than the bipolar arrangement. This
NPC arises from the extinction of the FAP at the myotendinous junction. It is important
to remark that the detection volume of the electrode arrangement is dependent to the
electrode setup. In fact, increasing the filtering order reduces the detection volume as
well as the signal amplitude. Finally, in order to record an sEMG signal with the best
quality and representativity, there are a number of factors to consider such as the electrode
arragement, the electrode placement on the skin surface or the electrodes alignment in
respect to the fibers orientation [46, 47].

It can be noticed, the conventional sEMG recording techniques suffer from many
limitations. One of these is the deficient spatial resolution related to the use of only
few electrodes [2]. In fact, the electrical activity of the muscle upon the skin surface is
heterogeneous and thus, recording a signal from few electrodes will be representative about
this particular area on the muscle [48]. Moreover, it can only give information about the
activity of a group of MUs but not a single MU. Obtaining information about the activity
of a single MU is substantially beneficial in many domains such as therapy monitoring
and neuromuscular disorder diagnosis and evaluation [2]. Other limitation linked to the
spatial resolution would be the electrode placement problem [48]. This variable has direct
influence on the precision of the latter applications like muscle force estimation [49]. Thus,
the placement of the electrodes with respect to the active MUs should be as constant and
robust as possible between subjects and recordings [48, 47]. The recommendations for
sensor placement for sEMG recordings are reported in [50]. Finally, there is also what is
known as the auto-cancellation phenomenon [51, 52]. This major problem describes the
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superposition of different MUAPs, due to their phasic nature, it can significantly alter the
information provided from the signal by underestimating its amplitude and energy [51].

1.4.2 High Density sEMG (HD-sEMG) technique

After introducing the sEMG technique and its different setups, we will present a novel
sEMG recording technique, the HD-sEMG technique which has many advantages com-
paring to the classical sEMG recording method previously described.

Figure 1.15: Example of an 8×8 HD surface electrode grid placed on the Biceps Brachii
muscle (Refa 136, TMSI, Netherlands) [53].

The HD-sEMG technique is based on the multiplication of the recording electrodes
to form a multi-channel electrode recording system. It is composed of a two dimensional
array of electrodes called a HD-sEMG grid that forms a spatio-temporal variant of the
usual single channel sEMG techniques [54, 55]. This novel technique surpasses the classical
singular and bipolar recordings by taking into account aspects of spatial distribution of
electrical potentials [56] and by overcoming their basic limitations describe above. Most
of the limitations of the classical sEMG recordings can be overcome by using the HD-
sEMG technique. For these reasons, the HD-sEMG recording technique has growing
interest in the last few years due to multiple reasons. Yet, the HD-sEMG technique
is a complex technique that needs a strong expertise in multichannel signal processing.
This technique allows the multiplication of the collected data and thus provides wider
information about the electrical activity of the muscle than one channel. Multiplication
of the data also needs pre-processing processes since all the data aren’t significant and
may bias the analysis [57, 58]. The HD-sEMG can provide rich information about the
muscle anatomy such as the MUs number [59], the muscle properties [60, 61] and the
neural command by HD-sEMG decomposition [62, 54]. In addition, the HD-sEMG found
its way into clinical applications such as fatigue studies, neurogenic changes, myopathies
and positive muscle phenomena [63]. Thus, this recent technique has strong abilities to
become a valuable clinical diagnostic tool in the near future.
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1.5 Modeling of the neuromuscular system
In this section, we will present the state of the art concerning the modeling of the neuro-
muscular system. We divided this section into three parts corresponding to the studied
phenomenon. Some models only describe the electrical behavior of the muscle contraction,
others only the mechanical outcomes and few simulate both. Commonly, modeling of the
neural drive is included in a more or less realism. Considering the important number of
existing models, we decided to only present what we considered to be the pillars on which
muscle modeling paradigm is constructed.

1.5.1 MU recruitment scheme models
As far as we know, recruitment of the MU during contraction has always been considered
as a sum of Dirac impulses δ(t) describing a random point process. Where each Dirac
impulse represents a firing discharge of the motoneuron, which will induce a contraction of
the MU fibers. Several studies have attempted to describe this random point process with
mathematical equations [64, 65, 20, 21, 66]. One of the first reported study [64] described
the activation of the MUs at the muscle scale. Authors described the sum of all the firing
moments of all MUs as a non-stationary Poisson distribution respecting some assessed
relationships. Yet, with this model representation, some properties of the recruitment at
the MU scale such as the inter-pulse (or inter-spike) interval, the frequency discharge or
the orderly sequence recruitment of the MU are lost.

Then, in [65], authors also considered the firing train as a sum of Dirac impulse in
time but at the MU scale. This random process is described considering some properties
of the recruitment such as the inter-pulse interval described with a Weibull probability
distribution. Thus, the probability of having a firing in the interval dt is:

Pδi (δi = 1) = λi(t, f)dt (1.1)

where λi(t, f) is the firing rate. f corresponds to the force level since the firing rate is
correlated to the force level of the isometric contraction. This firing rate is computed by
considering the inverse of the mean value of the Weibull probability distribution function.
This modeling significantly improves the understanding of the MUs scheme recruitment at
that time. However, some issues like the MU recruitment threshold remained unresolved.

The major increment in the modeling of the MU recruitment scheme was developed
in the study of Fuglevand and al. [20]. In this model, authors represented the MUs
in a motor neuron pool. MUs were recruited according to the size principle previsouly
introduced [18]. Moreover, following former studies [65] the motoneuron firing rate had
a linear dependence with the force level of the contraction. Thus, each motoneuron had
a peak firing rate due this correlation, and also the inter-spike interval (ISI) properties
were considered.

Considering the conditions of the MU recruitment, the authors proposed to describe
a Recruitment Threshold Excitation (RTE) for each MU according to the force level
developed. According to previous studies [67], many MUs are recruited at low force level
and a few at high force level. Thus, the RTE was described as:

RTEi = ei
ln(RR)
N (1.2)
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where RTEi represents the RTE of the ith MU, RR is the recruitment range cor-
responding to the force level where all the MUs are recruited and N is the number of
motoneuron. It must be emphasized that all the parameters describing RTE are muscle
specific parameters [68]. According to this modeling, a MU remains inactive as long as
the force level is below its RTE value. It is supposed that the first discharge occurs when
the MU starts to be recruited.

Then, concerning the progression of the motoneuron firing rate during voluntary mus-
cle contraction. The authors supposed that the minimum firing rate (Frmin) is similar for
all the MUs within the muscle [69]. From this assumption, the author described a linear
relationship between the firing rate and the force level (see Fig. 1.16).

Fri(t) = gi(E(t)−RTEi) + Frmin, if E(t) ≥ RTEi (1.3)

gi = PFRi − Frmin
100−RTEi

(1.4)

PFRi = Frmax1 − PFRD
RTEi
RTEN

(1.5)

With PFRD is the peak firing rate difference corresponding to the difference of firing
rate between the first and the last MU. The authors also proposed to consider the peak
firing rate (PFR) since it was assessed that the motoneuron firing rate increases according
to the force level to a certain frequency [69]. This PFR generally ranges from 20 to 45
impulsions/s in human muscles during voluntary isometric contractions. However, it is
still unknown how the PFR is related to the recruitment threshold of the correspond-
ing motoneuron. In this model [20] (see eq(1.5)), authors assumed that the PFR of the
last recruited motoneuron is lower than the PFR of the first recruited motoneuron. One
explanation can be, last recruited motoneuron are fatigued more quickly than the first
recruited motoneuron and thereby won’t be able to sustain the contraction. This neuro-
logical phenomenon is often referred as the "onion skin" phenomenon introduced by De
Luca and al in [70]. Equation (1.3) was also considered as non linear increasing (see Fig.
1.16) as De Luca and al. assessed [71], giving:

Fri(t) = PFRi

(
1− e−

(
E(t)−RTEi

τi

))
+ Frmin (1.6)

where, τi = −(100−RTEi)

ln
(
Frmin
Frmaxi

) .

Finally, analysis of MU discharges indicated that the ISI is like a random process
described through a Gaussian probability density function [72]. The ISI corresponds to
time interval between two successive firings of the motoneuron. The mean and standard
deviation of the ISI distribution are related such that the coefficient of variation (CoV =
σ

µ
) is assumed constant with mean ISI changes [73]. Usually, the CoV range in [0.1, 0.3]

according to the studied muscle and the subject [20, 74]. Yet, in [75, 76], the authors
assessed that this CoV is modified according to the force level generated such as:

CoVi = 200e−
∆Fi
2.5 (1.7)

where ∆Fi is the force difference between the actual generated force and RTEi.
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Figure 1.16: Different rate coding strategies. MU firing rate increases linearly (L) and
non-linearly (R) according to the force level increase [23].

However, the authors described the probability to a firing in the interval dt such as
[20]:

Pδi (δi = 1) = N
(
Fridt,

1
cv

)
(1.8)

where, N (µ, σ) is a Gaussian distribution, Fi is the computed firing rate and dt the
time interval.

Thanks to this important improvement in the motoneuron recruitment modeling, mo-
toneuron discharges activating the MU during voluntary isometric contraction can be
described in a more realistic manner according to the neurophysiology (see Fig. 1.17).

Figure 1.17: Example of the discharge instants (vertical strokes) of every 10th MU in a
pool of 120 MUs [20].

Then, few studies were performed to improve the above model based on experimental
recordings [41, 71, 76, 75]. This model becomes more accurate when the muscle specific
properties of the recruitment scheme of the motoneuron [41] is considered.

1.5.2 Electrical models
Models describing the electrophysiology of the muscle through sEMG signal representa-
tion really started with the work of Rosenfalck [31] where he defined the first equation
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describing a skeletal muscle single fiber action potential (SFAP). He defined an analytical
expression [31] for the longitudinal intracellular action potential as:

Vi(z) = Az3e−λz −B for z ≥ 0 (1.9)

With, A = 96 mV.mm−3, B = −90 mV and λ = 1 mm−1. This equation can be trans-
formed to the temporal domain using the relation z = vt, where v defines the conduction
velocity of the muscle fiber. Then the transmembrane current source density I can be
defined as proportional to the second derivative of equation (1.9) [31].

Then, SFAP was determined as an integration along this cylindrical source line [31]:

φ(ρ, z) =
∫ L

−L
2πaI(s)W (ρ, z, s)ds (1.10)

Where, ρ and z represent the radial and axial coordinates, respectively. s the location
of the source along the muscle fiber of length 2L, a is the diameter of the fiber, I the defined
transmembrane current source density and W the volume conductor transfer function.
Finally, W was defined for infinite, homogeneous, anisotropic tissue as:

W (ρ, z, s) = 1
4π
√
r2σρσz + (z − s)2σ2

ρ

(1.11)

This computation formalism initiated the next two decaded of SFAP and MUAP
modeling where accuracy and complexity of the modeling increased [65, 77, 78, 79, 80, 13].
In [77], the authors defined a monopolar electrode recording that is not a point-shaped
electrode through a spatial integration with respect to the electrode area A.

Se = 1
A

∫ ∫
A
φ(ρ, z)dA (1.12)

Then in the early 90’s, Gootzen and al. significantly incremented the electromyo-
graphic modeling by defining the conductor volume as finite [81, 14]. In fact, one major
problem in former model was the infinite assumption of the conductor volume. This as-
sumption was suitable with respect to nerve fibers because of their considerable length.
Nevertheless, the extracellular action potential showed complex changes when approach-
ing to the fiber end [82, 83]. For this purpose, authors proposed a method describing the
generation and the extinction effect [81] of the SFAP at the end-plate and close to the
fiber end, respectively. They represented the current density source as a spatio-temporal
function, where the current density source is proportional to the second derivative of the
intracellular AP along the fiber. The extinction of the AP is described as a current source
compensation at the end of the fiber computed such that the total transmembrane current
over the fiber is zero (see Fig. 1.18).

They also proposed a new transfer function of the conductor volume considering
boundary conditions to account the finite dimension of the muscle expressed in the spatial
frequency. The application of the boundary conditions often involves very ill-conditioning
matrix equations that have to be solved to avoid numerical computer overflow or under-
flow occuring during the computation [14]. Finally, they proposed a geometrical model of
the muscle as a cylinder with the inner compartment representing the muscle and a layer
surrounding the muscle tissue representing the adipose tissue (see Fig. 1.19). It was the
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Figure 1.18: Muscle fiber current source density distribution represented by a spatio-
temporal function [81].

Figure 1.19: Volume conductor configuration with adipose layer tissue and finite length
of the muscle [81].

first time that surrounding layer such as adipose or skin tissues were considered in the
electromyographic modeling.

Finally, what we consider as the final major increments in the sEMG signal generation
modeling are the several works of Merletti, Farina et al [84, 85, 7]. First major increment
was to propose a continuous analytical spatio-temporal function that describes the gen-
eration, the propagation and the extinction of the action potential (see eq 1.13) at the
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end-plate, along the fibre and at the fiber end [85], respectively.

i(z, t) = d

dz

(
ψ (z − zi − vt) pL1

(
z − zi −

L1

2

)
− ψ (−z + zi − vt) pL1

(
z − zi + L1

2

))
(1.13)

where, ψ(z) is the first derivative of eq (1.9), L1 and L2 are the semi-lengths of the
fiber from the center of the muscle to the right and left tendon, respectively. zi is the
longitudinal coordinate of the fiber end-plate and pL(z) is a window function.

This description of the current density source (see eq (1.13)) as a continuous spatio-
temporal function provides an important contribution of the sEMG signal generation
modeling. This equation considers specific parameters at the fiber scale, such as the end-
plate absolute position, propagation velocity and semi-lenghts of the fiber. The only other
source modeling close to this description is the source proposed in [86]. Authors define
the source as a time-shift invariant function according to an observation point. However,
except of the extracellular description along the fiber, authors in [85] also distinctly defined
all the computation step from the extracellular action potential to the recorded signals
at the electrode. Nevertheless, this description was detailed for a 3 layers planar volume
conductor as in Fig. 1.20.

Figure 1.20: Planar volume conductor configuration with skin, adipose tissues and muscle
[85]. d is the skin thickness. h1 corresponds to the adipose tissue thickness and y0 is the
depth of the fiber within the muscle.

After this important work in sEMG signal generation modeling, same authors pub-
lished another study where they detailed the computation for a multilayered cylindrical
volume conductor [7]. The authors took inspiration from existing cylindrical model devel-
oped in [81] where the conductor volume was defined as a time invariant matrix in spatial
frequency. The source is placed in the most internal layer which is the muscle.

More recently, we noticed some improvements in the proposed models such as definition
of a triangular shape of the muscle [87] where the fibers are placed along the radial
direction whereas it is placed according to the longitudinal direction in the based model
[7]. Moreover, a model describing a bi-pinnate muscle [88] was proposed. In this model,
the bi-pinnate muscle was assumed infinite and the fibers within are placed longitudinally
along the muscle with a pinnate angle of θ± (see Fig. 1.21).

Other models proposed to consider superficial bone or blood vessel within the muscle
[89] or local and distributed inhomogeneity such as glands or vessels within any layer
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Figure 1.21: Radial view of the bi-pinnate muscle. The muscle fibers have two orientations
defined by angles θ± [88].

[90, 91].

Beside these analytical models of the sEMG signal generation, some researchers tried
to formalize these equations using numerical models with the Finite Element Method
(FEM). Defining numerical models allow an accurate representation of the geometry of
the muscle. Thus, some complex geometry can be defined and induced more realistic
sEMG signals [6]. In [11], they described the limb as in [81]. The extracellular potential
is described as in [31]. The total number of elements used to describe the limb varied
from 300000 to 600000 depending on the complexity of the geometry. One example of
cylindrical multilayered limb can be seen on Fig. 1.22. Yet, this model can only compute
one SFAP in 12 min. Modeling a muscle induces the simulation of hundreds of thousand
fiber, this will increase the number of elements and thus, the computation time. Such
description of the muscle will induce weeks of computation on a single computer and thus,
can’t have a direct application for clinicians for the moment.

Figure 1.22: Finite element model of the limb with muscle, adipose and skin tissues [11].

Finally, Mesin and al. developed another FEM model of the muscle considering its
shortening during isometric contractions [92]. Authors considered the conductivity of
the muscle at each point dependent of the local fiber orientation which changed with
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muscle shortening. They computed the fiber extracellular action potential as in [85] with
a propagation path γ according to the inclination of the fiber. Only the myoelectric
activity was modeled and the estimated muscle shortening isn’t based on a mechanical
model. In this model, authors never presented the computation time for the simulations
(120 MUs and thousands of fibers).

1.5.3 Mechanical models
Modeling the mechanical activity of the neuro-muscular system and more specifically the
force estimation generated by the muscle during a contraction has been widely studied
since the early 20th century. One of the first model describing the muscle as a visco-
elastic material was developed by Hill [8]. The general Hill model type is composed of
three elements (see Fig. 1.23):

• a contractile element which describes the muscle contraction and the force genera-
tion;

• a serial spring element which models the mechanical behavior of the tendon and
describes the elasticity of the muscle;

• a parallel spring element which defines the mechanical behavior of the connective
tissues surrounding the muscle fibers. This element produces passive force.

Figure 1.23: Rheological Hill model of the skeletal muscle [8].

According to this model, the total force F produced by the muscle is:

F = F PE + FCE, FCE = F SE (1.14)

where F PE, FCE and F SE are the forces produced respectively by the parallel element,
the contractile element and the serial element.

Similarly, the muscle length L is computed as:

L = LPE = LCE + LSE (1.15)

with, LPE, LCE and LSE are the lengths of the parallel element, the contractile element
and the serial element, respectively.
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Basically, the muscle force produced by the contractile element is obtained from:

(v + b)(F + a) = b(F0 + a) (1.16)

where, F is the force produced from the muscle, v is the velocity of contraction, F0
is the maximum isometric force generated in the muscle, a is a coefficient of shortening
related to the heat and b = av0

F0
with v0 the maximum velocity at F = 0.

Equation (1.16) can be rearranged to better exhibits the force-velocity relationship
(see Fig.1.24).

Figure 1.24: Force-velocity relationship of a tetanized muscle [8].

This equation is still widely used nowadays, with new specifications of the muscle
behavior such as the force-length relationship [93], the stress-strain relationship [94], the
active state description [95] or the fiber angle insertion with the tendon [27]. Neverthe-
less, all those features describing the muscle behavior during contraction are based on
macroscopic studies considering the underlying phenomena without modeling them.

A modeling at the microscopic scale was proposed by Huxley with its well-known study
[12] about the actin-myosin bridges attachment and detachment.

Figure 1.25: Sliding filaments (image taken from [9]) according to [12]. A represents
the actin site, M the myosin site and X the distance between the actin site and the
equilibrium site O.

The authors described the force generation by specifying the cross-bridge interactions
at the sarcomere scale. According to Fig.1.25, during contraction, the actin filament
moves to the left relative to the myosin filament and thus, the distance x decreases. The
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authors proposed two rate constants f and g for the binding/breaking of actin and myosin
following some hypothesis:

1. initially, A and M sites are detached;

2. if A site is within the range of position, there is a chance to create the binding;

3. when A−M bridges are bound, there is a chance that this link breaks;

These hypothesis are described by the equation (see Fig. 1.26):
f = 0 and g = g2 if x < 0
f = xf1

h
and g = xg1

h
if 0 < x < h

f = 0 and g = xg1
h

if x > h
(1.17)

Where, f1, g1 and g2 are constant values that need to be identified for the system.

Figure 1.26: Dependence of the rate functions f and g according to x [12]. Formation of
linking A and M sites is described by f (reaction 2). Breaking the bridge is described by
g (reaction 3).

Assuming that all these A-M sites are placed in series in the sarcomere and considering
the f and g functions proposed, the total force produced by a fiber is the sum of the force
produced by the sites within one half-sarcomere, giving:

Ff = msk

2l

∫ +∞

−∞
nxdx (1.18)

where, l is the separation of the A sites along the actin filament, k the muscle stiffness,
n the number of formed actin-myosin cross-bridge and ms

2 is the number of bridge for a
muscle of 1 cm2 cross sectional area.

This modeling of the force production has more physiological reliability than the equa-
tion proposed by Hill [8]. Nevertheless, these equations are described at the fiber scale
and are time consuming to solve. For a muscle composed of hundreds of thousand fibers,
using these equations isn’t feasible for muscle force simulation in a reasonable computing
time.

Then, Zahalak developed the distribution-moment method for sarcomeres [96]. This
method approximates the Huxley actin-myosin bridges model at the sarcomere scale for
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the whole muscle. The author defined the ith moment of the bond-distribution function
n(x, t) as the function Mi(t) and the ith moment of the bonding rate function f(x) as the
function bi(t):

Mi(t) =
∫+∞
−∞ xin(x, t)dx

bi(t) =
∫+∞
−∞ xif(x)dx (1.19)

Assuming that n(x, t) is approximated by a Gaussian distribution. This assumption leads
to:

dM0

dt
= b0 − F0(M0,M1,M2)

dM1

dt
= b1 − F1(M0,M1,M2)− v(t)M0 (1.20)

dM2

dt
= b2 − F2(M0,M1,M2)− 2v(t)M1

The exact shape of functions F0, F1 and F2 depend on the assumed shape of the rate
functions f and g as well as the shape of n(x, t). The produced force is related to the
first-order moment of the bond distribution function and the stiffness to the zero-order
moment of the bond distribution function.

This method presents the advantage to provide a direct mathematical connection from
the microscopic parameters of contraction to the macroscopic parameters of the whole
muscle. However, using the distribution moment theory restricts the model to the as-
sumption that every muscle fiber have the same contractile properties and thus, generate
the same mechanical contribution. Moreover, one remaining challenge in the mechanical
modeling of the muscle is the definition of the muscle activation in order to understand
what happens when two consecutive activation of the muscle arrive. This definition as
well as the rate functions that are still uncorrelated to physiology and identified for the
purpose of the studies.

Finally, the last major increment in the modeling of the muscle contraction based on
physiological behaviour is the model proposed in [9].

In this model, the authors proposed a multi-scale model based on macroscopic Hill’s
and microscopic Huxley’s theories using the distribution moment theory to upscale the
sarcomere to the whole muscle without using the assumption of a Gaussian distribution.
Also, the authors proposed another definition of the f and g rate functions. With this
model, they could compute the force generated by the muscle as well as the active stiffness
produced by the muscle.

Figure 1.27: Muscle model proposed in [9] exhibiting three blocks.
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This model is activated by an electrical stimulation (ES) defining the activation pa-
rameter α(t) corresponding to the percentage of recruited muscle fibers in the muscle
according to the pulse width and the intensity of the stimulation.

The authors also described a chemical input u(t) at the sarcomere scale synchronized
with the stimulus events that will activate the muscle fibers and thus, the muscle (see
Fig. 1.28).

Figure 1.28: Calcium definition after an electrical stimulus [9].

Functions f and g are defined such as: f(x, t) =
{

Πc(t)Uc when x ∈ [0; 1]
0 elsewhere

g(x, t) = u(t) + a|ε̇c(t)| − f(x, t)
(1.21)

where, a is a dimensionless parameter describing the velocity contribution for creating
cross-bridge and εc defines the relative length variation of the contractile element as
εc(t) = Lc − Lc0

Lc0
. The dynamic of the generated force Fc and the dynamic of the active

stiffness kc of the muscle can be determined from the fiber scale that are determined from
the sarcomere scale.

Then, using the rheological model describing the muscle during isometric contraction
proposed in [9] (see Fig.1.29), dynamic equations of the muscle are computed.

Figure 1.29: Mechanical model including masses and dampers inspired from the
Hill–Maxwell model [9].

This model is validated on rabbits measures and also on humans recordings [9]. Nev-
ertheless, this model doesn’t describe the heterogeneity in the fiber types since only one
type of fiber is described. Also, fatigue or potentiation phenomena cannot be reproduced
with this model.
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Besides those models focusing on the description of the muscle contraction based on
the muscle physiological behavior, other researchers only focused on the force generation
of the muscle during contraction and thus, had a closer focus on the heterogeneity of the
muscle structure.

In those type of model, we noticed Coggshall and al. [64] being the first to describe
analytically the twitch response of a MU. The muscle force is computed as:

FM(t) =
+∞∑
−∞

∫ +∞

−∞
fk(t− u)δ(u− tk)du (1.22)

where, fk(t) is the description of the twitch response and δ(tk) are the discharge instant
of the MU. The authors proposed the modeling of slow and fast twitches according to
experimental measurements recorded from cat flexor hallucis longus (fast muscle) and cat
soleus (slow muscle):

fs(t) = 2109.7
( 1

94.1e
−7.3t − 9.7t+ 1

94.1 e−17t
)

(1.23)

ff (t) = 693

2 t2e−69t (1.24)

These approximations fairly estimate the twitch shape according to the MU type. Nev-
ertheless, these equations describing the twitch has no connection with physiology except
the type of the MU.

Considering the lack of realism in these equations, further studies were attempted to
better describe the MU twitch response. Particularly, we noticed the work of Milner-
Brown and al. [97] defining the twitch equation usually used nowadays:

f(t) = ate−
t
T (1.25)

with, T the contraction time of the twitch and a a constant related to the peak amplitude
P of twitch force such that a = eP

T
.

Final equation of the twitch was proposed in [98] and identified from experimental
recording on rats for each type of MU [99]. Here, MU twitch is described as:

F i(t) = pitm
i

e−k
it if t >= Timp + T ilead (1.26)

with, Timp the instant of stimulus, T ilead the electro-mechanical delay, pi, mi and ki are
variables dependent of the MU’s type. All those variables were identified for the four MU
types: Slow, Fast Resistant, Fast Intermediate and Fast Fatigable (see Fig. 1.30).

1.5.4 Multi-physic models
Most of the models presented above only described one physical phenomenon induced
during skeletal muscle contraction. Nevertheless, considering the muscle modifications
arising during the contraction on its geometry and its properties, modeling only one
phenomenon limits the realism of muscle contraction simulation. First attempt of multi-
physics modeling of the muscle contraction is the model proposed by Fuglevand [20].
Even though, the electrical and mechanical models didn’t "communicate" information, the
two models are run with the same recruitment pattern and generate the corresponding
electrical activity and force production.
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Figure 1.30: Twitch shape according to the MU type [99].

In muscle modeling, few research used this same formalism. It was mainly used for
studying the sEMG/force relationship estimation [22, 57]. Considering the complex in-
teractions taking place during the muscle contraction, it seems that numerical models
can accurately transcribe these effects. A recent model was proposed by Heidlauf and al.
[6] where they modeled the chemo-electro-mechanical behavior of skeletal muscle during
contraction (see Fig.1.31).

This model is based on the open-source software library OpenCMISS [100]. This
software allows the combination of different mesh regions with different dimension, i.e.,
0D models (point or vertex) to describe the cellular behavior, 1D models (line or edge)
to describe the AP propagation, and 3D models (volume) to describe the mechanical
model. The proposed model in [6] is activated from simple definition of the MU discharge
moments with a regular firing rate.

After the activation of a MU, all its fibers will contract and generate a coupled elec-
trical and mechanical contribution. The electrical behavior of the muscle fiber is de-
scribed at a single point representing a half-sarcormere through 51 Ordinary Differential
Equations (ODEs). These ODEs define the changes of intracellular and extracellular ion
concentrations as well as the binding states during cross-bridge kinetics. It describes the
membrane electrophysiology, calcium release from the sarcoplasmic reticulum, calcium
dynamic, cross-bridge dynamic, fatigue, sodium and potassium channels [101, 102, 103].
This bioreliable representation that can be adapted according to the fiber type, can also
consider complex cellular behavior such as fatigue. Then, to extend this half-sarcomere
0D model to the propagation of an AP along the muscle fiber with 1D models, the authors
used a reaction-diffusion equation giving by [104]:

∂

∂s

(
σ
∂Vm
∂s

)
= Am

(
Cm

∂Vm
∂t

+ Iion

)
(1.27)

where s defines the spatial position along the path of the fiber, σ the conductivity, Vm
the membrane voltage, Am the ratio between the membrane surface area and the volume,
Cm the capacitance of the cell membrane per unit area, Iion represents the sum of ionic
currents crossing the cell membrane of the sarcolemma and the T-tubule.

Concerning the 3D model describing the muscle deformation, it is commonly measured
by the deformation gradient tensor:
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F := ∂χ(X, t)
∂X

= ∂x

∂X
(1.28)

with, χ the placement function that assigns each pointX in the reference configuration
at time t0 a corresponding point x in the deformed configuration at time t, thus x =
χ(X, t). The strain is determined by Green-Lagrangian strain tensor E := 1

2(C − I),
with C = F TF is the right Cauchy-Green deformation tensor and I the second-order
identity tensor.

Figure 1.31: Geometry of the tibialis anterior muscle and the fiber distribution, where
the fibers indicate the local membrane potential in color [6].

In fact, the authors proposed a highly complex multi-physic and multi-scale modeling
of the skeletal muscle during contraction. Even if the model provides accurate and realist
simulation of the muscle contraction, the major issue relates to the computing time. In
fact, this is one of the major issue concerning models. In this model, simulation of 400
fibers for 200 ms of contraction lasted 49h22min using 1 processor and lasted 11h36min
using 4 processors. This small number of fiber can’t describe a whole muscle.

1.5.5 Summary
In all these models, we can distinguish different approaches to determine the physical
responses to a muscle activation. Some models described the phenomenon based on
mathematical equations describing assessed relationships. Using mathematical equations
to describe the phenomenon often lead to necessary simplification to reduce the complexity
of the equations and to insure the uniqueness as well as stability of the solution. Yet, some
variability present in biological system can be considered, leading to the initialization of
many variables using statistical equations. Those kind of model are usually described as
analytical models.
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Finally, some models used the Finite Element Method (FEM) to describe the phe-
nomenon. This modeling approach often leads to reliable results considering the accurate
description of the medium where the phenomenon arises. Nevertheless, these models are
currently too complex to define and need considerable time for simulating the arising
phenomena. These models are referred as the numerical models. The table below sums
up the presented models as well as their approach.

Table 1.2: The presented models and the model approach used.

References Described phenomenon Model’s class
Coggshall and al. [64] Recruitment & Mechanical Analytical
De Luca and al. [65] Recruitment Analytical

Fuglevand [20] Multi-physics Analytical
Rosenfalck [31] Electrical Analytical

Gootzen and al. [81] Electrical Analytical
Farina and al. [85, 7] Electrical Analytical
Mesin and al. [92] Electrical Numerical
Heidlauf and al. [6] Multi-physics Numerical

Hill [8] Mechanical Analytical
Huxley [12] Mechanical Analytical
Zahalak [96] Mechanical Analytical

El Makssoud and al. [9] Recruitment & Mechanical Analytical

1.6 Objectives of the thesis

As exposed in Table 1.2, there is only few models that describe the electrical and the
mechanical outcomes to a muscle activation. And there is fewer, when it comes to consider
the effects of the deformation determined from the mechanical model on the considered
volume conductor used in the electrical model. Moreover, a second issue comes when
the model computation time is investigated. In fact, the only known multi-physic model
relating both physical phenomena lasts 11h30min for a simulation of the tibialis anterior
muscle including only 400 fibers. This can’t definitively be used for clinical applications
and diagnosis purposes.

For this purpose, this thesis work is dedicated to develop a fast and bioreliable multi-
scale and multi-physic modeling of the skeletal muscle during isometric non fatiguing
contractions and introduce HD-sEMG signals simulation in an efficient manner. In ad-
dition, the underlying interaction arising in order to produce the force and the electrical
activity such as the calcium dynamic will be described. We will propose a novel model
based on several steps: (i) developing a generic model that computes the electrical activity
of the skeletal muscle at the skin surface, (ii) developing a mechanical model of the muscle
driven by the same recruitment pattern, (iii) making these two models communicate in
order to consider the deformation in the electrical model.

Based on the literature, concerning the electrical and mechanical models of the skeletal
muscle, the existing models lack a lot of important factors like biorealism, validation, re-
producibility and optimization of the computing time. In fact, modeling implementation
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has to be defined in a generic way in order to easily and quickly perform new simula-
tions. Moreover, clear and human readable input(s) and output(s) have to be used for
users. Following this approach enables to use of the model without having to modify the
model program. As experimental protocols, the model program has to be: representative,
reproducible and repeatable. Representativity corresponds to reliability of the model.
Reproducibility corresponds to the possibility to use this model from other users with
different computers and simulate the same results. Repeatability corresponds to simulate
the same results using the same computer and the same input(s). Thus, in order to model
the muscle during isometric contractions we need to understand and distinctly model sev-
eral interactions that arise during muscle activation. The first modeling step is to define
the muscle anatomy and the recruitment of the MUs from the PNS based on the studies
of the literature. Second, we will define from this muscle anatomy, the electrical activity
of the muscle based on mathematical equations in order to provide the HD-sEMG signals
at the skin surface. Compare to the others electrical model that generate only the sEMG
signals from single channel, we propose to simulate the complete electrical muscle activ-
ity over the skin surface as a 2D map and compute the sEMG signals as an integration
of the electrical values under the electrode area. Third, the mechanical model will be
modeled based on the same definition of the MUs recruitment previously defined. This
modeling will use Huxley’s research [12] combines with the moment method developed
by Zahalak [96] in order to model the muscle at the MU scale. In the final part, a first
presentation about the electro-mechanical muscle model will be exhibited where the de-
formation is considered under isovolumic assumption for electrical activity according to
the mechanical model deformation. To do so, we will consider that only the muscle layer
will swell whereas the adipose and skin tissues will be slimming. Thus, the MUs as well
as the muscle fibers positions into the muscle layer are updated according to the muscle
swelling. Moreover, in this part, we will present some sensitivity analysis of the models
which is an important stage for the patient-specific modeling. Another application will
be dedicated to the study of HD-sEMG/force modeling.

Thus, the following chapters of this thesis, as described in the general introduction,
will address all these problems in order to model the muscle contraction in a biorealistic
manner. The figure illustrating the general steps of the thesis work is presented in Fig.1.32.

Finally, the objectives of this work can be summarized by:

• Implementing the muscle anatomy definition and the muscle recruitment in a generic
way. Some critical properties such as the homogeneity of the fiber density have to
be managed. These properties should automatically be managed regardless of the
number of simulated MUs and the MU distribution type;

• Developing and validating qualitatively the electrical model based on muscle phys-
iology. The muscle will be considered as a multilayered cylinder where muscle,
adipose and skin tissues are defined. The electrical model will simulate the muscle
electrical activity at the skin surface and compute the induced HD-sEMG signals
as an integration operator over the potential map allowing an infinity of electrode
definition;

• Developing and validating the mechanical model based on muscle physiology. The
mechanical model will be described at the MU scale and will be driven by the same
recruitment pattern formalism as for the electrical model. The mechanical model
has to follow the same format implementation as the electrical model;
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Figure 1.32: Scheme presenting the scheme for generating the electro-mechanical outcomes
of the skeletal muscle during contraction (red box). A MU recruitment pattern is defined
describing the firing times of each MU composing the muscle (blue box). Then, the
mechanical model represented at the MU scale simulated the muscle force as well as its
deformation (purple box). This deformation (ε) is considered in the electrical model where
the limb is described as a multilayered cylinder. Once the muscle updated according to
the deformation, the electrical model will compute the electrical activity of the muscle as
the sum of the MUAPs at the skin surface (green box). Finally, the sEMG signals are
simulated through a numerical integration of the values on the electrical surface under
the electrode definition area.

• Developing a multi-physic deformable model including the two developed models
that will perform the necessary communication to consider the deformation of the
muscle in the electrical model. For this purpose, we will assume that the muscle
volume remains stable, its length will shorten and its radius will raise. Thus, the
MUs anatomical properties and position will be updated by an automatic algorithm;

• Providing a first sensitivity analysis of the HD-sEMG grid model helping the re-
searchers to determine the feature sensitivity according to specific parameter or set
of parameters;

• Modeling the HD-sEMG/force relationship using the proposed electrical model and
a twitch model for a muscle imitating the Biceps Brachii. This study is one of the
first to consider a multichannel recording system, i.e. the HD-sEMG technique.
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2.1 Introduction
The modeling of surface electromyogram (sEMG) signals generation has quickly expanded
during the last twenty years [20, 85, 7, 81, 11] for purposes of testing decomposition
approaches [105], local sensitivity analysis [47], studying the sEMG/force relationship [57],
and assessing processing approaches among the numerous available applications. In fact,
models can provide electromyographic data generated in specific physiological and neural
configurations. Those configurations can be controlled in models whereas it is hardly
estimated in experimental conditions. Important advances in sEMG modeling focused on
the description of the volume conductor which can be planar [85] or cylindrical [81, 7, 11],
the detection system [106, 10, 47] or the phenomena of generation and extinction of the
intracellular action potentials at the end-plate and myotendinous junction [81, 85]. Also
for more biological realism, some studies attempted to better describe the recruitment
pattern of the MUs (spatial and rate coding) [20, 23, 41].

As introduced, analytical modeling approach is used in this work. Analytical mod-
els are usually computationally more efficient than their numerical counterparts but the
latter models better describe the complex geometry of the muscle in a patient-specific
manner. Investigation of the sEMG features changes according to physiological mecha-
nisms is easier and faster with analytical models. Yet, analytical models are limited to
a simplified non-realistic volume that can slightly distort the generated signals and their
interpretation. Despite these limitations, analytical solutions are still valuable for the
following reasons:

• to express the theoretical relationship of the generated signal according to a specific
set of parameters (neural, anatomical and physiological);

• to benchmark the accuracy of numerical models in trivial configurations;

• to have an approximated solution in a reduced time compared to numerical model.

Even though, analytical computation is by definition faster than numerical one, com-
putation time can significantly increase depending on its precision (ex: channel number
and sampling frequency) and realism (ex: number of MU and fiber). However, this in-
creasing complexity can be managed by optimal programming strategies. Unfortunately,
these numerical aspects was never clearly explicited in previous analytical sEMG models
with no or few indication of their numerical implementation cost [107, 7].

Recently, an electromyographic High Density (HD) recording technique has emerged,
named HD-sEMG, that allows the direct and simultaneous access to a high number of
channels (up to 256 channels). This technique significantly increases the spatial rep-
resentativeness of the recorded data over the studied muscle. It opened the door to
multi-channel analysis of muscle and brain activities (as for Electroencephalogram (EEG)
recordings) and has already demonstrated promising abilities compared to classical record-
ing routines [2, 58, 57]. Still, an efficient incorporation of this multidimensional view in
the modeling process should be considered as complex to achieve. Some preliminary works
have been proposed imposing a huge computational time [11, 6].

In a first place, we propose to overcome this computing complexity by efficient design
and programming of a HD-sEMG generation model (see section 2.2). For this purpose, we
propose a different and innovative computation scheme for a fast and optimized computa-
tion of the muscle electrical activity over the skin surface using 3D matrices in the Fourier
domain and parallel computing. Nevertheless, when hundreds of thousand of fibers are
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considered to generate the muscle electrical activity, the computation time remains too
long to perform some important analysis such as global sensitivity analysis or inverse
problems cannot be studied. For this purpose, we propose an upgrade of the initial model
where the electrical source initially computed at the fiber scale is computed at the MU
scale (see section 2.5). Finally, in order to validate the model for the generation of HD-
sEMG signals, we detected the substantial effect of the position of the MUs within the
muscle (see section 2.6). Most of the developped sEMG models [85, 7, 107] assumed a
random territorial placement of the MUs as supposed in [20]. But, after some analysis, it
was crucial to propose an algorithm that place the MUs within the muscle respecting an
assumption over the fiber density homogeneity .

Figure 2.1: Muscle’s electrical activity model scheme computation.

2.2 Fast generation model of high density surface
EMG signals in a cylindrical conductor volume

2.2.1 Overview of the model geometry and computation

To develop the sEMG model, we took as a starting point the cylindrical representation
of the model in [7]. Geometry of the limb is described in Fig. 2.2, where the cylindrical
coordinates (ρ, θ, z) are used in this study. Origin of the cylinder limb is placed at its
center. The cylindrical conductor volume is composed of three layers (muscle, adipose
tissue, and skin) where sources are placed in the most internal layer, along z coordinate,
whereas the recording system is placed at the most external boundary between layers (the
skin-air interface). Thus, only fusiform muscle can be modeled with this representation,
pinnate muscle modeling implies more complex description of the electrical source. The
sources are defined at the microscopic scale and represent the fiber intracellular potential
generation, propagation and extinction.

In [7], the authors considered four layers (bone, muscle, fat, and skin), yet the bone
layer can be regarded as negligible influence on the simulated signals if the distance
between muscle-bone and muscle-fat interfaces are high enough. In the case of a simulation
of the Biceps Brachii muscle, this distance turns around 20 mm and therefore bone layer
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has negligible impact (less than 1% on the simulated signals). This has been checked
using the proposed model in a four layer configuration.

Figure 2.2: (L) Muscle geometry in cylindrical coordinates. (R) Longitudinal cross-section
of the cylinder. R is the radial position of the fiber, ρa, ρb and ρc are the muscle, fat and
skin radius, respectively.

In this model, all the layers have a finite thickness along the radial direction. Each layer
composing the conductor volume is a homogeneous medium which can be anisotropic.
Thus, the muscle layer is an anisotropic medium and has higher conductivity along the
longitudinal direction than in the other directions. While, the adipose and the skin tissues
are isotropic.

Computation of all the parts composing the model are optimized. Innovation of this
work lies in the way the model does the computation. It uses the linear algebra properties
of matrices in the Fourier domain to compute the electrical activity at the skin surface.
Calculus diagram for the computation of one single fiber action potential (SFAP) can be
observed in Fig. 2.3.

As shown in Fig. 2.3, computation is fully made in the Fourier frequency domain
with matrices multiplication along the pertinent axis. Electrical activity over the skin
surface is computed as the sum of the fiber electrical activities. The fiber electrical
activity is computed from the multiplication between the Fourier transform of the MU
discharge times and the 2D Fourier transform of the spatio-temporal signature of the
fiber electrical source. Then, the result is multiplied with the volume conductor transfer
function expressed in spatial frequency coordinates. Finally, 2D electrical activity over the
skin surface is obtained with a 3D inverse Fourier transform (spatial and time coordinates).
Sections below will detail how this computation is done and explain the necessity to do this
computation in the frequency domain. In this model, Fourier transform will be performed
with the Fast Fourier Transform algorithm implemented in the SciPy package available
in Python.
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Figure 2.3: Model’s calculus scheme to compute one SFAP. Recruitment represents the
discharge times of the MU in time (t). A Fourier transform (F) is applied for computing
in frequency domain. Source depicted the intracellular action potential along the longitu-
dinal direction of the fiber in time when a discharge time is triggered (z, t). A 2D Fourier
transform (F2) is applied on it. Transfer function presents the volume conductor transfer
function computed according to the composition of the volume conductor in spatial fre-
quency domain (kθ, kz). Electrical activity over the skin surface is finally computed with a
3D inverse Fourier transform (F−3) and potential map is obtained in the spatio-temporal
domain (θ, z, t).

2.2.2 Modeling the MU recruitment scheme
During contraction, MUs are recruited independently of others and in agreement with the
size principle [18]. Each MU is activated at a specific threshold depicted in the Fuglevand
model [20] and muscle specified in [41]:

RTEi =
(
a.i

N

)
ei
ln(RRa )

N (2.1)

where RTEi corresponds to the RTE of the ith MU, RR is the recruitment range corre-
sponding to the muscle force level where all the MUs are recruited, N is the number of
motoneuron and a is a constant value describing the slope of the recruitment threshold
function (see Fig. 2.4).

From observations of the Fig. 2.4, we can state that definition of the RTE is essential
for the simulation. In fact, RTE definition will directly impact on the number and type
of MUs recruited during the contraction. For example, for a contraction at 50% of the
MVC with a = 40, MUs of type IIb or Fast Fatigable (FF) are recruited whereas for the
same contraction level with a = 80 or 160 there aren’t any FF MUs recruited. It is known
that during high sustain contractions, these are the FF MUs that contribute the most in
the sEMG signal composition [58, 57].

According to this representation, a MU remains inactive as long as the force level is
below its RTE value. It is supposed that the first discharge occurs when the MU starts to
be recruited. Each MU recruitment is regulated by a motoneuron firing rate (Fri) which
linearly intensifies with force level, from its minimal (Frmin) to its peak (PFRi) firing rate.

FRi(t) = gi (E(t)−RTEi) + Frmin if E(t) ≥ RTEi (2.2)

where E(t) is the excitatory drive provided by the Central Nervous System (CNS) and gi
the linear gain according to force level defined as:

gi = PFRi − Frmin
100−RTEi

(2.3)
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Figure 2.4: The recruitment threshold function for the same MU according to different
values of parameter a.

Nevertheless, studies [71, 23] reported a non linear rate coding and proposed:

FRi(t) = PFRi

(
1− e−

E(t)−RTEi
τi

)
+ Frmin if E(t) ≥ RTEi (2.4)

where τi is a time constant specific to each MU defined as:

τi = −100−RTEi
ln
(
Frmin
PFRi

) (2.5)

In this model, for each MU, its PFR is taken inversely proportional to the recruitment
threshold.

PFRi = PFR1 − PFRD
RTEi
RTEN

(2.6)

The firing frequencies Frmin and PFR1 are fixed to 8 and 35 Hz, respectively. PFRD
is the peak firing rate difference and is fixed to 15 Hz in this study. Also, the "onion skin"
phenomenon, observed in experimental study [70] following linear or non-linear MU firing
rate slopes, is taken into account.

This representation of the motoneuron pool is generic and can differentiate each MU
according to its size.

As we can see on Fig. 2.5, all the MUs are not recruited since the used RR value is
88%, thus all the MUs are not recruited for any contraction below 88% of the Maximal
Voluntray Contraction (MVC). Moreover, we can also notice that the Inter-Spike Interval
(ISI) decreases with force level showing the increase of the firing rate of the MUs according
to force level.

2.2.3 Fiber electrical source modeling
The Intracellular Action Potential (IAP) Vm(z) can be described in space domain as
suggested in [31]. The fiber current density source travels at a velocity vf along the
longitudinal direction of the finite muscle fiber. It arises at the fiber end-plate, propagates
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Figure 2.5: (L) The excitatory drive for a plateau contraction at 70% of the maximal
voluntary contraction during 6s. (R) The corresponding discharge moments of a muscle
composed of 50 MUs.

Table 2.1: Recruitment parameters needed to define the MUs recruitment

Parameter Description Unit
N Number of MUs
RR Recruitment range %MVC
a Recruitment threshold slope
lvl Contraction level %MVC
Tr Resting time s
Th Holding time s
cs Contraction speed %MVC.s−1

fs Sampling frequency Hz

along the fiber and extinguishes at the myotendinous junction. These phenomena are
described in [85] by:

if (z, t) = d

dz

(
ϕ (z − z0 − vf t) pL1

(
z − z0 −

L1

2

)
− ϕ (−z + z0 − vf t) pL2

(
z − z0 + L2

2

))
(2.7)

where, ϕ(z) is the first derivative of Vm(−z); z0 is the position of the end-plate of
the fiber; vf is the propagation velocity of the fiber; L1 = L

2 − z0 −MTZL and L2 =
L
2 + z0 − MTZR are the semi-lengths of the fiber from the end-plate to the right and
to the left tendon, respectively; MTZL and MTZR are the left and right myotendinous
length, respectively; pL(z) is the rectangular window defined as:

pL(z) =
{

1 if |z| ≤ L
2

0 otherwise (2.8)

This description assumes a progressive generation and extinction of the first derivative
of the IAP in order to simulate both end plate and end effect of the fiber without any
approximation of the current density. A modified version of this description, with the
use of Tukey window instead of rectangular window, is proposed below. This proposition
follows previous works using exponential or conical decay of the electrical source [84]
managing the decay using one parameter α. This proposition is motivated by the fact
that generation and extinction of the electrical sources should be progressive and smooth
which is not managed by the classical rectangular windowing in previous model [85] (see
eq(2.7)). Thus:



2.2. FAST GENERATION MODEL OF HD-SEMG SIGNALS 49

if (z, t) = d

dz

(
ϕ (z − z0 − vf t)ωL1

(
z − z0 −

L1

2

)
− ϕ (−z + z0 − vf t)ωL2

(
z − z0 + L2

2

))
(2.9)

With ωL a Tukey window defined along fiber semi-lengths with α = 0.1 such as:

ωL(z) =



1
2

(
1 + cos

(
2π
α

(
z+L

2
L
− α

2

)))
if − L

2 ≤ z ≤ α
2L−

L
2

1 if α
2L−

L
2 ≤ z ≤

(
1− α

2

)
L− L

2
1
2

(
1 + cos

(
2π
α

(
z+L

2
L
− 1 + α

2

)))
if

(
1− α

2

)
L− L

2 ≤ z ≤ L
2

(2.10)

As mentioned above, the use of a Tukey window allows a smoother progressive gener-
ation and extinction of ϕ(z). Thus, discontinuities produced by the rectangular window
are attenuated (see Fig. 2.6). However, the classical rectangular windowing effect can be
easily retrieved by setting the parameter α to 0.

Figure 2.6: (L) A fiber current density source defined with the rectangular window at 4
different instants (t = 0ms, t = 2.4ms, t = 4.8ms and t = 9.6ms). (R) The same fiber
current density source defined with the Tukey window at the same instants.

The IAP mathematical description will be computed once for each fiber in the muscle
on 1s according to the time sampling and space domain. This impulse will be repeated
each time when the motor unit, including its fibers, is recruited. Finally, to model the
variability of myotendinous junction spreading, their positions will follow a uniform law
at the extremities of the fiber as depicted in [84]. This modeling allows fiber electrical
activities to extinguish at different instants and longitudinal positions as observed on real
data [84].

2.2.4 Computation of the transfer function of a multilayer cylin-
drical volume conductor

Fig. 2.2 shows a cylindrical geometry of a three layers media which includes muscle,
adipose and skin tissues. It has been shown in [7, 81] that the transfer function of a
multilayered cylindrical conductor volume can be obtained by solving Poisson equation
for the layer which contains sources and Laplace equation for the others. Boundary
conditions must be defined for uniqueness and for the stability of the solution. Thus,
these boundary conditions must be defined for the layer that is containing the source
and for the common interface between layers. The main steps of calculation are summed
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Table 2.2: Fiber parameters needed to define a fiber

Parameter Description Unit
L Fiber length mm
z0 Fiber end-plate longitudinal position

MTZR Right myotendinous length mm
MTZL Left myotendinous length mm
ρf Radial position mm
θf Angular position ◦

vf Conduction velocity m.s−1

up below. In a conductor volume, the electric potential in quasi-stationary conditions is
retrieved from [108, 109]:

∇.J = −∇.
(
σ∇ϕ

)
= I (2.11)

where, J is the current density (A.m−2); σ is the conductivity tensor (S.m−1); ϕ is the
potential (V) and I the density current of the source (A.m−3). Equation (2.11) can be
written as:

− σ∇2ϕ =
∫
x′
I (x′) δ (x− x′) dx′ (2.12)

With x a point in the space, and x′ the position of the source. Using a Green function
satisfying:

− σ∇2G (x, x′) = δ (x− x′) (2.13)

Subject to the constraint G (x, x′)→ 0 as |x′| → ∞.
Considering cylindrical coordinates and symmetrical homogeneous medium equation

(2.13) becomes:

σρ
∂2G

∂ρ2 + σρ
1
ρ

∂G

∂ρ
+ σθ
ρ2
∂2G

∂θ2 + σz
∂2G

∂z2 = −1
ρ
δ(ρ−R)δ(θ)δ(z) (2.14)

where, x′ = (R, 0, 0) is the cylindrical coordinate of the source, R is the radial position
of the source, σρ, σθ, σz are the conductivities in the three directions and δ(.) is a Dirac
delta function. With the following variable change:

x = ρkz

√
σz
σρ

(2.15)

where kz is the spatial frequency in z direction. Equation (2.14) becomes after factor-
ization:

∂2G

∂x2 + 1
x

∂G

∂x
+ σθ
σρx2

∂2G

∂θ2 + 1
k2
z

∂2G

∂z2 = − 1
σρx

δ(x− x′)δ(θ)δ(z) (2.16)

where x0 = Rkz

√
σz
σρ

.

In the present case, if the solution is written as a Green function:

G (x, θ, z, x0) =
+∞∑

kθ=−∞

∫ +∞

−∞
eizkzeiθkθK(x, x0)dkz (2.17)
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Then making use of equation (2.17), equation (2.16) becomes:

∂2K

∂x2 + 1
x

∂K

∂x
−
(

1 + σθk
2
θ

σ2
ρx

2

)
= − 1

σρx
δ(x− x′) (2.18)

The general solution of equation (2.18) (when x 6= x′) is the solution of Laplace
equation along ρ coordinate that is the transfer function of the conductor volume:

K (x, kθ, kz) = An(kz)In(x) +Bn(kz)Kn(x) (2.19)

where An and Bn are arbitrary coefficients, n = kθ

√
σθ
σρ

, In and Kn are modified Bessel

functions of order n of the first and the second type, respectively.
Coefficients An(kz) and Bn(kz) in (2.19) have to be calculated to conform to the

boundary conditions between the layers as well as the restrictions related to the source.
There are two boundary conditions for each interface between two layers which are the
continuity of the potential and its first derivative. Conditions at the interfaces are: K|ρ+

0
= K|ρ−0[

σ+
0
∂K
∂x

]
ρ+

0
=

[
σ−0

∂K
∂x

]
ρ−0

(2.20)

where ρ0 designates the location of the considered interface and σ+
0 , σ−0 , are the radial

conductivities of the two considered layers.
Moreover, there are two conditions associated to the source which are the continuity

of the potential and the discontinuity of its first derivative:{
K|x+

0
= K|x−0

K ′|x+
0
−K ′|x−0 = − 1

x0σρ

(2.21)

with x0 defined above and σρ the radial conductivity of the layer enclosing the source.
To compute a solution that is external to the source (ρ > R), coefficient An in (2.19)
has to be set to 0 to take into account the finite dimension of the muscle because In(x)
diverges when x→ +∞. Thus:

An|x+
0

= 0 ; Bn|vertx+
0

= 1
ρ
In(x0) (2.22)

Finally, the general transfer function of the conductor volume is retrieved in the spatial
frequency domain according to the source position from (2.19), (2.21) and (2.22):

K (x, kθ, kz, x0) = An(kz)In(x) +Bn(kz)Kn(x) + 1
σρ
In(x0)Kn(x) (2.23)

with, x0 = Rkz

√
σz
σρ

. The last term of the equation in (2.23) is obtained from (2.19)

and (2.21) and is only used for the layer that encloses the source.
Arbitrary coefficients in (2.23) are determined considering all the interfaces between

layers. Usually, they are calculated with a linear system that uses the conditions described
in (2.20) and (2.21). The general equation of a linear system is predicted by:

A.X = b (2.24)
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where X is the vector of coefficients to be determined, A is a matrix based on the
conductor volume composition and b is a vector related on the source position.

Then, unknown vector X is obtained by inverting matrix A. This inversion can induce
numerical problems due to the ill-conditioning of the matrix that has a high conditioning
number. However, this conditioning number can be reduced by using the substitution of
the vector X proposed in [14]. In the case of a muscle with an anisotropic muscle layer
(radius ρa, and conductivities σmρ, σmθ and σmz), an isotropic adipose layer (radius ρb and
conductivity σf ) and an isotropic skin layer (radius ρc and conductivity σs), the following
equation is obtained:

X =


Amn (kz)In(ρamkz)
Afn(kz)In(ρbkz)
Bf
n(kz)Kn(ρbkz)
Asn(kz)In(ρckz)
Bs
n(kz)In(ρckz)

 (2.25)

with ρam = ρa

√
σmz
σmρ

. Superscripts m, f and s represent the corresponding coefficient

determinate in muscle, adipose and skin layer, respectively. Then, matrix A becomes:

A =



1 − In(ρakz)
In(ρbkz) −Kn(ρakz)

Kn(ρbkz) 0 0
√
σmzσmρ

I′n(ρamkz)
In(ρamkz) −σf

I′n(ρakz)
In(ρbkz) −σf

K′n(ρakz)
Kn(ρbkz) 0 0

0 1 1 − In(ρbkz)
In(ρckz) −Kn(ρbkz)

Kn(ρckz)
0 σf

I′n(ρbkz)
In(ρbkz) σf

K′n(ρbkz)
Kn(ρbkz) −σs I

′
n(ρbkz)
In(ρckz) −σs

K′n(ρbkz)
Kn(ρckz)

0 0 0 σs
I′n(ρckz)
In(ρckz) σs

K′n(ρckz)
Kn(ρckz)


(2.26)

And b is defined as follows:

b =



− 1
σmρ

In(Rmkz)Kn(ρamkz)
−
√

σmz
σmρ

In(Rmkz)K ′n(ρamkz)
0
0
0

 (2.27)

where Rm = R

√
σmz
σmρ

. With this substitution, the conditioning number of matrix A is

reduced and provides more stable solutions, even for the case of multiple layers.
Due to the mathematical definition of A, it is clear that this matrix is invariant in

time. Then, the matrix A is computed once for every values of kθ and kz. On the other
hand, vector b is specific to the fiber radial position and is also invariant in time domain.
After, the vector b is computed once for every value in the spatial frequency domain and
for each fiber.

2.2.5 Spatial frequency sampling
Sampling of the angular frequency kθ has to be imposed due to the restriction of the
angular coordinate θ to the interval [−θmax; θmax]. Spatial coordinate θ is independent of
z, t and ρ, thus, this dimension can be sampled in a decoupled manner respecting the
Nyquist condition. With θmax = π

2 , only the upper part of the cylinder will be represented.



2.2. FAST GENERATION MODEL OF HD-SEMG SIGNALS 53

Parameter Description Unit
kθ Number of angular bins
Nl Number of layers

(a) Conductor volume parameters needed to define the
conductor volume

Parameter Description Unit
σρ Radial conductivity S.m−1

σθ Angular conductivity S.m−1

σz Longitudinal conductivity S.m−1

R Layer radius mm
(b) Layer parameters needed to define a layer

If this cylinder approximates an arm, one can suppose that this upper part can represent
the Biceps Brachii muscle. Then we put kθ ∈ [−50; 50] with a step of ∆kθ = 1. Thus,
the number of angular frequency bins and its discretization are wθ = 101 and ∆θ = π

wθ
,

respectively.
Considering the longitudinal frequency sampling, we know that the longitudinal coor-

dinate z and time are linked by the propagation velocity.

z = vt (2.28)

Thus, we have the relation in spatial and time frequency domains such as:

kz = kt
v

(2.29)

with, kt = 2πfs the angular time frequency and fs the sampling frequency. In time

frequency domain, the frequency bandwidth is limited to the interval
[
−fs2 ,

fs
2

]
respecting

the Nyquist theorem. Thus, we can deduce the maximal longitudinal frequency as:

kzmax = πfs
v

(2.30)

By definition, the spatial frequency discretization respects:

∆kz = 2kzmax
wz

(2.31)

with, wz the number of spatial frequency bins needed in the numerical implementation.
These relations also arise in the spatial domain such as:

zmax = 1
π∆kz

(2.32)

∆z = 1
πkzmax

(2.33)

Thus from these equations, we can deduce the number of longitudinal bins needed
such as:

wz = 2zmaxfs
v

(2.34)

In this model and for improving physiological realism [110], fiber conduction velocity vf
is slightly different for each fiber, according to its type and its radius, which is not the case
in most of the sEMG generation models. Then, in order to avoid the loss of information in
the longitudinal frequency domain, the number of spatial frequency bins wz is computed
with the lowest fiber conduction velocity (vminf ). This will define the highest longitudinal
sampling frequency and in this way, loss of information will be minimized.

Finally, electrical activity can be computed for every position (θ, z) ∈ [−θmax, θmax]×
[−zmax, zmax] at the skin surface and for every time step t ∈ [0, T ].
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2.2.6 Computing the electrical activity

SFAP and MUAP computation

The SFAP is computed according to its source description, position, and propagation in
the conductor volume. SFAP is obtained from eq (2.12):

− σ∇2ϕ (x) = I (x) (2.35)

Leading to:
σ∇2ϕ (x) = −

∫
V
I (x′) δ (x− x′) dx′ (2.36)

Considering the solution computed from eq (2.13), we have:

σ∇2ϕ (x) =
∫
V
I (x′)

(
σ∇2G (x, x′)

)
dx′ (2.37)

Due to the linearity of the operator σ∇2, eq (2.37) can be written as:

ϕ(x) =
∫
V
I (x′)G (x, x′) dx′ (2.38)

Thus, we define the SFAP at the skin–air interface in time domain as:

ϕ (ρc, θ, z, t) = (I ∗G (ρc, θ, z, R)) (2.39)

with, ∗ being the convolution operation and ρc the radial position of the skin–air
interface. Due to the complex calculation and computation of the convolution product,
the computation of the SFAP is done in frequency domain and then 3D inverse Fourier
transform is performed in order to return to the 3D spatio-temporal domain. Finally,
SFAP of a fiber placed at position (R, θf , z) is given in spatial and time domain by:

ϕ (ρc, θ, z, t) = F−3
(
F2 (if (z, t))F (δ (θf ))G (ρc, kθ, kz, R)

)
(2.40)

where, F−3 is the 3D inverse Fourier transform (in kθ, kz and kt) defined as:

F−3 (f (kθ, kz, kt)) =
∫ kθmax

−kθmax

∫ dkzmax

−dkzmax

∫ dktmax

−dktmax
eiθkθeizkzeitktf (kθ, kz, kt) dkthetadkzdkt

(2.41)
F (δ (θf )) is the 1D Fourier transform of the angular position θf of the fiber. If (kz, kt)

is the 2D Fourier transform of if (z, t) presented in section 2.2.3. And G (ρc, kθ, kz, R) is
the transfer function of the conductor volume presented in section 2.2.4.

As we know, the MUAP is described as the sum of the SFAP from all fibers of this
MU. Thus, from eq (2.40) we have the MUAP defined at the skin–air interface:

MUAP (ρc, θ, z, t) =
N∑
i=1

ϕi (ρc, θ, z, t) (2.42)

where N is the number of fibers which constitute the MU. In this model, for a better
physiological description of the muscle, four types of MU are described as in [111]. These
types are defined according to the muscle fiber type composing the MU, we assumed that
all the fiber in the same MU have the same type. Therefore, we have the:
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• slow MU (SMU) exclusively composes of muscle fiber of type I;

• fast resistant MU (FRMU) composes of muscle fiber of type IIa;

• fast intermediate MU (FIMU) composes of muscle fiber of type IIx;

• fast fatigable MU (FFMU) composes of muscle fiber of type IIb.

Area of the MUs is supposed circular and MU territory superposition is considered in
the model. Different physiological properties, according to the MU’s type, are used and
are described in [111].

Finally, fibers within the MU are defined in agreement to its MU’s type. MU’s fibers
are uniformly positioned within MU area and fibers conduction velocities are defined as
in [111]. The end-plate region width is set to 10 mm for each MU as in [84].

Table 2.3: MU parameters needed to define a MU

Parameter Description Unit
L MU length mm
ρMU MU center radial position mm
θMU MU center angular position ◦

type MU type
N Number of fibers
R MU radius mm

Muscle electrical activity determination

The muscle electrical activity can be described as the sum of MUAPs at the air–skin
interface recorded under the electrode area. Furthermore, a MUAP can be described
as the sum of its corresponding SFAPs (see Section 2.2.6). Thus, the muscle electrical
activity in spatial and time domain is given by the following equation:

mEA (ρc, θ, z, t) =
N∑
i=1

MUAPi (ρc, θ, z, t) ∗
Pi∑
k=1

δ (tk)


=
N∑
i=1

Mi∑
j=1

ϕi,j (ρc, θ, z, t) ∗
Pi∑
k=1

δ (tk)


= F−3

 N∑
i=1

Mi∑
j=1
F2 (if (z, t))F (δ (θf ))G

(
ρc, kθ, kz, Rfj

)
F

 Pi∑
k=1

δ (tk)
 (2.43)

where ρc is the radial position of the skin–air interface; Mi is the number of fibers in
the ith MU and Pi is the number of discharge instants of the ith MU. Once again, due to
the complex numerical computation of the convolution product, this calculation is done
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in the frequency domain with F
 Pi∑
k=1

δ (tk)
 is the Fourier transform of the MU discharge

instant defined as:

F

 Pi∑
k=1

δ (tk)
 =

Pi∑
k=1
F (δ (tk)) =

Pi∑
k=1

e−itkkt (2.44)

2.2.7 Modeling the recording system and the sEMG signal gen-
eration

From the muscle electrical activity definition in eq (2.43), the sEMG signal recorded by
the electrode at the skin surface is simulated with an integration operator of the electric
current values over the numerical electrode area definition. In fact, at a time ti, signal of
electrode j will be obtained with this following equation:

Sj (θj, zj, ti) =
∫ ∫

Sj
mEA (ρc, θ, z, ti) dθdz (2.45)

where (θj, zj) is the cylindrical coordinates of the center of electrode j and Sj is the
electrode area. For circular shape electrode, we obtain:

Sj =
{

(θ, z) | z2 − 2zzj cos (θ − θj) + z2
j ≤ r2

j

}
(2.46)

where rj is the radius of electrode j. The potential map is integrated numerically
under the electrodes and the signal is normalized by the number of pixels forming the
electrode surface.

In [7], a 2D transfer function has been developed for analytical description of the
detection system effect. Both transfer functions are implemented in the proposed model.
In order to validate the spatial transfer function defined above, a comparison study using
both surface integration and analytical transfer function definition will be exposed later
(see section 2.2.9). This numerical integration enables us to compute HD-sEMG signals
from a given potential map without simulating it again, for any electrode configurations
(number or shape).

The use of the integration under electrode area has been exposed for computing the
corresponding electrical signal. In the models in [7, 112], the authors exhibited an an-
alytical transfer function for different electrode shapes as circular and concentric-ring
electrodes. As depicted before, this subsection illustrates the possibility, thanks to the
modular programming of the proposed model, to generate a large diversity of electrode
shapes driven by user’s needs. Almost any type of electrode can be implemented in the
proposed model, if the area under the electrode can be represented as an analytical surface
integration operation.

Modeling the shape diversity of the electrode system

In [112], the authors developed a transfer function for concentric-ring electrode with the
possibility of simulating multiple rings. Implementation of those electrodes can also be
managed by a simple 2D integration over the high resolution potential map generated by
the proposed model. Geometry of concentric-ring circular electrode is presented in Fig.
2.7c. In this figure, the area of this electrode can be observed. This area can be divided
into two parts, the central circular electrode (A1) with center (θe, ze) and radius r1 which
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will be weighting with the weight 1, and the ring around A1, named A2, with center
(θe, ze), internal radius of r2 and external radius r3 with the weight -1. Multiple rings
can also be easily managed in this model. Thanks to this definition, surface integration
boundaries and equation can be easily obtained.

A rectangular electrode with rounded corners is implemented in the model and re-
produces electrode geometry used in some experimental studies [2]. The geometry of
this electrode is put forward in Fig. 2.7b. The corresponding area of this shape can be
divided into three parts: A1, A2 and A3. Area A1 represents a rectangular area with

(lθ, lz) lengths, A2 and A3 represent semi-circular areas with
(
θe, ze + lz

2

)
, r = lθ

2 and(
θe, ze −

lz
2

)
, r = lθ

2 as center and radius, respectively. As for previous shape configura-

tion, surface integration equation can be easily derived.

(a) HD-sEMG electrode grid of 16×16 circular electrodes placed
at the skin surface of the muscle

(b) Specifications and numerical
area of a rectangular electrode with
rounded corners

(c) Specifications and numerical area of a
concentric-ring circular electrode

Figure 2.7: Grid description, rectangular electrode with rounded corners and circular
concentric-ring electrode shapes.

As we can see on Fig. 2.7a, we can also define in this model an electrode grid. We
can use any type of electrode in this grid, yet only one type at a time. However, thanks
to the decoupling modeling between the electrical activity and the recording instruments,
multiple electrode grids can be applied on the same computed electrical activity in a small
amount of time. Thus, comparison and analysis of the instrumental recording are easy
and fast to perform excluding the possible variability between subjects in experimental
studies.
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Defining the electrode grid needs several parameters. All these parameters are directly
linked to instrumentation design. Thus, the electrode grid center (θeg, zeg) is required as
well as the number of electrode in both directions (nθ, nz) and their radius re. Moreover,
the inter-electrode distances in both directions (dθ, dz) can also be managed in this model.
Finally, rotation of the grid de according to the muscle fiber orientation is also considered
since it has a wild interest in experimental studies.

Definition of a single electrode is managed with this formalism of the electrode grid
since the total number of electrode managed is equal to nθ × nz.

Table 2.4: Electrode grid parameters needed to define an electrode grid

Parameter Description Unit
nθ Number of electrode in θ direction
nz Number of electrode in z direction
dθ Inter-electrode distance in θ direction mm
dz Inter-electrode distance in z direction mm

(θeg, zeg) Center position of the grid (◦,mm)
re Electrode radius mm
de Rotation of the grid according to z direction ◦

2.2.8 Model implementation
For programming efficiency and flexibility, the proposed model is implemented in Python
(v2.7 or v3) with an object-oriented approach. Python is a generic high-level programming
language which features dynamic typing system and automatic memory management.
It provides an easier and faster programming than for instance C++ or Java. Time
spent to program this model has been widely reduced thanks to the Python paradigms.
Python strength also lies in the large scientific ecosystem that provides such comprehensive
libraries and tools such as NumPy which supports large, multi-dimensional arrays or
matrices, or SciPy which supports Fourier transform, signal and image processing and
ODE solvers. Moreover, some tools like code profiling or multiprocessing allow users to
optimize and minimize the computation time of a complex program.

As previously mentioned, the proposed model in this study is implemented through
an object-oriented approach. This approach with structured programming provides a
modular code. The code of the model is split into independent modules, in a way that
each module clearly represents a specific part of the model presented in the previous
sections. This modular approach also allows for modifications or extensions of a specific
module easily without having an impact on the other modules. All the model modules
are documented and a whole documentation presenting the different features of the model
is generated with tools available in Python. Furthermore, a Python user-friendly Human
Machine Interface (HMI), using the PyQt library, has been developed to easily use the
model without mastering Python language and visualize the simulated results. It allows
users to easily define the simulation information (purpose of the simulation, date, etc.),
the simulation parameters for the model (see Fig. 2.8), simulation features (number of
processes to use) as well as the desired outputs (data, image or movie).

The implemented model needs two inputs to perform a simulation. These two files
are JSON files where one gathers all the parameters needed by the model and the other,
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provided in the model, defines standard units for all the needed parameters. It indicates
the name of the parameter with an associated unit. Hence, users can define parameters
with any unit as long as this unit can be converted into the aimed unit (for example, a
length in meter or inches), model will do the conversion itself if it is possible, otherwise
it means that a unit parameter is ill-defined, then the model will catch this error and
specify the error to the user.

Figure 2.8: Model implementation block diagram describing the dependencies between
modules.

As presented above, model is separated into independent modules. Users can define
composition of the muscle at different scales through three modules: Muscle, MU and
Fiber. The Muscle module defines an entire muscle with the desired number of MU and
the MU distribution according to their type. MUs and fibers are automatically generated
according to the number of MUs defined and the MU type distribution. The MU module
(see Table 2.3) defines a single MU with a specific position in the muscle (ρMU ; θMU) and
its type. Fibers within the MU will be initialized automatically according to the MU
type. Fiber module (see Table 2.2) is like the MU module but only for the definition of a
single fiber. Users must provide more parameters like the conduction velocity of the fiber.

The conductor volume structure is defined through two modules. The layer module
(see Table 2.3b) defines one layer with its different spatial conductivities and its radius
in the conductor volume. Then, the ConductorVolume module (see Table 2.3a) gathers
all the layers definitions in order to build the conductor volume. It is also in this module
that the sampling of kθ will be imposed.

An electrode grid is implemented in elec grids module. It defines an electrode grid
with the number of electrodes according to θ and z axis, the inter-electrode distances in
the two directions, the electrode radius and the position of the grid center (see Table 2.4).
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Recruitment pattern is defined through the excitation drive in the module RecrutPat-
tern. This excitation drive is defined with the rest time, the holding time, the contraction
level, the goal of the contraction, the contraction slope, the recruitment range and the
sampling frequency (see Table 2.1). All these modules and their connections are illus-
trated in Table 2.8.

The proposed model is designed to furnish different outputs in order to provide avail-
able information and facilitate a better understanding of the relationship between the
sEMG signal features and the physiological mechanisms (ex: sensitivity analysis pur-
pose). The anatomy of the muscle can be plotted illustrating the muscle area in the
cylinder with its different layers and the position of the MUs within it. Moreover, MUs
recruitment pattern can also be plotted (see Fig. 2.5) and presents the different firing
times for a specific MU. Finally, electrode positions over the skin (see Fig. 2.7a), 2D
electrical activity at each time step and the signal recorded at each electrode can also be
saved in a manageable format (HDF5 ) and reused later.

2.2.9 Simulation results
In this section, the model proposed above will be used for several simulations that illustrate
its relevance and efficiency. Moreover, as all models, this one should be validated before
trying to interpret the simulations results. For this purpose, a first simulation study
will concern a qualitative validation on the MUAP longitudinal propagation and angular
attenuation in order to assess the model realism using different electrode shapes presented
earlier. Next, the accuracy of the numerical integration under the electrode areas will be
also assessed using analytical transfer function formulation. In order to exhibit the easy
and fast reproducibility of the model, we will present a simulation study where we define
the volume detection for a circular monopolar electrode.

Finally, considering the analysis of the computing time, we will present the computa-
tion time in different case: computation of a single MUAP and computation of a muscle
contraction at 70% MVC for a muscle with 700 MUs in serial and parallel computing.

All simulations have been run on the same workstation with the following specifica-
tions: 2 × 8 cores Intel Xeon 2.40GHz with hyperthreading (32 threads), 128Go RAM,
Ubuntu 14.04 64bits. Concerning all the simulations presented below, some parameters
concerning the simulations are defined and will not change among simulation (see Table
2.5) for clarity purpose.

Qualitative validation on the MUAP/SFAP behavior

In this section, two simulation cases are presented, a MUAP recorded with concentric-
ring electrodes and a SFAP recorded with circular electrodes in a muscle with three
layers (muscle, adipose and skin tissues). For this purpose, the two simulations have
been made with the same muscle anatomy definition. Some parameters were specified for
this simulation in addition to the parameters from Table 2.5: muscle length is 100mm,
muscle radius is 25mm, adipous tissue thickness is 3mm and skin thickness is 2mm.
Considering the signal sampling frequency fixed to 4096 Hz, the longitudinal discretization
is dz = 0.76mm and the angular discretization is dθ = 0.75mm = 1.78◦.

The simulated MUAP is computed from one FF MU placed at (ρ; θ) = (21.8; 0) cor-
responding to a MU radius of 3.2 mm and is composed of 214 fibers. It is recorded using
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Table 2.5: Configuration of simulation

Parameter Value (unit)
Radius S MU N (2.5, 0.5) (mm)

Number of fibers S MU N (100, 10) (mm)
S fiber diameter N (45, 1) (µm)
Radius FR MU N (2.75, 0.5) (mm)

Number of fibers FR MU N (150, 15) (mm)
FR fiber diameter N (50, 1) (µm)
Radius FI MU N (3.0, 0.5) (mm)

Number of fibers FI MU N (200, 20) (mm)
FI fiber diameter N (55, 1) (µm)
Radius FF MU N (3.25, 0.5) (mm)

Number of fibers FF MU N (250, 25) (mm)
FF fiber diameter N (60, 1) (µm)

Sampling frequency (ft) 4096 (Hz)
Radial muscle conductivity (σmρ) 0.1 (S.m−1)
Angular muscle conductivity (σmθ) 0.1 (S.m−1)

Longitudinal muscle conductivity (σmz) 0.5 (S.m−1)
Adipose tissue conductivity (σf ) 0.05 (S.m−1)

Skin conductivity (σs) 1 (S.m−1)
MU NMJ position (zMU) U(−15, 15) (mm)

Fiber NMJ position within MU (z0) U(zMU − 5, zMU + 5) (mm)
Fiber left MTZ length (MTZL) N

(
−L

2 + 15, 2
)
(mm)

Fiber right MTZ length (MTZR) N
(
L
2 − 15, 2

)
(mm)

Tukey window parameter (α) 0.1

where, N (µ, σ) corresponds to a normal distribution with its mean µ and its standard
deviation σ. U(a, b) represents an uniform distribution between a and b (with a < b).

concentric-ring electrodes defined with the following radii (r1; r2; r3) (1; 2; 3) mm.
The simulated SFAP was obtained from a single fiber placed at (ρ; θ) = (24; 0), cor-

responding to a depth of 1mm in the muscle tissue with conduction velocity fixed at 4
m.s−1, NMJ is at z0 = 0 and MTZ lenghts are fixed to 5mm and 15mm from the right and
left side of the NMJ, respectively. The monopolar circular electrodes are defined with a
radius of 1mm. Both longitudinal and angular attenuation have been assessed for both
simulations.

Electrodes are centered in the longitudinal middle of the muscle (z0 = 0), thus, there
are 2 electrodes on each side of the MU and fiber innervation zone. Longitudinal propa-
gation of the MUAP and SFAP on Fig. 2.9a clearly shows a symmetry of the obtained
action potential shapes in respect to the position of the innervation zone (around z0 = 0)
and a time support correlated to the mean velocity (4 m.s−1) of the fibers within the
simulated MU.

Moreover, Fig. 2.9a (Left) also shows the disappearance, due to the high-pass filtering,
of the end-plate effect (non propagating component) when a MUAP is recorded with a
concentric-ring electrode. On Fig. 2.9a (Right), SFAP recorded with a circular electrode
shows the two end-plate effects at z = 0 at two different times. It is coherent with the
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(a) Signals recorded along z axis at θ = 0◦. Signals are recorded at five different positions using specific
electrodes placed along the z axis with an interelectrode distance of 10 mm. (Left) MUAP longitudinal
propagation recorded on 5 concentric-ring electrodes. (Right) SFAP longitudinal propagation recorded
on 5 circular monopolar electrodes.

(b) Signals recorded along θ axis at z = 10. Signals are recorded at five different positions using spe-
cific electrodes placed along the θ axis with an interelectrode distance of 5◦ (corresponding to 2.6mm).
The MUAP angular attenuation recorded on 5 concentric-ring electrodes (Left) and the SFAP angular
attenuation recorded on 5 circular monopolar electrodes (Right).

Figure 2.9: Examples of simulated MUAP and SFAP recorded with 2 different electrode
shapes at different angular and longitudinal positions for a muscle with three layers (mus-
cle, adipose and skin tissues).

fact that muscle semi-lengths are different on each side of the muscle.
The Fig. 2.9b shows the angular attenuation of the MUAP and SFAP along axis θ.

Electrodes are centered in the angular middle of the muscle (θ = 0◦) with angular distance
steps of 5◦ corresponding to an inter-electrode distance of 2.6mm. One can observe the
strong attenuation of recorded signals as the angular (lateral) distance increases according
to the reference position for both the MU and the fiber.

Integration recording evaluation

In this section, a comparison of the sEMG signals recorded by electrodes with the tech-
nique exhibited in section 2.2.7 is presented using the spatial integration defined by the
surface under electrode area and the 2D inverse Fourier Transform of the electrode transfer
function presented in [7].

For this purpose, we did one simulation (50 MUs, 2048 Hz on 6 s) where we defined
one electrode grid formed of 8×8 circular electrodes with a radius of 2 mm. Therefore,
Normalized-Root-Mean-Square-Error (NRMSE) between signals obtained by both spatial
transfer function, considering the analytical one as the reference, is computed in order to
check the accuracy of the method proposed compared to the transfer function used in [7].
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(a) The spatial 2D area of the electrode defined
through numerical integration.

(b) The spatial 2D area of the electrode defined in
frequency domain [7].

Figure 2.10: Defined areas with both electrode definitions.

On Fig. 2.10 the area of both electrode definitions is exhibited in the spatial domain.
A 2D inverse Fourier transform was applied on the analytical definition of the electrode
whereas the numerical area is directly defined in spatial domain. We can see that both
areas are alike, points with the highest weight are at the same position (under the defined
electrode area) and magnitude of the weights are almost similar. On Fig. 2.10b weights
decrease from the center of the electrode. It represents a 2D sinc function whereas on Fig.
2.10a integration points have the same weight and represents a 2D cross window. Mean
of the computed NRMSE on the 64 sEMG signals is 5%. This difference is explained by
the slight divergence between both spatial area definitions.

Volume detection for circular monopolar electrode

In this section, we present a first study about the volume detection of a circular electrode
according to its radius in a cylindrical representation of the muscle. Such an analysis has
been proposed in [74], but in a planar representation of the muscle. The muscle length is
100mm, muscle radius is 41mm, adipose tissue thickness 3mm and skin thickness 1mm.
Four differents electrode radii have been used: 1 mm, 2 mm, 3 mm and 10 mm. These
electrodes are placed at (θ; z) = (0; 0). In order to determine the volume detection of an
electrode, we first placed a reference fiber at (ρ; θ) = (40.95; 0) and compute its SFAP
recorded with the four different electrodes. Then, SFAP are computed for deeper fibers
with the same parameters of the reference fiber with a step of 0.25 mm along ρ axis, then
ρ ∈ [10; 40]. Finally, SFAP are computed for fibers by varying θ with a step of 0.25◦
for each value of defined ρ. As in [74], amplitude ratio between the other SFAPs and
the reference SFAP is computed. The electrode volume detection is defined as the region
where this ratio is above 1% [74]. Overall, 19169 fiber simulations were performed, using
the proposed model, to precisely cover the detection volume and determinate isoenergetic
regions depicted on Fig. 2.11.

On Fig. 2.11 the limit of the detection volume for the 1 mm electrode radius is
exhibited. Moreover, thanks to all the simulations we were able to make 10 detection levels
of the electrode according to the amplitude ratio between the reference SFAP and other
SFAP recordings. The first observation between the different detection volumes is that
the electrode radius doesn’t significantly change the volume detection of the electrode. On
Fig. 2.11, detection volume has a radial maximal depth of 28 mm (distance between the
electrode and the fiber with adipose and skin tissue thicknesses) and an angular minimal
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Figure 2.11: Detection volume for a 1mm electrode radius placed at (θ, z) = (0, 0); color
scale indicates the corresponding amplitude ratio range.

distance of 21.24 mm (distance between the electrode and the fiber at the maximal angle
and the maximal radial values). Whereas, for an electrode radius of 10 mm, the detection
volume has a radial depth of 27 mm and an angular minimal distance of 23.32 mm. For
the three electrode radii (1, 2, 3 mm) we don’t observe a significant variation in the depth
or the size of the detection volume of the electrode. However, a 10 mm electrode radius
has a smaller depth and a larger angular detection than the 1 mm electrode radius. In
fact, important increase of the electrode radius will reduce the maximal detection depth
but will increase the angular detection in the muscle volume.

Related computation time

One crucial feature about modeling is its computation time. This analysis can be seen as
a quantitative validation where a good compromise should be found between the model
simplifying assumptions and model computation time. For this purpose, we proposed to
compare the model computation time for the same simulations in two different computing
configurations. These configurations are: computation in serial (using one process) and
computation in parallel (using several processes).

Since several research only focus on the MUAP, we propose to compare the compu-
tation time for a MUAP generation as well as for muscle contraction. In Table 2.6 is
presented the related computation for the computation of a MUAP. 40 different MUs (10
for each type) are defined for the comparison.

As we can see in Table 2.6, the computation time is the same in serial and in parallel.
This is coherent since the parallel computing is defined on the MU computation, then if
only one MUAP is computed, parallel computing doesn’t reduce the computation time.

Then, in Table 2.7 is presented the computation time for 5 simulations of a muscle
contraction using different number of CPUs for the parallel computing. Model computed
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Table 2.6: Related computation time according to the MU type (mean ± std)

Number of process S FR FI FF
Serial (1 CPU) 6min58s ± 35s 9min8s ± 2min15s 9min32s ± 34s 14min56s ± 5min52s

Parallel (10 CPUs) 6min51s ± 34s 9min5s ± 2min13s 9min24s ± 36s 14min59s ± 4min55s

a simulation of 50 MUs for 4s of contraction at 70% MVC respecting the parameters
configuration of Table 2.5.

Table 2.7: Computation time according to the number of processes used

Initialization Electrical activity computation Electrode recording
Serial (1 CPU) 4.23s ± 0.33s 15h27min ± 1h19min 0.37s ± 9.5ms

5 CPUs 3.77s ± 0.06s 3h30min ± 59min 0.39s ± 0.01s
10 CPUs 3.96s ± 0.09s 1h57min ± 31min 0.36s ± 9.2ms
14 CPUs 3.85s ± 0.11s 1h36min ± 12min 0.40s ± 0.02s

Computation time of the initialization stage represents the time for instantiating the
MUs and the fibers positions. Furthermore, during the initialization part, matrix A and
vectors b are computed once according to the defined conductor volume configuration.
Computation time of the electrical activity computation stage represents the addition of
the time needed to compute SFAPs and the use of 3D inverse Fourier transform in order to
obtain simulated surface potential map in 2D space and time domain. Electrode recording
computation time represents the time for the integration of the potential map over the
electrode area defined for every step in time of the simulation (in this case, generation of
128 sEMG signals from the surface potential map).

According to Table 2.7, initialization and electrode recording computation times are
negligible compared to the surface potential map computation time. Those computation
times remain stable compared to the number of process used as these steps are imple-
mented in a serial manner (managed by one processor).

Computing time for the electrical activity, implemented in parallel, is clearly reduced
by the number of used processes. This time reduction seems to follow approximately a
linear relationship according to the number of processes. In fact, for 5 processes used,
computation time is reduced by 4.4 compared to using one process, whereas for 14 pro-
cesses, time is reduced by 9.7.

Beyond the use of 10 processes, model speedup begins to diverge from the ideal linear
time reduction law according to process number. This divergence is inherent to the model.
Firstly, because all the model calculus cannot be run in parallel. Then, overhead induced
at the initialization of processes and at the reduction of those processes increases the
computation time with the increasing number of process used.

Moreover, the same simulation is also performed on 10 processes but for 6 s of sim-
ulation. This time simulation increases of 2 s (+50% of reference simulation time) does
not change the computing time significantly compared to the reference computation time
of 4 s (' 15 min +13% of computing time). This is mainly due to the intensive use of
parallel computation on the 3D inverse Fourier transform for each additional seconds of
simulation where the same MUAP representation in the frequency domain is used and
already stored in the volatile memory. In addition, the 3D inverse Fourier transform can



66 CHAPTER 2. MODELING THE MUSCLE ELECTRICAL ACTIVITY

be performed independently for each time slice and then can be computed for different
time slices (each slice managed by one process) of the 3D matrix at the same time.

Large scale simulation

In this section, a large scale simulation using the proposed model is presented to eval-
uate the higher computing time that should be encountered during simulations. In this
simulation, number of MUs is set to 300 (≈ 52200 fibers) and an electrode grid with 256
circular electrodes is used (see Fig. 2.7a). Moreover, three different excitatory drives are
simulated during a global simulation time of 12 s. It means that three different contrac-
tions are simulated corresponding to a first plateau at 80% MVC followed by a contraction
in ramp from 0 to 80% MVC and a last plateau at 40% MVC (see Fig. 2.12b). To our
knowledge, this is the first time that a grid with this high number of electrode is simulated
for generating such long time sequence (12 sec.) with a high number of simulated MUs
(300) at high sampling frequency (4 kHz). In fact, in [51], simulations with planar model
have been performed [85], at 4 kHz for one contraction with 120 MUs. And in [74], 65
MUs at 1024Hz for 3 s have been simulated.

This simulation has been run on 10 processes and it lasted 14h48min. The other
previously presented simulation with 10 processes has been generated for 4 seconds of
contraction with 50 MUs (see third line in table 2.7) and has lasted around 2 h. In this
simulation there are six times more MUs and the contraction time is three times longer.
By linear interpolation, we can suppose that sEMG computation time for 4 seconds of
contraction with 300 MUs should last around 12h with the use of 10 processes. Here,
it is clear that it is much faster, using this model, to simulate several contractions in
a serial manner in time and embedded in the same simulation than to simulate each
contraction separately if they concern the same muscle anatomy. On the recorded signals,
we can observe few artefacts with small amplitudes between each contraction due to the
inherent periodicity in time domain introduced by the 3D inverse Fourier transform for
each time slice of the defined 3D matrix. Those artefacts can be easily removed thanks to
a simple post-processing algorithm. An illustration of the electrode surfacic integration
on the large scale simulation with the corresponding signal recording is available at http:
//www.utc.fr/~jlaforet/Suppl/sEMG_300MU.mp4.

2.3 Discussion
In this part, we presented a generation model using multilayered cylindrical volume for
simulating HD-sEMG signals by efficient theoretical computation, program coding, and
parallel computing. In fact, by using 3D Fourier transform to avoid convolution computa-
tion, the proposed model is able to quickly simulate high resolution surface potential map
(101×131 samples (θ;z) for a muscle length of 120 mm, 25 mm of muscle radius, 3 mm
of fat thickness, 1 mm of skin thickness and on 180◦) at the skin surface of the simulated
muscle. This surface potential map allows the simulation of an infinite electrode number
and shape configurations with tiny additional computing cost since the obtained signals
are gathered by numerical integration under the electrode areas without simulating again
the surface potential map.

For this purpose, the theoretical formalism of the propagation of electrical current
inside a multilayered cylindrical volume has been demonstrated in details. Following as-

http://www.utc.fr/~jlaforet/Suppl/sEMG_300MU.mp4
http://www.utc.fr/~jlaforet/Suppl/sEMG_300MU.mp4
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(a) Simulated muscle anatomy. (b) Simulated MU recruitment pattern sequence.

(c) Recorded sEMG signals according to electrode position.

Figure 2.12: Large scale simulation. First contraction represents a high plateau (80 %
MVC) held for 2.5 s of simulation; second contraction describes a ramp on 2 s kept for
1 s (from 0 to 80 % MVC); Last contraction illustrates a low plateau (40 % MVC) helds
for 2.5 s.

sumptions of a previous published model [7] concerning four layers, the calculus leaded to
similar results concerning the proposed model that deals with three layers. This configu-
ration is realistic for simulating Biceps Brachii muscle where the bone layer has negligible
impact on the simulated signals. However, the four layers version of the proposed model
is also available for other purposes. The principal innovations in this work are:
• The proposed model allows to specify conduction velocities for each fiber;

• A smoothing window is proposed to better describe the generation and extinction
of the current sources traveling along the fibers;

• Precise mathematical and numerical implementation description of the model is
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provided;

• All calculus are done in the Fourier domain exploiting intensive parallel computing;

• HD-sEMG signals are obtained from numerical integration under the electrode area
from a high resolution potential map allowing electrode shape diversity and infinite
combinations of electrode number and position with no need of re-simulation.

Concerning the Tukey window that is tuned by one parameter that fixes the smooth-
ness applied on the generation and extinction phenomena. Its influence on the generated
sEMG signals has been checked at different contraction levels with Root-Mean-Square
value differences lower than 1% for α = 0.1. In addition, propagating versus non propa-
gating component ratio has been also verified for several MUAP configurations with no
observation of significant difference. However, this parameter has to be carefully fixed to
reduce the frequency leakage without altering the amplitude and power of the generated
signals.

The proposed model was numerically implemented using Python language. This
object-oriented language, by its flexibility and compatibility with existing software, of-
fers interesting abilities for scientific computing. A particular effort was given in regards
to collect the model inputs using a graphical interface and JSON file, and for provid-
ing model outputs (signal file, anatomy and recruitment images, surface potential map
movie).

To assess the efficiency and possible limitations of the proposed model, several sim-
ulations were run. First, the parallel computing strategy impact has been evaluated. It
clearly appears that increasing the number of used processes (up to 10) significantly de-
creases the computing time in a quasi-linear relation (processes/computing time). Above
this limit, the speed gain declines. Furthermore, it is also possible to simulate longer
sequence, using the same generated muscle anatomy, with a negligible computing time
cost.

Another important point, is the small computing time concerning the sEMG signal
generation using the numerical integration under the electrode area compared to the use
of analytical transfer function. In fact, the numerical integration allows a total decou-
pling between the high resolution surface potential map and the calculus of the recorded
sEMG signals. This important property authorizes the generation of an infinite number
and shape of electrodes in a short time and by using the same surface potential map. A
limitation of this methodology is rooted in the necessity of the use of a spatial resolution
sufficiently high to maintain the electrode simulation accuracy compared to a fully analyt-
ical solution as the 2D transfer function proposed in [85]. For this purpose, a simulation
has been proposed to check the accuracy of the numerical integration under a 2 mm radius
electrode area with both definitions of the electrode transfer function. According to the
obtained results, both electrode transfer function definitions are almost equivalent.

In this work, the detection volume with a cylindrical configuration was evaluated, for
the first time, using a circular electrode with radius variation. It appears that the radius
variation has negligible effect in the range of few millimeters. The effect is more observable
using larger electrodes (radius of 10 mm). One can notice that, as for the planar configu-
ration [74], the estimated detection volume is not semi-circular. The obtained volume is
larger than the one exposed in [74]. This should be explained by the difference in both
volume shape and used electrode arrangements (single differential in [74] and monopolar
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in this study). According to this observation, it seems that a grid of small electrodes will
have an important muscle volume coverage and the deeper MUs should not be neglected
in the simulation process.

Another crucial point is the validation of the proposed model. In the ideal case, this
validation should be done using exact knowledge of physiological and anatomical param-
eters as MU and fiber position and number. Also, several electrical parameters such as
the media conductivity should be exactly determined experimentally to perform more
reliable simulations. Then, realistic model configuration should be fixed including neural
command, and artificial sEMG signals should be compared to experimental sEMG signal
using the same simulated electrode paradigm. In reality, these multiple tasks are gen-
uinely complex to realize. An alternative option can however be found in the qualitative
evaluation of MUAP shapes compared to real data as in [85] and [7] or simulating data
using previous models.

When varying angular position, one can observe MUAP and SFAP attenuation as
depicted on Fig. 2.9. Similar effect has been observed on both simulation and experi-
mentation in [7]. In the same figure, we can observe the electrical propagation along the
longitudinal axis at each side of the end plate region. To illustrate the capabilities of the
proposed model to simulate different electrode configuration according to specific task, we
simulated concentric-ring electrode and rectangular with rounded corners electrode used
in many experimental studies. Pinnate muscle wasn’t managed in this study but should
be considered in future works.

Finally, we simulated a large-scale configuration to push the computing process to its
limit by using a configuration with 300 MUs and 256 electrodes for a total simulation
time of 12 seconds. To our knowledge, this simulation is the first that concerns a grid
with 256 electrodes with such long simulation time. The obtained computing time was
14h48min (same time that the simulation of 50 MUs electrical activity for 128 electrodes
computed in series). These promising results indicate strong potential of the proposed
model to simulate, with high spatial and time resolution, electrical phenomena that occur
at the skin surface of a muscle and relate to the recruitment of important MU number
with reasonable computing cost using the proposed programming paradigm. However,
computation strongly bears on the use of multidimensional Fourier transforms to speedup
simulations. One limitation of this use is the possible appearance of artifacts due to the
periodicity effect in the Fourier transform in both spatial and time domain. This is the
reason why MU positions were constrained in an angular interval
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to avoid this problem. Similarly, some artifacts also appeared in

the time representation of the obtained signals for the same reason. This limitation has
to be overcome in the next model version.

In addition, the proposed model should be enhanced by incorporating a procedure to
save/load data of 2D Fourier representations of electrical activity for a specific anatomy
and MU configuration. Thus, the HD-sEMG signals should be obtained faster by matrix
multiplication with a specific Fourier representation of recruitment pattern for a specific
stored muscle anatomy without regenerating the 2D Fourier representations of the all
corresponding SFAPs. For this purpose, two simulations was performed with and without
saving the 3D Fourier representations of MUAPs. Precisely, simulations have been run
with 50 MUs at 2048Hz. Firstly, a simulation on 2 processes lasted 55min30s, MUAP
Fourier maps were saved during this simulation. Then, the same simulation has been
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run loading these maps and lasted 1min06s on serial (one thread) and provided the same
signals as the first simulation.

The reuse of saved MUAP Fourier maps can be clearly useful in order to make up the
HD-sEMG signals in a, by far, less time. However, it will freeze the computation of the
electromyographical signals to a specific muscle configuration and discretization (muscle
anatomy, time and spatial sampling frequency). Moreover, this use needs high storage
capabilities. Indeed, for the previous simulation, the 50 MUAP frequency maps need for
storage about 10GB on the hard drive. One can easily imagine the important requested
space for hundreds of MUs for one anatomy.

In this study, we also tried, with the presentation of the numerical implementation
of the model, to provide to users a methodology for efficient programming using recent
tools as Python language and multiprocessor programming. These computing technolo-
gies offer interesting abilities for programming complex models linked to physiological
processes. We foresee a generalization of their use and the rising of new model generation
that combines both realistic behavior (patient-specific) and optimized computing. Such
models, as in electromyography, will certainly help scientists and clinicians to achieve
better comprehension and diagnosis of pathology.

2.4 Conclusion
In this study, we proposed a fast model which can simulate accurate HD-sEMG signals
generated from electrical propagation inside a three layered conductor volume. Thanks to
optimized and modular programming that rely on object-oriented language (Python) and
parallel computing, the proposed model is able to compute several configurations within
acceptable computing time.

In fact, all the complex calculus involved in the proposed model are done in the Fourier
domain. In addition, a high resolution potential map at the skin surface is generated for
each time step of simulation. This important characteristic supports the possibility of
post-computing of sEMG signals, using numerical surface integration, for any combina-
tion of electrode number and shape for the same simulated muscle anatomy. To assess the
model abilities, several simulations have been run that illustrate the available electrode
shape diversity (concentric-ring, circular and rectangular with rounded corners shapes)
and the efficiency of the parallel computing strategies (used processor number) in reduc-
ing the computing time in a significant manner. These simulations are in agreement with
previous published works. Furthermore, both detection volume and accuracy of the nu-
merical integration operation, comparing to the use of analytical transfer function, have
been assessed.

Finally, for illustrating the model efficiency, a large scale simulation concerning 256
electrodes and a muscle that contains 300 MU for 12s (sampled at 4096 Hz) and repre-
senting 3 different isometric contractions is realized in less than 15 hours. However, some
limitations of the model should be overcome in future works as artifacts generated by
Fourier periodicity property in both time and space domain. Also, it should be interest-
ing to save/load 2D electrical MUAP representations to constitute a muscle library which
would accordingly further put down the computing time.

Nevertheless, some studies such as global sensitivity analysis or inverse problem that
are very useful for clinical applications cannot be performed since it requires thousands
of simulations for a specific muscle definition to have consistent results. As previously



2.5. MOTOR UNIT ELECTRICAL SOURCE MODELING 71

depicted, the main time consuming part of the sEMG signals generation models is the
hundreds thousand of sources to compute. With a view to using this model for clinical
diagnosis and better understanding of the neuromuscular system, we need to reduce this
computation time of the model.

2.5 Speedup computation of HD-sEMG signals using
a motor unit specific electrical source model

The modeling of surface electromyogram (sEMG) generation is of great interest in many
applications especially for understanding how specific physiological mechanisms and phe-
nomena can influence the generation process under various contexts. It can also help
researchers and clinicians in the interpretation of experimental sEMG data in pathologi-
cal situations. Various sEMG models have been proposed since the late 70’s [85, 7, 107,
10, 109, 40, 14, 113, 114, 11, 86] and particularly during the last decade. Simulating
sEMG signal implies different stages starting by the modeling of the Motor Units (MUs)
recruitment [20]. Afterwards, the description of the fiber Intracellular Action Potential
(IAP) [31] must be described. Then, there is the volume conductor filtering step [85, 10].
Finally, the sEMG signals are obtained after the individual or multiple surface electrodes
recording stage [7, 10]. Modeling all these steps of the generation process provides a
bio-reliable model that is faithful to the human neuromuscular physiology and physics.
Moreover, the variabilities among skeletal muscle properties have to be considered in the
modeling which will add complexity but makes the model more reliable. This type of
model provides an important insight into physiological processes that are hard to investi-
gate in experimental conditions. Nevertheless, due to the high complexity of the electrical
phenomenon, the model computation time is long. This problem prevents the use of these
models in certain applications and studies such as the inverse problem related to the iden-
tification of the parameters. This is the reason why nowadays, most of the existing models
only focus on the properties of few Motor Unit Action Potentials (MUAP) recorded by
a single electrode. According to [10, 6], the use of these intricate models to study the
impact of specific input parameters on the sEMG generation seems genuinely hard and
lengthy [47]. This high computation time comes from the significant number of electrical
sources to compute in order to generate the sEMG signals. These sources are simulated
at the fiber scale. Thus, hundreds of thousands of fiber sources have to be computed.
This leads to several hours or days of computation even when parallel computing and
optimization are used to significantly reduce the computation time [10]. In [10], we per-
formed a simulation of 300 MUs (≈ 52200 fibers) for 12s of contraction at 4096 Hz in ≈
15h. However, in this model, we significantly optimized the computation time by setting
all the computation in a 3D Fourier domain and using parallel computing.

To overcome this modeling issue, we propose in this study an upscale computation of
the MUAP that can significantly reduce the model computation time. In the literature,
there is no research that attempted to reduce the MUAP modeling time. However, in [73],
the authors underlined that the MUAP is not equal to N times the corresponding FAP
wave shape. In this study, a generic method is presented to compute a single electrical
source at the MU scale specifically to the fibers composing it. This macro electrical
source generation will be adapted according to the fiber properties belonging to the MU
(see section 2.5.1). In fact, modeling the electrical source at the MU scale will remarkably
reduce the computation time of the model. However, it will also induce some errors in the
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generated signals due to the approximation process. The main challenge of such modeling
is to preserve the bio-reliability of the model, variability as well as realism.

One of these modeling error that will arise from this simplification are extinction syn-
chrony of the source at the MyoTendinous Zone (MTZ). However, a MU specific temporal
frequency filtering over the MUAP is proposed in order to remove the high frequencies in-
duced by this synchrony. Using this MU source approximation, global sensitivity analysis
over the whole physiological parameters as well as inverse problem studies will become
feasible in short computation time and with minimal alterations on the sEMG statistics
and spectral content (see section 2.5.1).

In order to assess the efficiency as well as the accuracy of the proposed MU macro
electrical source, we present in section 2.5.2 comparisons including single MUAP as well
as sEMG simulations involving hundreds of simulated MUAPs. This section is concluded
by a comparison of the computation time using the two different electrical sources models.
Next, the abilities and limitations of the proposed model are discussed (see section 2.5.3).
A final section (see section 2.5.4) concludes and brushes over the perspectives of futures
works.

2.5.1 Macro-scale motor unit electrical source
Simulating the electrical activity of the muscle implies the computation of all the recruited
fiber current density sources as described in previous subsection (see section 2.2.3), thus
hundreds of thousands fiber electrical sources have to be computed leading to several
hours or days of computation. Since the model computation time is too long, global
sensitivity analysis study of all the input parameters of the model or parameters identifi-
cation to develop new diagnosis tools for clinicians or researchers aren’t feasible. In order
to overcome this complex modeling issue, we propose, through an upscale computation of
the electrical source, to significantly reduce the model computation time.

As introduced in chapter 1, the Motor Unit Action Potential (MUAP) is the sum
of its corresponding Single Fiber Action Potential (SFAP) innervated by the same α-
motoneuron. Yet, a MUAP of a specific MU composed of N fibers is not simply N
times the SFAP wave shape [73]. The anatomical and physiological differences between
individual fibers have a strong impact on the spatial and temporal properties of the
generated MUAP. In this context, anatomical regions such as the NeuroMuscular Junction
(NMJ) position, both MyoTendinous Zone (MTZ), relative positions of muscle fibers
within the MU and the location of corresponding MU within a muscle are all significant
and have to be considered in any attempt of upscaling (from fiber to MU) the electrical
source.

Source positioning

For this purpose, we propose a specific modeling of the MU electrical source based on its
fibers. Initially, considering the position of the MU macro electrical source, we decided
to place it at the isobarycenter position of the fibers within the MU. This assumption is
motivated by the fact that the positioning of the MU macro electrical source is strongly
dependent on the distribution of its fibers within the MU area. Examples of the iso-
barycenter position compared to the initial referenced position of the MU and its fibers
are exhibited on Fig 2.13. We can see that the referenced center of the MU is different
from the computed isobarycenter. Thus, polar position of the MU macro electrical source
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center of the ith MU is determined as:{
ρi = 1

Ni

∑Ni
j=1 ρi,j

θi = 1
Ni

∑Ni
j=1 θi,j

(2.47)

Where ρi,j and θi,j are the corresponding polar coordinates of the fiber j within the
ith MU.

Figure 2.13: Two different isobarycenters computed for the MU macro electrical source
model based on the fibers position within the corresponding MU.

Source description and parametrization

Furthermore, as mentioned above, all the parameters describing the fiber have to be
considered. Depending on its fibers, the position of the NMJ for the MU specific macro
electrical source is computed from the average position of the NMJ fibers following the
distribution presented in Table 2.8. Similarly, the position of both MZT and the electrical
source conduction velocity are obtained from the average of the fibers MTZ positions and
conduction velocities respectively, as indicated in the equations below.

NMJi = 1
Ni

Ni∑
j=0
NMJi,j

MZTLi = 1
Ni

Ni∑
j=0
MTZLi,j

MZTRi = 1
Ni

Ni∑
j=0
MTZRi,j

vi = 1
Ni

Ni∑
j=0
vi,j

(2.48)

Where, NMJi,j is the NMJ position of the fiber j in the ith MU,MTZLi,j andMTZRi,j
are the fiber corresponding MTZ from left and right side of the muscle, vi,j corresponds
to the conduction velocity of the fiber and Ni is the number of fibers within the ith MU.
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Table 2.8: Anatomical MU parameters

Parameter Value (unit)
MU NMJ position zUM (in z coordinate) U(-10,10) (mm)

Fiber NMJ position z0f within MU (in z coordinate) U(zUM − 5,zUM + 5) (mm)

Fiber MTZ left length MTZLf N
(
−L2 + 15, 2

)
(mm)

Fiber MTZ right length MTZRf N
(
L

2 − 15, 2
)
(mm)

As we considered the isobarycenter and the average of the fiber parameters, the MU
macro source current density is represented as Ni times the current density defined in
(2.7).

The MU macro electrical source model will induce a synchronization of the fibers
sources during the generation, propagation and extinction. This artificial synchrony at the
time of action potential extinction leads to a sharper Non-Propagating Component (NPC)
(see Fig. 2.15) compared to the one modeled at the fiber scale (see section 2.5.2). This
difference in the NPC shape distinctly appears on the MUAP. The smoothing (low-pass
filtering) of the NPC of the MUAP is principally due to the jitter effect (delay dispersion
from asynchronous extinction) among all the fiber NPCs. After analyzing the temporal
spectral content of the MU macro electrical source action potential, we observed that this
sharper NPC is mostly represented in the high frequencies. Thus, in order to remove
it and make the proposed MU macro electrical source approximation more realistic, we
propose to filter the spectral content of the generated MU macro source action potential.
This will be done using a MU specific filter, defined in frequency domain, in order to
smooth the high frequencies of the MUAP corresponding to the NPC without altering
the low frequencies representing the generation and propagation of the MUAP (see eq
(2.49)).

MUAPfil (kt, kz) = F2 (MUAP (kt, kz)) .Λ (kt) (2.49)

With MUAPfil, the MUAP spectral representation computed after filtering in fre-
quency domain, F2 is the 2D Fourier transform applied on the current density defined
in eq (2.7) with the macro electrical source parameters and Λ(kt) is the filter that will
be define below. kt = 2.π.fs, with fs the sampling frequency, and kz is the longitudinal
angular frequency.

Considering the design constraints on the filtering operation presented above, we de-
cided to use a Gaussian filter with its standard deviation (σMU) tuned by several param-
eters of the macro electrical source.

Λi (kt, µ, σMU) = e
− (kt−µ)2

2σ2
MU (2.50)

With, kt is the angular temporal frequency, µ is the mean (here it will be 0) and σMU ,
the std of the Gaussian distribution that will tune its low-pass filtering behavior.

σMU was determined through several steps. At first, following an identification proce-
dure, we performed various simulations on the same MU with the fiber source model at
different depths where we only changed one parameter that we suspected to have an effect
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on σMU (namely, the macro electrical source conduction velocity vMU , the muscle layer
radius ρm, the number of fiber within the MU nbFMU and the MTZ dispersion σMTZ).
Then, we computed the same simulations with the macro electrical source by numerically
optimizing σMU according to the MU depth. The final objective was to find the suited
function of σMU related to the MU parameter set that better mimics the referenced MUAP
computed with the fiber electrical sources.

Since the MUAP is represented in spatio-temporal domain (θ, z, t) [10] (see section
2.2.6), an optimization procedure of σMU was performed in order to minimize the Normal-
ized Root Mean Square Error (NRMSE) between the spatio-temporal MUAP generated
with the fiber and MU electrical models during one MUAP propagation time (see eq
(2.51)). This optimization was done using the Nelder-Mead algorithm [115] available in
the Python SciPy package where the tolerance error was set to 10−6. This procedure was
repeated for each MU depth varying between 20 and 44 mm with a step of 1 mm. Thus,
24 optimizations for each MU type were performed to find the optimal curve. This curve
is depicted in Fig. 2.14.

NRMSE(MUAP,MUAPfil) =

√∑M
i=1

∑N
j=1

∑P
k=1 (MUAP (i, j, k)−MUAPfil(i, j, k))2

√
M.N.P . (max(MUAP )−min(MUAP ))

(2.51)
With,MUAPfil andMUAP are the spatio-temporal MUAP representation computed

with the MU and fiber electrical source models, respectively. M , N and P are the con-
sidered number of samples in the transversal direction, longitudinal direction and in time
during the MUAP propagation, respectively.

By analyzing the optimized σMU values with respect to different MU parameters vari-
ation, we noticed that these parameters have only an effect on the magnitude of the σMU

values. We also concluded from this analysis that the relationship between σMU and the
MU depth is nonlinear (see Fig. 2.14).

For this purpose, we tried to propose some nonlinear relationship models to fit the
trend obtained by the optimization procedure (Fig. 2.14). As a first attempt, we proposed
to use a 2nd order polynomial equation specific to the MU description:

σMU (vMU , ρMU , ρm) = vMU

3 +
(
ρMU −

3ρm
5

)2
(2.52)

Where, σMU is the std used for eq (2.50), vMU (in mm.s−1) is the conduction velocity
of the macro electrical source, ρMU (in mm) the radial position of the isobarycenter
and ρm (in mm) the muscle layer radius. The formalism of this equation was obtained
heuristically after many trials. Nevertheless, this equation wasn’t able to consider the
major inter-variability existing within MU of the same type [116].

At the beginning, this equation gave good approximation of σMU when the MU prop-
agation velocity, the MU depth and the muscle radius were considered. However, when
we started to consider the effect of the parameters σMTZ

MU and NMU , equation (2.52) was
inadequate.

Therefore, considering the shape of the relationship (see Fig.2.14) obtained numerically
on 24 depth values of the MU, we decided to use the following Gaussian filter formalism
including the suspected parameters that interact in the relationship. After testing different
formalism by the evaluation of the obtained trends as in Fig. 2.14, we selected the
following equation:
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Figure 2.14: Example of σMU values according to MU type and MU depth computed by the
described optimization algorithm (optimal) and equation (2.53) (Gaussian). Grey boxes
define the MU physiological position according to its type (see Table 2.13). Areas in white
mean that the MU cannot be physiologically placed at this position for a Biceps Brachii
muscle. Even though, simulations were computed on all the possible radial position to
study the global trend.

σMU (vMU , ρMU , ρm, NMU , σMTZ) = vMU

8 e
−

4vMU(1− ρMU
ρm )2

9N2
MU + vMU

(
a+ b

σMTZ

)
(2.53)

Where, σMU is the computed std used for the filter in eq (2.50), vMU (in mm.s−1)
is the conduction velocity of the macro electrical source based on the fibers within the
MU (see 2.48), ρMU (in mm) is the radial position of the isobarycenter (see 2.47), ρm (in
mm) is the muscle layer radius, NMU is the number of fibers within the MU, a and b are
determined coefficient which are equals to 42.5

120 and 1
60 respectively. σMTZ (in mm) is the

MTZ dispersion used to define both MZT of the MU fibers.

This equation has been built by analyzing the effect of the 4 parameters: vMU , ρMU ,
NMU and σMU

MTZ by considering 3 values for each. Also, the relative position of the MU
NMJ has been analyzed but is not considered in this work since it does not seem to have
an effect on the temporal spectrum of the MUAP. This spectrum becomes asymmetric
but remains centered. Thus, the use of an asymmetric filter can improve the results. But,
defining this filter is too complex considering the MU variability. Nevertheless, results
presented in section 2.5.2 show satisfying approximation of the MUAP using the formalism
of eq (2.53).
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2.5.2 Results

Evaluation of the MU electrical source

First part of this section will present some simulations where we will evaluate the efficiency
of the methods proposed on single MUAP generation. Second part will present some
results computed on the outputs of the model (sEMG signals and statistics) with the two
source models presented in sections 2.2.3 and 2.5.1.

Single MUAP

In this part, all the generated anatomies have fixed parameters described in Table 2.9.
Concerning the MU and the fibers parameters, they followed the distributions proposed
in Table 2.5.

Table 2.9: Configuration of simulation

Parameter Value (unit)
Muscle length (L) 101.0 (mm)
Muscle radius (ρm) 45.0 (mm)
Bone radius (ρb) 15.0 (mm)

Adipous tissue thickness 2.0 (mm)
Skin thickness 1.0 (mm)

The gold standard simulations will be the simulations computed with the fiber elec-
trical source model as described in section 2.2.3. The MU electrical source model will
be evaluated by computing the NRMSE between the generated spatio-temporal MUAPs
according to both electrical source models. To assess the robustness of our MU electrical
source modeling, we randomly generated 20 MUs per type using the corresponding distri-
butions presented in Table 2.5. Then, corresponding MUAP is computed with the fiber
electrical source and the proposed MU electrical source with and without filtering oper-
ation. Results about the NRMSE are presented in Table 2.10. Time support is reduced
to the propagation time of the MUAP as well as the angular support which is reduced to
the angular propagation of the MUAP.

Table 2.10: Mean NRMSE between the generated MUAP

MU type Without filtering With filtering
S 4.29 ± 0.57 % 2.64 ± 0.26%
FR 3.66 ± 0.74% 2.42 ± 0.42%
FI 3.69 ± 0.63% 2.43 ± 0.45%
FF 2.77 ± 0.53% 1.87 ± 0.26%

As we can see in Table 2.10, all NRMSE values are below 5%. However, we can see
that mean and std of the NRMSE are lower for all the types of MU with the filtered MU
electrical source modeling than without.

On Fig. 2.15, we can see the electric activity, over the time, on one position of the
spatial electrical map (it illustrates the results in Table 2.10). The MUAP modeling with
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Figure 2.15: Electric time representation of a MU on one position of the spatial electrical
map according to the MU type. In red the signal computed with the fiber electrical source
model. In blue the signal computed with the filtered MU electrical source model. In green
the signal computed with the MU electrical source model without filtering.

a MU electrical source without applying a filter has a sharper NPC than with filtering
and should leads to non realistic sEMG signals. As explained before, this issue is due
to the synchrony of the extinction of the macro electrical source using the isobarycenter
and eq (2.49). One can observe on Fig. 2.15 that the simple averaging operation of
spatial and anatomical fiber parameters according to equations (2.47) and (2.48) gives
similar propagated component of the MUAP than the classical fiber modeling of the MU
electrical source. Moreover, we can see that the signal using a Gaussian filter with its std
defined as in eq (2.53) give good results in this simulation configuration. To conclude this
section, we can assess for the further simulations that the use of a centered Gaussian filter
with its std defined through the equation (2.53) seems to be pertinent to approximate the
MUAP with a macro electrical source paradigm.

Simulated HD-sEMG signals

To evaluate the proposed MU electrical source model on a large scale MU recruitment
scheme, we decided to simulate HD-sEMG signals over a 8×8 electrode grid and to com-
pute the NRMSE on the recorded signals, on the amplitude statistics (Average Rectified
Value, Root Mean Square value and High Order Statistics) and on the estimated Power
Spectral Density (PSD) of these simulated signals.

For this purpose, we simulated a potential map of five anatomies defined with 300
MUs (≈ 50000 fibers) at 30, 50 and 70% of the Maximal Voluntray Contraction (MVC)
during 4s of holding contraction. The five anatomies are generated with the same param-
eters, only the MUs positions and definitions changed among the anatomies. For model
comparison, simulation parameters and grid position are the same, only the electrical
source computation is different between the two simulations. The MU spatio-temporal
recruitment scheme is also the same for each simulated muscle anatomy and contraction
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level.
Errors are computed as the NRMSE computed between the signals recorded by the

same electrode with the two electrical source models as:

NRMSE (sf , sMU) =

√∑P

k=1(sf (k)−sMU (k))2

P

max (sf )−min (sf )
(2.54)

Where, sf and sMU are the signal recorded by the same electrode with the fiber source
and the MU macro electrical source model, respectively. P is the number of time samples
(here P = 4 × 4096). Then, NRMSE is also computed between the statistics computed
on the same signal with the two source models as:

NRMSEST (sf , sMU) =

√∑N

k=1(ST(sf (k),k)−ST (sMU (k),k))2

P

max (sf )−min (sf )
(2.55)

Where, ST is the corresponding computed statistics (ARV, RMS or HOS), ST (sf )
and ST (sMU) are the corresponding statistics computed on the same electrode with the
fiber and MU electrical source models, respectively. N is the number of electrode (here
N = 64). Finally, we computed the mean ± standard deviation of this NRMSE over the
HD-sEMG grid. Results are exhibited in Table 2.11.

Table 2.11: NRMSE computed on the signals between the fiber electrical source model
and the filtered MU electrical source model, the PSD and the statistics (mean ± std) over
the five anatomies at 30, 50 and 70% of the MVC

30% MVC 50% MVC 70% MVC
Signals 1.82 ± 0.29 % 1.68 ± 0.37% 1.75 ± 0.29%
ARV 7.14 ± 1.84 % 4.89 ± 2.00% 7.95 ± 2.68%
RMS 6.16 ± 2.37 % 3.59 ± 1.93% 6.99 ± 2.36%

Kurtosis 7.84 ± 1.98 % 5.55 ± 1.21% 7.50 ± 1.21%
Skewness 7.75 ± 2.77 % 6.24 ± 1.65% 9.08 ± 1.98%

PSD 1.01 ± 0.40 % 1.07 ± 0.49% 1.27 ± 0.56%

As we can see in Table 2.11, all the errors computed on the statistics are smaller
than 10%. However, this error is a magnitude error and slightly alters the estimated
dynamic according to contraction level increase. NRMSE is less than 1% if we computed
the NRMSE on the normalized amplitude descriptors as well as on the centered reduced
statistic descriptors. It is important to note that HD-sEMG simulated data are not
normalized to better estimate the effect of the MU macro electrical source modeling on
the HD-sEMG signal amplitude. Using a Gaussian filter will reduced the high frequency
and thus smooth the non propagating component. But it will also slightly reduce the
power of the overall signal giving less amplitude to the generated MUAPs. One can
also observe that the error is more important on statistics based on cumulative measure
as ARV, RMS and HOS leading to error increase. But, the statistic descriptor trends
according to muscle contraction level remain stable.

In addition to these statistics, Student T-test and Levene test [117] were performed
on the descriptors. Student T-test determining if the mean values of the statistics are
significantly different exhibits that there are significant differences between the mean
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values for each statistic (p∗ < 0.2). Levene test compares the equality of the variances from
the statistics. It shows no significant difference between the variance of these statistics
among the grid (p∗ > 0.8). However, we can deduce that upscaling the source just have a
scaling effect on the amplitude descriptors values since we reduce the power of the obtained
signals in a homogeneous manner. Compromises have to be found between the signal
amplitude descriptors and the Probability Density Function (PDF) shape descriptors. As
we can see on Fig. 2.16, the HD-sEMG signals generated don’t diverge in their shape
along time even if large number of MUs are recruited. We have less precision with the
macro electrical source but it is expected by significant reduction of the number of source.

Figure 2.16: sEMG signal observed on a time window (100 ms) and generated at 70%
MVC with the two electrical source models recorded on the same electrode.

Related computation time

To conclude the presentation of the results, we performed an analysis of the time compu-
tation over the large scale simulations. Three computation time are presented according
to the electrical source model used and the number of process.

Table 2.12: Computation time for the five anatomies (mean ± std) at 30, 50 and 70% of
the MVC for both electrical source models using serial and parallel configurations

30% MVC 50% MVC 70% MVC
Fiber sources (with 1 CPU) 38h43min ± 2h9min 63h4min ± 2h45min 88h21min ± 3h51min
Fiber sources (with 10 CPUs) 3h52min ± 13min 6h48min ± 17min 9h51min ± 23min
MU sources (with 1 CPU) 23min27s ± 44s 32min22 ± 57s 39min28s ± 1min7s

According to Table 2.12, computation time of the HD-sEMG signals at 30% MVC
using the electrical macro source model corresponds to 1% of the micro source computa-
tion time in series and to 11% of the micro source computation time in parallel with 10
threads. At 50% MVC the MU scale electrical source computation time falls to 0.8% of
the micro source model computation time in series and to 8% of the parallel computation
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time, respectively. Finally, at 70% MVC the MU scale electrical source model computa-
tion time represents 0.7% of the serial micro source computation time and to 7% of the
parallel computation time. One can observe that both computing time according to a
contraction level and computing time increase with contraction level increase are dramat-
ically reduced using the electrical macro source model.

2.5.3 Discussion

In this study, we proposed to model a MU specific electrical source based on the fibers
within the corresponding MU in order to significantly reduce the computation time of the
HD-sEMG generation models with a reduced alteration of the original MUAP computed
with the fiber electrical sources. The use of a MU specific macro electrical source formalism
is a novel approach compared to other studies [7, 107, 111] where the MUAP is modeled
as the sum of the corresponding FAP. In fact, modeling the muscle electrical activity at
the fiber scale is very lengthy. Here we used a cylindrical multilayered analytical model
of the limb [10] where the computation is optimized and parallelized. Even though the
model is optimized and computes a FAP in 4s, the simulation of the electrical activity
of a realistic muscle like the Biceps Brachii (around 240000 fibers [118]) lasts several
days. Such computation time does not allow us to perform studies like global sensitivity
analysis on the generated signals while varying all the parameters of the muscle or inverse
problems where thousands of simulations need to be achieved. However, these studies are
necessary for patient-specific modeling to help practitioners in diagnosis purposes or for
designing rehabilitation therapies.

From the observation that a MUAP is the sum of the FAPs generated by the fibers
innervated by the same motoneuron, we presented a method that estimates a MU specific
electrical source according to its fibers. First of all, the position of this macro electri-
cal source is considered at the isobarycenter position of the fiber positions within the
corresponding MU. According to the obtained results, this hypothesis seems appropriate
given the uniform position of the fibers within the MU. The isobarycenter position will be
placed where the fiber density is the highest in the MU area. Also, parameters describing
the MU specific electrical source are determined from the average of the parameters of the
fibers used to defined their fiber source. Since all the fibers within the MU are different
but of the same type and thus are only slightly different, considering the average of the
parameters as well as the isobarycenter seem suitable to define a MU electrical source.

The MUAP computed from this MU electrical source has almost similar amplitude
and shape compared to the MUAP computed from the fiber sources. However, a problem
arises at the extinction of the MU electrical source. In fact, a single source definition
corresponds to the synchronization during extinction of the FAPs at the same position and
time. It induces significant error on the NPC of the generated MUAP and also on the high
frequencies of its spectrum. Based on this observation, we proposed to multiply the MU
electrical source with a centered Gaussian filter which preserves the low frequencies of the
signal and reduces its high frequencies. The determination of the filter standard deviation
needed an identification process. We started to compute the best standard deviation σMU

of the filter according to the MU depth by minimizing the NRMSE computed between the
MUAP with the fiber electrical source and the MUAP with the macro electrical source (see
Fig (2.14)). This analysis has been performed considering three values of the MU electrical
source parameters that we suspected to have an influence on the MUAP spectrum. Some
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anatomical parameters such as the adipose and skin thicknesses or conductivity which have
an effect on the computed signals [45] are not considered here since their influences have
been considered in the conductor volume transfer function definition [10]. Considering
the relationship shape relating σMU with the MU depth, we proposed two nonlinear
equations (see eq (2.52) and (2.53)) defining σMU based on some parameters related to
the electrical source. These two equations have been built heuristically after many trials
and the observation of the relationship obtained by optimization procedure. According to
the shape of the optimal σMU (see Fig. 2.14), only very complex equation seems to be able
to perfectly describe the σMU variation based on the electrical parameters. Nonetheless,
the equation (2.53) gives good and robust approximation and can be improved in future
works. Suggesting such a robust and generic equation based on the electrical source model
parameters is a complex task. Furthermore, the constant coefficients used in the equation
(2.53) can be optimized using a numerical method to minimize the deviation with the
optimized σMU and thus, minimize the computed NRMSE. This study is beyond the
scope of this article which focuses on the proposition to model a MU specific electrical
source to significantly reduce the computation time of the electrical activity of a muscle
without altering the HD-sEMG signal information.

To assess the modeling of this MU specific source, several simulations have been per-
formed. We investigated the effectiveness of the filter by computing the NRMSE between
the MUAP generated by the fiber electrical sources and the MUAP generated from the
MU specific electrical source with and without filtering. We found that σMU defined by
a Gaussian probability density function better approximates the MUAP than defined by
a 2nd order polynomial. Moreover, some simulations investigated the effect of the MU
position according to its type and exhibited the significant influence of the radial position
of the MU on the error whereas angular position of the MU does not alter the estimation
error. Finally, we performed simulations with 300 MUs and an 8 × 8 HD-sEMG grid
at 30, 50 and 70% MVC. Thus, NRMSE were computed over the generated signals, the
corresponding PSD and the amplitude descriptors (ARV, RMS and HOS) computed on
these signals. All the NRMSE computed using the Gaussian filter and σMU from eq (2.53)
are lower than 10%. Moreover, using the MU specific electrical source radically reduces
the computation time of the electrical activity of the muscle. In fact, computation time
is reduced about 10 times compared to the computation using the fiber sources even with
parallel computing. However, studying single MUAP generation should continue to use
the fiber sources model in order to have more accurate results if needed. Computation
of the single MUAP with the fiber sources model lasts around 15 min and thus, is still
reachable. Finally, the proposed MU specific electrical model seems to be relevant in
designing large scale simulations (number of MUs and number of simulations) to fulfill
to a better physiological realism. It will open the door to global sensitivity analysis and
identification applications that are needed to design patient-specific neuromuscular model
and more effective signal processing tools.

2.5.4 Conclusion

In this study, we presented a MU specific electrical source based on the fibers composing
the MU which significantly speedup the computation of the HD-sEMG generation model.
Previously, a MUAP was computed as the sum of the FAP generated by its fibers. Due
to the high computation time induced by the large number of fibers within a single
muscle, we proposed to compute this MUAP using a single electrical source defined on
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the fibers arranging the corresponding MU. Thus, placement of this source is determined
as the isobarycenter of the fibers in the MU. Moreover, MU electrical source parameters
are defined as the mean of the fibers parameters. Some rough approximation induced
by the modeling of a single source such as the synchronization of the electrical source
extinction has been considered. In order to overcome this major issue, we proposed to
apply a MU specific Gaussian filter to the corresponding MUAP in the Fourier domain.
This filtering will reduce the temporal high frequencies in the MUAP spectrum related
to the NPC and preserve the energy in the low frequencies related to the propagating
component. Thus, the synchronized NPC is smoother but the signal amplitude will also
be slightly reduced. However, NRMSE computed between HD-sEMG simulations using
the two sources methods exhibited an approximation error less than 2% on the simulated
signals, a magnitude deviation on the amplitude and statistic descriptors less than 10%.
Then, considering the computed errors with the MU specific electrical source compared
to the significant time-saving on the computation time (at least 99% of time reduction
compared to the fiber sources computed using one CPU), we definitively believe that this
study will open new possibilities for the HD-sEMG generation model studies. Thanks
to this important speed-up in the HD-sEMG computation without altering the signal
information, future works can be finally initiated, thanks to the proposed model, to focus
on global sensitivity analysis of the HD-sEMG signal generation according to potentially
an important number of anatomical, instrumental and neural parameters. When the
inverse problem or global sensitivity analysis are considered, thousands of simulations
have to be performed to find a stable solution. Since we have overcome the complex
modeling of a MUAP from one source to significantly reduce the model computing time
by an upscaling procedure, such studies as presented above are reachable and open new
perspectives for the use of sEMG generation models to help practitioners for diagnosis
purposes.

2.6 Realistic motor unit placement in a cylindrical
HD-sEMG generation model

Several sEMG generation models have been developped in order to better understand
how the sEMG signal is generated in skeletal muscle [10]. Analytical models describe the
muscle in a simple way but allow us the access to electromyographic data corresponding
to several physiological contexts and specific motor control strategies that are complicated
to evaluate in experimental conditions. Thus, the investigation of the changes of sEMG
signal features according to physiological mechanisms and instrumentation parameters
are easier and faster with analytical models rather than numerical models [10, 45].

However, none of these models cited above have carefully evaluated the Motor Units
(MUs) position within the muscle (see section 1.5.2). The main hypothesis used is the
unconstrained uniform distribution of the MUs according to their types [119]. Implemen-
tation of this hypothesis has never been presented in details in previous models. Thus,
we can assume that some studies used random MUs placement without any other con-
straints. However, some models adopted a specific fiber density but did not mention how
they incorporated it with the MU structure [45, 51].

MU position within the muscle has a huge influence on the generated sEMG signals.
In fact, a realistic muscle simulation would insure a constant fiber density in the muscle.
If the muscle has a higher fiber density somewhere, it will directly impact the sEMG
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signals because of the accumulation of electrical sources in this area. Thus, it may induce
artifacts on the amplitude descriptors of the sEMG signals which can lead to inaccurate
interpretations of the studied phenomenon.

In this study, we attempt to assess the necessity to use a specific algorithm for the
positioning of the MUs. This was done by comparing the anatomies, the fiber density and
the Root-Mean-Square (RMS) values map computed over 64 monopolar electrodes using
two placement algorithms.

2.6.1 Unconstrained MU positionning
According to Fuglevand model [20], MU territories have circular cross-sectional profiles
and are randomly spread with uniform distribution within the muscular area according to
the MU type. To mimic the Biceps Brachii muscle, fast and large MUs are placed closer to
the muscle surface than slow and small MUs. MU fibers can be mixed with others within
the muscle. Moreover, possible MU area superposition is also considered in the model.
MU types have different properties. MU radial position follows the distribution described
in Table 2.13 without any other constraint. Each random number draw is produced by
the random function from the Python package NumPy.

Table 2.13: Radial MU position distribution according to MU type

MU type Radial MU position
Slow (S) ρb +

(
Ri + U (0, 1) .ρm3

)
Fast Resistant (FR) ρb + ρm

4 + U (0, 1) .
(
Ri + ρm

2

)
Fast Intermediate (FI) ρb + ρm

4 + U (0, 1) .
(
Ri + ρm

2

)
Fast Fatigable (FF) ρb + ρm

2 + U (0, 1) .
(
ρm
2 −Ri

)

where, ρb is the bone radius, Ri is the radius of the corresponding ith MU according to
its type, ρm is the muscle radius and U(0, 1) is an uniform distribution between 0 and 1.

As we can see on Fig. 2.17, even with a high number of MUs within the muscle there
is still some space where the fiber density is zero. Those holes in the fiber density will
induce some errors on the output signals. For this purpose, we proposed an algorithm
that can quickly place the MUs in order to avoid this major issue.

2.6.2 Best Candidate MU positionning
All the models cited in the introduction (see section 1.5.2) didn’t carefully evaluate the
MUs positions within the muscle. The main hypothesis used is the unconstrained uniform
distribution of the MUs position according to their types [119] presented above. Thus,
we can assume that some studies used random MUs placement without any other con-
straints. However, some models adopted a specific fiber density but did not mention how
they incorporated it with the MU structure [45, 51]. Recently, Navallas and al. [120]
proposed an identification algorithm allowing to control the MU fiber density distribu-
tions. This algorithm accurately mimics the muscle architecture. Yet, computation time
of this algorithm was not exhibited and then can last several hours to place hundreds of
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Figure 2.17: Anatomy composed of 300 MUs generated with unconstrained uniform dis-
tribution.

MUs. Moreover, this algorithm assumes the same fiber density within MUs that is an
oversimplification of the problem. Then, Robertson and al. [121] updated this algorithm
in order to consider the relationship between the fiber type and its radial position in the
muscle giving more accurate muscle architecture.

We decided to do not use this algorithm in this work since implementation as well
as the approach didn’t seem suited for the model. Nevertheless, we still considered this
major issue in the muscle anatomy definition. For this purpose, we propose an algorithm
based on the algorithm proposed by Mitchell [122] named Best Candidate (BC) algorithm.

Compared to the unconstrained random placement of the MUs, the BC algorithm
adds a constraint in order to maximize the minimal distance between MUs (see algorithm
1). Moreover as [121], we regionalized the MUs position within the muscle according to
their type (see Table 2.13) as suspected in physiological studies [123, 30].

Where, N is the number of MUs within the muscle, Np is the number of MUs already
placed (it starts at 0), (ρk, θk) is the position of the placed MUs and (ρi, θi) is the position
of the processes MUs.

This algorithm is applied for each non placed MU to ensure an optimal filling of the
muscle. Moreover, the MUs positioning order is random, to insure MUs types diversity
in each zone.

Compared to anatomy generated with the unconstrained algorithm (see Fig. 2.17),
the anatomy generated with the best candidate algorithm has less hole in the fiber density
according to the placement of the MUs (see Fig. 2.18). Assessment of the effectivness of
this result is provided in section 2.6.3.
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input : A muscle with its parameters
output: Positions of all MUs
for i← 1 to N do

dm = 2;
for j ← 1 to 100 do

d = zeros[Np];
Draw a position of the MU according to its type (ρi,j, θi,j) using Table 2.13;
for k ← 1 to Np do

d[k] =
√

(ρi,j. cos (θi,j)− ρk. cos (θk))2 − (ρi,j. sin (θi,j)− ρk. sin (θk))2;
end
dmin = min (d);
if dmin > dm then

(ρi, θi) = (ρi,j, θi,j);
dm = dmin;

end
end

end
Algorithm 1: Best Candidate algorithm

Figure 2.18: Anatomy composed of 300 MUs generated with constrained uniform distri-
bution.

2.6.3 Results
In order to compare the anatomies generated by both algorithms (see section 2.6.1), we
will use two indicators: the fiber density within the muscle and a classical amplitude
descriptor of the sEMG signals, namely the Root Mean Square value.

For this purpose, we simulate a contraction at 70% MVC for each generated anatomy
by both algorithms presented above. Parameters related to simulations are presented
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in Table 2.14. Both generated anatomies have the same MUs and fiber properties with
same discharge instants. Only the MUs and thus the fiber positions change between both
anatomies.

Table 2.14: Configuration of simulation

Parameter Value (unit)
Number of MUs & fibers 300 & 52313

MU distribution (S, FR, FI, FF) (0.33, 0.17, 0.17, 0.33) (%)
Muscle radius 41.0 (mm)

Adipose tissue thickness 1.5 (mm)
Skin thickness 1.2 (mm)
Electrode radius 1.0 (mm)

Electrode grid center (θ, z) (0, 26) (o,mm)

Fig. 2.19 shows the fiber density distribution in the muscle. By comparing the two
anatomies, we can clearly emphasize the necessity to use a realistic placement algorithm
at least for the MU position. On Fig. 2.19a, fiber density is (mean ± std ; [min;max]) 28
± 20 ; [0;110] fibers.mm−2 whereas fiber density with MBC algorithm is 28 ± 16 ; [0;75]
fibers.mm−2 (see Fig. 2.19b). Normally, fiber density should be approximately uniform
within the muscle [119]. With parameters from Table 2.14, muscle area defined by both
anatomies is 1853.056 mm2 with 52313 fibers. Thus, perfect fiber density should be equal
to 28 fibers per mm2 with a small standard deviation. Fiber density mean is the same for
both, but this is logical since there is the same number of fibers within the same muscle
area. However, as expected, the standard deviation of the MBC anatomy is significantly
lower than the random anatomy (-25%). Physiologically, this standard deviation should
be small in order to have a realistic distribution. Moreover, maximum number of fibers
in 1 mm2 is also lower with the MBC placement than the random placement (-32%).
This maximum should converge on the mean fiber density. However, compared to simple
unconstrained random positioning, fiber density is homogeneously distributed with MBC
algorithm.

For those two anatomies, 64 HD-sEMG signals have been generated at 70% MVC.
Fig. 2.20 represents the RMS values maps computed over 4s plateaus for both simulated
and experimental HD-sEMG signals. Both grid are aligned along the longitudinal axis z
with respect the with the muscle fiber orientation within the muscle. Axis θ represents
the angular orientation. Here again, it clearly underlines the necessity to use realistic
algorithm for the MU placement. In Fig. 2.20a, the computed experimental RMS value
map is obtained from the mean RMS value map of the Biceps Brachii from 5 healthy
subjects (age: 27.2±1.3 years; stature: 176.8±5.1 cm; mass: 73.8±7.3 kg) respecting the
declaration of Helsinki. All participants provided their written consent and did not relate
any history of muscular or neurophysiological problem at the upper limbs. We followed
the HD-sEMG recording procotol described in [6], electrode grid has been placed 1 cm
above the Biceps NMJ. Final observation on Fig. 2.20a is about the homogeneity of the
RMS value map. Experimental RMS value map (Fig. 2.20a) is homogeneously spread
on the electrodes with a slight increase on the electrodes next to the NMJ. In order to
compare the RMS value maps, they have been normalized by their maximum RMS value.
Mean normalized RMS value on all the electrodes is about 0.82±0.06. On the MBC RMS
value map (Fig. 2.20b), RMS value is also homogeneously dispersed on the electrodes
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(a) Fiber density using the unconstrained uniform
algorithm.

(b) Fiber density using the best candidate algo-
rithm.

Figure 2.19: Fiber density by both algorithms and fibers histograms in ρ and θ axis. Each
case is about 0.1681 mm2.

but with a decrease at the halfway between neuromuscular junction and myotendinous
junction. Mean normalized RMS value on all the electrodes is about 0.79±0.09. On
the uniform RMS value map (Fig. 2.20c), RMS value is heterogeneously distributed on
the electrodes. Mean normalized RMS value on all the electrodes is about 0.64±0.16. A
Student’s t-test has been performed between experimental and both simulated normalized
RMS amplitude value. We obtain p∗ = 4.0.10−12 and p∗ = 0.035 for experimental/random
and experimental/MBC couple, respectively. Thus, we observe more significant difference
with the random placement than with the MBC placement, according to experimental
data and visual observation on the RMS value maps.

(a) Experimental RMS values
map.

(b) RMS values with the best
candidate placement algorithm.

(c) RMS values map with
the unconstrained uniform al-
gorithm.

Figure 2.20: Normalized experimental and simulated RMS values map on the 64 electrodes
at 70% MVC.

To conclude, using the best candidate algorithm for the positioning of the MUs pro-
vides more realistic simulation of the muscle contraction. A particular focus needs to be
on the fibers and MUs placement in the muscle. We have shown that MU positioning
is crucial in HD-sEMG signal simulation. In fact, statistics computed from the sEMG
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signals are used in several cases: the force estimation [121, 57] or the decomposition of the
sEMG in order to identify the MUs recruitment pattern for the sources detection [124]. If
the signals are not generated respecting physiological realism, it can alter these statistics
and their interpretation.

2.6.4 Conclusion
The objective of this study was to assess the use of a realistic algorithm in sEMG mod-
elling for the position of the MUs within the muscle. According to the obtained results,
the trivial hypothesis to use an unconstrained random algorithm for the MU positioning
is not sufficient. In order to simulate realistic contraction of a muscle, several parame-
ters need to be tuned according to the muscle anatomy. However, most muscles have a
homogeneous fiber density [119]. A particular focus needs to be on the fibers and MUs
positioning in the muscle. We have shown that MU positioning is crucial in HD-sEMG
signal simulation. In fact, statistics computed from the sEMG signals are used in several
cases: the force estimation [125], the decomposition of the sEMG in order to identify
the MUs recruitment pattern for the sources detection [124], etc. If the signals are not
generated respecting physiological realism, it can alter these statistics and their interpre-
tation. For this purpose, we presented an automatic optimized algorithm for the MUs
position within a muscle providing more realistic muscle anatomy. It can be applied on
the fiber positions in order to have an almost homogeneous fiber density but will last
several hours. In future simulation studies, this algorithm should be used instead of the
random unconstrained positioning in the HD-sEMG signal generation process.

2.7 General conclusion
This part of the thesis work aims for proposing a bio-reliable model of the skeletal muscles
that can help researchers as well as practitioners. For this purpose, we developed a fast
model that can simulate accurate HD-sEMG signals generated from electrical propagation
inside a three layered cylindrical conductor volume. All the main stages of the muscle
electrical activity generation are considered, from the motoneuron pool model describing
the firing instants of the recruited MUs, the spatio-temporal electrical sources description
generated by the muscle fibers, to the filtering of these sources by the conductor volume.
Thanks to optimized and modular programming that relies on object-oriented language
(Python) and parallel computing, the proposed model is able to compute several realistic
muscle configurations within acceptable computing time.

In a first time, we developed a model where all the complex computation were per-
formed in the Fourier frequency domain. Moreover, compared to the literature of sEMG
signals generation, we proposed to disconnect the muscle electrical activity and the record-
ing system. This decoupling allows us to define an infinite number of electrode grid for
the same electrical activity without computing again this one.

Nevertheless, computation time of the model was too long when bio-reliable simulation
of muscle contraction was considered. This way, some model analysis such as global
sensitivity analysis or inverse problem aren’t reachable. This high computation time was
induced by the large number of fibers within the muscle leading to the computation of
hundreds of thousands electrical sources representing several hours of computation to
provide the simulation. For this purpose, we presented a MU specific electrical source
based on the fibers composing the MU which significantly speed-up the computation of
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the HD-sEMG generation model. In the literature [85, 7, 81, 107, 11, 6], the MUAP was
always computed as the sum of the SFAP generated by its fibers. Reducing the number
of electrical sources to a single one for each MUAP generation induced some alterations
on the original signals computed with fiber sources. For this purpose, we propose to
filter the frequency MUAP computed with the single source with a MU specific Gaussian
probability function. NRMSE computed between HD-sEMG simulations using the two
source models (fiber and MU) exhibited an approximation error less than 2% on the
simulated signals and a magnitude deviation on the statistic descriptors less than 10%.
Even with this deviation, we definitively believe that this study will open new perspectives
for the HD-sEMG signal generation model thanks to the important computation time
reduction (about 99% compared to fiber source model).

Finally, we proposed an automatic and realistic algorithm that place the MUs in order
to have a homogeneous fiber density. In fact, after several simulations we observed a
significant impact of the MUs placement within the muscle. In the literature [45, 51,
105], the MUs are placed according to an unconstrained uniform distribution. Using
this placement will induce non homogeneous fiber density within the muscle even if high
number of MUs is considered. The proposed algorithm doesn’t perfectly simulate a perfect
homogeneous fiber density, yet the fiber density estimation with this algorithm gives
correct results.

Future works, using this model, are envisaged for realistic simulation of the Biceps
Brachii electrical activity for deeper exploration of the relationship between recent sEMG
amplitude descriptors, extracted from HD-sEMG signals, and muscle activation (see
Chapter 4). In addition, data generated by the proposed model should be used as refer-
ence one, e.g. for faster solutions for solving related inverse problems as electrical source
localization. To conclude, we believe that the proposed fast, reliable and generic model
should help researchers to perform more realistic multichannel sEMG simulations with
large configuration possibilities using a workstation at a reasonable time and financial
cost.
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3.1 Introduction

From the middle of the 19th century until now, researchers attempted to better understand
how the motion of the human body is generated. They found that the movement is the
result of several interactions between complex mechanisms in the body [126]. At the
macroscopic scale, the muscle contraction is in charge of the movement through the joints.
In fact, during contraction the muscle length shortens and thus will stretch the connected
tendons to provide the movement of bones around a specific joint.

Thus, several studies have been focused on the understanding of the activation [127,
128, 129] and the mechanical phenomena of the muscle contraction [8, 12]. Due to the
complex feasibility to study the human muscles in vivo, the muscle needs to be described
through mathematical model. These models can help us to get a better understanding of
the motor control and the different mechanisms of the muscle contraction. Moreover, by
controlling all the parameters of the model, users can investigate precisely the impacts
of the phenomena on the outputs of the model to simulate physiological or pathological
conditions.

Modeling of the muscle contraction has been widely developed and used [8, 12, 27,
96, 9]. These models can be separated by the scale and the approach considered. The
phenomenological macroscopic models are governed by Hill-Maxwell or Hill-Voigt models,
inherited from the Hill model [8], which is generally credited as the first model describ-
ing the muscle contraction. The Hill models describe a muscle as an active contractile
component with series and parallel passive elastic components. Furthermore, the au-
thor considered the muscle as a visco-elastic material and thus, described the well-known
force/length relationship of the muscle. Yet, this systemic macroscopic model is often
described as a "black-box" driven by fitted non-physiological parameters. Some models
integrate after the pennation angle of the muscle with the tendon [27] and macroscopic
features of the muscle. Beside these models, some biochemical microscopic models were
developed. The most widely used is the model proposed by Huxley [12] who consid-
ered the muscle at the sarcomere scale. The authors proposed an interpretation of the
cross-bridges dynamic through mathematical equations and attempted to determine the
muscle force from the rates of attachment and detachment of these cross-bridges. From
these two classes of muscle models, Zahalak proposed a model that bridges the microscopic
and macroscopic models [96]. From the cross-bridges model, the author computed the
muscle force through mathematical approximation with the distribution-moment tech-
nique [96, 9]. Finally, twitch type model introduced by Coggshall and al. [64] are also
used where the authors only described the muscle force as the sum of the convolution
operation between the firing times of the Motor Units (MUs) and a function defining the
MU twitch. This type of model doesn’t consider the induced muscle deformation or the
underlying processes arising between the recruitment and the force generation.

All these models provided some information about the muscle contraction and brought
crucial knowledge about the muscle rehabilitation and control. However, models other
than twitch models have an issue about the muscle activation. Hill-type models use an
identified parameter input enclosed in [0; 1] interval representing the activation percentage
of the muscle. This parameter has no physiological meaning and is hard to experimen-
tally estimate. Other models attempted to give a sense to this activation parameter
through the Functional Electrical Stimulation (FES) [9, 129, 130] where this parameter
represented the percentage of muscle fiber recruited during stimulation. Yet, the recruit-
ment pattern induced by FES does not follow voluntary contraction [130]. It reverses
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the natural sequence, larger MUs are recruited the first and smaller the last. Also the
FES synchronizes the firing times of all recruited MUs whereas the voluntary recruitment
pattern is asynchronous. Riener et al [130] attempted to keep the muscle representation
at the MU scale. The authors tried to describe the muscle force from the summation of
all active MUs. They described the depolarization of the T-Tubule membrane dynamics
induced by the neural activation as well as the calcium release from the sarcoplasmic retic-
ulum in order to compute the MUs twitch. This model was the first twitch type model
describing physiological processes. Another type of model combining the microscopic sar-
comere model of Huxley [12] with the distribution moment theory of Zahalak [96] defined
a macroscopic muscle model [9] based on the sarcomere model formalism and avoided the
costly computation time model at the sarcomere scale. From the description of the mus-
cle with one contractile element, only one type of fiber can constitute the muscle model.
Moreover, the authors also proposed a visco-elastic model describing the muscle-tendon
contraction during isometric contraction. This model was validated on both animal and
human subjects [9, 129].

Considering the major increment brought by the model proposed in [9], we propose in
this study a mechanical model of the muscle based on the previous work of El Makssoud
et al. [9]. Instead of using the FES input for muscle contraction, we will use a voluntary
recruitment pattern defined in [20] as input. Compared to the original model, the muscle
will be represented at the MU scale while it was depicted at the muscle scale. Firstly, we
will detail the different models used for the simulation (see sections 3.3 and 3.4). Then,
some results showing the efficiency of our model will be presented and discussed (see
section 3.5). Finally, we will conclude on the main contribution of this study and on the
possible perspectives.

3.2 Model overview
As introduced, the main purpose of this study is to propose a mechanical multiscale
modeling of the skeletal muscle driven by a voluntary command. This model would be
an improvment of the model presented above [8, 12, 96, 130, 9]. The underlying purpose
is also to provide a bio-reliable model which is based on physiological parameters to get
significant results. In fact, each MU will be modeled by one specific contractile element
placed in parallel to model the whole muscle. Thus, the proposed muscle model is divided
into two parts as presented in Fig. 3.1:

• first part represents the activation model of the muscle and gives a physiologic
meaning of the input of the mechanical model;

• second part is the muscle mechanical model at the MU scale based on the distributed
moment technique inspired from [9].

First challenge of this model was to provide an activation model based on the firing
times of the MUs.

3.3 Activation model
Previously, the mechanical model input was the percentage of recruited muscle fibers de-
termined with FES [9]. This input description can’t be applied for voluntary contractions
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Figure 3.1: Model block diagram. On the left there is the input of the model corresponding
to the recruitment pattern describing the discharge instant of the recruited MUs. On the
right the mechanical model scheme, determining the contribution of each MUs then,
processes at the muscle scale in order to determine the muscle force (Fc), the muscle
stiffness (kc) and its deformation (εc).

and thus, restricts the use of this model type. Purpose of this study is to simulate accurate
contractile behaviors of the muscle governed by a MU voluntary or elicited recruitment
pattern. We based our model development on physiological processes arising during the
contraction [130]. Firstly, it is well known that skeletal muscles are composed of four
types of fiber and thus, of MU:
• Slow or type I MUs (SMUs) that provide low force with a slow contraction speed

and has a high resistance to fatigue;

• Fast Resistant or type IIa MUs (FRMUs) that provide intermediate force, with fast
contraction speed and are resistant to fatigue;

• Fast Intermediate or type IIx MUs (FIMUs) that provide intermediate force (more
than FRMU), with fast contraction speed and are less resistant to fatigue than
FRMU;

• Fast Fatigable or type IIb MUs (FFMUs) that provide high force, with very fast
contraction speed but are quickly fatigued.

Each MU type will have its own set of parameters for both activation and mechanical
characteristics corresponding to their different properties. As in [12, 130, 9], we considered
that the fiber contraction is dependent of the calcium ion (Ca2+) concentration presents
in the cytoplasm. From this hypothesis, MUs can be in one of these three states during
the muscle contraction: in contraction, in relaxation or relaxed. When a MU is recruited,
it will contract during a determined time, according to the Ca2+ concentration. If it does
not receive a new impulse during the contraction time, the MU starts to be in relaxation
according to the Ca2+ uptake time. Finally, if it still doesn’t receive a new impulse it
goes in relaxed state when its Ca2+ concentration reaches the concentration at rest. Thus,
these states will be defined according to the intracellular Ca2+ concentration.

3.3.1 MU recruitment

Voluntary recruitment

During contraction, MUs are recruited independently of others and in agreement with the
size principle [131]. Each MU is activated at a specific threshold depicted in the Fuglevand
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model [20]. However, Kukulka and Clamann [68] have provided evidence that the distri-
bution of recruitment threshold for larger proximal muscles, such as the Biceps Brachii,
is less skewed compared with the exponential distribution of others muscle. Therefore,
we decided to use the following equation from [41]:

RTEi =
(
a.i

N

)
ei
ln(RRa )

N

where, RTEi is the recruitment threshold for the ith MU, N is the total number of
MU and a = 40 is a constant value describing the slope of the recruitment threshold
function [41]. It is also tuned by the recruitment range (RR = 88% [68]) which describes
the percentage when all MUs are recruited in the muscle.

Each MU recruitment is regulated by a motoneuron firing rate (Fri) which increases
linearly or non linealy with force level, from its minimal firing rate (Frmin) to its peak
firing rate (PFRi). In this model, for each MU, PFRi is taken inversely proportional to
the recruitment threshold for the linear increase of firing rate. This model was previously
developed in section 2.2.2 and more details can be found in it.

Figure 3.2: Example of simulated voluntary MU recruitment at 30% of the Maximum
Voluntary Contraction (MVC) for a muscle composed of 100 MUs with the following
MUs distribution type: 33% type I, 33% type IIa, 17% type IIx and 17% type IIb.

Elicited recruitment

In addition to the voluntary recruitment, an elicited recruitment of the MUs simulating
a Neural Electrical Stimulation (NES) is also developed in this model. In fact, this type
of recruitment is often used in mechanical muscle study to exactly quantify the muscle
activation parameter [130, 9]. During a NES, the MUs are recruited synchronously in
respect with the diameter size of their motoneuron and the area of electrical spread.
Larger motoneurons, representing larger MU radius, are hired first in a descending order
[132]. Number of recruited MUs mostly depends on the current intensity and on the pulse
width of the NES [127]. The number of contracting MUs is bigger with a higher intensity
and a longer pulse width. For this purpose, we have used the same equation as in [129]
that describes a recruitment, corresponding to the recruited percentage of the muscle,
(noted α) according to the pulse width.
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α(pw) = c1

1 + ec2(c3−
pw

pwmax
) (3.1)

with pwmax is the maximal pulse width depending on the stimulator. c1, c2 and c3
are parameters that represent the plateau level, maximum slope and inflection point,
respectively. This description ensures a monotonic increase of eq (3.1) assuring function
α increase according to the input pulse width pw. Moreover, this equation can be adapted
considering the current intensity. Function α is no longer a function of the pulse width
but of the current intensity giving:

α(i) = c1

1 + ec2(c3−
i

imax
) (3.2)

where, imax is the maximal current intensity depending on the stimulator.
Then, from the recruitment α representing the percentage of recruited fibers in the

muscle, we generated the corresponding elicited recruitment pattern (see Fig. 3.3). Since
we know the total number of fibers in the muscle and the number of fibers per MU from
the anatomy generated by [10], we can create the corresponding recruitment pattern of
the NES.

Figure 3.3: Example of elicited recruitment where 32.4% of the muscle fibers are recruited
for the same muscle as in Fig. 3.2.

3.3.2 Modeling the calcium dynamic of the fiber

Radioactive function description

When a neural Action Potential (AP) reaches the fibers of a MU, the sarcoplasmic retic-
ulum (SR) releases Ca2+ into the myoplasm [133]. When this concentration exceeds a
specific threshold, the fibers within the MU begin to contract. The contraction remains
until this concentration decreases below the threshold. Detailed models of the calcium
concentration dynamic are presented in [134, 135, 130, 136]. However, we decided to use
the definition of the SR Ca2+ release in response to an AP from [136] adapted to the MU
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type.

ui(t) =


Ur,i if t < τD

Ri.

(
1− e−

(
t−τD
τ1,i

))5

.e
−
(
t−τD
τ2,i

)
if t ≥ τD

(3.3)

Where i represents the type of the MU, Ur,i is the Ca2+ concentration at rest for the
MU of type i, τD is the time delay response to the Ca2+ release which is the same for all
type of MU, Ri is an amplitude parameter to be in agreement with the calcium amplitude
according to the type of the MU and τ1,i and τ2,i are specific parameters according to the
MU type and representing the rise and the descent of the Ca2+ dynamic, respectively.
This calcium dynamic is depicted in Fig 3.4.

Figure 3.4: Calcium dynamic of MU according to its type. The neural AP reaches the
MUs at 0.5s.

The contraction-relaxation cycle is formed to follow two phases: every time an AP
reaches a MU, a contraction begins with a time delay of τD for taking into account the
propagation time of the AP and the average time delay due to the calcium dynamic.
After this delay, a contraction phase takes place and Ca2+ concentration ups above the
calcium threshold (Uc,i) during a few moment according to the MU type. After this, if
no other AP has been received in the mean time, an active relaxation follows until the
rest Ca2+ concentration Ur,i. The calcium release is fast enough in skeletal muscle to be
considered quasi-instantaneous (see Fig. 3.4). This dynamics will be determined using the
convolution operator between the firing times of the corresponding MU and the calcium
function.

3.3.3 MU activation
During muscle contraction, the MU can be in one of these three states: activated (αi(t)),
in relaxation (βi(t)) and relaxed (γi(t)). This activation can be determined from the
calcium dynamics of the MU defined above (see section 3.3.2). From this definition, we
proposed these activation equations describing MU state in time:

αi(t) =
{

1 if u(t) ≥ Uc,i
0 otherwise (3.4)
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βi(t) =
{

1 if Ur,i < u(t) < Uc,i
0 otherwise (3.5)

γi(t) =
{

1 if u(t) = Ur,i
0 otherwise (3.6)

By weighting the MU activation with its number of fibers divided by the total number
of fibers within the muscle, we can obtain the percentage of the muscle that is contracted,
in relaxation and relaxed during time as we can see on Fig. 3.5.

Figure 3.5: Muscle activation states α, β and γ according to a voluntary contraction at
50% MVC.

3.4 Mechanical model of the muscle during isometric
contraction

Previously, the muscle mechanical model was developed only at the muscle scale. Here, we
attempt to provide a mechanical model at the MU scale. Unlike models in [8, 27, 96, 9], the
muscle is modeled by N contractile elements with the same length Lc placed in parallel.
Each contractile element will describe mechanical dynamics of one MU.

This model presented on Fig. 3.6 is composed of macroscopic passive elements inter-
acting with N contractile elements Ei

c that contract independently and with its own local
activation described in section 3.3.3. We assume the left and right tendons having the
same properties. To stay close to the structure proposed by Hill, the springs are assumed
to be linear (ks1 N.m−1). Ls10 is the length of the springs at rest condition, when no force
is generated and Ls1 is the springs length at any time. L is the length of the parallel spring
and Lc0 is defined as the length at which the muscle produces the maximum isometric
force. From this model we have:{

mẍ1 = Fc + ks1(X1 − x1) + λ ˙(X1 − x1)
mẍ2 = −Fc + ks1 (X2 − x2)− λ ˙(X2 − x2)

(3.7)
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Figure 3.6: Mechanical rheological model of the muscle, including masses and dampers
derived from [9] with N parallel contractile elements representing the MU.

Substracting these two dynamics leads to:

m (ẍ2 − ẍ1) = −2Fc + ks1 (X2 − x2 −X1 + x1) + λ (ẋ1 − ẋ2) (3.8)

Knowing that : (x2 − x1) = Lc and (X2 −X1) = L0
c , the rest length of the muscle, we

obtain:

mL̈c = −2Fc + ks1
(
L0
c − Lc

)
− λL̇c (3.9)

with εc = Lc − Lc0
Lc0

⇒ Lc = εcLc0 + Lc0.
Equation (3.9) becomes:

mLc0ε̈c = −2Fc − ks1
(
L0
c − εcLc0 − Lc0

)
− λε̇cLc0 (3.10)

⇒ ε̈c = − 2Fc
mLc0

− ks1
m
εc −

λ

m
ε̇c −

ks1
m

+ ks1L
0
c

mLc0
(3.11)

Moreover, by definition we have: L0
c = ε0

cLc0 + Lc0. Where εc, defined above, rep-
resents the relative deformation of the muscle compared to Lc0. Thus equation (3.11)
becomes:

⇒ ε̈c = − 2Fc
mLc0

− ks1
m
εc −

λ

m
ε̇c −

ks1
m

+ ks1 (ε0
cLc0 + Lc0)
mLc0

(3.12)

Finally,
⇒ ε̈c = − 2Fc

mLc0
− ks1

m
εc −

λ

m
ε̇c + ks1

m
ε0
c (3.13)

Then, from (3.8), we also have:

2Fc = −mLc0ε̈c + ks1
(
L0
c − Lc

)
− λL̇c (3.14)

Knowing that in isometric contraction we have: Lc + 2Ls1 = L = L0
c + 2Ls10 and

Lc0εc + 2Ls10εs1 − 2Ls10ε
0
s1 = 0. With ε0

s1 = L0
s1−Ls10
Ls10

is the relative deformation of the
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tendon between its length at rest (Ls10) and its optimal length (L0
s1), equation (3.14)

becomes:

2Fc = 2mLs10ε̈s1 + 2ks1 (Ls1 − Ls10) + 2λL̇s1 (3.15)

⇒ Fc = mLs10ε̈s1 + ks1Ls10εs1 + λLs10 ˙εs1 (3.16)

Moreover, the force Fe of the visco-elastic component representing the tendon is the
sum of the spring force Fs and the damper force Fd. Thus, Fe = Fs + Fd = ks1Ls10εs1 +
λLs10ε̇s1. When the ratio of Fc and Fe is considered using Laplace transform, we have:

L [Fc]
L [Fe]

= ms2Υ(s) + λsΥ(s) + ks1Υ(s)
λsΥ(s) + ks1Υ(s)

With Υ(s) is the Laplace transform of Ls10εs1(t). Thus, we can write:

λsL [Fc] + ks1L [Fc] = ms2L [Fe] + λsL [Fe] + ks1L [Fe] (3.17)

Giving, after inverse Laplace transform use, the following differential equation:

mF̈e + λḞe + ks1Fe = λḞc + ks1Fc (3.18)

⇒ F̈e = − λ
m
Ḟe −

ks1
m
Fe + λ

m
Ḟc + ks1

m
Fc (3.19)

Finally, we have this system at the muscle scale:

ε̈c = ks1

m
ε0
c − 2Fc

mLc0
− ks1

m
εc − λ

m
ε̇c

F̈e = − λ
m
Ḟe − ks1

m
Fe + λ

m
Ḟc + ks1

m
Fc

(3.20)

An equation system is also needed for each contractile element representing a MU.
According to [9], we have, for each contractile element, the dynamic of its stiffness kc,i
and its force Fc,i:

{
k̇c,i(t) = − (ui(t) + a|ε̇c(t)|) kc,i(t) + αi(t)kmax,i(t)Πc,i(t)Uc,i
Ḟc,i(t) = − (ui(t) + a|ε̇c(t)|)Fc,i(t) + αi(t)Fmax,i(t)Πc,i(t)Uc,i + ω (Fc,i(t)) kc(t)Lc0ε̇c(t)

(3.21)

With, Fc =
N∑
i=0

Fc,i and kc =
N∑
i=0

kc,i the muscle force and stiffness, respectively. ui

is the calcium dynamic described in section 3.3.2, a is a parameter describing the veloc-
ity contribution between the actin and myosin filaments, αi is the activation described
in section 3.3.3, kmax,i and Fmax,i are the maximum stiffness and force produced by the
ith MU. Uc,i is the calcium concentration threshold of the ith MU determining when the
contraction occurs. Moreover, Πc,i is a function following the normalized calcium dy-
namic according to the MU type (see eq 3.3). Assuming that all the fibers have the
same mechanical contribution, kmax,i(t) and Fmax,i(t) are determined as a percentage of
the maximal stiffness (kmax) and force (Fmax) produced by the muscle according to the
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number of innervated fiber in the MU. Moreover, kmax,i(t) and Fmax,i(t) are function of
the deformation εc described as follow:{

Fmax,i(t) = Fmax,ifl (εc)
kmax,i(t) = kmax,ifl (εc)

(3.22)

with fl (εc) = e
−ε2c
b , where b is a scale parameter. Finally, ω (Fc) (in equation (3.21)) is

defined as follows:

ω (Fc) =
{

1 if Fc > 0.0001
0 otherwise (3.23)

This window function is used in order to prevent the passive force generated by the
non recruited MUs that shouldn’t produce active force. Details of the calculus to obtain
the system (3.21) can be obtained from [9].

3.5 Results
In all the results present below, some parameters were set. These parameters are presented
in the table below.

Table 3.1: Fixed parameters

Parameter Value (unit)
Sampling frequency (fs) 4096 (Hz)
Time delay response (τD) 5 (ms)

SMU Ca2+ concentration at rest (Ur,S) 5 (µmol.L−1)
SMU Ca2+ concentration activated threshold (Uc,S) 10 (µmol.L−1)

FRMU Ca2+ concentration at rest (Ur,FR) 5 (µmol.L−1)
FRMU Ca2+ concentration activated threshold (Uc,FR) 11 (µmol.L−1)

FIMU Ca2+ concentration at rest (Ur,FI) 7 (µmol.L−1)
FIMU Ca2+ concentration activated threshold (Uc,F I) 14 (µmol.L−1)

FFMU Ca2+ concentration at rest (Ur,FF ) 8 (µmol.L−1)
FFMU Ca2+ concentration activated threshold (Uc,FF ) 15 (µmol.L−1)

SMU rise slope (τ1,S) 4 (ms)
SMU descent slope (τ2,S) 20 (ms)

SMU amplitude calcium dynamics (RS) 16
FRMU rise slope (τ1,FR) 3 (ms)

FRMU descent slope (τ2,FR) 17 (ms)
FRMU amplitude calcium dynamics (RS) 16

FIMU rise slope (τ1,F I) 1.3 (ms)
FIMU descent slope (τ2,F I) 13 (ms)

FIMU amplitude calcium dynamics (RS) 14.5
FFMU rise slope (τ1,FF ) 1 (ms)

FFMU descent slope (τ2,FF ) 8 (ms)
FFMU amplitude calcium dynamics (RS) 20.0
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3.5.1 Fusion frequency study
In this subsection, we will present some results concerning the fusion frequency needed
to simulate the twitch fusion according to the MU type. For this purpose, we simulated
two muscles composed of 500 MUs using the following distributions of MU type: 33%
SMU, 17% FRMU, 17% FIMU and 33% FFMU for the first muscle (M1) and 33% SMU,
33% FRMU, 17% FIMU and 17% FFMU for the second muscle (M2). This difference
between these two muscles is the number of what is considered as slow (or fast) MU. In
M1 there are 250 MUs that are considered slow (S and FR MUs) whereas 330 are defined
in M2. Concerning the recruitment, it was defined using the description in section 3.3.1
and equation (3.1). Parameters of this equation was set in order to recruit all the MUs
at each stimulation (see Table 3.2).

Different frequencies of stimulation were used in this study, according to [99, 137],
the frequency fusion of MU mechanical response to a stimulus is correlated to its type.
Thus, we proposed to simulate for the same muscle and parameters of the model, 5
different fusion frequencies, 5, 20, 50, 100 and 120 Hz. Moreover, the complete simulation
parameters set is presented in Tables 3.1 and 3.2.

Table 3.2: Parameters used for the fusion frequency

Parameter Value (unit)
Maximal intensity (imax) 3.15 (mA)

Intensity (i) 3.15 (mA)
Ellicited recruitment parameters (c1, c2, c3) 1.15, 8.12, 0.75

Optimal muscle length (Lc0) 9.18 (cm)
Rest muscle length (L0

c) 10.0 (cm)
Velocity contribution (a) 1.0
Force-length parameter (b) 0.54

Tendon viscosity (λ) 19.0 (kg.s−1)
Muscle weight (m) 0.5 (kg)

Maximal force (Fmax) 300 (N)
Maximal stiffness (kmax) 100 N.mm−1

Tendon stiffness (ks1) 120 N.mm−1

The fusion frequency comparison can be made on different mechanical behavior of the
muscle (force, stiffness or deformation). In this section, we decided to compare the force
generation according to the stimulation frequency.

On Fig. 3.7, we can observe an increase of the generated force according to the
stimulation frequency increase. Yet, one can see a lower generated force at 120 Hz than
at 100 Hz. Moreover, we also observe the force fusion increasing with the frequency from
the amplitude reduction between impulses. Thus, the optimal fusion frequency for this
muscle is around 100 Hz.

As on Fig. 3.7, we can observe on Fig. 3.8 the relationship between the generated
force and the stimulation frequency. Yet, we observe lower generated force withM2 muscle
than M1 at 100 and 120 Hz. In fact, M2 that has more slow MUs generates less force
than M1 that has more fast MUs. This difference could be explained by the MU type
repartition, knowing that SMUs generate less force than FFMUs. Yet, at 50 Hz the M2
generates more force than M1. Thus, we can suppose that the optimal fusion frequency
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Figure 3.7: Fusion frequency evaluation for M1.

Figure 3.8: Fusion frequency evaluation for M2.

for this muscle is around 50 Hz. Finally, at 5 and 20 Hz only partial fusion arises and
gives the same results for both muscles.

This decrease in force generation while the stimulation frequency increases, can be
explained from the twitch shape of the MUs. Determination of the optimal frequency
stimulation can be computed from the related time of the corresponding MU twitch as
in [138]. In those simulations, the stimulation frequency at 120 Hz is too high and will
induce a diminution of the force generation compared to a stimulation at 100 Hz. These
simulation results are in agreement with previous experimental studies [137] that observed
an optimal frequency stimulation.

3.5.2 Motor unit scale
Considering the model description, we have access to the mechanical contribution devel-
oped by each MU. Thus, deeper investigation about the muscle mechanical behavior is
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feasible. In this section, we propose to dissect these muscles at the MU scale in order to
give some insights about the underlying mechanical phenomena.

Figure 3.9: MU force response to the stimulation frequency according to its type.

On Fig. 3.9, the generated force according to the stimulation frequency and the MU
type is presented. As one can see on this figure, the SMUs generate more force at 50
Hz than at 100 and 120 Hz. Considering the slow contraction of such MUs, the tetanus
contraction is obtained around 50 Hz. Same effect can be observed on the FRMU type,
yet its optimal stimulation frequency is higher than the one for SMU. On the other hand,
FIMU and FFMU have also this effect but with even a higher fusion frequency than SMU
and FRMU. In this model, the optimal stimulation frequency is highly correlated to the
calcium dynamic presented in 3.3.2.

3.5.3 Comparison with the twitch model
In this section, we will compare the force generated from a classical twitch model [99]
using the same anatomy and stimulation frequency as before (see Figs. 3.10 and 3.11).
In [99], the twitch is function of 6 parameters identified from experimental study.

F (t) = ptme−kt (3.24)

with, p = Fmaxe
−kTc(ln(Tc)−1), m = kTc and k = ln(2)

−Tcln
(
Thr
Tc

)
+ Thr − Tc

. Tc represents

the contraction time, the time from the start of MU force generation to the time where
MU reaches its peak value Fmax. Thr describes the half time relaxation corresponding to
the time from the start of MU force generation to the time where MU force decreases to
half of its peak. Moreover, a time delay Tlead representing the electro-mechanical delay is
given to delay the response. Value of the parameters governing this model is presented in
Table 3.3.
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Table 3.3: Parameters used for the twitch model

MU type Tlead (ms) Tc (ms) Thr (ms) Fmax (N)
S 70 80 200 0.0382
FR 60 70 175 0.0764
FI 30 40 100 0.191
FF 20 30 60 0.328

From this definition, the muscle force is computed as:

Fm =
N∑
i=1

Fi(t) ∗
M∑
j=0

tk (3.25)

where Fm is the muscle force, Fi is the twitch definition (see eq 3.24) of the ith MU,
N is the number of MU, tk is the kth discharge time of the MU and M is the number of
discharge.

Figure 3.10: Fusion frequency for M2 with twitch model.

On Fig. 3.10, we can see a continuous increasing of the generated force while increasing
the stimulation frequency. Compared to Fig. 3.8, where we observe an optimal frequency,
the twitch model cannot describe this optimal frequency in this range of stimulation
frequency. No saturation of the tetanus can be visible with the twitch model. In fact, in
the twitch model, the muscle force is computed from the sum of the convolution between
the firing times of the MU and their corresponding twitch. Because of this convolution
operator and the definition of the firing times of the MUs (Dirac impulse), it doesn’t exist
a limit if M → ∞. Thus, increase the stimulation frequency will defined ∞ number of
firing times.

At the MU scale, same trend is observed on the generated force, which continuously in-
creasing with the stimulation frequency whatever the MU type (see Fig. 3.11). Compared
to Fig. 3.9, the FRMU generates more force than FF or FIMUs that isn’t in agreement
with the literature since the FFMUs are the MU that produce the highest force. Thus,
we can assess that the twitch model cannot transcribe an optimal stimulation frequency
and has no meaning when high stimulation frequency (>100 Hz) are considered.
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Figure 3.11: MU force response to the stimulation frequency according to its type using
the twitch model.

3.5.4 Model validation
Experimental data used in this study come from the study [129]. Particularly, these data
were used to identify the parameters of a multiscale musculo-skeletal model controlled by
electrical stimulation. Details about the experimental setup and the identification process
can be found in [129]. In this study, we used one force profile from isometric measurements
recorded from the subject implanted with an electrical stimulation device [139]. During
the stimulation, the knee joint was fixed at the position at which the torque was maximum.
The quadriceps muscle was stimulated with 8 stimulation trains (duration 1.5s), separated
by a 2s rest time. The neural stimulation was performed using an implanted FES system
[140]. The stimulation frequency was set at 20Hz for the subject. Pulse widths were
fixed during the stimulation, but the intensity increased between trains from 0.4mA to
maximum imax = 3.15mA with a constant step.

Simulation of a quadriceps bulk

Aim of this section is to validate the presented model according to experimental recording.
For this purpose, simulation parameters concerning the simulation are presented in Tables
3.1 and 3.4. Some of these parameters were extracted from [129] while others were defined
based on the literature [141, 142, 143, 30].

Considering that the stimulated muscle is the quadriceps, we decided in a first step
to simulate a quadriceps bulk regrouping the four muscles composing the quadriceps as
in [129]. For this purpose, we defined a muscle composed of 3250 MUs with the following
distribution 40% SMU, 13% FRMU, 16% FIMU and 31% FFMU. This distribution is
determined as a weighted average according to each muscle composition based on [30, 145]
and number of MU. Here, we assumed that rectus femoris (RF) muscle is composed of
750 MUs with an innervation ratio ' 750. This innervation ratio represents the average
number of fiber innervated by the MUs. Thus, FF and FI MUs innervate more than 750
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Table 3.4: Parameters used for the fusion frequency

Parameter Value (unit)
Maximal intensity (imax) 3.15 (mA) [129]

Intensities (i) 0.4, 0.8, 1.2, 1.6, 2.0, 2.4, 2.8, 3.15 (mA) [129]
Ellicited recruitment parameters (c1, c2, c3) 1.15, 8.12, 0.75 [129]

Optimal muscle length (Lc0) 9.18 (cm) [129]
Rest muscle length (L0

c) 10.5 (cm)
Velocity contribution (a) 1.0 [129]
Force-length parameter (b) 0.54 [129]

Tendon viscosity (λ) 19 (kg.s−1) [9]
Muscle weight (m) 1.6 (kg) [142]

Maximal force (Fmax) 1000 (N)
Maximal stiffness (kmax) 10000 (N.m−1) [144]
Tendon stiffness (ks1) 40000 (N.m−1) [144]

fibers and FR and S MUs less. The vastus intermedius (VI) has 500 MUs innervating
around 750 fibers each. The vastus medialis (VM) has 1000 MUs innervating around 1000
fibers each. And the vastus lateralis (VL) has 1000 MUs innervating around 1000 fibers
each. In total, the defined muscle is composed of ' 2,500,000 muscle fibers.

Figure 3.12: Normalized generated force in experimental conditions following the pro-
tocol presented above (data extracted from [129]) compares to simulated force from the
proposed mechanical muscle model.

Both force profiles were normalized according to their respective maximum. First
observation on Fig. 3.12 concerns the global dynamic of the force generation according
to the stimulation intensity. Compared to experimental recording, the simulated force
correctly describes the trend of experimental force. Only one force generation according
to the stimulations (the 3rd) is under estimated while the 5th stimulation is over estimated.
Moreover, we can observe on the experimental recording a two steps increase of the force.
After few stimulations the muscle force increases and stabilizes during few hundreds of
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milliseconds and then continue to rise. This sidestepping rise is always the same between
the stimulation whatever the intensity. To assess the effectiveness of the model, the
Normalized Root Mean Square Error was computed as follow:

NRMSE =

√∑P
i=1

(
F̂i − Fi

)2

√
P
(
max(F̂ )−min(F̂

) (3.26)

where, P is the number of time sample of the force, F̂ is the experimental force and
F is the simulated force. Using this equation, computed NRMSE indicates that the error
between experimental and simulated force is 8.7%. Major error comes from the almost
perfectly synchronization of the muscle contraction since we only simulated one muscle
representing the quadriceps. Finally, concerning the computation time of the model, this
simulation lasts 57min using a dedicated workstation (2x8 cores Intel Xeon 2.40Ghz with
hyperthreading, 128Gb Ram, Ubuntu 14.04 64bits) without parallel computation.

Simulation of a quadriceps

In this part, we will simulate four muscles corresponding to each muscle composing the
quadriceps. For this purpose, we needed the values describing the anatomical parameters
described in Table 3.5 for each muscle. Some parameters such as the maximal muscle force
or the rest muscle length cannot be found and thus had to be fix with a physiological
value.

Table 3.5: Parameters used for the fusion frequency

Parameter (name) unit RF VI VM VL
Optimal muscle length (Lc0) cm 8.4 [129] 8.7 [129] 8.9 [129] 8.4 [129]
Rest muscle length (L0

c) cm 10.4 [141] 10.5 [142] 10.5 [142] 9.1 [142]
Velocity contribution (a) 1.0 [129] 1.0 [129] 1.0 [129] 1.0 [129]
Force-length parameter (b) 0.4 [129] 0.45 [129] 0.45 [129] 0.45 [129]

Muscle weight (m) kg 0.358 [142] 0.612 [142] 0.487 [142] 0.712 [142]
Maximal force (Fmax) N 200 225 270 250

Maximal stiffness (kmax) N.m−1 2000 2000 2000 2000
Tendon stiffness (ks1) N.m−1 7000 7000 7000 7000

Pennation angle (θ) o 27.9 [142] 9.8 [142] 17.3 [143] 16.5 [143]

Considering the specifications of each muscle, the quadriceps muscle force is obtained
as:

F = FRF cos (θRF ) + FV Icos (θV I) + FV Lcos (θV L) + FVMcos (θVM) (3.27)

where, F is the quadriceps force, FX is the corresponding muscle force simulated,
θX the corresponding pennation angle and RF, VI, VM and VL represent each muscle
composing the quadriceps.

Compared to the validation results presented above, the force profile is worse estimated
defining the four muscles with an NRMSE of 21.5%. Yet, the force trend remains stable
compare to the quadriceps bulk simulation. With this modeling, we can have access to
each muscle contribution to the force (see Fig. 3.13).
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Figure 3.13: Cumulative plot representing the force contribution for each muscle com-
posing the quadriceps muscle presented above at the stimulation intensity 1.6mA (corre-
sponding to the fourth stimulation). In blue the VL force contribution, in green the VM
force contribution, in red the VI force contribution and in cyan the RF force contribution.

First observation on Fig. 3.13 is the contribution of the VL muscle. This muscle is
only composed of S and FR MUs and we can observe a smaller amplitude in the force
generation than the other which is coherent with the muscles definitions. Moreover, one
can notice few contribution of the RF since it is the muscle with the less contribution
according to its definition. Both VL and VM contributed almost equally since their
definitions are almost alike. This simulation illustrates the ability of the proposed model
to represent in an accurate way the mechanical contribution and synergy of muscle group
around a joint. Further works are planned to increase its physiological realism.

3.5.5 Voluntary contraction simulation
In the proposed model, the input parameter α describing the activation of the muscle
is also adapted to MU voluntary recruitment. This formalism also allows us to simulate
voluntary contraction as presented in Fig. 3.14.

Force profiles were generated using the same voluntary recruitment patterns defining
force plateaus from 10 to 100% MVC. Knowing that only twitch type model allow the
simulation of voluntary force profiles, we are comparing the force profiles generated using
the defined twitch model and the proposed mechanical model from the same recruitment
pattern. The anatomy used is the M1 muscle described in previous section 3.5.1. More-
over, we notice that the parameters remain the same among the simulations for both
models, only the recruitment pattern changes at each contraction.

As you can see on Fig. 3.14, the plateau remains stable along the contraction with
slight variability due to the MU recruitment rolling. Yet, the proposed model correctly
represents the same force profiles generated from the validated twitch model [99]. Only
for the 10 and 20% MVC contractions, the proposed model simulates higher force than
the twitch model. Comparison of the mean and the standard deviation (std) computed
over the force plateau for both models is presented in Fig. 3.15a.

On Fig. 3.15a, we can observe almost the same mean computed over the force profiles
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Figure 3.14: Force profiles for voluntary contractions from 10 to 100% MVC using the
defined twitch model and the proposed muscle mechanical model.

(a) Computed mean for each contraction level ac-
cording to both models

(b) Computed standard deviation (std) for each
contraction level according to both models

Figure 3.15: Mean and std computed from both models from 10 to 100% MVC.

plateau from both models. Only the mean computed with the proposed model at 10
and 20% MVC is overestimated compared to the twitch model. Moreover on Fig. 3.15b
is presented the standard deviation computed for both models. As we can see, more
dispersion of the generated force is observed with the proposed model compared to the
twitch model. Yet, the trend remains the same, the std increases according to increase of
the contraction level.

Increasing the mean and std according to the contraction level is also observed in
experimental recording. Nevertheless, we estimated that a comparison with experimental
recordings isn’t suitable yet. In fact, experimental recordings describe the global force ap-
plied to a specific joint. In the case of upper limb force recording for the elbow joint, this
force represents forces generated by the Biceps Brachii, the Brachialis and the Brachio-
ralialis. Moreover, noises in the recorded signals and lack of training for force sustaining
induces unsteady force plateaus (even for low contraction level) and thus, bias the compar-
ison. Since studies [22, 146, 147, 99] trying to estimate a single muscle force contribution
based their analysis using the twitch model, we decided to limit this comparison with the
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twitch model that is related to one simulated muscle.

3.6 Discussion
In this study, we proposed to model the mechanical behavior of the skeletal muscle during
isometric contraction. This modeling is described at the MU scale, which are assumed to
be placed in parallel in the muscle as N contractile elements. Modeling the mechanical
contribution of the muscle at the MU scale had previously been used in [130, 99]. Yet,
these models only computed the force contribution of each MU individually. In [130],
the authors also described the calcium dynamic induced by the recruitment of the MU.
Nevertheless, some important relationships such as the force-length relationship weren’t
considered in this work.

Determining the muscle force contribution is an assembly of several mechanisms and
interactions. Most of these mechanisms are well described in [8, 12, 27]. However, in
[8, 27] the muscle was described only as one contractile element where its activation
didn’t have any physiological meaning. In [12], the muscle was described at the fiber
scale and accurately characterized the underlying processes arising during muscle fiber
contraction. Yet, using this model to define each fiber in the muscle isn’t feasible in terms
of computation time for our application.

The distribution moment theory, proposed in [96], allowed to upscale from the fiber
scale to the muscle scale and thus, preserved the fiber accurate modeling to the muscle
scale. This modeling gives promising results and some studies upgraded this modeling
[9]. In [9], the authors also defined the input parameter α according to the functional
electrical stimulation. Nevertheless, using the formalism proposed by Zahalak implies
modeling simplification such as the muscle composition. In fact, using the distribution
moment theory will consider that the muscle is composed of the N (number of fibers)
times the same muscle fiber.

In the proposed model, we used the formalisms proposed in [9] since this model was
validated on human recordings. Now the main improvement is the description of the
muscle as N (number of MUs) contractile elements placed in parallel (see Fig. 3.6) where
each contractile element is activated independently from the others. Actually, except the
activation, there is a strong dependence between the contractile element contraction and
the global muscle contraction since muscle force-length and muscle force-velocity rela-
tionships are considered. The contractile element mechanical dynamic considered local
variables as well as global variable at the muscle scale. We also specified the activation
dynamic according to the MU type and also the mechanical contribution of each MU. In
the anatomical model, we supposed different number of fiber according to the MU type.
Thus, FFMUs have more fiber than SMUs in order to provide more contribution to the
muscle contraction.

Apart from the twitch model [99], this is the first model that considers the mechanical
relationships and is able to simulate voluntary contractions at the MU scale. Moreover,
compared to the twitch model, the proposed dynamic model is more complex and can
simulate physiological behaviors that the twitch model can’t (see section 3.5.1). In fact, it
has been assessed that it exists an optimal frequency stimulation [148] where the muscle
generates the maximum of force. The twitch model can’t represent this optimal frequency
compared to the proposed mechanical model (see section 3.5.1). The twitch model also
doesn’t represent the muscle stiffness and the muscle deformation which have an effect on
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the muscle force dynamic where our proposed model does. Yet, as we can see on Fig. 3.9
we observe a sudden raising of the generated force when the muscle starts to relax.

The proposed model has been validated with experimental data [129]. A specific set of
parameters representing the quadriceps bulk based on the literature was used in order to
validate the proposed model. According to Fig. 3.12 and the small computed NRMSE, we
can assess that the proposed model is validated. It has to be noticed that no identification
algorithm was used to identify the parameter values, these values were extracted from the
literature and experimental studies. Most of the parameters values were found but a
major issue came during their collect: some parameters values were significantly different
between studies representing the subjects’ inter-variability and recording technique. On
the other hand, some parameters values couldn’t be found in the literature. Thus, for
the simulations we tried to define these values with a physiological meaning but, a pa-
rameter identification algorithm is needed to provide better results and subject’s specific
parameter tuning. We also tried to simulate the four muscles composing the quadriceps
bulk instead of only one. This simulation performed worse result than simulating one
muscle representing the quadriceps. Nevertheless, simulating the four muscles composing
the quadriceps allows the access to each muscle contribution in the contraction. We be-
lieve that this simulation can better estimate the quadriceps force using an identification
procedure and deeper investigation of the parameters defining each muscle.

The developed model doesn’t consider the muscle fatigue. Yet, it is known that the
electrical stimulation induced an intense fatigue compared to voluntary contractions [149].
This fatigue phenomenon is described at two different levels [150]:

• the neural fatigue representing the limitation of the nerves to generate sustained
action potential;

• the muscular fatigue (or metabolic fatigue) representing the reduction of force gen-
eration by the muscle fibers.

Thus, the fatigue will induce a significant decrease in muscle force generation due
to repeated muscular activation [151]. Considering the successive stimulations used in
the experimental protocol (see section 3.5.4), the fatigue phenomenon has probably arose
during the recording. This phenomenon isn’t considered in the proposed model, but can
be defined at the neural level as well as at the muscle level thanks to the decoupling of
the neural input describing the MU firing times and the muscle definition.

3.7 Conclusion
In this study, we proposed a mechanical model representing the muscle at the MU scale.
Modeling the muscle at the MU scale allows us to have more information than the mod-
eling at the muscle scale and also permits us to simulate a whole muscle compare to the
fiber scale modeling. It also allows the simulation of mechanical behavior according to
various muscle compositions.

This modeling at the MU scale can also provide the activation level of the muscle
through the MUs firing times. This description provides us the possibility to define elicited
contractions as well as voluntary contractions. To assess the validity of our model, we
performed a validation comparison with experimental data recorded in a former study
where we know exactly the recruitment induced by the electrical stimulation. The muscle
force was simulated from a single muscle representing the quadriceps bulk composed of
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3250 MUs with the suspected fiber type distribution. The results exhibit reliable results
compare to experimental recording with a NRMSE of 8.7%. The relationship between
the muscle force with intensity of the stimulation is respected.

Moreover, thanks to the definition of the model, we simulated the four muscles com-
posing the quadriceps where each muscle has a specific set of parameters extract from
the literature. This preliminary modeling allows us to access to the contribution of each
muscle during the quadriceps contraction. Yet, some parameters defining those muscles
are unknown and thus, biased the results.

Future works, using this model, are envisaged for more realistic study of the sEMG/force
relationship as in section 4.3. In fact, this model can easily be used in parallel of an elec-
trical model of the muscle contraction [10] where the input representing the MUs firing
times and the muscle composition are the same. This model can also be used for the defi-
nition of a quasi-dynamic electro-mechanical model of the skeletal muscle during isometric
contractions (see section 4.4 for details). Since the muscle deformation is determined with
the corresponding MU recruitment pattern, we can use this deformation information in
the electrical model to have better representation of the muscle anatomy during contrac-
tion. Moreover, studies concerning the contribution of agonist and antagonist muscles
can be performed using identification algorithm and adapted MU recruitment pattern.
Also, several clinical applications are envisaged, using the proposed model, after parame-
ter identification and model personalization, such as sarcopenia evaluation where one can
simulate a sarcopenic muscle with both mechanical and electrical manifestations.
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Chapter 4

Applications of the proposed models
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4.1 Introduction
In chapters 2 and 3 we proposed two models describing the electrical and mechanical
activities of the muscle during isometric contraction. To illustrate model implementation
reliability, reproductibility and usefulness two main applications will be presented in this
chapter.

A global sensitivity analysis of the electrode grid recording system used in the electrical
model 4.2 is performed. Thanks to the decoupling of the electrical model and the recording
system model, it is easy and fast to perform this sensitivity analysis with only variations of
the recording system parameters. This study enables to assess the effect of the recording
system parameters on the statistics computed on the sEMG signals. Thus, it can help
clinicians and researchers to design efficient protocols using HD-sEMG grid considering
the results of this study.

Then, a study of the sEMG/force relationship, where the electrical model is used
4.3, is performed. Thanks to the model implementation, it is feasible to perform, for the
same recruitment pattern, electrical and mechanical activities of the a single muscle during
contraction. Modeling the sEMG/force relationship is important to better understand and
estimate individual force muscle contribution in experimental studies with non invasive
protocol.

Finally, this chapter ends with a first overview of the quasi-dynamic model of muscle
contraction during isometric contraction that includes both electrical and mechanical
models 4.4. Thanks to the models structure, it is fast to do the communication between
the electrical and mechanical models. This study investigates the effect of the contraction
on the generated signals and the statistics computed on them.

4.2 Global sensitivity analysis

Mathematical models of surface electromyogram (sEMG) generation consist of a series
of equations describing the generation and the propagation of an action potential (AP)
along the muscle fibers and within the muscle, respectively [10].

Actually, models allow us the access to electromyographic data corresponding to sev-
eral physiological contexts and specific motor control strategies that are hardly evaluated
in experimental conditions. The investigation of the changes of sEMG signal features ac-
cording to physiological mechanisms and instrumentation parameters are easier and faster
with analytical models rather than numerical models [10, 6].

Recently, a High Density sEMG (HD-sEMG) recording technique has emerged. This
technique allows the direct and simultaneous access to a high number of channels (up to
256 channels). This technique significantly increases the spatial representativeness of the
recorded data over the studied muscle. It opened the door to multi-channel analysis of
muscle activity (as for EEG recordings) and has already demonstrated promising abilities
comparing to classical recording techniques [2].

For this purpose, we used a HD-sEMG generation model inspired from a recently
published work described in [10]. In this model, the muscle is considered as a cylinder
with the possibility of multiple anisotropic layers. The source is described as a progressive
generation of the intracellular action potential at the end plate, a propagation along the
fiber and its extinction at the ends of the fiber.

Identifying the most influential parameters of the models through some sensitivity
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analysis is an important task, as it allows one to know (1) where experimental efforts
should focus, (2) which parameters are important to identify by inverse methods and (3)
on which parameter it is important to perform an uncertainty analysis.

Commonly, the standard deviation of the sEMG signal is used to estimate the mag-
nitude of the muscle activation [152]. Other amplitude estimators, such as Root Mean
Square value (RMS) and mean Average Rectified Values (ARV) have been extensively in-
vestigated as means of controlling prosthetic devices, ergonomic assessments, biofeedback
systems, as well as for a better understanding of healthy and pathological neuromuscular
systems [2]. In addition to these classical amplitude parameters, we propose to study
features linked to the shape of the sEMG Probability Density Function (PDF), namely,
the HOS parameters.

In a previous study, these features have demonstrated, by simulation, promising sen-
sitivity to some sEMG generation parameters [153]. Two High Order Statistics (HOS)
will be considered, the Skewness related to the PDF asymmetry and the Kurtosis linked
to its flatness.

In this study, we present a global sensitivity analysis of four HD-sEMG amplitude
parameters to assess their robustness/sensitiveness, with a parameter ranking, toward the
variation of the grid parameters. This task is done using the Elementary Effect Method
(EEM) [154] that allows the precise quantification of varying each tested parameters on
a specific set of output features [47].

4.2.1 Electrode grid recording
Muscle electrical activity is recorded by the electrode at the skin surface with a surfacic
integration of the electric activity values over the sampled positions under the electrode.
This surface integration is done numericaly and is normalized by the number of sampled
positions under the simulated electrode area.

Sj(θj, zj, ti) =
∫ ∫

Sj
sEMG(ρc, θ, z, ti)dθdz (4.1)

where ti is an instant point during the simulation, (θj, zj) are the cylindrical coordinates
of the center of electrode j, Sj is the electrode area and ρc is the skin radius. For circular
shape electrode, we have:

Sj =
{

(θ, z) | z2 − 2z.zj. cos (θ − θj) + z2
j ≤ r2

j

}
(4.2)

where, rj is the radius of electrode j.
Once the electrode shape is defined, we also have to define an electrode grid. For this

purpose, several parameters are needed (see Fig. 4.1):

• the center of the electrode grid (centerX; centerZ). With centerX the angular center
of the electrode grid and centerZ the center according to the longitudinal axis;

• the inter-electrode distances (dx, dz). With dx the inter-electrode distance in the
angular direction and dz the longitudinal inter-electrode distance;

• the number of electrode (nx, nz). With nx the number of electrode along the angular
axis and nz the number of electrode in the longitudinal direction;

• the rotation of the grid according to the longitudinal axis z.
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A particular care needs to be considered on the values of the inter-electrode distances
and the electrode radius. In fact, if the electrode radius is larger than one of the inter-
electrode distance it will mean that the electrode are overlapped.

In this model, the first electrode is placed at the top left of the electrode grid (see
Fig. 4.1) incrementing along the angular axis x leading to the last electrode placed at the
bottom right of the electrode grid.

Figure 4.1: A 8×8 electrode grid representation with the studied grid parameters.

The principal advantage of the numerical electrode simulation is the total decoupling
between the potential map generation and, after, the computing of HD-sEMG signals in
an infinite number of electrode configurations (number, shape, positions and rotation)
without the need of simulating again the potential maps (one for every contraction levels)
[10]. All the grids in this paper will be composed of 8x8 electrodes. From this composition
we can arrange the monopolar electrodes in the bipolar and laplacian arrangements as we
can see on Fig.4.2.

Figure 4.2: 8×8 electrode grid placed on the surface of the muscle skin. Blue electrode
shows the monopolar arrangement (64 signals). Green electrodes shows the bipolar ar-
rangement with corresponding weight on the electrode (56 signals). Red electrodes sh
ows the laplacian arrangement with corresponding weight on the electrode (36 signals).
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4.2.2 Global sensitivity analysis
The Elementary Effect Method (EEM), that identifies elementary effects of parameters,
is used as a preliminary analysis [154]. This screening method is based on a "one factor
at a time" design. It uses local variations (the elementary effects) and averages them over
several points in the parameters space in order to obtain a global analysis (see Figure 4.3).
EEM also provides a specific Design Of Experiment (DOE) of the grid parameters from
their distributions [154, 155]. In the HD-sEMG model described above, an electrode grid
is defined by 6 parameters (see Table 4.1). Thus, according to [155] 16 electrode grids are
defined from the DOE by taking 3 values from the distribution of the parameters. For
each simulation, EEM changes the value for one parameter and all the others remain the
same. Then, it calculates the outputs changes compared to the other simulation outputs.
Finally, EEM determines which parameter is the most sensitive parameter according to
the outputs.

The elementary effects are computed this way:

EE(X(j)
i ) = f(X1, . . . , Xi + ∆, . . . , Xn)− f(X(j))

∆ (4.3)

with X(j) = X1, . . . , Xi, . . . , Xn is one vector of parameters, f the electrode grid definition
and ∆ the parameter variation.

As suggested by [156], we computed the 3 indicators µ∗, µ and σ as follow for a given
parameter i:

µ∗i = 1
r

r∑
j=0

∣∣∣EE(X(j)
i )

∣∣∣ (4.4)

µi = 1
r

r∑
j=0

EE(X(j)
i ) (4.5)

σi =
√√√√ 1
r − 1

r∑
j=0

(
EE(X(j)

i )− µi
)2

(4.6)

with r the number of electrode grid on which the elementary effect is computed.
Indicators µ∗ and µ represent the direct interaction of the parameter on the outputs of
the model and σ defines the possible indirect interaction of the parameter on the outputs
through interactions with the other parameters.

The Figure 4.4 exhibits a simple example of Sensitivity Index (SI) for three parameters.
The parameters p1, p2 and p3 have (5;1), (1;5) and (5;5) for (µ∗;σ) values, respectively.
By computing the SI for each parameters, we see that the most sensitive parameter is
p3 with a SI of 7.07. Moreover, parameters p1 and p2 have the same SI of 5.10 but
have different values of (µ∗;σ) and thus different effects on the features. On the Figure
4.4 it is not clear that the parameters p1 and p2 have the same SI. Thus, this kind of
representation can be hard to interpret due to the scales of the axes. If the axes scales
are not the same, two parameters can have the same SI but distance from origin can
appear different on this type of figure (as on the figure 4.4 between parameters p1 and
p2). Finally, this representation loses information from the sensitivity analysis such as
the monotonous effect of a parameter if µ∗ = |µ|.

As indicated above, the parameters of the electrode grid have to be defined using
specific distribution for each parameter. These parameters with their variation ranges for
the sensitivity analysis are summarized in table 4.1.
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Figure 4.3: Elementary Effect (EE) computation diagram. X1
i and X2

i are two different
values of the parameter Xi. X(1)

∼i and X(2)
∼i are two different parameter sets excluding

parameter Xi. EE(X(j)
i ) is the Elementary Effect of the tested parameter X(j)

i value with
the jth value of the parameter set. X(1)

i X(1)
∼i corresponds to one set of parameter, X(2)

i X(1)
∼i

is equivalent to the same set of parameter with a different value of the parameter Xi.

Figure 4.4: Example of sensitivity index for 3 parameters. The parameter p1 has a
higher direct impact on the outputs of the simulation than the parameter p2 (µ∗1 > µ∗2).
Conversely, the parameter p2 has an higher impact through the other parameters of the
simulation on the outputs than the parameter p1 (σ2 > σ1). However, the most sensitive
parameter here is the parameter p3.

Where, U(a ; b) represents the uniform distribution on [a; b]. T(a ; b ; c) represents
the triangular distribution on [a; b] with a peak at c ∈ [a; b].

As presented in the introduction, the purpose of this study is to assess which parameter
of the grid has the higher impact on the signal features and thus which study can be
compared with others.

We assume no prior knowledge on the possible variations of the layout parameters of
the grid (inter-electrode distances and electrode radius), hence we use uniform distribu-
tions. Nevertheless, we assume a realistic range of values for these parameters. We used
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Name Description Variables distribution Unit
dx Angular inter-electrode distance U(4.0 ; 6.0) mm
dz Longitudinal inter-electrode distance U(4.0 ; 6.0) mm
r Electrode radius U(0.5 ; 2.0) mm

centerX Angular electrode grid center T(-10 ; 10 ; 0) o

centerZ Longitudinal electrode grid center T(23.25 ; 27.25 ; 25.25) mm
rotation Electrode grid rotation T(-15 ; 15 ; 0) o

Table 4.1: Parameters used for sensitivity analysis and their variation range.

a triangular distribution for the position parameters of the grid (grid center position and
rotation). This kind of distribution assess the highest probability for the value c with
linear decreasing probability to the values a and b. We used this distribution to model
the possible deviation of the grid position according to a desired position. Range of values
chosen for these parameters is in respect to the protocol for the HD-sEMG recording on
the Biceps Brachii [58].

4.2.3 Signal features
We computed the elementary effects not on the signals themselves but on features ex-
tracted from these signals. Root Mean Square (RMS), Average Rectified Value (ARV)
and High Order Statistics (HOS) are used as output features. Outputs of the model used
for the analysis are statistical criteria on the signal recorded by the electrodes.

• RMS amplitude of signal Y : RMS(Y ) =
√√√√ 1
n

n∑
j=0

Y (j)2;

• ARV amplitude of signal Y : ARV (Y ) = 1
n

n∑
j=0
|Y (j)|;

• Kurtosis of signal Y : Kur(Y ) = E(Y − µY )4

σ4
Y

− 3;

• Skewness of signal Y : Skew(Y ) = E(Y − µY )3

σ3
Y

.

With n the number of sampling points in the signal, E(.) the expectation operator
and µY , σY the expected values and standard deviation of the signal Y , respectively.

Those features have been used in previous studies [157] and are classical amplitude
statistic descriptors on the sEMG signals.

4.2.4 Parameter sensitivity results
All the simulations were performed on a dedicated workstation (2x8 cores Intel Xeon
2.40Ghz with hyperthreading, 128Gb Ram, Ubuntu 14.04 64bits). The 16 grid definitions
needed to compute the elementary effects of all parameters were obtained in a few seconds.
Signals recorded by the 16 electrode grids are performed on the same simulated 2D surfacic
potential maps. Statistics are computed for monopolar, bipolar and laplacian electrode
arrangements. Then, statistics are computed for the 64 monopolar (56 bipolar and 36
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laplacian) signals of the grid and the mean value over the electrodes is used. Ten anatomies
with the same properties presented in table 4.2 were computed to have robust results. The
ANOVA test is computed for the 10 anatomies for each features and proves that there
is no significant influence of the anatomies on the mean value of the studied features.
Thus, the sensitivity measures are computed for the features for each anatomy and then
the mean value of the features is computed from the 10 anatomies. Since, the sensitivity
measures give almost the same results in these two cases, we will only present the results
for the mean value of the features on the 10 anatomies.

Name Description Parameter Value (Unit)
nMUs Number of MUs 352
nFibs Number of fibers 60862
ρm Muscle radius 42 (mm)
σm Radial and angular muscle conductivity 0.1 (S.m−1)
σmz Longitudinal muscle conductivity 0.5 (S.m−1)
ρap Adipose tissue thickness 2 (mm)
σap Adipose tissue conductivity 0.05 (S.m−1)
ρs Skin thickness 1 (mm)
σs Skin conductivity 1 (S.m−1)

Table 4.2: Parameters used for the generation of the ten anatomies.

Monopolar sensitivity ranking

We present in tables 4.3 and 4.4 all the parameter sensitivities computed for each signal
features by the elementary effect method previously described. Signal features are com-
puted from the mean of the corresponding features of the ten anatomies. For nearly all
parameters µ∗ equals to |µ|, regardless of the feature. This means that the EE computed
at different points of the parameter space have the same sign, indicating monotonous
effects.

The Fig.4.5 presents the ranked parameters according to their sensitivity in descending
order for each features for the monopolar arrangement. All the features agree that the
three most sensitive parameters are the rotation, the lateral center of the grid and the
electrode radius. Moreover, the two least sensitive parameters are the lateral and the
longitudinal inter-electrode distance variation. Only the Skewness at 30 %MVC shows
different ranking for the parameter. This can be linked to the less number of recruited
MUs at this contraction level which seems to highly interfer with the PDF assymmetry.

Parameters are not considered sensitive when their µ∗ is a 100 times smaller than the
maximal µ∗ for the given feature [154, 155]. According to the values presented in tables
4.3 and 4.4, we don’t observe significant difference between the µ∗ values which means
that all the parameters are sensitive for the given features. For monopolar arrangement,
the rotation, the electrode radius and the lateral inter-electrode distance (dx) show a
difference between µ∗ and |µ| for the Skewness at 30%MVC only (see values highlight
in red). This means that those parameters have non-monotonous effects on the feature.
Moreover, no parameter has a high σ value. It means that there is no indirect effects on
the features through interactions with other parameters.
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Figure 4.5: Parameters ranking according to the features for monopolar arrangement on
the grid.

To conclude on the monopolar arrangement, ARV and RMS features show very similar
sensitivity ranking and measures for monopolar arrangement, showing that these two
features are equivalent for our study. Moreover, sensitivity measure tables by anatomies
show different ranking for the rotation and the lateral center of the grid (centerX) for the
Skewness at 30%MVC feature. Thus, they present differences in the parameters ranking,
the longitudinal center of the grid (centerZ) has a higher impact than the lateral center
(centerX) for one anatomy for the Skewness at 30%MVC.
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rk Param. µ∗ µ σ
1 rotation 0.2014 0.2014 7.66.10−5

2 centerX 0.1870 0.1870 2.23.10−5

3 radius 0.1097 -0.1097 4.06.10−6

4 centerZ 0.0615 0.0615 1.28.10−6

5 dz 0.0344 -0.0344 1.42.10−7

6 dx 0.0247 -0.0247 8.02.10−7

(a) ARV at 30 %MVC.

rk Param. µ∗ µ σ
1 rotation 0.3877 0.3877 6.80.10−5

2 centerX 0.3630 0.3630 1.99.10−5

3 radius 0.2078 -0.2078 3.95.10−6

4 centerZ 0.1181 0.1181 3.02.10−6

5 dz 0.0584 -0.0584 6.16.10−7

6 dx 0.0470 -0.0470 1.67.10−8

(b) ARV at 50 %MVC.

rk Param. µ∗ µ σ
1 rotation 0.5334 0.5334 6.12.10−5

2 centerX 0.5016 0.5016 1.87.10−5

3 radius 0.2842 -0.2842 3.36.10−6

4 centerZ 0.1618 0.1618 2.92.10−6

5 dz 0.0780 -0.0780 1.07.10−6

6 dx 0.0649 -0.0649 5.56.10−7

(c) ARV at 70 %MVC.

rk Param. µ∗ µ σ
1 rotation 0.0660 0.0660 3.40.10−5

2 centerX 0.0600 0.0600 9.06.10−6

3 radius 0.0366 -0.0366 1.99.10−6

4 centerZ 0.0206 0.0206 6.13.10−7

5 dz 0.0146 -0.0146 5.47.10−8

6 dx 0.0081 -0.0081 3.93.10−7

(d) RMS at 30 %MVC.

rk Param. µ∗ µ σ
1 rotation 0.2624 0.2624 6.40.10−5

2 centerX 0.2441 0.2441 1.61.10−5

3 radius 0.1391 -0.1391 4.52.10−6

4 centerZ 0.0814 0.0814 5.17.10−6

5 dz 0.0443 -0.0443 1.71.10−6

6 dx 0.0318 -0.0318 3.52.10−8

(e) RMS at 50 %MVC.

rk Param. µ∗ µ σ
1 rotation 0.4459 0.4459 1.37.10−4

2 centerX 0.4169 0.4169 3.78.10−5

3 radius 0.2359 -0.2359 8.83.10−6

4 centerZ 0.1377 0.1377 9.34.10−6

5 dz 0.0749 -0.0749 3.87.10−6

6 dx 0.0538 -0.0538 8.55.10−7

(f) RMS at 70 %MVC.

Table 4.3: Detailed monopolar ARV and RMS features sensitivity for all parameters on
the mean features of the ten anatomies.

Bipolar sensitivity ranking

On Fig. 4.6 is presented the ranking of the most sensitive parameters acoording to the
features. As in the monopolar ranking (see Fig. 4.5), the rotation, the lateral center
of the grid and the electrode radius are the three most sensitive parameters. Also, the
inter-electrode distances are the two less sensitive according to the results. However, there
are some differences about the skewness feature at 50 and 70%MVC. The longitudinal
center and the longitudinal inter-electrode distance is more sensitive with the bipolar
arrangement than in the monopolar and laplacian. It can be explained by the longitudinal
bipolar arrangement of the electrode and also because it is supposed to be aligned with
muscle fibers.

According to the tables 4.5 and 4.6, we can assess that all the grid parameters are
sensitive for the features. As in the monopolar results, no parameter has a high value
of σ. With a deeper insight into the results by anatomies, we observe several differences
in the ranking of the parameters for the skewness features at 50 and 70%MVC. In fact,
there is only a factor of around 4 and 6 between the most sensitive parameter and the
less at 50 and 70 %MVC, respectively. Thus, the skewness features at 50 and 70 %MVC
seem to be sensitive to the anatomy with the longitudinal bipolar arrangement.
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rk Param. µ∗ µ σ
1 rotation 1.4678 1.4678 2.02.10−4

2 centerX 1.3583 1.3583 2.80.10−4

3 radius 0.7635 -0.7635 2.39.10−4

4 centerZ 0.4205 0.4205 8.81.10−7

5 dx 0.1772 -0.1772 6.80.10−5

6 dz 0.1591 -0.1591 4.15.10−5

(a) Kurtosis at 30 %MVC.

rk Param. µ∗ µ σ
1 rotation 3.7488 3.7488 0.0342
2 centerX 3.5567 3.5567 0.0249
3 radius 1.8030 -1.8030 1.98.10−4

4 centerZ 1.0699 1.0699 1.01.10−4

5 dx 0.4271 -0.4271 7.40.10−5

6 dz 0.2878 -0.2878 3.21.10−4

(b) Kurtosis at 50 %MVC.

rk Param. µ∗ µ σ
1 rotation 1.4192 1.4192 2.12.10−3

2 centerX 1.3424 1.3424 1.55.10−3

3 radius 0.6906 -0.6906 1.00.10−6

4 centerZ 0.4080 0.4080 1.00.10−5

5 dx 0.1697 -0.1697 9.10.10−5

6 dz 0.1299 -0.1299 3.10.10−5

(c) Kurtosis at 70 %MVC.

rk Param. µ∗ µ σ

1 rotation 0.0560 0.0195 3.14.10−3

2 centerX 0.0468 0.0468 5.62.10−4

3 centerZ 0.0350 0.0350 1.44.10−4

4 dz 0.0299 0.0299 1.00.10−6

5 radius 0.0162 0.0012 2.61.10−4

6 dx 0.0090 −0.0062 8.20.10−5

(d) Skewness at 30 %MVC.

rk Param. µ∗ µ σ
1 rotation 0.7000 -0.7000 1.90.10−5

2 centerX 0.6469 -0.6469 8.00.10−5

3 radius 0.3439 0.3439 4.80.10−5

4 centerZ 0.1972 -0.1972 9.50.10−5

5 dz 0.0889 0.0889 8.40.10−5

6 dx 0.0784 0.0784 2.60.10−5

(e) Skewness at 50 %MVC.

rk Param. µ∗ µ σ
1 rotation 0.4176 -0.4176 1.73.10−5

2 centerX 0.3895 -0.3895 5.86.10−7

3 radius 0.2040 0.2040 1.01.10−5

4 centerZ 0.1184 -0.1184 2.09.10−5

5 dz 0.0562 0.0562 3.52.10−5

6 dx 0.0491 0.0491 2.43.10−6

(f) Skewness at 70 %MVC.

Table 4.4: Detailed monopolar kurtosis and skewness features sensitivity for all parameters
on the mean features of the ten anatomies. Highlighted values in red correspond to values
indicating a non monotonous effect of the parameter.

Figure 4.6: Parameters ranking according to the features for bipolar arrangement on the
grid.
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rk Param. µ∗ µ σ
1 rotation 0.1417 0.1417 4.28.10−5

2 centerX 0.1311 0.1311 1.07.10−5

3 radius 0.0770 -0.0770 2.53.10−6

4 centerZ 0.0438 0.0438 7.20.10−7

5 dz 0.0244 -0.0244 1.00.10−7

6 dx 0.0175 -0.0175 1.18.10−6

(a) ARV at 30 %MVC.

rk Param. µ∗ µ σ
1 rotation 0.2889 0.2889 8.83.10−5

2 centerX 0.2666 0.2666 8.68.10−6

3 radius 0.1538 -0.1538 1.01.10−5

4 centerZ 0.0916 0.0916 5.14.10−6

5 dz 0.0496 -0.0496 6.54.10−7

6 dx 0.0351 -0.0351 3.02.10−6

(b) ARV at 50 %MVC.

rk Param. µ∗ µ σ
1 rotation 0.4055 0.4055 1.24.10−4

2 centerX 0.3763 0.3763 1.30.10−5

3 radius 0.2149 -0.2149 1.30.10−5

4 centerZ 0.1294 0.1294 7.00.10−6

5 dz 0.0696 -0.0696 1.00.10−6

6 dx 0.0491 -0.0491 8.00.10−6

(c) ARV at 70 %MVC.

rk Param. µ∗ µ σ
1 rotation 0.0314 0.0314 9.66.10−6

2 centerX 0.0282 0.0282 2.10.10−6

3 radius 0.0174 -0.0174 6.58.10−7

4 centerZ 0.0100 0.0100 1.80.10−7

5 dz 0.0073 -0.0073 1.14.10−8

6 dx 0.0039 -0.0039 2.24.10−7

(d) RMS at 30 %MVC.

rk Param. µ∗ µ σ
1 rotation 0.1615 0.1615 1.15.10−4

2 centerX 0.1453 0.1453 1.16.10−5

3 radius 0.0843 -0.0843 1.23.10−5

4 centerZ 0.0546 0.0546 7.64.10−6

5 dz 0.0378 -0.0378 7.51.10−7

6 dx 0.0192 -0.0192 2.06.10−6

(e) RMS at 50 %MVC.

rk Param. µ∗ µ σ
1 rotation 0.2725 0.2725 2.97.10−4

2 centerX 0.2473 0.2473 3.90.10−5

3 radius 0.1425 -0.1425 2.80.10−5

4 centerZ 0.0922 0.0922 1.60.10−5

5 dz 0.0638 -0.0638 2.00.10−6

6 dx 0.0320 -0.0320 9.00.10−6

(f) RMS at 70 %MVC.

Table 4.5: Detailed bipolar ARV and RMS features sensitivity for all parameters on the
mean features of the ten anatomies.

Laplacian sensitivity ranking

As we can see on the Fig 4.7, like the monopolar and bipolar arrangements, the features
are less sensitive to the lateral and longitudinal inter-electrode distance and the most
sensitive to the rotation, the lateral center of the grid and the electrode radius. However,
we observe different ranking of the parameters according to the anatomies. All the HOS
features present different ranking for the two most sensitive parameters, the rotation and
the lateral center of the grid.

On tables 4.7 and 4.8, are presented the sensitivities values with their rank for all
the parameters. We don’t observe significant difference between the µ∗ values, meaning
that all the parameters have an impact on the given features. Also, no parameter has an
important σ value.

One can observe the values presented in tables 4.3 and 4.4, we see that the lateral
center of the grid has higher impact on the HOS features (Kurtosis and Skewness) at
50 and 70%MVC with the laplacian arrangement than with the monopolar and bipolar
displays. However, according to the Table 4.8 the difference on the µ∗ values between the
parameters centerX and the rotation is minimal for all the HOS features for all contraction
levels. Thus, the lateral center and the rotation of the grid are the two parameters with
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rk Param. µ∗ µ σ
1 rotation 1.4955 1.4955 5.33.10−3

2 centerX 1.3621 1.3621 2.62.10−4

3 radius 0.7947 -0.7947 8.00.10−4

4 centerZ 0.4419 0.4419 5.00.10−6

5 dz 0.2453 -0.2453 2.10.10−5

6 dx 0.1769 -0.1769 2.97.10−4

(a) Kurtosis at 30 %MVC.

rk Param. µ∗ µ σ
1 rotation 5.3278 5.3278 8.04.10−2

2 centerX 5.0865 5.0865 5.11.10−2

3 radius 2.5234 -2.5234 1.21.10−3

4 centerZ 1.7485 1.7485 2.08.10−4

5 dx 0.6006 -0.6006 6.33.10−4

6 dz 0.5714 -0.5714 1.54.10−3

(b) Kurtosis at 50 %MVC.

rk Param. µ∗ µ σ
1 rotation 1.9702 1.9702 7.50.10−3

2 centerX 1.9050 1.9050 2.00.10−3

3 radius 0.9363 -0.9363 2.65.10−4

4 centerZ 0.6460 0.6460 1.00.10−6

5 dx 0.2443 -0.2443 1.08.10−3

6 dz 0.2248 -0.2248 2.69.10−4

(c) Kurtosis at 70 %MVC.

rk Param. µ∗ µ σ
1 rotation 0.2886 0.2886 7.33.10−4

2 centerX 0.2459 0.2459 2.64.10−6

3 radius 0.1538 -0.1538 1.61.10−4

4 centerZ 0.0410 0.0410 2.03.10−8

5 dx 0.0332 -0.0332 1.15.10−5

6 dz 0.0118 -0.0118 8.34.10−6

(d) Skewness at 30 %MVC.

rk Param. µ∗ µ σ
1 centerZ 0.0436 -0.0436 9.60.10−5

2 rotation 0.0383 0.0383 1.00.10−5

3 dz 0.0303 0.0303 2.64.10−4

4 centerX 0.0276 0.0073 7.60.10−4

5 dx 0.0144 0.0144 2.60.10−5

6 radius 0.0129 −0.0078 1.67.10−4

(e) Skewness at 50 %MVC.

rk Param. µ∗ µ σ
1 centerZ 0.0287 -0.0287 4.80.10−5

2 dz 0.0152 0.0152 8.30.10−5

3 rotation 0.0151 0.0151 1.13.10−4

4 centerX 0.0116 −0.0073 1.35.10−4

5 radius 0.0099 −0.0026 9.80.10−5

6 dx 0.0051 0.0051 2.50.10−5

(f) Skewness at 70 %MVC.

Table 4.6: Detailed bipolar kurtosis and skewness features sensitivity for all parameters
on the mean features of the ten anatomies. Highlighted values in red correspond to values
indicating a non monotonous effect of the parameter.

Figure 4.7: Parameters ranking according to the features for laplacian arrangement on
the grid.
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the highest impact on the HOS features for the laplacian configuration of the grid.

rk Param. µ∗ µ σ
1 rotation 0.1199 0.1199 3.67.10−4

2 centerX 0.1011 0.1011 4.21.10−5

3 radius 0.0663 -0.0663 4.31.10−5

4 centerZ 0.0344 0.0344 2.84.10−7

5 dx 0.0259 -0.0259 1.73.10−7

6 dz 0.0257 -0.0257 1.17.10−6

(a) ARV at 30 %MVC.

rk Param. µ∗ µ σ
1 rotation 0.3389 0.3389 2.00.10−3

2 centerX 0.2969 0.2969 3.87.10−4

3 radius 0.1843 -0.1843 1.59.10−4

4 centerZ 0.0999 0.0999 4.00.10−6

5 dx 0.0822 -0.0822 7.00.10−6

6 dz 0.0582 -0.0582 3.00.10−6

(b) ARV at 50 %MVC.

rk Param. µ∗ µ σ
1 rotation 0.4999 0.4999 3.54.10−3

2 centerX 0.4416 0.4416 6.66.10−4

3 radius 0.2691 -0.2691 2.85.10−4

4 centerZ 0.1481 0.1481 8.00.10−6

5 dx 0.1136 -0.1136 1.40.10−5

6 dz 0.0862 -0.0862 4.00.10−6

(c) ARV at 70 %MVC.

rk Param. µ∗ µ σ
1 rotation 0.0249 0.0249 5.99.10−5

2 centerX 0.0185 0.0185 6.04.10−6

3 radius 0.0141 -0.0141 7.09.10−6

4 dx 0.0074 -0.0074 3.43.10−7

5 dz 0.0072 -0.0072 1.82.10−10

6 centerZ 0.0067 0.0067 1.17.10−8

(d) RMS at 30 %MVC.

rk Param. µ∗ µ σ
1 rotation 0.2702 0.2702 3.70.10−3

2 centerX 0.2242 0.2242 7.25.10−4

3 radius 0.1430 -0.1430 2.56.10−4

4 dx 0.0851 -0.0851 4.53.10−9

5 centerZ 0.0802 0.0802 1.15.10−5

6 dz 0.0588 -0.0588 4.17.10−7

(e) RMS at 50 %MVC.

rk Param. µ∗ µ σ
1 rotation 0.4587 0.4587 9.89.10−3

2 centerX 0.3810 0.3810 1.78.10−3

3 radius 0.2409 -0.2409 7.48.10−4

4 dx 0.1385 -0.1385 4.16.10−6

5 centerZ 0.1355 0.1355 2.66.10−5

6 dz 0.1008 -0.1008 2.38.10−7

(f) RMS at 70 %MVC.

Table 4.7: Detailed laplacian ARV and RMS features sensitivity for all parameters on
the mean features of the ten anatomies. Highlighted values in red correspond to values
indicating a non monotonous effect of the parameter.

According to all these results, the specific parameters about the layout of the HD grid
(inter-electrode distances) have a minor effect compared to parameters specific to the
HD grid position (rotation and center of the grid) for monopolar, bipolar and laplacian
arrangements. Therefore, HD-sEMG applications should have a specific focus on the
right alignment with the muscle fibers and on the good positioning of the lateral center
of the grid. Finally, we saw that the parameter sensitiveness is also depending on the
anatomy. According to the obtained results, HOS features seem to be able to provide
some information about the nature of the activated muscle region.

4.2.5 Discussion & Conclusion
The objective of this study was to investigate and to precisely quantify the sensitiv-
ity of HD-sEMG amplitude descriptors according to varying parameters related to the
HD-sEMG grid design and position. This interest is motivated by recent studies using
HD-sEMG grid [125, 158]. For this purpose, we proposed a first global sensitivity anal-
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rk Param. µ∗ µ σ
1 centerX 2.6132 2.6132 5.27.10−3

2 rotation 2.6039 2.6039 2.57.10−4

3 radius 1.4080 -1.4080 4.27.10−3

4 centerZ 0.7421 0.7421 5.10.10−3

5 dx 0.3921 -0.3921 3.54.10−3

6 dz 0.1984 -0.1984 6.08.10−4

(a) Kurtosis at 30 %MVC.

rk Param. µ∗ µ σ
1 centerX 9.6200 9.6200 2.32.10−2

2 rotation 9.6013 9.6013 3.79.10−1

3 radius 4.7833 -4.7833 7.59.10−2

4 centerZ 3.0745 3.0745 1.00.10−6

5 dz 1.0773 -1.0773 1.39.10−2

6 dx 0.5127 -0.5127 1.72.10−2

(b) Kurtosis at 50 %MVC.

rk Param. µ∗ µ σ
1 centerX 4.2755 4.2755 1.62.10−2

2 rotation 4.1861 4.1861 1.99.10−1

3 radius 1.9711 -1.9711 2.21.10−2

4 centerZ 1.3503 1.3503 4.74.10−4

5 dz 0.4327 -0.4327 8.31.10−4

6 dx 0.2104 -0.2104 7.17.10−4

(c) Kurtosis at 70 %MVC.

rk Param. µ∗ µ σ
1 rotation 0.1995 0.1995 1.98.10−3

2 centerX 0.1884 0.1884 1.29.10−3

3 radius 0.1184 -0.1184 6.00.10−6

4 dz 0.0498 -0.0498 1.20.10−5

5 centerZ 0.0306 0.0306 8.00.10−5

6 dx 0.0175 0.0059 3.05.10−4

(d) Skewness at 30 %MVC.

rk Param. µ∗ µ σ
1 centerX 1.5228 1.5228 1.65.10−7

2 rotation 1.5109 1.5109 7.28.10−3

3 radius 0.7995 -0.7995 2.32.10−3

4 centerZ 0.4971 0.4971 1.67.10−5

5 dz 0.1617 -0.1617 1.71.10−3

6 dx 0.1022 -0.1022 3.71.10−3

(e) Skewness at 50 %MVC.

rk Param. µ∗ µ σ
1 centerX 1.1506 1.1506 6.49.10−4

2 rotation 1.1398 1.1398 9.24.10−3

3 radius 0.5641 -0.5641 1.27.10−3

4 centerZ 0.3626 0.3626 1.52.10−4

5 dx 0.1055 -0.1055 3.94.10−4

6 dz 0.0999 -0.0999 4.04.10−4

(f) Skewness at 70 %MVC.

Table 4.8: Detailed laplacian kurtosis and skewness features sensitivity for all parameters
on the mean features of the ten anatomies. Highlighted values in red correspond to values
indicating a non monotonous effect of the parameter.

ysis based on the EEM. The 64 simulated signals per grid are generated using a recent
multilayered cylinder muscle model [10]. This model allowed us to compute all the sig-
nals on the same potential surface map provided by the DOE definition which describes
the different electrode grid to model, from the EEM. This modeling formalism allows us
to study only the electrode grid effect on the generated signals. In total, 16 electrode
grid composed of 64 electrodes are defined and computed for each contraction level and
anatomy. This gave us 5 × 16 × 64 signals for this study. Also, monopolar, bipolar and
laplacian arrangements on the grid are tested for this analysis. Moreover, 10 different
anatomies were generated with the same properties (number of MUs, adipose and skin
tissue conductivities and thicknesses) but with different position of the MUs within the
muscle. We did this in order to do a robust analysis of the parameters sensitivity and to
investigate the possible influence of the MU positions on the sensitivity measures. The
main result of this study is the identification of the tested parameter that has the higher
impact on the amplitude descriptors: the grid rotation. A misalignment of the grid with
muscle fibers will have much more effect on the recorded HD-sEMG signals than having
an increase of the lateral inter-electrode distance. Other parameters with high impact are
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the lateral grid position and the electrode radius variation. Thus, we assessed that the
HD-sEMG grid layout (inter-electrode distances) induces lower significant deviations on
the signals than the grid position. Furthermore, placement of MUs within the muscle has
a little effect on the classical parameters sensitivity. However, HOS features, especially
at lower contraction levels, seem to be sensitive to the MU placement particularly with
monopolar and laplacian configurations. According to the results, we also assessed that
the ARV and RMS features in monopolar arrangement have the same sensitivity and thus
are equivalent for our study. Finally, future works will focus on the testing of frequency
features in complement of the amplitude descriptors of the HD-sEMG signals. Actually,
those features have also desmonstrated their usefulness in assessing muscle fatigue and
neuromuscular diseases [159].

This study has been performed with an analytical model using a multilayered cylinder
muscle with a high spatial resolution of the surface maps and a high number of simulated
MUs [10]. This kind of study is useful for helping practitioners in designing efficient
instrumental protocols that take into account the results of such sensitivity analysis. In
fact, they have to be careful about the grid placement according to the muscle fibers
orientation. A misalignment of a few degree will bias the recording signals between the
subjects and thus, give false interpretation of the results. This result is in agreement with
a previous study [160] where authors only studied the rotation effect of the grid according
to the fiber orientation. Also, the lateral center of the grid has to be carefully chosen. On
the same subject, an other adjustement of the lateral grid center between two recordings
will induce a different investigation region of the muscle. Thus, different MUs will be
examined and different results will be obtained. Future sensitivity analysis studies, using
the described HD-sEMG model, will focus on both anatomical and neural parameters of
the muscle to evaluate their effects on the amplitude descriptors.

4.3 sEMG/force relationship estimation
In parallel to this thesis, another thesis was realized in the same laboratory focusing on
the modeling of the sEMG/Force relationship by data analysis of high resolution sensor
network [53]. Considering the close relationship between these two theses, collaborations
were performed [57, 47]. Signal processing, data fusion and experimental recordings were
performed within the framework of the other thesis [53] and simulation procedure were
performed in this thesis framework. This study was mainly performed by Al Harrach [57],
yet we believe this study is a good illustration of the applications that can be performed
using the proposed models.

We know that a direct relationship exists between the sEMG and the exerted force
[161]. In addition to the information contain in the sEMG signal [162] and its features
[163, 164, 165], we can register anatomical facts like the location and the shift of the Neu-
romuscular Junction (NMJ) [42], mechanical behaviors [27] as well as fatigue evaluation
[166, 167, 165]. In fact, the sEMG/force relationship has been a controversial topic of
inspection for researchers since the early 70s [168, 169]. The reason behind this grown
interest in this relationship is motivated by the fact that a better understanding can con-
tribute to a great extent in the force estimation [170] and modeling paradigms in both
healthy and pathological contexts [171, 172].

The study of the relationship between the sEMG signal and the muscle force in isomet-
ric non fatiguing voluntary contractions, and understanding the factors and mechanisms
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that affect it, are essential to the modeling and estimation steps. There are several stud-
ies in the literature that explore the shape of the relationship between sEMG signal and
muscle force [22]. However, this relationship is usually based on the sEMG recorded from
an individual muscle and the global force of a certain joint due to the high complexity of
the experimental evaluation and thus, has a lack of realism. According to papers from the
literature [168, 173, 174], the sEMG/force relationship shape is muscle specific. It can be
either linear [174] for the first dorsal interosseous or non linear [174] for the Biceps Brachii
(BB) for example. We have to insist here on the fact that the muscle force measured ex-
perimentally for the BB is not the individual muscle force but the summation of forces
produced by the group of muscles that cocontract with these muscles. Thus, aside from
small muscles like the interosseous muscles of the hand, it is complex to perform a reliable
investigation of an individual muscle sEMG/force relationship using experimental studies.
Based on these observations, numerical simulation could help to identify and analyze this
relationship. In such a way, we need to use simulation in order to have a reliable anal-
ysis of the form variation of this relationship since we would have a direct access to the
individual force and corresponding sEMG signals generated by the same MU recruitment
pattern. However, the efficiency of this approach in assessing more precisely the HD-
sEMG/force relationship is strongly related to the physiological realism of the employed
generation models. Along these lines, Zhou and Rymer [22], presented a simulation study
that tested the effect of different parameters on the shape of the obtained normalized
sEMG/force relationship [22]. They used the motoneuron pool and force models devel-
oped in [20] and adapted them to fit the first dorsal interosseous muscle. To model the
sEMG signal, they used Hermite Rodriguez (HR) functions [22]. They tested different
recruitment and firing rate strategies and two different types of MUAP-twitch relations
as well as the effect of MU firing synchrony that is supposed to occur during fatigue [22].
They found that the firing rate had an influence on the shape of the relationship but the
MUAP/twitch relation had the major influence. The synchrony did not have an impact
of the HD-sEMG/force relation form [22]. Even though this study proposed to test the
factors governing the HD-sEMG/force relationship shape, it lacks realism in the sEMG
signal simulation model as well as MU firing rate strategies and force generation. Some
important parameters describing the skeletal muscle are missing such as the MU type
distribution where it is well known that the MU type has a significant impact on the
generated twitch force as well as its corresponding MUAP.

Then, based on these linear and nonlinear relationship hypothesis, Botter et al. [175]
tried to asses this relationship by classing the sEMG/force relationship into three patterns:
Linear, Nonlinear with downward concavity and Nonlinear with upward concavity. Thus,
they defined the sEMG/Force relationship for each muscle by a nonlinear relationship
with two coefficients: one that defines the muscle contribution and the other defines the
nonlinearity degree. However, there is no simulation study to test the accuracy of this
type of function. Moreover, they used the instantaneous averaged envelope of all the grid
sEMG signals which is not necessarily representative of muscle activation.

In this study, we propose to study in details, through a focused sensitivity analysis,
the effect of different neural (recruitment strategy and firing rate), functional (MUs type
percentages in the muscle) and physiological (subcutaneous tissue thickness, skin tissue
thickness and muscle length) parameters on the shape of the sEMG/force relationship
function for the purpose of a better sEMG/force relationship modeling and estimation.
After the selection of the suitable mathematical model, a simple sensitivity analysis is
performed to evaluate the influence of neural, anatomical and physiological parameters
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on the model coefficients.

4.3.1 HD-sEMG generation model

The 8×8 HD-sEMG signals were simulated using the fast multilayered cylindrical model
[10] developed in chapter 1. The limb is depicted as a three layered cylinder (muscle, adi-
pose and skin tissues) in which the sources are located longitudinally within the muscle
layer. The source is portrayed as a spatio-temporal function which describes the gener-
ation, propagation and extinction of the intracellular action potential at the end plate,
along the fiber and at the myotendinous area, respectively. sEMG signal recordings are
computed by surface integration under each electrode area of the generated potential map.
This approach allows us to simulate a wide variety of electrode shapes and grids without
simulating again the muscle’s electrical activity. This electrical activity analytical calculus
is fully performed in frequency domain and parallel computing is implemented in order to
achieve optimal speed. The global parameter values used for the simulation are presented
in Table 4.9. These parameters are based on existing data and are constant throughout
this study. The studied parameters involved in the shape analysis of the sEMG/force
relationship will be detailed in section 4.3.4. We should note that the bone radius as well
as the Brachialis (BR) are considered for the placement of the MUs in the muscle layer as
exhibited in Figure 4.8b. The value of the bone and BR radius is the mean value measured
using ultrasound from 6 different subjects (see section 4.3.3). Mitchell’s best-candidate
algorithm (see section 2.6.2) was used for the placement of the MUs in order to position
the MUs homogeneously and mimic the BB anatomy in a more realistic manner than the
unconstrained uniform law [176]. For the positioning of the 8 × 8 HD-sEMG grid it was
placed, as presented in Fig. 4.8a, at 1 cm below the Neuromuscular Junction (NMJ). The
details of the channels (diameter and inter-electrode distance) are depicted in Fig. 4.8c
and presented in Table 4.9.

Table 4.9: Fixed parameters of the cylindrical HD-sEMG simulation model.

Parameter Value (unit)
Number of MU (nUM) 400

Time frequency sample (ft) 2048 (Hz)
Radius (ρa) 46.48 (mm)

Bone + Brachialis radius (ρd) 18.23 (mm)
Radial muscle conductivity (σmρ) 0.1 (S.m−1)
Angular muscle conductivity (σmθ) 0.1 (S.m−1)

Longitudinal muscle conductivity (σmz) 0.5 (S.m−1)
Adipose tissue conductivity (σf ) 0.05 (S.m−1)

Skin conductivity (σs) 1 (S.m−1)
Center of electrode grid (θ, z) (0, 30) (◦, mm)
Number of electrodes (nθ;nz) 8 × 8

Electrode radius (re) 1.5 (mm)
Inter-electrode distances (dθ, dz) (4, 4) (mm, mm)

Simulation time (T) 5 (s)
Angular discretization (kθ) 101
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(a) The position of the HD-sEMG grid with respect to the
cylinder parameters.

(b) The cross section of the cylindrical
model with the different layers: muscle,
adipose and skin tissues.

(c) The HD-sEMG grid parameters and position.

Figure 4.8: The cylindrical limb model and HD-sEMG grid.

4.3.2 Muscle force generation model
Each MU responds to an impulse from the Central Nervous System (CNS) by producing a
mechanical response, namely, a twitch. The twitch characteristics depend on the MU type
generating it [99]. Thus, in order to simulate the force produced by an individual muscle,
we need to model the summation of particular twitches for the different types of MUs
according to their shapes. In [98], authors proposed an analytical model of the twitches
identified using hierarchical genetic algorithm. This model can estimate the individual
muscle force contribution of the elbow joint. Consequently, in this work we will use this
model in order to simulate the force produced by the BB. The twitch parameters and
their values for the different MUs are presented in Table 4.10.

The analytical function describing the MU twitch response to a neural stimulus is
described by [98]:

FMU(t) = ptme−kt (4.7)
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Table 4.10: Twitch parameters from [98].

MU type Td (ms) Tc (ms) Thr (ms) Fmax (N)
S 70 80 200 0.0382
FR 30 40 100 0.191
FI 60 70 175 0.0764
FF 20 30 60 0.328

With Td as the electromechanical delay between the time the stimulus is received and the
start of the contraction, Fmax the twitch maximum value, Tc the contraction time between
the start of the contraction and when it reaches Fmax, Thr the duration between the start
of the contractile response and the moment the force decreases to half the maximum value.

with p, m and k are constants defined as:

k = ln (2)
−Tcln

(
(Thr
Tc

)
+ Thr − Tc

m = kTc, p = Fmaxe
−kTc(ln(Tc)−1)

Accordingly, the total force F (t) developed by the muscle is obtained as follow:

F (t) =
N∑
i=1

(FMUi(t) ∗
Pi∑
k=1

δ (tk)) (4.8)

Where δ is the Dirac function, tk is the discharge instant, Pi the number of impulses
in the ithMU discharge impulses train, N is the total number of active MUs in the muscle
for a specific contraction level and ∗ is the convolution operator. It is important to note
that the twitch parameter set is fixed for all the proposed simulations.

4.3.3 Model personalization using experimental data
In this subsection, an experimental protocol is described to extract data that will be used
to personalize the HD-sEMG generation model in order to provide more bioreliable sim-
ulations. For this purpose, six healthy male subjects (mean ± std, age: 27.2 ± 1.3 years;
stature: 176.8 ± 5.1 cm; body mass: 73.8 ± 7.3 kg; Body Mass Indicator (BMI): 22.6
± 1.6) participated in the study respecting the declaration of Helsinki. All participants
provided their written consent and did not relate any history of muscular or neurophysi-
ological problem at the upper limbs. First, an electrostimulation device (Compex Sprt-P,
Medicompex SA, Ecullens, Switzerland) was used to locate the NMJ of the BB [177]. This
NMJ position is then used to place the grid and to measure the physiological parameters
with ultrasound, by placing the probe at the same location as the grid, with elbow angle
fixed at 90◦. Then, an ultrasound device (Siemens ACUSON Antares 5.0 Ultrasound
System) with a 7.5 MHz probe was used to scan the specified site of the BB. For each
subject, a cross sectional transversal ultrasound image was taken at 1 cm below the NMJ
(position of the HD-sEMG grid) in order to measure the skin and adipose tissue thickness
(see Fig. 4.9c). Then a longitudinal image of all the BB was taken by sliding the probe
starting from the deltoid insertion to the elbow tracing a straight line outlined at the
middle of the muscle (see Fig. 4.9a). Finally, a panoramic image for the quantification of
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the muscle section was taken by also sliding the probe around the muscle at 1 cm below
the NMJ (see Figure 4.9b). These three images were taken at rest position (no muscular
contraction) for all subjects. This protocol was repeated twice, and the average value was
considered for further analysis. All measurements were performed by a skilled experi-
menter with elbow angle fixed at 90◦. We computed the IntraClass Correlation (ICC) for
one of the subject for which we repeated the measurements three times. We obtained an
ICC > 0.95 which indicates the reproducibility of the ultrasound measurements. We also
repeated these measurements at approximately 50 %MVC for several subjects in order
to determine the BB diameter increase percentage. We found it equal to ' 30% of the
original value.

(a) The longitudinal ultrasound image. (b) The panoramic ultrasound image.

(c) The cross section ultrasound image.

Figure 4.9: The three ultrasound images of the BB muscle taken for the extraction of
morphological parameters for one of the subjects.

The parameters values extracted from the ultrasound images are presented in Table
4.11 for the six subjects where ρb describes the adipose tissue thickness, ρc the skin tissue
thickness and L the muscle length.
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Table 4.11: The measured morphological parameters using ultrasound images for each
subject

Subject ρb (mm) ρc (mm) L (mm)
1 2.33 1.45 89.8
2 3.40 1.20 126.1
3 2.70 1.30 97.4
4 3.58 1.55 95.6
5 1.68 1.75 93.3
6 2.30 1.13 98.4

4.3.4 Simulation procedure
For each parameter set, we generated five anatomies with different MU placements. For
each anatomy, 10 isometric contractions were simulated at: 10, 20, 30, 40, 50, 60, 70, 90
and 100% MVC. The duration of the simulation for each force level was 5 s. The sEMG
and force signals were simulated at a sampling frequency of 2048 Hz. As previously
described, we targeted the effect of three types of parameters: anatomical, neural and
physiological.

For the anatomical parameters we distinguished between three realistic MU distribu-
tion percentages as shown in Table 4.12.

Table 4.12: MU percentages for each distribution.

MUs distribution SMU (%) FRMU (%) FIMU (%) FFMU (%)
BBInt 33 17 17 33
BBSlow 43 15 15 27
BBFast 37 10 10 43

Where BBInt defines an "intermediate" muscle, BBSlow describes a "slow" muscle and
BBFast a "fast" muscle. These percentages were chosen in order to obtain a realistic
distribution of MUs types in the muscle by respecting the total percentage of slow (∼
40%) and fast (∼ 60%) MUs within the BB [118, 28]. We have to recall the four types
of MUs present in the muscle: Slow (S), Fast Resistant (FR), Fast Intermediate (FI) and
FF.

Concerning the neural parameters, we defined two different recruitment strategies that
we called High Recruitment Strategy (HRS) and Low Recruitment strategy (LRS). The
LRS implies that there isn’t FF MUs recruited before 50% MVC (see Fig. 4.10). On the
other hand, the HRS indicates that FF MUs recruitment threshold is below 50% MVC
and thus, some FF MUs are recruited at 50% MVC (see Fig. 4.10). These relationship
are equivalent for all MUs type distributions.

Moreover, we also tested the linear and a nonlinear rate coding strategies. Usually,
the linear rate coding is adopted in simulation. It was proposed by Fuglevand et al. [20],
where he considered that motoneuron firing rate increases linearly with the excitatory
drive between recruitment threshold and peak firing rate levels [20]. However, in a recent
experimental study [21], it was observed, using sEMG decomposition techniques, that
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Figure 4.10: The profiles of recruitment threshold with respect to the MUS for the LRS
and HRS.

the MU firing rate follows a nonlinear law. For the two types of firing rates presented
above, the "onion skin" phenomenon described in [70] that defines a MU specific firing
rate increasing with respect to excitation is used in the MU recruitment scheme model.
This implies that MUs have specific firing rate/excitation slopes [23, 21].

Lastly, for the morphological parameters, we tested the influence of the adipose tissue
thickness, skin tissue thickness and muscle length by simulating the HD-sEMG signals
using the values obtained from ultrasound images and comparing the influence of each one
of them. The schematic representation of the simulations with respect to the parameters
variation is presented in Fig. 4.11 with the morphological parameters corresponding to
each simulation are detailed in Table 4.13.

Figure 4.11: Schematic diagram presenting the configurations of parameters used for the
different simulations where Sim defines the different morphological values defined in Table
4.13.
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Table 4.13: Morphological parameters used for simulations

Sim ρb (mm) ρc (mm) L (mm)
1 2.74 1.42 101.0
2 1.68 1.42 101.0
3 3.58 1.42 101.0
4 2.74 1.75 101.0
5 2.74 1.42 126.1

Where Sim 1, Sim 2 and Sim 3 represent the average, minimum and maximum values for
the adipose tissue thickness and the average values for the skin tissue thickness and muscle
length respectively. And Sim 4 and 5 represent the maximum values for the skin thickness
and muscle length with average value for the adipose tissue thickness respectively.

Subsequently, we have in total 10 different configuration of parameters × 5 different
anatomies × 10 levels of muscle contractions corresponding to 500 different simulations.
For both HD-sEMG and force signals, we simulated a plateau of a constant force that
lasted 5s at each contraction level (2048 Hz sampling frequency).

4.3.5 Data fusion & HD-sEMG/force relationship fitting
The HD-sEMG technique can be considered as an imaging tool [61] in complement to
ultrasound technique and Magnetic Resonance Imaging (MRI) for assessing muscle archi-
tecture and functionality. Therefore, we propose to use an automatic and personalized
channel selection method based on image segmentation. This method is obtained using
a previously validated HD-sEMG image segmentation method, the watershed algorithm
[178]. This approach is a non parametric unsupervised segmentation method that se-
lects an optimal threshold based on discriminant analysis to maximize the separability
of the classes in grey levels [179, 180]. This thresholding was determined on monopo-
lar Root Mean Square (RMS) value maps for the ten studied contraction levels (10%
to 100% MVC). We chose to use the Root Mean Square (RMS) parameter as an am-
plitude descriptor since it has shown robustness to spatial aliasing in comparison with
the Average Rectified Value (ARV) which is usually used in similar studies [181]. For
each contraction level, different filters are computed according to the RMS values map.
This way, the chosen filter is a compromise of all the filters by multiplying the computed
binary matrices. This filter is then applied to the RMS value maps in order to remove
the unneeded channels. Finally, the final RMS value is obtained by averaging the val-
ues of the remaining channels. This RMS value will be used for the estimation of the force.

Based on the literature, there are different types of proposed HD-sEMG/force re-
lationships, the linear relationship (F = aRMS + b) [182], the polynomial relationship

(F =
n∑
i=0

pnRMSn) [183, 184], the power relationship (F = aRMSb) [175] or the exponen-

tial one (F = a expbRMS) [185]. Thus in this section, we propose to test these hypothesis
on our database of 500 couples of signals (HD-sEMG, force) in order to assess the best
fit. The fitting will be done by least square minimization. Which means that based on
a predefined parametric model, the outcome of the fitting is an estimate of the model
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coefficients. In order to do so, the difference between the simulated and estimated force
by the model is minimized by the least square algorithm.

In order to evaluate the fitting models, we will compute the Normalized Root Mean
Squared Error (NRMSE) between the simulated force and the estimated force by fitting for
each one the ten simulations (parameter configurations discussed in the previous section)
and five anatomies. This NRMSE is defined by:

NRMSE = 1
F̂

√√√√ 1
Nc

Nc∑
i=1

(Fi − Fei)
2 (4.9)

Where Nc is the total number of contraction levels, Fi is the averaged simulated force
at the ith contraction level over the 5 s of contraction, Fei is the estimated force by fitting
at the ith contraction level and F̂ is the deviation between the maximum and the minimum
value of F (Fmax − F (0)).

Moreover we used the R-square value expressed by:

R-square = SS

SST
− 1 (4.10)

with SS =
Nc∑
i=1

(
Fi − F̂

)2
and SST =

Nc∑
i=1

(
Fei − F̂

)2

The R-square value can take on any value between 0 and 1, with a value closer to 1
indicating that a greater proportion of variance is accounted for by the model. It indicates
how successful the fitting is in explaining the variation of the data.

4.3.6 Results

sEMG/force relationship shape variation with the different parameters

The two simulation models along with the processing (data fusion) stage allowed the
computing of the sEMG RMS in mV and the corresponding force value in Newton (N)
at a given excitation level. As previously explained, three morphological parameters that
are suspected to affect the HD-sEMG/force relationship were tested. These parameters
are the adipose tissue thickness (ρb), skin tissue thickness (ρc) and muscle length (L).
Figure 4.12 illustrates the HD-sEMG/force relationships corresponding to different values
of these parameters for the linear rate coding, HRS recruitment strategy and first MU type
distribution BBInt. For the adipose tissue thickness we compared between the minimum,
average and maximum values obtained from ultrasound (see section 4.3.3). As for the
skin tissue thickness and the muscle length, the average and the maximum values (see
table 4.11) were compared.

Concerning the variation of the relations for different adipose and skin tissue thick-
nesses, we can clearly state that these parameters have a direct effect on the HD-sEMG/force
relationship dynamic. Furthermore, the variation of these two parameters have the same
effect on the relation curve. This effect manifests by shifting the curve toward smaller
RMS values with increasing thickness value. On the contrary, no noticeable impact was
observed from the muscle length variation.

Afterwards, the effect of both anatomical and neural parameters on the HD-sEMG/force
relationship was considered. Figure 4.13 exhibits the relations relative to different types
of these parameters. First, the relations for the three considered MU type distribution
percentages BBInt, BBSlow and BBFast (see Table 4.12) illustrated for the five different
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(a) Adipose tissue thickness. (b) Skin tissue thickness. (c) Muscle length.

Figure 4.12: The HD-sEMG/force relations for the five anatomies relative to different
morphological parameters.

anatomies for the linear rate coding, HRS and average values of the morphological pa-
rameters were presented. Then, the two different rate coding types: L and NL as well as
the two recruitment strategies: LRS and HRS were considered. For the MU type distri-
butions, we can see an impact on the shape of the relationship, especially for the BBFast
(Figure 4.13a). The main effect is the change of the curve inflection point position (see
Figure 4.13).

If we consider now the neural parameters influence (Figures 4.13b and 4.13c), small
variation between the relations for linear and nonlinear rate coding can be noticed in both
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LRS and HRS cases. Also, there is a shift in the position of the curve inflection point
between LRS and HRS.

(a) MU type distributions. (b) Firing rates for the LRS. (c) Firing rates for the LRS.

Figure 4.13: The HD-sEMG/force relations for the five anatomies relative to anatomical
and neural parameters (see Table 4.12) with the points indicated on the curves are the
inflection points).

sEMG/force relationship modeling

The results of the fitting for the different functions mentioned in section 4.3.5 are presented
in Figure 4.14. Figures 4.14a and 4.14b present the box plots of the NRMSE and the
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R-square computed for the ten simulation cases respectively (see section 4.3.4). We can
see that we have maximum NRMSE values for the exponential type fitting. We also have
similar results for the power type as well as linear fittings. However, we have the minimal
error and maximal correlation between the simulated force values and the predicted force
values for the polynomial fittings (from order 3 to order 9).

(a) The variation of the NRMSE relative to the fitting method for the
different simulations.

(b) The variation of the R-square value relative to the fitting method for
the different simulations.

Figure 4.14: The variation of the evaluation values with respect to the fitting type.

Afterwards, a Kruskal Wallis nonparametric one-way ANOVA was performed on both
NRMSE and R-square value. This test revealed significant differences for the NRMSE
(χ2(df= 10) = 86.32, p < 10−6) as well as for the R-square value (χ2(df= 10) = 101.56,
p < 10−6) between the ten methods used to describe the shape of the HD-sEMG/force
relationship. Then, Post-hoc tests revealed maximal difference between the linear, ex-
ponential and power type fittings with 3th to 9th order polynomial fittings. These tests
allows us to chose the best way to characterize the variation of the individual force with
the RMS value. Whereof, we found the best regression type model to be the polynomial
fitting (from order 3 to order 9). Moreover, we can notice that with increasing polynomial
order, we have decreasing NRMSE and increasing R-square value. These values decrease
significantly from the second to the third order polynom, where it attains a minimal value
of 2.4 % of error, then it remains near this value as far as the 9th order polynom where it
decreases to 1.6 %.
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Based on the study presented above, the polynomial fitting seems to be the most
adequate for the studied relationship. The choice of the polynom degree should be a
compromise between minimal error and complexity (number of coefficient to estimate).
Thus, the 3rd order polynom presents a good compromise from the number of unknown
parameters to find point of view, since we have to consider the direct application of this
polynom in the force estimation model (where the aim will be to estimate the parameters
of the polynom). The corresponding model equation is given by:

F = P3RMS3 + P2RMS2 + P1RMS + P0 (4.11)

Where P3, P2, P1 and P0 are the polynomial coefficients obtained by the least square
algorithm.

Based on the choice of the 3rd order polynom, the NRMSE between the force value
obtained through the polynom and the simulated value were computed. An error that
varies between 0.99 and 2.35% with a mean ± std = 1.64±0.17% was found.

In presence of residual muscle activity and noise, the force level is assumed to be equal
to 0 for an almost 0 RMS value, giving P0 = 0. Therefore, the fitting procedure should
be adapted in order to take into account the first point of the relationship (0 mV , 0 N).
Thus, an adapted version of the least square algorithm presented above was used, where
the curve was forced to pass by the origin point. This was done through the use of a
linear constraint with the linear least square algorithm. The error results obtained using
the optimization method are depicted in Tables 4.14 for the different configurations of
parameters and the five MU anatomies. The new mean error is equal to 1.80 ± 0.26%
which indicates an increase of 0.15% of fitting error in comparison with the original fitting
algorithm with no constraint.

Table 4.14: The NRMSE computed for the 3rd degree polynom fitting by optimization
for the different morphological, anatomical and neural parameter values in %.

Anatomy
BBInt BBSlow BBFast

LRS/L HRS/L LRS/NL HRS/NL LRS/L LRS/L LRS/L
Sim1 Sim2 Sim3 Sim4 Sim5 Sim1 Sim1

1 2.20 2.31 2.21 2.48 2.31 1.61 1.65 1.54 1.82 1.23
2 1.65 1.54 1.33 1.78 1.54 1.57 1.39 1.71 1.66 1.51
3 1.94 1.34 1.37 1.70 1.34 1.75 1.70 1.38 1.89 1.65
4 2.15 1.77 1.24 2.14 1.77 1.42 1.71 1.93 2.19 2.31
5 1.90 1.73 1.77 1.55 1.73 2.29 1.10 1.83 2.21 2.35

Using the relationship obtained from the fitting study above, we performed a focused
sensitivity analysis of the variation of the polynomial coefficients according to the previ-
ously discussed parameters. Therefore, the same data obtained from the models described
previously, was exploited to study each parameter effect on the polynomial coefficients.
Figures 4.15 and 4.16 illustrate the variation of the coefficients P3, P2 and P1 according
to adipose and skin tissue thickness variation respectively. These results confirms our
previous observation that all the coefficients change in the same manner. By inspecting
further the plots in Figures 4.15 and 4.16, we can notice that we have the same sign for the
coefficients, P3 and P1 that are always positive in contrast to P2 which is always negative.
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Figure 4.15: P3, P2 and P1 coefficients variation according to adipose tissue thickness
value for the five anatomies.

Figure 4.16: P3, P2 and P1 coefficients variation according to skin tissue thickness value
for the five anatomies.

Also, we can observe that the parameters amplitude increase while increasing skin and
adipose tissue thickness. This means that when the skin or adipose tissue increases, we
obtain the same force for less RMS value due the spatial filtering of the sEMG signals
caused by these tissue conductivities.

Considering now the MU type distributions, the variation of the polynom coefficients
with respect to the MU type percentages in the muscle are presented in Figure 4.17.
The first observation from Figure 4.17 is that we have the same signs for the polynomial
coefficients in the three MU type distributions cases. If we compare between BBInt and
BBSlow, we can see that we have an increase in the polynom coefficients for BBSlow,
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Figure 4.17: P3, P2 and P1 coefficients variation according to the different MU type
distributions for the five anatomies.

where we have more SMUs than FFMUs, in comparison with BBInt where we have the
equal numbers of SMUs and FFMUs. On the contrary, if we compare between BBInt and
BBFast, where we have more FFMUs that SMUs, we can see a decrease in all parameters.

Finally, for the neural parameters evaluation, if we look at the polynom coefficients
presented in Figure 4.18, we can see the influence of the recruitment strategy. For almost
all the different anatomies we have a decrease in the value of the coefficients when we go
from LRS to HRS. This is true in both linear and nonlinear rate coding cases. Differently,
if we compare between the polynomial coefficient for the linear and the nonlinear rate
codings, we can see that we have slightly higher coefficient values for the nonlinear rate
coding.

4.3.7 Discussion & Conclusion
This simulation study based on muscle modeling allowed us to explore the parameters
that affect the HD-sEMG/force relationship. In addition, using this realistic personalized
HD-sEMG simulation model along with an individual force generation model, we were
able to find the most adequate equation that can describe this relationship in isometric
non fatiguing voluntary contraction context.

The first part of this study, as previously explained, was aimed towards analyzing the
different types of parameters that can influence the shape of the sEMG/force relationship.
Starting by the morphological parameters, we found that the adipose and the skin tissue
thicknesses have an impact on the dynamic of the relationship. This effect is expected
due to the filtering effect of these tissues on the sEMG signals [186]. This filtering effect
is more pronounced for the skin tissue as for the adipose tissue.

For the functional parameters, we observed a change in the position of the relationship
curve inflection point for the different distributions of MU types in the BB muscle. The
inflection point position has the highest force value (>45 N) for the BBSlow muscle type
and the lowest force value (<25 N) for the BBFast muscle type. As for the BBInt muscle
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Figure 4.18: P3, P2 and P1 coefficients variation according to the different spatial re-
cruitment strategies (LRS vs HRS) and firing rates ( linear vs nonlinear) for the five
anatomies.

type distribution the position of the inflection point is between 30 and 40 N . This obser-
vation is similar in all five anatomy cases. These variations can be explained according to
the MU distribution types. For example, for BBFast distribution, we have more FFMUs,
therefore it is expected for the relationship to change shape earlier than in the BBInt case
where we have equal number of SMUs and FFMUs which means FFMUs are recruited
later on, even more so for the BBSlow where we have more SMUs than FFMUs which
explains the inflection point at 50% MVC (i.e: the fifth point on the plots). One can also
observe that the BBInt strategy reaches the higher force value at 100% followed by BBFast
and BBSlow strategies respectively. This important observation put a focus on the role of
both SMUs and FFMUs in building the force output.

Lastly for the neural parameters, we found a variation in the position of the inflection
point between LRS and HRS. If we compare between the first plot in Figure 4.13b and
4.13c, we can see that the inflection point of the HRS curves are positioned at 50% MVC
instead of 40% MVC for the LRS. This can be explained by the fact that for the HRS
strategy, we have FFMUs that are recruited before 50% MVC which is not the case for
the LRS strategy. Now, if we compare between the rate coding schemes we can see that
the NL rate coding corresponds to a higher force value (∼ 44 N) than the L rate coding
scheme (∼36 N). For the rate coding scheme effect (Figs. 4.13b and 4.13c), we can notice
that for the same RMS values, we have more produced force for the nonlinear rate coding
in comparison with the linear which is expected since the discharge frequency per MU is
higher in the nonlinear case than the linear one for the same excitation level.

In the second part of this study, we tested different fitting algorithms in order to find
the best equation that describes the HD-sEMG/force relationship. Thus, we compared
between four different types of models: linear, polynomial, power and exponential (see
section 4.3.5). These models were previously mentioned in literature. However, this is the
first study where they are employed in a simulation context. After computing the NRMSE
results for these different equations, we found the 3rd order polynom to be the best to
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describe the observed relations in terms of NRMSE and number of unknown coefficients.
Afterwards, we used this relation type (3rd order polynom) in order to study in depth

the impact of the morphological, anatomical and neural parameters on the shape of the
relationship. Among the tested morphological parameters, we found an important impact
of the adipose and skin tissue thickness. This impact revealed a monotonic variation of
the polynom coefficient values with the thicknesses values (Figs. 4.15 and 4.16). Where
we have an increase of the coefficients amplitude with increasing skin and adipose tissue
thicknesses. These variations in the values of the polynomial coefficients are dependent on
the muscle’s anatomy. For the MU type distribution in the muscle, we found a consistency
in the variation of the polynomial coefficient values with the shape of the relationship
variation that was analyzed in section 4.3.6. Since this type of functional parameters has
a significant effect of the relationship shape, thence it impacts the coefficients of the 3rd
degree polynom. In fact, we obtained the minimal coefficients for the BBFast distribution
(Fig. 4.15) which is logical since we have maximum number of FFMUs, which mean that
we have larger muscle fibers that produce more force [168]. However, these large fibers
conduct faster and ergo their amplitude will be reduced [168] which explains that we have
less force for same values of RMS. The same explanation could made toward the BBSlow
distribution in order to justify the high coefficient values. The last type of parameters
that we tested was the neural parameters, we observed that the major influence was due
to the rate coding. If we compare between the L and NL rate coding schemes in Fig.
4.18, we can see that we have almost for the five anatomies an increase in values of the
coefficients when we switch from L to NL rate coding. In contrast, we have a decrease
of the coefficient values from LRS to HRS. It was shown by Lawrence and De Luca that
the BB relies essentially on the spatial recruitment to increase its force not on the rate
coding scheme [174]. This was observed in Figs. 4.13b and 4.13c where we have higher
produced force in N in the HRS case for the save %MVC.

Further, we found that the spatial positioning of the MUs in the muscle has an in-
fluence on the relation even when all other parameters are fixed to certain values. This
observation was clearly demonstrated when we generated five different anatomies of mus-
cle (different MU placements) for each configuration of parameters and we found that we
have an important standard deviation among the observed polynomial coefficient set. This
means that the HD-sEMG/force relationship is subject specific and should be adapted to
each subject’s personal morphological, neural and anatomical properties. We also have
to mention, that we tested the effect of different simulations of the recruitment patterns
for the same MU anatomy and muscle configuration. However, we did not find a varia-
tion in the relationship between five different recruitment patterns with the same spatial
recruitment law and rate coding (std = 0.0768 N).

This work presents a reliable and realistic study of the sEMG/force relationship shape
as well as some of the factors that can affect it. One of the closest studies to our paper
was that of Zhou and Rymer regarding the study of the factors that affect the form of the
relationship between the muscle force and the EMG [22, 146]. They found that the firing
rate strategy has a substantial impact on the form of the sEMG/force relation. They
also suggested that this relationship is governed by the relation between electrical and
mechanical properties of individual MUs [22]. However, the sEMG approximation model
used in this study rely on the HR functions [22, 146] which is not very realistic since it does
not take into account MU types, locations or fiber arrangements. It also doesn’t consider
the effect of the electrode positioning nor the adipose and skin tissue thicknesses [47].
Thus, they made many simplifications to their model as well as hypotheses. Therefore,
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their relation models are normalized with respect to sEMG and muscle force values. In
our work, we used a more realistic HD-sEMG simulation model [10] that allows us to
obtain the sEMG signals in mV. This enabled us to represent the relationship between the
sEMG amplitude in mV and the muscle force in N . Thereupon, the 3rd order polynomial
equation proposed in this study allowed the computing of the muscle force value in N
after estimation of the polynomial coefficients. We also tested the impact of different
parameters on the shape of the relationship as well as on the polynomial coefficient values.

The shape analysis of the sEMG/force relationship presented in this work, as men-
tioned earlier, was based on the BB muscle properties in voluntary, non-fatiguing context
and was mainly focused on three groups of parameters. This proposed analysis can be
adapted in order to study the sEMG/force relationships for other striated muscles, where
both sEMG and force generation models parameters should be adapted in order to simu-
late the HD-sEMG and force signals appropriate to the considered muscle. Further, this
method of data fusion and sensitivity analysis can be employed in a fatiguing context in
order to study the effect of additional parameters on the sEMG/force relationship such
as the MU synchronization and firing rates [187, 188]. Other additional parameters to
consider are the different skin, adipose and muscle tissue conductivities that have an im-
portant influence on the RMS amplitude [11, 189]. However, there is a lack of realistic
studies in order to determine the values for these conductivities. In our study, we used the
values proposed by Farina et al. [7] for their cylindrical model. From the point of view of
the force, we can also consider in future work the effect of the different twitch parameters
presented in Table 4.10 on the sEMG/force relationship shape. Moreover, a more realistic
mechanical model (see chapter 3) of the muscle with personlaized parameters as well as for
the electrical model can be used in order to better assess the muscle force generated. This
model (chapter 3) describes the muscle mechanical contribution with the corresponding
muscle deformation during the isometric contraction. During contraction it is known that
the muscle thickness increases and the adipose and skin tissue thicknesses decrease. This
issue will be studied in the next section 4.4.

Finally, we hope that the proposed simulation study will help physicians, practition-
ers, and researchers in biomechanics in a better understanding of the complex mechanisms
responsible of the electrical and mechanical manifestations of the muscle contraction. In
future work, we intend to employ this model in a multi-muscle experimental context where
we will model the individual sEMG/force relationship of the BB from the global moment
produced by the elbow flexors (BB, Brachialis and Brachioradialis) during isometric aniso-
tonic non-fatiguing voluntary contractions.

4.4 Quasi-dynamic model of the skeletal muscle dur-
ing isometric contraction

In this section, we will propose for the first time, an analytical, multiscale and deformable
volume model of a skeletal muscle during isometric contraction. During isometric con-
tractions, muscle thickness, the muscle fiber pennation angle, the muscle fascicle length,
the adipous tissue thickness as well as the skin tissue thickness change. Because all these
architectural parameters modifications, the muscle electrical activity is markedly modified
[190]. Thus, sEMG signal generation modeling should consider those changes in the mus-
cle architecture according to the related muscle deformation. The computation scheme is
presented in Fig. 4.19.
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Figure 4.19: Computation scheme of the deformable model. Formerly, both mechanical
and electrical models performed the simulations without interacting together (opaque red
lines). Currently, the deformable model simulation is performed first and communicate
the corresponding muscle deformation according to the MU recruitment pattern. This
deformation will be considered to shorten the cylindrical muscle volume under isovolumic
assumption (plain red lines).

4.4.1 Deformable muscle model

As introduced, we will define a quasi-dynamic model by using the electrical and the
mechanical model of the striated muscle from the same MU recruitment pattern. This
quasi-dynamic model will consider the muscle deformation during isometric contractions
for the muscle’s electrical activity generation.
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For this purpose, muscle deformation is obtained from from the mechanical model
where the muscle force, stiffness and deformation are computed. Muscle deformation for
the isometric contraction is computed as the single scalar from the mean of the defor-
mation during the sustained contraction. From this deformation, we can determine the
muscle shortening according to its rest length for the given contraction (see Fig. 4.20).

Figure 4.20: Determination of the muscle shortening during the isometric contraction.

Then, assuming isovolumic and isosurfacic hypotheses, the muscle architecture can
be updated. Here, the muscle architecture is described as a multilayered cylinder where
the muscle, the adipose and the skin tissues are considered. During contraction, the
muscle thickness increases whereas the adipose and skin tissues thicknesses decrease. To
determine the deformed muscle thickness, we assume the isovolumic hypothesis:

V0 = V1 (4.12)

Where, V0 is the muscle volume at rest and V1 is the muscle volume during contraction.
Considering the cylinder shape of the muscle, we have:

h1 = h0 − h0.ε (4.13)

with, ε is relative deformation according to the mechanical model, h0 and h1 are
the muscle length at rest and during contraction, respectively. Moreover considering the
muscle radius, we have:

h0π
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(4.14)

with, R0
m and R1

m are the muscle radius at rest and during contraction, respectively.
Considering a shortening of the muscle, h1 < h0 giving a ratio above 1.0 and thus,
an increase of the muscle radius. Because the muscle thickness raises during isometric
contraction, the fiber diameter also raises. We supposed that the fiber diameter is related
to the muscle thickness increase. Also, the MUs and fibers positions have to change
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according to the muscle contraction. As well as with the fiber diameter, the MU and
fiber radial positions change proportionally to the muscle thickness increase while their
angular positions don’t change (see Fig. 4.21).
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Where, d1
f and d0

f are the fiber’s diameter during contraction and at rest, respectively.
ρ1
X and ρ0

X are the radial position of the fiber or the MU during contraction and at rest,
respectively.

Figure 4.21: Illustration of the anatomical changes in the of the muscle between the non
deformed model and the deformed.

Considering the adipose and skin tissues thickness, we use the isosurfacic assumption.
Meaning that their area remains stable, if the radius increase then it will induce a decrease
of their thickness. Thus, we have for the adipose tissue thickness:
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where, t0f and t1f are the adipous layer thickness at rest and during contraction, re-
spectively. And the skin tissue thickness determines as follow:
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where, t0s and t1s are the skin thickness at rest and during contraction, respectively.

Following the implementation of the electrical and mechanical models, this model is
also implemented in Python programming language. Implementation of the deformable
muscle model was facilitated thanks to the modular programming of the electrical and
mechanical models. Both models were developed using the same approach with the same
input, i.e., the MU recruitment pattern. Communication between the mechanical and the
electrical models is performed through the update of the muscle anatomy under isovolumic
assumtion based on the mechanical deformation. Once the muscle volume updates, the
electrical model performs the simulation with the updated parameters.

4.4.2 Results
In this section, we will present a comparison of the same simulation with and without
deformation. First of all, we will study the trend of the muscle anatomical deformation
according to the contraction level. Finally, a comparison between generated signals and
computed statistics will be exhibited at each contraction level from 10 to 100% MVC every
10%. For reliability purpose, we performed the simulations for 5 different anatomies. All
the anatomies followed the same parameters, only the MU positions and their firing times
are different. The parameters used for the simulations are presented in the Table 4.15.

Where N (µ, σ2) denotes the Normal distribution with mean µ and variance σ2, and
U(a, b) denotes the Uniform distribution between the interval [a, b] with a < b.

This table summarizes the personalized parameters values used for the simulations, non
exhibited parameter doesn’t change compared to their presentation in previous chapter
(see Tables 3.1 and 2.8).

Muscle deformation according to contraction level

In this section, we study the effect of the deformation on the anatomical definition of the
muscle according to the contraction level. This way, we will be able to assess the reliability
of the isovolumic hypothesis. On Fig. 4.22, we can see a geometrical representation of
the muscle deformation according to four different contraction levels for one simulated
muscle. Since the 5 simulated muscles have the same defined parameters and only the
MU positions and the MU recruitment scheme is different, the observed results are the
same among the 5 simulated muscles.

As one can see on Fig. 4.22, the muscle length decreases with the increase of the
contraction level. This decrease doesn’t follow a linear relationship. Moreover, we can
also see that the muscle swelling increase with the contraction level. Considering the
nature of the muscle contraction that is an isometric contraction we can see on Fig. 4.22
that the structure tendon-muscle remains stable whatever the contraction level.
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Table 4.15: Parameters used for the simulations

Parameters Value (unit)
Number of MUs (nMU) 770

MU type distribution (S, FR, FI, FF) 25, 15, 17, 43 (%) [28]
S MU radius (rMU

S ) N (2.5, 0.5) (mm)
S MU fibers number (nS) N (100, 10)
FR MU radius (rMU

FR ) N (2.75, 0.5) (mm)
FR MU fibers number (nFR) N (150, 15)

FI MU radius (rMU
FI ) N (3.0, 0.5) (mm)

FI MU fibers number (nFI) N (200, 20)
FF MU radius (rMU

FF ) N (3.25, 0.5) (mm)
FF MU fibers number (nFF ) N (250, 25)

Muscle length (L) 101.1 (mm) [57]
Muscle radius (ρm) 45.0 (mm) [57]
Bone radius (ρb) 15.0 (mm) [57]

Recruitment range (RR) 88 (%) [68]
Time sampling (ft) 4096 (Hz)

Muscle optimal length (Lc0) 91.8 (mm) [144]
Force/length, force/velocity parameters (a, b) 1.0, 0.54

Maximal force (Fmax) 750 (N)
Maximal stiffness (kmax) 16 (N.mm−1) [144]
Tendon stiffness (ks) 30 (N.mm−1) [144]
Tendon viscosity (λ) 19 (kg.s−1)
Muscle weight (m) 310 (g) [191]
S fiber diameter (dSf ) N (45, 1) (µm)

FR fiber diameter (dFRf ) N (50, 1) (µm)
FI fiber diameter (dFIf ) N (55, 1) (µm)
FF fiber diameter (dFFf ) N (60, 1) (µm)
Conduction velocity (v) 4.0 (m.s−1)

Neuromuscular junction center (NMJc) U(-15.0, 15.0)
MU neuromuscular junction dispersion (NMJMU) 10.0 (mm)

Left and right myotendinous length (MTZL, MTZL) N (15,2) (mm)
Radial, angular muscle conductivity (σm) 0.1 (S.m−1)
Longitudinal muscle conductivity (σmz) 0.5 (S.m−1)

Adipose tissue conductivity (σf ) 0.05 (S.m−1)
Adipose tissue thickness (t0f ) 2.0 (mm)
Skin tissue conductivity (σs) 1.0 (S.m−1)
Skin tissue thickness (t0s) 1.0 (m)

In order to better understand the effect contraction level on the muscle deformation,
we will present these deformations (shortening and swelling) according to 10 contraction
levels from 10 to 100% MVC.

On the Figs. 4.23a and 4.23b, the muscle lengthening and swelling are presented
according to the 10 contraction levels. As we can see on Fig. 4.23a, the relationship
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Figure 4.22: Geometrical muscle shortening (bottom) and muscle swelling (top) according
to four contraction levels: 10, 30, 70, 100% MVC. In red the muscle and in blue the
representative tendons.

(a) Muscle shortening according to the contraction
level

(b) Muscle swelling according to the contraction
level

Figure 4.23: Muscle shortening and swelling relationship according to contraction levels.
The red dots exhibits the values of the corresponding effect for the given activation. In
red the linear relationship.

between muscle activation and muscle shortening is non linear. Comparing to [144],
the muscle shortening is measured from the tendon displacement. At 60% MVC the
tendon displaces about 9mm leading to a muscle shortening of 8.9%. Moreover, the
muscle shortens by 7% that is close to experimental measurement [144]. According to the
simulation, this relationship for a muscle like the Biceps Brachii is a convex non linear
function. Yet, in [144] the tendon displacement begins to be steady at 40 and 60% MVC
supposing a maximal lengthening of the tendon (and thus of the muscle) at this muscle
activation level.

Moreover, from observation on Fig. 4.23b, the relationship between the muscle swelling
and the muscle activation is also non linear. In contraction, the authors in [144] didn’t
measure the muscle thickness. As for the shortening this relationship can also be described
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by a convex non linear function.
Finally, we studied the elastic modulus of the corresponding muscle. For this purpose,

the strain (or proportional deformation) was computed as:

ε = L− L′

L
(4.20)

Where L is the muscle length during rest and L′ is the muscle length during contrac-
tion.

Moreover the stress (or force per unit area) value was computed as:

σ = F

A
(4.21)

Where, F is the muscle force generated during the contraction and A the area where
this force is applied. Considering the cylinder shape of the muscle, this area is a disk
giving: A = πR2 with R the muscle radius during contraction.

Figure 4.24: Stress-strain curve. Red dots are the values computed for each contraction
level. Blue line is the linear regression function computed according the to red dots.

According to Fig. 4.24, one can observe that the stress-strain curve is almost linear.
This linearity denotes an elastic response of the muscle to a deformation. This elastic
property is well-known for the skeletal muscle [8]. Moreover, from Fig. 4.24, we can
extract the Young modulus of the muscle. Thus, for this model of the Biceps Brachii we
have a Young Modulus of 0.02 N.mm−2 giving 20 kPa for the first point (10% MVC).
This value is in agreement with measurements on the Biceps Brachii [192].

Comparison on the signal shape

In this section, we will study the effect of the muscle deformation on a signal at 70%
MVC.

As we can see on Fig. 4.25, the deformation of the muscle mainly has an effect of time
shift on the signal. This time shift is observed for all the signals of all the simulations.
One can observe on Fig. 4.25, that the signal generated with the deformable model is
recorded in advance compared to the signal generated with the non deformable model.
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Figure 4.25: sEMG signal on a frame of 100ms recorded from the same electrode from
two simulations where the deformation is considered (green) and isn’t (blue).

In fact, during the contraction, we assumed that the muscle fiber has a higher diameter
than at rest. As supposed in the electrical model [10], the fiber conduction velocity is
related to the fiber diameter. Thus, an increase of the fiber diameter will induce an
increase of its conduction velocity and then, an electrical signal that propagates faster.
Moreover, this time shift effect can be explained from the reduction of the adipose and skin
tissues thicknesses. Intermediate layers between the electrical sources and the recording
system have a low-pass filtering effect that spreads the signal and thus induce a time
shift. Reducing the thickness reduces this filtering effect. Moreover, we can see a slight
alteration on the signal amplitude. This amplitude changing can be explained from the
layer thicknesses change. In fact, reducing the adipose and skin tissues thickness will also
reduce their filtering effect on the signal [57]. On the other hand, there is an increase of
the muscle thickness due to the swelling effect. Accumulation of these effect is hard to
investigate since they are correlated. Effect of the muscle shortening might also have an
effect on the signals since the extinction of the intracellular source along the fiber arises
earlier with the muscle shortening.

Global comparison over several contraction levels

In this section, we will study the effect of the muscle deformation on the statistic computed
on the sEMG signals. The Normalized Root Mean Square Error (NRMSE) is computed
for each simulated muscle between the signals generated with and without deformation
as well as the on the statistics computed on them. The NRMSE is computed as follow:

NRMSE = 1
max(S)−min(S)

√√√√∑M
j=1

∑N
i=1

(
Sji − Ŝ

j
i

)2

N.M
(4.22)

where S is the signal generated without deformation, Ŝ is the signal generated consid-
ering the deformation, N is the number of time sampling of the signal (in these simulations
it is 4096× 6) and M is the number of signals (8× 8 from a HD-sEMG electrode grid).

The NRMSE computed on the statistics follows the same definition as above but
without the sum over the time sampling since the statistics are scalar.
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Figure 4.26: Mean ± std (%) NRMSE computed for the 5 anatomies over the 64 signals
according to the muscle contraction level.

Firstly, we computed the NRMSE on the HD-sEMG signals from the electrode grid
define from Table 4.15 for each anatomy and contraction level. Then, we computed the
mean and the std for each contraction level. Computed mean and std NRMSE according
to the activation level of the muscle is presented in Fig. 4.26. As one can see, this
NRMSE is increasing with the contraction level. The maximum deviation is obtained
at 100% MVC with 7% of deviation. Moreover, we can observe a stable std for each
contraction level exhibiting a slight sensitivity due to the MU positions. Yet, at 100% a
more important std is observed compared to the other contraction level. Thus, at 100%
the MU position has more effect and it can explained from the important deformations
endured by the muscle. This error can be regarded as small, but as we have seen in
chapter 2 about the modeling of the source at the MU scale, a slight deviation on the
signals might induce more deviation on the statistics computed on the signals, especially
on the computed HOS features.

For this purpose, we computed four classical statistics (RMS, ARV, kurtosis and skew-
ness) over the sEMG signals from the grid in order to see the effect of the muscle contrac-
tion for each anatomy. The presented mean ± std NRMSE in Fig. 4.27 is computed as
the mean and std of the mean of the NRMSE computed between the statistics computed
on each sEMG signal. Results are presented in Fig. 4.27.

On Fig. 4.27a, is depicted the NRMSE computed between the RMS values. The
maximum deviation equals to 17.5% and is obtained at 100% MVC, it also increases
monotonously according to the contraction level. We can also notice that the deviation
computed on the RMS is higher than on the signals. Moreover, non negligible std can
be observed for each contraction level, specifically at 20, 50 and 100% MVC. On the
RMS values, the MU positions and the muscle deformation have an important effect.
This trend should also be observed on the other amplitude statistic, the ARV value.
As for the RMS, the NRMSE computed on the ARV is presented in Fig. 4.27b where
the maximum deviation equals to 13.5% at 100% MVC. This deviation is continuously
increasing according to the contraction level. Compared to the std computes for the
NRMSE of the RMS values, the std computed for the NRMSE of the ARV values is more
stable for each contraction level. As expected, the maximum std is observed at 100% MVC
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(a) NRMSE computed between the RMS values. (b) NRMSE computed between the ARV values.

(c) NRMSE computed between the kurtosis values. (d) NRMSE computed between the skewness val-
ues.

Figure 4.27: Mean ± std NRMSE (mean and std) computed between the amplitude
statistics from the non deformable model and the deformable according to contraction
level for the five anatomies.

since it has the maximum NRMSE over the signals. Beside these amplitude statistics, we
also computed Probability Density Function (PDF) shape descriptors, i.e., the flatness
(kurtosis) and the asymmetry (skewness) compared to a Gaussian distribution. These
parameters seem to be sensitive to neural, instrumental and anatomical parameters of the
studied muscle [57].

Concerning the kurtosis deviation (see Fig. 4.27c), the maximum deviation equals
to 10.5% at 50% MVC. Important std is observed for the first contraction level (from
10 to 60% MVC), then kurtosis variability becomes more stable. No particular trend
of the muscle deformation effect on the kurtosis can be retrieved from Fig. 4.27c. Yet,
deeper investigation on the mean kurtosis values for each contraction level exhibits no
modification of the kurtosis value profile according to the contraction level. About the
skewness (see Fig. 4.27d), the maximum deviation equals to 9.4% at 10% MVC. As for the
kurtosis, important std is observed for all contraction levels, particularly between 10 and
60% MVC. Moreover, deeper investigation on the skewness and kurtosis values computed
for each contraction level exhibited no modification in the trends of the feature values
according to the contraction level [157].

Considering all the results exposed in Fig. 4.27, we can assess that apart from the
muscle deformation, the MU positions also have an important effect on the generated
signals. The muscle deformation has a monotonous effect on the amplitude statistics
(RMS and ARV), yet on the PDF shape descriptors statistics (kurtosis and skewness)
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this effect is non monotonous.

4.4.3 Discussion

In this preliminary study, we proposed the first analytical electro-mechanical model of the
skeletal muscles that is able to consider the muscle shortening during isometric contrac-
tion. In fact, this model can simulate and personalize many electro-mechanical behaviors
of the fusiform skeletal muscle in humans as well as animals.

First, we studied the muscle deformation according to contraction level. We saw that
both muscle shortening and muscle thickness increase non linearly according to muscle ac-
tivation. In this study, we also computed the young modulus of the muscle from the given
contractions. From these simulations, we were able to determine the stress-strain curve
exhibiting the elastic behavior of the skeletal muscle. Moreover, from these relationship
we could extract the muscle young modulus and showed an estimated Young modulus in
the same range than experimental studies on the Biceps Brachii [144, 192].

Moreover, we studied the effect of the muscle deformation on the recorded HD-sEMG
signals. To do so, we computed simulations for 5 anatomies respecting the same param-
eters presented in Table 4.15 with the static model and the quasi-dynamic. In total 100
simulations were performed 5 anatomies×2 models×10 contraction level. sEMG signals
were recorded from a HD-sEMG electrode grid placed at the skin surface and that doesn’t
move in the plan (θ;z). Error on the signals (see Fig. 4.26) supposed a slight deviation us-
ing the quasi-dynamic model. Yet, NRMSE computed on the amplitude statistics (RMS
and ARV values) exhibited non negligible effect from the quasi-dynamic model (see Figs.
4.27a and 4.27b). However, with deeper investigation, the amplitude statistics computed
on the signals aren’t changed in their trends. RMS and ARV values still increase according
to the increase of the contraction level.

We also computed the PDF shape descriptors (kurtosis and skewness) on the generated
sEMG signals. We showed that their shape descriptors are also strongly altered from the
muscle deformation (see Figs. 4.27c and 4.27d). Even if shape descriptors are changed,
their amplitude values remain in the range of the static model according to contraction
level. Concerning the kurtosis, it is mainly altered at 50% MVC that is the contraction
level when FF MUs start to be recruited. Concerning the skewness, it is importantly
altered at 10% MVC that is the contraction level when the fewest number of MU and
only S MU are recruited. We can suppose that when the muscle swells, some FF MUs that
were detected with the static muscle model currently aren’t detected anymore from the
electrode or took away the MUs from the electrode and thus, reduce their contribution
to the signal. Unfortunately, this is impossible to evaluate this effect in experimental
conditions. Moreover, reduction of the adipose and skin tissue thicknesses seem to reduce
the filtering on the signals and thus change their shape. Even if the biphasic shape of the
S MUAP remains, the amplitude of the non propagating component is altered and thus
alters the skewness value (asymmetry of the PDF).

This preliminary study underlines the importance to consider the muscle deformation
during contraction on the recorded signals. Considering the muscle deformation adds
more realism to the skeletal muscle modeling. Thus, comparison between sEMG signals
generated from static electrical model can be more accurate using this quasi-dynamic
model. Some studies, such as sEMG/force relationship or MU firing times decomposition
efficiency, will be more precise and provide better results and more reliable knowledge.
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4.5 Conclusion
In this chapter, we presented three different applications of the model proposed in chapters
2 and 3. Reliability of the developed model is crucial but we also believe reproducibil-
ity and repeatability are also important for a model. Representativity of the models
correspond to validation of the model and its ability to describe the underlying phenom-
ena arising during isometric contraction. Reliability of the models is presented in their
respective chapters (electrical model in chapter 2 and mechanical model in chapter 3).

A first study focused on the sensitivity of sEMG signal descriptors according to vari-
ation of the parameters defining the HD electrode grid. These parameters defined the
position of the grid (center of the grid position, rotation) over the skin surface and its
design (electrode radius, inter-electrode distances). This study pointed out the crucial
influence of the grid position and especially the rotation of the grid according to fiber ori-
entation on the recorded sEMG signals. A slight misalignment of the grid will significantly
alter the sEMG signals compared to the well aligned grid. This study, hardly feasible in
experimental condition, can be performed in silico since all the needed parameters are
known and can be fixed between simulations.

The second study proposed a simulation of the sEMG/force relationship in collabora-
tion with another PhD student. This relationship was based on features recorded from the
Biceps Brachii muscle [57]. These features were used to supply personalized parameters
to the electrical model. A complete study of the different relationship proposed in the
literature was performed where we assessed that the 3rd order polynom better describes
the sEMG/force relationship for the Biceps Brachii muscle. Moreover, a sensitivity anal-
ysis studying the effect of morphological, neural and anatomical parameters on the RMS
value of the sEMG performed. For this study, 500 simulations were performed. We used a
classical twitch model to describe the force generation. A next study should be performed
including the multiscale mechanical model proposed in chapter 3.

Finally, we propose a deformable model of the striated muscle during isometric con-
traction. This model combines both models presented in chapter 2 and 3. Determining
the deformation of the muscle from the mechanical model, the muscle anatomy is updated
assuming no change in the muscle volume. Thus shortening of the muscle length will in-
duce a swelling of the muscle thickness. Moreover, we considered the displacement of the
MU centers as well as the increase of the muscle fiber diameters. This increase of diameter
should induce a faster propagation [111] of the intracellular source along the fiber length,
and thus will alter the signals recorded by the electrode compare to the static model. But,
this assumption hasn’t yet been formally assessed in experiments. Effect of the muscle
deformation on the generated signals was assessed computing the NRMSE between the
signals generated from the static and the deformable model. This effect was studied from
isometric contractions between 10 and 100% of the MVC. It exhibited major influence of
the muscle deformation on the generated signals and their statistics. For future simulation
studies, muscle deformation should be considered even for isometric contractions. Using
the multiscale and multiphysic modeling of the skeletal muscle increase the physiological
realism of the studies and thus, provide more accurate results. Moreover, reaching the
information at the MU scale has a considerable interest since it is genuinely hard to record
these data in experimental conditions.
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General conclusion

In this general conclusion, we will run through the essential points that were addressed and
developed within this thesis. Then, we will mention some of the limitations of the proposed
models and we will finish by elaborating the perspective of future works. As previously
explained, this thesis aims at proposing a new multi-physic, multi-scale model describing
the skeletal muscle during isometric contractions. For this purpose, we are faced with
several steps of applied mathematics, computer science, physiology, biomechanics and
signal processing to finally model the electro-mechanical behavior of the skeletal muscle.

The first contribution was the development of an optimized electrical model describing
the electrical activity of the muscle at the skin surface. This modeling includes primar-
ily to propose both motor control of the contraction and an anatomical model of the
muscle. Considering the high number of Motor Unit simulated, an algorithm insuring
fiber density homogeneity in the muscle was developed. In the literature, there exists
no model simulating the muscle electrical activity at the skin surface. Current models
directly simulate the sEMG signal and thus, induce coupling between the sEMG signal
computation and the physical phenomenon. Some new knowledge are available from the
modeling the electrical activity instead of the sEMG. Moreover, with an efficiency and
optimized programming, computation time of sEMG simulation is significantly reduced.
Yet, when reliable and personalized simulation of skeletal muscle was considered, the
computation time of a single simulation was too long to perform studies requiring several
simulations. This important computation time is due to the important number of fiber
source to compute. For this purpose, we also developed a model approximating the fiber
electrical sources at the MU scale. Computation time was significantly reduced of 99%
compared to the fiber electrical source. Moreover, it was expected that this computation
time reduction would induce significant deviation on the reference signal (with the fiber
electrical source). But, this alteration was negligible on the generated signals (less than
2% of error) and not significant on the features computed over the signals (less than 10%).
It has to be noticed that the error induced on the features is a magnitude error, the orig-
inal trend of the features are preserved. Thus, the first contribution of the thesis is the
development of a fast, optimized and reliable model describing the electrical activity of
the skeletal muscle at the skin surface in a high spatial resolution. This model is able to
simulate an electrical activity from 770 active MUs in less than 30 minutes.

The second contribution was to propose and develop a new model describing the
mechanical behavior of the skeletal muscle during isometric contraction. Currently, in the
literature, many skeletal muscle model are proposed. Yet, major issue in these models
is their reliability for voluntary contractions or their computation time that is too long.
For this reason, it is of great interest to propose a model voluntarily controlled where
physiological phenomena, such as the calcium induces by the arriving of a motoneuron
firing, are considered. Moreover, description of these mechanical phenomena was defined
at the muscle scale where it is known that the smallest functional entities in the muscle
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are the motor units. Thus, mechanical description of the muscle was defined at the MU
scale instead of the muscle scale like most of the proposed models. This model was
validated with force profile recorded from a subject implanted with a neural stimulation
device (less than 10% of error on 8 consecutive stimulation). Global trend of the muscle
force generation according to the stimulation intensity was preserved and access to the
mechanical contribution of each MU during the stimulation was feasible. Moreover, a
comparison concerning the optimal stimulation frequency between a classical twitch model
describing the force generation and the proposed model was presented. It exhibited some
limitations of the twitch model to represent this optimal frequency where the proposed one
was able to describe the desire effect. Accordingly, the second contribution of this work
is the proposition of a model describing the contractile outcomes of the skeletal muscle at
the motor unit scale during voluntary isometric contractions tuned by the neural drive.

After developing the electrical and mechanical models of the skeletal muscle, the next
stage of the work was dedicated to the possible applications of these models separately
and of their combination. For the possible applications, we performed a global sensitiv-
ity analysis of the sEMG statistics while varying the parameters defining the recording
system, i.e., the high density surface electrode grid. Thanks to the decoupling of the
muscle electrical activity and the recording system, the lone effects of the HD-sEMG grid
parameters could be analyzed. This study exhibited and confirmed the major influence
of the grid rotation according to the muscle fiber orientation. Experimental studies using
HD-sEMG grid should have a particular focus on the good alignement of the grid with
the muscle fiber. Afterwards, another contribution in these applications was devoted to
the HD-sEMG/force relationship modeling. This study was performed in collaboration
with another PhD student working on the sEMG/force relationship [53]. We carried out
a focused sensitivity analysis using the cylindrical HD-sEMG generation model for the 64
simulated sEMG signals and a twitch based force model for the simulation. We estab-
lished the major parameters that affect the HD-sEMG/force relationship and their effect
on the estimated relation. Following, we compared between different fitting type equations
proposed in the literature and we found the best type that describe the HD-sEMG/force
relation. Accordingly, another contribution was to propose and validate, using realistic
simulations, a relevant model for the HD-sEMG/force relationship. Subsequently, using
this new found equation, we tested the effect of neural, morphological and anatomical
parameters on its coefficients in the aim of quantifying this impact for a better force esti-
mation in later work. Finally, the combination of the electrical and mechanical models to
provide an electro-mechanical model is developed. Considering the muscle as a multilay-
ered cylinder, we determined the muscle deformation with the mechanical model and use
this deformation value to update the cylinder with isovolumic assumption. Then with the
updated muscle, the electrical model can simulate the corresponding electrical activity.
This, study exhibited the importance of the muscle deformation during contraction and
its effect on the recorded sEMG signals. Most of the proposed electrical models simu-
late the sEMG signals in static condition. When quasi-static condition is considered, the
deviation between the static up to 4.5% on the signals and to 90% on certain statistics.
Moreover study of the mechanical behavior of the skeletal muscle with in different config-
urations. Thanks to the cylinder definition of the anatomy, stress-strain relationship can
be studied. These applications exhibited the easy use of the developed models and their
representativity. In fact, a particular focus was put on the generic definition of the model
implementation. This generic definition allows the model to simulate a wide variety of
healthy and pathological muscles.
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To conclude this work, the approaches presented in this work have applications in
many fields; starting by the electrical model that can be applied to clinical studies where
pathological muscles are involved. In the short term, global sensitivity analysis of the
deformable electro-mechanical model will be performed in order to have an overall view
of each parameter influence on the muscle contraction outcomes. This study will provide
new knowledge about the parameter significance on the contraction outcomes. More-
over, quantification of this influence will be accessible by simulating thousands of muscle
parameter configuration. After performing this study, we will have the opportunity to
study the inverse problems of the skeletal muscle contraction. In parallel to the global
sensitivity analysis study, more precise analysis of the sEMG/force relationship using the
quasi-dynamic electro-mechanical model will be performed. Preliminary investigation of
this relationship exhibits the same results presented in [57] , i.e., this relationship can be
described as a 3rd order polynom equation. Yet, muscle deformation has an effect on the
coefficients leading this polynomial equation.

In the medium term, some extensions of the proposed quasi-dynamic electro-mechanical
muscle should be considered such as the including of the muscle fatigue effect or the mus-
cle fiber pinnate angle in order to be able to use the model in different contraction context.
In addition to the possible model extensions, the algorithms for identifying the MU firing
times during an isometric contraction can be assessed using this model. This study, in
complement to the inverse problems study, can provide the possibility to validate the
electro-mechanical model. Validation of the electrical activity of the muscle could never
have been validated due to the complex estimation of some parameters defining the muscle
and of the MUs firing times.

After providing these studies, the quasi-dynamic electro-mechanical model during iso-
metric contraction can be used for patient-specific simulation allowing the access of large
amount of complement knowledge about the neuromuscular functioning. In the long term,
some studies such as the fatigue evaluation, the detection of neuromuscular disorder or
the development of neurorehabilitation can be considered. Moreover, some effects of the
muscle physiology arising during specific moment such as the muscle aging could now
be investigate. Finally, this model could be used as a benchmark for the development
of Finite Element Method (FEM) model described as in the proposed model, i.e., with
a cylindrical anatomy. The development of FEM model will give access to the electro-
mechanical modeling of the skeletal muscle during anisometric contractions.
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