H. W. Barker, G. L. Stephens, and Q. Fu, The sensitivity of domain-averaged solar fluxes to assumptions about cloud geometry, Quarterly Journal of the Royal Meteorological Society, vol.125, issue.558, pp.2127-2152, 1999.

H. W. Barker and B. Wielicki, Parameterizing grid-averaged longwave fluxes for inhomogeneous marine boundary layer clouds, Journal of the atmospheric sciences, vol.54, issue.24, pp.2785-2798, 1997.

P. A. Bogenschutz, A. Gettelman, H. Morrison, V. E. Larson, D. P. Schanen et al., Unified parameterization of the planetary boundary layer and shallow convection with a higher-order turbulence closure in the Community Atmosphere Model: Single-column experiments, Geoscientific Model Development, vol.5, issue.6, pp.1407-1423, 2012.

P. A. Bogenschutz, S. K. Krueger, and M. Khairoutdinov, Assumed probability density functions for shallow and deep convection, Journal of Advances in Modeling Earth Systems, vol.2, 2010.

S. Bony and J. Dufresne, Marine boundary layer clouds at the heart of tropical cloud feedback uncertainties in climate models, Geophysical Research Letters, vol.32, 2005.

S. Bony and K. A. Emanuel, A parameterization of the cloudiness associated with cumulus convection: Evaluation using TOGA COARE data, Journal of the atmospheric sciences, vol.58, issue.21, pp.3158-3183, 2001.

P. Bougeault, Cloud-ensemble relations based on the gamma probability distribution for the higher-order models of the planetary boundary layer, Journal of the Atmospheric Sciences, vol.39, issue.12, pp.2691-2700, 1982.

I. A. Boutle, S. J. Abel, P. G. Hill, and C. J. Morcrette, Spatial variability of liquid cloud and rain: Observations and microphysical effects, Quarterly Journal of the Royal Meteorological Society, vol.140, issue.679, pp.583-594, 2014.

M. E. Brooks, R. J. Hogan, and A. J. Illingworth, Parameterizing the difference in cloud fraction defined by area and by volume as observed with radar and lidar, Journal of the atmospheric sciences, vol.62, issue.7, 2005.

M. C. Vanzanten, B. Stevens, L. Nuijens, A. P. Siebesma, A. S. Ackerman et al., Controls on precipitation and cloudiness in simulations of trade-wind cumulus as observed during RICO, Journal of Advances in Modeling Earth Systems, vol.3, 2011.

J. Vial, J. Dufresne, and S. Bony, On the interpretation of inter-model spread in CMIP5 climate sensitivity estimates, Climate Dynamics, vol.41, pp.3339-3362, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01099071

M. D. Zelinka, D. A. Randall, M. J. Webb, and S. A. Klein, Clearing clouds of uncertainty, Nature Climate Change, vol.7, issue.10, pp.674-678, 2017.

Y. Zhang, S. A. Klein, J. Fan, A. S. Chandra, P. Kollias et al., Large-eddy simulation of shallow cumulus over land: A composite case based on ARM long-term observations at its Southern Great Plains site, Journal of the Atmospheric Sciences, vol.74, issue.10, pp.3229-3251, 2017.

M. H. Zhang, W. Y. Lin, S. A. Klein, J. T. Bacmeister, S. Bony et al., Comparing clouds and their seasonal variations in 10 atmospheric general circulation models with satellite measurements, Journal of Geophysical Research, issue.D15S02, p.110, 2005.

,

C. Du-modèle-de-recouvrement and .. .. ,

. .. Dépendancè-a-la-discrétisation-verticale, , p.71

. .. Non-adaptabilité,

.. .. Schéma-exponentiel-aléatoire,

.. .. Adaptabilité-spatiale,

. .. Im, 76 4.3.1 Comparaison de CF tot par les approches SM et, Paramétrisation de la longueur de décorrélation ?z 0 (t), p.77

.. .. Principe-de-la-méthode,

.. .. Résultats-de-la-méthode,

, 80 4.4 ´ Evaluation de la paramétrisation de ?z 0 (t) sur CF tot, Uné equation générale de ?z 0 (t), p.81

S. Au-cisaillement-de-vent and .. .. ,

, SensibilitéSensibilitéà l'estimation des couvertures nuageuses par le schéma sous-maille

. .. Sensibilitésensibilitéà-la-discrétisation-verticale, , p.85

, Si une bonne représentation de la structure nuageuse sous-maille est importante, l'organisation nuageusè a l'´ echelle de plusieurs maille, notamment le recouvrement des fractions nuageuses surfaciques CF surf entre des mailles successives verticalement, est tout aussi déter-minante, 1986.

, Paramétrisation de la longueur de décorrélation ?z 0 (t) Nous proposons ici une méthode afin d'´ evaluer la longueur de décorrélation ?z 0 (t) du schéma

, dans ce domaine non-discrétisédiscrétisé`discrétiséà l'´ echelle d'un SCM, c'estàestà dire composé d'une unique maille "type-SCM" de 700m d'´ epaisseur. la fois "sous-maille" et "inter-maille" dans ce domaine discrétisé, c'estàestà dire composé de plusieurs mailles "type-SCM, Les zones en surbrillances grises représentent les fractions surfaciques des nuages dans les mailles

.. .. Moyens-d'´-etudes-des-effets-radiatifs,

. Compatibilité and . .. Ecrad, , p.92

. Effets and . .. De-lmdz6, , p.95

E. De and . .. Lmdz6, 96 5.3.1 Effets de nos paramétrisations sur les couvertures totales
URL : https://hal.archives-ouvertes.fr/in2p3-00450271

C. Dans-ce, nous analysons les effets radiatifs des paramétrisations présentées dans les

C. Comme-par-exemple-le and . Sw-;-bodassalcedo, En revanche, il est basé sur certaines hypothèses fortes (car réaliséesréaliséesà l'´ echelle des mailles de GCM) comme l'approximation planparalì ele, qui considère les mailles d'une colonne atmosphérique comme infinimentétenduesinfinimentétendues horizontalement et néglige tout effet de bord dans les flux radiatifs. Pour contourner en partie ce probì eme, et pour d'autres raisons exposées plus loin, nous nous sommes intéressés au simulateur d'observable COSP (pour "CFMIP Observation Simulator Package"), présenté dans, Le schéma de rayonnement du GCM LMDz permet de simuler tous les champs radiatifs que nous cherchonsàcherchons`cherchonsà analyser, 2011.

T. Dans-cette, Too Few, Too Bright", partagé par la plupart des GCMs actuels qui tendentà tendent`tendentà sous-estimer la couverture des nuages bas etàet`età surestimer sonépaisseursonépaisseur optique. DesétudesDesétudes comme celle de, nous avons proposé des solutions pour tenter de résoudre un biais connu sous le nom de, 2016.

, avant d'observer les effets radiatifs de ces paramétrisations et leur potentiel pour réduire le biais "Too Few, Too Bright

. Jouhaud, Avant ce travail de thèse, on rappelle qu'une maille de GCMétaitGCMétait considérée par les paramétrisations physiques commé etant soit entì erement nuageuse soitentì erement claire verticalement, sans qu'aucun entre-deux n'existe , jusqu'alors négligée. Cetté etape, qui a fait l'objet d'une publication, Conclusions des nouvelles paramétrisations Représentation sous-maille : Dans le chapitre 3 tout d'abord, nous nous sommes inté-ressésressésà la représentation sous-maille des nuages bas, vol.différentesétudes antérieures, 2008.

, Les nuages hauts comme les cirrusétantcirrusétant composés de cristaux de glace qui sédimentent, et souvent soumisàsoumis`soumisà un fort cisaillement de vent, ils ont tendancè a prendre une forme en "virgule" etàet`età ainsi ne pas adopter une forme purement verticale. On suppose donc que la différence entre leurs fractions volumiques et surfaciques au sein des mailles du GCM est forte et que l'effet de notre paramétrisation serait potentiellement important. la paramétrisation "Triple-Cloud, Afin d'améliorer les schémas présentés ici, nous suggérons ainsi deux pistes : -Adapter le schéma sous-maille présenté ici aux nuages bas issus de la circulation grande-´ echelle, aux nuages moyens et aux nuages hauts, 2004.

.. .. , , p.105

.. .. Grandeurs,

S. .. Effets-radiatifs,

E. Compatibilité-entre-cosp2 and . .. Dans-le-gcm-3d, , p.110

B. A. Bibliographie-albrecht, D. A. Randall, and S. Nicholls, Observations of marine stratocumulus clouds during fire, Bulletin of the American Meteorological Society, vol.69, issue.6, pp.618-626, 1988.

A. Arakawa and W. H. Schubert, Interaction of a cumulus cloud ensemble with the large-scale environment, part i, Journal of the Atmospheric Sciences, vol.31, issue.3, pp.674-701, 1974.

R. Banta, Subgrid condensation in a cumulus cloud model. preprints, Sixth Conf. on Probability and Statistics in Atmospheric Sciences, pp.197-202, 1979.

H. W. Barker, Overlap of fractional cloud for radiation calculations in gcms : A global analysis using cloudsat and calipso data, Journal of Geophysical Research : Atmospheres, issue.D8, p.113, 2008.

H. W. Barker, Representing cloud overlap with an effective decorrelation length : An assessment using cloudsat and calipso data, Journal of Geophysical Research : Atmospheres, issue.D24, p.113, 2008.

H. W. Barker and J. A. Davies, Solar radiative fluxes for stochastic, scale-invariant broken cloud fields, Journal of the atmospheric sciences, vol.49, issue.13, pp.1115-1126, 1992.

H. W. Barker, B. A. Wiellicki, and L. Parker, A parameterization for computing gridaveraged solar fluxes for inhomogeneous marine boundary layer clouds. part ii : Validation using satellite data, Journal of the Atmospheric Sciences, vol.53, issue.16, pp.2304-2316, 1996.

P. Bechtold, J. Cuijpers, P. Mascart, and P. Trouilhet, Modeling of trade wind cumuli with a low-order turbulence model : Toward a unified description of cu and se clouds in meteorological models, Journal of the atmospheric sciences, vol.52, issue.4, pp.455-463, 1995.

L. K. Berg and R. B. Stull, Parameterization of joint frequency distributions of potential temperature and water vapor mixing ratio in the daytime convective boundary layer, Journal of the atmospheric sciences, vol.61, issue.7, pp.813-828, 2004.

A. Bodas-salcedo, M. Webb, S. Bony, H. Chepfer, J. Dufresne et al., Cosp : Satellite simulation software for model assessment, Bulletin of the American Meteorological Society, vol.92, issue.8, pp.1023-1043, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01117353

P. Bogenschutz, A. Gettelman, H. Morrison, V. Larson, D. Schanen et al., Unified parameterization of the planetary boundary layer and shallow convection with a higher-order turbulence closure in the community atmosphere model : Single-column experiments, Geoscientific Model Development, vol.5, issue.6, pp.1407-1423, 2012.

P. A. Bogenschutz, S. K. Krueger, and M. Khairoutdinov, Assumed probability density functions for shallow and deep convection, Journal of Advances in Modeling Earth Systems, vol.2, issue.4, 2010.

S. Bony and J. Dufresne, Marine boundary layer clouds at the heart of tropical cloud feedback uncertainties in climate models, Geophysical Research Letters, issue.20, p.32, 2005.

S. Bony and K. A. Emanuel, A parameterization of the cloudiness associated with cumulus convection ; evaluation using toga coare data, Journal of the atmospheric sciences, vol.58, issue.21, pp.3158-3183, 2001.

S. Bony, K. Lau, and Y. Sud, Sea surface temperature and large-scale circulation influences on tropical greenhouse effect and cloud radiative forcing, Journal of Climate, vol.10, issue.8, pp.2055-2077, 1997.

O. Boucher, D. Randall, P. Artaxo, C. Bretherton, G. Feingold et al., Clouds and aerosols, Climate change 2013 : the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, pp.571-657, 2013.

P. Bougeault, The diurnal cycle of the marine stratocumulus layer : A higher-order model study, Journal of the atmospheric sciences, vol.42, issue.24, pp.2826-2843, 1985.

C. S. Bretherton, Insights into low-latitude cloud feedbacks from high-resolution models, Phil. Trans. R. Soc. A, vol.373, p.20140415, 2015.

C. S. Bretherton and P. K. Smolarkiewicz, Gravity waves, compensating subsidence and detrainment around cumulus clouds, Journal of the Atmospheric Sciences, vol.46, issue.6, pp.740-759, 1989.

M. E. Brooks, R. J. Hogan, and A. J. Illingworth, Parameterizing the difference in cloud fraction defined by area and by volume as observed with radar and lidar, Journal of the atmospheric sciences, vol.62, issue.7, pp.2248-2260, 2005.

A. Brown, R. Cederwall, A. Chlond, P. Duynkerke, J. Golaz et al., Large-eddy simulation of the diurnal cycle of shallow cumulus convection over land, Quarterly Journal of the Royal Meteorological Society, vol.128, issue.582, pp.1075-1093, 2002.

G. Caniaux, J. Redelsperger, and J. P. Lafore, A numerical study of the stratiform region of a fast-moving squall line. part i : General description and water and heat budgets, Journal of the atmospheric sciences, vol.51, issue.14, pp.2046-2074, 1994.

A. Cheng and K. Xu, Improved low-cloud simulation from the community atmosphere model with an advanced third-order turbulence closure, Journal of Climate, vol.28, issue.14, pp.5737-5762, 2015.

F. Couvreux, F. Hourdin, and C. Rio, Resolved versus parametrized boundary-layer plumes. part i : A parametrization-oriented conditional sampling in large-eddy simulations, Boundary-layer meteorology, vol.134, issue.3, pp.441-458, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01099391

J. Cuxart, P. Bougeault, and J. Redelsperger, A turbulence scheme allowing for mesoscale and large-eddy simulations, Quarterly Journal of the Royal Meteorological Society, vol.126, pp.1-30, 2000.

J. Deardorff, Theoretical expression for the countergradient vertical heat flux, Journal of Geophysical Research, vol.77, issue.30, pp.5900-5904, 1972.

J. W. Deardorff, Parameterization of the planetary boundary layer for use in general circulation models, Monthly Weather Review, vol.100, issue.2, pp.93-106, 1972.

J. W. Deardorff, Stratocumulus-capped mixed layers derived from a three-dimensional model, Boundary-Layer Meteorology, vol.18, issue.4, pp.495-527, 1980.

A. D. Del-genio, M. Yao, W. Kovari, and K. K. Lo, A prognostic cloud water parameterization for global climate models, Journal of Climate, vol.9, issue.2, pp.270-304, 1996.

P. G. Duynkerke, The stability of cloud top with regard to entrainment : Amendment of the theory of cloud-top entrainment instability, Journal of the atmospheric sciences, vol.50, issue.3, pp.495-502, 1993.

M. Ek and L. Mahrt, A formulation for boundary-layer cloud cover, Annales geophysicae, vol.9, pp.716-724, 1991.

K. A. Emanuel, A cumulus representation based on the episodic mixing model : the importance of mixing and microphysics in predicting humidity, The representation of cumulus convection in numerical models, pp.185-192, 1993.

K. A. Emanuel, Some aspects of hurricane inner-core dynamics and energetics, Journal of the Atmospheric Sciences, vol.54, issue.8, pp.1014-1026, 1997.

G. Flato, J. Marotzke, B. Abiodun, P. Braconnot, S. C. Chou et al., Evaluation of climate models. in : climate change 2013 : the physical science basis. contribution of working group i to the fifth assessment report of the intergovernmental panel on climate change, Climate Change, vol.5, pp.741-866, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01644494

L. D. Fowler and D. A. Randall, Liquid and ice cloud microphysics in the csu general circulation model. part ii : Impact on cloudiness, the earth's radiation budget, and the general circulation of the atmosphere, Journal of climate, vol.9, issue.3, pp.530-560, 1996.

J. Geleyn and A. Hollingsworth, An economical analytical method for the computation of the interaction between scattering and line absorption of radiation, Beitr. Phys. Atmos, vol.52, pp.1-16, 1979.

J. Golaz, V. E. Larson, and W. R. Cotton, A pdf-based model for boundary layer clouds. part i : Method and model description, Journal of the atmospheric sciences, vol.59, issue.24, pp.3540-3551, 2002.

J. Grandpeix and J. Lafore, A density current parameterization coupled with emanuel's convection scheme. part i : The models, Journal of the Atmospheric Sciences, vol.67, issue.4, pp.881-897, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01116769

R. J. Hogan and A. J. Illingworth, Deriving cloud overlap statistics from radar, Quarterly Journal of the Royal Meteorological Society, vol.126, issue.569, pp.2903-2909, 2000.

F. Hourdin, F. Couvreux, and L. Menut, Parameterization of the dry convective boundary layer based on a mass flux representation of thermals, Journal of the atmospheric sciences, vol.59, issue.6, pp.1105-1123, 2002.

F. Hourdin, J. Grandpeix, C. Rio, S. Bony, A. Jam et al., Lmdz5b : the atmospheric component of the ipsl climate model with revisited parameterizations for clouds and convection, Climate Dynamics, vol.40, issue.9, pp.2193-2222, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01098866

F. Hourdin, T. Mauritsen, A. Gettelman, J. Golaz, V. Balaji et al., The art and science of climate model tuning, Bulletin of the American Meteorological Society, vol.98, issue.3, pp.589-602, 2017.

C. Jakob and S. A. Klein, The role of vertically varying cloud fraction in the parametrization of microphysical processes in the ecmwf model, Quarterly Journal of the Royal Meteorological Society, vol.125, issue.555, pp.941-965, 1999.

A. Jam, F. Hourdin, C. Rio, and F. Couvreux, Resolved versus parametrized boundary-layer plumes. part iii : Derivation of a statistical scheme for cumulus clouds, Boundary-layer meteorology, vol.147, issue.3, pp.421-441, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01099391

C. Jeandel, Le climatàclimatà découvert. CNRSÉditionsCNRS´CNRSÉditions via OpenEdition, 2017.

C. D. Keeling, The concentration and isotopic abundances of carbon dioxide in the atmosphere, Tellus, vol.12, issue.2, pp.200-203, 1960.

S. A. Klein and C. Jakob, Validation and sensitivities of frontal clouds simulated by the ecmwf model, Monthly weather review, vol.127, issue.10, pp.2514-2531, 1999.

D. Konsta, H. Chepfer, and J. Dufresne, A process oriented characterization of tropical oceanic clouds for climate model evaluation, based on a statistical analysis of daytime a-train observations, Climate dynamics, vol.39, issue.9, pp.2091-2108, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01109265

D. Konsta, J. Dufresne, H. Chepfer, A. Idelkadi, and G. Cesana, Use of a-train satellite observations (calipso-parasol) to evaluate tropical cloud properties in the lmdz5 gcm, Climate dynamics, vol.47, issue.3-4, pp.1263-1284, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01384436

C. Lac, P. Chaboureau, V. Masson, P. Pinty, P. Tulet et al., Overview of the meso-nh model version 5.4 and its applications, Geoscientific Model Development Discussions, pp.1-66, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01712969

J. Lafore, J. Stein, N. Asencio, P. Bougeault, V. Ducrocq et al., The meso-nh atmospheric simulation system. part i : Adiabatic formulation and control simulations, Annales geophysicae, vol.16, pp.90-109, 1997.
URL : https://hal.archives-ouvertes.fr/hal-00329074

V. E. Larson, J. Golaz, and W. R. Cotton, Small-scale and mesoscale variability in cloudy boundary layers : Joint probability density functions, Journal of the atmospheric sciences, vol.59, issue.24, pp.3519-3539, 2002.

V. E. Larson, R. Wood, P. R. Field, J. Golaz, T. H. Haar et al., , 2001.

, Small-scale and mesoscale variability of scalars in cloudy boundary layers : One-dimensional probability density functions, Journal of the atmospheric sciences, vol.58, issue.14, pp.1978-1994

L. Treut, H. Li, and Z. , Sensitivity of an atmospheric general circulation model to prescribed sst changes : feedback effects associated with the simulation of cloud optical properties, Climate Dynamics, vol.5, issue.3, pp.175-187, 1991.

M. A. Lemone, The structure and dynamics of horizontal roll vortices in the planetary boundary layer, Journal of the Atmospheric Sciences, vol.30, issue.6, pp.1077-1091, 1973.

M. A. Lemone and W. T. Pennell, The relationship of trade wind cumulus distribution to subcloud layer fluxes and structure, Monthly Weather Review, vol.104, issue.5, pp.524-539, 1976.

W. Lewellen and S. Yoh, Binormal model of ensemble partial cloudiness, Journal of the atmospheric sciences, vol.50, issue.9, pp.1228-1237, 1993.

Y. Lin, R. D. Farley, O. , and H. D. , Bulk parameterization of the snow field in a cloud model, Journal of Climate and Applied Meteorology, vol.22, issue.6, pp.1065-1092, 1983.

G. G. Mace and S. Benson-troth, Cloud-layer overlap characteristics derived from long-term cloud radar data, Journal of climate, vol.15, issue.17, pp.2505-2515, 2002.

S. Manabe, K. Bryan, and M. J. Spelman, A global ocean-atmosphere climate model. part i. the atmospheric circulation, Journal of Physical Oceanography, vol.5, issue.1, pp.3-29, 1975.

S. Manabe, J. Smagorinsky, and R. F. Strickler, Simulated climatology of a general circulation model with a hydrologic cycle, Mon. Wea. Rev, vol.93, issue.12, pp.769-798, 1965.

S. Manabe and R. T. Wetherald, Thermal equilibrium of the atmosphere with a given distribution of relative humidity, Journal of the Atmospheric Sciences, vol.24, issue.3, pp.241-259, 1967.

G. A. Meehl, G. J. Boer, C. Covey, M. Latif, and R. J. Stouffer, The coupled model intercomparison project (cmip), Bulletin of the American Meteorological Society, vol.81, issue.2, pp.313-318, 2000.
URL : https://hal.archives-ouvertes.fr/hal-01339069

G. L. Mellor, The gaussian cloud model relations, Journal of the Atmospheric Sciences, vol.34, issue.2, pp.356-358, 1977.

G. L. Mellor and T. Yamada, Development of a turbulence closure model for geophysical fluid problems, Reviews of Geophysics, vol.20, issue.4, pp.851-875, 1982.

Q. Miao, B. Geerts, and M. Lemone, Vertical velocity and buoyancy characteristics of coherent echo plumes in the convective boundary layer, detected by a profiling airborne radar, Journal of applied meteorology and climatology, vol.45, issue.6, pp.838-855, 2006.

J. Morcrette, Radiation and cloud radiative properties in the european centre for medium range weather forecasts forecasting system, Journal of Geophysical Research : Atmospheres, vol.96, issue.D5, pp.9121-9132, 1991.

J. Morcrette and Y. Fouquart, The overlapping of cloud layers in shortwave radiation parameterizations, Journal of the atmospheric sciences, vol.43, issue.4, pp.321-328, 1986.

J. Morcrette and C. Jakob, The response of the ecmwf model to changes in the cloud overlap assumption, Monthly weather review, vol.128, issue.6, pp.1707-1732, 2000.

C. Nam, S. Bony, J. Dufresne, and H. Chepfer, The 'too few, too bright'tropical low-cloud problem in cmip5 models, Geophysical Research Letters, issue.21, p.39, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01115803

R. Neggers, A. Siebesma, G. Lenderink, and A. Holtslag, An evaluation of mass flux closures for diurnal cycles of shallow cumulus, Monthly weather review, vol.132, issue.11, pp.2525-2538, 2004.

R. A. Neggers, A dual mass flux framework for boundary layer convection. part ii : Clouds, Journal of the Atmospheric Sciences, vol.66, issue.6, pp.1489-1506, 2009.

R. A. Neggers, T. Heus, and A. P. Siebesma, Overlap statistics of cumuliform boundary-layer cloud fields in large-eddy simulations, Journal of Geophysical Research, issue.D21, p.116, 2011.

J. R. Norris, Low cloud type over the ocean from surface observations. part i : Relationship to surface meteorology and the vertical distribution of temperature and moisture, Journal of Climate, vol.11, issue.3, pp.369-382, 1998.

J. R. Norris, Low cloud type over the ocean from surface observations. part ii : Geographical and seasonal variations, Journal of climate, vol.11, issue.3, pp.383-403, 1998.

T. Ose, An examination of the effects of explicit cloud water in the ucla gcm, Journal of the Meteorological Society of Japan. Ser, vol.II, issue.1, pp.93-109, 1993.

S. Park, An economical analytical equation for the integrated vertical overlap of cumulus and stratus, Journal of Advances in Modeling Earth Systems, 2018.

F. Parol, J. Buriez, C. Vanbauce, J. Riédi, M. Doutriaux-boucher et al., Review of capabilities of multi-angle and polarization cloud measurements from polder, Advances in Space Research, vol.33, issue.7, pp.1080-1088, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00821781

E. Perraud, F. Couvreux, S. Malardel, C. Lac, V. Masson et al., Evaluation of statistical distributions for the parametrization of subgrid boundary-layer clouds. Boundary-layer meteorology, vol.140, pp.263-294, 2011.

R. Pincus, R. Hemler, and S. A. Klein, Using stochastically generated subcolumns to represent cloud structure in a large-scale model, Monthly weather review, vol.134, issue.12, pp.3644-3656, 2006.

J. Pinty and P. Jabouille, 6b. a mixed-phased cloud parameterization for use in a mesoscale non-hydrostatic model : simulations of a squall line and of orographic precipitation, Conference on Cloud Physics : 14th Conference on Planned and Inadvertent Weather Modification, pp.17-21, 1998.

J. D. Price, A study of probability distributions of boundary-layer humidity and associated errors in parametrized cloud-fraction, Quarterly Journal of the Royal Meteorological Society, vol.127, issue.573, pp.739-758, 2001.

P. Räisänen, H. W. Barker, M. F. Khairoutdinov, J. Li, and D. A. Randall, Stochastic generation of subgrid-scale cloudy columns for large-scale models, Quarterly journal of the royal meteorological society, vol.130, issue.601, pp.2047-2067, 2004.

D. A. Randall, Cloud parameterization for climate modeling : Status and prospects, Atmospheric Research, vol.23, issue.3-4, pp.345-361, 1989.

D. A. Randall, D. A. Dazlich, and T. G. Corsetti, Interactions among radiation, convection, and large-scale dynamics in a general circulation model, Journal of the Atmospheric sciences, vol.46, issue.13, pp.1943-1970, 1989.

C. Rio and F. Hourdin, A thermal plume model for the convective boundary layer : Representation of cumulus clouds, Journal of the atmospheric sciences, vol.65, issue.2, pp.407-425, 2008.

C. Rio, F. Hourdin, F. Couvreux, and A. Jam, Resolved versus parametrized boundary-layer plumes. part ii : continuous formulations of mixing rates for mass-flux schemes, Boundary-layer meteorology, vol.135, issue.3, pp.469-483, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01099391

S. A. Schäfer, R. J. Hogan, C. Klinger, J. C. Chiu, and B. Mayer, Representing 3-d cloud radiation effects in two-stream schemes : 1. longwave considerations and effective cloud edge length, Journal of Geophysical Research, vol.121, issue.14, pp.8567-8582, 2016.

J. K. Shonk and R. J. Hogan, Tripleclouds : An efficient method for representing horizontal cloud inhomogeneity in 1d radiation schemes by using three regions at each height, Journal of Climate, vol.21, issue.11, pp.2352-2370, 2008.

J. K. Shonk, R. J. Hogan, J. M. Edwards, and G. G. Mace, Effect of improving representation of horizontal and vertical cloud structure on the earth's global radiation budget. part i : Review and parametrization, Quarterly Journal of the Royal Meteorological Society, vol.136, issue.650, pp.1191-1204, 2010.

A. Siebesma, Shallow cumulus convection, Buoyant convection in geophysical flows, pp.441-486, 1998.

A. Siebesma and J. Cuijpers, Evaluation of parametric assumptions for shallow cumulus convection, Journal of the atmospheric sciences, vol.52, issue.6, pp.650-666, 1995.

A. P. Siebesma, C. S. Bretherton, A. Brown, A. Chlond, J. Cuxart et al., A large eddy simulation intercomparison study of shallow cumulus convection, Journal of the Atmospheric Sciences, vol.60, issue.10, pp.1201-1219, 2003.

J. Simpson and V. Wiggert, Models of precipitating cumulus towers, Mon. Wea. Rev, vol.97, issue.7, pp.471-489, 1969.

J. M. Slingo, A cloud parametrization scheme derived from gate data for use with a numerical model, Quarterly Journal of the Royal Meteorological Society, vol.106, issue.450, pp.747-770, 1980.

J. Smagorinsky, General circulation experiments with the primitive equations : I. the basic experiment, Monthly weather review, vol.91, issue.3, pp.99-164, 1963.

P. Soares, P. Miranda, A. Siebesma, and J. Teixeira, An eddy-diffusivity/mass-flux parametrization for dry and shallow cumulus convection, Quarterly Journal of the Royal Meteorological Society, vol.130, issue.604, pp.3365-3383, 2004.

G. Sommeria and J. Deardorff, Subgrid-scale condensation in models of nonprecipitating clouds, Journal of the Atmospheric Sciences, vol.34, issue.2, pp.344-355, 1977.

R. B. Stull, Transilient turbulence theory. part i : The concept of eddy-mixing across finite distances, Journal of the atmospheric sciences, vol.41, issue.23, pp.3351-3367, 1984.

H. Sundqvist, A parameterization scheme for non-convective condensation including prediction of cloud water content, Quarterly Journal of the Royal Meteorological Society, vol.104, issue.441, pp.677-690, 1978.

D. J. Swales, R. Pincus, and A. Bodas-salcedo, The cloud feedback model intercomparison project observational simulator package : Version 2. Geoscientific Model Development, vol.11, pp.77-81, 2018.

J. Teixeira and A. Siebesma, A mass-flux/k-diffusion approach to the parameterization of the convective boundary layer : Global model results, Proc. 14th Symp. on Boundary Layers and Turbulence, pp.231-234, 2000.

M. Tiedtke, A comprehensive mass flux scheme for cumulus parameterization in largescale models, Monthly Weather Review, vol.117, issue.8, pp.1779-1800, 1989.

M. Tiedtke, Representation of clouds in large-scale models, Monthly Weather Review, vol.121, issue.11, pp.3040-3061, 1993.

A. M. Tompkins, A prognostic parameterization for the subgrid-scale variability of water vapor and clouds in large-scale models and its use to diagnose cloud cover, Journal of the atmospheric sciences, vol.59, issue.12, pp.1917-1942, 2002.

A. M. Tompkins and F. Di-giuseppe, An interpretation of cloud overlap statistics, Journal of the Atmospheric Sciences, vol.72, issue.8, pp.2877-2889, 2015.

G. Tselioudis and W. B. Rossow, Global, multiyear variations of optical thickness with temperature in low and cirrus clouds, Geophysical research letters, vol.21, issue.20, pp.2211-2214, 1994.

M. C. Vanzanten, B. Stevens, L. Nuijens, A. P. Siebesma, A. Ackerman et al., Controls on precipitation and cloudiness in simulations of trade-wind cumulus as observed during rico, Journal of Advances in Modeling Earth Systems, vol.3, issue.2, 2011.

M. Webb, C. Senior, S. Bony, and J. Morcrette, Combining erbe and isccp data to assess clouds in the hadley centre, ecmwf and lmd atmospheric climate models, Climate Dynamics, vol.17, issue.12, pp.905-922, 2001.

B. Wielicki and L. Parker, Frequency distributions of cloud liquid water path in oceanic boundary layer cloud as a function of regional cloud fraction, Proc. Eighth Conf. on Atmospheric Radiation, pp.415-417, 1994.

A. Williams and J. Hacker, The composite shape and structure of coherent eddies in the convective boundary layer, Boundary-Layer Meteorology, vol.61, issue.3, pp.213-245, 1992.

D. M. Winker, W. H. Hunt, and M. J. Mcgill, Initial performance assessment of caliop, Geophysical Research Letters, p.34, 2007.

R. Wood and P. R. Field, Relationships between total water, condensed water, and cloud fraction in stratiform clouds examined using aircraft data, Journal of the atmospheric sciences, vol.57, issue.12, pp.1888-1905, 2000.

K. Xu and D. A. Randall, A semiempirical cloudiness parameterization for use in climate models, Journal of the atmospheric sciences, vol.53, issue.21, pp.3084-3102, 1996.

T. Yamada, Simulations of nocturnal drainage flows by aq 2 l turbulence closure model, Journal of the Atmospheric Sciences, vol.40, issue.1, pp.91-106, 1983.

K. C. Young, A numerical simulation of wintertime, orographic precipitation : Part i. description of model microphysics and numerical techniques, Journal of the Atmospheric Sciences, vol.31, issue.7, pp.1735-1748, 1974.

C. S. Zender and J. Kiehl, Radiative sensitivities of tropical anvils to small ice crystals, Journal of Geophysical Research : Atmospheres, vol.99, issue.D12, pp.25869-25880, 1994.

M. Zhang, W. Lin, S. Klein, J. Bacmeister, S. Bony et al., Comparing clouds and their seasonal variations in 10 atmospheric general circulation models with satellite measurements, Journal of Geophysical Research, issue.D15, p.110, 2005.

Y. Zhang, S. A. Klein, J. Fan, A. S. Chandra, P. Kollias et al., , 2017.

, Large-eddy simulation of shallow cumulus over land : A composite case based on arm longterm observations at its southern great plains site, Journal of the Atmospheric Sciences, vol.74, issue.10, pp.3229-3251