, Expérimentation et évaluation de la méthodologie proposée @prefix DO

, IF { ?O1 a DO:SceneImage. ?O2 a DO:SceneImage. ?O1 DO:hasMin_XBBox ?Min_XBBox1. ?O1 DO:hasMax_XBBox ?Max_XBBox1. ?O1 DO:hasMin_YBBox ?Min_YBBox1. ?O1 DO:hasMax_YBBox ?Max_YBBox1. ?O1 DO:hasMax_YBBox ?Max_YBBox1. ?O1 DO:hasIdentity ?id1. ?O1 DO:hasTime ?t1. ?O2 DO:hasMin_XBBox ?Min_XBBox2. ?O2 DO:hasMax_XBBox ?Max_XBBox2. ?O2 DO:hasMin_YBBox ?Min_YBBox2. ?O2 DO:hasMax_YBBox ?Max_YBBox2. ?O2 DO:hasIdentity ?id2. ?O2 DO:hasTime ?t2. FILTER((?Min_XBBox1 > ?Min_XBBox2) && (?Max_XBBox1 < ?Max_XBBox2) && (Min_YBBox1 > ?Min_YBBox2) && (?Max_YBBox1 < ?Max_YBBox2) && (?t1 < ?t2) && (?id1 = ?id2))

}. Then-{, O1 DO:inside O2

, Règle 5.9 -Règle pour la relation spatio-temporelle inside 143

, Expérimentation et évaluation de la méthodologie proposée @prefix DO

, IF { ?O1 a DO:SceneImage. ?O2 a DO:SceneImage. ?O1 DO:hasMin_XBBox ?Min_XBBox1. ?O1 DO:hasMax_XBBox ?Max_XBBox1. ?O1 DO:hasMin_YBBox ?Min_YBBox1. ?O1 DO:hasMax_YBBox ?Max_YBBox1. ?O1 DO:hasMax_YBBox ?Max_YBBox1. ?O1 DO:hasIdentity ?id1. ?O1 DO:hasTime ?t1. ?O2 DO:hasMin_XBBox ?Min_XBBox2. ?O2 DO:hasMax_XBBox ?Max_XBBox2. ?O2 DO:hasMin_YBBox ?Min_YBBox2. ?O2 DO:hasMax_YBBox ?Max_YBBox2. ?O2 DO:hasIdentity ?id2. ?O2 DO:hasTime ?t2

. Bibliographie-[almendros-jiménez, A framework for ocean satellite image classification based on ontologies. IEEE Journal of selected topics in applied earth observations and remote sensing, vol.6, pp.1048-1063, 2013.

. Andrés, , 2017.

, Ontology-based classification of remote sensing images using spectral rules, Computers & Geosciences, vol.102, p.129

A. , Towards an ontological approach for classifying remote sensing images, Signal Image Technology and Internet Based Systems (SITIS), vol.86, p.93, 2012.

A. , Adding temporal dimension to ontologies via owl reification, Informatics, 2009. PCI'09. 13th Panhellenic Conference on, p.51, 2009.

. Arenas, Lc3 : A spatiotemporal data model to study qualified land cover changes. Land Use and Land Cover Semantics : Principles, Best Practices, 2015.

O. Ahlqvist, D. Varanka, S. Fritz, and K. Janowicz, , vol.71, p.87

M. Armstrong, Temporality in spatial databases, Proceedings GIS/LIS'88, vol.2, pp.880-889, 1988.

. Arvor, Advances in geographic object-based image analysis with ontologies : A review of main contributions and limitations from a remote sensing perspective, ISPRS Journal of Photogrammetry and Remote Sensing, vol.82, pp.125-137, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01102197

C. Awad, M. M. Awad, and K. Chehdi, Satellite image segmentation using hybrid variable genetic algorithm, International Journal of Imaging Systems and Technology, vol.19, issue.3, pp.199-207, 2009.
DOI : 10.1002/ima.20195

[. Baader, A scheme for integrating concrete domains into concept languages, Proceedings of the 12th international joint conference on Artificial intelligence, vol.1, p.50, 1991.

[. Banner, Multitemporal analysis of landsat data for forest cutover mapping : a trial of two procedures, p.26, 1981.

[. Baraldi, Automatic spectral rule-based preliminary mapping of calibrated landsat tm and etm+ images, 2006.

, IEEE Transactions on geoscience and remote sensing, vol.44, p.140

T. Barnes, Exact Bounding Boxes for Spheres, 2014.

. Bibliographie-[barnsley, Inferring urban land use by spatial and structural pattern recognition. Remote sensing and urban analysis, vol.9, pp.115-144, 2003.

S. Batsakis and E. G. Petrakis, Sowl : spatio-temporal representation, reasoning and querying over the semantic web, Proceedings of the 6th International Conference on Semantic Systems, vol.51, p.61, 2010.

S. Batsakis and E. G. Petrakis, Integrated ontologies for spatial scene descriptions, Qualitative Spatio-Temporal Representation and Reasoning : Trends and Future Directions, p.51, 2012.

[. Bayarjargal, A comparative study of noaa-avhrr derived drought indices using change vector analysis. Remote Sensing of Environment, vol.105, pp.9-22, 2006.

[. Bayarsaikhan, , 2009.

, Change detection and classification of land cover at hustai national park in mongolia, International Journal of Applied Earth Observation and Geoinformation, vol.11, issue.4, pp.273-280

[. Belgiu, Coupling formalized knowledge bases with object-based image analysis. Remote sensing letters, vol.5, pp.530-538, 2014.

A. Beller, A temporal gis prototype for global change research, Proceedings of GIS/LIS, p.37, 1991.

[. Benerecetti, On the dimensions of context dependence : partiality, approximation, and perspective, International and Interdisciplinary Conference on Modeling and Using Context, vol.153, p.40, 2001.

K. Bereta, Storing and querying the valid time of triples in linked geospatial data, p.49, 2013.

[. Bereta, Representation and querying of valid time of triples in linked geospatial data, Extended Semantic Web Conference, vol.49, p.50, 2013.

;. Berners-lee and T. Berners-lee, Universal resource identifiers in www : a unifying syntax for the expression of names and addresses of objects on the network as used in the worldwide web, 1994.

. Xiii-[bestougeff, Logical tools for temporal knowledge representation, p.39, 1993.

[. Bhagwat, Geospatial narratives and their spatio-temporal dynamics : Commonsense reasoning for high-level analyses in geographic information systems, International Journal of Computer Science and Communication, vol.1, issue.1, p.73, 2010.

[. Binh, Land cover changes between 1968 and 2003 in cai nuoc, ca mau peninsula, vietnam. Environment, Development and Sustainability, vol.7, issue.4, pp.519-536, 2005.

S. ;. Bittner, T. Bittner, and B. Smith, Formal ontologies of space and time, p.53, 2003.

K. Boley, H. Boley, M. Kifer, and F. Bonn, A guide to the basic logic dialect for rule interchange on the web, IEEE Transactions on Knowledge and Data Engineering, vol.22, issue.11, pp.1593-1608, 1994.

[. Borak, The use of temporal metrics for land cover change detection at coarse spatial scales, International Journal of Remote Sensing, vol.21, issue.6-7, pp.1415-1432, 2000.

[. Bordin and P. Bordin, L'intégration du temps dans les sig, XYZ, vol.35, issue.122, pp.51-58, 2010.

W. N. Borst and W. Borst, Construction of engineering ontologies for knowledge sharing and reuse, Borst and Borst, 1997.

[. Bouquet, Specification of a common framework for characterizing alignment, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00906636

[. Bray, , 2008.

, Extensible markup language (xml) 1.0, 2017.

. Xiii-[brodaric, B. Probst-;-brodaric, and F. Probst, Enabling cross-disciplinary escience by integrating geoscience ontologies with dolce, IEEE Intelligent Systems, vol.24, issue.1, p.62, 2009.

J. L. Burgos, X. Xiii, and . Xv-[camara, Idoschisto : une extension de l'ontologie noyau des maladies infectieuses (ido-core) pour la schistosomiase, IC-25èmes, 2011.

, Journées francophones d'Ingénierie des Connaissances, vol.54, p.62

B. Campelo, C. E. Campelo, and B. Bennett, Geographical process representation : Issues and challenges, Universal Ontology of Geographic Space : Semantic Enrichment for Spatial Data, vol.34, p.62, 2012.

. Cardille, J. A. Foley-;-cardille, and J. A. Foley, Agricultural land-use change in brazilian amazonia between 1980 and 1995 : Evidence from integrated satellite and census data, Remote Sensing of Environment, vol.87, issue.4, p.15, 2003.

[. Cassidy, Beyond classifications : Combining continuous and discrete approaches to better understand land-cover change within the lower mekong river region, Applied Geography, vol.39, pp.26-45, 2013.

[. Chander, Summary of current radiometric calibration coefficients for landsat mss, tm, etm+, and eo-1 ali sensors. Remote sensing of environment, Photogrammetric Engineering and Remote Sensing, vol.113, issue.5, pp.603-619, 1991.

[. Conchedda, An object-based method for mapping and change analysis in mangrove ecosystems, ISPRS Journal of Photogrammetry and Remote Sensing, vol.63, issue.5, pp.578-589, 2008.

[. Consortium, Opengis® implementation specification for geographic information-simple feature access-part 1 : Common, 2011.

[. Consortium, Review articledigital change detection methods in ecosystem monitoring : a review, International journal of remote sensing, vol.25, issue.9, p.26, 2004.

. Coppin, P. R. Bauer-;-coppin, and M. E. Bauer, Digital change detection in forest ecosystems with remote sensing imagery. Remote sensing reviews, vol.13, pp.207-234, 1996.

[. Deilami, Review of change detection techniques from remotely sensed images, Research Journal of Applied Sciences, Engineering and Technology, vol.10, issue.2, pp.221-229, 2015.

D. Mondo, Modeling consistency of spatio-temporal graphs, Data & Knowledge Engineering, vol.84, p.71, 2013.

D. Mondo, Modeling consistency of spatio-temporal graphs, Data & Knowledge Engineering, vol.84, p.42, 2013.

[. Derivaux, Extraction de détecteurs d'objets urbains à partir d'une ontologie. Atelier Extraction de Connaissance à partir d'Images (ECOI), vol.72, pp.71-81, 2008.

K. Devaraju, A. Devaraju, and W. Kuhn, A process-centric ontological approach for integrating geo-sensor data, Proceedings of the 2010 conference on Formal Ontology in Information Systems : Proceedings of the Sixth International Conference (FOIS 2010), vol.56, p.64, 2010.

[. Devaraju, A formal model to infer geographic events from sensor observations, International journal of geographical information science, vol.29, issue.1, p.62, 2015.

[. Diallo, Applications of remote sensing in land use/land cover change detection in puer and simao counties, yunnan province, Journal of American Science, vol.5, issue.4, pp.157-166, 2009.

[. Durand, Ontology-based object recognition for remote sensing image interpretation, Tools with Artificial Intelligence, 2007. ICTAI 2007. 19th IEEE International Conference on, vol.1, p.87, 2007.
URL : https://hal.archives-ouvertes.fr/hal-01463170

. Dyreson, A consensus glossary of temporal database concepts, ACM Sigmod Record, vol.23, issue.1, pp.52-64, 1994.

M. J. Egenhofer and R. D. Franzosa, Point-set topological spatial relations, International Journal of Geographical Information System, vol.5, issue.2, pp.161-174, 1991.

M. J. Egenhofer and J. Herring, Categorizing binary topological relations between regions, lines, and points in geographic databases, The, vol.9, pp.94-95, 1990.

. El-asmar, Surface area change detection of the burullus lagoon, north of the nile delta, egypt, using water indices : A remote sensing approach, The Egyptian Journal of Remote Sensing and Space Science, vol.16, issue.1, pp.119-123, 2013.

, Change detection studies on the world's biggest artificial lake (lake nasser, egypt), The Egyptian Journal of Remote Sensing and Space Science, vol.13, issue.2, pp.89-99, 2010.

[. Ermolayev, Ontologies of time : Review and trends, Cartographica : The International Journal for Geographic Information and Geovisualization, vol.11, issue.3, pp.57-115, 2014.

J. Euzenat, Semantic precision and recall for ontology alignment evaluation, Proc. IJCAI 2001 workshop on ontology and information sharing, vol.7, pp.348353-348399, 2001.
URL : https://hal.archives-ouvertes.fr/hal-00817806

S. Euzenat, J. Euzenat, P. Shvaiko, V. Iv, V. I. Vii-[evangelidis-;-evangelidis et al., Space and time as relations : The theoretical approach of leibniz, Philosophies, vol.76, issue.2, p.9, 2013.

G. Falquet and J. Ziswiler, A virtual hyperbooks model to support collaborative learning, International Journal on E-Learning, vol.4, issue.1, pp.39-56, 2005.

[. Fan, Land use and land cover change in guangzhou, china, Sensors, vol.7, issue.7, p.27, 1998.

. Ferrario, R. Kuhn-;-ferrario, and W. Kuhn, Land use and land cover semantics : Distinguishing occurrents from continuants, Formal Ontology in Information Systems : Proceedings of the 9th International Conference (FOIS 2016), vol.283, p.75, 2016.

[. Ferreira, An algebra for spatiotemporal data : From observations to events, Transactions in GIS, vol.18, issue.2, p.42, 2014.

. Fikes, R. Farquhar-;-fikes, and A. Farquhar, Distributed repositories of highly expressive reusable ontologies, IEEE Intelligent Systems and their Applications, vol.14, issue.2, pp.73-79, 1999.

G. M. Foody, Status of land cover classification accuracy assessment. Remote sensing of environment, vol.80, p.21, 2002.

[. Forestier, , 2012.

, Knowledge-based region labeling for remote sensing image interpretation. Computers, Environment and Urban Systems, vol.36, pp.470-480

A. U. Frank, Qualitative temporal reasoning in gis-ordered time scales, Sixth International Symposium on Spatial Data Handling, SDH, vol.94, 1994.

A. U. Frank, Qualitative spatial reasoning : Cardinal directions as an example, International Journal of Geographical Information Science, vol.10, issue.3, 1996.

W. Franklin, S. Franklin, and M. Wulder, Remote sensing methods in medium spatial resolution satellite data land cover classification of large areas, Progress in Physical Geography, vol.26, issue.2, pp.173-205, 2002.

. Frauman, E. Wolff-;-frauman, and E. Wolff, Change detection in urban areas using very high spatial resolution satellite images : case study in brussels, Remote Sensing for Environmental Monitoring, GIS Applications, and Geology V, vol.5983, p.16, 2005.

C. Freksa, Temporal reasoning based on semi-intervals. Artificial intelligence, vol.54, p.35, 1992.

B. Galleguillos, C. Galleguillos, and S. Belongie, Context based object categorization : A critical survey. Computer vision and image understanding, vol.114, 2010.

A. Galton, Experience and history : Processes and their relation to events, Journal of Logic and Computation, vol.18, issue.3, p.63, 2008.

. Galton, A. Worboys-;-galton, and M. Worboys, Processes and events in dynamic geo-networks, International Conference on GeoSpatial Sematics, vol.42, p.73, 2005.

[. Gangemi, Sweetening wordnet with dolce. AI magazine, International Conference on Knowledge Engineering and Knowledge Management, vol.24, p.53, 2002.

J. Gao, Digital analysis of remotely sensed imagery, p.16, 2008.

. Bibliographie-[grosof, Description logic programs : combining logic programs with description logic, Proceedings of the 12th international conference on World Wide Web, pp.48-57, 2003.

. Ontology, , 2007.

[. Gu, An object-based semantic classification method for high resolution remote sensing imagery using ontology. Remote Sensing, vol.9, pp.329-86, 2017.

N. Guarino, Formal ontology, conceptual analysis and knowledge representation, International journal of human-computer studies, vol.43, issue.5-6, 1995.

N. Guarino, Formal ontology in information systems, Proceedings of the first international conference (FOIS'98), vol.46, p.45, 1998.

T. Guber, A translational approach to portable ontologies, Knowledge Acquisition, vol.5, issue.2, p.44, 1993.

[. Gui, Individual building extraction from terrasar-x images based on ontological semantic analysis, Remote Sensing, vol.8, issue.9, 2016.

[. Gutierrez, Introducing time into rdf, IEEE Transactions on Knowledge and Data Engineering, vol.19, issue.2, p.47, 2007.

[. Haarslev, A description logic with concrete domains and a role-forming predicate operator, Journal of Logic and Computation, vol.9, issue.3, p.105, 1999.

[. Hall, , 1991.

, Large-scale patterns of forest succession as determined by remote sensing, Ecology, vol.72, issue.2

[. Hall, Radiometric rectification : toward a common radiometric response among multidate, multisensor images. Remote sensing of environment, vol.35, pp.11-27, 1991.
DOI : 10.1016/0034-4257(91)90062-b

[. Haralick, Textural features for image classification, IEEE Transactions on systems, man, and cybernetics, vol.3, issue.6, pp.610-621, 1973.
DOI : 10.1109/tsmc.1973.4309314

URL : http://www.cis.rit.edu/~cnspci/references/dip/segmentation/haralick1973.pdf

B. Harbelot, Continuum : un modèle spatio-temporel et sémantique pour la découverte de phénomènes dynamiques au sein d'environnements géospatiaux, vol.3, p.63, 2015.

[. Harbelot, Lc3 : A spatio-temporal and semantic model for knowledge discovery from geospatial datasets, Web Semantics : Science, Services and Agents on the World Wide Web, vol.35, p.61, 2015.
DOI : 10.1016/j.websem.2015.10.001

URL : https://hal.archives-ouvertes.fr/hal-01207389

[. Hashimoto, A framework of ontology-based knowledge information processing for change detection in remote sensing data, Geoscience and Remote Sensing Symposium (IGARSS), vol.58, p.87, 2011.

C. Hay, G. J. Hay, and G. Castilla, Geographic object-based image analysis (geobia) : A new name for a new discipline, Object-based image analysis, pp.75-89, 2008.

. Springer, , vol.18

S. Hayes, D. J. Hayes, and S. A. Sader, Comparison of change-detection techniques for monitoring tropical forest clearing and vegetation regrowth in a time series. Photogrammetric engineering and remote sensing, vol.67, pp.1067-1075, 2001.

D. Hernandez, Qualitative representation of spatial knowledge, vol.804, p.35, 1994.

[. Hernando, Spatial and thematic assessment of object-based forest stand delineation using an ofa-matrix, International Journal of Applied Earth Observation and Geoinformation, vol.19, pp.214-225, 2012.

[. Herre, , 2006.

, General formal ontology (gfo) : A foundational ontology integrating objects and processes, vol.8, p.53

P. Hobbs, J. R. Hobbs, and F. Pan, An ontology of time for the semantic web, ACM Transactions on Asian Language Information Processing (TALIP), vol.3, issue.1, pp.66-85, 2004.

J. R. Hobbs and F. Pan, Time ontology in owl. W3C working draft, vol.27, p.55, 2006.

J. H. Holland, S. Homayouni, and M. Roux, Adaptation in natural and artificial systems : an introductory analysis with applications to biology, control, and artificial intelligence, XXVI [Homayouni and Roux, vol.20, p.28, 1992.
DOI : 10.7551/mitpress/1090.001.0001

E. Homsby, K. Homsby, and M. J. Egenhofer, Qualitative representation of change, International conference on spatial information theory, vol.33, p.38, 1997.
DOI : 10.1007/3-540-63623-4_40

E. Hornsby, K. Hornsby, and M. J. Egenhofer, Identity-based change : a foundation for spatio-temporal knowledge representation, International journal of geographical information science, vol.14, issue.3, p.42, 2000.
DOI : 10.1080/136588100240813

I. Horrocks, Optimizing tableaux decision procedures for description logics. phd thesis, university of manchester, In Description Logics. Citeseer. X, 1998.

. Horrocks, Swrl : A semantic web rule language combining owl and ruleml. W3C Member submission, 2004.

. Horrocks, From shiq and rdf to owl : The making of a web ontology language. Web semantics : science, services and agents on the World Wide Web, vol.1, pp.7-26, 2003.

. Horrocks, I. Sattler-;-horrocks, and U. Sattler, Ontology reasoning in the shoq (d) description logic, IJCAI, vol.1, pp.199-204, 2001.

. Horrocks, I. Sattler-;-horrocks, and U. Sattler, Optimised reasoning for shiq, ECAI, vol.2, pp.277-281, 2002.

. Horrocks, A pspace-algorithm for deciding ALCN I R + -satisfiability, International Journal of Remote Sensing, vol.2, issue.3, pp.277-291, 1981.

[. Hudelot, Symbol grounding for semantic image interpretation : from image data to semantics, Computer Vision Workshops, 2005. ICCVW'05. Tenth IEEE International Conference on, vol.70, p.94, 2005.

. Hussain, Change detection from remotely sensed images : From pixel-based to object-based approaches, ISPRS Journal of Photogrammetry and Remote Sensing, vol.80, p.24, 2013.

. Iakovidis, An ontology of image representations for medical image mining, Information Technology and Applications in Biomedicine, 2009. ITAB 2009. 9th International Conference on, p.93, 2009.

. Im, Object-based change detection using correlation image analysis and image segmentation, International Journal of Remote Sensing, vol.29, issue.2, pp.399-423, 2008.

. Im, An automated binary change detection model using a calibration approach, Remote Sensing of Environment, vol.106, issue.1, pp.89-105, 2007.

T. Iso, 211. iso 19107 geographic information-spatial schema, p.35, 2003.

. Iwaniak, Ontology driven analysis of spatio-temporal phenomena, aimed at spatial planning and environmental forecasting. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences Archives, vol.55, p.75, 2013.

[. Jensen, A consensus glossary of temporal database concepts, ACM SIGMOD Record, vol.23, issue.1, pp.52-64, 1994.

J. R. Jensen, Urban change detection mapping using landsat digital data, The American Cartographer, vol.8, issue.2, pp.127-147, 1981.

J. R. Jensen, Introductory digital image processing 3rd edition, Upper saddle river, vol.16, p.24, 2005.

J. Jiang and M. Worboys, Event-based topology for dynamic planar areal objects, International Journal of Geographical Information Science, vol.23, issue.1, p.61, 2009.

[. Jianya, A review of multitemporal remote sensing data change detection algorithms. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol.37, issue.B7, p.24, 2008.

J. , K. , R. D. Kasischke, and E. , Change vector analysis : a technique for the multispectral monitoring of land cover and condition, International Journal of Remote Sensing, vol.19, issue.3, pp.411-426, 1998.

[. Jones, The spirit spatial search engine : Architecture, ontologies and spatial indexing, International Conference on Geographic Information Science, p.47, 2004.

[. Junfeng, Land use and land cover change and its driving forces in the source region of the yangtze river during 1990-2005. In Water Resource and Environmental Protection (ISWREP), International Symposium on, vol.4, p.27, 2011.

[. Kauppinen, T. De-espindola-;-kauppinen, and G. M. De-espindola, Ontologybased modeling of land change trajectories in the brazilian amazon, Geoinformatik, vol.58, p.62, 2011.

. Klein, M. C. Klein, and D. Fensel, Ontology versioning on the semantic web, SWWS, vol.51, pp.75-91, 2001.

[. Koubarakis, Data models and query languages for linked geospatial data, Reasoning Web International Summer School, vol.48, p.50, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02068140

W. Kuhn, A functional ontology of observation and measurement, International Conference on GeoSpatial Sematics, vol.56, p.62, 2009.

[. Kumar, Monitoring forest cover change using remote sensing in amchang wildlife sanctuary, assam, india. Communicated Data, p.27, 2010.

Y. Kurata, Semi-automated derivation of conceptual neighborhood graphs of topological relations, International Conference on Spatial Information Theory, p.35, 2009.

Y. Kurata and M. J. Egenhofer, The head-body-tail intersection for spatial relations between directed line segments, International Conference on Geographic Information Science, p.35, 2006.

P. B. Ladkin, E. F. Lambin, and D. Ehrlich, Land-cover changes in subsaharan africa (1982-1991) : Application of a change index based on remotely sensed surface temperature and vegetation indices at a continental scale. Remote sensing of environment, vol.61, pp.181-200, 1987.

. Lambin, Dynamics of land-use and land-cover change in tropical regions, Annual review of environment and resources, vol.28, issue.1, pp.205-241, 2003.

N. Landsat, Science data users handbook, 2011.

. Langran, G. Chrisman-;-langran, and N. R. Chrisman, A framework for temporal geographic information. Cartographica : The International Journal for Geographic Information and Geovisualization, vol.25, p.38, 1988.

G. Lenat, D. B. Lenat, and R. V. Guha, Building large knowledge based systems : Representation and infererence in the cyc project, 1990.

[. Li, An integrated software framework to support semantic modeling and reasoning of spatiotemporal change of geographical objects : A use case of land use and land cover change study, ISPRS International Journal of Geo-Information, vol.5, issue.10, p.87, 2016.

G. É. Ligozat, Reasoning about cardinal directions, Journal of Visual Languages & Computing, vol.9, issue.1, pp.23-44, 1998.

[. Lillesand, Remote sensing and image interpretation, 2014.

[. Liu, Change detection for urban areas using very high resolution satellite images, p.16, 2018.

[. Loveland, T. R. Dwyer-;-loveland, and J. L. Dwyer, Landsat : Building a strong future, Remote Sensing of Environment, vol.122, pp.22-29, 2012.

[. Lu, Integration of landsat tm and spot hrg images for vegetation change detection in the brazilian amazon, Photogrammetric Engineering & Remote Sensing, vol.74, issue.4, 2008.

[. Lu, Change detection techniques. International journal of remote sensing, vol.25, p.22, 2004.

I. ?ukowicz, J. ?ukowicz, and A. Iwaniak, From snapshots to processes descriptionspatiotemporal modelling using rdf datasets and formal ontologies, vol.55, p.63

[. Lunetta, R. S. Elvidge-;-lunetta, and C. D. Elvidge, Remote sensing change detection, vol.310, p.20, 1999.

[. Luo, Land cover extraction from high resolution zy-3 satellite imagery using ontology-based method, ISPRS International Journal of Geo-Information, vol.5, issue.3, p.31, 2016.

[. Lutz, C. Lutz, B. S. Manjunath, and W. Ma, Nexp time-complete description logics with concrete domains, ACM Transactions on Computational Logic (TOCL), vol.5, issue.4, pp.837-842, 1996.

[. Mark, Ontological foundations for geographic information science, Research Challenges in Geographic Information Science, vol.57, pp.335-350, 2004.

D. Marr and A. Vision, A computational investigation into the human representation and processing of visual information, vol.85, p.90, 1982.

[. Martínez, Urban change detection on satellite images series. application to catalunya area, Urban Remote Sensing Joint Event, p.25, 2007.

, in remotely sensed images, International Journal Of Engineering And Computer Science, vol.6, issue.3

[. Masolo, The wonderweb library of foundational ontologies and the dolce ontology. wonderweb (eu ist project 2001-33052) deliverable d18, p.55, 2003.

A. Masse, Développement et automatisation de méthodes de classification à partir de séries temporelles d'images de télédétection : application aux changements d'occupation des sols et à l'estimation du bilan carbone, p.129, 2013.

. Mathian, H. Sanders-;-mathian, and L. Sanders, Spatio-temporal Approaches : Geographic Objects and Change Process, p.75, 2015.

[. Matinfar, Comparisons of object-oriented and pixel-based classification of land use/land cover types based on lansadsat7, etm+ spectral bands (case study : arid region of iran), American-Eurasian Journal of Agricultural & Environmental Sciences, vol.2, issue.4, pp.448-456, 2007.

. Mcguinness, Owl web ontology language overview. W3C recommendation, vol.10, 2004.

[. Messaoudi, A new ontology for semantic annotation of remotely sensed images, Advanced Technologies for Signal and Image Processing, vol.69, p.87, 2014.

T. Meyer, W. B. Meyer, and B. L. Turner, Human population growth and global land-use/cover change. Annual review of ecology and systematics, vol.23, pp.39-61, 1992.

C. ;. Michel-claude, G. Michel-claude, and G. Colette, Traitement des données de télédétection, vol.529, p.11, 1999.

[. Mika, Foundations for service ontologies : aligning owl-s to dolce, Proceedings of the 13th international conference on World Wide Web, p.56, 2004.

[. Mishra, Change detection techniques in remote sensing, JOURNAL OF ADVANCED INFORMATION TECHNOLOGY AND CONVERGENCE, vol.6, issue.2, pp.51-57, 2016.

[. Mizoguchi, Task ontology for reuse of problem solving knowledge, Towards Very Large Knowledge Bases : Knowledge Building & Knowledge Sharing, vol.46, p.45, 1995.

Z. Motakis, I. Motakis, and C. Zaniolo, Composite temporal events in active database rules : A logic-oriented approach, International Conference on Deductive and Object-Oriented Databases, p.40, 1995.

. Motik, Owl 2 web ontology language profiles. W3C recommendation, International Journal of Computer Science and Information Security, vol.27, issue.1, p.61, 2009.

. Bibliographie-[nackaerts, Comparative performance of a modified change vector analysis in forest change detection, International Journal of Remote Sensing, vol.26, issue.5, pp.839-852, 2005.

. Neches, Enabling technology for knowledge sharing, AI magazine, vol.12, issue.3, 1991.

[. Nefzi, A critical analysis of lifecycles and methods for ontology construction and evaluation, Advanced Technologies for Signal and Image Processing, p.69, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01056908

P. Niles, I. Niles, A. Pease, M. Nordberg, and J. Evertson, Monitoring change in mountainous dry-heath vegetation at a regional scale using multitemporal landsat tm data, Proceedings of the international conference on Formal Ontology in Information Systems, pp.2-9, 2001.

, Ambio, vol.15, pp.502-509

. Noy, Defining n-ary relations on the semantic web, vol.12, p.51, 2006.

. O&apos;connor, Writing rules for the semantic web using swrl and jess. Protégé With Rules WS, 2005.

[. Connor, ;. Das, M. J. Connor, and A. K. Das, A method for representing and querying temporal information in owl, Biomedical Engineering Systems and Technologies, pp.97-145, 2011.

[. Ouma, Multiscale remote sensing data segmentation and post-segmentation change detection based on logical modeling : Theoretical exposition and experimental results for forestland cover change analysis, Computers & geosciences, vol.34, issue.7, pp.715-737, 2008.

D. Papadias and Y. Theodoridis, Spatial relations, minimum bounding rectangles, and spatial data structures, International Journal of Geographical Information Science, vol.11, issue.2, p.102, 1997.

[. Paradzayi, Field surveys for biomass assessment in african savanna woodlands, Geoscience and Remote Sensing Symposium, vol.3, 2008.

. Parikh, R. Shah-;-parikh, and D. Shah, A survey on computer vision based diagnosis for skin lesion detection, International Journal of Engineering Science and Innovative Technology (IJESIT, 2013.

. Patil, The darpa knowledge sharing effort : Progress report, Proceedings of the Third International Conference on Principles Of Knowledge Representation And Reasoning, 1992.

M. Perry and J. Herring, Ogc geosparql-a geographic query language for rdf data. OGC implementation standard, vol.50, 2012.

. Bibliographie-[perry, Geospatial and temporal semantic analytics, Handbook of research on geoinformatics, p.47, 2009.

M. S. Perry, A Framework to Support Spatial, Temporal and Thematic Analytics over Semantic Web Data, p.47, 2008.

W. Peuquet, D. Peuquet, and E. Wentz, An approach for time-based analysis of spatiotemporal data, the 6th International Symposium of Spatial Data Handling, SDH'94, vol.33, pp.489-504, 1994.

D. J. Peuquet and N. Duan, An event-based spatiotemporal data model (estdm) for temporal analysis of geographical data. International journal of geographical information systems, vol.9, p.39, 1995.

[. Pierkot, Formalizing spatiotemporal knowledge in remote sensing applications to improve image interpretation, Journal of Spatial Information Science, vol.34, issue.7, p.36, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02136679

F. Pouget, Notions de base de télédétection, vol.12, 2005.

. Pratikakis, Semantics extraction from images, Knowledge-driven multimedia information extraction and ontology evolution, vol.84, p.85, 2011.

C. Quarmby, N. Quarmby, and J. Cushnie, Monitoring urban land cover changes at the urban fringe from spot hrv imagery in south-east england, International Journal of Remote Sensing, vol.10, issue.6, pp.953-963, 1989.

[. Radoux, Overall accuracy estimation for geographic object-based image classification, Ninth International Symposium on Spatial Accuracy Assessment in Natural Resources and Environmental Sciences, p.24, 2010.

. Randell, A spatial logic based on regions and connection, vol.92, p.105, 1992.

. Randell, A spatial logic based on regions and connection, vol.92, pp.165-176, 1992.

. Rawat, J. Kumar-;-rawat, and M. Kumar, Monitoring land use/cover change using remote sensing and gis techniques : A case study of hawalbagh block, district almora, uttarakhand, india. The Egyptian Journal of Remote Sensing and Space Science, vol.18, pp.77-84, 2015.

[. Rawat, Land use/cover dynamics using multi-temporal satellite imagery : a case study of haldwani town area, district nainital, uttarakhand, india, International Journal of Geomatics and Geosciences, vol.4, issue.3, pp.536-543, 2014.

[. Riaño, Application of remote sensing and gis, land use/land cover change in kathmandu metropolitan city, nepal, IEEE Transactions on geoscience and remote sensing, vol.41, p.26, 2003.

. Bibliographie-[robinson, P. N. Bauer-;-robinson, and S. Bauer, Introduction to bio-ontologies, p.54, 2011.

, Caractéristiques de différents satellites d'observation de la terre, International conference on spatial information theory, p.35, 1995.

S. Schauß, M. Schmidt-schauß, G. ;. Smolka, and . Ix-[schulz, Attributive concept descriptions with complements, Artificial intelligence, vol.48, issue.1, pp.1-26, 1991.

, Monitoring land cover change of the dryland forest landscape of central chile, Applied Geography, vol.30, pp.436-447, 1975.

I. Sebari, D. He, M. Sezgin, and B. Sankur, Survey over image thresholding techniques and quantitative performance evaluation, XXV, XXVI [Sezgin and Sankur, vol.7, pp.146-166, 2004.

. Xxv-[shadbolt, The semantic web revisited, IEEE intelligent systems, vol.21, issue.3, pp.96-101, 2006.

T. Shalaby, A. Shalaby, and R. Tateishi, Remote sensing and gis for mapping and monitoring land cover and land-use changes in the northwestern coastal zone of egypt, Applied Geography, vol.27, issue.1, pp.28-41, 2007.

J. Shepherd, J. Dymond, P. Shivhare, V. Gupta, P. Shvaiko et al., Correcting satellite imagery for the variance of reflectance and illumination with topography, International Journal of Engineering and Advanced Technology, vol.24, issue.17, p.33, 1989.

. Smeulders, , 2000.

, Content-based image retrieval at the end of the early years. IEEE Transactions on pattern analysis and machine intelligence, vol.22

[. Smith, Relations in biomedical ontologies, vol.6, 2005.

A. Snodgrass, R. Snodgrass, and I. Ahn, Semantic mappings in description logics for spatio-temporal database schema integration, In Journal on Data Semantics III, vol.19, issue.9, p.106, 1986.

. Sowa, Knowledge representation : logical, philosophical, and computational foundations, vol.13, 2000.

, Le programme spot (satellite pour l'observation de la terre)

S. Staab and R. Studer, Visité le : 30-09-2016. xii, XXI [Staab and Studer, NOAA Commercial Remote Sensing Symposium : Key Trends and Challenges in the Global Marketplace, 2006.

C. Strobl, Dimensionally extended nine-intersection model (de-9im), Encyclopedia of GIS, p.35, 2008.
DOI : 10.1007/978-3-319-17885-1_298

[. Studer, Knowledge engineering : principles and methods. Data and knowledge engineering, vol.25, pp.161-198, 1998.
DOI : 10.1016/s0169-023x(97)00056-6

URL : https://publikationen.bibliothek.kit.edu/189497/3003

[. Sui, Processing of multi-temporal data and change detection, Adv. Photogramm. Remote Sens. Spat. Inf. Sci, vol.16, pp.227-274, 2008.

. Sun, Using landsat data to determine land use changes in datong basin, china. Environmental geology, vol.57, issue.8, pp.1825-1837, 2009.
DOI : 10.1007/s00254-008-1470-2

F. Sunar, An analysis of changes in a multi-date data set : a case study in the ikitelli area, istanbul, turkey, International Journal of Remote Sensing, vol.19, issue.2, pp.225-235, 1998.

[. Sundaresan, Robustness of change detection algorithms in the presence of registration errors. Photogrammetric Engineering & Remote Sensing, vol.73, pp.375-383, 2007.

T. ;. Swartout, W. Swartout, and A. Tate, Ontologies. IEEE Intelligent Systems and Their Applications, vol.14, 1999.

[. Tamura, Textural features corresponding to visual perception, IEEE Transactions on Systems, man, and cybernetics, vol.8, issue.6, pp.460-473, 1978.
DOI : 10.1109/tsmc.1978.4309999

. Teng, Hypothesis-test-based landcover change detection using multi-temporal satellite images-a comparative study, Advances in Space Research, vol.41, issue.11, pp.1744-1754, 2008.
DOI : 10.1016/j.asr.2007.06.064

C. Terre, Centre canadien de cartographie et d'observation de la terre, Notions fondamentales de Télédétection. x, vol.11, p.25, 2013.

M. Thériault and C. Claramunt, La modélisation du temps et des processus dans les sig : Un moyen d'intégration pour la recherche interdisciplinaire, Revue Internationale de Geomatique, vol.9, pp.67-103, 1999.

[. Thériault, A spatio-temporal taxonomy for the representation of spatial set behaviours, Spatio-temporal database management, pp.1-18, 1999.

. Bibliographie-[torahi, A. A. Rai-;-torahi, and S. C. Rai, Land cover classification and forest change analysis, using satellite imagery-a case study in dehdez area of zagros mountain in iran, Journal of Geographic Information System, vol.3, issue.01, 2011.

[. Trigg, Utility of landsat 7 satellite data for continued monitoring of forest cover change in protected areas in southeast asia, 2006.

, Singapore Journal of Tropical Geography, vol.27, issue.1, pp.49-66

J. Tryfona, N. Tryfona, and C. S. Jensen, Spatio-temporal database modeling with an extended entity-relationship model, Encyclopedia of GIS, pp.1115-1121, 2008.
DOI : 10.1007/978-3-319-23519-6_1317-2

A. Tsang, P. W. Tsang, A. T. Au, D. Tsarkov, and I. Horrocks, A genetic algorithm for projective invariant object recognition, International Joint Conference on Automated Reasoning, vol.1, p.95, 1996.
DOI : 10.1109/tencon.1996.608705

[. Turner, Land-use and land-cover change : science/research plan, In Unknown Host Publication Title. International Geosphere-Biosphere Programme, 1995.

. Van-coillie, Semiautomated forest stand delineation using wavelet based segmentation of very high resolution optical imagery, Object-Based Image Analysis, p.24, 2008.

. Van-heijst, Using explicit ontologies in kbs development, International journal of human-computer studies, vol.46, issue.2-3, pp.183-292, 1997.

. Van-zyl, A framework for comparing methods for using or reusing multiple ontologies in an application, 2000.

[. Verbesselt, Detecting trend and seasonal changes in satellite image time series. Remote sensing of Environment, vol.114, pp.106-115, 2010.

[. Wang, A study on the change of wetland landscape pattern in honghu city by using 3s method, 2009 International Conference on Environmental Science and Information Application Technology, p.25, 2009.

[. Wang, Ontology based context modeling and reasoning using owl, Proceedings of the Second IEEE Annual Conference on, p.47, 2004.

[. Weichert, A novel approach for connecting temporal-ontologies with blood flow simulations, Journal of biomedical informatics, vol.46, issue.3, p.62, 2013.

[. Welty, A reusable ontology for fluents in owl, FOIS, vol.150, pp.226-236, 2006.

Y. Bibliographie-[wen, X. Wen, and X. Yang, Change detection from remote sensing imageries using spectral change vector analysis, 2009 Asia-Pacific Conference on Information Processing, p.20, 2009.

Y. Wen, Data application of multi-temporal and multi-source data for land cover change detection in guam, usa. geoinformatics, 19th International Conference on IEEE, p.28, 2011.

[. Williams, Landsat. Photogrammetric Engineering & Remote Sensing, vol.72, issue.10, pp.1171-1178, 2006.

C. Wong, A. Wong, and D. A. Clausi, Arrsi : Automatic registration of remote-sensing images, International Journal of Geographical Information Science, vol.45, issue.5, pp.1-28, 2005.

. Worboys, M. Hornsby-;-worboys, and K. Hornsby, From objects to events : Gem, the geospatial event model, International Conference on Geographic Information Science, vol.34, p.61, 2004.

M. F. Worboys, A model for spatio-temporal information, Proceedings the 5th International Symposium on Spatial Data Handling, vol.2, p.38, 1992.

[. Wu, A novel point-matching algorithm based on fast sample consensus for image registration, IEEE Geosci. Remote Sensing Lett, vol.12, issue.1, pp.43-47, 2015.

[. Xie, Remote sensing imagery in vegetation mapping : a review, Journal of plant ecology, vol.1, issue.1, pp.9-23, 2008.

[. Young, A survival guide to landsat preprocessing, Ecology, vol.98, issue.4, pp.920-932, 2017.

M. Yuan, Temporal gis and spatio-temporal modelling, Proceedings, Third International Conference/Workshop on Integrating GIS and Environmental Modeling, p.37, 1996.

M. Yuan, Use of a three-domain repesentation to enhance gis support for complex spatiotemporal queries, Transactions in GIS, vol.3, issue.2, pp.137-159, 1999.

[. Zaki, Land use and land cover changes in arid region : The case new urbanized zone, northeast cairo, egypt, Journal of Geographic Information System, vol.3, issue.03, p.28, 2011.

K. Zanter, Landsat 8 (l8) data users handbook, p.114, 2016.

C. Zhang, Q. Zhang, and I. Couloigner, A framework for road change detection and map updating. International archives of the Photogrammetry, Remote sensing and Spatial information sciences, vol.35, pp.720-734, 2004.

. Bibliographie-[zhang, R. Zhu-;-zhang, and D. Zhu, Study of land cover classification based on knowledge rules using high-resolution remote sensing images, Expert Systems with Applications, vol.38, pp.3647-3652, 2011.

[. Zhou, Trajectory analysis of land cover change in arid environment of china, International Journal of Remote Sensing, vol.29, issue.4, p.28, 2008.

, Liste des Publications Chapitre de livre, issue.1

. Ghazouani-f and . R. Farah-i, Semantic Remote Sensing Scenes Interpretation and Change Interpretation, Ontology in Information Science. InTech, 2018. Conférences internationales

. Ghazouani-f and . R. Farah-i, Qualitative semantic spatio-temporal reasoning based on description logics for modeling dynamics of spatio-temporal objects in satellite images, Advanced Technologies for Signal and Image Processing (ATSIP), pp.1-6, 20184.

. Ghazouani-f, W. Messaoudi, and F. I. , Towards an ontological conceptualization for understanding the dynamics of spatio-temporal objects, Advanced Technologies for Signal and Image Processing (ATSIP), pp.543-548, 2016.

. Ghazouani-f, W. Messaoudi, and F. I. , Étude de la dynamique des phénomènes géographiques à travers une modélisation sémantique à base d'ontologie des objets spatiotemporels, ASD 2016 : 10ème Conférence sur les Avancées des Systèmes Décisionnels, 2016.

. Ghazouani-f, W. Messaoudi, and F. I. , A Multi-level Ontological Approach for Change Monitoring in Remotely Sensed Imagery, 7th International Joint Conference on Knowledge Discovery, pp.435-440, 2015.

, Soumis et en révision

. Ghazouani-f and . R. Farah-i, A multi-levels Semantic Scenes Interpretation (SSI) strategy for change interpretation in remote sensing imagery, TGRS : Transactions on Geoscience and Remote Sensing

. Ghazouani-f and . R. Farah-i, Qualitative semantic spatio-temporal reasoning based on description logics for modeling dynamics of spatio-temporal objects in satellite images

, Le terme Description indique les attributs, les caractéristiques et les relations des ressources. Le terme Cadre représente le modèle, les langages et les syntaxes utilisés pour ces descriptions. En RDF, les données sont représen-tées sous la forme d'un graphe-orienté étiqueté. Un graphe RDF est un ensemble de triplets, de la forme <sujet, prédicat, objet>. Le sujet est une ressource qui peut être identifiée par un URI. Le XIV Annexes C. Ontologies prédicat est une spécification réutilisée et identifiée par l'URI de la relation, RDF a été publié comme une recommandation du W3C en 1999 et il a été initialement présenté comme un modèle de données pour les métadonnées

C. La-figure, 3 montre un exemple de triplet RDF décrivant un segment de végétation. Ce segment est vu comme une source (sujet) identifiée par l'URI VPO :VegetationSegment et décrit par le prédicat VPO :hasNDVI et l'

, Comme nous avons introduire, RDF est un langage basé sur XML, ce qui signifie que RDF est capable d'échanger des informations entre d'autres applications basées sur XML. Ces spécifications rendent ce système prêt pour une extensibilité future. Par conséquent, cette performance permet de représenter n'importe quelle ressource et son état, bien que le résultat puisse ne pas être compatible avec le monde réel, ainsi, par exemple, L'utilisation d'un vocabulaire qui possède les URIs pour nommer toutes les ressources de l'ensemble données, est un point fort du langage RDF

, Le langage OWL Le langage OWL (Web Ontology Language) consiste en une suite de recommandations de W3C

. Mcguinness, et il est devenue standard à partir de 4 Février, 2004.

C. Le-langage-de-définitions and W. De-partage-des-ontologies-dans-le, OWL est un langage aussi basé sur XML puisque OWL est une extension de RDF. Par exemple, OWL est très utile pour créer des ontologies universitaires, industrielles, médicales, etc., afin de faciliter l'accès aux données renvoyées vers ces domaines de connaissances. Le langage OWL facilite une plus grande interprétabilité du contenu Web par les machines que celle prise en charge par XML, RDF et RDFS en fournissant un vocabulaire supplémentaire avec une sémantique formelle, 2004.

, triplet RDF) est enrichi avec d'autre concept. L'ensemble de caractéristiques offertes par le langage OWL sont : Une collection d'opérateurs expressifs pour la description de concepts, y compris les opéra-teurs booléens (intersection, union et complément), ainsi que des quantificateurs explicites

, La possibilité de spécifier des caractéristiques de propriétés, telles que la transitivité ou les domaines et les ranges

, Une sémantique bien définie facilitant l'utilisation de l'inférence et du raisonnement automatisé

, L'utilisation des URI pour nommer les concepts et les ontologies

, Un mécanisme pour importer des ontologies externes

, Une compatibilité avec l'architecture du W3C, en particulier d'autres langages de représen-tation tels que RDF et RDFS

C. Figure, OWL full peut être utilisé par quiconque a besoin de sa caractéristique principale : la liberté d'utiliser l'ensemble du spectre du langage OWL, mais, d'autre part, l'exhaustivité informatique n'est pas assurée. OWL DL (Description Logics) impose des restrictions sur la manière dont le vocabulaire peut être utilisé afin de définir un langage pour lequel un certain nombre de tâches de raisonnement clés, 4 -Un exemple d'extension de triplet RDF OWL se base sur RDF et RDFS, mais il ajoute plus de vocabulaire pour décrire les propriétés et les classes et il offre une syntaxe plus forte que RDF et RDFS. En outre

. De-plus, OWL DL peut être utilisé. Il assure le calcul de toutes les conclusions dans une période de temps limitée. OWL Lite restreint davantage l'expressivité autorisée -par exemple

. Baader, Ce langage est généralement utilisé pour des classifications et des contraintes simples grâce à sa simplicité, par exemple, traduire de une taxonomie en thésaurus, où une taxonomie et un thésau-rus sont deux sortes d'ontologies qui sont vraiment étendues, et facilitent ainsi l'utilisation de raisonneurs DL pour fournir un support de raisonnement au langage, 2003.

. Á-partir-de, OWL 2, une version étendue de OWL, est maintenant plus adopté, 2009.

C. , ontologie pour le Web sémantique étendu à partir de OWL 1 et enrichi par XVI Annexes C. Ontologies de nouvelles fonctionnalités

. Motik, OWL 2 EL autorise des axiomes de sous-classe avec intersection, existentielle, mais n'autorise pas la négation, la disjonction, la quantification universelle arbitraire et les inverses de rôle. OWL 2 QL autorise les instructions de sous-propriétés, de domaine, de range et de sous-classe mais il n'autoriser les classes fermées. OWL 2 RL autorise tous les types d'axiomes, les restrictions de cardinalité (seulement ? 1 et ? 0 à droite) et les classes fermées avec un seul membre. Par contre, il interdire certains constructeurs (universels et la négation sur le côté gauche et extensionnels, OWL 2 est supporté par plusieurs raisonneurs sémantiques tels que RacerPro2, Pellet, Hermit et FaCT++. OWL 2 fournit aussi trois profils, 2009.

, SPARQL : un langage d'interrogation des données RÉSOLUTION SPECTRALE

, IR (0,8 -1,1 µm) (B4)

, MIR1, vol.75, issue.1, pp.55-56

, MIR2, vol.35, issue.2, pp.8-10

, MIR1, vol.75, issue.1, pp.55-56

, MIR2, vol.35, issue.2, pp.8-10

, Pan, vol.90, issue.0, pp.52-52

, µm) (B1)

, MIR1, vol.65, issue.1, pp.57-58

, MIR2, vol.29, issue.2, pp.11-13

. Pan1, , vol.68, pp.50-50

, IRT1, vol.19, issue.10, pp.60-71

, IRT2, vol.51, issue.11, pp.50-62

R. Spectrale,

, Pan, vol.73, issue.0, pp.51-51

, IRM, vol.75, issue.1, pp.58-59

, Pan, vol.68, issue.0, pp.61-61

, IRM, vol.75, issue.1, pp.58-59

, Pan, vol.68, issue.0, pp.61-61

, Pan, vol.74, issue.0, pp.45-45

, Pan, vol.74, issue.0, pp.45-45