M. G. Abdelsalam, Neoproterozoic deformation in the northeastern part of the Saharan Metacraton, northern Sudan, vol.123, pp.203-221, 2003.

J. H. Ahn, D. R. Peacor, and D. S. Coombs, Formation mechanisms of illite, chlorite and mixed-layer illite-chlorite in Triassic volcanogenic sediments from the Southland Syncline, Contributions to Mineralogy and Petrology, vol.99, pp.82-89, 1988.

J. D. Aitken, Classification and environmental significance of cryptalgal limestones and dolomites, with illustrations from the Cambrian and Ordovician of southwestern Alberta, Journal of Sedimentary Petrology, vol.37, pp.1163-1178, 1967.

E. M. Aksenov, B. M. Keller, and B. S. Sokolov, Stratigraphy of the Upper Precambrian on the East European Platform. Ser. Geol, vol.2, pp.17-34, 1978.

E. P. Akulshina, Stratigraphic levels with increased concentration of Cu, Pb and Zn in Precambrian and Phanerozoic sediments of Siberian Platform. In: Mining specialisation of sedimentary facies of Siberia, pp.97-105, 1984.

T. J. Algeo and T. W. Lyons, Mo-TOC covariation in modern anoxic marine environments: implications for analyses of paleoredox and paleohydrographic conditions, Paleoceanography, vol.21, pp.10-16, 2006.

P. A. Allen and P. F. Hoffman, Extreme winds and waves in the aftermath of a Neoproterozoic glaciation, Nature, vol.433, pp.123-127, 2005.

J. E. Amthor, Extinction of Cloudina and Namacalathus at the Precambrian-Cambrian boundary in Oman, Geology, vol.31, pp.431-434, 2003.

A. D. Anbar and O. J. Rouxel, Metal stable isotopes in Paleoceanography, vol.35, pp.717-746, 2007.

M. M. Anderson, C. Morrris, and S. , A review, with descriptions of four unusual forms, of the soft-bodied fauna of the Conception and St. John's groups (Late Precambrian), Third North American Paleontological Convention, vol.1, pp.1-8, 1982.

A. Andresen, N. Y. Agyei-dwarko, M. Kristoffersen, and N. M. Hanken, A Timanian foreland basin setting for the late Neoproterozoic-Early Palaeozoic cover sequences (Dividal Group) of northeastern Baltica, Special Publication, vol.390, pp.157-175, 2014.

E. A. Aseeva, About regional micropaleophitological researches of the Upper Precambrian on Podilya, Biostratigraphic aspects of palynology, pp.11-12, 1981.

E. A. Aseeva and T. V. Yankauskas, Acritarch of the Upper Proterozoic on the East European Platform, pp.24-27, 1974.

Y. Asmerom, S. B. Jacobsen, A. H. Knoll, N. J. Butterfield, and K. Swett, Strontium isotopic variations of Neoproterozoic seawater: implications for crustal evolution, Geochimica et Cosmochimica Acta, vol.55, pp.2883-2894, 1991.

S. M. Awramik, Early Organic Evolution: Implications for Mineral and Energy Resources, pp.435-449, 1992.

R. K. Bambach, Seafood through time: changes in biomass, energetics, and productivity in the marine ecosystem, Paleobiology, vol.19, pp.372-397, 1993.

S. Banerjee, U. Bansal, and A. V. Thorat, A review on paleogeographic implications and temporal variation in glaucony composition, Journal of Paleogeography, vol.5, pp.43-71, 2015.

J. L. Banner, Radiogenic isotopes: systematics and applications to earth surface processes and chemical stratigraphy, Earth-Science Reviw, vol.65, pp.141-194, 2004.
DOI : 10.1016/s0012-8252(03)00086-2

G. N. Baturin and V. S. Savenko, Problems of phosphatisation of carbonates in the tendencies of experimental researches, Oceanology, vol.42, pp.210-217, 2002.

B. Bauluz, M. J. Mayayo, C. Fernandez-nieto, J. M. Lopez, and -. , Geochemistry of Precambrian and Paleozoic siliciclastic rocks from the Iberian Range (NE Spain): implication for source-area weathering, sorting, provenance, and tectonic setting, Chemical Geology, vol.168, pp.135-150, 2000.

Y. R. Bekker, The oldest Ediacaran biota of the Urals, vol.6, pp.16-24, 1992.

Y. R. Bekker, The Discovery of Ediacaran Fauna in the Uppermost Vendian of the South Urals, Regional Geology and Metallogeny, pp.111-131, 1996.

S. Bengtson, Origins and early evolution of predation, vol.8, pp.289-317, 2002.
DOI : 10.1017/s1089332600001133

S. Bengtson and Y. Zhao, Predatorial borings in Late Precambrian mineralized exoskeletons, Science, vol.257, pp.367-369, 1992.
DOI : 10.1126/science.257.5068.367

A. P. Benus, Sedimentological context of a deep-water Ediacaran fauna (Mistaken Point, N.Y. State Mus. Bull, vol.463, pp.8-9, 1988.

L. V. Berkner and L. C. Marshall, On the origin and rise of oxygen concentration in the Earth's atmosphere, Journal of the Atmospheric Sciences, vol.22, pp.225-261, 1965.

E. Billings, On some fossils from the Primordial rocks of Newfoundland, Canadian Naturalist, vol.6, pp.465-479, 1872.

L. P. Black, S. L. Kamo, C. M. Allen, D. W. Davis, J. N. Aleinikoff et al., , p.206, 2004.

, Pb/ 238 U microprobe geochronology by the monitoring of a trace-element-related matrix effect

. Shrimp and E. -. Id-tims, ICP-MS and oxygen isotope documentation for a series of zircon standards, Chemical Geology, vol.205, pp.115-140

T. H. Boag, S. A. Darroch, and M. Laflamme, Ediacaran distributions in space and time: testing assemblage concepts of earliest macroscopic body fossils, Paleobiology, vol.42, pp.574-594, 2016.

S. D. Boger and J. M. Miller, Terminal suturing of Gondwana and the onset of the Ross-Delamerian Orogeny: the cause and effect of an Early Cambrian reconfiguration of plate motions, Earth and Planetary Science Letters, vol.219, pp.35-48, 2004.

B. Boltwood, On the ultimate disintegration products of the radioactive elements, Am. J. Sci, vol.4, pp.253-267, 1905.

J. T. Bonner, The origins of multicellularity, Integrative Biology, vol.1, pp.27-36, 1998.

S. A. Bowring, P. Myrow, E. Landing, and J. Ramenzani, Geochronological constraints on terminal Neoproterozoic events and the rise of metazoans, National Astrobiology Institute General Meeting Abstracts, vol.13045, pp.113-114, 2003.

J. F. Bowring, N. M. Mclean, and S. A. Bowring, Engineering cyber infrastructure for U-Pb geochronology: Tripoli and U-Pb Redox, Geochemistry Geophysics Geosystems, vol.12, pp.p-p, 2011.

H. Boynton and T. D. Ford, Ediacaran fossils from the Precambrian, vol.13, pp.165-182, 1995.

D. C. Bradley, Passive margins through Earth history, vol.91, pp.1-4, 2008.

U. Brand and J. Veizer, Chemical diagenesis of a multicomponent carbonate system-1: trace elements. Sedimentary Petrology, vol.50, pp.1219-1236, 1980.

M. Brasier, G. Mccarron, R. Tucker, J. Leather, P. Allen et al., New U-Pb zircon dates for the Neoproterozoic Ghubrah glaciation and for the top of the Huqf Supergroup, vol.28, pp.175-178, 2000.

M. D. Brasier and J. B. Antcliffe, Evolutionary relationships within the Avalonian Ediacara biota: new insights from laser analysis, Journal of the Geological Society, vol.166, pp.363-384, 2009.

M. D. Brasier, J. B. Antcliffe, and A. G. Liu, The architecture of Ediacaran fronds, vol.55, pp.1105-1124, 2012.

M. D. Brasier, R. M. Corfield, L. A. Derry, A. Y. Rozanov, and A. Y. Zhuravlev, Multiple ? 13 C excursions spanning the Cambrian explosion to the Botomian crisis in Siberia, Geology, vol.22, pp.455-458, 1994.

M. D. Brasier and J. F. Lindsay, A billion years of environmental stability and the emergence of eukaryotes; new data from northern Australia, Geology, vol.26, pp.555-558, 1998.

P. F. Bratslavsky, O. M. Shevchenko, L. S. Kuzmenko, U. M. Veklich, V. M. Kluchkov et al., Notice of geological map of the Volino-Podilska Serie, at the 1:200000 scale; sheets M-35-XXVIII (Bar) & M-35-XXXIV (Moguiliv-Podilsky), 2008.

S. T. Brennan, T. K. Lowenstein, and J. Horita, Seawater chemistry and the advent of biocalcification, Geology, vol.32, pp.473-476, 2004.

G. Brindley and G. Brown, Crystal Structures of Clay Minerals and Their X-Ray Identification, 1980.

E. P. Brins and K. E. Yakobson, Correlation of outcrops of the before-Ordovician deposits on Podolya. VSEGEI, vol.91, pp.59-85, 1963.

T. F. Bristow and M. J. Kennedy, Carbon isotope excursions and the oxidant budget of the Ediacaran atmosphere and ocean, Geology, vol.36, pp.863-866, 2008.

H. Brown, An experimental method for the estimation of the age of the elements, Physical Review, vol.72, p.348, 1947.

J. W. Burdett, J. P. Grotzinger, and M. A. Arthur, Did major changes in the stable-isotope composition of Proterozoic seawater occur?, Geology, vol.18, pp.227-230, 1989.

N. J. Butterfield, Ecology and evolution of Cambrian plankton, The Ecology of the Cambrian Radiation, pp.200-216, 2001.

N. J. Butterfield, A vaucheriacean alga from the middle Neoproterozoic of Spitsbergen: implications for the evolution of Proterozoic eukaryotes and the Cambrian explosion, 2004.

, Paleobiology, vol.30, pp.231-252

N. J. Butterfield, Probable Proterozoic fungi, Paleobiology, vol.31, pp.165-182, 2005.

N. J. Butterfield, The Neoproterozoic, vol.25, pp.859-863, 2015.

R. H. Byrne and E. R. Sholkovitz, Marine chemistry and geochemistry of the lanthanides. Handbook on the Physics and Chemistry of Rare Earths, vol.23, pp.497-593, 1996.

I. H. Campbell and C. M. Allen, Formation of supercontinents linked to increases in atmospheric oxygen, Nature Geoscience, vol.1, pp.554-558, 2008.

I. H. Campbell and R. J. Squire, The mountains that triggered the Late Neoproterozoic increase in oxygen: the second great oxidation event, Geochimica et Cosmochimica Acta, vol.74, pp.4187-4206, 2010.

D. E. Canfield, Reactive iron in marine sediments, Geochemical Cosmochemical Acta, vol.53, pp.619-632, 1989.

D. E. Canfield, A new model for Proterozoic ocean chemistry, Nature, vol.396, pp.450-453, 1998.

D. E. Canfield, S. W. Poulton, A. H. Knoll, G. M. Narbonne, G. Ross et al., Ferruginous conditions dominated later Neoproterozoic deepwater chemistry, vol.321, pp.949-952, 2008.

D. E. Canfield, S. W. Poulton, and G. M. Narbonne, Late Neoproterozoic deep-ocean oxygenation and the rise of animal life, Science, vol.315, pp.92-95, 2007.

D. E. Canfield and A. Teske, Late Proterozoic rise in atmospheric oxygen concentration inferred from phylogenetic and sulfur-isotope studies, Nature, vol.382, pp.127-132, 1996.

P. A. Cawood and S. A. Pisarevsky, Was Baltica right-way-up or upside-down in the Neoproterozoic?, Journal of the Geological Society, vol.163, pp.753-759, 2006.

M. E. Clapham, N. G. Gehling, and J. G. , Paleoecology of the oldest known animal communities: Ediacaran assemblages at Mistaken Point, vol.29, pp.527-544, 2003.

. P. Cloud, Atmospheric and hydrospheric evolution on the primitive Earth: both secular accretion and biological and geochemical processes have affected Earth's volatile envelope, Science, vol.160, pp.729-736, 1968.

P. E. Cloud, A working model of the primitive Earth, Am. J. Sci, vol.272, pp.537-548, 1972.

L. R. Cocks and T. H. Torsvik, Baltica from the late Precambrian to mid-Palaeozoic times: the gain and loss of a terrane's identity, Earth Science Review, vol.72, pp.39-66, 2005.

P. A. Cohen and A. H. Knoll, Scale microfossils from the Mid-Proterozoic Fifteenmile Group, Yukon Territory, J. Paleontology, vol.86, pp.775-800, 2012.

I. Cojan and M. Renard, Sédimentologie : cours 3 e éd. DUNOD, vol.460, 2013.

A. Coleman, Ice ages, recent and ancient, vol.296, 1926.

A. S. Collins and S. A. Pisarevsky, Amalgamating eastern Gondwana: the evolution of the CircumIndian Orogens, Earth-Science Reviews, vol.71, pp.229-270, 2005.

W. Compston, A. E. Wright, and P. Toghill, Dating the Late Precambrian volcanicity of England and Wales, Journal of the Geological Society, vol.159, pp.323-339, 2002.

K. C. Condie, Preservation and recycling of crust during accretionary and collisional phases of Proterozoic orogens: a bumpy road from Nuna to Rodinia, Geosciences, vol.3, pp.240-261, 2013.

D. Condon, N. Mclean, B. Schoene, S. Bowring, R. Parrish et al., Synthetic U-Pb 'standard' solutions for ID-TIMS geochronology, Geochim. Cosmochim. Acta, vol.72, issue.12S, 2008.

H. Cui, D. V. Grazhdankin, S. Xiao, S. Peek, V. I. Rogov et al., Redox-dependent distribution of early macro-organisms: Evidence from the terminal Ediacaran Khatyspyt Formation in Arctic Siberia, Palaeogeography, Palaeoclimatology, Palaeoecology, vol.461, pp.122-139, 2016.

G. L. Cumming and J. R. Richards, Ore lead isotope ratios in a continuously changing Earth. Earth and Planetary Science Letters, vol.28, pp.155-171, 1975.

S. Dai, X. Wang, Y. Zhou, J. C. Hower, D. Li et al., Chemical and mineralogical compositions of silicic, mafic, and alkali tonsteins in the late Permian coals from the Songzao Coalfield, Chemical Geology, vol.282, pp.29-44, 2011.

S. A. Darroch, M. Laflamme, and M. E. Clapham, Population structure of the oldest known macroscopic communities from Mistaken Point, Paleobiology, vol.39, pp.591-608, 2013.

S. A. Darroch, E. A. Sperling, T. H. Boag, R. A. Racicot, S. J. Mason et al., Biotic replacement and mass extinction of the Ediacara biota, Proceedings of the Royal Society of London, B, vol.282, p.1003, 2015.

S. De-villiers, J. A. Dickson, and R. M. Ellam, The composition of continental weathering flux deduced from seawater Mg isotopes, Chemical Geology, vol.216, pp.133-142, 2005.

J. Detmers, V. Brüchert, K. S. Habicht, and J. Kuever, Diversity of sulfur isotope fractionations by sulfate-reducing prokaryotes, Environmental Microbiology, vol.67, pp.888-894, 2001.

N. Dobrzinksi, H. Bahlburg, H. Strauss, Q. Zhang, G. L. Climate et al., Geochemical proxies applied to the Neoproterozoic glacial succession on the Yangtze Platform, The Extreme Proterozoic: Geology, Geochemistry, and, pp.13-32, 2004.

, Geophysical Monograph Series n°146

M. S. Dodd, D. Papineau, T. Grenne, J. F. Slack, M. Rittner et al., Evidence for early life in Earth's oldest hydrothermal vent precipitates, Nature, vol.543, pp.60-64, 2017.

S. K. Donovan and D. N. Lewis, Fossils explained 35: The Ediacaran biota, Geology Today, vol.17, pp.115-120, 2001.

E. J. Douzery, E. A. Snell, E. Bapteste, F. Delsuc, and H. Phillipe, The timing of eukaryotic evolution: Does a relaxed molecular clock reconcile proteins and fossils?, Proc. National Academic Science USA, vol.101, pp.15386-91, 2004.
URL : https://hal.archives-ouvertes.fr/halsde-00193035

M. L. Droser, S. Jensen, and J. G. Gehling, Trace fossils and substrates of the terminal ProterozoicCambrian transition: implications for the record of early bilaterians and sediment mixing, Proceedings of the National Academy of Sciences of the United States of America, vol.99, pp.12572-12576, 2002.

J. B. Drummond, P. K. Pufahl, C. G. Porto, and M. Carvalho, Neoproterozoic peritidal phosphorite from the Sete Lagoas Formation, Brazil, and the Precambrian P-cycle, Sedimentology, vol.62, 1978.

A. El-albani, S. Bengtson, D. E. Canfield, A. Bekker, R. Macchiarelli et al., Large colonial organisms with coordinated growth in oxygenated environments 2.1 Gyr ago, Nature, vol.466, pp.100-104, 2010.

M. Z. El-bialy and I. S. Hassen, The late Ediacaran (580-590 Ma) onset of anorogenic alkaline magmatism in the Arabian-Nubian Shield: Katherina A-type rhyolites of Gabal Ma'ain, 2012.

M. Elie, A. C. Nogueira, A. Nédélec, R. I. Trindade, and F. Kenig, A red algal bloom in the aftermath of the Marinoan Snowball Earth, Terra Nova, vol.19, pp.303-308, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00321046

S. A. Elming, N. Kravchenko, P. Layer, M. Rusakov, A. M. Glevasskaya et al., Palaeomagnetism and 40 Ar/ 39 Ar age determinations of the Ediacaran traps from the southwestern margin of the East European Craton, Ukraine: relevance to the Rodinia break-up, Journal of the Geological Society, vol.164, pp.969-982, 2007.

J. D. Eoff, Suspected microbial-induced sedimentary structures (MISS) in Furongian (Upper Cambrian; Jiangshanian, Sunwaptan) strata of the Upper Mississippi Valley, Facies, vol.60, pp.801-814, 2014.

B. K. Eriksson and L. Bergström, Local distribution patterns of macroalgae in relation to environmental variables in the northern Baltic Proper, Estuar. Coast. Shelf Science, vol.62, pp.1-2, 2005.

R. E. Ernst, M. T. Wingate, K. L. Buchan, and Z. X. Li, Global record of 1600-700 Ma Large Igneous Provinces (LIPs): implications for the reconstruction of the proposed Nuna (Columbia) and Rodinia supercontinents, Precambrian Research, vol.160, pp.159-178, 2008.

D. H. Erwin, M. Laflamme, S. M. Tweedt, E. A. Sperling, D. Pisani et al., The Cambrian conundrum: Early divergence and later ecological success in the early history of animals, vol.334, pp.1091-1097, 2011.

D. A. Evans, A fundamental Precambrian-Phanerozoic shift in Earth's glacial style? Tectonophysics, vol.375, pp.353-385, 2003.

D. A. Evans, True polar wander and supercontinents, Tectonophysics, vol.362, pp.303-320, 2003.

I. J. Fairchild, Petrography and carbonate chemistry of Dalradian dolomite and metasediments: preservation of diagenetic textures, vol.142, pp.167-185, 1985.

I. J. Fairchild, Balmy shores and icy wastes: the paradox of carbonates associated with glacial deposits in Neoproterozoic times, Sedimentological Review, vol.1, pp.1-16, 1993.

I. J. Fairchild and M. J. Kennedy, Neoproterozoic glaciation in the Earth system, vol.164, pp.895-921, 2007.

C. M. Fanning, K. R. Ludwig, B. G. Forbes, and W. V. Preiss, Single and multiple grain U-Pb zircon analyses for the early Adelaidean Rook Tuff, vol.15, pp.71-72, 1986.

A. M. Fazio, R. A. Scasso, L. N. Castro, and S. Carey, Geochemistry of rare earth elements in earlydiagenetic miocen phosphatic concretions of Patagonia, vol.54, pp.1414-1432, 2007.

M. A. Fedonkin, Belomorskaya biota venda; dokembriyskaya besskeletnaya fauna severa Russkoy platformy; White Sea biota of Vendian; Precambrian nonskeletal fauna of northern Russian Platform, Trudy Geological Institution, vol.342, p.100, 1981.

M. A. Fedonkin, Vendian faunas and the early evolution of Metazoa, Origin and Early Evolution of the Metazoa, pp.87-129, 1992.

M. A. Fedonkin and B. M. Waggoner, The Late Precambrian fossil Kimberella is a mollusc-like bilaterian organism, Nature, vol.388, pp.868-871, 1997.

S. Felitsyn and M. S. , REE patterns in latest Neoproterozoic -early Cambrian phosphate concretions and associated organic matter, vol.187, pp.257-265, 2002.

C. N. Fenner and C. S. Piggot, The mass spectrum of lead from Broggerite, Nature, vol.123, pp.793-794, 1929.

D. A. Fike and J. P. Grotzinger, Apaired sulfate-pyrite ? 34 S approach to understanding the evolution of the Ediacaran-Cambrian sulfur cycle, Geochemical Cosmochemical Acta, vol.72, pp.2636-2648, 2008.

D. A. Fike, J. P. Grotzinger, L. M. Pratt, and R. E. Summons, Oxidation of the Ediacaran Ocean, vol.444, pp.744-747, 2006.

A. G. Fischer, Fossils, early life, and atmospheric history: National Academy of Sciences Proceedings, vol.53, pp.1205-1215, 1965.

T. D. Ford, Pre-Cambrian fossils from Charnwood Forest, Proc. Yorkshire Geological Society, vol.31, pp.211-217, 1958.

H. W. Frimmel, U. S. Klötzli, and P. R. Siegfried, New Pb-Pb single zircon age constraints on the timing of Neoproterozoic glaciation and continental break-up in Namibia, Journal of Geology, vol.104, pp.459-469, 1996.

P. N. Froelich, M. A. Arthure, W. C. Burnett, M. Deakin, V. Hensley et al., Early diagenesis of organic matter in Peru continental margin sediments: phosphorite precipitation, Marin Geology, vol.80, pp.309-343, 1988.

E. P. Furman, Mineralogy of Phosphorite Deposits in the Dniester Region, Problems of Mineralogy of Sedimentary Rocks, pp.116-135, 1954.

A. J. Gaddy and R. A. Parker, Zooplankton grazing activity and assimilation in the presence of Mount St. Helens ash, Northwest Science, vol.60, pp.47-51, 1986.

D. G. Gee and V. Pease, The Neoproterozoic Timanide Orogen of eastern Baltica: introduction, The Neoproterozoic Timanide Orogen of Eastern Baltica, p.30, 2004.

J. G. Gehling, Microbial mats in terminal Proterozoic siliciclastics; Ediacaran death masks, PALAIOS, vol.14, pp.40-57, 1999.

J. G. Gehling and M. L. Droser, How well do fossil assemblages of the Ediacara biota tell time?, Geology, vol.41, pp.447-450, 2013.

J. G. Gehling, G. M. Narbonne, and M. M. Anderson, The first named Ediacaran body fossil, Aspidella terranovica, Palaeontology, vol.43, pp.427-456, 2000.

G. J. Germs, The stratigraphy and paleontology of the lower Nama Group, South West Africa. Bull. Univ. Cape Town Dep. Geol. Chamber Mines Precambrian Researches Unit, vol.12, p.250, 1972.

M. Glaessner, The emergence of metazoan in the early history of Life, Precambrian Research, vol.20, pp.427-441, 1983.

M. F. Glaessner, The oldest fossil faunas of South Australia, International Journal of Earth Sciences, vol.47, pp.522-531, 1959.

M. F. Glaessner and M. Wade, The late Precambrian fossils from Ediacara, vol.9, pp.599-628, 1966.

P. Gorjan, J. J. Veevers, and M. R. Walter, Neoproterozoic sulfur-isotope variation in Australia and global implications, Precambrian Research, vol.100, pp.151-179, 2000.

P. Gorjan, M. R. Walter, and R. Swart, Global Neoproterozoic (Sturtian) post-glacial sulfide-sulfur isotope anomaly recognised in Namibia, African Earth Science, vol.36, pp.89-98, 2003.

D. Grazhdankin, Patterns of distribution in the Ediacaran biotas: facies versus biogeography and evolution, vol.30, pp.203-221, 2004.

D. Grazhdankin and A. Seilacher, Underground Vendobionta from Namibia, Palaeontology, vol.45, pp.57-78, 2002.
DOI : 10.1111/1475-4983.00227

URL : https://onlinelibrary.wiley.com/doi/pdf/10.1111/1475-4983.00227

D. V. Grazhdankin, V. V. Marusin, J. Meert, M. T. Krupenin, and A. V. Maslov, The Kotlin regional stage in the South Urals, vol.440, pp.1222-1226, 2011.

D. V. Grazhdankin, A. V. Maslov, and M. T. Krupenin, Structure and Depositional History of the Vendian Sylvitsa Group in the Western Flank of the Central Urals, Stratigraphy and Geological Correlation, vol.17, pp.476-492, 2009.

R. T. Gregory and H. T. Talyor, An oxygen isotope profile in a section of Cretaceous oceanic crust, Semail Ophiolite, Oman: evidence for ? 18 O buffering of the oceans by deep (>5 km) seawater hydrothermal circulations at mid-ocean ridges, Geophysical Researches, vol.84, pp.2727-2755, 1981.

K. Grey, , 1998.

J. P. Grotzinger, Geochemical model for Proterozoic stromatolite decline, American Journal of Science, vol.290, pp.80-103, 1990.

J. P. Grotzinger, W. A. Watters, and A. H. Knoll, Calcified metazoans in thrombolite-stromatolite reefs of the terminal Proterozoic Nama Group, Namibia. Paleobiology, vol.26, pp.334-359, 2000.

J. P. Grotzinger and A. H. Knoll, Anomalous carbonate precipitates: is the Precambrian the key to the Permian? Palaiosol, vol.10, pp.578-596, 1995.

G. Gürich, Die Kuibis-Fossilien der Nama-Formation von Suedwestafrica; nachtraege und Zusaetze, Palaeontology, vol.15, pp.137-154, 1933.

G. P. Halverson, A Neoproterozoic chronology, pp.231-271, 2006.
DOI : 10.1007/1-4020-5202-2_8

G. P. Halverson, F. O. Dudas, A. C. Maloof, and S. A. Bowring, Evolution of the 87 Sr/ 86 Sr composition of Neoproterozoic seawater, Palaeogeography Palaeoclimatology Palaeoecology, vol.256, pp.103-129, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00324676

G. P. Halverson, P. F. Hoffman, D. P. Schrag, and A. J. Kaufman, A major perturbation of the carbon cycle before the Ghaub glaciation (Neoproterozoic) in Namibia: Prelude to snowball Earth?, Geochemistry, Geophysics, Geosystems, vol.16, p.3, 2002.

G. P. Halverson, P. F. Hoffman, D. P. Schrag, A. C. Maloof, and A. H. Rice, Neoproterozoic composite carbon-isotope record. G.S.A. Bulletin, vol.117, pp.1181-1207, 2005.

G. P. Halverson and M. T. Hurtgen, Ediacaran growth of the marine sulfate reservoir, Earth Planetary Science, Lett, vol.263, pp.32-44, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00324686

G. P. Halverson, A. C. Maloof, and P. F. Hoffman, The Marinoan glaciation (Neoproterozoic) in Svalbard, Basin Research, vol.16, pp.297-324, 2004.

G. P. Halverson, A. C. Maloof, D. P. Schrag, F. O. Dudas, and M. T. Hurtgen, Stratigraphy and geochemistry of a ca 800 Ma negative carbon isotope interval in northeastern Svalbard, Chemical Geology, vol.237, pp.5-27, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00324673

G. P. Halverson, B. P. Wade, M. T. Hurtgen, and K. M. Barovich, Neoproterozoic chemostratigraphy, Precambrian Research, vol.182, pp.337-350, 2010.
DOI : 10.1016/j.precamres.2010.04.007

M. J. Hambrey and W. B. Harland, The late Proterozoic glacial era, Palaeogeography Palaeoclimatology Palaeoecology, vol.51, pp.255-272, 1985.

W. B. Harland, R. L. Armstrong, A. V. Cox, L. E. Craig, A. G. Smith et al., A Geologic Time Scale, 1989.

W. B. Harland and K. N. Herod, Ice Ages: Ancient and Modern, vol.6, pp.189-126, 1975.

W. W. Hay, C. N. Wold, E. Söding, and S. Flögel, Evolution of sedimentary fluxes and ocean salinity, Geologic Modelling and Simulation: Sedimentary Systems, pp.153-167, 2001.

J. M. Hayes, H. Strauss, and A. J. Kaufman, The abundance of C in marine organic carbon and isotopic fractionation in the global biogeochemical cycle of carbon during the past 800 Ma, Chemical Geology, vol.161, pp.103-125, 1999.

C. L. Hebert, A. J. Kaufman, S. C. Penniston-dorland, and A. J. Martin, Radiometric and stratigraphic constraints on terminal Ediacaran (post-Gaskiers) glaciation and metazoan evolution, Precambrian Research, vol.182, pp.402-412, 2010.

S. B. Hedges, The origin and evolution of model organisms, Nature Review Genetic, vol.3, pp.838-849, 2002.

E. E. Hiatt, P. K. Pufahl, and C. T. Edwards, Sedimentary phosphate and associated fossil bacteria in a Paleoproterozoic tidal flat in the 1.85 Ga Michigamme Formation, Sedimentary Geology, vol.319, pp.24-39, 2015.

J. Hiess, D. J. Condon, N. Mclean, and S. R. Noble, 238 U/ 235 U Systematics in Terrestrial UraniumBearing Minerals, vol.30, pp.1610-1614, 2012.

J. A. Higgins and D. P. Schrag, Aftermath of a snowball Earth, Geochemical Geophysical Geosystems, vol.431, pp.p-p, 2003.

A. C. Hill, K. Arouri, P. Gorjan, and M. R. Walter, Geochemistry of marine and nonmarine environments of a Neoproterozoic cratonic carbonate/evaporite: The Bitter Springs Formation, central Australia, Carbonate Sedimentation and Diagenesis in an Evolving Precambrian World, vol.67, pp.327-344, 2000.

A. C. Hill and M. R. Walter, Mid-Neoproterozoic (ca. 830-750 Ma) isotope stratigraphy of Australia and global correlation, Precambrian Research, vol.100, pp.181-211, 2000.

G. Hofer, M. Wagreich, and S. Neuhuber, Geochemistry of fine-grained sediments of upper Cretaceous to Paleogene Gosau Group, Geoscience Frontiers, vol.4, pp.449-468, 2013.

H. J. Hoffman, K. Grey, A. H. Hickman, and R. Thorpe, Origin of 3.45 Ga coniform stromatolites in Warrawoona Group, vol.111, pp.1256-1262, 1999.

P. F. Hoffman, On Cryogenian (Neoproterozoic) ice-sheet dynamics and the limitations of the glacial sedimentary record 28 th DeBeers Alex, South African Journal of Geology, vol.108, pp.557-577, 2004.

P. F. Hoffman, G. P. Halverson, E. W. Domack, J. M. Husson, J. A. Higgins et al., Are basal Ediacaran (635 Ma) post-glacial "cap dolostones" diachronous?, Earth Planetary Science Letter, vol.258, pp.114-131, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00324721

P. F. Hoffman, A. J. Kaufman, G. P. Halverson, and D. P. Schrag, , vol.281, pp.1342-1346, 1998.

P. F. Hoffman and Z. X. Li, A palaeogeographic context for Neoproterozoic glaciation, 2009.

, Palaeogeography Palaeoclimatology Palaeoecology, vol.277, pp.158-172

P. F. Hoffman and D. P. Schrag, The snowball Earth hypothesis: Testing the limits of global change, Terra Nova, vol.14, pp.129-155, 2002.

K. H. Hoffmann, D. J. Condon, S. A. Bowring, and J. L. Crowley, A U-Pb zircon date from the Neoproterozoic Ghaub Formation, Namibia: Constraints on Marinoan glaciation, Geology, vol.32, pp.817-820, 2004.

H. J. Hofmann and E. W. Mountjoy, British Columbia: Canada's oldest shelly fossils, Namacalathus-Cloudina assemblage in Neoproterozoic Miette Group (Byng Formation), vol.29, pp.1091-1094, 2001.

H. J. Hofmann, G. M. Narbonne, and J. D. Aitken, Ediacaran remains from intertillite beds in northwestern Canada, Geology, vol.18, pp.1199-1202, 1990.

P. Hofmann, W. Ricken, L. Schwark, and D. Leythaeuser, Geochemical signature and related climatic-oceanographic processes for early Albian black shales: Site 417D, vol.22, pp.243-257, 2001.

H. D. Holland, The oxygenation of the atmosphere and oceans, Philosophical Transactions of the Royal Society: Biological Sciences, vol.361, pp.903-915, 2006.

K. Hollocher, P. Robinson, E. Walsh, and D. Roberts, Geochemistry of amphibolite-facies volcanics and gabros of the Storen nappe in extensions West and Southwest of Trondheim, Western gneiss region, Norway: a key to correlations and paleotectonic setting, American Journal of Science, vol.312, pp.357-416, 2012.

A. Holmes, The Age of the Earth, vol.196, 1913.

W. T. Holser and I. R. Kaplan, Isotope geochemistry of sedimentary sulfates, Chemical Geology, vol.1, pp.93-135, 1966.

M. S. Horstwood, G. L. Foster, R. R. Parrish, S. R. Noble, and G. M. Nowell, Common-Pb corrected in-situ U-Pb accessory mineral geochronology by LA-MC-ICP-MS, J. Anal. At. Spectrom, vol.18, pp.837-846, 2003.

H. Hua, B. R. Pratt, and Y. Zhang, Borings in Cloudina shells: complex predator-prey dynamics in the terminal neoproterozoic, PALAIOS, vol.18, pp.454-459, 2003.

V. Hurai, J. L. Paquette, M. Huraiová, and P. Kone?ný, Age of deep crustal magmatic chambers in the intra-Carpathian back-arc basin inferred from LA-ICPMS U-Th-Pb dating of zircon and monazite from igneous xenoliths in alkali basalts, J. Volcanic Geological Research, vol.198, pp.275-287, 2010.

M. T. Hurtgen, M. A. Arthur, and G. P. Halverson, Neoproterozoic sulfur isotopes, the evolution of microbial sulfur species, and the burial efficiency of sulfide as sedimentary sulfide, Geology, vol.33, pp.41-44, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00324689

M. T. Hurtgen, M. A. Arthur, N. Suits, and A. J. Kaufman, The sulfur isotopic composition of Neoproterozoic seawater sulfate: implications for snowball Earth?, Earth Planetary Science Letter, vol.203, pp.413-429, 2002.

M. T. Hurtgen, G. P. Halverson, M. A. Arthur, and P. F. Hoffman, Sulfur cycling in the aftermath of a Neoproterozoic (Marinoan) snowball glaciation: evidence for a syn-glacial sulfidic deep ocean, Earth Planetary Science Letter, vol.245, pp.551-570, 2006.

A. A. Ischenko and L. V. Korenchuk, Lithofacial characteristic and abundancy of flora in Nagoryanska Serie of Upper Precambrian in the basin of the Ushissia river, Problems of geology and stratigraphy of Ukrainian Precambrian, pp.101-112, 1979.

A. Y. Ivantsov, Upper Vendian macrofossils of Eastern Europe. Middle Dniester area and Volhynia, PIN R?S, vol.144, 2015.

A. Y. Ivantsov, G. M. Narbonne, P. W. Trusler, C. Greentree, and P. Vickers-rich, Elucidating Ernietta: new insights from exceptional specimens in the Ediacara of Namibia, Lethaia, vol.49, pp.540-554, 2015.

S. E. Jackson, N. J. Pearson, W. L. Griffin, and E. A. Belousova, The application of laser ablationinductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology, Chemical Geology, vol.211, pp.47-69, 2004.

J. Jacobs and R. J. Thomas, Himalayan-type indenter-escape tectonics model for the southern part of the late Neoproterozoic-early Paleozoic East African-Antarctic orogen, Geology, vol.32, pp.721-724, 2004.

S. B. Jacobsen and A. J. Kaufman, The Sr, C, and O isotopic evolution of Neoproterozoic seawater, Chemical Geology, vol.161, pp.37-57, 1999.

J. B. Jaffrés, G. A. Shields, and K. Wallman, The oxygen isotope evolution of seawater: a critical review of a long-standing controversy and an improved geological water cycle model for the past 3.4 billion years, Earth-Science Review, vol.83, pp.83-122, 2007.

N. P. James, G. M. Narbonne, and T. K. Kyser, Late Neoproterozoic cap carbonates: Mackenzie Mountains, northwestern Canada: Precipitation and global glaciation, Canadian Journal of Earth Sciences, vol.38, pp.1229-1262, 2001.
DOI : 10.1139/cjes-38-8-1229

E. J. Javaux and A. H. Knoll, Micropaleontology of the lower Mesoproterozoic Roper Group, Australia, and implications for early eukaryotic evolution, Journal of Paleontology, 2017.

E. J. Javaux, A. H. Knoll, and M. R. Walter, Morphological and ecological complexity in early eukaryotic ecosystems, Nature, vol.412, pp.66-69, 2001.

R. J. Jenkins, The concept of an 'Ediacaran Period' and its stratigraphic significance in Australia, Transactions of the Royal Society of South Australia, vol.105, pp.179-194, 1981.

R. J. Jenkins, The enigmatic Ediacaran (late Precambrian) genus Rangea and related forms, Paleobiology, vol.11, pp.336-355, 1985.

R. J. Jenkins, Functional and ecological aspects of Ediacaran assemblages, Origin and Early Evolution of the Metazoa, pp.131-176, 1992.

R. J. Jenkins, The problems and potential of using animal fossils and trace fossils in terminal Proterozoic stratigraphy, Precambrian Research, vol.73, pp.51-69, 1995.

R. J. Jenkins, D. M. Mckirdy, C. B. Foster, T. O'leary, and S. D. Pell, The record and stratigraphic implications of organic-walled microfossils from the Ediacaran (terminal Proterozoic) of South Australia, Geological Magasin, vol.129, pp.401-410, 1992.

D. T. Johnston, F. A. Macdonald, B. C. Gill, P. F. Hoffman, and D. P. Schrag, Uncovering the Neoproterozoic carbon cycle, Nature, vol.483, pp.320-324, 2012.

E. Kalkowsky, Oölith und Stromatolith im norddeutschen Buntsandstein. Zeitschrift de Deutschen geologischen Gesellschaft, vol.60, pp.68-125, 1908.

A. Kampschulte and H. Strauss, The sulfur isotopic evolution of Phanerozoic seawater based on the analysis of structurally substituted sulfate in carbonates, Chemical Geology, vol.204, pp.255-286, 2004.

A. Kappler, C. Pasquero, K. O. Konhauser, and D. K. Newman, Deposition of banded iron formations by anoxygenic phototrophic Fe(II)-oxidizing bacteria, Geology, vol.33, pp.865-868, 2005.

S. A. Kasemann, C. J. Hawkesworth, A. R. Prave, A. E. Fallick, and P. Pearson, Boron and calcium isotope composition in Neoproterozoic carbonate rocks from Namibia: evidence for extreme environmental change, Earth Planetary Science Letter, vol.231, pp.73-86, 2005.

A. J. Kaufman, J. M. Hayes, A. H. Knoll, and G. J. Germs, Isotopic composition of carbonates and organic carbon from upper Proterozoic successions in Namibia, Precambrian Research, pp.301-327, 1991.

A. J. Kaufman, A. H. Knoll, and G. M. Narbonne, Isotopes, ice ages, and terminal Proterozoic earth history, Proc. Natl. Sci. USA, vol.94, pp.6600-6605, 1997.

M. Kennedy, M. Droser, L. M. Mayer, D. Pevear, and D. Mrofka, Late Precambrian oxygenation, 2006.

M. J. Kennedy, Stratigraphy, sedimentology and isotopic geochemistry of Australian Neoproterozoic postglacial cap dolostones: deglaciation, ? 13 C excursions and carbonate precipitation, Sedimentary Research, vol.66, pp.1050-1064, 1996.

M. J. Kennedy, B. Runnegar, A. R. Prave, K. H. Hoffmann, and M. Arthur, Two or four Neoproterozoic glaciations?, Geology, vol.26, pp.1059-1063, 1998.

R. M. Key, A. K. Liyungu, F. M. Njamue, V. Somwe, J. Banda et al., The western arm of the Lufilian Arc in NW Zambia and its potential for copper mineralization, Journal of African Earth Sciences, vol.33, pp.503-528, 2001.

T. Kiipli, R. Hints, T. Kallaste, E. Vers, and M. Voolma, Immobile and mobile elements during the transition of volcanic ash to bentonite -An example from the early Palaeozoic sedimentary section of the Baltic Basin, Sedimentary Geology, vol.347, pp.148-159, 2017.

H. Kimura and Y. Watanabe, Oceanic anoxia at the Precambrian-Cambrian boundary, Geology, vol.29, pp.995-998, 2001.

J. Kirschvink, Late Proterozoic low-latitude global glaciation: the Snowball Earth, pp.51-52, 1992.

J. L. Kirschvink, Paleoproterozoic Snowball Earth: extreme climatic and geochemical global change and its biological consequences, Proceedings of the National Academy of Sciences of the United States of America, vol.97, pp.1400-1405, 2000.

J. L. Kirschvink and T. D. Raub, A methane fuse for the Cambrian explosion: carbon cycles and true polar wander, Comptes Rendus Geosciences, vol.335, pp.65-78, 2003.

R. Klein, J. Salminen, and S. Mertanen, Baltica during the Ediacaran and Cambrian: A paleomagnetic study of Hailuoto sediments in Finland, Precambrian Research, vol.267, pp.94-105, 2015.

H. P. Klug and L. E. Alexander, Ray Diffraction Procedures, 2 nd, vol.966, 1974.

A. H. Knoll, Microfossils in metasedimentary cherts of the Scotia Group, vol.35, pp.751-774, 1992.

A. H. Knoll, Learning to tell Neoproterozoic time, Precambrian Research, vol.100, pp.3-20, 2000.

A. H. Knoll, R. K. Bambach, D. E. Canfield, and J. P. Grotzinger, Comparative Earth history and the late Permian mass extinction, Science, vol.273, pp.452-457, 1996.

A. H. Knoll and S. B. Carroll, Early animal evolution: emerging views from comparative biology and geology, Science, vol.284, pp.2129-2137, 1999.

A. H. Knoll, J. M. Hayes, A. J. Kaufman, K. Swett, and I. Lambert, Secular variation in carbon isotope ratios from Upper Proterozoic successions of Svalbard and East Greenland, Nature, vol.321, pp.832-838, 1986.

A. H. Knoll, J. M. Hayes, A. J. Kaufman, K. Swett, and I. B. Lambert, Secular variation in carbon isotope ratios from Upper Proterozoic successions of Svalbard and east Greenland, Nature, vol.321, pp.832-837, 1986.

A. H. Knoll and Y. Ohta, Microfossils in metasediments from Prins Karls Forland, western Svalbard, vol.6, pp.59-67, 1988.

A. H. Knoll and G. Vidal, Late Proterozoic vase-shaped microfossils from the Visingso Beds, Sweden. Geol. Foren. Stockholm Forh, vol.102, pp.207-211, 1980.

A. H. Knoll and M. R. Walter, Latest Proterozoic stratigraphy and Earth history, Nature, vol.356, pp.673-678, 1992.
DOI : 10.1038/356673a0

A. H. Knoll, M. R. Walter, G. M. Narbonne, and N. Christie-blick, The Ediacaran Period: a new addition to the geologic time scale, Lethaia, vol.39, pp.13-30, 2006.

V. G. Kolokol'tsev, The Cone-in-Cone Structure and Its Origin, Lithology and Mineral Resources, vol.37, pp.523-535, 2001.

S. P. Kolosova, Ancient acanthomorphs of the eastern Siberian Platform. Organic World and Stratigraphy of Deposits in Oil-gas and Ore-bearing Regions of Siberia. Mem. 4997-B90, 2-45, 1990.

S. P. Kolosova, Late Precambrian acanthomorphic acritarchs from the eastern Siberian Platform, Algologiya, vol.1, pp.53-59, 1991.

A. V. Kopelovich, Epigenes of oldest sediments in South-Western Russian Platform, 1965.

. Akad, Nauk SSSR

L. V. Korenchuk, Stratotype of Moguelive-Podilska Serie of the Vendian on Podolya basin, vol.56, 1981.

L. V. Korenchuk and A. A. Ischenko, Stratopye of Kanilovska Serie of the Vendian on Podolya basin, vol.56, 1980.

O. Kovalchuk, G. W. Owttrim, K. O. Konhauser, and M. K. Gingras, Desiccation cracks in silisiclastic deposits: Microbial mat-related compared to abiotic sedimentary origin, Sedimentary Geology, vol.347, pp.67-78, 2017.

N. B. Kuznetsov, E. A. Belousova, M. T. Krupenin, T. V. Romanyuk, and A. V. Maslov, The Results of geochronological and isotope-geochemical study of zircons from tuff of the Sylvitsa Group (Western slope of the Middle Urals): The Origin of Ash Layers in Vendian Rocks of the East Europe Platform, Doklady Earth Sciences, vol.473, pp.359-362, 2017.

N. B. Kuznetsov, L. M. Natapov, E. A. Belousova, S. Y. O`reilly, and W. L. Griffin, Geochronological, geochemical and isotopic study of detrital zircon suites from late Neoproterozoic clastic strata along the NE margin of the East European Craton: implications for plate tectonic models, Gondwana Research, vol.17, pp.583-601, 2010.

N. B. Kuznetsov, A. A. Soboleva, O. V. Udoratina, M. V. Hertseva, and V. L. Andreichev, PreOrdovician tectonic evolution and volcano-plutonic associations of the Timanides and northern Pre-Uralides, northeast part of the East European Craton, Gondwana Research, vol.12, pp.305-323, 2005.

M. Laflamme, S. A. Darroch, S. M. Tweedt, K. J. Peterson, and D. H. Erwin, The end Ediacara biota: extinction, biotic replacement, or Cheshire Cat? Gondwana Research, vol.23, pp.558-573, 2013.

E. L. Landing, Precambrian-Cambrian boundary global stratotype ratified and a new perspective of Cambrian time, Geology, vol.22, pp.179-182, 1994.

J. Leather, P. Allen, M. Brasier, and A. Cozzi, Neoproterozoic snowball Earth under scrutiny: Evidence from the Fiq glaciation of Oman, Geology, vol.30, pp.891-889, 2002.

J. H. Lee and D. R. Peacor, Ordered 1:1 interstratification of illite and chlorite: a transmission and analytical electron microscopy study, Clays Clay Minerals, vol.33, pp.463-467, 1985.

T. M. Lenton, A. Richard, R. A. Boyle, S. W. Poulton, G. A. Shields-zhou et al., Coevolution of eukaryotes and ocean oxygenation in the Neoproterozoic era, Nature Geoscience, vol.9, pp.1-9, 2014.

T. M. Lenton and A. J. Watson, Biotic enhancement of weathering, atmospheric oxygen and carbon dioxide in the Neoproterozoic, Geophysical Research Letters, vol.31, pp.p.-p, 2004.

Z. X. Li, S. V. Bogdanova, A. S. Collins, A. Davidson, B. Dewaele et al., Assembly, configuration, and break-up history of Rodinia: a synthesis, vol.160, pp.179-210, 2008.

Z. X. Li, D. A. Evans, and S. Zhang, A 90° spin on Rodinia: possible causal links between the Neoproterozoic supercontinent, superplume, true polar wander and low-latitude glaciation, Earth and Planetary Science Letters, vol.220, pp.409-421, 2004.

Z. X. Li, X. H. Li, P. D. Kinny, J. Wang, S. Zhang et al., Geochronology of Neoproterozoic synrift magmatism in the Yangtze Craton, South China and correlations with other continents: evidence for a mantle superplume that broke up Rodinia, vol.122, pp.85-109, 2003.

S. Liivamägi, P. Somelar, W. C. Mahaney, J. Kirs, I. Vircava et al., Late Neoproterozoic Baltic paleosol: Intense weathering at high latitude?, Geology, vol.42, pp.323-326, 2014.

A. G. Liu, C. G. Kenchington, and E. G. Mitchell, Remarkable insights into the paleoecology of the Avalonian Ediacaran macrobiota. Gondwana Research, vol.27, pp.1355-1380, 2015.

A. G. Liu, D. Mcllroy, and M. D. Brasier, First evidence for locomotion in the Ediacara biota from the 565 Ma Mistaken Point Formation, Geology, vol.38, pp.123-126, 2010.

B. W. Logan, Cryptozoon and associated stromatolites from the Recent, vol.69, pp.517-533, 1961.

G. D. Love, E. Grosjean, C. Stalvies, D. A. Fike, J. P. Grotzinger et al., Fossil steroids record the appearance of Demospongiae during the Cryogenian period, Nature, vol.457, pp.718-721, 2009.

M. V. Luchitskaya, A. V. Moiseev, S. D. Sokolov, M. I. Tuchkova, S. A. Sergeev et al., Neoproterozoic granitoids and rhyolites of Wrangel Island: Geochemical affinity and geodynamic setting in the Eastern Arctic region, Lithos, vol.292, issue.293, pp.15-33, 2017.

K. R. Ludwig, User's manual for Isoplot/Ex Version 2.49, a geochronological toolkit for Microsoft Excel, Berkeley Geochronological Center, Special Publication, vol.1, 2001.

L. F. Lunguersgauzen, Stages of the development of Podolya's platform and her Prichernomorsky slope, book: Tr. Neft. Conf, pp.107-148, 1939.

L. F. Lunguersgauzen and O. I. Nikiforova, About stratigraphic correlation of Silurian deposits on Podolya with analogy outcrops on the other localities of the Western Europe, Dokl. AN SSSR, pp.69-74, 1942.

T. W. Lyons, C. T. Reinhard, and N. J. Planavsky, The rise of oxygen in Earth's early ocean and atmosphere, Nature, vol.506, pp.307-315, 2014.

T. W. Lyons and S. Severmann, A critical look at iron paleoredox proxies: new insights from modern euxinic marine environments, Geochemical Cosmochemical Acta, vol.70, pp.5698-5722, 2006.

F. A. Macdonald, Calibrating the Cryogenian, Science, vol.327, pp.1241-1243, 2010.

B. A. Macgabhann, Discoidal fossils of the Ediacaran biota: a review of current understanding, pp.297-313, 2007.

F. M. Malinovskii, Sulfide-Bearing Phosphorites in Podolia, Zap. Vseross. Mineral, vol.84, pp.30-42, 1955.

A. C. Maloof, Combined paleomagnetic, isotopic, and stratigraphic evidence for true polar wander from the Neoproterozoic Akademikerbreen Group, vol.118, pp.1099-1124, 2006.

A. C. Maloof, Possible animal-body fossils in pre-Marinoan limestones from South Australia, Nature Geoscience, vol.3, pp.653-659, 2010.

M. W. Martin, D. V. Grazhdankin, S. A. Bowring, D. A. Evans, M. A. Fedonkin et al., Age of Neoproterozoic Bilatarian Body and Trace Fossils, White Sea, Russi: Implication for Metazoan Evolution, Science, vol.288, pp.841-845, 2000.

A. V. Maslov, V. N. Podkovyrov, E. Z. Gareev, and O. V. Graunov, Paleoclimate Changes in the Late Precambrian Evidence from the Upper Precambrian Section of South Urals, Lithology and Mineral Resources, vol.51, pp.117-135, 2016.

J. Mattinson, CA-TIMS") method: combined annealing and multi-step partial dissolution analysis for improved precision and accuracy of zircon ages, Chemical Geology, vol.220, pp.47-66, 2005.

K. K. Matveev, Distribution of Disturbed Crystallisation Structures, 1948.

, Kungurian Sediments on the Western Slope of the Urals (Based on Data of 1944), Trudy GornoGeological Institution, vol.14, pp.28-32

J. M. Mcarthure, M. L. Coleman, and J. M. Bremner, Carbon and oxygen isotopic composition of ctructural carbonate in sedimentary francolite, J. Geological Society London, vol.127, pp.669-673, 1980.

G. A. Mccay, A. R. Prave, G. I. Alsop, and A. E. Fallick, Glacial trinity: Neoproterozoic Earth history within the British-Irish Caledonides, vol.34, pp.909-912, 2006.

K. A. Mcfadden, J. Huang, X. Chu, G. Jiang, A. J. Kaufman et al., Pulsed oxidation and biological evolution in Ediacaran Doushantuo Formation, Proc. Nat. Acad. Sci. USA, 105, pp.3197-3202, 2008.

D. Mcilroy and J. M. Horak, Neoproterozoic: the late Precambrian terranes that formed Eastern Avalonia, The Geology of England and Wales 2nd Edition, pp.9-24, 2006.

D. M. Mckirdy, J. M. Burgess, N. M. Lemon, X. Yu, A. M. Cooper et al., , 2001.

M. A. Mcmenamin and D. L. Mcmenamin, The Emergence of Animals: The Cambrian Breakthrough, vol.217, 1990.

J. G. Meert, A synopsis of events related to the assembly of eastern Gondwana, 2003.

. Tectonophysics, , vol.362, pp.1-4

J. G. Meert and B. S. Lieberman, The Neoproterozoic assembly of Gondwana and its relationship to the Ediacaran-Cambrian radiation, Gondwana Research, vol.14, pp.1-2, 2008.

J. G. Meert and T. H. Torsvik, The making and unmaking of a supercontinent: Rodinia revisited, Tectonophysics, vol.375, pp.261-288, 2003.

J. G. Meert and R. Van-der-voo, The Neoproterozoic (1000-540 Ma) glacial intervals: no more Snowball Earth? Earth and Planetary Science Letters, vol.123, pp.1-3, 1994.

M. X. Mei, R. Z. Nie, H. Zhang, Y. H. Chen, and X. Q. Meng, Sequence-stratigraphic division for the Sinian system of the upper-Yangtze region, Geoscience, vol.20, pp.49-60, 2006.

N. Menchikoff, Quelques traits de l'histoire géologique du Sahara occidental, Annales Hebert et Haug, vol.7, pp.303-325, 1949.

C. V. Mendelson, Acritarchs, pp. In: Fossil Prokaryotes and Protists, J. Lipps, 1987.

K. Meuhlenbachs, The oxygen isotopic composition of the oceans, sediments, and seafloor, Chemical Geology, vol.145, pp.263-273, 1998.

A. Meunier and A. El-albani, The glauconite-Fe-illite-Fe-smectite problem: a critical review, Terra Nova, vol.19, issue.2, pp.95-104, 2007.
DOI : 10.1111/j.1365-3121.2006.00719.x

URL : https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1365-3121.2006.00719.x

M. Meyer, D. Elliott, A. D. Wood, N. F. Polys, M. Colbert et al., Three-dimensional microCT analysis of the Ediacara fossil Pteridinium simplex sheds new light on its ecology and phylogenetic affinity, Precambrian Research, vol.249, pp.79-87, 2014.

S. B. Misra, Late Precambrian (?) fossils from southeastern Newfoundland, Geological Society America Bull, vol.80, pp.2133-2173, 1969.

M. Moczydlowska, Taxonomic review of some Ediacaran acritarchs from the Siberian Platform, Precambrian Research, vol.136, pp.283-307, 2005.

M. Moczydlowska, G. Vidal, and V. A. Rudavskaya, Neoproterozoic (Vendian) phytoplankton from the Siberian Platform, Yakutia. Palaeontology, vol.36, pp.495-521, 1993.

D. M. Moore and R. C. Reynolds, Ray Diffraction and the Identification and Analysis of Clay Minerals, 2 nd ed, vol.378, 1997.

S. Morad and I. S. Al-aasm, Conditions of formation and diagenetic evolution of Upper Proterozoic phosphate nodules from southern Sweden: evidence from petrology, mineral chemistry and isotopes, Sedimentary Geology, vol.88, pp.267-282, 1994.

J. F. Moyen, J. L. Paquette, D. A. Ionov, A. Gannoun, A. V. Korsakov et al., Paleoproterozoic rejuvenation and replacement of Archaean lithosphere: evidence from zircon UPb dating and Hf isotopes in crustal xenoliths at Udachnaya, Siberian craton, Earth and Planetary Science Letters, vol.457, pp.149-159, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01467648

R. W. Murray, Chemical criteria to identify the depositional environment of chert: general principles and applications, Sedimentary Geology, vol.90, pp.213-232, 1994.

K. Nagovitsin, Tappania-bearing association of the Siberian platform: Biodiversity, stratigraphic position and geochronological constraints, vol.173, pp.137-145, 2009.

G. M. Narbonne, The Ediacara biota: A terminal Neoproterozoic experiment in the evolution of life, GSA Today, vol.8, pp.1-6, 1998.

G. M. Narbonne, Modular construction of early Ediacaran complex life forms, Science, vol.305, pp.1141-1185, 2004.

G. M. Narbonne, The Ediacara Biota: Neoproterozoic origin of animals and their ecosystems, Annual Review of Earth and Planetary Sciences, vol.33, pp.421-442, 2005.

G. M. Narbonne and J. G. Gehling, Life after snowball: the oldest complex Ediacaran fossils, Geology, vol.31, pp.27-30, 2003.
DOI : 10.1130/0091-7613(2003)031<0027:lastoc>2.0.co;2

G. M. Narbonne, B. Z. Saylor, and J. P. Grotzinger, The youngest Ediacaran fossils from Southern Africa, J. Paleontology, vol.71, pp.953-967, 1997.
DOI : 10.1017/s0022336000035940

A. Nédélec, P. Affaton, C. France-lanord, S. Cherriére, and J. Alvaro, Sedimentology and chemostratigraphy of the Bwipe Neoproterozoic cap dolostones, vol.319, pp.223-239, 2007.

H. W. Nesbit and G. W. Young, Early Proterozoic climates and plate motions inferred from major element chemistry of lutites, Nature, vol.299, pp.715-717, 1982.

H. W. Nesbit and G. W. Young, Petrogenesis of sediments in the absence of chemical weathering: effects of abrasion and sorting on bulk composition and mineralogy, Sedimentology, vol.43, pp.341-358, 1996.

O. I. Nikiforova, Stratigrafia i brachiopody siluriyskih otlogeniy Podolii. Gosgeoltehizdat, vol.166, 1954.

J. R. Nursall, Oxygen as a prerequisite to the origin of the metazoa, Nature, vol.183, pp.1170-1172, 1959.

A. P. Nutman, V. C. Bennett, C. R. Friend, M. J. Van-kranendonk, and A. R. Chivas, Rapid emergence of life shown by discovery of 3,700-million-year-old microbial structures, Nature, vol.537, pp.535-538, 2016.

F. K. Nyame, N. J. Beukes, K. Kase, and M. Yamamoto, Compositional variations in manganese carbonate micronodules from the Lower Proterozoic Nsuta deposit, Ghana: product of authigenic precipitation or post-formational diagenesis?, Sedimentary Geology, vol.154, pp.159-175, 2002.

G. W. O&apos;brien, J. R. Harris, A. R. Milnes, and H. H. Veeh, Bacterial origin of East Australian continental margin phosphorites, Nature, vol.294, pp.442-444, 1981.

S. J. O&apos;brien, G. R. Dunning, I. Knight, and T. Dec, Late Precambrian Geology of the North Shore of Bonavista Bay, Clode Sound to Lockers Bay, Report of activities. Geological Survey Branch, pp.49-50, 1989.

L. M. Och and G. A. Shields-zhou, The Neoproterozoic oxygenation event: Environmental perturbations and biogeochemical cycling, Earth-Science Reviews, vol.110, pp.26-57, 2012.

H. M. Pantin, Rate of formation of a diagenetic calcareous concretion, J. Sedimentary Petroleum, vol.28, pp.366-371, 1958.

D. Papineau, Global biogeochemical changes at both ends of the Proterozoic: insights from phosphorites, vol.10, pp.165-181, 2010.

D. Papineau, R. Purohit, M. L. Fogel, and G. A. Shields-zhou, High phosphate availability as a possible cause for massive cyanobacterial production of oxygen in the Paleoproterozoic atmosphere, Earth and Planetary Science Letters, vol.362, pp.225-236, 2013.

J. L. Paquette, J. L. Piro, J. L. Devidal, V. Bosse, and A. Didier, Sensitivity enhancement in LA-ICP-MS by N 2 addition to carrier gas: application to radiometric dating of U-Th-bearing minerals, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01068244

I. Agilent, , vol.58, pp.4-5

C. C. Patterson, Age of meteorites and the earth, Geochemical Cosmochemical Acta, vol.10, pp.230-237, 1956.

J. Payne, Two-phase increase in the maximum size of life over 3.5 billion years reflects biological innovation and environmental opportunity, Proceedings of the National Academy of Sciences, vol.106, issue.1, p.24, 2009.

J. Payne, The evolutionary consequences of oxygenic photosynthesis: a body size perspective, Photosynthesis Research, vol.107, pp.37-57, 2011.

V. Pease, R. Scott, and K. Eliaeson, A Baltica province for the Kara terrane, Bulletin of the Geological Society of Finland, p.121, 2006.

S. E. Peters, J. M. Husson, and J. Wilcots, The rise and fall of stromatolites in shallow marine environments, Geology, vol.45, pp.487-490, 2017.

D. Z. Piper, Rare Earth Elements in the sedimentary cycles: a summary, Chemical Geology, vol.14, pp.285-304, 1974.

S. A. Pisarevsky and G. Bylund, Paleomagnetism of 1780-1770Ma mafic and com-posite intrusions of Småland (Sweden): implications for the mesoproterozoic supercontinent, American Journal Science, vol.310, pp.1168-1186, 2010.

K. A. Plumb, New Precambrian Time Scale. Episodes, vol.14, pp.139-140, 1991.

S. M. Porter and . H. Knoll, Testate amoebae in the Neoproterozoic Era: evidence from vaseshaped microfossils in the Chuar Group, Paleobiology, vol.26, pp.360-385, 2000.

S. Poulton and R. Raiswell, The low-temperature geochemical cycle of iron: from continental fluxes to marine sediment deposition, American Journal Science, vol.302, pp.774-805, 2002.

S. W. Poulton and D. E. Canfield, Development of a sequential extraction procedure for iron: implications for iron partitioning in continentally derived particulates, Chemical Geology, vol.214, pp.209-221, 2005.

S. W. Poulton, P. W. Fralick, and D. E. Canfield, Transition to a sulphidic ocean ?1.84 billion years ago, Nature, vol.431, pp.173-177, 2004.

B. Prasad, S. Uniyal, and R. Asher, Organic-walled microfossils from the Proterozoic Vindhyan Supergroup of Son Valley, vol.54, pp.13-60, 2005.

B. R. Pratt, Syneresis cracks: subaqueous shrinkage in argillaceous sediments caused by earthquake-induced dewatering, Sedimentary Geology, vol.117, pp.1-10, 1998.

A. R. Prave, Life on land in the Proterozoic: evidence from the Torridonian rocks of northwest Scotland, vol.30, pp.811-814, 2002.

A. R. Prave, A. E. Fallick, C. W. Thomas, and C. M. Graham, A composite C-isotope profile for the Neoproterozoic of Scotland and Ireland, Journal Geological Society, vol.166, pp.845-857, 2009.

W. V. Preiss, The Adelaide geosyncline of South Australia and its significance in Neoproterozoic continental reconstruction, Precambrian Research, vol.100, pp.21-63, 2000.

P. K. Pufahl, Bioelemental sediments, Facies Models, pp.477-503, 2010.

P. K. Pufahl and L. A. Groat, Sedimentary and igneous phosphorite deposits: formation and exploration, Economic Geology, vol.112, 2017.

P. K. Pufahl and E. E. Hiatt, Oxygenation of the Earth's atmosphere-ocean system: a review of physical and chemical sedimentologic responses. Marine and Petroleum Geology, vol.32, pp.1-20, 2012.

V. G. Pyatiletov, Yudomskii kompleks microfossilii Yuzhnoi Yakutii (Yudoma complex microfossils from southern Yakutia), Geologiya i Geofizika, vol.7, pp.8-20, 1980.

I. A. Rahman, S. A. Darroch, R. A. Racicot, and M. Laflamme, Suspension feeding in the enigmatic Ediacaran organism Tribrachidium demonstrates complexity of Neoproterozoic ecosystems, Science Advances, 2015.

R. Raiswell and D. E. Canfield, Sources of iron for pyrite formation in marine sediments, American Journal Science, vol.298, pp.219-245, 1998.

R. B. Lécuyer-ch and P. Grandjean, Crystal-chemical controls on rare-earth element concentrations in fossil biogenic apatites and implications for paleoenvironmental reconstructions, Chemical Geology, vol.155, pp.233-241, 1999.

R. Rieu, P. A. Allen, M. Plotne, and T. Pettke, Compositional and mineralogical variations in a Neoproterozoic glacially influenced succession, Mirbat area, south Oman: implications for paleoweathering conditions, Precambrian Research, vol.154, pp.248-265, 2007.

R. Rieu, P. A. Allen, M. Plotze, and T. Pettke, Climatic cycles during a Neoproterozoic "snowball" glacial epoch, Geology, vol.35, pp.299-302, 2007.

D. H. Rothman, J. M. Hayes, and R. E. Summons, Dynamics of the Neoproterozoic carbon cycle, Natural Academic Science U.S.A, vol.100, pp.124-129, 2003.

O. J. Rouxel, A. Bekker, and K. J. Edwards, Iron isotope constraints on the Archean and Paleoproterozoic ocean redox state, Science, vol.307, pp.1088-1091, 2005.

B. Runnegar, Vendobionta or Metazoa? Developments in understanding the Ediacara ''fauna, N. Jb. Mineral. Geol. Paläont. Abh, vol.195, pp.303-318, 1995.

E. Rutherford, Origin of actinium and age of the Earth, Nature, vol.123, pp.313-314, 1929.

S. K. Sahoo, N. J. Planavsky, B. Kendall, X. Wang, X. Shi et al., Ocean oxygenation in the wake of the Marinoan glaciation, Nature, vol.489, pp.546-549, 2012.

P. Samanta, S. Mukhopadhyay, S. Sarkar, and P. G. Eriksson, Neoproterozoic substrate condition vis-à-vis microbial mat structure and its implications: Sonia, vol.106, pp.186-196, 2015.

M. Santosh, Supercontinent tectonics and biogeochemical cycle: a matter of 'life and death, 2010.

, Geoscience Frontiers, vol.1, pp.21-30

Y. Sawaki, The Ediacaran radiogenic Sr isotope excursion in the Doushantuo Formation in the Three Gorges area, South China, Precambrian Research, vol.176, pp.46-64, 2010.

B. Schoene, J. L. Crowley, D. C. Condon, M. D. Schmitz, and S. A. Bowring, Reassessing the uranium decay constants for geochronology using ID-TIMS U-Pb data, Geochemical Cosmochemical Acta, vol.70, pp.426-445, 2006.

B. Schoene, J. L. Crowley, D. C. Condon, M. D. Schmitz, and S. A. Bowring, Reassessing the uranium decay constants for geochronology using ID-TIMS U-Pb data, Geochemical Cosmochemical Acta, vol.70, pp.426-445, 2006.

D. P. Schrag, R. A. Berner, P. F. Hoffman, and G. P. Halverson, On the initiation of a Snowball Earth, Geochemistry, Geophysics, 2001.

C. Scott, T. W. Lyons, A. Bekker, Y. Shen, S. W. Poulton et al., Tracing the stepwise oxygenation of the Proterozoic ocean, Nature, vol.452, pp.456-459, 2008.

A. Seilacher, Late Precambrian and Early Cambrian Metazoa; preservational or real extinctions, Patterns of Change in Earth Evolution, pp.159-68, 1984.

A. Seilacher, Vendozoa: organismic construction in the Proterozoic biosphere, vol.22, pp.229-239, 1989.

A. Seilacher, Vendobionta and Psammocorallia-lost constructions of Precambrian evolution, 1992.

, J. Geol. Soc. London, vol.149, pp.607-613

J. Sellés-martinez, Concretion morphology, classification and genesis, Earth-Science Reviws, vol.41, pp.177-210, 1996.

M. A. Semikhatov, Methodological basis of Riphean stratigraphy, Stratigr. Geol. Correl, vol.3, pp.33-50, 1995.

V. N. Sergeev, The importance of Precambrian microfossils for modern biostratigraphy, Paleontology Journal, vol.40, pp.664-673, 2006.

B. M. Shaub, The Origin of Cone-in-Cone and Its Bearing in the Origin of Concretion and Septara, American Journal Science, vol.203, pp.331-344, 1937.

G. H. Shaw, Earth's atmosphere -Hadean to early Proterozoic, Chemie der Erde, vol.68, pp.235-264, 2008.

Y. Shen, T. Zhang, and P. F. Hoffman, On the coevolution of Ediacaran oceans and animals, Proc. Natl. Acad. Sci, vol.105, pp.7376-7381, 2008.

J. H. Shergold and R. A. Cooper, The Cambrian period, pp.147-164, 2004.

G. A. Shields, Palaeoclimate: Marinoan meltdown, Nature Geoscience, vol.1, pp.351-353, 2008.
DOI : 10.1038/ngeo214

G. A. Shields, Neoproterozoic cap carbonates: a critical appraisal of existing models and the plume world hypothesis, Terra Nova, vol.17, pp.299-310, 2005.

G. A. Shields, A normalised seawater strontium isotope curve: possible implications for Neoproterozoic-ambrian weathering rates and further oxygenation of the Earth, Earth, vol.2, pp.35-42, 2007.

G. A. Shields, H. Kimura, J. Yang, and P. Gammon, Sulfur isotopic evolution of NeoproterozoicCambrian seawater: new francolite-bound sulfate S data and a critical appraisal of the existing record, Chemical Geology, vol.204, pp.163-182, 2004.

G. Shields-zhou and L. Och, The case for a Neoproterozoic Oxygenation Event: geochemical evidence and biological consequences, GSA Today, vol.21, pp.4-11, 2011.

L. V. Shumlyanskyy, A. Nosova, K. Billström, U. Söderlund, P. Andréasson et al., The U-Pb zircon and baddeleyite ages of the Neoproterozoic Volyn Large Igneous Province: implication for the age of the magmatism and the nature of a crustal contaminant, 2016.

M. S. Shvetsov, , 1922.

M. Singh, V. J. Rajesh, K. S. Sajinkumar, K. Sajeev, and S. N. Kumar, Spectral and chemical characterization of jarosite in a palaeolacustrine depositional environment in Warkalli Formation in Kerala, South India ant it implication, Spectrochimica Acta Part A: Molecular and Biomalecular Spectroscopy, vol.168, pp.86-97, 2016.

S. Yu, .. F. Shevschenko, O. E. Dudniche, and A. A. , Notice of geological map of the VolinoPodilska Serie, at the 1:200000 scale; sheets M-35-XXXIII and L-35-III, 1974.

B. S. Sokolov, The chronostratigraphic space of the lithosphere and the Vendian as a geohistorical subdivision of the Neoproterozoic, Russian Geology and Geophysics, vol.52, pp.1048-1059, 2011.

B. S. Sokolov and M. A. Fedonkin, The Vendian as the Terminal System of the Precambrian. Episodes, vol.7, pp.12-19, 1985.

B. S. Sokolov and A. B. Iwanowski, The Vendian System, vol.383, 1990.
DOI : 10.1007/978-3-642-73972-9_12

A. M. Spencer, Late pre-Cambrian glaciation in Scotland, Memoirs of the Geological Society, 1971.

E. A. Sperling, C. Carbone, J. V. Strauss, D. T. Johnston, G. M. Narbonne et al., Oxygen, facies, and secular controls on the appearance of Cryogenian and Ediacaran body and trace fossils in the Mackenzie Mountains of northwestern Canada, GSA Bulletin, vol.128, pp.558-575, 2016.

N. Spjeldnaes, A new fossil (Papillomembrana sp.) from the upper Precambrian of Norway, Nature, pp.63-64, 0200.

N. Spjeldnaes, Fossils from pebbles of the Biskopåsen Formation in southwestern Norway, Norges. Geology Unders, vol.251, pp.53-82, 1967.

R. C. Sprigg, Early Cambrian (?) jellyfishes from the Flinders Ranges, vol.71, pp.212-224, 1947.

R. J. Squire, I. H. Campbell, C. M. Allen, and C. J. Wilson, Did the Transgondwanan Supermountain trigger the explosive radiation of animals on Earth? Earth and Planetary Science Letters, vol.250, pp.1-2, 2006.

S. M. Stanley, Ideas on the timing of metazoan diversification, Paleobiology, vol.2, pp.209-219, 1976.

N. Stenon, De Solido intra solidum naturaliter contento dissertationis prodromus. Stellae, Florentiae, vol.83, 1669.

R. J. Stern, Arc-assembly and continental collision in the Neoproterozoic East African Orogen; implications for the consolidation of Gondwanaland, Annual Review of Earth and Planetary Sciences, vol.22, pp.319-351, 1994.

V. Sucha, I. Kraus, H. Gerthofferova, J. Petes, and M. Serekova, Smectite to illite conversion in bentonites and shales of the, vol.28, pp.243-253, 1993.

E. Tajika, Faint young Sun and the carbon cycle: implication for the Proterozoic global glaciations, Earth and Planetary Science Letters, vol.214, pp.443-453, 2003.

L. G. Tarhan, M. L. Droser, J. G. Gehling, and M. P. Dzaugis, Taphonomy and morphology of the Ediacara form genus Aspidella, vol.257, pp.124-136, 2015.
DOI : 10.1016/j.precamres.2014.11.026

C. W. Thomas, C. M. Graham, R. M. Ellam, and A. E. Fallick, 87Sr/86Sr chemostratigraphy of Neoproterozoic Dalradian limestones of Scotland and Ireland: constraints on depositional ages and time scales, vol.161, pp.229-242, 2004.

C. K. Thompson, L. C. Kah, R. Astini, S. A. Bowring, and R. Buchwaldt, Bentonite geochronology, marine geochemistry, and the Great Ordovician Biodiversification Event (GOBE), 2012.
DOI : 10.1016/j.palaeo.2012.01.022

, Palaeogeography, Palaeoclimatology, Palaeoecology, vol.321, pp.88-101

M. Tiwari and A. H. Knoll, Large acanthomorphic acritarchs from the Infrakrol Formation of the Lesser Himalaya and their stratigraphic significance, Journal Himalayan Geology, vol.5, pp.193-201, 1994.

R. Trompette, Neoproterozoic (600 Ma) aggregation of Western Gondwana: a tentative scenario, Precambrian Research, vol.82, pp.101-112, 1997.

J. W. Valentine and E. M. Moores, Plate-tectonic regulation of faunal diversity and sea level: a model, Nature, vol.228, pp.657-659, 1970.

E. Van-achterbergh, C. G. Ryan, S. E. Jackson, and W. L. Griffin, Data reduction software for LA-ICP-MS. In Laser ablation-ICPMS in the earth science, P. Sylvester ed. Mineralogical Association of Canada, vol.29, pp.239-243, 2001.

T. Vàscâutanu, Les formations siluriennes de la rive roumaine du Dniester. An. Institution geology of Roumanie, vol.15, pp.420-560, 1931.

J. J. Veevers, Gondwanaland from 650-500 Ma assembly through 320 Ma merger in Pangea to 185-100 Ma breakup: supercontinental tectonics via stratigraphy and radiometric dating, EarthScience Reviews, vol.68, pp.1-2, 2004.

A. F. Veis, N. G. Vorobeva, and E. Y. Golubkova, The early Vendian microfossils first found in the Russian Plate: taxonomic composition and biostratigraphic significance, Stratigraphy and Geological Correlation, vol.14, pp.368-385, 2006.

J. Veizer, D. Ala, K. Azmy, P. Bruckschen, D. Buhl et al., 87 Sr/ 86 Sr, ? 13 C and ? 18 O evolution of Phanerozoic seawater, Chemical Geology, vol.161, pp.59-88, 1999.

V. A. Velikanov, E. A. Asseeva, and M. A. Fedonkin, Ukranian Vendien. Naukova Dumka, 164 p, 1983.

V. A. Velikanov and L. V. Korenchuk, Phases of magmatism and their relationship to sedimentation in the Late Precambrian (Riphean-Vendian) in the Volyn-Podolian region, Geology Journal, pp.1-2, 1997.

N. I. Venukov, O siluriyskih otlogeniyah Podolskoy guberni. Vestnik estestvoznaniya, vol.2, pp.1-9, 1891.

P. Vickers-rich, A. Y. Ivantsov, P. W. Trusler, G. M. Narbonne, M. Hall et al., Reconstructing Rangea: new discoveries from the Ediacaran of southern Namibia, Journal of Paleontology, vol.87, pp.1-15, 2013.

G. Vidal, Giant acanthomorph acritarchs from the Upper Proterozoic in Southern Norway, Paleontology, vol.33, pp.287-298, 1990.

G. Vidal and M. Moczydlowska-vidal, Biodiversity, speciation, and extinction trends of Proterozoic and Cambrian phytoplankton, Paleobiology, vol.23, pp.230-246, 1997.

G. Vidal and J. P. Nystuen, Micropaleontology, depositional environment, and biostratigraphy of the upper Proterozoic Hedmark Group, Southern Norway, American Journal of Science, vol.290, pp.170-211, 1990.

E. Vincent and W. H. Berger, The Carbon Cycle and Atmospheric CO 2 : Natural Variations Archean to Present, vol.32, pp.455-468, 1985.

I. Vircava, P. Somelar, S. Liivamagi, J. Kirs, and K. Kirsimae, Origin and paleoenvironmental interpretation of aluminium phosphate-sulfate minerals in a Neoproterozoic Baltic paleosol, Sedimentary Geology, vol.319, pp.114-123, 2015.

N. G. Vorobeva, V. N. Sergeev, and A. H. Knoll, Microfossil assemblages from the Vychegda Formation of the East European Platform passive margin -a biostratigraphical model for the Upper Riphean (Cryogenian)/Vendian (Ediacaran) boundary, The Rise and Fall of the Vendian (Ediacaran) Biota. Origin of the Modern Biosphere, M.A, pp.42-46, 2007.

B. M. Waggoner, Interpreting the earliest metazoan fossils: What can we learn?, vol.38, pp.975-982, 1998.

B. M. Waggoner, The Ediacaran Biotas in Space and Time. Intergroup Comp, vol.43, pp.104-113, 2003.

H. J. Walderhaug, T. H. Torsvik, and E. Halvorsen, The Egersund dykes (SW Norway): a robust Early Ediacaran (Vendian) palaeomagnetic pole from Baltica, vol.168, pp.935-948, 2007.

M. R. Walter, R. Buick, and S. R. Dunlop, 500 Myr old from the North Pole area, West. Aust. Nat. (Perth), vol.3, pp.443-445, 1980.

M. R. Walter, J. J. Veevers, C. R. Calver, P. Gorjan, and A. C. Hill, Dating the 840-544Ma Neoproterozoic interval by isotopes of strontium, carbon, and sulfur in seawater and some interpretive models, Precambrian Research, vol.100, pp.371-433, 2000.

M. Wiedenbeck, P. Allé, F. Corfu, W. L. Griffin, M. Meier et al., Three natural zircon standards for U-Th-Pb, 1995.

, Geostandards Newsletters, vol.19, pp.1-23

J. A. Winchester and P. A. Floyd, Geochemical discrimination of different magma series and their differentiation products using immobile elements, Chemical Geology, vol.20, pp.325-343, 1977.

B. G. Woodland, The nature and origin of cone-in-cone structure, Fieldiana: Geology, vol.13, issue.4, p.p, 1964.

G. Wray, Dating the Origin of Animals, Science, vol.274, 1993.

X. S. Knoll and A. H. , Phosphatized animal embryos from the Neoproterozoic Doushantuo Formation at Weng'an, Journal of Paleontology, vol.74, pp.767-788, 2000.

X. S. Laflamme and M. , On the eve of animal radiation: phylogeny, ecology, and evolution of the Ediacara biota, Trends in Ecology and Evolution, vol.24, pp.31-40, 2009.

X. S. Muscente, A. D. Chen, L. Zhou, C. Schiffbauer, J. D. Wood et al., The Weng'an biota and the Ediacaran radiation of multicellular eukaryotes, Nature Science Review, vol.1, pp.498-520, 2014.

X. S. Zhang, Y. Knoll, and A. H. , Three-dimensional preservation of algae and animal embryos in a Neoproterozoic phosphorite, Nature, vol.391, pp.553-558, 1998.

K. E. Yamaguchi, C. M. Johnson, B. L. Beard, and H. Ohmoto, Biogeochemical cycling of iron in the Archean-Paleoproterozoic Earth: constraints from iron isotope variations in sedimentary rocks from the Kaapvaal and Pilbara cratons, Chemical Geology, vol.218, pp.135-169, 2005.

Y. Yan, Shale-facies microflora from the Changzhougou Formation (Changcheng System) in Pangjiapu Region, Acta Micropalaeontology Sinica, vol.8, pp.183-195, 1991.

C. Y. Yin, F. Tang, and Y. Liu, U-Pb zircon age from the base of the Ediacaran Doushantuo Formation in the Yangtze Gorges, vol.28, pp.48-49, 2005.

L. Yin, Doushantuo embryos preserved inside diapause egg cysts, Nature, vol.446, pp.661-663, 2007.

L. Yin and Z. Li, Precambrian microfossils of Southwest China, Mem. Nanjing Institution Geology Palaeontology, Acadademy Sinica, vol.10, pp.41-102, 1978.

Y. , Acanthomorphic acritarchs from Meso-Neoproterozoic shales of the Ruyang Group, Review of Palaeobotany and Palynology, vol.98, pp.15-25, 1997.

Y. Xunlai, Y. Fanwei, M. Jie, and H. , Protists of the upper Mesoproterozoic Ruyang Group in Shanxi Province, China. Precambrian Research, vol.141, pp.49-66, 2005.

X. Yuan and H. J. Hoffmann, New microfossils from the Neoproterozoic (Sinian) Doushantuo Formation, Wengan, Guizhou Province, southwestern China, Alcheringa, vol.22, pp.189-222, 1998.

.. E. Yudovich-ya and M. P. Ketris, Geochemical Indicators of Lithogenesis, vol.742, 2011.

V. S. Zaika-novaskiy, Conference about palaeontology of Precambrian and Early Cambrian, Publisher, City, x p, pp.34-37, 1965.

M. Zakrevskaya, Paleoecological reconstruction of the Ediacaran benthic macroscopic communities of the White Sea (Russia). Palaeogeography, Palaeoclimatology, Palaeoecology, vol.410, pp.27-38, 2014.

W. Zang, Early Neoproterozoic sequence stratigraphy and acritarch biostratigraphy, eastern Officer Basin, South Australia, Precambrian Research, vol.74, pp.119-176, 1996.

W. Zang and M. R. Walter, Latest Proterozoic plankton from the Amadeus basin, central Australia, Nature, vol.337, pp.642-645, 1989.

S. Zhang, Z. Li, and H. Wu, New Precambrian palaeomagnetic constraints on the position of the North China Block in Rodinia, Precambrian Research, vol.144, pp.213-238, 2006.

Y. Zhang, L. Yin, S. Xiao, and A. H. Knoll, Permineralized fossils from the terminal Proterozoic Doushantuo formation, South China, vol.50, 1998.

Z. Zhang, Clastic facies microfossils from the Chuanlinggou Formation (1800 Ma) near Jixian, North China, J. Micropalaeontol, vol.5, pp.9-16, 1986.

G. Zhao, P. A. Cawood, S. A. Wilde, and M. Sun, Review of global 2.1-1.8 Ga orogens: implications for a pre-Rodinia supercontinent, Earth-Science Review, vol.59, pp.125-162, 2002.

C. Zhou, R. Tucker, S. Xiao, Z. Peng, X. Yuan et al., New constraints on the ages of Neoproterozoic glaciations in south China, vol.32, pp.437-440, 2004.

C. Zhou, G. Xie, K. Mcfadden, S. Xioa, and X. Yuan, The diversification and extinction of Doushantuo-Pertatataka acritarchs in South China: causes and biostratigraphic significance, Geological Journal, vol.42, pp.229-262, 2007.

Y. Zhou, B. F. Bohor, and Y. Ren, Trace element geochemistry of altered volcanic ash layers (tonsteins) in Late Permian coal-bearing formations of eastern Yunnan and western Guizhou Province, China. International Journal of Coal Geology, vol.44, pp.305-324, 2000.

R. A. Zielinski, The mobility of uranium and other elements during alteration of rhyolite ash to montmorillonite: a case study in the Troublesome Formation, Chemical Geology, vol.35, pp.185-204, 1982.

, Log lithostratigraphique séquentiel (V2lom, V2yam, V2lyad) de la Formation de Moguilivska (FM) reconstitué d'après les observations des affleurements des sites de Novodnistrovsky, Bendashevka et Popeluhi

, Annexe 1 Figure 2 Log lithostratigraphique : A -de la Formation Yarishevska (FY) établi sur la base des observations des Séquences V2bern et V2bron sur le site de la vallée Borshive

, FN), et de ses transitions avec les Séries Moguilive-Podilska et Kanilivska, établi sur la base des observations de la Séquences V2ka sur les sites de Lipchany et

, Logs litho-stratigraphiques des formations supérieures indifférenciées, ou « Upper Undifferentiated Formations » (UUF)

. Dans-le-bassin-de-podolya, En raison de ces difficultés, si la colonne stratigraphique établie représente une série condensée de bordure de bassin, elle permet cependant d'étudier de façon quasi continue la totalité des faciès et leur variablité dans le temps. La répartition des affleurements et les variations latérales de faciès rendent les corrélations difficiles à l'échelle de ce bassin, Les échantillons ont été prélevés près des localités de Novodnistrovsky (48°34'N, 27°26'E), Popeluhi (48°24'N, 28°96'E) et Bendashevka (48°39'N, 28°03'E) pour FM, dans vallée de Borshive, près de la ville Moguilive-Podilsky

, Les Méthodes d'analyses La lithologie

, Chaque affleurement a fait l'objet d'une description détaillée des relations stratigraphiques et structurales existant entre les différentes unités observées. Par ailleurs, dans ce contexte silicoclastique, l'ensemble des faciès et des figures sédimentaires qui leur sont attachées ont été étudiés avec soin afin de pouvoir reconstituer les paléo-conditions de dépôts et les paléo-environnements qui, Les études lithostratigraphique et faciologique ont été menées au cours de trois missions de terrain

, Les conditions d'analyses sont : vide 10 -5 Pa, courant de sonde 1,0 nA, distance de travail 17 mm, taille du spot 0,1 µm, temps de comptage 100 s. Les minéraux servant à l'étalonnage des éléments majeurs sont : albite (NaAlSi 3 O 8 ), orthose (KAlSi 3 O 8 ), forstérite (Mg 2 SiO 4 ), diopside (CaMgSi 2 O 6 ), pyrite, Les données chimiques sont acquises à l'aide du logiciel Quantax afin d'obtenir soit des cartes de répartition élémentaire soit des compositions chimiques pondérales (pourcentage massique élémentaire ou en oxyde) déterminées après corrections ZAF

, La minéralogie totale a été réalisée à partir de l'échantillon broyé à l'aide d'un broyeur SODEMI à anneaux en acier chromé. Les échantillons les plus durs, comme les grès silicifiés, sont préalablement débités à la scie diamantée en petits cubes de 0 ,5 cm de côté. La poudre obtenue a une finesse de 1 à 2 µm soit inférieure à 50 µm, taille minimale préconisée pour la diffractométrie de rayons X (Klug & Alexander, 1974). La poudre est placée sur un support évidé en minimisant au maximum les effets d'orientation afin d, Minéralogie Préparations L'étude minéralogique a porté tant sur la totalité des composants minéraux que sur les constituants de la fraction argileuse

, L'identification des phyllosilicates présents dans les échantillons repose sur l'analyse de leurs réflexions (00l) dont l'intensité diffractante en poudre est souvent insuffisante pour une détermination correcte. Aussi est-il nécessaire de travailler sur préparations orientées

, Le premier type est directement réalisé à partir d'un aliquot de poudre mis en suspension puis déposé sur une lame de verre. L'objectif est alors de caractériser l'ensemble du cortège des phyllosilicates, sans préjuger de la dimension de ces particules ni de leur origine. En outre, les proportions de ces différentes phases ainsi obtenues ont été utilisées pour l

, L'objectif étant alors d'obtenir une fraction enrichie en phyllosilicates hydratés i.e. en minéraux argileux, symptomatiques des mécanismes d'altération et/ou de diagenèse survenant au cours des épisodes géologiques. L'extraction de cette dernière est réalisée après avoir dispersé 10 g de matériau désagrégé (mais non broyé) mis en contact avec 300 mL d'eau osmosée (18 M?m .cm -1 ) et sonifié (300W pendant 2 min) à l'aide d'un sonificateur Bioblock VibroCell 750. Pour les matériaux très durs, 20 à 30g des cubes préalablement sciés sont mis à imbiber dans l'eau osmosée pendant 1 nuit à l'étuve 50°C avant d'être plongés dans l'azote liquide puis remis en contact eau et sonifié modérément dans un bain ultrason Elmasonic S60. Après plusieurs cycles de ce traitement, la congélation instantanée de l'eau porale aboutit à l'éclatement progressif des joints de grains et à la libération des phyllosilicates intergranulaires, Le second type de préparations orientées a porté sur la fraction argileuse, p.319

, Après contrôle visuel de la stabilité de la suspension obtenue après une nuit à 20°C, la fraction < 2 µm est extraite par sédimentation en pot Beckman de 750 mL à l'aide d'une centrifugeuse JOUAN GR 422 fonctionnant à 20°C et 1000 tr/min pendant 120 s. Le surnageant recueilli par siphonage sur 10 cm de profondeur est, mécanique sur une roue à renversement pendant 4 heures

S. Après-ce, 15 mg d'argile sont remis en suspension dans 1,5 mL d'eau osmosée puis déposés sur une lame de verre et laissé sécher à l'air. La préparation orientée ainsi confectionnée permet d'étudier la position des réflexions (00l) de chacune des espèces phyllosilicatées lors des traitements usuels de séchage, glycolage, 1980.

, Pour cela les 15 mg d'argile ont été mis cinq fois en contact avec 5 mL d'une solution de CaCl 2 1N (ou M/2) puis lavés à l'eau osmosée pour éliminer les chlorures (dont l'absence est contrôlée par un test AgNO 3 ). En procédant ainsi le domaine interfoliaire des minéraux gonflants est saturé en ion calcium (Ca 2+ ), Les échantillons destinés à faire l'objet d'une simulation numérique ont été saturés au calcium

, Son système optique est constitué une fente anti-divergence de 0,11°2?, d'une fente antidiffusion de 0,11°2?, de systèmes de Soller de 4 radians d'espacement de fentes et d'un filtre K ? au nickel. Les conditions d'analyse sont 40 kV et 40 mA. Les paramètres d'acquisition sont de 1s par pas de 0.025 °2?, sur des domaines angulaires de 2-65 °2? et 2-35 °2?, en modes poudre et orienté respectivement, Les diffractogrammes de rayons X ont été obtenus à l'aide d'un diffractomètre Bruker D8 Advance A25, équipé d'une source au cuivre ((? CuK? = 1,5418 Å) et piloté par le logiciel Diffract Suite©, vol.8, 2009.

, Le traitement des diffractogrammes et la recherche des phases en mode poudre ont été faits à partir du logiciel ANalytical HighScore en relation avec le module minéralogique PdF3 de la base de donnée internationale ICDD JCPDS. En ce qui concerne la fraction argileuse, les phyllosilicates et les minéraux argileux (phyllosilicates hydratés) en particulier ont fait l'objet d'analyses complémentaires notamment pour les phases interstratifiées

, Dans le cas des minéraux interstratifiés, l'ensemble des réflexions dans le domaine angulaire 2-15°2? a été déconvolué à l'aide du logiciel libre Fytik afin de déterminer pour chaque réflexion le nombre minimal de ses composantes, et pour chacune d'elle ses caractéristiques propres à savoir : position angulaire (°2?), intensité (cps), surface totale (cps.°2?) et largeur à mi

, illite, smectite?) et de leurs proportions respectives dans l'interstratification. Les hypothèses émises permettent ainsi de fixer des contraintes physiques pour la simulation des diffractogrammes calculés de ces phases. La simulation, L'ensemble de ces données permet de formuler un certain nombre d'hypothèses sur les constituants primaires (chlorite

, Géochimie Les éléments majeurs, traces et les terres rares des 55 prélèvements ont été analysés par spectrométrie d'émission plasma à couplage inductif (ICP) au service d'analyse des roches et des minéraux (SARM) du Centre de Recherches Pétrographiques et Géochimiques (CRPG) de Nancy

, Avant analyse, les échantillons font l'objet d'un broyage et d'un microbroyage en mortiers agate afin d'éviter toute micropollution. Les poudres obtenues sont fondues dans un mélange de LiBO 2 puis minéralisées dans une solution de HNO 3 . Les éléments majeurs (Si, ) sont dosés par ICP-OES (Inductively Coupled Plasma Optical Emission Spectroscopy) Thermo Icap

, à torche radiale et restitués en pourcentages massiques d'oxydes. Les éléments mineurs, traces et terres rares sont mesurées par ICP-MS (Inductively Coupled Plasma Mass Spectrometry) Thermo

L. ,

. Paquette, Les ellipses d'erreur pour chaque point sont représentées au niveau 2? et intègrent des incertitudes internes et externes. Les points de données ont été regroupés pour calculer une date et une erreur 2? associée. Le matériau de référence 91500 zircon -1065 Ma (65) -a été analysé avec les échantillons pour surveiller de manière indépendante la précision externe et la précision des mesures, Datation Les données isotopiques U-Th-Pb de la bentonite B4 ont été mesurées par spectrométrie de masse à couplage inductif par ablation laser (LA-ICP-MS) au Laboratoire Magmas & Volcans, 2001.

. Condon, Les conditions de recuit sont de 900°C pendant 48 heures, tandis que l'abrasion chimique a été réalisée en plaçant chaque zircon isolé dans une capsule Savillex pré-nettoyée avec HF + trace HNO 3 à 210°C pendant 13 heures dans des bombes Parr. Après l'étape de dissolution partielle, chaque zircon a été de nouveau transféré dans un flacon Savilex de 3 ml à bouchon vissé. Le reste a été complètement pipeté et les zircons restants ont été rincés dans de l'eau ultra-pure puis fluxés pendant plusieurs heures dans HCl 6N sur une plaque chauffante à une température d'environ 80°C. Après élimination de l'acide, les fragments de zircon ont de nouveau été rincés plusieurs fois dans de l'eau ultra-pure et du HNO 3 7N dans un bain à ultrasons. Chaque grain de zircon a été dissout dans une capsule Savillex pré-nettoyée, additionnée d'environ 5 mg de la solution traceur EARTHTIME 202 Pb-205 Pb-233 U-235 U, Sr SRM987 et Pb SRM982 et SRM983. Le temps pour le MEB a été déterminé comme étant constant à 22,5 ns jusqu'à 1,3 Mcps et à un rendement Faraday / SEM compris entre 93 et 94%. Le fractionnement isotopique du plomb et de l'uranium a été corrigé en utilisant les rapports 202 Pb/ 205 Pb (0,9992391 ± 0,0265%, 1?) et 233 U/ 235 U (0,99506 ± 0,01%, 1?) de la solution à double pointe. Les facteurs de fractionnement moyens de Pb et U déterminés étaient, 2005.

. Hiess, Tous les rapports 206 Pb/ 238 U et 207 Pb/ 206 Pb ont été corrigés pour le déséquilibre initial en 230 Th/ 238 U en utilisant Th/U [magma] en supposant que Th/U du magma = 3,5. La précision des données mesurées a été évaluée par une analyse répétée de la solution synthétique 100Ma, Tous les Pb communs dans les analyses de zircon ont été attribués au blanc procédural avec la composition isotopique de plomb suivante: 206 Pb/ 204 Pb = 17,62 ± 2,09, p.206, 2004.

. De-schoene, Toutes les données sont rapportées avec des erreurs internes seulement, y compris des statistiques de comptage, des incertitudes dans la correction de la discrimination de masse et l'incertitude dans la composition de Pb commune. La valeur MSWD de la moyenne pondérée de l'échantillon se situe dans la plage des valeurs acceptables, Pb/ 238 U meilleures que 0,05%. Toutes les incertitudes rapportées sont au niveau de 2 sigma, 2006.