Skip to Main content Skip to Navigation

Performance of Receiver Autonomous Integrity Monitoring (RAIM) for Vertically Guided Approaches

Abstract : The International Civil Aviation Organization (ICAO) has recognized the Global Navigation Satellite System (GNSS) as a key element of the Communications, Navigation, and Surveillance / Air Traffic Management (CNS/ATM) systems as well as a foundation upon which States can deliver improved aeronautical navigation services. But civil aviation requirements can be very stringent and up to now, the bare systems cannot alone be used as a means of navigation. Therefore, in order to ensure the levels required in terms of accuracy, integrity, continuity of service and availability, ICAO standards define different architectures to augment the basic constellations. Some of them use control stations to monitor satellite signals and provide corrections, others only use measurement redundancy. This study focuses on this last type of augmentation system and more particularly on Receiver Autonomous Integrity Monitoring (RAIM) techniques and performance. RAIM is currently a simple and efficient solution to check the integrity of GNSS down to Non Precision Approaches. But the future introduction of new satellite constellations such as the European satellite navigation system Galileo or modernized Global Positioning System (GPS) will imply great improvements in the number as well as the quality of available measurements. Thus, more demanding phases of flight such as APproaches with Vertical guidance could be targeted using RAIM to provide integrity monitoring. This would result in some interesting safety, operational and environmental benefits. This Ph.D. evaluates the potential capacity of RAIM algorithms to support approach and landing phases of flight with vertical guidance. A thorough bibliographic study of civil aviation requirements is first presented; some candidate LPV200 signal in space performance requirements not yet included in the ICAO standards are also provided. To evaluate GNSS positioning performance, pseudorange measurements have to be modeled as precisely as possible and especially the different errors that affect them. The main sources of error are signal propagation delays caused by the ionosphere and the troposphere, space vehicle clock error, satellite position estimation error, multipath, receiver errors which main source is code tracking loop noise. Thus, these errors can be due to the space segment, the control segment or the user segment. Systematic errors are gathered in the fault free case measurement model; unusual errors, that may cause a dangerous positioning failure and that may have to be detected, are gathered in the faulty case measurement model. Finally, a complete model of pseudo range measurements, including interference effects and satellite failures, is given. A special attention is put on the User Equivalent Range Error (UERE) variance computation. Indeed, among all input parameters of RAIM availability simulator, UERE has, by far, the most significant impact on the estimated availability. Three distinct classes of RAIM algorithms are studied in this thesis. The Least Square Residual method in which the sum of the squares of the pseudorange residuals plays the rôle of the basic observable is first recalled. The Maximum Solution Separation method which is based on the observation of the separation between the position estimate generated by a fullset filter (using all the satellite measurements) and the position estimate generated by each one of the subset filters (each using all but one of the satellite measurements) is then discussed and an improved way of computing the associated protection level is proposed. Finally, a new promising method based on the Generalized Likelihood Ratio test is presented and several implementations are described. The way these different methods are implemented to take into account both civil aviation requirements and threat model is then detailed. In particular some methods to obtain the inner probability values that RAIM algorithms need to use are presented. Indeed, high level requirements interpretation for RAIM design is not clearly standardized. Finally simulations results are presented. They permit to evaluate RAIM ability to provide integrity monitoring for approaches with vertical guidance operations considering various scenarios. The main contributions of this thesis are a detailed computation of user equivalent range error variance, an analysis of the effect of interferences on pseudorange measurement, an adaptation of LSR RAIM algorithm to nominal biases, an improvement of MSS protection levels computation, the implementation of GLR algorithm as a RAIM including the computation of an analytical expression of the threshold that satisfies the false alarm probability and the prediction of the probability of missed detection, design of a sequential GLR algorithm to detect step plus ramp failure and an analysis of the amplitude of smallest single biases that lead to a positioning failure. Least Squared Residual, Maximum Solution Separation and constrained Generalized Likelihood Ratio RAIM availabilities have been computed for APVI and LPV200 approaches using both GPS L1/L5 and Galileo E1/E5b pseudorange measurements. It appears that both APV I and LPV200 (VAL=35m) operations are available using GPS/Galileo + RAIM to provide integrity as an availability of 100 % has been obtained for the detection function of the three studied algorithms. An availability of 100 % has also been obtained for the LSR exclusion function. On the contrary, LSR RAIM FDE availabilities seem not sufficient to have Galileo + RAIM or GPS +RAIM as a sole means of navigation for vertically guided approaches.
Document type :
Complete list of metadata
Contributor : Laurence Porte Connect in order to contact the contributor
Submitted on : Monday, March 11, 2019 - 5:22:03 PM
Last modification on : Tuesday, October 19, 2021 - 11:02:50 AM
Long-term archiving on: : Wednesday, June 12, 2019 - 6:23:39 PM


Files produced by the author(s)


  • HAL Id : tel-02064255, version 1



Anaïs Martineau. Performance of Receiver Autonomous Integrity Monitoring (RAIM) for Vertically Guided Approaches. Signal and Image Processing. INPT, 2008. English. ⟨tel-02064255⟩



Record views


Files downloads