O. Edenhofer, R. Pichs-madruga, Y. Sokona, J. C. Minx, E. Farahani et al., Climate Change 2014: Synthesis Report. Contribution of Working Groups I, 2015.

, World Energy Outlook, 2017.

, Journal officiel de l'Union Européenne, N° L315/1, pp.1-56, 2012.

, Journal officiel de l'Union européenne, N° L52/50, pp.50-60, 2004.

, Journal officiel de l'Union européenne, N° L114/64, pp.64-85, 2006.

R. K. Pachauri and L. A. Meyer, «Changements climatiques 2014: Rapport de synthèse. Contribution des Groupes de travail I, 2014.

J. Knowles, 1 -Overview of small and micro combined heat and power (CHP) systems, pp.3-16, 2011.

L. Giaccone and A. Canova, «Economical comparison of CHP systems for industrial user with large steam demand, » Applied Energy, vol.86, pp.904-914, 2009.

A. Inernational-energy, Cogeneration and district energy, 2009.

S. Martinez, G. Michaux, P. Salagnac, and J. L. Bouvier, Micro-combined heat and power systems (micro-CHP) based on renewable energy sources, Energy Conversion and Management, vol.154, pp.262-285, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01987364

M. M. Maghanki, B. Ghobadian, G. Najaf, and R. J. Galogah, Micro combined heat and power (MCHP) technologies and applications, Renewable and Sustainable Energy Reviews, vol.28, pp.510-524, 2013.

C. Brandoni and M. Renzi, Optimal sizing of hybrid solar micro-CHP systems for the household sector, Applied Thermal Engineering, vol.75, pp.896-907, 2015.

G. D. Marcoberardino, G. Manzolini, C. Guignard, and V. Magaud, Optimization of a micro-CHP system based on polymer electrolyte membrane fuel cell and membrane reactor from economic and life cycle assessment point of view, Chemical Engineering and Processing -Process Intensification, vol.131, pp.70-83, 2018.

M. Gambini and M. Vellini, High Efficiency Cogeneration: Electricity from cogeneration in CHP Plants, Energy Procedia, vol.81, pp.430-439, 2015.

S. Göktun and S. Özkaynak, Performance parameters for the design of a solar-driven cogeneration system, Energy, vol.26, pp.57-64, 2001.

C. A. Ferreira, L. M. Nunes, S. Teixeira, and B. L. Martins, Technical-economic evaluation of a cogeneration technology considering carbon emission savings, International Journal of Sustainable Energy and Management, vol.2, pp.33-46, 2014.

O. A. Shaneb, G. Coates, and P. C. Taylor, Sizing of residential CHP systems, Energy Build, vol.43, 1991.

H. Ren, W. Gao, and Y. Ruan, Optimal sizing for residential CHP system, Applied Thermal Engineering, vol.28, pp.514-523, 2008.

D. Yu, Y. Meng, G. Yan, G. Mu, D. Li et al., Sizing combined heat and power units and domestic building energy cost optimisation, vol.10, pp.1-17, 2017.

G. Pepermans, J. Driesen, D. Haeseldonckx, R. Belmans, and W. , Distributed generation: definition, benefits and issues, Energy Policy, vol.33, pp.787-798, 2005.

R. Dickes, O. Dumont, J. Thiébauta, M. Orosz, A. Mueller et al., Experimental performance of a field of parabolic trough collectors for small-scale power generation, Proceedings of ecos 2018 -the 31st International Conference on Efficiency, Eost, Optimization, 2018.

H. Wang, W. Yin, E. Abdollahi, R. Lahdelma, and W. Jiao, Modelling and optimization of CHP based district heating system with renewable energy production and energy storage, Applied Energy, vol.159, pp.401-421, 2015.

S. V. Vassilev, C. G. Vassileva, and V. S. Vassilev, Advantages and disadvantages of composition and properties of biomass in comparison with coal: An overview, Fuel, vol.158, pp.330-350, 2015.

K. Bernotat and T. Sandberg, Biomass fired small-scale CHP in Sweden and the Baltic States: a case study on the potential of clustered dwellings, Biomass and Bioenergy, vol.27, pp.521-530, 2004.

L. I. Motta, T. N. Miranda, and F. R. Regin, Biomass gasification in fluidized beds: A review of biomass moisture content and operating pressure effects, Renewable and Sustainable Energy Reviews, vol.94, pp.998-1023, 2018.

R. Saidur, E. A. Abdelaziz, A. Demirbas, M. S. Hossain, and S. Mekhilef, A review on biomass as a fuel for boilers, Renewable and Sustainable Energy Reviews, vol.15, pp.2262-2289, 2011.

A. Damien, La biomasse énergie : Définition, Resources et Usages, 2008.

K. Sartor, S. Quoilin, and P. Dewallef, Simulation and optimization of a CHP biomass plant and district heating network, Applied Energy, vol.130, pp.474-483, 2014.

X. Deglise, Les conversions thermochimiques du bois, Rev. For. Fr, pp.249-270, 1982.

A. Evans, V. Strezov, and T. J. Evans, Sustainability considerations for electricity generation from biomass, Renewable and Sustainable Energy Reviews, vol.14, pp.1419-1427, 2010.

K. Maniatis, Progress in Biomass Gasification: An Overview, vol.1, 2008.

A. Molinoa, S. Chianese, and D. Musmarra, Biomass gasification technology: The state of the art overview, Journal of Energy Chemistry, vol.25, pp.10-25, 2016.

M. L. Villetta, M. Costa, and N. Massarotti, Modelling approaches to biomass gasification: A review with emphasis on the stoichiometric method, Renewable and Sustainable Energy Reviews, vol.74, pp.71-88, 2017.

S. Yang, .. B. Li, J. Zheng, and R. Ku, Biomass-to-Methanol by dual-stage entrained flow gasification: Design and techno-economic analysis based on system modeling, Journal of Cleaner Production, pp.1-37, 2018.

S. Wang, G. Dai, H. Yang, and Z. Luo, Lignocellulosic biomass pyrolysis mechanism: A state-of-the-art review, Progress in Energy and Combustion Science, vol.62, pp.33-86, 2017.

J. P. , Wolf and Dong, 1 -Biomass combustion for power generation: an introduction, 2013.

B. Aoun, Micro combined heat and power operating on renewable energy for residential, 2008.
URL : https://hal.archives-ouvertes.fr/pastel-00005092

S. Brou, «Modélisation et commande d'un système de cogénération utilisant des, 2015.

J. B. Bouvenot, «Etudes expérimentales et numériques de systèmes de micro cogénération couplés aux batiments d'habitation, 2015.

K. Sartor and P. Dewallef, Integration of heat storage system into district heating networks fed by a biomass CHP plant, Journal of Energy Storage, vol.15, pp.350-358, 2018.

M. Bianchi, A. Pascale, and F. Melino, Performance analysis of an integrated CHP system with thermal and Electric Energy Storage for residential application, Applied Energy, vol.112, pp.928-938, 2013.

P. Klimantos, N. Koukouzas, A. Katsiadakis, and K. E. , Air-blown biomass gasification combined cycles (BGCC): System analysis and economic assessment, Energy, vol.34, pp.708-714, 2009.

S. Murugan and B. Horák, A review of micro combined heat and power systems for residential applications, Renewable and Sustainable Energy Reviews, vol.64, pp.144-162, 2016.

B. Andlauer, Optimisation systémique de micro-cogénérateurs intégrés au bâtiment, 2011.

G. Sridhar, V. H. Sridhar, S. Dasappa, J. P. Paul, N. D. Subbukrishna et al., Green electricity from biomass fuel producer gas engine, 14th European Biomass Conference, pp.1489-1492, 2005.

B. Buragohain, P. Mahanta, and V. S. Moholkar, Biomass gasification for decentralized power generation: The Indian perspective, Renewable and Sustainable Energy Reviews, vol.14, pp.73-92, 2010.

F. Delattin, G. D. Lorenzo, S. Rizzoc, S. Bram, and J. De-ruyck, Combustion of syngas in a pressurized microturbine-like combustor: Experimental results, Applied Energy, vol.87, pp.1441-1452, 2010.

D. Chiaramonti, A. Oasmaa, and Y. Solantausta, Power generation using fast pyrolysis liquids from biomass, Renewable and Sustainable Energy Reviews, vol.11, pp.1056-1086, 2007.

A. Bianchini, M. Pellegrini, and C. Saccani, Thermoelectric Cells Cogeneration from Biomass Power Plant, Energy Procedia, vol.45, pp.268-277, 2014.

F. Delattin, G. D. Lorenzo, S. Rizzo, S. Bram, and J. De-ruycka, Electrical performance analysis and economic evaluation of combined biomass cook stove thermoelectric (BITE) generator, Bioresource Technology, vol.87, pp.1441-1452, 2007.

J. Kalina, M. Szega, and M. ?wierzewski, Simulation based performance evaluation of biomass fired cogeneration plant with ORC, Energy Procedia, vol.129, pp.660-667, 2017.

M. Uris, J. L. Ignacio, and E. Arenas, Feasibility assessment of an Organic Rankine Cycle (ORC) cogeneration plant (CHP/CCHP) fueled by biomass for a district network in mainland Spain, Energy, vol.133, pp.969-985, 2017.

H. Damirchi, G. Najafi-a, S. Alizadehnia, R. Mamat, N. A. Sidik et al., Micro Combined Heat and Power to provide heat and electrical power using biomass and Gamma-type Stirling engine, Applied Thermal Engineering, vol.103, pp.1460-1469, 2016.

I. Arashnia, G. Najaf, B. Ghobadian, T. Yusaf, R. Mamat et al., Development of micro-scale biomass-fuelled CHP system using Stirling Engine, Energy Procedia, vol.75, pp.1108-1113, 2015.

F. Lontsi, O. Hamandjoda, K. Fozao, P. Stouffs, and J. Nganhou, Dynamic simulation of a small modified Joule cycle reciprocating Ericsson engine for micro-cogeneration systems, Energy, vol.63, pp.309-316, 2013.

A. D. Peacock and M. Newborough, Impact of micro-CHP systems on domestic sector CO2 emissions, Applied Thermal Engineering, vol.25, pp.2653-2676, 2005.

M. Kimming, C. Sundberg, Å. Nordberg, A. Baky, S. Bernesson et al., Biomass from agriculture in small-scale combined heat and power plants -A comparative life cycle assessment, Biomass and Bioenergy, vol.35, pp.1572-1581, 2011.

D. Maraver, A. Sin, J. Royo, and F. Sebastián, Assessment of CCHP systems based on biomass combustion for small-scale applications through a review of the technology and analysis of energy efficiency parameters, Applied Energy, vol.102, pp.1303-1313, 2013.

E. Cardozo, C. Erlich, A. Malmquist, and L. Alejo, Integration of a wood pellet burner and a Stirling engine to produce residential heat and power, Applied Thermal Engineering, vol.73, pp.671-680, 2014.

E. Monteiro, A. N. Moreira, and S. Ferreira, Planning of micro-combined heat and power systems in the Portuguese scenario, Applied Energy, vol.86, pp.290-298, 2009.

M. Creyx, E. Delacourt, C. Morin, and B. Desmet, Dynamic modelling of the expansion cylinder of an open Joule cycle Ericsson engine: A bond graph approach, Energy, vol.102, pp.31-43, 2016.

H. Hachem, M. Creyx, R. Gheith, E. Delacourt, C. Morin et al., Comparison Based on Exergetic Analyses of Two Hot Air Engines: A Gamma Type Stirling Engine and an Open Joule Cycle Ericsson Engine, entropy, vol.17, pp.7331-7348, 2015.

M. Alaphilippe, S. Bonnet, and P. Stouffs, Low Power Thermodynamic Solar Energy Conversion: Coupling of a Parabolic Trough Concentrator and an Ericsson Engine, International Journal of Thermodynamics, vol.10, pp.37-45, 2007.

M. Creyx, E. Delacourt, C. Morin, B. Desmet, and P. Peultier, Energetic optimization of the performances of a hot air engine for micro-CHP systems working with a Joule or an Ericsson engine, Energy, vol.2013, pp.229-239, 2013.

C. Bang-møller, M. Rokni, and B. Elmegaard, Exergy analysis and optimization of a biomass gasification, solid oxide fuel cell and micro gas turbine hybrid system, Energy, vol.36, pp.4740-4752, 2011.

D. Pritchard, Biomass Combustion Gas Turbine CHP, pp.1-42, 2002.

J. W. Visser, A. S. Shakariyants, and .. M. Oostvee, Development of a 3 kW Microturbine for CHP Applications, ASME Journal of Engineering for Gas Turbines, vol.133, pp.42-50, 2011.

A. González, R. J. Riba, R. Puig, and P. Navarro, Review of micro-and small-scale technologies to produce electricity and heat from Mediterranean forests' wood chips, Renewable and Sustainable Energy Reviews, vol.43, pp.143-155, 2015.

D. Pritchard, Biomass combustion gas turbine CHP, 2002.

F. S. , Y. Yoo, and F. Hamdullahpur, Effects of fuel processing methods on industrial scale biogas-fuelled solid oxide fuel cell system for operating in wastewater treatment plants, Journal of Power Sources, vol.195, pp.1446-1453, 2010.

I. V. Yentekaki, T. Papadam, and G. Goula, Electricity production from wastewater treatment via a novel biogas-SOFC aided process, Solid State Ionics, vol.179, pp.1521-1525, 2008.

H. Xu, Z. Dang, and B. Baia, «Analysis of a 1 kW residential combined heating and power system based on solid oxide fuel cell, » Applied Thermal Engineering, vol.50, pp.1101-1110, 2013.

T. Elmer, M. Worall, S. Wu, and B. S. Riffat, Fuel cell technology for domestic built environment applications: State of-the-art review, Renewable and Sustainable Energy Reviews, vol.42, pp.913-931, 2015.

V. Dorer, R. Weber, and A. Weber, Performance assessment of fuel cell microcogeneration systems for residential buildings, Energy and Buildings, vol.37, pp.1132-1146, 2005.

L. Hao, G. Qiu, Y. Shao, F. Daminabo, and S. B. Riffat, Preliminary experimental investigations of a biomass-fired micro-scale CHP with organic Rankine cycle, International Journal of Low-Carbon Technologies, vol.5, pp.81-87, 2010.

G. Qiu, Y. Shao, J. Li, H. Liu, and S. B. Riffat, Experimental investigation of a biomassfired ORC-based micro-CHP for domestic applications, Fuel, vol.96, pp.374-382, 2012.

A. Algieri and P. Morrone, Energetic analysis of biomass-fired ORC systems for microscale combined heat and power (CHP) generation. A possible application to the Italian residential sector, Applied Thermal Engineering, vol.71, pp.751-759, 2014.

J. Fischer, Technologies for small scale biomass CHP-plants -an actual survey, Risoe international energy conference, 2003.

J. Koppejan and S. Van-loo, The Handbook of Biomass Combustion and Co-firing, 2012.

A. I. Calvo, C. L. Tarelho, C. A. Alves, M. Duarte, and T. Nunes, Characterization of operating conditions of two residential wood combustion appliances, Fuel Processing Technology, vol.126, pp.222-232, 2014.

M. Markovic, E. A. Bramer, and G. Brem, Experimental investigation of wood combustion in a fixed bed with hot air, Waste Management, vol.34, pp.49-62, 2014.

S. B. Kang, J. J. Kim, K. S. Choi, B. S. Sim, and H. Y. Oh, Development of a test facility to evaluate performance of a domestic wood pellet boiler, Renewable Energy, vol.54, pp.2-7, 2013.

M. A. Gómez, J. Porteiro, D. De-la-cuesta, D. Patiño, and J. L. Miguez, Dynamic simulation of a biomass domestic boiler under thermally thick considerations, Energy Conversion and Management, vol.140, pp.260-272, 2017.

M. A. Gómez, J. Porteiro, .. D. Patiño, and D. Míguez, Eulerian CFD modelling for biomass combustion. Transient simulation of an underfeed pellet boiler, Energy Conversion and Management, vol.101, pp.666-680, 2015.

E. Carlon, M. Schwarz, L. Golicza, V. K. Verma, A. Prada et al., Efficiency and operational behaviour of small-scale pellet boilers installed in residential buildings, Applied Energy, vol.155, pp.854-865, 2015.

V. K. Verma, S. Bram, G. Gauthier, and J. De-ruyck, Performance of a domestic pellet boiler as a function of operational loads: Part-2, biomass and bioenergy, vol.35, pp.272-279, 2011.

C. Li, K. Toupin, B. Donaldson, and B. Donaldson, Biomass boiler energy conversion system analysis with the aid of exergy-based methods, Energy Conversion and Management, vol.103, pp.665-673, 2015.

B. Monteleone, M. Chiesa, R. Marzuoli, V. K. Verma, M. Schwarz et al., Life cycle analysis of small scale pellet boilers characterized by high efficiency and low emissions, Applied Energy, vol.155, pp.160-170, 2015.

L. Rector, P. J. Miller, S. Snook, and M. Ahmadi, Comparative emissions characterization of a small-scale wood chip-fired boiler and an oil-fired boiler in a school setting, Biomass and Bioenergy, vol.107, pp.254-260, 2017.

S. Ghafghazi, T. Sowlati, S. Sokhansanj, X. Bi, and S. Melin, Particulate matter emissions from combustion of wood in district heating applications, Renewable and Sustainable Energy Reviews, vol.15, pp.3019-3028, 2011.

H. Wiinikka and R. Gebart, Critical Parameters for Particle Emissions in Small-Scale Fixed-Bed Combustion of Wood Pellets, Energy&Fuels, vol.18, pp.897-907, 2004.

H. Wiinikka, High temperature aerosol formation and emission minimisation during combustion of wood pellets, 2005.

W. J. Smith, S. Morrin, and D. J. Timoney, Effect of operating condition on the particulate matter emission factor for a domestic biomass boiler, Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, vol.225, pp.614-618, 2011.

M. Roy, A. Dutta, and K. Corscadden, An experimental study of combustion and emissions of biomass pellets in a prototype pellet furnace, Applied Energy, vol.108, pp.298-307, 2013.

G. Caposciutti and M. Antonelli, Experimental investigation on air displacement and air excess effect on CO, CO2 and NOx emissions of a small size fixed bed biomass boiler, Renewable Energy, vol.116, pp.795-804, 2018.

M. Buchmayr, J. Gruber, M. Hargassner, and C. Hochenauer, Experimental investigation of the primary combustion zone during staged combustion of wood-chips in a commercial small-scale boiler, Biomass and Bioenergy, vol.81, pp.356-363, 2015.

M. Creyx, E. Delacourt, C. Morin, S. Lalot, and B. Desmet, Energetic and exergetic analysis of a heat exchanger integrated in a solid biomass-fuelled Micro-CHP system with an Ericsson engine, Entropy, vol.18, pp.1-17, 2016.

N. Razmjoo, H. Sefidari, and M. Strand, Characterization of hot gas in a 4 MW reciprocating grate boiler, Fuel Processing Technology, vol.124, pp.21-27, 2014.

D. Aquaro and M. Pieve, High temperature heat exchangers for power plants: Performance of advanced metallic recuperators, Applied Thermal Engineering, vol.27, pp.389-400, 2007.

J. Sandberg, R. B. Fdhila, E. Dahlquist, and A. Avelin, Dynamic simulation of fouling in a circulating fluidized biomass-fired boiler, Applied Energy, vol.88, pp.1813-1824, 2011.

J. Sandberg, C. Karlsson, and R. B. Fdhila, A 7 year long measurement period investigating the correlation of corrosion, deposit and fuel in a biomass fired circulated fluidized bed boiler, Applied Energy, vol.88, pp.99-110, 2011.

Y. Niu, H. Tan, and S. Hui, Ash-related issues during biomass combustion: Alkaliinduced slagging, silicate melt-induced slagging (ash fusion), agglomeration, corrosion, ash utilization, and related countermeasures, Progress in Energy and Combustion Science, vol.52, pp.1-61, 2016.

L. Fu, P. Liu, and G. Li, Numerical investigation on ash fouling characteristics of flue gas heat exchanger, Applied Thermal Engineering, vol.123, pp.891-900, 2017.

E. Podesser, «Electricity production in rural villages with a biomass Stirling engine,» Renewable Energy, vol.16, pp.1049-1052, 1999.

H. P. Nielsena, F. J. Frandsen, K. Dam-johansen, and L. L. Baxter, The implications of chlorine-associated corrosion on the operation of biomass-fired boilers, Progress in Energy and Combustion Science, vol.26, pp.283-298, 2000.

B. J. Skrifvars, R. Backman, M. Hupa, K. Salmenoja, and E. Vakkilainen, Corrosion of superheater steel materials under alkali salt deposits Part 1: The effect of salt deposit composition and temperature, Corrosion Science, vol.50, pp.1274-1282, 2008.

Y. Niu, J. Hua, and H. Fan, Optimization of solution heat exchanger of AHP in flue gas waste heat recovery, Procedia Engineering, vol.205, pp.477-484, 2017.

P. ?ur?anský, R. Lenhard, and J. Janda?ka, Comparison of mathematical models for heat exchangers of unconventional CHP units, Acta Polytechnica, vol.55, pp.223-228, 2015.

N. P. Komninos and E. D. Rogdakis, Numerical investigation into the effect of compressor and expander valve timings on the performance of an Ericsson engine equipped with a gas-to-gas heat exchanger, Energy, vol.163, pp.1077-7092, 2018.

K. A. and Z. A. , Performance of high-temperature heat exchangers in biomass fuel powered externally fired gas turbine systems, Renewable Energy, vol.35, pp.913-920, 2010.

G. Xiao, T. Yang, H. Liu, D. Ni, M. L. Ferrari et al., Recuperators for micro gas turbines: A review, Applied Energy, vol.197, pp.83-99, 2017.

S. K. Kaer, Straw combustion on slow-moving grates-a comparison of model predictions with experimental data, Biomass and Bioenergy, vol.28, pp.307-320, 2005.

R. Bauer, M. Gölles, T. Brunner, N. Dourdoumas, and I. Obernberger, Modelling of grate combustion in a medium scale biomass furnace for control purposes, Biomass and Bioenergy, vol.34, pp.417-427, 2010.

C. Yin, L. Rosendahl, S. K. Kaer, S. Clausen, S. L. Hvid et al., Mathematical modeling and experimental study of biomass combustion in a thermal 108 mw gratefired boiler, Energy&Fuels, vol.22, pp.1380-1390, 2008.

H. Khodaei, Y. M. Al-abdeli, F. Guzzomi, and G. H. Yeoh, An overview of processes and considerations in the modelling of fixed-bed biomass combustion, Energy, vol.88, pp.946-972, 2012.

K. Alanne, T. Laukkanen, K. Saari, and J. Jokisalo, Analysis of a wooden pellet-fueled domestic thermoelectric cogeneration system, Applied Thermal Engineering, vol.63, pp.1-10, 2014.

Y. B. Yang, R. Newman, V. Sharifi, J. Swithenbank, and J. Ariss, Mathematical modelling of straw combustion in a 38 MWe power plant furnace and effect of operating conditions, Fuel, vol.86, pp.129-142, 2007.

V. K. Verma, S. Bram, F. Delattin, and J. De-ruyck, Real life performance of domestic pellet boiler technologies as a function of operational loads: A case study of Belgium, Applied Energy, vol.101, pp.357-362, 2013.

K. J. Åström and R. D. Bell, Simple Drum-Boiler Models, IFAC Proceedings Volumes, vol.21, pp.123-127, 1988.

M. Tognoli and B. Najafi, Dynamic modelling and optimal sizing of industrial fire-tube boilers for various demand profiles, Applied Thermal Engineering, vol.132, pp.341-351, 2018.

E. Carlon, V. K. Verma, M. Schwarz, L. Golicza, A. Prada et al., Experimental validation of a thermodynamic boiler model under steady state and dynamic conditions, Applied Energy, vol.138, pp.505-516, 2015.

M. M. Abdulmoneim, M. A. Aboelela, and H. T. Dorrah, Hybrid modeling using power plant and controlling using fuzzy P+ID with application, International Journal of Advances in Engineering & Technology, vol.4, pp.42-53, 2012.

A. Aziz, Y. Y. Nazaruddin, P. Siregar, and Y. Bindar, Structured Mathematical Modeling of Industrial Boiler, Journal of Engineering and Technological Sciences, vol.46, pp.102-122, 2014.

H. M. Paynter, Analysis and design of engineering systems : class notes for M.I.T. course, Cambrige, 1961.

D. Karnopp and R. C. Rosenberg, System Dynamics: A Unified Approach, 1975.

J. Thoma and B. O. Bouamama, Modelling and simulation in thermal and chemical Engineering. A Bond Graph Approach, 2000.

R. Thakar, S. Bhosle, and S. Lahane, «Design of Heat Exchanger for Waste Heat Recovery from Exhaust Gas of Diesel Engine,» Procedia Manufacturing, vol.20, pp.372-376, 2018.

E. Alakangas, New European Pellets Standards, pp.1-17, 2011.

K. N. Marsh, Recommended Reference Materials for the Realization of Physicochemical Properties, 1987.

A. Asthana, P. Sessiecq, F. Patisson, and D. Ablitzer, «Modélisation de la formation des NOx dans le lit d'un incinérateur d'ordures ménagères à grille», Recents progrès en genie des procedes, vol.96, pp.1-8, 2007.

J. A. Miller and C. ,

T. Bowman, Mechanism and modeling of nitrogen chemistry in combustion, Progress in Energy and Combustion Science, vol.15, pp.287-338, 1989.

C. P. Fenimore, Formation of nitric oxide in premixed hydrocarbon flames, Symposium (International) on Combustion, vol.13, pp.373-380, 1971.

A. Williams, J. M. Jones, L. Ma, and M. Pourkashanian, Pollutants from the combustion of solid biomass fuels, Progress in Energy and Combustion Science, vol.38, pp.113-137, 2012.

I. Obernberger, T. Brunner, and G. Bärnthaler, Chemical properties of solid biofuelssignificance and impact, Biomass and Bioenergy, vol.30, pp.973-982, 2006.

M. Hupa, O. Karlström, and E. Vainio, Biomass combustion technology developmentIt is all about chemical details, Proceedings of the Combustion Institute, vol.36, pp.113-134, 2017.

C. Normalisation, Chaudières de chauffage central et brûleurs à combustibles liquides, Association Française de Normalisation (AFNOR), 2012.

K. L. Bignal, S. Langridge, and J. Z. Zhou, Release of polycyclic aromatic hydrocarbons, carbon monoxide and particulate matter from biomass combustion in a wood-fired boiler under varying boiler conditions, Atmospheric Environment, vol.42, pp.8863-8871, 2008.

T. C. Merkel, H. Lin, X. Wei, and R. Baker, Power plant post-combustion carbon dioxide capture: An opportunity for membranes, Journal of Membrane Science, vol.359, pp.126-139, 2010.

H. Liu, J. Chaney, J. Li, and C. Sun, Control of NOx emissions of a domestic/smallscale biomass pellet boiler by air staging, Fuel, vol.103, pp.792-798, 2013.

M. Mladenovi?, M. Paprika, and A. Marinkovi?, Denitrification techniques for biomass combustion, Renewable and Sustainable Energy Reviews, vol.82, pp.3350-3364, 2018.

G. Caposciutti, F. Barontini, M. Francesconi, and M. Antonelli, Experimental investigation on the fixed bed of a small size biomass boiler, Energy Procedia, vol.142, pp.468-473, 2017.

J. F. Broenink, 20-SIM software for hierarchical bond-graph/block-diagram models, Simulation Practice and Theory, vol.7, pp.481-492, 1999.

R. H. Winterton, «Where did the Dittus and Boelter equation come from, International Journal of Heat and Mass Transfer, vol.41, pp.809-810, 1998.

V. Gnielinski, Heat Transfer Coefficients for Turbulent Flow in Concentric Annular Ducts, Heat Transfer Eng, vol.30, pp.431-436, 2009.

M. Bahador and B. Sundén, Investigation on the effects of fly ash particles on the thermal radiation in biomass fired boilers, International Journal of Heat and Mass Transfer, vol.51, pp.2411-2417, 2008.

B. E. Poling, J. M. Prausnitz, and J. P. O'connell, The Properties of Gases and Liquids, Fifth Edition, 2001.

F. J. Krieager, Calculation of the viscosity gas mixtures, The RAND Corporation, Vols. RM-649, pp.1-11, 1951.

D. R. Stull and H. Prophet, DEFENSE TECHNICAL INFORMATION CENTER, pp.1856-1985, 1971.

V. Rajaraman, Computer oreinted numerical methods -Third Edition, 2006.

A. Najafi-yazdi and L. Mongeau, A low-dispersion and low-dissipation implicit Runge-Kutta scheme, Journal of Computational Physics, vol.233, pp.315-323, 2013.

M. A. Akanbi, S. A. Okunuga, and A. B. Okunuga, Runge-Kutta Schemes for Solving Electrical Network Problems, Journal Sci. Res. Dev, vol.6, pp.31-44, 2001.

D. Kim and D. Stanescu, Low-storage Runge-Kutta methods for stochastic differential equations, Applied Numerical Mathematics, vol.58, pp.1479-1502, 2008.

A. Skreiberg, Ø. Skreiberg, J. Sandquist, and L. Sørum, TGA and macro-TGA characterisation of biomass fuels and fuel mixtures, Fuel, vol.90, pp.2182-2197, 2011.

R. Sharma and P. N. Shethb, Multi reaction apparent kinetic scheme for the pyrolysis of large size biomass particles using macro-TGA, Energy, vol.151, pp.1007-1017, 2018.

N. Sousa and J. L. Azevedo, Model simplifications on biomass particle combustion, Fuel, vol.184, pp.948-956, 2016.

M. Romana, E. Bobasu, and D. Selisteanu, Modelling of biomass combustion process, Energy Procedia, vol.2011, pp.432-440, 2011.

F. Mameri, E. Delacourt, M. Lippert, and C. Morin, Modélisation 0D et caractérisation expérimentale d'une chaudière biomasse, Revista Termotehnica, vol.2, pp.2247-1871, 2016.

M. Creyx, Étude théorique et expérimentale d'une unité de micro-cogénération biomasse avec moteur Ericsson, 2014.

G. Xiao, T. Yang, H. Liu, D. Ni, L. M. Ferrari et al., Recuperators for micro gas turbines: A review, Applied Energy, vol.197, pp.83-99, 2017.

B. Launder and D. B. Spalding, Lectures in Mathematical Models of Turbulence, 1972.

E. Rathakrishnan and G. Tables, , 2004.

M. P. Mukesh and K. M. Watt, Effect of twisted-tape inserts on heat transfer in a tubea review, Int. J. Mech. Eng, vol.4, p.2015, 2015.

A. K. Samantaray and B. O. Bouamama, Model-based process supervision: a bond graph approach, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00795310

D. C. Karnopp, D. L. Margolis, and R. C. Rosenberg, System dynamics: Modeling and Simulation of Mechatronic Systems, 5th Sdition, 2012.

D. Karnopp and S. Azarbaijani, Pseudo Bond Graphs for generalized compartmental models in engineering and physiology, Journal of the Franklin Institute, vol.312, pp.95-108, 1981.

M. Delgado, C. Heny, and D. Simanca, Pseudo-bond graph model and simulation of a continuous stirred tank reactor, Journal of the Franklin Institute, vol.337, pp.21-42, 2000.

W. Borutzky, Bond Graph methodology: Development and Analysis of Multidisciplinary Dynamic System Models, 2010.

B. Bouamama and G. , Dauphin-Tanguy, «Modélisation par Bond Graph : Application aux systèmes énergétiques,» Techniques de l'ingénieur, pp.1-16, 2006.

R. C. Reid, J. M. Prausnitz, and B. E. Poling, The properties of gases and liquids, 1987.

A. Eucken, On the thermal conductivity of several gases, Z. Phys, vol.14, pp.324-332, 1913.

M. W. Chase and N. Tables, , 1998.

D. E. Dean and L. I. Stiel, The viscosity of nonpolar gas mixtures at moderate and high pressures, A.I.Ch.E Journal, vol.11, pp.526-532, 1965.

M. Quintanilla, F. Lanzetta, S. Begot, and P. Ranc, « Modélisation thermodynamique d'un moteur Ericsson en cycle ouvert », 26ème Congrès Français de Thermique "Thermique et Sciences de l'Information, pp.309-316, 2018.

S. Bonnet, M. Alaphilippe, P. Stouffs, and . Energy, exergy and cost analysis of a microcogeneration system based on an Ericsson engine, International Journal of Thermal Sciences, vol.44, pp.1161-1168, 2005.

D. Erol, H. Yaman, and B. Do?an, «A review development of rhombic drive mechanism used in the Stirling engines, Renewable and Sustainable Energy Reviews, vol.78, p.167, 2017.

, Pseudo Bond Graph Les systèmes thermodynamiques peuvent être modélisés par une analogie électrique

, Il s'ensuit que les éléments résistif et capacitif, les jonctions et les sources sont utilisés. Cependant, le produit température-flux de chaleur ne représente pas une puissance. Par conséquent, on est amené à utiliser l'outil « Pseudo » Bond Graph qui obéit aux mêmes règles que l'outil Bond Graph mais en utilisant des variables dont le produit ( × ) n'est pas une puissance, L'écart de température est analogue à la tension et le flux de chaleur (ou le flux d'enthalpie) est analogue au courant

, L'avantage principal du modèle Pseudo Bond Graph est qu'il facilite la modélisation des systèmes thermodynamiques en utilisant des variables conservatives contrairement au vrai Bond Graph

. Dans-le-domaine-thermique, il est possible d'utiliser le flux de chaleur ou d'enthalpie au lieu de flux d'entropie qui n'est pas conservatif et pour le domaine hydraulique, où la masse volumique varie, il est possible d'utiliser le débit masse qui est dans ce cas