
HAL Id: tel-02063804
https://theses.hal.science/tel-02063804

Submitted on 11 Mar 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Performance Analysis Strategies for Task-based
Applications on Hybrid Platforms

Vinicius Garcia Pinto

To cite this version:
Vinicius Garcia Pinto. Performance Analysis Strategies for Task-based Applications on Hybrid Plat-
forms. Performance [cs.PF]. Université Grenoble Alpes; Universidade Federal do Rio Grande do Sul
(Porto Alegre, Brésil), 2018. English. �NNT : 2018GREAM058�. �tel-02063804�

https://theses.hal.science/tel-02063804
https://hal.archives-ouvertes.fr

THÈSE
Pour obtenir le grade de

DOCTEUR DE LA COMMUNAUTÉ
UNIVERSITÉ GRENOBLE ALPES

préparée dans le cadre d’une cotutelle entre la
Communauté Université Grenoble Alpes et
l’Universidade Federal do Rio Grande do Sul

Spécialité : Informatique

Arrêté ministériel : 25 mai 2016

Présentée par

Vinícius GARCIA PINTO

Thèse dirigée par Arnaud LEGRAND et Nicolas MAILLARD
préparée au sein des Laboratoire d’Informatique de Grenoble
et Grupo de Processamento Paralelo e Distribuído
dans l’École Doctorale Mathématiques, Sciences et
Technologies de l’Information, Informatique et Programa de
Pós-Graduação em Computação

Stratégies d’analyse de
performance pour les
applications basées sur tâches
sur plates-formes hybrides

Thèse soutenue publiquement le 30 octobre 2018,
devant le jury composé de :

M. Philippe O. A. NAVAUX
Professeur, Universidade Federal do Rio Grande do Sul, Président
M. Alfredo GOLDMAN VEL LEJBMAN
Professeur, Universidade de São Paulo, Rapporteur
M. Gaël THOMAS
Professeur, Telecom SudParis, Rapporteur
M. Mathieu FAVERGE
Maître de conférences, Institut Polytechnique de Bordeaux, Examinateur
M. Gerson Geraldo HOMRICH CAVALHEIRO
Professeur, Universidade Federal de Pelotas, Examinateur
M. Bernd MOHR
Chargé de Recherche, Forschungszentrum Jülich, Examinateur
M. Arnaud LEGRAND
Chargé de Recherche, Laboratoire d’Informatique de Grenoble, Directeur de
thèse
M. Nicolas MAILLARD
Professeur, Universidade Federal do Rio Grande do Sul, Directeur de thèse

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMÁTICA

PROGRAMA DE PÓS-GRADUAÇÃO EM COMPUTAÇÃO

VINÍCIUS GARCIA PINTO

Performance Analysis Strategies for
Task-based Applications

on Hybrid Platforms

Thesis prepared under a co-tutelle agreement
and presented in partial fulfillment
of the requirements for the degree of
Doctor of Computer Science
at the Federal University of Rio Grande do Sul
and the University Grenoble Alpes

Advisor (UFRGS): Prof. Dr. Nicolas Maillard
Advisor (UGA): Prof. Dr. Arnaud Legrand

Porto Alegre
October 2018

CIP — CATALOGING-IN-PUBLICATION

Pinto, Vinícius Garcia

Performance Analysis Strategies for Task-based Applications
on Hybrid Platforms / Vinícius Garcia Pinto. – Porto Alegre:
PPGC da UFRGS, 2018.

178 f.: il.

Thesis (Ph.D.) – Universidade Federal do Rio Grande do Sul.
Programa de Pós-Graduação em Computação, Porto Alegre, BR–
RS, 2018. Advisor (UFRGS): Nicolas Maillard; Advisor (UGA):
Arnaud Legrand.

1. Performance analysis. 2. Task-based applications. 3. Hy-
brid platforms. 4. Trace visualization. I. Maillard, Nicolas.
II. Legrand, Arnaud. III. Título.

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. Rui Vicente Oppermann
Vice-Reitora: Profa. Jane Fraga Tutikian
Pró-Reitor de Pós-Graduação: Prof. Celso Giannetti Loureiro Chaves
Diretora do Instituto de Informática: Profa. Carla Maria Dal Sasso Freitas
Coordenador do PPGC: Prof. João Luiz Dihl Comba
Bibliotecária-chefe do Instituto de Informática: Beatriz Regina Bastos Haro

ACKNOWLEDGMENTS

First I would like to thank CAPES (Brazilian Federal Agency for Support and

Evaluation of Graduate Education) for the financial support during these years. I also

would like to thank Inria (French National Research Institute for the Digital Sciences)

for giving me access to their incredible technical, physical and personnel infrastructure.

Additionally, I would like to thank the Institute of Informatics at the Federal University

of Rio Grande do Sul and the Grenoble Informatics Laboratory (LIG) at the University

Grenoble Alpes.

I would like to thank my advisors Arnaud Legrand and Nicolas Maillard. Nicolas,

thank you for opening me the doors of the academic world and for encouraging me to

conduct this Ph.D. in an international cooperation context. Arnaud, I am so grateful for

having the chance to work with you. I really appreciate your ability to formulate new

hipothesis and solutions even after we show you the same result for the tenth time, and, of

course, always taking care of the reproducibility aspects. You are a source of inspiration

and motivation in my incipient career as a researcher. Finally, I would like to thank Lucas

Mello Schnorr. Lucas, even if it has not been possible to include you as my official

co-advisor due to bureaucratic formalities, you have spared no efforts to help me, and I

am very thankful for your all support with very nice insights and encouragements. I am

sure that this work would not be the same without your endless list of suggestions and

improvements.

I would like to thank Samuel Thibault, Luka Stanisic and Vincent Danjean who

are my co-authors on several papers in the subject of this thesis. Vincent was also my

first contact in France, and I am thankful not only for your technical support but also with

your academic support with the formalities and paperwork for administrative stuff.

I would like to thank all my colleagues from GPPD and POLARIS/DATAMOVE

teams. I really appreciate your company during all these years, not only in the techni-

cal discussions but also in the lunch (or sometimes procrastination) time. I would like

to thank, in particular, my colleagues from offices 205 (INF), B116 (INRIA) and 434

(IMAG) for tolerating me during these years.

I would like to thank the members of the jury committee: Alfredo Goldman Vel

Lejbman, Gaël Thomas, Mathieu Faverge, Gerson Geraldo Homrich Cavalheiro, Bernd

Mohr and Philippe Olivier Alexandre Navaux for accepting the invitation, for the nice

discussion and their valuable suggestions.

I would like to warmly thank my parents for all their support and patience. I also

would like to thank Leandro and my sister, Larissa, who was my inspiration to embrace

this crazy and challenging adventure called the academic career.

Finally, I would like to thank my lovely fiancee, Franciele Cordeiro, for being

beside me (on both sides of the Atlantic) during all this long journey. I couldn’t have done

this work without you, your support, your suggestions, your courage, and your patience.

Thank you for sharing your life and your knowledge with me.

ABSTRACT

Programming paradigms in High-Performance Computing have been shifting toward task-

based models that are capable of adapting readily to heterogeneous and scalable super-

computers. The performance of task-based applications heavily depends on the run-

time scheduling heuristics and on its ability to exploit computing and communication

resources.

Unfortunately, the traditional performance analysis strategies are unfit to fully understand

task-based runtime systems and applications: they expect a regular behavior with com-

munication and computation phases, while task-based applications demonstrate no clear

phases. Moreover, the finer granularity of task-based applications typically induces a

stochastic behavior that leads to irregular structures that are difficult to analyze.

In this thesis, we propose performance analysis strategies that exploit the combination of

application structure, scheduler, and hardware information. We show how our strategies

can help to understand performance issues of task-based applications running on hybrid

platforms. Our performance analysis strategies are built on top of modern data analysis

tools, enabling the creation of custom visualization panels that allow understanding and

pinpointing performance problems incurred by bad scheduling decisions and incorrect

runtime system and platform configuration. By combining simulation and debugging,

we are also able to build a visual representation of the internal state and the estimations

computed by the scheduler when scheduling a new task.

We validate our proposal by analyzing traces from a Cholesky decomposition imple-

mented with the StarPU task-based runtime system and running on hybrid (CPU/GPU)

platforms. Our case studies show how to enhance the task partitioning among the multi-

(GPU, core) to get closer to theoretical lower bounds, how to improve MPI pipelining in

multi-(node, core, GPU) to reduce the slow start in distributed nodes and how to upgrade

the runtime system to increase MPI bandwidth. By employing simulation and debugging

strategies, we also provide a workflow to investigate, in depth, assumptions concerning

the scheduler decisions. This allows us to suggest changes to improve the runtime system

scheduling and prefetch mechanisms.

Keywords: Performance analysis. task-based applications. hybrid platforms. trace visu-

alization.

Estratégias de Análise de Desempenho para Aplicações baseadas em Tarefas em

Plataformas Híbridas

RESUMO

No contexto da Computação de Alto Desempenho, a utilização de modelos de progra-

mação baseados em paralelismo de tarefas é cada vez mais frequente uma vez que estes

são capazes de se adaptar mais facilmente à supercomputadores que utilizam arquitetu-

ras híbridas. O desempenho das aplicações baseadas em tarefas depende fortemente de

heurísticas de escalonamento dinâmicas e da habilidade destas em explorar os recursos de

computação e comunicação.

Infelizmente, as estratégias de análise de desempenho tradicionais não são adequadas à

análise de ambientes de execução dinâmicos e de aplicações baseadas em tarefas. Estas

estratégias esperam, em geral, um comportamento relativamente regular com alternân-

cia de fases de computação e comunicação enquanto as aplicações baseadas em tarefas

não apresentam estruturas tão bem definidas. Além disso, o assincronismo e a granula-

ridade mais fina das aplicações baseadas em tarefas induz comportamentos estocásticos

que levam à estruturas naturalmente irregulares que são difíceis de analisar.

Nesta tese, nós propomos estratégias de análise de desempenho que exploram simulta-

neamente a estrutura da aplicação, características do escalonador e informações da plata-

forma. Nós mostramos como nossas estratégias podem ajudar à compreender e resolver

problemas de desempenho não triviais em aplicações baseadas em tarefas executadasm

em plataformas híbridas. Nossas estratégias de análise de desempenho são construídas

sobre ferramentas de análise de dados modernas e genéricas, o que possibilita a criação

de visualizações específicas e adaptadas. Estas visualizações permitem a compreensão e

a identificação de problemas de desempenho ocasionados por decisões de escalonamento

impróprias bem como por configurações incorretas do ambiente de execução e da plata-

forma. Por meio da combinação de técnicas de simulação e depuração com visualizações

especificamente desenvolvidas para representar o estado interno do escalonador e suas

estimativas, nós mostramos como é possível avaliar certas hipóteses sobre a pertinência

das decisões de escalonamento.

Nós validamos nossa propostas por meio da análise de rastros de execução de uma fa-

torização de Cholesky implementada com o ambiente de execução StarPU e executada

com diferentes plataformas híbridas (CPU/GPU). Nossos estudos de caso mostram como

melhorar a partição das tarefas entre diferentes núcleos CPU e GPUs para se aproximar

dos limites inferiores teóricos, como melhorar o pipeline das operações MPI entre dife-

rentes nós (multicore e multi-GPUs) para acelerar o início da aplicação, e como melhorar

o ambiente de execução para aumentar a largura de banda MPI. O emprego de estratégias

de simulação e depuração, nos fornece uma abordagem que permite examinar, em deta-

lhes, as decisões de escalonamento bem como de propor melhorias nos mecanismos de

escalonamento e prefetch do ambiente de execução.

Palavras-chave: análise de desempenho, aplicações baseadas em tarefas, plataformas

híbridas, visualização de rastros.

Stratégies d’analyse de performance pour les applications basées sur tâches sur

plates-formes hybrides

RÉSUMÉ

Dans le cadre du calcul haute performance, l’utilisation d’un modèle de programmation

basé sur un parallélisme de tâche est de plus en plus courant. Cette approche permet de

s’adapter plus facilement aux super-ordinateurs utilisant des architectures hybrides. La

performance d’applications à bases de tâches dépend fortement des heuristiques d’ordon-

nancement dynamiques sous-jacente et de leur capacité à exploiter les ressources de calcul

et de communication.

Malheureusement, les stratégies d’analyse de performance traditionnelles ne sont pas

adaptées à l’analyse de supports d’exécution dynamiques et d’applications basées sur des

tâches. Ces stratégies supposent en général un comportement relativement régulier avec

des alternances de phases de calcul et de communication alors que les applications basées

sur des tâches ne présentent pas de structures aussi précises. Par ailleurs, l’asynchronisme

et la granularité plus fine des applications basées sur des tâches induit des comportements

stochastiques qui donnent lieu à des structures naturellement irrégulières qui sont diffi-

ciles à analyser.

Dans cette thèse, nous proposons des stratégies d’analyse de performance qui exploitent

à la fois la structure de l’application, des caractéristiques de l’ordonnancement et des

informations de la plate-forme. Nous présentons comment nos stratégies peuvent aider

à comprendre et résoudre des problèmes de performance non triviaux dans des applica-

tions basée sur des tâches qui s’exécutent sur des plates-formes hybrides. Nos stratégies

d’analyse de performance sont construites à l’aide d’outils d’analyse de données géné-

riques et modernes, ce qui permet de créer des vues spécifiques et adaptées. Ces vues

permettent la compréhension et l’identification de problèmes de performances occasion-

nés par de mauvaises décisions d’ordonnancement ou bien des configurations incorrectes

du support d’exécution et de la plate-forme. En combinant des techniques de simulation

et de débogage à des vues spécifiquement développées pour représenter l’état interne de

l’ordonnançeur et qui le conduisent à prendre ses décisions, nous avons montré qu’il était

possible d’évaluer certaines hypothèses sur la pertinence de ses choix.

Nous validons notre proposition en analysant de nombreuses traces d’exécutions d’une

factorisation de Cholesky implémenté avec le support d’exécution StarPU et exécutée

sur différentes plates-formes hybrides (CPU/GPU). Nos études de cas montrent comment

améliorer la partition des tâches entre les différents cœurs et GPUS pour s’approcher des

bornes inférieures théoriques, comment améliorer le pipeline des opérations MPI entre

les différents nœuds (multi-coeurs et multi-GPUs) pour accélérer le démarrage de l’ap-

plication, et comment améliorer le support d’exécution pour augmenter la bande passante

MPI. L’emploi des stratégies de simulation et débogage, nous fournissons une approche

permettant d’examiner, en détail, les décisions d’ordonnancement et ainsi de proposer des

améliorations des mécanismes d’ordonnancement et de prefetch du support d’exécution.

Mots-clés: analyse de performance, parallélisme de tâche, plates-formes hybrides, visua-

lisation de trace.

LIST OF FIGURES

Figure 1.1 The layout of a current parallel computer with a multicore processor
and a manycore accelerator device. ..23

Figure 1.2 Two current parallel computers ...24
Figure 1.3 The basis of the proposed analysis strategies. ..26

Figure 2.1 The layout of a hypothetical accelerator. ...31
Figure 2.2 Evolution of the use of accelerators in TOP500 systems.32
Figure 2.3 An example of recursive tasks in Cilk. ..35
Figure 2.4 A pseudo-code illustrating how to express dependencies in Cilk and

OpenMP..36
Figure 2.5 An example of task description in ParSEC..39
Figure 2.6 A pseudo-code of tasks definition in OmpSs...40
Figure 2.7 An example of XKaapi task with multiple implementations.........................42
Figure 2.8 An example of StarPU codelet ..43
Figure 2.9 An example of the current hardware and software stack47

Figure 3.1 A StarPU-MPI trace visualized with ViTE. ...51
Figure 3.2 Visualization of an OTF2 trace in Vampir. ..52
Figure 3.3 A comparison between logical and physical views in Ravel.53
Figure 3.4 Visualization of communication arrows in Vampir and in Brendel’s Edge

Bundling Approach...54
Figure 3.5 Summarized views of communications in Vampir and Brendel’s pro-

posed strategy..54
Figure 3.6 An Ocelotl aggregated view in FrameSoc. ..56
Figure 3.7 An example of the trace visualization with dependencies proposed by

Haugen et al. (2015) ...57
Figure 3.8 An example of the DAG-based visualization proposed by DAGViz.59
Figure 3.9 The Delay Spotter representation of delays in the DAG.60
Figure 3.10 A Temanejo view of a task-based program running with the StarPU

runtime system..61
Figure 3.11 Per-task Performance vs L3 Miss Ratio correlation computed by Task-

Insight. ..62

Figure 4.1 Git branching scheme proposed by Stanisic, Legrand, and Danjean (2015).70
Figure 4.2 A graph with software dependencies of the Chameleon Solver72
Figure 4.3 Example of multiple installs of a package in Spack.74
Figure 4.4 Fragment of an execution log containing Spack package state.75

Figure 5.1 An overview of the proposed visualization strategies79
Figure 5.2 A basic space-time plot ...81
Figure 5.3 Enriched space-time view with idleness quantification.82
Figure 5.4 Enriched space-time view with highlighting of tasks with anomalous

duration. ...83
Figure 5.5 Space-time view with CPE and ABE bounds..85
Figure 5.6 Space-time view with aggregation of DGEMM tasks with duration smaller

than 100 ms...86
Figure 5.7 Space-time view with aggregation of DGEMM and DTRSM tasks with

duration smaller than 100 ms..87

Figure 5.8 Space-time view with aggregation of DGEMM and DTRSM tasks with
duration smaller than 100 ms (excluding some tasks)..88

Figure 5.9 Space-time view with aggregation of DGEMM and DTRSM tasks exclud-
ing outliers. ..90

Figure 5.10 Space-time view with all dependencies of some selected tasks.91
Figure 5.11 Space-time view showing only the last dependency of a some given

tasks. ..92
Figure 5.12 Space-time view with the backward dependency chain of some se-

lected tasks. ..93
Figure 5.13 Space-time view with the backward dependency chain of DPOTRF tasks.

..94
Figure 5.14 Space-time view with application progression. ..96
Figure 5.15 Space-time view and the additional progression panel populated with

tasks. ..97
Figure 5.16 Space-time view with scheduler metrics. ..98
Figure 5.17 Space-time view with CPE and ABE bounds..100
Figure 5.18 Comparing views from three executions using different schedulers.101
Figure 5.19 Screenshot of an interactive view generated with plotly.103
Figure 5.20 A simplified workflow with the steps to generate views from applica-

tion execution traces. ...105
Figure 5.21 A fragment of a StarPU execution trace in CSV format after conversion

from FxT and Pajé. ...105
Figure 5.22 Task dependencies information obtained from the application DAG

provided by StarPU...106

Figure 6.1 The pseudo-code of the tiled Cholesky decomposition and its corre-
sponding DAG for N = 5. ..112

Figure 6.2 Different static partitioning schemes for DTRSM tasks as dictated by the P113
Figure 6.3 Composite View of a Cholesky factorization with a large matrix (60×60

tiles of 960×960) executed with the DMDAS scheduler.117
Figure 6.4 Comparison view of six executions of the Cholesky factorization..............120
Figure 6.5 Space-time view of a Cholesky factorization with a small matrix (12×12

tiles of 960×960) executed with the DMDAS scheduler.122
Figure 6.6 Comparison view of six executions of the Cholesky factorization for a

matrix of 12×12 tiles of size 960×960..125
Figure 6.7 StarPU-MPI multi-node execution of the Cholesky factorization with a

matrix of 75×75 tiles of 960×960 using PRIO scheduler.126
Figure 6.8 The first 8000ms of three StarPU-MPI multi-node executions of the

Cholesky factorization with a matrix of 75×75 tiles of 960×960.128
Figure 6.9 The first 10000ms of a StarPU-MPI multi-node execution of the Cholesky

factorization with a matrix of 75×75 tiles of 960×960 using the DMDAS
scheduler. ..130

Figure 6.10 Comparison of two StarPU-MPI multi-node executions of the Cholesky
factorization with a matrix of 75×75 tiles of 960×960 using LWS scheduler,
P=1..131

Figure 6.11 Comparison of four StarPU-MPI multi-node executions of the Cholesky
factorization with a matrix of 75×75 tiles of 1440×1440 using LWS scheduler. .133

Figure 6.12 Comparison of two StarPU-MPI multi-node executions of the Cholesky
factorization with a matrix of 100×100 tiles of 960×960 using LWS scheduler
and P=2. ..136

Figure 6.13 Comparison of two StarPU-MPI multi-node executions of the Cholesky
factorization with a matrix of 100×100 tiles of 960×960 using DMDAS sched-
uler and P=2..137

Figure 7.1 A space-time view representing the execution of a Cholesky factor-
ization (matrices with 12×12 tiles of 960×960) with highlighted potencial
scheduling mistakes. ...140

Figure 7.2 A visual representation of the internal state of the StarPU DMDAS
scheduler when scheduling a DSYRK task with ID 1333......................................145

Figure 7.3 Screenshot of a Web interactive view of the StarPU scheduler state gen-
erated with plotly. ..145

Figure 8.1 The space-time view of ten simulated (StarPU+SimGrid) executions of
the Cholesky factorization (matrices with 12×12 tiles of 960×960).148

Figure 8.2 Space-time view with markers (black pins) to indicate representative
delayed tasks. The scheduling state of these tasks will be investigated in the
next sections. ...149

Figure 8.3 A comparison between the estimations computed by StarPU during the
scheduling step of the DSYRK task 1333 and the obtained execution.151

Figure 8.4 Comparison of the scheduler estimations and the obtained executions
for three tasks: DSYRK 1434, the DTRSM 1510 and the DTRSM 1585.152

Figure 8.5 A comparison between the estimations computed by StarPU during the
scheduling step of the DSYRK task 1510 and the obtained execution.153

Figure 8.6 Comparison of the scheduler estimations and the obtained executions
for three tasks: DSYRK 1521, the DSYRK 1595 and the DTRSM 1648.154

Figure 8.7 Space-time view with markers (black pins) to indicate representative
delayed tasks in the end of the execution. The scheduling state of these tasks
will be investigated in the next sections. ...155

Figure 8.8 Comparison of the scheduler estimations and the obtained executions
for three tasks: DSYRK 1800, the DSYRK 1822 and the DTRSM 1833.156

Figure 8.9 Comparison of a execution with the standard pipeline size (top) and the
modified one (bottom). ..157

Figure 9.1 Visualization of a task-based application executed with the OmpSs run-
time system. ...161

Figure 9.2 An overview of a Cholesky execution on the Intel Xeon Phi platform
with a matrix of 60×60 tiles of 960×960 using the DMDAS scheduler.163

LIST OF TABLES

Table 3.1 Visualization tools and common features ...64

Table 6.1 Summary of the hardware/software configuration of the experimental
platforms used to collect execution traces. ..110

Table 6.2 Summary of workloads ..114

LIST OF ABBREVIATIONS AND ACRONYMS

ABE Area Bound Estimation

BSP Bulk-Synchronous Parallel

CFD Computational Fluid Dynamics

CPE Critical Path Estimation

CPI Cycles Per Instruction

CPU Central Processing Unit

DBF Distributed Breadth First

DSL Domain-Specific Language

DMDA Deque Model Data Aware

DMDAS Deque Model Data Aware Sorted

DOI Digital Object Identifier

FLOPS Floating Point Operations Per Second

GPU Graphical Processing Unit

HEFT Heterogeneous Earliest Finish Time

HPC High-Performance Computing

ILP Instruction-Level Parallelism

IPC Instructions Per Cycle

IQR InterQuartile Range

ISA Instruction Set Architecture

LML Lightweight Markup Language

LWS Locality Work Stealing

MIC Many Integrated Core

MPI Message Passing Interface

NUMA Non-Uniform Memory Access

OTF Open Trace Format

PPE PowerPC Processor Element

PTG Parameterized Task Graph

SPE Synergistic Processor Element

WF Work First

WS Work Stealing

LIST OF ALGORITHMS

1 Computation of task groups ...89

CONTENTS

1 INTRODUCTION...23
1.1 Objectives and Contributions ..25
1.2 Research Context ..27
1.3 Thesis Outline..27
2 CONTEXT...29
2.1 Hybrid HPC Architectures ..30
2.2 Programming Hybrid Architectures ...32
2.2.1 Task-Based Programming..33
2.3 Runtime Systems for Task-Based Parallel Programming37
2.3.1 PaRSEC..38
2.3.2 OmpSs..38
2.3.3 XKaapi ...41
2.3.4 StarPU..42
2.3.5 Discussion ..45
2.4 Chapter Summary ..46
3 STATE OF THE ART...49
3.1 Traditional BSP-based Visualization ..49
3.1.1 ViTE ...50
3.1.2 Paraver ...50
3.1.3 Vampir..51
3.1.4 Ravel ..52
3.1.5 Edge Bundling extension for Vampir...53
3.1.6 FrameSoc/Ocelotl ..55
3.2 Task-oriented Visualization..56
3.2.1 Execution Traces with Dependencies ..57
3.2.2 DAGViz..58
3.2.3 Delay Spotter ...59
3.2.4 Temanejo..60
3.2.5 TaskInsight ...62
3.3 Discussion ..63
3.4 Chapter Summary ..65
4 METHODOLOGY ...67
4.1 A Reproducible Report...67
4.2 Generating Input Data ...69
4.2.1 Git and Org-mode Strategy ..69
4.2.2 Handling Complex Software Stacks with Spack ...71
4.2.3 Rebuilding the Software Stack...74
4.2.4 Storage of Large Files in GIT ..75
4.3 Chapter Summary ..77
5 PROPOSED VISUALIZATIONS STRATEGIES..79
5.1 Enriched Space-time View ...80
5.1.1 Idleness ..81
5.1.2 Outliers or Task Duration Anomalies ..82
5.1.3 Bounds for the Makespan ..83
5.1.4 Aggregation..85
5.1.5 Dependencies ...90
5.2 Additional Views ...93
5.2.1 Application Progression...95

5.2.2 Scheduler Task Metrics..97
5.2.3 ABE Solution ...98
5.3 Comparing Views..99
5.4 Interactive Views...102
5.5 Input Description ..104
5.6 Discussion ..106
5.7 Chapter Summary ..108
6 RESULTS ON VISUALIZATIONS STRATEGIES ..109
6.1 Experimental Setup ..109
6.1.1 Platforms ..109
6.1.2 Application...111
6.2 Case Study: Changing Schedulers on Hybrid Nodes ..113
6.2.1 Workload L - Cholesky Factorization of 60×60 tiles of size 960×960114
6.2.2 Workload S - Cholesky Factorization of 12×12 tiles of size 960×960121
6.3 Case Study: Multi-node Executions with Starpu-MPI......................................124
6.3.1 Slow-start in Remote Nodes ..127
6.3.2 Idle Periods During the Computation ..129
6.3.3 StarPU-MPI Data Distribution Strategies ..131
6.4 Chapter Summary ..135
7 PROPOSED DEBUG STRATEGIES ...139
7.1 A Representative Example ...139
7.2 Methods and Materials...140
7.2.1 Performance Models ..141
7.2.2 StarPU/Simgrid simulated executions ...141
7.2.3 StarPU Scheduler Internals ..142
7.2.4 GDB Scripts to Capture the Scheduler State ...142
7.2.5 StarPU Modifications...143
7.3 A Visual Representation of the Scheduler State...143
7.4 Chapter Summary ..146
8 RESULTS ON DEBUG STRATEGIES ..147
8.1 Experimental Setup ..147
8.2 Investigating Scheduling Decisions in the First Half of the Execution147
8.3 Investigating Scheduling Decisions at the End of the Execution154
8.4 Experiments with Modified Pipeline Size ...155
8.5 Chapter Summary ..157
9 CONCLUSIONS AND PERSPECTIVES ..159
9.1 Conclusions..159
9.2 Perspectives..160
9.2.1 Analysis of other task-based applications and runtime systems..........................160
9.2.2 Performance Anomalies on Xeon Phi Knights Landing architecture..................161
9.2.3 StarVZ..162
9.3 Publications ...162
9.3.1 Accepted ..162
9.3.2 Other accepted publications during the Ph.D. ...164
BIBLIOGRAPHY..165

23

1 INTRODUCTION

Computer architectures have experienced a paradigm shift in the last years. The

stagnation in the processor frequency has led the adoption of other ways to fulfill the

ever-growing need for computation power. The combination of multicore processors with

accelerator devices has been a prevalent approach to fulfill these performance require-

ments. Figure 1.1 represents a common layout of current parallel computers including

multiple cores associated with an accelerator device disclosing a multilevel and heteroge-

neous parallelism.

For a long time, the applicability of parallel computers had been limited to re-

stricted domains, mainly concerning High-Performance Computing (HPC) research and

scientific applications, e.g., climate modeling, energy research, data analysis, and simula-

tions. However, the recent paradigm shift has put the parallelism in the essence of almost

all computing devices. This way, taking only a layout of the architecture as the one of

Figure 1.1, it is no longer possible to distinguish a TOP500-ranked supercomputing node

from a high-end smartphone.

Figure 1.1: The layout of a current parallel computer with a multicore processor and a
manycore accelerator device. The larger boxes represent multicore processors with its
powerful cores based on sophisticated control logic and complex cache hierarchy. The
smaller ones represent accelerator cores which are simpler but more numerous.

.

Source: The Author

Figure 1.2 illustrates the architecture of two current parallel computers. Both are

octa-core systems enhanced with accelerator devices. However, despite the conceptually

similar architecture, they have extremely contrasting purposes. The first (right) is a node

24

Figure 1.2: Two current parallel computers. On the left, a node of the Cascade system,
ranked in the position 69 in the June 2018 Top500 list. This system has an octa-core Intel
Xeon E5-2670 at 2.6GHz with an Intel Xeon Phi 5110P as an accelerator. On the right
side, a Samsung Galaxy S9 smartphone using a heterogeneous ARM processor with four
M3 cores at 2.7GHz and four Cortex-A55 cores at 1.8GHz with a GPU Mali-G72 as an
accelerator.

Xeon E5-2670

Xeon Phi 5110P

Exynos M3

Cortex A55

Mali-G72 MP18

Source: The Author

of the #69 most powerful system in the last Top500 list 1, while the second one (left) is a

Galaxy S92 smartphone produced by Samsung.

Although parallel computers have become mainstream, with hybrid platforms wide-

spread from supercomputing centers to ordinary citizens’ pockets, the software stack is

not fully prepared to efficiently exploit this multilevel parallelism. The paradigm shift in

the hardware has exposed the limitations of traditional tools for programming and analyz-

ing applications running on parallel platforms. Indeed, these limitations come from the

context on which these tools were designed, i.e., homogeneous parallel computers used

in HPC and scientific domains.

Programming hybrid platforms is complex. The common strategy based on the

use of traditional tools (e.g., MPI, pthreads, OpenMP) to program parallel applications

in a hybrid hardware is becoming unfeasible and potentially problematic. Efficiently

programming such machines achieving portable and scalable performance has become

extremely challenging since the use of explicit programming models demands a huge

effort to develop and maintain the application (ASANOVIC et al., 2009). Even when

successful, this development flow results in a code that is tightly coupled to the target

1https://www.top500.org/system/178250
2https://www.gsmarena.com/samsung_galaxy_s9-8966.php

https://www.top500.org/system/178250
https://www.gsmarena.com/samsung_galaxy_s9-8966.php

25

hardware, which is not desirable in the hybrid scenario where the accelerator’s technology

is changing fast, e.g., Cell Broadband Engine Architecture (2006), Graphics Processing

Unit (2007), Xeon Phi (2013) (DONGARRA et al., 2017).

The pressure on parallel programming tools has contributed to the populariza-

tion of the task-based programming model. While the traditional parallel programming

paradigm relies on low-level abstractions like threads and explicit synchronizations, the

task-based model describes the application in terms of dependent sequential (or parallel)

tasks. Explicit synchronizations are replaced by tasks dependencies that can be, in sev-

eral cases, inferred automatically from data access. The task-based model is implemented

by several programming models: OpenMP 4 (OPENMP. . . , 2013), OmpSs (DURAN;

AYGUADÉ, et al., 2011), PaRSEC (BOSILCA, George et al., 2012), XKaapi (GAU-

TIER, T. et al., 2013), StarPU (AUGONNET, Cédric et al., 2011).

Despite the growing availability of tools to program and execute task-based appli-

cations on hybrid platforms, there are very few analysis tools with a focus on such kind of

parallel applications. One of the main reasons is that the burden of getting the maximum

performance from the machine shifts from the application to the runtime developer, who

implements a given scheduling heuristic. Usually, developers rely on already-established

analysis tools since highly-summarized metrics, e.g., makespan, speedup, and efficiency,

are too simplistic to allow understanding performance issues in such scenario. However,

existing tools that are capable of giving insights to developers, such as Paraver (PILLET et

al., 1995), Vite (COULOMB et al., 2009), and others (KNÜPFER et al., 2008; ISAACS,

K. E. et al., 2014; BRENDEL et al., 2016; PAGANO et al., 2013), are unsuited to runtime

developers because assumptions and performance bottlenecks are different from classical

parallel programs and because the traces of task-based applications can be much richer

(e.g., with task-dependencies or information about the state of the scheduler) than the

ones of standard MPI or classical OpenMP applications.

1.1 Objectives and Contributions

Considering the previously discussed scenario, the main objective of this thesis is

to provide appropriate performance analysis strategies for task-based applications

executing on hybrid platforms supported by dynamic runtime systems. We believe

that, with a complex hardware/software stack, a meaningful analysis strategy should take

into account:

26

• application aspects (e.g., algorithm structure, finer granularity, task dependencies)

• platform specification (e.g., heterogeneous processing and communication capa-

bilities)

• runtime system state (e.g., dynamic scheduling, internal metrics)

In order to fulfill these requirements, our approach is anchored on the four topics

shown in Figure 1.3. First, we build on well-established Performance Analysis concepts,

such as execution traces and timeline views. Second, we exploit both characteristics of

Task Parallelism, such as data dependencies and dynamic scheduling and of Hybrid Ar-

chitectures such as heterogeneous processing power. Finally, we rely on modern Data

Analysis Tools, such as R language and its libraries, to read, combine and process execu-

tion traces in order to obtain visual representations of the application execution.

Figure 1.3: The basis of the proposed analysis strategies.

Source: The Author

Our main contributions are the following:

• a set of performance analysis strategies to meet the requirements of task-based ap-

plications supported by dynamic runtime systems;

• an incremental approach where enrichments to standard visualizations and synchro-

nized extra panels are developed and incorporated on-demand;

• case-study analyses demonstrating how to achieve performance improvements on

already optimized task-based applications.

The complex hardware/software stack also emphasizes the need to employ re-

producible approaches. Therefore, we also employ a reliable experimental methodology

based on Git, Org-mode, Spack, and Zenodo. This methodology enables us to make avail-

able a companion dataset containing the source-code and the results data of our experi-

ments. Our extensions to the Git and Org-mode workflow proposed by Stanisic, Legrand,

and Danjean (2015) and the availability of experiments data can be considered as addi-

tional contributions of this thesis.

27

1.2 Research Context

The present work is conducted under the context of a joint Ph.D. between the Grad-

uate Program in Computer Science (PPGC) of the Institute of Informatics at the Federal

University of Rio Grande do Sul (UFRGS) in Brazil and the Doctoral School on Math-

ematics, Information Sciences and Technologies, and Computer Science (ED-MSTII) of

the University Grenoble Alpes (UGA) in France. Besides, this work is involved in the

context of the International Associated Laboratory in High Performance and Ubiquitous

Computing (LICIA).

At UFRGS, this research is developed under the supervision of Nicolas Maillard

in the Research Group on Parallel and Distributed Processing (GPPD) and at UGA under

the supervision of Arnaud Legrand in the team on Performance Evaluation and Opti-

mization of Large Infrastructures and Systems (POLARIS) of the Grenoble Informatics

Laboratory (LIG). In addition to my official advisors, this work is developed in a strong

cooperation with:

• Lucas Mello Schnorr from UFRGS about performance analysis techniques and

StarPU-MPI applications. Lucas has been, in practice, a co-supervisor of this thesis;

• Samuel Thibault from University of Bordeaux about the StarPU runtime system;

• Luka Stanisic from Max Planck Computing and Data Facility about performance

analysis of StarPU applications;

• Vincent Danjean from University Grenoble Alpes about task-based programming.

1.3 Thesis Outline

The remainder of this text is structured as follows:

• Chapter 2 presents background concepts of the hardware and software stack of

current HPC platforms. First, we present an overview about the multi-level paral-

lelism of the architecture. Second, we discuss programming strategies for hybrid

architectures with emphasis on task-based programming.

• In Chapter 3 we present the state of the art of performance analysis tools. We

discuss both traditional BSP-based approaches and Task-oriented ones.

• Chapter 4 presents some steps to make this work more transparent and repro-

28

ducible. This comprises the use of literate programming to write this report and

how we keep track of experiments data.

• In Chapter 5 we detail the proposed visualization strategies to analyze task-based

applications.

• Chapter 6 presents our results when analyzing applications with the proposed

strategies. We present two case studies, the first one on a single hybrid node and

the second on a hybrid cluster.

• In Chapter 7 we detail our debug-based performance analysis strategies. These

strategies are useful for understanding specific scheduler decisions that cannot be

totally explained using only the strategies presented in Chapter 5.

• Chapter 8 presents our results when analyzing executions with the proposed debug

strategies. We present an investigation of the StarPU scheduler state for a set of

tasks that seem to be delayed due to potential scheduling mistakes.

• Chapter 9 presents the conclusions and perspectives of this thesis.

29

2 CONTEXT

For a long time, parallelism has been a major strategy to increase the process-

ing power of computing systems. Low-level techniques such as the Instruction Level

Parallelism (HENNESSY; PATTERSON, 2017) were incorporated into the hardware de-

sign, and are now widespread in almost all CPU architectures. These hardware-managed

techniques have delivered the benefits of parallelism with no cost in terms of software

development. In contrast, the exploitation of parallelism in other levels of the hardware/-

software stack was restricted to HPC researchers and scientific applications developers.

This community has developed successful programming tools such as the Mes-

sage Passing Interface (MPI) to handle the communication among computing nodes and

OpenMP to handle shared memory platforms. MPI (GROPP; LUSK; SKJELLUM, 2014)

is a de facto standard for parallel programming in distributed memory. Using MPI, pro-

cesses can communicate by exchanging messages, e.g., paired send/receive messages or

collective communications. OpenMP (CHAPMAN et al., 2008) is a collection of com-

piler directives and library functions to enable shared-memory multi-thread programming.

Its directives were initially designed to parallelize loop-based algorithms, but recent ver-

sions also include support for other designs (e.g., sections, tasks). Classical parallel pro-

grams are commonly designed following the concepts of SPMD (Single Program Multi-

ple Data) and BSP (Bulk-Synchronous Parallel) models. SPMD programs run the same

code on a set of computing units; each computing unit uses its unique identifier to know

on which part of the problem it should work (FOSTER, 1995; SOTTILE; MATTSON;

RASMUSSEN, 2009). BSP programs are designed as a series of super-steps (VALIANT;

G., 1990), i.e., each computing unit performs some local computation, these computa-

tions are followed by a communication phase and finally by a synchronization one. De-

spite the popularity of these approaches, the emergence of computing nodes with massive

multicore processors and enhanced with accelerators has exposed the limitations of such

strategies.

In this chapter, we discuss the hardware and software stack of current HPC hy-

brid platforms. First, in Section 2.1 we address the parallelism of HPC platforms, from

the low-level ILP techniques to the multicore processors and accelerators used by the

powerful computing systems today. Section 2.2 presents the principles of task-based pro-

gramming. Finally, Section 2.3 presents some runtime systems that enables task-based

parallel programming on hybrid platforms.

30

2.1 Hybrid HPC Architectures

Parallelism has been exploited for a long time in computer architectures to achieve

performance gains. Several parallelism techniques are employed inside the processor ar-

chitecture to overlap the execution of instructions and decrease the time required to per-

form the whole computation, what is known as Instruction-Level Parallelism (ILP). Most

of these techniques such as pipelining, register renaming and use of multiple redundant

functional units are transparent to programmers since to their point of view the results

are exactly the same of a sequential execution (HENNESSY; PATTERSON, 2017). Cur-

rent processors also support another low-level parallelism features like vectorial instruc-

tions (SIMD extensions) which are more or less transparent to programmer since they are

exploited by the compiler, automatic (YAZDANPANAH, 2017) or guided by directives

(INTEL, 2017a), or included in high-performance libraries (WANG et al., 2014).

The paradigm shift from sequential processors to multicore chips has disclosed an-

other parallelism layer to programmers. In contrast to the ILP where the parallelism was

almost entirely handled by the hardware, in the multicore model, the software must be up-

graded to take advantage of the computational power provided by multicore architecture

(ASANOVIC et al., 2009). Since the number of cores continues to increase significantly

in new hardware generations, the programming tools should provide a way to express

the parallelism independently of the actual number of cores. This way, the software can

still scale in future processors with higher core counts. Programming tools for multicore

processors will be discussed in Section 2.2.

To fulfill the ever-growing need for computation power of High-Performance Com-

puting applications, current HPC platforms are hybrid machines that rely not only on

mainstream multicore processors but also in specialized accelerators. These devices are

attached to the main system providing massive computational power with a reduced cost.

For this reason, accelerated nodes are the main technology used by the powerful HPC

platforms, e.g., 110 of the fastest supercomputers listed in the June 2018 Top500 list

(MEUER et al., 2014) have nodes enhanced with some accelerator device, as shown in

Figure 2.2.

Despite the computational power provided by hybrid machines, efficiently exploit

both multicore CPUs and accelerators is challenging. Accelerator devices have very dif-

ferent design and requirements. Usually, they provide massive parallelism through a

higher number of simplified cores. In comparison with a CPU, the design of an accel-

31

Figure 2.1: The layout of a hypothetical accelerator. Green boxes represent computing
units (cores), orange ones the control system and blue ones the memory hierarchy.

Source: The Author

erator favors the computing units rather than control and memory systems as illustrated

by the hypothetical accelerator layout of Figure 2.1. Some accelerator technologies are

based on specialized instruction sets, which means that they require proper compiler and

programming tools (NVIDIA, 2017b). The particular memory hierarchy requires some

low-level operations and/or optimizations that normally are transparent in CPU architec-

tures (NVIDIA, 2017a; JEFFERS; REINDERS, J., 2013).

The Figure 2.2 shows the growing use of accelerators devices in the systems

ranked in the Top500 list. On the one hand, this series shows that accelerated nodes

are becoming commonplace in the HPC landscape, but, it also shows that accelerators

technology changes fast. A decade ago, the dominant technology was the Cell Broadband

Engine Architecture (CHEN et al., 2007), a heterogeneous multicore chip composed of

one PowerPC core (PPE) and eight simple cores (SPE) specialized for SIMD instructions.

Then, the advent of CUDA (SANDERS; KANDROT, 2010) and OpenCL (STONE; GO-

HARA; SHI, 2010; GASTER, 2012) technologies has facilitated the use of GPU cards

for general purpose processing. More recently, Intel has introduced the Many Integrated

Core architecture (MIC) (DURAN; KLEMM, 2012), an accelerator technology based on

the x86 instruction set, commonly referred by its product name: Xeon Phi (JEFFERS;

REINDERS, J., 2013).

Early generations of accelerator devices have presented some limitations that are

being addressed in the recent versions. The performance gap between single and double

precision was one of these issues. Single precision operations were from 8 up to 14 times

32

Figure 2.2: Evolution of the use of accelerators in TOP500 systems.

110

102

91
86

94

103

88

73

64

5354

62
58

39

1917

9758
420

30

60

90

jun
 2018

nov
 2017

jun
 2017

nov
 2016

jun
 2016

nov
 2015

jun
 2015

nov
 2014

jun
 2014

nov
 2013

jun
 2013

nov
 2012

jun
 2012

nov
 2011

jun
 2011

nov
 2010

jun
 2010

nov
 2009

jun
 2009

nov
 2008

jun
 2008

nov
 2007

List

S
ys

te
m

s

Acceletator Cell GPU GPU+Phi Phi Other (Clearspeed, Matrix−2000, PEZY)

Source: The Author

faster than double precision ones in first generations of Cell and Tesla GPUs. In newer

GPUs, this gap was reduced by a factor between 2 and 3 (DONGARRA et al., 2017).

The device memory size and bandwidth were also limitations for several applications, but

these issues were reduced either by hardware improvements or by software solutions. The

bidirectional ring interconnection of Xeon Phi devices was also a source of performance

disturbances that were reduced in the new Knights Landing version that uses a 2D mesh

interconnection (JEFFERS; REINDERS, J.; SODANI, 2016).

The evolution of accelerators technology has promoted them from a trend to a solid

approach for HPC platforms. This was achieved by reducing limitations while keeping

their good ratio FLOP per money and increasing performance within the same power

budget.

2.2 Programming Hybrid Architectures

The development of a software stack that allows to efficiently exploit hybrid ar-

chitectures has become a major challenge in HPC research. The multiple levels of par-

allelism in the same system, each level comprising generally different memory and pro-

cessor technologies make the use of classical programming tools ineffective. Traditional

parallel programming tools were designed for homogeneous environments and normally

target one level of parallelism. Using them in a hybrid platform implies combining several

tools, for example, MPI to communicate the nodes, OpenMP to exploit the parallelism of

multicore processors and CUDA/OpenCL to manage the GPUs used as accelerators.

The use of different models with no native integration frequently results in non-

33

portable applications, readability problems in the code and hand-tuned optimizations.

Achieving good performance with this strategy is challenging, and comes with a con-

siderable programming effort. Despite that, a minor platform update, such as adding a

new accelerator device, may require redoing all the tuning and optimization steps. In

the near future, the advent of platforms with higher core counts and complex memory

hierarchies will make intractable the use of such low-level strategies.

One promising approach to manage the heterogeneity of the hardware is the use of

an abstraction layer. This layer acts as a middleware between the user application and the

low-levels libraries that manage the hardware. This way, it is possible to design the algo-

rithm without considering the hardware aspects. The algorithm is described in terms of

tasks and its iterations. These tasks could have dependencies that are someway provided

by the programmer. All other operations, such as synchronizations, resource allocation,

memory transfers, and load balancing are delegated to a runtime system. To handle the

heterogeneity, each task can have multiple implementations to target the different hard-

ware of each processing unit.

In the remainder of this section, we will first present a discussion about the concept

of a task and its support on parallel programming tools and then how state-of-the-art tools

are using this model to handle hybrid HPC platforms.

2.2.1 Task-Based Programming

The concept of divide a sequential problem in some independent portions of work,

which can be executed in parallel, was initially proposed in the 1990s. One of the first

parallel programming tools to support this task-based parallelism was Cilk (BLUMOFE,

Robert D et al., 1996), originally developed as an open source software at MIT (GROUP,

2017) and now a deprecated feature of Intel C and C++ compilers (INTEL, 2017b).

In this model of parallelism, each task can perform an asymmetrical amount of

sequential work and the total number of tasks is, in general, much bigger than the number

of physical processing resources. A huge amount of tasks with small granularity provides

more flexibility to the scheduler, resulting in a parallel program that is not tightly coupled

to the target hardware. The tasks dependencies are expressed in a fully strict design,

which means that a parent task waits for its direct successors (BLUMOFE, Robert D et

al., 1996).

Since tasks are defined without considering the target hardware, task-based tools

34

rely on an intermediary software layer to provide good performance. This layer consists

of a dynamic runtime system which is responsible for handling task scheduling, load

balancing, and tasks synchronization. In Cilk, the runtime system is based on a work-

stealing scheduling policy, a distributed strategy where an idle processor can steal tasks

from another one (BLUMOFE, R. D.; LEISERSON, C. E., 1994).

With the advent of multicore processors in the 2000s, the task-based parallelism

was adopted by other programming models such as OpenMP, with pragma omp task

and pragma omp t a s k w a i t directives of version 3.0 (OPENMP. . . , 2008), and Intel

Threading Building Blocks (TBB) (REINDERS, James, 2007). The task-based paradigm

was also implemented by several experimental tools focusing on different hardware plat-

forms: distributed memory (GAUTIER, Thierry; BESSERON; PIGEON, 2007; DINAN

et al., 2009; MOR; MAILLARD, 2011), heterogeneous processors (BENDER; RABIN,

2000), GPUs (CEDERMAN; TSIGAS, 2011; TOSS; GAUTIER, Thierry, 2012), Hybrid

Nodes(AUGONNET, Cédric et al., 2011; PINTO, Vinicius Garcia; MAILLARD, 2012;

PINTO, Vinicius Garcia, 2013; GAUTIER, Thierry; FERREIRA LIMA, et al., 2013)

The synchronization primitive sync introduced by Cilk to express dependency

relationships among tasks, as well its OpenMP equivalent pragma omp t a s k w a i t 1, are

appropriate to algorithms with a recursive structure. This is the case of several classical

divide and conquer applications used to illustrate how Cilk works such as the Fast Fourier

Transform, the Merge Sort algorithm or the Strassen method for matrix multiplications.

Figure 2.3 illustrates an example of a recursive algorithm in Cilk. This structure rapidly

generates a huge number of tasks, and the Cilk steal semantics quickly distribute the

workload among the workers. On the other hand, for other algorithm structures such as

loop-based ones this strategy may incur in performance bottlenecks. Figure 2.4 illustrates

different ways of declaring dependencies in Cilk and OpenMP. The sync (Fig. 2.4(a))

and t a s k w a i t (Fig. 2.4(b)) synchronization primitives create a dependency with all the

previously submitted tasks. In this example, the DSYRK task of the first iteration of for

loop on line 11 actually depends only on the first DTRSM in the previous loop (line 5).

Ideally, the first DSYRK could be executed at the same time of all the remaining DTRSM

(i >= 2). Nevertheless, the synchronization point of line 10 forces it to wait for all

the DTRSM tasks. This kind of bottleneck is avoided when the task dependencies are

1Although similar, the Cilk spawn-sync and OpenMP task-taskwait primitives have different behavior.
In general terms both spawn and omp task primitives are used to submit new tasks. However, in Cilk, a
spawn call starts the execution of the new task and pushes the continuation of the parent task to a queue. For
more information, see concepts of fast/slow clones and work-first discussed by Frigo, Charles E. Leiserson,
and Randall (1998) and Guo et al. (2009).

35

Figure 2.3: An example of recursive tasks in Cilk.
1 cilk void OptimizedStrassenMult(REAL *C, REAL *A, REAL *B,
2 uint MatSize, uint RowWidthC,
3 uint RowWidthA, uint RowWidthB){
4 uint QuadSize = MatSize >> 1;
5 ...
6 spawn OptimizedStrassenMult(M2, A11, B11, QuadSize,

QuadSize, RowWidthA, RowWidthB);
7 spawn OptimizedStrassenMult(M5, S1, S5, QuadSize, QuadSize,

QuadSize, QuadSize);
8 spawn OptimizedStrassenMult(T1sMULT, S2, S6, QuadSize,

QuadSize, QuadSize, QuadSize);
9 spawn OptimizedStrassenMult(C22, S3, S7, QuadSize,

RowWidthC, QuadSize, QuadSize);
10 spawn OptimizedStrassenMult(C11, A12, B21, QuadSize,

RowWidthC, RowWidthA,RowWidthB);
11 spawn OptimizedStrassenMult(C12, S4, B22, QuadSize,

RowWidthC, QuadSize, RowWidthB);
12 spawn OptimizedStrassenMult(C21, A22, S8, QuadSize,

RowWidthC, RowWidthA, QuadSize);
13 sync;
14 ...
15 }

Source: Amended from (GROUP, 2017)

expressed in function of the data access.

Since the use of global task dependencies (spawn-sync model) can lead to per-

formance bottlenecks, current HPC task-based tools rely on data dependency strategies.

This design consists in declaring the access mode (read , w r i t e , read- w r i t e) for

each piece of data accessed by the task. Then, the tasks are submitted in a sequential way.

From this information (submission order and access mode), a runtime system can build a

task dependency graph. Data dependency models are referred by different names in the

literature, such as data-flow model (GAUTIER, T. et al., 2013), sequential task flow (STF)

(AGULLO, Emmanuel et al., 2016) and superscalar (DONGARRA et al., 2017). The last

one comes from its similarity with superscalar processors which analyzes the sequential

instructions flow to identify which ones do not depend on others and, consequently, can

be executed in parallel.

In the data dependency model, tasks are created with non-blocking calls. In this

design, a task is possibly not ready for execution at the moment of its creation. Task

dependencies are automatically inferred and managed by the runtime system. Once all

the dependencies are solved, the task is marked as ready for execution. This is differ-

36

Figure 2.4: A pseudo-code illustrating how to express dependencies in Cilk and OpenMP
(a) Cilk

1 for (k = 0; k < N; k++) {
2
3 spawn dpotrf(A[k, k], ...);
4 sync;
5 for (i = k+1; i < N; i++) {
6
7 spawn dtrsm(A[i, k],
8 A[k, k], ...);
9 }

10 sync;
11 for (i = k+1; i < N; i++) {
12
13 spawn dsyrk(A[i, i],
14 A[i, k], ...);
15 for (j = k+1; j < i; j++) {
16
17 spawn dgemm(A[i, j],
18 A[i, k],
19 A[j, k], ...);
20 }
21 }
22 sync;
23 }

(b) OpenMP Tasks

for (k = 0; k < N; k++) {
#pragma omp task
dpotrf(A[k, k], ...);
#pragma omp taskwait
for (i = k+1; i < N; i++) {

#pragma omp task
dtrsm(A[i, k],

A[k, k], ...);
}
#pragma omp taskwait
for (i = k+1; i < N; i++) {

#pragma omp task
dsyrk(A[i, i],

A[i, k], ...);
for (j = k+1; j < i; j++) {

#pragma omp task
dgemm(A[i, j],

A[i, k],
A[j, k], ...);

}
}
#pragma omp taskwait

}

(c) OpenMP Tasks with Data Dependencies

1 for (k = 0; k < N; k++) {
2 #pragma omp task depend(inout:A[k, k])
3 dpotrf(A[k, k], ...);
4 for (i = k+1; i < N; i++) {
5 #pragma omp task depend(in:A[k, k]) depend(inout:A[i, k])
6 dtrsm(A[i, k],
7 A[k, k], ...);
8 }
9 for (i = k+1; i < N; i++) {

10 #pragma omp task depend(in:A[i, k]) depend(inout:A[i, i])
11 dsyrk(A[i, i],
12 A[i, k], ...);
13 for (j = k+1; j < i; j++) {
14 #pragma omp task depend(in:A[i, k], A[j, k])
15 depend(inout:A[i, j])
16 dgemm(A[i, j],
17 A[i, k],
18 A[j, k], ...);
19 }
20 }
21 }

Source: The Author

37

ent from the global task dependencies model used by Cilk and OpenMP where a task is

always ready for execution at its creation time. Version 4 of the OpenMP standard has

extended the task model of version 3 to support data dependencies. The code of Figure

2.4(c) illustrates how these dependencies are declared in an OpenMP program. Since task

creation calls are non-blocking, this code will generate a pool of tasks. When a given

task is completed, the runtime enables its successors in the dependency graph which al-

lows finer synchronizations. This also gives more flexibility to the scheduler thanks to

the availability of a greater number of tasks ready for execution. In the code example of

Figure 2.4(c), the DPOTRF task of second iteration (k = 2) can be executed just after the

end of three tasks from the previous iteration (one DPOTRF, one DTRSM and one DSYRK),

while in the spawn-sync model, it should wait for all the tasks of the previous iteration.

2.3 Runtime Systems for Task-Based Parallel Programming

One of the major features of the task parallelism model is the possibility of de-

signing an algorithm without considering architecture implementation details. Since the

tasks are consistent, e.g., with no access to global variables, and their dependencies are

correctly described, it is possible to postpone their implementation. This abstraction is

also very useful to handle the heterogeneity of the hardware. For example, a programmer

can provide multiple implementations for the same task in order to target different hard-

ware architectures. Once all these implementations respect a common interface they can

be switched without major consequences.

In this context, programmers have no control over which implementation of the

task will be actually executed; they just provide the algorithm (the tasks and its dependen-

cies) and the implementations. During the execution, an intermediary layer, the runtime

system, will choose which implementation execute depending on several factors, such as

the resource’s availability and the provided task implementations.

Several parallel programming tools have been developed in recent years following

the concepts of task-parallelism and runtime-taken decisions. In the rest of this section,

we will present some of them.

38

2.3.1 PaRSEC

PaRSEC (Parallel Runtime Scheduling and Execution Controller), formerly know

as DAGuE (BOSILCA, George et al., 2012), is a runtime system for task-based pro-

gramming in distributed hybrid architectures. This tool provides automatic data transfers

among workers by analyzing the access mode of each piece of data used by the task. PaR-

SEC has a simple distributed scheduler that implements a basic work stealing strategy.

PaRSEC uses a domain specific language (DSL) to express parallelism in linear

algebra applications (BOSILCA, G. et al., 2011). This DSL allows describing a Param-

eterized Task Graph (PTG) (DANALIS et al., 2014) to represent a collection of tasks.

In this approach, each task has a name, some parameters, the range of each parameter,

data affinity, parameterized data dependencies, and a body. The parameterized data de-

pendencies depict all the inputs and the outputs of each task with their respective origin

or destination. The PTG representation is proportional to the number of task types and

independent of the total number of tasks and allows to directly access the ascendants and

the descendants of a task, which means that PaRSEC does not unroll the entire DAG in

memory.

The code snippet of Figure 2.5 illustrates an example of a task in ParSEC. Lines

4-6 describe the parameterized data dependencies of the task POTRF. Each instance of

this task will read and write on a data T . In line 4, the left arrow <− indicates that data T

will be read either from memory (A(k,k), if k is 0) or from another task (HERK(k−1, k));

on line 5, the right arrow (−>) indicates that the data T written by the task POTRF will

be consumed by a set of TRSM(k+1 .. max, k) tasks; line 6 indicates that the POTRF task

will be the last writer of data A(k, k). Body region on lines 7-11 specifies the source

code of the task, additional body regions can be included to target another hardware,

e.g., GPUs. Recently, ParSEC has included support for a conventional data dependency

description similar to OpenMP 4 (HOQUE et al., 2017).

2.3.2 OmpSs

OmpSs (DURAN; AYGUADÉ, et al., 2011) is the current version of the "Ss"

family of parallel programming tools. Previous versions were named in according to the

target hardware, e.g., GridSs (BADIA; LABARTA, Jesús, et al., 2003), CellSs (BEL-

LENS et al., 2006), GPUSs (AYGUADÉ et al., 2009) and SMPSs (BADIA; HERRERO,

39

Figure 2.5: An example of task description in ParSEC.
1 POTRF(k)
2 k = 0 .. max
3 : A(k, k)
4 RW <- (k == 0) ? A(k, k) : T HERK(k-1, k)
5 -> T TRSM(k+1 .. max, k)
6 -> A(k, k)
7 BODY
8 {
9 /* C code */

10 }
11 END

Source: Hoque et al. (2017)

et al., 2009). The OmpSs model relies on compiler directives to support asynchronous

parallelism and accelerators. The reference implementation uses the Mercurium (BSC,

2018a) source-to-source compiler to transform the directive annotated code into a real

parallel code and Nanos++ (BSC, 2018b) as a runtime system.

Tasks are defined with annotations on sequential code like in OpenMP. Depen-

dency relationships between tasks can be expressed providing the access mode (copyin,

copyout, copyinout) of each piece of data, which allows fine-grain synchronizations in a

very similar way to the data dependency model of OpenMP 4 discussed in Section 2.2.1.

In fact, this and several other OmpSs concepts have been incorporated in the versions 3

and 4 of the OpenMP specification (BSC, 2017b).

OmpSs also supports multi-version tasks, which enables the use of accelerator

devices. Using the implements directive, it is possible to define CUDA or OpenCL

replacements for a CPU task. At execution, the OmpSs runtime can choose one of these

alternate implementations instead of the original one. Figure 2.6 illustrates how multi-

version tasks are defined in OmpSs. The CPU task calculate_forces (defined at line 3)

can be replaced at runtime by the equivalent calculate_forces_cuda , since the definition

of this one (line 5) specifies that it implements a CUDA alternative to the main code of

calculate_forces .

The Nanos++ runtime system of OmpSs provides several task scheduling poli-

cies. These policies vary from simple strategies like FIFO/LIFO global shared queues to

sophisticated ones combining profiling or work stealing designs. The DBF (Distributed

Breadth First) and WF (Work First) policies are based on work stealing; the main dif-

ference is that the first implements the help-first design while the second is equivalent

to the Cilk work-first behavior. The Socket-Aware Scheduler implements a variation of

40

Figure 2.6: A pseudo-code of tasks definition in OmpSs. The d e v i c e and
implements keywords are used to provide an alternative implementation to
calculate_forces task.

1 #pragma omp target device(smp) copy_deps
2 #pragma omp task out([size] pout) in([npart] part)
3 void calculate_forces(int size, float time, int npart, Part*

part, Particle* pout, int gid){
4 /* CPU implementation */
5 }
6
7 #pragma omp target device(cuda) ndrange(1,size,128) copy_deps

implements (calculate_forces)
8 #pragma omp task out([size] pout) in ([npart] part)
9 __global__ void calculate_forces_cuda(int size, float time, int

npar, Part* part, Particle* pout, int gid){
10 /* CUDA implementation */
11 }
12
13 void Particle_array_calculate_forces(Particle* input, Particle*

output, int npart, float time) {
14 for (int i = 0; i < npart; i += BS){
15 calculate_forces(BS, time, npart, input, &output[i], i);
16 }
17 }

Source: Jesús Labarta (2015)

41

work stealing to target NUMA aspects. The Bottom level-aware Scheduler is also a work-

stealing variation to target machines with heterogeneous cores, e.g., ARM big.LITTLE.

In this algorithm, idle fast cores steal tasks from the slow ones. The Versioning algorithm

is designed to handle tasks with multiple implementations. This strategy computes per-

formance models for each task implementation and then use this information to schedule

the task on the worker where it will be finished first (BSC, 2017a).

2.3.3 XKaapi

XKaapi (GAUTIER, T. et al., 2013) is a runtime system for task-based program-

ming on hybrid architectures. The current implementation focus on platforms with multi-

core processors and multiple GPUs. This tool has introduced the concept of multi-version

tasks to target hybrid CPUs and GPUs architectures (HERMANN et al., 2010). XKaapi

provides dynamic task creation and uses work stealing as a basis for its scheduling poli-

cies.

XKaapi offers a C++ API to express the parallelism. An XKaapi task has a single

signature and one or more implementations. The code snippet of Figure 2.7 illustrates an

example of task definition in XKaapi. The task signature (lines 1-4) provides the number

of parameters and their access mode. From these access modes (read, write, readwrite)

the runtime can compute the dependencies among the tasks. In this example, the task

TaskExp has two implementations, one for CPU and other for GPUs. In the last one, the

access mode is also used by the runtime to perform automatic data transfers before and/or

after the task execution. XKaapi tasks are created with ka::Spawn calls. Despite this

API, the tool is also able to run OpenMP code either using the KStar compiler (INRIA,

2018) or replacing the standard OpenMP runtime by an XKaapi based one.

The XKaapi runtime is inspired by several concepts of Cilk. One of these concepts

is the capability to dynamically create children tasks from running ones. Another relevant

influence of Cilk is the use of work stealing based scheduling policies. In XKaapi, the

computation of task dependencies is integrated into the execution of a steal operation.

When a task is finished, the worker starts the execution of the children ones in a FIFO or-

der without computing any dependency, which is valid thanks to sequential consistency.

If a child task was stolen, the worker switches to a work stealing strategy. Dependencies

are computed by idle workers searching for ready tasks using the data access modes pro-

vided by the programmer. This strategy moves the cost of managing dependencies from

42

Figure 2.7: An example of XKaapi task with multiple implementations.
1 struct TaskExp: public ka::Task<2>::Signature<
2 ka::R<ka::range2d<double>>,
3 ka::RW<ka::range2d<double>>
4 >{};
5
6 template<> struct TaskBodyCPU<TaskExp> {
7 void operator (ka::range2d_r<double> A, ka::range2d_rw<double>

C){
8 /* CPU implementation */
9 }

10 };
11
12 template<> struct TaskBodyGPU<TaskExp> {
13 void operator (ka::gpuStream stream, ka::range2d_r<double> A,

ka::range2d_rw<double> C){
14 /* CUDA implementation */
15 }
16 };

Source: The Author

a busy worker (during the task creation) to an idle one (when searching for a ready task)

(GAUTIER, T. et al., 2013; LIMA et al., 2015).

The work-stealing scheduler of XKaapi implements some additional optimizations

to target hybrid architectures. One of these optimizations is the data-aware work stealing

that aims to reduce data transfers between host and devices. Another policy, the locality-

aware work stealing aims to reduce the cache invalidations by considering the data access

mode during the task assignment. XKaapi also has a HEFT-like policy based on precali-

brated performance models (LIMA et al., 2015).

2.3.4 StarPU

StarPU (AUGONNET, Cédric et al., 2011) is a runtime system for task-based pro-

gramming on hybrid architectures. The runtime was initially designed to handle single-

node hybrid platforms composed of multicore processors (CPUs) and accelerators (GPUs,

Intel Xeon Phi). To efficiently exploit the parallelism of the platform, StarPU relies on

multiple implementations of the same tasks, e.g., with CPU and/or GPU versions. The

runtime scheduler decides on-the-fly where to execute the tasks considering the avail-

able processing resources, their type, the current locations of data, and the provided task

implementations.

43

Figure 2.8: An example of StarPU codelet.
1 static struct starpu_codelet cl = {
2 .where = STARPU_CPU | STARPU_CUDA | STARPU_OPENCL,
3 /* CPU implementation of the codelet */
4 .cpu_funcs = { scal_cpu_func, scal_sse_func },
5 .cpu_funcs_name = { "scal_cpu_func", "scal_sse_func" },
6 #ifdef STARPU_USE_CUDA
7 /* CUDA implementation of the codelet */
8 .cuda_funcs = { scal_cuda_func },
9 #endif

10 #ifdef STARPU_USE_OPENCL
11 /* OpenCL implementation of the codelet */
12 .opencl_funcs = { scal_opencl_func },
13 #endif
14 .nbuffers = 1,
15 .modes = { STARPU_RW }
16 };

Source: (INRIA; CNRS; UNIVERSITÉ DE BORDEAUX, 2017)

Tasks are defined as codelets in StarPU idiom. A codelet is a data structure used to

represent a computational kernel. Each codelet may contain several task attributes such

as multiple implementations of the computational kernel, data buffers accessed by the

codelet, access mode of each data buffer, a task identifier, and performance and energy

models. The code snippet of Figure 2.8 presents an example of a codelet definition.

This codelet has implementations for three hardware architectures (CPU, CUDA, and

OpenCL). There are also two implementations for a CPU hardware (scal_cpu_func and

a SIMD variation scal_sse_func). During the execution, the runtime will choose one

of these four implementations according to the hardware available and the scheduling

decisions.

StarPU codelets can be directly submitted as tasks using the C API which pro-

vides functions to submit new tasks (starpu_task_submit ()) and to wait for all previ-

ous tasks (starpu_task_wait_for_all ()) in a similar way to omp task/ taskwait directives

from OpenMP. It is also possible to use a high-level pragma interface building StarPU as a

GCC plugin or translate from standard OpenMP code using the KSTAR source-to-source

compiler (INRIA, 2018).

StarPU offers several task scheduling policies. The DMDA and DMDAS policies

are based on precalibrated performance models, while the WS and LWS use a work-

stealing design, stealing tasks from the most loaded worker (original) or the most loaded

neighbor worker (locality version). The PRIO policy only relies on priority hints specified

44

by the application programmer.

The DMDA (Deque Model Data Aware) and DMDAS (Deque Model Data Aware

Sorted) algorithms are members of a family of StarPU schedulers that take the predicted

task duration and data transfer duration into account when performing the task scheduling.

These strategies are based on list scheduling, i.e., every time a resource is idle, if a task

is ready, it will be scheduled on this particular resource. Such a scheduler therefore never

leaves a resource idle on purpose, which ensures the well-known (2 − 1/p) competitive

ratio for homogeneous machines(GRAHAM, 1966). Deciding which ready task to select

has a major influence in practice, and the classical heuristic consists of prioritizing tasks

based on the critical path. However, the critical path notion is dynamic and obtaining

a proper estimation can be quite challenging. With heterogeneous computing resources,

such prioritization is generally done with variants of the HEFT (Heterogeneous Earliest

Finish Time) strategy (TOPCUOGLU; HARIRI; WU, 2002). The DMDA and DMDAS

algorithms are greedy heuristics that schedule tasks in the order they become available,

taking into account the predicted task duration, the estimated data transfer duration be-

tween CPUs and GPUs and the relative performance of resources on each computation

kernel when making its decision. The DMDAS algorithm improves DMDA decisions by

sorting tasks on per-worker lists by the number of data-slices already transferred and by

priority, which can be expensive when the number of tasks is large. It is therefore rather

close to the original HEFT algorithm by respecting priorities and taking past scheduling

decisions into account.

The WS (Work Stealing) and LWS (Locality Work Stealing) algorithms use one list

per worker; new tasks are kept local by default. When a worker is idle, in the WS policy, it

steals tasks from the most loaded worker. The LWS policy, on the other hand, imposes that

the worker must steal first from the most loaded neighbor worker. This victim’s choice

differs from the classical work-stealing algorithm(BLUMOFE, Robert D.; LEISERSON,

Charles E., 1999) where the victim is chosen using a random strategy.

The PRIO algorithm uses a mere centralized list that is shared by all the work-

ers. This list keeps the tasks sorted respecting the priorities specified by the application

programmer.

StarPU was designed to support single-node hybrid architectures. In order to target

distributed architectures, the StarPU-MPI extension (AUGONNET, Cédric et al., 2012;

AGULLO, E.; AUMAGE, et al., 2017) was proposed. This extension relies on the MPI

specification as a mean of communication among the nodes of the network. The main

45

characteristic of the extension is that it runs one independent StarPU runtime instance

per MPI node rather than a globally distributed one over the entire platform. For that

reason, the scheduler of each runtime instance is responsible for processing a part of

the whole application DAG. Existing dependencies among nodes are satisfied through

MPI send/receive point-to-point operations and managed like any other task handled by

the runtime. Since the domain decomposition is static, these send/receive operations are

automatically queued along tasks within the DAG. One specific thread is created to handle

MPI communications on each node. On completion of a task whose output is needed by

a task on another MPI node, this MPI thread posts the corresponding send operation. On

the other node, on reception of the data from MPI, the corresponding MPI thread releases

the execution of the corresponding task.

Although StarPU is not yet a widely-used tool, there exist several real appli-

cations that are now fully ported or designed on top of this runtime system. These

applications target different domains ranging from linear algebra solvers to Computa-

tional Fluid Dynamics (CFD) applications. The PaStiX (Parallel Sparse matriX package)

(HENON; RAMET; ROMAN, J., 2002; FAVERGE et al., 2018) and the qr_mumps

(AGULLO, Emmanuel et al., 2015, 2018) libraries provide sparse linear algebra rou-

tines. The Chameleon library (AGULLO, E.; BOSILCA, G., et al., 2012; INRIA; UTK;

UCD; KAUST, 2018) implements several dense linear algebra routines such as Cholesky,

LU and QR factorizations. ExaGeoStat (ABDULAH et al., 2018) is a machine learning

framework for weather prediction applications built on top of StarPU and Chameleon.

The FLUSEPA aerodynamic solver (COUTEYEN CARPAYE; ROMAN, Jean; BREN-

NER, 2017) is an industrial application of numerical simulation, developed by Airbus

Defence and Space to simulate wave propagations during take-off of Ariane launchers.

2.3.5 Discussion

The aforementioned task-based runtime systems, in particular, the last three, are

conceptually very similar. OmpSs, XKaapi, and StarPU present a set of features that made

them very useful tools to exploit the parallelism of current HPC platforms. These features

comprise multi-version tasks allowing different implementations for each type of hard-

ware resource, data dependencies enabling finer synchronizations, dynamic scheduling

guided by several policies (e.g., work stealing, performance models, etc), load balanc-

ing and automatic data transfers which is crucial when using platforms with separated

46

memory address spaces.

In the remainder of this work, we will consider the StarPU runtime system when

designing and building our performance analysis strategies. The choice of this tool instead

of others was taken due to technical and practical factors. The StarPU source code is de-

veloped and maintained by an active and attentive community which allows us to clarify

and discuss the runtime internals in a very productive interaction. Although recent, there

is a considerable set of applications implemented on top of StarPU, which has made eas-

ier our choice of a representative application (e.g., Cholesky factorization) to demonstrate

and evaluate our strategies. Additionally, our previous knowledge about StarPU concepts

and the expressive amount of previous work in the literature reinforces its representative-

ness within current HPC research. Anyway, the similarity of StarPU with other runtime

systems suggests our approach should apply to other tools as well.

2.4 Chapter Summary

Parallelism has been a widespread strategy to increase the processing power of

computing systems. However, in recent years, the hardware and software stack of HPC

systems is experiencing a paradigm shift. The adoption of hybrid architectures discloses

several levels of both parallelism and memory spaces exposing the limitation of traditional

programming models and motivating the use of alternative ones.

In this chapter, we discuss the hardware and software context involved with this

work. Previous Sections provide a basic background about the characteristics of the cur-

rent hybrid HPC architectures and about the strategies to program them. As illustrated

in Figure 2.9, at the hardware layer (in red), multicore processors are associated with

manycore accelerators, which have a separated memory address space. At the software

level, an intermediary layer (in black) between the application code and the operating

system acts as a middleware providing an abstraction to the hardware heterogeneity. This

abstraction layer relies on task-based programming with the support of dynamic runtime

systems to produce applications that are less tightly coupled to the hardware and that, in

consequence, are easier to scale on other/newer platforms.

47

Figure 2.9: An example of the current hardware and software stack

Manycore
Accelerator

System
Memory

Multicore
Processor

Accelerator
Memory

Operating System
Accelerator

drivers
Network
drivers

Other
drivers...

Compiler
Thread
library

Accelerator
libraries

MPI libraries
BLAS

libraries
libraries...

Dynamic Runtime System

Application

Network

Source: The Author

48

49

3 STATE OF THE ART

The analysis of execution traces is a very common strategy to understand and

evaluate the performance of a parallel application. Since these traces contains application-

relevant events with its respective timestamps, it is possible to create a visual representa-

tion of the real execution. This visual representation can be expressed in different ways

such as space-time diagrams, statistical summaries or reproducing the application struc-

ture.

Many tools exist to visualize execution traces from HPC applications. Usually,

these tools focus on applications implemented with widely-used programming models,

such as pthreads, OpenMP and MPI. However, the emerging task-based paradigm has

some different requirements that are unmet by the already established analysis tools.

In this chapter, we present the state of the art of visualization strategies for HPC

execution traces. We do not intend to do a comprehensive review of all performance visu-

alization tools. Instead, we selected those that appear to be emblematic, well-established

or very recent. First, in Section 3.1 we detail well-established trace analysis tools for

BSP-applications. Afterward, in Section 3.2 we discuss some recent strategies to visual-

ize traces from task-based applications. More comprehensive, historical and systematic

reviews about performance visualization tools can be found in (MELLO SCHNORR,

2009) and (ISAACS, Katherine E. et al., 2014).

3.1 Traditional BSP-based Visualization

For a long time, HPC applications have been designed following the traditional

Bulk-Synchronous Parallel (BSP) model. In this model, the computation consists of a

sequence of supersteps: concurrent computations, communications, and global synchro-

nization (VALIANT; G., 1990). This design is suitable for homogeneous platforms where

regularity in computing and communication resources is expected.

Since the BSP-model was the dominant design in the HPC landscape, most perfor-

mance analysis tools were developed to fit its characteristics. These tools expect homo-

geneity, highlighting irregular behaviors, such as longer computations or delayed com-

munications. They usually support distributed architecture, targeting the widely known

MPI interface.

A very common visualization technique is the use of space-time plots, which get

50

inspiration from the traditional Gantt charts (WILSON, 2003)1. In this design, computing

resources, even physical (processors, cores) or logical (processes, threads), are arranged

vertically, sometimes hierarchically organized (KERGOMMEAUX; OLIVEIRA STEIN,

2000), while the application states (functions, kernels, actions) are laid out horizontally

along time. Colors are extensively used to depict different states, e.g., an MPI opera-

tion on a given computing resource. Interactions between application components are

depicted as arrows whose width may correlate with the amount of transferred data. Such

technique has been implemented multiples times with different technologies to improve

human perception and scalability.

3.1.1 ViTE

ViTE (COULOMB et al., 2009) is an open-source tool to visualize execution

traces. It relies on OpenGL and hardware acceleration to enable the visualization of large

inputs. Since ViTE relies on the semantic-free Paje language (SCHNORR, Lucas Mello

et al., 2016) as trace input, it can depict virtually any kind of traces.

ViTE provides traditional space-time views as shown in Figure 3.1. This Figure

shows an execution of the Cholesky factorization implemented with StarPU for a matrix

of 49×49 tiles of size 960×960. It uses the DMDAS scheduler in a platform with 2 nodes,

each one with 4 cores and 4 GPUs. As illustrated in this example, ViTE depicts the com-

puting resources in a hierarchical structure, grouping CPU cores and GPU cards in their

respective memory spaces. When visualizing distributed application, it is also possible to

include arrows to represent data transfers. Colors encode states, which in this example,

are StarPU tasks.

3.1.2 Paraver

Paraver (PILLET et al., 1995) is another open-source tool to visualize and analyze

execution traces. Its trace file format supports many HPC programming models and can

be generated by the Extrae tracing tool2. Scalability is tackled by implementing trace

aggregation before the visualization. This way, instead of sending all trace data to the

1Gantt chart is a really popular kind of bar chart used in Operational Research to illustrate the schedule
of the steps of a project.

2https://tools.bsc.es/extrae

https://tools.bsc.es/extrae

51

Figure 3.1: A StarPU-MPI trace visualized with ViTE.

Source: The Author

rendering driver, it decides (based on user configuration) which element to draw in a

specific location on the screen.

3.1.3 Vampir

Vampir (KNÜPFER et al., 2008) is a closed-source tracing and visualization toolset.

Vampir is implemented with a distributed client-server approach. The server can be exe-

cuted in the experimentation hardware, e.g., several nodes of the cluster, while the client

can run on the analyst’s remote desktop. This strategy keeps raw traces on the plat-

form where they were created, minimizing data transfers. On the client side, it limits the

amount of data to be processed by the client to a value that is independent of the amount

of data in the raw trace. For these reasons, Vampir is considered to be more scalable than

similar tools, allowing larger trace files to be browsed and visualized interactively.

Vampir provides multiple views for OTF2 (Open Trace Format, version 2) trace

files (ESCHWEILER et al., 2011). The main ones are based on space-time charts and

statistics summaries. Figure 3.2 shows an example of an OTF2 trace visualization. The

left side of the image shows the space-time plot. On the right side, statistics plots depict

the time spent in each function (green horizontal bars) and per function group (pie chart).

52

Figure 3.2: Visualization of an OTF2 trace in Vampir.

Source: NVIDIA (2018)

3.1.4 Ravel

Ravel (ISAACS, K. E. et al., 2014) is a visualization tool for MPI execution traces.

This tool fully replaces the notion of physical time, widely used in traditional space-time

view, by the order and simplicity of logical clocks. This way it is possible to emphasize

the code structure and the communication patterns.

Figure 3.3 shows a comparison between logical (top) and physical (bottom) time-

lines in Ravel. MPI messages are represented by lines connecting events. The logical

view reveals the structured communication pattern of the application which is invisible

in the classical physical-time view. Besides, even in the logical timeline, the notion of

physical time is kept by coloring the states. In this example, the lateness metric is used

to depict the difference in event end-time comparing to the earliest event in the same

timestep. Other metrics like start-time or event duration can also be used.

Ravel logical-time views avoid the frequent problem where lines representing

communications overrides the events. Additionally, since phases are clearly identified,

the tool is capable of clustering thread behavior by similarity. The approach enables one

to focus on the causal relationship between processes and, at the same time, have a per-

ception of bad performance with colors.

53

Figure 3.3: A comparison between logical and physical views in Ravel. Colors encode
physical time. Black lines represent MPI message exchange between processes.

Source: Kate Isaacs (2018)

3.1.5 Edge Bundling extension for Vampir

Brendel et al. (2016) present some views based on edge bundling to handle nu-

merous communication arrows. Their techniques focus both time-based and summary

visualizations, combining individual messages into dominant communication flows.

The time-based strategy reorganizes the communication arrows preserving the

time information in the x-axis. However, this strategy suffers from applicability issues

since it requires manual parameters tuning, which is highly individual for each trace. Fig-

ure 3.4 shows a comparison between Vampir and the proposed timed-based edge bundling

views. Both visualizations use the same trace from a parallel application where all pro-

cesses repeatedly communicate its intermediate results to process 0. The Vampir view

(Fig. 3.4(a)) suffers from visual cluttering, i.e., communication arrows are overlapping

almost all application events, which is minimized in the proposed approach (Fig. 3.4(b)).

The summary approach aims to offer an alternative to the communication ma-

trix view from Vampir. These summary views are useful for traces from larger applica-

tion runs since they reduce the number of message arrows to be drawn. This is done by

grouping messages in sender/receiver pairs. Figure 3.5 shows summary visualizations for

an application where each process only communicates with its neighbors. Figure 3.5(b)

presents the proposed sender/receiver diagram. Although it highlights the communication

pattern, this strategy also relies on manual parameter tuning.

54

Figure 3.4: Visualization of communication arrows in Vampir and in Brendel’s Edge
Bundling Approach.

(a) Vampir visualization. Communication
arrows (black) are overwriting events (red
and green).

(b) Proposed timed-based edge bundling vi-
sualization. Yellower lines indicate hot com-
munication paths.

Source: Brendel et al. (2016)

Figure 3.5: Summarized views of communications in Vampir and Brendel’s proposed
strategy.

(a) Vampir Communication Matrix view.
Colors encode the number of sent messages.

(b) Proposed summary edge bundling visual-
ization. Colors encode the sending process.

Source: Brendel et al. (2016)

55

3.1.6 FrameSoc/Ocelotl

FrameSoc (PAGANO et al., 2013) is a performance analysis tool with features

to handle large MPI traces. This goal is achieved with two complementary approaches;

the first one handles the trace storage while the second one provides scalable aggregated

visualizations.

FrameSoc is able to import and store traces in several formats such as Pajé, CTF,

Paraver, and OTF2. Raw traces are imported and converted to a generic data-model,

which gets inspiration from Paje language (SCHNORR, Lucas Mello et al., 2016). In

addition to the raw trace, this model can also store complementary information like traces

metadata, annotations, and trace analysis results. The compiled data structure is stored

in a relational database. This approach enables faster accessing, filtering and searching

operations which is especially useful for continuous and incremental analysis since it

avoids to reload and parse the same raw trace several times.

Visualization of large traces frequently suffers from graphical problems such as

cluttered views. FrameSoc relies on the Ocelotl (DOSIMONT; LAMARCHE-PERRIN,

et al., 2014) additional module to provide meaningful visualizations even when dealing

with large-scale traces with millions of events. Ocelotl provides a user-configurable ag-

gregation technique. Its aggregation algorithm looks for homogeneous sections in the

trace to be aggregated respecting a threshold between the information-loss and the com-

plexity of the visualization.

Figure 3.6 shows an example of the aggregated visualization proposed by Frame-

Soc. The space-time panel depicts a spatiotemporal aggregation, which means it reduces

trace complexity in both temporal (states duration in time) and spatial (resource in which

the state was executed) dimensions. In this view, three different states, represented by

colors blue, gray and yellow, were aggregated. There are two big homogeneous areas that

are separated by a period of instability, which means that something has disturbed the

execution at this time. Other instabilities periods appear at the beginning and end of the

execution, which is usually expected due to initialization and finishing procedures where

the workload is not sufficient to fill the platform. The red-green quality curves (bottom

right) allows the user to control the threshold (p−value) between information-loss and

visualization complexity. In this example, p is ≈ 0.37. A p−value equals to 0 minimizes

the information-loss, which results in the original non-aggregated view. On the other

hand, a p−value equals to 1 minimizes the visualization complexity which results in a

56

full-aggregated view.

Figure 3.6: An Ocelotl aggregated view in FrameSoc. The aggregated view (big panel
on the left) is dynamically generated to respect the user-defined threshold of the quality
curves (red and green lines on the right).

Source: Dosimont, Corre, et al. (2015)

3.2 Task-oriented Visualization

Parallel applications following the task-based programming model (Section 2.2.1)

have different performance analysis requirements from the ones implemented in the BSP

design. Since the execution of these applications is supported by dynamic runtime sys-

tems, several classical steps like task scheduling and dependencies management are per-

formed automatically with no control on the part of the application programmer.

Runtime systems rely on sophisticated scheduling heuristics to minimize the idle-

ness of the computing resources. These heuristics enable fine-grained synchronizations

executing each task as soon as possible without waiting in global barriers. This means that

a task-based execution does not present well-structured phases like in the BSP model.

On the other hand, even if the task scheduling is naturally stochastic, the task de-

pendencies impose a certain order on task execution. This order is relevant especially

in the beginning and end of the execution when the number of tasks is not sufficient to

occupy all computing resources. Such kind of perception is nonexistent in BSP-based per-

formance analysis tools. As a consequence, there are very few tools that are truly oriented

57

towards task-based applications and runtime performance analysis. Very frequently, these

tools inspire from the already established field of BSP-based trace visualization, using the

intuitive view of space-time charts supplemented with interactions, i.e., mouse pointer.

In the remainder of this section, we present some visualization tools that include at

least one feature specially designed for task-based applications. This includes application

structure (e.g., task dependencies, DAG), runtime-related information (e.g., delayed tasks,

lack of parallelism, hardware counters) and task debugging (e.g., check/fix dependencies

or priorities).

3.2.1 Execution Traces with Dependencies

Haugen et al. (2015) present an interactive tool to visualize execution traces with

task dependencies. This tool relies on a combination of two separated data sets: the

execution trace and the DAG, to build a single visual representation.

Task dependencies are represented by lines connecting the boxes representing

tasks. Since drawing all the dependencies of all tasks quickly overwhelms the visual-

ization, the tool transfer to the user the decision of which task select to check the depen-

dencies. This way, the user should use mouseclicks to interactively select a task and then

the tool draws dependency lines connecting tasks for which it is waiting and those that

are waiting for it to finish. Figure 3.7 shows an example of a space-time view with the

dependencies of a task. When the mouse is hovering on the selected red task, three lines

are drawn to indicate its antecedents and the other two ones to indicate its descendants.

Figure 3.7: An example of the trace visualization with dependencies proposed by Haugen
et al. (2015)

Source: Haugen et al. (2015)

58

This tool targets the PaRSEC runtime system (discussed in Section 2.3.1) and is

implemented with a client-server design in Python and Javascript. However, the lack of

a reference to the source code prevents us to check some of the claimed features. We

believe this approach suffers from three issues. First, in terms of scalability, since (e.g., in

tiled cholesky) tasks typically have many dependencies (up to N outgoing dependencies

for DTRSM and DPOTRF tasks, i.e., a total of Θ(N3)), drawing everything and finding in-

teresting tasks and dependencies only through mouse interaction can be very tedious. In

practice, only tasks close to the critical path are important. Second, only one-level depen-

dencies are depicted, while several levels are required to understand the history leading to

the scheduling problem. Third, this tool does not really account for the heterogeneity of

resources.

3.2.2 DAGViz

DAGViz (HUYNH, An et al., 2015) offers an alternative visualization that does

not rely on space-time charts but in the DAG structure of the application. It is composed

of two tools, one to extract the DAG from a task parallel execution and another to visualize

it in a hierarchical way.

DAGViz uses a simple task model to extract the DAG from a parallel code. This

model consists of tree primitives to create a new child task (CreateTask), to wait for all

tasks in the current section (WaitTasks) and to create a new section inside a task or another

section (MakeSection). These primitives are translated to real parallel code in other tools

like OpenMP, Cilk or Intel TBB and into an instrumented code to track the begin and the

end of each primitive.

The extracted DAG is drawn in a hierarchical visual representation that can be

interactively folded/unfolded on-demand to show more or fewer details. Figure 3.8 il-

lustrates an example of such visualization where the same DAG is (partially) unfolded

in five different levels. In the initial step, the DAG is totally folded (the first graph with

one node), in the next one, the DAG is unfolded into three sections. These sections are

unfolded in the next steps, i.e., the third graph with only the first section unfolded until

the last one with three sections unfolded. This last graph still presents folded sections.

For this particular example, a totally unfolded visualization reaches thousands of nodes.

Despite the innovative approach, there is no way to retrieve the time dimension

and task duration, which can make performance analysis difficult. The clear problem

59

Figure 3.8: An example of the DAG-based visualization proposed by DAGViz. A square
represents a section (folded part of the graph), a triangle represents a task creation and
an upside-down triangle represents a wait point. The fill color of each shape indicates
the worker that has executed the task, the mixed colors indicate that the subgraph was
executed by several multiple workers.

Source: An Huynh et al. (2015)

with such approach is the scalability: very often DAG with large inputs may be com-

posed of millions of tasks. Even with an artificial hierarchical organization, exploring the

application structure (blocks, tiles), the representation will be very hard to understand.

3.2.3 Delay Spotter

Delay Spotter (HUYNH, A.; TAURA, 2017) is a tool to detect delays in the run-

time system decisions and represent their occurrences in terms of logical and time-based

views. This approach divides the worker state into three possibilities: work when the

worker is executing the application code, delay when the worker is not working on the

application code and there are ready tasks available for execution, and no-work when

there are no ready tasks available for execution. Such no-work periods can be due to

either application (no-work-app) or runtime scheduler (no-work-sched) issues.

This tool is built on top of DAGViz and is able to analyze applications using the

spawn-sync model in Cilk, TBB, and OpenMP. Figure 3.9 illustrates the visualization

of delays in the DAG. For hybrid scenarios, this approach is ineffective since variation

on task duration is expected due to resources heterogeneity. In contrast, the concepts of

60

delay, no-work-sched and no-work-app can be useful to quantify the origin of

resource idleness and are pertinent to hybrid scenarios.

Figure 3.9: The Delay Spotter representation of delays in the DAG.

Source: A. Huynh and Taura (2017)

3.2.4 Temanejo

Temanejo (KELLER et al., 2012; BRINKMANN, Steffen; GRACIA; NIETHAM-

MER, 2013) is a visual debugger for task-based programming. It was initially designed to

debug applications running in the SMPSs runtime system, presented in Section 2.3.2. Cur-

rently, it supports more tools including OmpSs, StarPU, PaRSEC, and OpenMP (BRINKMANN,

Steen et al., 2017).

Temanejo relies on the Ayudame auxiliary library to interact with the supported

runtime systems. This library is used to retrieve events information and to send control

commands to the runtime system.

Figure 3.10 shows an example of the timeless DAG interactive view proposed by

Temanejo. Although visually similar to the interactive DAG view offered by DAGViz,

the Temanejo one does not use the interactive capabilities only for scaling purposes. Te-

manejo views can be enriched with information about the resource that executes the task,

its scheduling status or its duration. Thanks to the support of Ayudame library, the user

can also modify the execution on-the-fly by blocking single tasks, changing task depen-

dencies, stopping execution when reaching a task, changing tasks priority or launching a

gdb section.

The Temanejo capabilities are very useful during algorithm design on small-scale

enabling the user to check and fix several task parameters such as dependencies or prior-

ities. However, its visualization features are focused on debugging steps, being unsuited

61

Figure 3.10: A Temanejo view of a task-based program running with the StarPU runtime
system. Node color is used to indicate the task type while node margin indicates the task
scheduling status. These settings are customizable.

Source: INRIA, CNRS, and Université de Bordeaux (2017)

62

for performance analysis.

3.2.5 TaskInsight

TaskInsight (CEBALLOS et al., 2018) provides a low-level analysis focusing on

the impact of memory behavior on tasks performance when using different schedulers.

This tool extends the OmpSs runtime system to intercept task scheduling calls and col-

lect hardware performance counters at the start and end of each task. Their approach

is based on per-task data access patterns, which is a static information, and on hardware

performance metrics, such as CPI (cycles-per-instruction), L2/L3 cache misses, which are

execution-dependent.

The view of Figure 3.11 shows the correlation between task performance (CPI)

and L3 cache misses grouped by task type of a Cholesky factorization (execution with

15×15 tiles of size 256×256 in an i5-3550 quad-core processor). Tasks present better

performance when using the smart scheduler, which attempts to explore data-locality,

as can be checked by the lower ratio of L3 misses. It is not clear how this fine-grain

strategy will scale when dealing with the complex memory hierarchy of hybrid nodes.

In small cases, as the one with 4 cores presented by the authors, the analysis is already

complex since it should consider the effects of shared caches.

Figure 3.11: Per-task Performance vs L3 Miss Ratio correlation computed by TaskInsight
when running a Cholesky factorization with two OmpSs schedulers (naive and smart).

Source: Ceballos et al. (2018)

63

3.3 Discussion

The following topics summarize a set of performance analysis features provided

by the previously presented tools. Table 3.1 correlates these topics with each analysis

tool.

Space-time plot (ST) – A common technique used to represent the application

behavior along the execution duration. Each application state is represented by a dif-

ferent color. The vertical axis depicts the computing resource where the state happens

(e.g., cores, processes, etc) while the horizontal one represents the time when it starts and

finishes.

Application Structure (AS) – The structure of a parallel application is intrinsi-

cally related to its performance. In general, the structure can be inherited from the code

structure (e.g., loop-based or recursive calls) or, in case of parallel applications, from the

communication and synchronization patterns.

Information Reduction (IR) – Several times, the amount of raw data provided

to the analysis tool is too large to be presented in its original format. The most common

strategies to handle this issue are aggregation and filtering. The first one looks for sim-

ilarity and uniformity, grouping data that represent a similar state or behavior while the

second one looks for significance and singularity, keeping only data that is more important

according to given criteria.

Execution Metrics and Statistics (EMS) – Data collected from the platform dur-

ing the application execution can be very useful to understand and to explain the applica-

tion performance. This kind of data can be collected from several sources, e.g., operating

system, hardware counters, programming library or network interface. The representation

can be either time-based, representing the evolution of a value along the time or statisti-

cally summarized depicting the overall behavior.

Anomalies Detection (AD) – Unexpected behavior can also be one of the main

sources of performance disturbances. A delayed communication or computation on a

given resource can impact all the following steps of the application. In addition, the occur-

rence of synchronized anomalies on several workers can be an evidence of a disturbance

in the platform.

Debug Capabilities (DC) – In general, the common analysis workflow consists of

executing the application, collect data about its execution, analyze this gathered informa-

tion and, if necessary, re-run the application with some changes and restart the workflow.

64

However, sometimes these steps are very long or the data collected is not enough to un-

derstand the behavior. In this case, debug capabilities can help since the analyst can verify

and fix application or runtime parameters during the execution.

Table 3.1: Visualization tools and common features
ST AS IR EMS AD DC

ViTE X
commun.

arrows filtering X

Paraver X
commun.

arrows
aggregation &

filtering X

Vampir X
commun.

arrows
aggreg. (Edge
Bundling ext.) X

Ravel X
commun.

arrows
aggregation &

filtering X

FrameSoc X
commun.

arrows
aggregation &

filtering stat. only

Traces w/
Depend. X

task
depend. stat. only X

DAGViz graph of
tasks

folding &
unfolding stat. only

X (Delay
Spotter ext.)

Temanejo graph of
tasks

X

TaskInsight X X

Source: The Author

Table 3.1 shows a summary of the features present in the tools discussed in this

Chapter. Many tools provide Space-Time plots (ST), Application Structure (AS) repre-

sentations and some Information Reduction (IR) technique. The ST feature is generic

enough to be used in a similar way in both BSP and task-based scenarios. However, this

is not valid for AS and IR techniques which are more complex. In BSP-oriented tools,

AS is represented by drawing communication arrows. Sometimes the huge amount of

these arrows can overlap the ST view, but thanks the regular communication pattern this

issue can be solved using IR strategies such as aggregation and logical-time reordering.

These IR techniques enable highlighting the application structure without degrading the

ST plot. On the other hand, in task-oriented scenarios, the finer-synchronizations does not

favor the use of aggregation techniques for this purpose. Considering the DAG structure

of task-based applications, effective IR strategies can rely either on folding/unfolding to

take advantage of the hierarchical structure or filtering to select only relevant edges (e.g.,

considering the critical path).

Another common feature is the visualization of Execution Metrics and Statistics

65

(EMS). In BSP-oriented tools, this feature is used mainly to represent the bandwidth usage

along the time or the percentage of time spent in each state. Since task-based applications

execute over dynamic runtime systems, their traces can be much richer including also met-

rics such as the number of ready tasks or statistic summaries associated with the scheduler

or the task type.

The detection of anomalies (AD) is a less common feature. In BSP tools, it can

highlight delayed states or communications when compared to others in their group-

s/phases. However, most part of tools does not provide this as an explicit feature, letting

the user empirically check delayed phases by visually comparing them in the ST plot.

When considering task-oriented tools, anomalies are identified by comparing each task

with others of the same type. Debug Capabilities (DC) are provided only by one task-

oriented tool (Temanejo). This kind of feature is very useful in this scenario since the

runtime libraries and schedulers are much more complex than traditional MPI or pthreads

ones, with additional control parameters (e.g., priorities, affinity) and scheduling policies.

3.4 Chapter Summary

In this Chapter, we present some performance analysis tools that can be classified

into two main groups: tools for analyzing the performance of applications designed with

the BSP-model and analysis tools providing task-oriented features.

The first group of tools is designed to analyze applications implemented with clas-

sical HPC programming models, e.g., pthreads, OpenMP and MPI. Such applications

are executed on platforms with homogeneous processing and communication capabilities

and, in general, present well-structured phases, grouping computations, communications,

and synchronization operations. The second group encompasses recent tools designed to

analyze applications which are implemented with task-based programming. We include

in this group tools that offer at least one task-oriented analysis feature.

To conclude, we summarize the common analysis features provided by the dis-

cussed tools and how these differ in the BSP and task-based domains. We take as inspi-

ration the strengths and limitations of these features to build our performance analysis

strategies that are further presented in Chapters 5 and 7.

66

67

4 METHODOLOGY

Two of the key concepts of science are demonstrability and reproducibility. Sci-

entists usually rely on previously accumulated knowledge to build, prove or refute their

scientific hypothesis. However, the success in this process of building on previous dis-

coveries depends on how transparent and accessible is the research workflow1 of other

scientists (MUNAFÒ et al., 2017).

In the computer science context, the availability of the source code and of the input

and output data are major procedures to provide reproducibility (STODDEN; LEISCH;

PENG, 2014). The use of open source tools, appropriate file formats, and accessible

storage platforms are technical aspects that could help to put in practice these guidelines.

Since the reproducibility traditionally seems to be lower than is desirable, in this

chapter we present our steps to make this work more transparent and reproducible. The

remainder of this chapter is organized in two main sections; the first one discusses the use

of a literate programming approach to writing this thesis while the second one shows our

strategy to generate input data to perform our analysis.

4.1 A Reproducible Report

This document is written using the Org-mode (DOMINIK, 2010) extension of the

GNU Emacs editor (STALLMAN et al., 2017). Org-mode was initially designed as a tool

to organize and manage tasks in plain text format, but, currently, it provides very useful

authoring features. Org-mode includes a lightweight markup language (LML) to structure

a document in a hierarchical way with support for labels and references. Documents

written in an LML have a simple syntax and therefore are both easy to read by humans,

even in raw format, and also easily editable with a basic plain text editor. This means that

even without an Emacs editor, it is possible to read and modify an org document.

There are another markup languages that are simpler or more widespread, as re-

StructuredText (rST) and markdown or LATEX, respectively. The main reason to use Org-

mode as an authoring tool is its literate programming and reproducible research capabili-

ties.

The Babel2 feature of Org-mode allows defining active source code and data blocks

1methodology, input and output data, data analysis and interpretation
2https://orgmode.org/worg/org-contrib/babel/

https://orgmode.org/worg/org-contrib/babel/

68

inside org documents. Active code blocks can be evaluated within the org document and

its output is captured and included in the document content. Source code blocks can be

written and evaluated in several languages. The output of a code block (a data block)

can be used as the input of another one, even if they are not coded in the same language.

In this thesis, we embed code written in R, shell, emacs-lisp, LATEX, BibTex, and C. Most

part of the figures of this report are generated inside the org document and can be mod-

ified by anyone with access to its source code. The data used to generate these graphics

are also available, embedded as data blocks within this document (e.g., Figure 2.2) or

within the repository of this report (e.g., all the space-time views of Chapters 5, 6). This

companion material is available at the thesis proposal git repository3 which contains a

thesis.org file with all this text as well as all the instructions to download our ex-

periments data. Generated figures are also committed, but the availability of the analysis

code and of the experiment’s data makes possible to regenerate all them from the org

document.

Org-mode implements the weave and tangle literate programming operations de-

fined by Knuth (1984) to convert the source document into different representations: a

human-readable format and to computer-executable format, respectively. Since the org

document is written in a natural language mixed with several code or data blocks, the

tangle operation allows us to easily extract the code snippets to a single source code file

that can be compiled or interpreted in according with the used programming language.

On the other hand, the export feature implements the org weave equivalent. This export

operation provides a way to obtain a file in a final format such as HTML, ODT, LATEXor

PDF. During the exporting, org is able to evaluate the embedded code blocks and include

its results inside the final document (SCHULTE et al., 2012).

In this thesis, whenever possible we made available data treatment, analysis, and

plotting code embed into the org document. This makes possible to reproduce the gen-

eration of all graphics and helps to better understand our steps to go from a raw input

data to a rich graphical representation. Moreover, in a constructive approach, one can rely

on this companion material to extend our analysis even applying it to another dataset or

exploiting the same dataset in a different way.

3git clone https://gitlab+deploy-token-3:nKd4QDy6XNAs7boC78sh@gitlab.
inria.fr/vgarciap/thesisRepository.git

https://gitlab+deploy-token-3:nKd4QDy6XNAs7boC78sh@gitlab.inria.fr/vgarciap/thesisRepository.git
https://gitlab+deploy-token-3:nKd4QDy6XNAs7boC78sh@gitlab.inria.fr/vgarciap/thesisRepository.git

69

4.2 Generating Input Data

As discussed in Chapter 2, the hardware and software stack of current HPC plat-

forms is complex. At the same time as the hardware includes new processing technologies

and sophisticated memory hierarchy, the software is redesigned to handle this heterogene-

ity. Figure 4.2 presents the full software stack of the Chameleon solver used in this work.

It illustrates how complex is the software organization of current HPC applications. In

this scenario, even a hypothetical small change in a package of the dependency chain may

impact the results. For that reason, it is essential to track as much information as possible

about the experimentation environment. This comprises not only the source code used but

also the platform status, which could help to identify if a hypothetical performance issue

is related or not to some change in the experimentation environment.

There is a growing number of initiatives towards reproducible research in com-

puter science, e.g., Vistrails (CALLAHAN et al., 2006), VCR (GAVISH; DONOHO,

2011), Sumatra (A.P. et al., 2014), Reprozip (CHIRIGATI et al., 2016). In this work, we

rely on some Git and Org-mode strategies proposed by Stanisic, Legrand, and Danjean

(2015) with some additional extensions to improving the management of complex soft-

ware stacks and to provide an appropriate workflow to the storage of large results files.

In this work, we use execution traces as the input data to our analysis. These traces

are obtained from previously traced applications as the ones provided by the Chameleon

solver when running over the StarPU runtime system. This way, it is important to keep

track of not only the traces but also the software stack used to generate them as well as

the state of the machine where the application was executed.

4.2.1 Git and Org-mode Strategy

This Git and Org-mode strategy (STANISIC; LEGRAND; DANJEAN, 2015) re-

lies on a combination of Git and Org-mode to execute and track experiments. Git4 is a

distributed version control system that supports non-linear workflows throughout flexible

mechanisms of branching and merging.

The Git branching and merging scheme is employed in this approach to (a) ensure

a clean experimental environment and (b) define a link between the source code and its

produced data. To achieve this, a multi-branch design is used. The source code and the
4https://git-scm.com/

https://git-scm.com/

70

scripts used to execute the experiments are stored in the src branch. The experiments

branches are created to perform experiments, a branch of this type is always created as a

fork of the src branch. This rule provides a clean environment to perform a new exper-

iment, without results or temporary files from previous ones. This design also reduces

the time and the storage space required to start a new experiment since it is not necessary

to checkout the results of previous executions. All generated results data are commit-

ted into the exp branch. Once the experiment is concluded, its respective exp branch is

merged with the data one. The data branch contains all the source code, all the results

data generated by the experiments and, possibly, some analysis about the obtained results.

In summary, as shown in Figure 4.1, the Git repository has two main parallel branches

(src and data), interconnected by several transversal exp branches going from src to data.

Figure 4.1: Git branching scheme proposed by Stanisic, Legrand, and Danjean (2015)

src data

exp1

exp2

Source: Amended from (STANISIC; LEGRAND; DANJEAN, 2015)

The previously discussed Git branching approach ensures the provenance tracking

of the source code used in a given experiment. However, collecting platform-related in-

formation, such as configuration and status, is also relevant and must be included in the

provenance tracking procedures. Useful platform details are gathered by shell scripts and

include: machine state (logged users during the experiment, environment variables, linux

kernel, gcc version and GPU driver), hardware configuration (memory hierarchy, proces-

sor model, frequency governor, GPU model), code (git or svn revision), and compilation

(build output and libraries linked to the binary file). The gathered content is recorded in

a log text file in org format. This file is committed together with the results data, keeping

the link among the source code, the platform status, and the produced results. In cases

71

where the experiment results are also in text format, they can be recorded into the log file

as a specific results section. This is the case of Chameleon executions, where we record

in the log file all the program output, including standard and error outputs, the execution

trace, and the used calibration values.

Our research has a different focus from the one for which the Git and Org-mode

approach was proposed. In the original use case, the authors are the main developers of

the experimental software used to produce the results data. In our case, the focus is on

the analysis procedures. Then, the results data generated by the experimental software are

used as the input for our analysis techniques.

Despite that, we decide to keep their original strategy, tracking the code of the ex-

perimental software on the master branch. Our analysis code was entirely developed and

tracked on the data branch since it intrinsically depends on the results data. In addition,

we implement extensions to target some specific requirements of our use case.

Our extensions have two main goals: (a) improving the management of complex

software stacks and (b) providing an appropriate workflow to the storage of large results

files. To meet the first goal, we rely on the Spack package manager (GAMBLIN et al.,

2015). The second one is addressed by a combination of git-annex and Zenodo.

4.2.2 Handling Complex Software Stacks with Spack

Current HPC applications usually present a sophisticated software stack compris-

ing several levels of dependencies and optional parameters as shown in Figure 4.2. Han-

dling this stack by hand is unfeasible since it involves download, compile and link dozens

of libraries before build the main experimental software.

For this reason, we include the Spack package manager inside the Git and Org-

mode approach. This tool enables us to track not only the target experimental software

but also the major part of its dependencies.

Spack (GAMBLIN et al., 2015) is a Supercomputing PACKage management tool.

Spack, as another widely spread package managers like homebrew (HOWELL, 2018),

allows users to fetch, compile and install software in their own user directory without

relying on administrator privileges and/or OS-specific commands.

In order to target HPC systems, Spacks includes several additional features to

address frequent requirements of HPC community (GAMBLIN, 2018):

72

Figure 4.2: A graph with software dependencies of the Chameleon Solver

chameleon

cmake

fxt

starpu

ncurses openssl

pkgconf zlib

hwloc

openblas simgrid

cudalibpciaccess libxml2

libtool util-macros

m4

libsigsegv

xz

boost

bzip2

Source: The Author

73

• customized configurations: users can specify package version, build compiler, compile-

time options and cross-compile;

• customized dependencies: package dependencies of a particular install can also be

customized, e.g., compiling a package with one compiler and a dependency with

another one;

• non-destructive installs: a new version does not break existing ones. Since each

install is identified by a combination of keys (i.e., package version, compiler, archi-

tecture, and variants), change one of this keys will generate a new install and will

not override existing ones.

• multiple installs can coexist: Spack relies on run-time search path (rpath) to hard-

code the path to shared libraries into the executable header. The user can install an

older or newer version of a package P without breaking other packages depending

on previous existing versions of P ;

• custom repositories: a new package can be easily created which allows developers

to make available their own packages as an additional repository.

The dependency graph of Figure 4.3 illustrates how different installs of the same

package can coexist in a single Spack instance. In this example, the hwloc package was

installed with four different combinations of options. The first three hwloc installs were

compiled with gcc, but the first has the cuda variant enabled. The first two shares the

same dependency chain, while the third one was compiled with gcc and linked with some

dependencies compiled with clang. The last one was entirely compiled with clang.

After compiling and installing a package, Spack stores the build logs containing

the output and error messages and the complete combination of install options, e.g., pack-

age version, compiler, architecture, and variants. These files can be used to check the build

status of a previous install or to recompile the package using exactly the same options of

the original build.

In order to support Spack in the workflow, we have included in the master branch

a script to install and configure Spack. The default install is modified to preserve the

source code of the packages after their build. When starting a new experiment, one can

use Spack, either a new instance or an existing one, to install the experimental software

as well as its dependencies. The install script is also able to apply patches to the source

code when making a package. All build log files generated by Spack during the package

compilation are committed as well as the packaged source code and its dependencies. The

74

Figure 4.3: Example of multiple installs of a package in Spack.

cuda@9.1.85
%gcc@7.2.0

 arch=linux-ubuntu17.10-x86_64

hwloc@1.11.8
%clang@4.0.1-6

~cuda+libxml2+pci+shared
 arch=linux-ubuntu17.10-x86_64

libpciaccess@0.13.5
%clang@4.0.1-6

 arch=linux-ubuntu17.10-x86_64

libxml2@2.7.8
%clang@4.0.1-6

~python
 arch=linux-ubuntu17.10-x86_64

xz@5.2.3
%clang@4.0.1-6

 arch=linux-ubuntu17.10-x86_64

zlib@1.2.11
%clang@4.0.1-6

+optimize+pic+shared
 arch=linux-ubuntu17.10-x86_64

hwloc@1.11.8
%gcc@7.2.0

~cuda+libxml2+pci+shared
 arch=linux-ubuntu17.10-x86_64

libpciaccess@0.13.5
%gcc@7.2.0

 arch=linux-ubuntu17.10-x86_64

libxml2@2.9.4
%gcc@7.2.0

~python
 arch=linux-ubuntu17.10-x86_64

xz@5.2.3
%gcc@7.2.0

 arch=linux-ubuntu17.10-x86_64

zlib@1.2.11
%gcc@7.2.0

+optimize+pic+shared
 arch=linux-ubuntu17.10-x86_64

hwloc@1.11.8
%gcc@7.2.0

~cuda+libxml2+pci+shared
 arch=linux-ubuntu17.10-x86_64

hwloc@1.11.8
%gcc@7.2.0

+cuda+libxml2+pci+shared
 arch=linux-ubuntu17.10-x86_64

Source: The Author

state of the Spack instance is recorded in a section of the experiment log file. This state

comprises the spack version, the configuration of all installed packages and the package

state of the target experimental software. The use of Spack facilitates the install of the

experimental software as well as allows us to track the not only source code of the target

package but also of its dependency chain.

4.2.3 Rebuilding the Software Stack

In several cases, experiments are executed using the development version of the

source code. Despite unstable, using the last available version of the code enable testing

new features and benefit from recent bug fixes. Unlike stable releases, under development

code usually has no version number which might be a reproducibility problem. To ad-

dress this issue we have extended the approach presented in Section 4.2.1 by storing the

state of the Spack package into the execution log, as illustrated in Figure 4.4. This state

comprises the package install options and the code used in the compilation, including op-

tional patches. Since package dependencies can be also compiled from unstable versions,

we also keep track of their details.

We have extended Spack code with small changes to rebuild the entire software

stack of a previous experiment. By default, all unstable target packages and its dependen-

cies are recompiled using the stored source code. Stable dependencies are fetched again

75

Figure 4.4: Fragment of an execution log containing Spack package state.

1 -- linux-ubuntu16.04-x86_64 / gcc@5.4.0 -------------------------
2 g5vqqkb chameleon@master%gcc@5.4.0 ~cuda+examples+fxt~mpi~quark+shared~simgrid+starpu
3 y5ddruz ^cmake@3.10.0%gcc@5.4.0~doc+ncurses+openssl+ownlibs~qt
4 nxkp7ks ^ncurses@6.0%gcc@5.4.0 patches=4110a40,f84b270 ~symlinks~termlib
5 sk7ayvj ^openssl@1.0.2n%gcc@5.4.0
6 5nus6kn ^zlib@1.2.11%gcc@5.4.0+optimize+pic+shared
7 u5xoja5 ^fxt@0.3.5%gcc@5.4.0~moreparams
8 nhc5doq ^intel-mkl@2018.1.163%gcc@5.4.0~ilp64+shared threads=none
9 meeo7tb ^starpu@svn-trunk%gcc@5.4.0~blas~cuda+examples+fast~fortran+fxt+mlr~mpi~

nmad~opencl~openmp+shared~simgrid~simgridmc~verbose
10 hro43jw ^hwloc@1.11.8%gcc@5.4.0~cuda+libxml2+pci+shared
11 5urc6tc ^libpciaccess@0.13.5%gcc@5.4.0
12 sxk64lv ^libxml2@2.9.4%gcc@5.4.0~python
13 htnq7wq ^xz@5.2.3%gcc@5.4.0

Source: The Author

from their official providers and then are also rebuild using exactly the same version and

compilation options.

4.2.4 Storage of Large Files in GIT

In the approach discussed in Section 4.2.1, not only the source code but also the

results files produced by an experiment are stored in the Git repository. This strategy is

feasible for experiments producing small data files in plain text format. Since Git uses a

very efficient algorithm to compress text files, this probably will not lead to performance

or storage problems. However, some experiments produce large data files, sometimes in

binary formats, that are not well managed by Git repositories. The storage of large files

may slow down some git operations and incurs in storage quota issues. To address this

question, we propose an extension based on a combination of git-annex and Zenodo.

git-annex (HESS, 2018) is a Git extension to manage only the metadata of files

stored in Git without tracking its content. The extension uses an additional branch to

track the information about the annexed files. All commits and merges on this branch

are automatically handled by git-annex. Files managed by git-annex are stored even in

a special directory inside the $./git$ directory tree or in an external server. When a new

file is added, git-annex will create a symlink that points to the real content. This way,

it is possible to access annexed files in their original place, in the same way of normal

versioned ones. The symlinks are committed and versioned as normal Git files. git-

annex can work without support on the server side, however, this way it is not possible

to store annexed file content on this server. Lack of compression in annexed files can be

76

another limitation. Since it was designed to store the files in its original state5, add files

in text format with git-annex will use more disk space than if they were added with Git.

Our approach based on git-annex can significantly reduce the Git overhead when

managing large files, however, it is not scalable in terms of storage. Git servers normally

define a storage quota per user or project, then using a pure git-annex solution to store our

large results data is not viable. For that reason, we design a solution based on the special

remotes6 feature of git-annex. This feature allows storing annexed files in a wide range

of external (non-git) servers. It offers internal support for upload and download content

from several commercial cloud services, e.g., Amazon S3, Google Drive, Dropbox, and

OneDrive. Since these are commercial and non-academic services, they are constrained

by storage quota, license issues and lack of persistence.

Zenodo (CERN; OPENAIRE; COMMISSION, 2018) is a web storage service

designed to acts as an open access research data repository. Initially implemented as

a storage infrastructure for research data from CERN’s Large Hadron Collider, Zenodo

is now open for any institution or research field. Researchers can upload their research

outputs with no storage quota, the only limitation is the file size (up to 50 GB). An upload

can include multiple files and receives a Digital Object Identifier (DOI), which ensures

that each register is unique and citable. There are no restriction to file formats and a wide

range of licenses is available (NIELSEN, 2017).

While Zenodo seems to fit the technical requirements to be used as our storage

server, there is no native support for it in git-annex. To integrate Zenodo in our approach

we implemented a deposit script that moves the files from the annex storage on the Git

server to Zenodo using the Zenodo REST API7. To ensure that data was not corrupted

during the transfer we perform a checksum verification between the local file and the

uploaded one. After that, we add the Zenodo URL pointing to the uploaded file as an

additional source to the annexed file and we ask git-annex for removing the copy on the

Git server. This removal is successful only if git-annex can ensure that the annexed file

has at least one valid source by testing the availability of the Zenodo copy.

The idea is to use the main Git server as temporary storage for ongoing exper-

iments. Once an experiment is concluded, we consolidate the results pushing them to

Zenodo, avoiding compromising the storage quota on the Git server. When the main Git

server has no support for git-annex, we can use the local Git client as storage, and then

5which is desirable when working with binary files or to ensure access without rely on Git and git-annex.
6https://git-annex.branchable.com/special_remotes/
7http://developers.zenodo.org/

https://git-annex.branchable.com/special_remotes/
http://developers.zenodo.org/

77

move the results to annex as soon as the experiment is concluded. In our approach, we

use git-annex and Zenodo only to store data files produced as a result of an experiment.

All other contents of the repository, including source code files, are stored as regularly

versioned files.

The inverse operation to retrieve data from Zenodo requires a simpler strategy

since we can use the web as a special remote to git-annex8. Since all our Zenodo uploads

are stored with public access, git-annex can directly download the copy without depends

on tokens or login steps.

The benefits of our git-annex and Zenodo strategy are twofold, at the same time

we ensure a reliable place to store experiments results, we also provide public direct

access to these results without depending on Git or git-annex.

4.3 Chapter Summary

In this Chapter, we present our approach to improving the reproducibility of this

work. In order to make it more transparent and accessible to other scientists, we rely on

two steps: a reproducible report and a workflow to generate input data.

The reproducible report step relies on Org-mode to include and mix source code

blocks within the text. This way, from the source file used to generate the present doc-

ument it is possible to retrieve the experiments raw data as well as the steps to go from

this raw data to the final visualizations presented in the figures. Our second step concerns

the generation of the input data used to perform the analysis. We apply and extend a Git

and Org-mode strategy that enables us to keep track of not only the experiment output

(e.g., traces) but also the software stack and the machine state. We believe that this ap-

proach combining instructions inside the report with the results companion (i.e., data and

hardware/software context) will be useful to both understand this work and build on it to

extend its results.

8https://git-annex.branchable.com/tips/using_the_web_as_a_special_
remote/

https://git-annex.branchable.com/tips/using_the_web_as_a_special_remote/
https://git-annex.branchable.com/tips/using_the_web_as_a_special_remote/

78

79

5 PROPOSED VISUALIZATIONS STRATEGIES

In this chapter, we detail our proposed visualizations strategies designed to meet

the requirements and the specific characteristics of HPC task-based applications running

over hybrid platforms. As discussed in Section 3.1, space-time plots, which get inspira-

tion from traditional Gantt charts (WILSON, 2003), are a frequently-used visualization

strategy employed by several HPC analysis tools to describe the application states along

the space (computing resources) and the time (application duration). Since HPC analysts

are familiar with this kind of view, we decide to build on it to propose new alternative vi-

sualization strategies that can both enrich the basic space-time representation and extend

it by adding time-synchronized extra panels, as shown in Figure 5.1.

Figure 5.1: An overview of the proposed visualization strategies

0.39%
0.55%
0.63%
0.69%
0.86%
0.97%
1.02%
0.95%
0.96%
0.97%
1.01%
0.90%
0.92%
0.94%
1.00%
0.96%
1.00%
0.96%
1.00%
1.10%
1.03%
1.11%
1.05%
1.05%
1.05%
5.91%
1.90%
2.00%

62
70

0

A
B

E
59

46
4

C
P

E
21

49

CPU0
CPU1
CPU2
CPU3
CPU4
CPU5
CPU6
CPU7
CPU8
CPU9

CPU10
CPU11
CPU12
CPU13
CPU14
CPU15
CPU16
CPU17
CPU18
CPU19
CPU20
CPU21
CPU22
CPU23
CPU24
CUDA0
CUDA1
CUDA2

0 20000 40000 60000

Time [ms]

W
or

ke
rs

dgemm dpotrf dsyrk dtrsm Dependency Paths 1

Enriched space−time view

0

20

40

60
0 20000 40000 60000

Time [ms]

ph
as

e

Application Progression

ready

submitted

0 20000 40000 60000

0
500

1000

0
10000
20000
30000

Time [ms]

ta

sk
s

Runtime Metrics

dgemm dpotrf dsyrk dtrsm

CPU CUDA CPU CUDA CPU CUDA CPU CUDA
0

500

1000

1500

0

500

1000

1500

0

20

40

60

0

5000

10000

15000

20000

N
um

ABE Solution

Source: The Author

80

To implement our proposed visualizations, we build on top of modern data analyt-

ics tools, combining pj_dump, the R programming language (R CORE TEAM, 2018), its

ggplot2 library (WICKHAM, 2016), the lpSolve library (BERKELAAR et al., 2015), and

the data manipulation functions provided by the tidyverse meta-package (WICKHAM,

2017), Org-mode (DOMINIK, 2010), and plotly (SIEVERT et al., 2017). Thanks to the

expressiveness of the R language and this rich software stack, we can not only visualize

the data available in the traces but also produce new information by processing them.

Before producing a plot from the traces data, we perform several intermediate steps such

as clean-up, filtering, statistics computation, merges, and aggregations. This approach

allows building static views in a fully automatic and very efficient way. Although such

visualizations could probably be accelerated even further by programming everything in

C/C++, the used libraries are already well optimized and benefit from the know-how of

data analysts. Furthermore, a combination of small scripts is easier to maintain and adapt

to a new necessity or to a particular situation than a rigid monolithic visualization envi-

ronment.

In the remainder of this chapter, in Section 5.1, we discuss how we increment the

basic space-time view to highlight application and platform characteristics. In Section 5.2,

we depict the additional panels that disclose more details about the application and run-

time internal information. Finally, on Section 5.5, we describe the format and content of

the input data required by our approach to generating the views presented in Sections 5.1

and 5.2. All the following demonstrations were built using traces from a dense Cholesky

decomposition which is further discussed in details in Section 6.1.2. For understanding

the rest of this Chapter, it is important to mention that this application is designed with

tasks of four types (DPOTRF, DTRSM, DSYRK, and DGEMM). In the figures, each type is

represented by a different color. Tasks have implementations for both CPU and GPUs and

all tasks of the same type have the same size.

5.1 Enriched Space-time View

In this section, we describe our proposals to improve a basic space-time view as

the one of Figure 5.2. This kind of space-time view is provided by several HPC analysis

tools but is too simplistic for task-based scenarios on heterogeneous platforms. In the next

subsections, we propose enrichments that can be applied to this kind of view to make it

more suitable for such scenario. Our enrichments are built on this standard visualization

81

and are incrementally applied as layers to the basic plot. The addition of these layers does

not require a strict order.

Figure 5.2: A basic space-time plot

Source: The Author

5.1.1 Idleness

In the space-time view, the huge amount of tasks might give a false impression

that the resources occupation is good. However, in several cases, there are a lot of small

idle periods spread during the execution. Since their duration is much smaller than that of

computing tasks, they are frequently hidden in the classical graphical representation. To

avoid this misleading impression, we compute the overall idleness ratio of each resource,

which facilitates the comparison between the occupation of different resources.

To quantify the idleness of a computing resource, we should define what will be

considered as idle. One possibility relies on some runtime provided information such as

Idle and Sleeping states traced by StarPU. This option will exclude from idleness all the

scheduling related states like Data transferring or Initialization. Another possibility is to

consider all non-computing states as idle periods since the time spent during initialization

or fetching data is not directly used to solve the target problem. Figure 5.3 shows two

space-time views using the aforementioned approaches to compute resource idleness. For

a given computing resource, the idleness ratio can be significantly different from one

approach to another, e.g., in Figure 5.3(a), CPU2 spends 0.63% of the time in idle while

82

in Figure 5.3(b) its idleness ratio is 4.85%.

Figure 5.3: Enriched space-time view with idleness quantification.

0.39%
0.55%
0.63%
0.69%
0.86%
0.97%
1.02%
0.95%
0.96%
0.97%
1.01%
0.90%
0.92%
0.94%
1.00%
0.96%
1.00%
0.96%
1.00%
1.10%
1.03%
1.11%
1.05%
1.05%
1.05%
5.91%
1.90%
2.00%CUDA2

CUDA1
CUDA0
CPU24
CPU23
CPU22
CPU21
CPU20
CPU19
CPU18
CPU17
CPU16
CPU15
CPU14
CPU13
CPU12
CPU11
CPU10

CPU9
CPU8
CPU7
CPU6
CPU5
CPU4
CPU3
CPU2
CPU1
CPU0

0 20000 40000 60000

Time [ms]

W
or

ke
rs

(a) Idleness considering Idle/Sleeping states provided by the runtime

2.96%
4.17%
4.85%
2.65%
3.83%
3.38%
4.19%
3.70%
3.09%
3.37%
4.66%
2.68%
2.48%
3.44%
3.49%
3.12%
2.86%
4.48%
3.31%
2.96%
3.86%
4.63%
3.33%
1.35%
4.25%
5.87%
1.83%
1.96%CUDA2

CUDA1
CUDA0
CPU24
CPU23
CPU22
CPU21
CPU20
CPU19
CPU18
CPU17
CPU16
CPU15
CPU14
CPU13
CPU12
CPU11
CPU10

CPU9
CPU8
CPU7
CPU6
CPU5
CPU4
CPU3
CPU2
CPU1
CPU0

0 20000 40000 60000

Time [ms]

W
or

ke
rs

(b) Idleness considering all non−computing states

dgemm dpotrf dsyrk dtrsm Idle Sleeping

Source: The Author

5.1.2 Outliers or Task Duration Anomalies

In regular applications such as dense linear algebra, the task duration should vary

only in terms of its type and the type of computing resource where it is executed. This

assumption can be visually verified highlighting all tasks whose duration is anomalously

larger than others of the same type/resource. This kind of enrichment can help in the

recognition of unexpected behaviors such as delayed tasks or platform disturbances. The

definition of a threshold value to separate anomalous tasks from normal ones is highly

debatable and context specific. Ideally, it should be provided by an analyst with knowl-

edge of the application. In this work, we use the equation 5.1 to exemplify how this view

83

works. The duration of a task is considered anomalous if:

taskduration ≥ Q3 + 1.5 ∗ IQR (5.1)

where Q3 is the third quartile and IQR is the interquartile range.

Figure 5.4 presents an example of a space-time view enriched with anomalous

tasks information. Tasks with normal duration are drawn with lighter colors while the

ones with anomalous duration are drawn with darker shades.

Figure 5.4: Enriched space-time view with highlighting of tasks with anomalous duration.

CPU0
CPU1
CPU2
CPU3
CPU4
CPU5
CPU6
CPU7
CPU8
CPU9

CPU10
CPU11
CPU12
CPU13
CPU14
CPU15
CPU16
CPU17
CPU18
CPU19
CPU20
CPU21
CPU22
CPU23
CPU24
CUDA0
CUDA1
CUDA2

0 20000 40000 60000

Time [ms]

W
or

ke
rs

dgemm dpotrf dsyrk dtrsm

Source: The Author

Since task duration may not be adequated for some application (e.g., sparse linear

algebra), this feature can be easily extended to highlight other metrics than task duration,

e.g., cache misses, instructions per cycle (IPC), FLOPS.

5.1.3 Bounds for the Makespan

Comparing and understanding the performance of task-based executions on hybrid

platforms is challenging. Such executions are inherently stochastic which makes a purely

visual analysis unfeasible. The task mapping, for instance, can change from one execution

to another even when using the same scheduling policy.

Once a simple visual comparison is impractical, we need some additional informa-

tion in order to help the performance analysis. The use of makespan bounds is a classical

84

tool to assess the performance of parallel applications (GRAHAM, 1966, 1969; GAREY;

GRAHAM, 1975). In this work, we have implemented two execution time bounds. The

Critical Path Estimation (CPE) is obtained from the sum of the duration of each task in

the critical path on its fastest implementation (CPU or GPU) while the Area Bound Es-

timation (ABE) is computed using the linear program defined in (5.2)-(5.5). Where T is

the set of task types, R is the set of resource types, nt,r is the number of tasks of type t

running on a resource of type r, Nt is the total number of tasks of type t, wt,r is the mean

time spent to execute one task of type t on a resource of type r and Nr is the number of

resources of type r.

minimize: (5.2)

makespan

subject to:

∀t ∈ T :
∑
r

nt,r = Nt (5.3)

∀r ∈ R :
∑
t

nt,r ∗ wt,r ≤ makespan ∗Nr (5.4)

∀t ∈ T, r ∈ R : nt,r ≥ 0 (5.5)

The standard space-time view can be enriched to show the CPE and the ABE

bounds as presented in Figure 5.5. Note that the CPE bound is too optimistic for an exe-

cution of this application with this problem size. This behavior will be discussed in details

in Section 6.2.1. However, the ABE bound results in a more realistic value (≈59464 ms)

which is much closer to the observed makespan (≈62700). The difference of ≈5.4%

between this bound and the real value indicates that there is room for performance im-

provements. Our ABE bound does not consider the task dependencies, so for smaller

problems, it might be less precise. More accurate lower bounds including task depen-

dency constraints (AGULLO, E.; BEAUMONT, et al., 2015) could be used as well. This

solution could be better than our ABE bound, in particular, for intermediate size work-

loads. When executing on distributed-memory platforms, the ABE bound is computed

per node. This way, it can be also used to evaluate the load balancing among the nodes.

85

Figure 5.5: Space-time view with CPE and ABE bounds. The bounds are represented by
two vertical gray lines while the real observed makespan is drawn in the position indicated
by its value, at the end of the execution (≈62700 ms).

62
70

0

A
B

E
59

46
4

C
P

E
21

49

CPU0
CPU1
CPU2
CPU3
CPU4
CPU5
CPU6
CPU7
CPU8
CPU9

CPU10
CPU11
CPU12
CPU13
CPU14
CPU15
CPU16
CPU17
CPU18
CPU19
CPU20
CPU21
CPU22
CPU23
CPU24
CUDA0
CUDA1
CUDA2

0 20000 40000 60000

Time [ms]

W
or

ke
rs

dgemm dpotrf dsyrk dtrsm

Source: The Author

5.1.4 Aggregation

The total number of tasks in task-based applications can be potentially large, e.g.,

the Cholesky factorization of a 60 × 60 matrix totalizes 37820 tasks. Plotting all the

tasks can significantly increase the complexity of the visualization, which reduces the

plot readability and could lead to rendering issues. To reduce the number of objects in the

visualization, we have designed and implemented a task-aware temporal aggregation. Our

algorithm consists of two main steps: first, we group per-resource consecutive tasks (see

Algorithm 1), and after we compute the proportion of time spent by each task type in the

group. Ideally, this aggregation procedure is applicated in task-types that are numerous.

The space-time view of Figure 5.6 shows the result of our aggregation technique.

In this example, the aggregation procedure is applied to merge consecutive DGEMM tasks.

Non-aggregated tasks are represented by full-sized (height and width) rectangles filled

with their original task-type related colors. Aggregated tasks are represented by a com-

mon rectangle whose width is extracted from the lower start value and the higher end

value among the grouped tasks. This rectangle is filled with a lighter color to differentiate

it from those representing non-aggregated tasks. By default, small idle times appearing

among aggregated tasks are also aggregated, in that case, the height of the rectangles is

used to depicts the percentage of time spent computing tasks of such type (see the black

86

circle in the zoomed area of the figure). Our technique also enables the exclusion of tasks

with longer duration from any kind of aggregation (see darker green tasks in the zoomed

area). This exclusion also applies to long idle periods (white areas) as their occurrence

indicates potential performance issues.

Figure 5.6: Space-time view with aggregation of DGEMM tasks with duration smaller than
100 ms. Lighter green areas represent aggregated tasks. The circled area illustrates an
aggregated time slice where ≈66.03% of the time was spent in the execution of DGEMM

tasks.

0 10000 20000 30000 40000 50000 60000

CUDA2
CUDA1
CUDA0
CPU24
CPU23
CPU22
CPU21
CPU20
CPU19
CPU18
CPU17
CPU16
CPU15
CPU14
CPU13
CPU12
CPU11
CPU10

CPU9
CPU8
CPU7
CPU6
CPU5
CPU4
CPU3
CPU2
CPU1
CPU0

35000 36000 37000 38000 39000 40000

CUDA2

CUDA1

CUDA0

CPU24

CPU23

Time [ms]

W
or

ke
rs

dgemm dpotrf dsyrk dtrsm

Source: The Author

In some cases, only few task types are relevant to understand the application be-

havior, so all the other types can be grouped together keeping only an overview about

their occurrence in the time. Figure 5.7 shows an example of such cases. DGEMM and

DTRSM tasks are grouped together, emphasizing DSYRK tasks that are kept pure. The two

circled areas illustrate how we use a kind of stacked bars to represent the aggregation of

two or more task types in the same time slice. Our technique also allows the exclusion

of specific tasks from any aggregation filter, this is useful when focusing on few tasks of

numerous type. Figure 5.8 illustrates how it works when excluding three tasks that were

87

aggregated in the previous example (Fig. 5.7).

Figure 5.7: Space-time view with aggregation of DGEMM and DTRSM tasks with duration
smaller than 100 ms. The circled areas illustrate the stacked representation when two or
more task types are aggregated in the same time slice. The height of blue/green rectangles
is proportional to the time spent computing the respective task-type during the time slice.

0 10000 20000 30000 40000 50000 60000

CUDA2
CUDA1
CUDA0
CPU24
CPU23
CPU22
CPU21
CPU20
CPU19
CPU18
CPU17
CPU16
CPU15
CPU14
CPU13
CPU12
CPU11
CPU10

CPU9
CPU8
CPU7
CPU6
CPU5
CPU4
CPU3
CPU2
CPU1
CPU0

35000 36000 37000 38000 39000 40000

CUDA2

CUDA1

CUDA0

CPU24

CPU23

Time [ms]

W
or

ke
rs

dgemm dpotrf dsyrk dtrsm

Source: The Author

The main focus of our task-aware temporal aggregation is to reduce the amount

of data to be processed or visualized. The aggregation filters presented in the previous

examples help us to prevent the hiding of relevant information such as idle gaps, tasks

with longer duration or even specific tasks in which the analyst has a special interest.

This approach could also be combined with statistical techniques to enrich the visualiza-

tion highlighting some unusual or unexpected behavior. In Figure 5.9 our technique was

associated with a mechanism to detect outliers, so we reduce the information to render

by aggregating all task except those whose duration is significantly longer than others of

the same type executing in the same computing resource. A non-aggregated view as the

one of Figure 5.2 has 37820 objects while the aggregated ones of Figure 5.9 reduce this

88

Figure 5.8: Space-time view with aggregation of DGEMM and DTRSM tasks with duration
smaller than 100 ms (excluding some tasks). The circled tasks were excluded from the
aggregation filters.

0 10000 20000 30000 40000 50000 60000

CUDA2
CUDA1
CUDA0
CPU24
CPU23
CPU22
CPU21
CPU20
CPU19
CPU18
CPU17
CPU16
CPU15
CPU14
CPU13
CPU12
CPU11
CPU10

CPU9
CPU8
CPU7
CPU6
CPU5
CPU4
CPU3
CPU2
CPU1
CPU0

35000 36000 37000 38000 39000 40000

CUDA2

CUDA1

CUDA0

CPU24

CPU23

Time [ms]

W
or

ke
rs

dgemm dpotrf dsyrk dtrsm

Source: The Author

89

Algorithm 1: Computation of task groups
Input: tasks: a table with tasks’ execution data (start, end, duration, type,

resource)
threshold: minimal duration to consider a task as pure
types: list of task types to group
excludeTasks: list of tasks to be excluded from any kind of grouping

Output: tasks: a table with a new column with the task group
1 foreach resource r in resources do
2 foreach task ti in tasksr do
3 durationti ← duration of task ti;
4 startti ← start time of task ti;
5 endti−1

← end time of task ti−1;
6 if durationti > threshold then
7 mark task ti as a pure task;
8 put task ti in a new group;
9 else if startti > (endti−1

+ threshold) then
10 put task ti in a new group;
11 else if previous task ti−1 was a pure task then
12 put task ti in a new group;
13 else
14 group task ti in the same group of previous task ti−1;
15 end
16 end
17 end

90

amount to 607 objects (standard aggregation) and 1069 objects (aggregation with outliers

detection).

Figure 5.9: Space-time view with aggregation of DGEMM and DTRSM tasks excluding
outliers.

CUDA2
CUDA1
CUDA0
CPU24
CPU23
CPU22
CPU21
CPU20
CPU19
CPU18
CPU17
CPU16
CPU15
CPU14
CPU13
CPU12
CPU11
CPU10

CPU9
CPU8
CPU7
CPU6
CPU5
CPU4
CPU3
CPU2
CPU1
CPU0

0 10000 20000 30000 40000 50000 60000

Time [ms]

W
or

ke
rs

Standard aggregation

CUDA2
CUDA1
CUDA0
CPU24
CPU23
CPU22
CPU21
CPU20
CPU19
CPU18
CPU17
CPU16
CPU15
CPU14
CPU13
CPU12
CPU11
CPU10

CPU9
CPU8
CPU7
CPU6
CPU5
CPU4
CPU3
CPU2
CPU1
CPU0

0 10000 20000 30000 40000 50000 60000

Time [ms]

W
or

ke
rs

Aggregation with outliers detection

dgemm dpotrf dsyrk dtrsm

Source: The Author

5.1.5 Dependencies

The dependency management has a crucial impact on the overall performance of

task-based applications. The delay of a critical task can produce idleness in the computing

resources due to lack of ready for execution tasks. As a result, some information about

task dependencies must be included in the trace visualization panel. Task dependencies,

usually, can be statically inferred from the source code (see the cholesky algorithm in

Section 6.1.2). Although this information is easily retrievable, plot it in a raw state is

91

impractical since the number of dependencies is prohibitively large. The DAG of the

cholesky factorization with a matrix of 60 × 60 blocks has 37820 nodes (tasks) with

111630 edges (dependencies). Drawing all the tasks with its respective dependencies

would produce a meaningless graphic, once the tasks would be possibly overlapped by

the dependency edges. For that reason, some filtering procedure must be applied while

keeping only the relevant task dependencies.

Figure 5.10 presents a space-time chart with black lines indicating the dependen-

cies of some delayed tasks. In this example, the number of dependencies varies with the

task type. The delayed DGEMM on CPU14 depends on three other tasks: a DTRSM on

CUDA2, a DGEMM on CPU14 and a DTRSM on CPU2. Inspecting all the dependencies

of a task is relevant, especially when designing the algorithm to keep the sequential con-

sistency and ensures its correctness. However, in terms of performance analysis, only

the last dependency is important since it enables the execution of the next task. In the

aforementioned DGEMM on CPU14, only the dependency with the DTRSM on CUDA2 is

relevant since it enables the execution of the task.

Figure 5.10: Space-time view with all dependencies of some selected tasks.

●

●

●

CUDA2
CUDA1
CUDA0
CPU24
CPU23
CPU22
CPU21
CPU20
CPU19
CPU18
CPU17
CPU16
CPU15
CPU14
CPU13
CPU12
CPU11
CPU10

CPU9
CPU8
CPU7
CPU6
CPU5
CPU4
CPU3
CPU2
CPU1
CPU0

0 200 400 600

Time [ms]

W
or

ke
rs

dgemm dpotrf dsyrk dtrsm

Source: The Author

To find the last dependency of each task we should combine the static information

of the DAG with the execution trace containing the start/end values for each task. The

space-time view of Figure 5.11 shows only the last solved dependency of each pinpointed

task. The dependency edge inclination indicates the delay between the end of the last

dependency and the beginning of the task in question. A horizontal gap could indicate

92

room for performance improvements once the task has not started as soon as possible.

Note that the last dependency of a specific task can be different from one execution to

another since the task scheduling is dynamic.

Figure 5.11: Space-time view showing only the last dependency of a some given tasks.

●

●

●

CUDA2
CUDA1
CUDA0
CPU24
CPU23
CPU22
CPU21
CPU20
CPU19
CPU18
CPU17
CPU16
CPU15
CPU14
CPU13
CPU12
CPU11
CPU10

CPU9
CPU8
CPU7
CPU6
CPU5
CPU4
CPU3
CPU2
CPU1
CPU0

0 200 400 600

Time [ms]

W
or

ke
rs

dgemm dpotrf dsyrk dtrsm

Source: The Author

The space-time view presented in Figure 5.11 depicts the direct dependencies of

each task. In several cases, this first-level does not clarify the problem. The delayed

DGEMM on CPU14 illustrates one of these cases since this task has started just after its

last dependency (DTRSM on CUDA2). To understand why this DGEMM did not start

before we should inspect more levels in the DAG. This backward chain is obtained by

recursively searching the last task release a given task, i.e., for a given task Ti, we search

what was the task Ti−1 on which it depends on and that finished the latest, similarly, for

Ti−1 its latest predecessor Ti−2, etc. In Figure 5.12, the dependency edges are drawn with

at least three-levels which discloses the dependency chain, showing another delayed tasks

among the antecedents of the aforementioned DGEMM.

In task-based applications, tasks releasing many other tasks are good candidates to

filtered dependency track. The view of Figure 5.13(a) shows the dependency tracking for

DPOTRF tasks. As expected from the cholesky DAG, a DPOTRF is immediately preceded

by a DSYRK, immediately preceded by a DTRSM that would, in turn, be immediately

preceded by the DPOTRF of the previous iteration. Since the dependency chain of one

DPOTRF will probably meet the dependency chain of the precedent DPOTRF we can try to

merge these chains to simplify the view. These merged dependency chains, as shown in

93

Figure 5.12: Space-time view with the backward dependency chain of some selected
tasks.

●

●

●

CUDA2
CUDA1
CUDA0
CPU24
CPU23
CPU22
CPU21
CPU20
CPU19
CPU18
CPU17
CPU16
CPU15
CPU14
CPU13
CPU12
CPU11
CPU10

CPU9
CPU8
CPU7
CPU6
CPU5
CPU4
CPU3
CPU2
CPU1
CPU0

0 200 400 600

Time [ms]

W
or

ke
rs

dgemm dpotrf dsyrk dtrsm

Source: The Author

Figure 5.13(b), are computed using union–find operations for disjoint-set data structures

(CORMEN et al., 2009). The original 12 paths were merged into two new ones, that

illustrate two moments where the execution has proceeded exactly as expected from the

DAG critical path.

5.2 Additional Views

Since the traces of task-based applications can be much richer than classical MPI

or OpenMP ones, it is not helpful to include all the information in the space-time view.

For this reason, we increment the space-time view with additional panels to describe ex-

tra information about the application, the runtime, and the platform. To allow an easier

comparison, the temporal axis of all panels are synchronized with the corresponding one

in the space-time view. In the remainder of this section, we detail the Application Pro-

gression panel in Subsection 5.2.1, the Scheduler Task Metrics in Subsection 5.2.2, and

the ABE solution in Subsection 5.2.3.

94

Figure 5.13: Space-time view with the backward dependency chain of DPOTRF tasks.
CUDA2
CUDA1
CUDA0
CPU24
CPU23
CPU22
CPU21
CPU20
CPU19
CPU18
CPU17
CPU16
CPU15
CPU14
CPU13
CPU12
CPU11
CPU10

CPU9
CPU8
CPU7
CPU6
CPU5
CPU4
CPU3
CPU2
CPU1
CPU0

0 200 400 600

Time [ms]

W
or

ke
rs

(a) individual dependency chains

dgemm dpotrf dsyrk dtrsm

CUDA2
CUDA1
CUDA0
CPU24
CPU23
CPU22
CPU21
CPU20
CPU19
CPU18
CPU17
CPU16
CPU15
CPU14
CPU13
CPU12
CPU11
CPU10

CPU9
CPU8
CPU7
CPU6
CPU5
CPU4
CPU3
CPU2
CPU1
CPU0

0 200 400 600

Time [ms]

W
or

ke
rs

(b) merged dependency chains

Source: The Author

95

5.2.1 Application Progression

The way the graph of tasks is explored is related to the scheduling policy in task-

based applications. In several linear algebra algorithms, the matrices are divided in tiles,

and loop iterations are used to apply the algorithm on each tile. Some scheduling policies,

like in a sequential execution would traverse the graph in a breadth-first design, executing

all tasks of one iteration before starts the next one. However, other scheduling policies

can traverse the graph in a depth-first design, favoring task execution on the critical path,

and then it can start tasks of the next iteration before the ending of the previous one. This

strategy is possible only in models which allows describing the task dependencies in terms

of data-accesses (read, write, read-write), such as StarPU or OpenMP 4. In traditional

task-based tools that follow the fork-join model to create and synchronize tasks, the DAG

is traversed in a breadth-first style. This is the case of programs using the spawn-sync

(Cilk) or ta sk - t a s k w a i t (OpenMP) primitives.

Designing a common view that illustrates the progression of any application, what-

ever its structure, is challenging. However, for iteration-based applications such as tiled

linear algebra algorithms, the tracking of the first and the last task in each iteration of the

outer-loop provides a useful way to understand how the DAG is handled by the scheduler.

In Figure 5.14, the new panel in the bottom illustrates the progression of a Cholesky

execution. To produce this view, all application tasks are tagged according to their mem-

bership to a given loop. During the trace processing, we merge this static information

with the tasks’ begin/end timestamps to identify the first and the last task of each itera-

tion. The temporal axis (x-axis) of this additional panel is aligned with the corresponding

one in the space-time view. Each horizontal segment, represents one iteration of the outer

loop of the cholesky factorization, indicating an interval where the tasks of the iteration

have been executed. Since task dependencies are expressed in a data-flow model, several

iterations are processed in parallel. For this specific execution, the maximum number of

simultaneous loop-iterations was 30 around 40000ms. In this example, there are 60 outer-

iterations since the target matrix was divided into 60× 60 tiles. In general, a wider shape

indicates more parallelism.

In most cases, the overview with segments showing the duration of each iteration is

sufficient to understand the DAG progression and to differentiate executions with multiple

schedulers. Despite that, since all tasks were tagged, it is possible to enrich this view to

show not only the begin and the end of each iteration but also the distribution of the

96

Figure 5.14: Space-time view with application progression.

62
70

0

A
B

E
59

46
4

C
P

E
21

49

CUDA2
CUDA1
CUDA0
CPU24
CPU23
CPU22
CPU21
CPU20
CPU19
CPU18
CPU17
CPU16
CPU15
CPU14
CPU13
CPU12
CPU11
CPU10

CPU9
CPU8
CPU7
CPU6
CPU5
CPU4
CPU3
CPU2
CPU1
CPU0

0

20

40

60

0 20000 40000 60000

0 20000 40000 60000

Time [ms]

Time [ms]

W
or

ke
rs

ph
as

e

dgemm dpotrf dsyrk dtrsm

Application Progression

Enriched space−time view

Source: The Author

97

tasks inside this interval. In Figure 5.15 the outer curves indicate the begin/end of each

iteration while the colorful rectangles between these curves depict the tasks distribution

along the iteration duration. Note that the rectangles may be overlapped once several

workers might be computing tasks of the same loop-iteration. Similarly, white areas are

also possible indicating that there are no workers computing that particular iteration for

that specific time interval.

Figure 5.15: Space-time view and the additional progression panel populated with tasks.

62
70

0

A
B

E
59

46
4

C
P

E
21

49

CUDA2
CUDA1
CUDA0
CPU24
CPU23
CPU22
CPU21
CPU20
CPU19
CPU18
CPU17
CPU16
CPU15
CPU14
CPU13
CPU12
CPU11
CPU10

CPU9
CPU8
CPU7
CPU6
CPU5
CPU4
CPU3
CPU2
CPU1
CPU0

0

20

40

60

0 20000 40000 60000

0 20000 40000 60000

Time [ms]

Time [ms]

W
or

ke
rs

ph
as

e

dgemm dpotrf dsyrk dtrsm

Application Progression

Enriched space−time view

Source: The Author

5.2.2 Scheduler Task Metrics

The programmer has no direct control over task availability or synchronizations in

task-based applications following the STF model. However, some scheduler task metrics

are provided by the runtime system and can be exploited for better understanding the

performance. The tasks are created in a sequential way and the runtime system takes care

of dependencies and synchronizations. As the execution progresses, the dependencies are

solved and the tasks are enabled for execution. For this reason, it is essential to know if

98

the number of tasks ready for execution at a given moment is sufficient to keep active the

computing resources. Some idleness is expected during the beginning and the end of the

execution since the DAG is not fully unfolded.

Figure 5.16 shows how this information is attached to the standard space-time

view. The two line plots on the bottom of the figure depict the number of submitted and

ready tasks along the time. In this example, all the tasks are submitted in the beginning

(see the peak in the submitted curve after a few milliseconds of execution). As soon as

the initial tasks are executed, the next ones are enabled for execution (growing curve of

ready tasks between 1500 and 7800 ms).

Figure 5.16: Space-time view with scheduler metrics. The additional panels (line plots
on the bottom) show the number of ready and submitted tasks along the execution.

62
70

0

A
B

E
59

46
4

C
P

E
21

49

ready

submitted

0 20000 40000 60000

0

500

1000

0
10000
20000
30000

Time [ms]

ta

sk
s

CUDA2
CUDA1
CUDA0
CPU24
CPU23
CPU22
CPU21
CPU20
CPU19
CPU18
CPU17
CPU16
CPU15
CPU14
CPU13
CPU12
CPU11
CPU10

CPU9
CPU8
CPU7
CPU6
CPU5
CPU4
CPU3
CPU2
CPU1
CPU0

0 20000 40000 60000

Scheduler Task Metrics

Time [ms]

W
or

ke
rs

dgemm dpotrf dsyrk dtrsm

Enriched space−time view

Source: The Author

5.2.3 ABE Solution

The optimalmakespan computed by the Area Bound Estimation (ABE) presented

in Section 5.1.3 provides a way to estimate how much further improvement can be ex-

99

pected. However, from the ABE solution, we can also extract the ideal allocation of each

task type on the computing resources. From the equations (5.2)-(5.5) we can verify:

∀r ∈ R :
∑
t

αt,r ∗ nt,r ∗ wt,r ≤ makespan (5.6)

where αt,r is the fraction of tasks of type t that were allocated on a resource of

type r. Comparing the αt,r proportion with the actual allocation may help understanding

how scheduling could be improved in order to achieve better performance. Figure 5.17

illustrates how the solution of the linear program can be attached to the space-time chart

as an additional panel. In this example, the allocation αt,r computed by the linear program

indicates that ≈63% of the DGEMM tasks should be executed on CPUs (real assignment

was 57%) and ≈37% on GPUs (real was 43%), for the DTRSM and DSYRK the optimiza-

tion assigns 100% of the tasks to the GPUs (real was 14% and 10% respectively). This

code has no GPU implementation for DPOTRF tasks, so they are always assigned to CPU

resources.

5.3 Comparing Views

Comparing the traces from different executions, possibly each one with a different

configuration (e.g., scheduling parameter), can be challenging. To draw relevant con-

clusions, we need to synchronize multiple visualizations panels and filter the unwanted

states, which can be difficult when using single instances to visualize each trace. Al-

though some support exists in some tools (PILLET et al., 1995; PAGANO et al., 2013),

they do not offer enough customization flexibility for such analysis.

Figure 5.18 presents a comparing view, depicting the space-time visualization for

three different executions, each one using a distinct StarPU scheduling policy. Each row

on this figure represents one scheduling configuration. The idleness quantification, the

outliers detection and the bounds are independently computed for each scenario while the

time window is kept synchronized for easy comparison of different settings.

100

Figure 5.17: Space-time view with CPE and ABE bounds. The additional panel (bar chart
on the bottom) shows the optimal task allocation computed by the ABE (number of tasks
in the y-axis, task type in the x-axis). This view enables the comparison of the ABE
solution (the bullet) with the real execution (the bar).

62
70

0

A
B

E
59

46
4

C
P

E
21

49

CUDA2
CUDA1
CUDA0
CPU24
CPU23
CPU22
CPU21
CPU20
CPU19
CPU18
CPU17
CPU16
CPU15
CPU14
CPU13
CPU12
CPU11
CPU10

CPU9
CPU8
CPU7
CPU6
CPU5
CPU4
CPU3
CPU2
CPU1
CPU0

0 20000 40000 60000

Time [ms]

W
or

ke
rs

Enriched space−time view

dgemm dpotrf dsyrk dtrsm

CPU CUDA CPU CUDA CPU CUDA CPU CUDA
0

500
1000
1500

0
500

1000
1500

0

20

40

60

0
5000

10000
15000
20000

Type

N
um

Value
dgemm
dpotrf
dsyrk
dtrsm

ABE Solution

Source: The Author

101

Figure 5.18: Comparing views from three executions using different schedulers. Each
row represents a different execution. Idle ratio, outliers detection, and bounds for the
makespan are computed individually for each execution.

2.7%
3.6%
2.0%
2.2%
2.1%
2.5%
2.2%
1.6%
1.8%
1.6%
2.6%
3.1%
3.2%
2.1%
3.2%
3.4%
3.8%
2.3%
2.9%
3.5%
4.0%
3.3%
2.8%
2.6%
3.1%

20.6%
20.2%
19.9%

66
94

2

A
B

E
59

74
8

C
P

E
22

01

3.0%
4.2%
4.8%
2.6%
3.8%
3.4%
4.2%
3.7%
3.1%
3.4%
4.7%
2.7%
2.5%
3.4%
3.5%
3.1%
2.9%
4.5%
3.3%
3.0%
3.9%
4.6%
3.3%
1.4%
4.2%
5.9%
1.8%
2.0%

62
70

0

A
B

E
59

46
4

C
P

E
21

49

4.8%
2.8%
2.3%
3.2%
3.3%
1.5%
3.1%
2.6%
3.6%
2.4%
2.9%
3.2%
1.8%
3.5%
2.1%
5.0%
4.8%
2.7%
2.6%
3.1%
3.3%
3.0%
2.3%
2.4%
3.6%
4.0%
2.1%
2.1%

60
96

3

A
B

E
58

45
2

C
P

E
21

46

ws

dmdas

dmda

0 20000 40000 60000

CPU0
CPU1
CPU2
CPU3
CPU4
CPU5
CPU6
CPU7
CPU8
CPU9

CPU10
CPU11
CPU12
CPU13
CPU14
CPU15
CPU16
CPU17
CPU18
CPU19
CPU20
CPU21
CPU22
CPU23
CPU24
CUDA0
CUDA1
CUDA2

CPU0
CPU1
CPU2
CPU3
CPU4
CPU5
CPU6
CPU7
CPU8
CPU9

CPU10
CPU11
CPU12
CPU13
CPU14
CPU15
CPU16
CPU17
CPU18
CPU19
CPU20
CPU21
CPU22
CPU23
CPU24
CUDA0
CUDA1
CUDA2

CPU0
CPU1
CPU2
CPU3
CPU4
CPU5
CPU6
CPU7
CPU8
CPU9

CPU10
CPU11
CPU12
CPU13
CPU14
CPU15
CPU16
CPU17
CPU18
CPU19
CPU20
CPU21
CPU22
CPU23
CPU24
CUDA0
CUDA1
CUDA2

Time [ms]

W
or

ke
rs

dgemm dpotrf dsyrk dtrsm

Source: The Author

102

5.4 Interactive Views

The static views, typically basic X11 window or a PNG/PDF file, of our approach,

have disadvantages when compared to some tools described in Chapter 3. Interaction is

often useful for the analyst to find what s/he is looking for. This is why we also build

on plotly (SIEVERT et al., 2017), an online analytics tool, that enables the quick

conversion of ggplot2 graphs into HTML/JavaScript interactive, web-embeddable ones

usable with a classical web browser1.

Some illustrations in this report are also available in their interactive version. We

believe that putting interaction at the very end together with the scripting capabilities in

the core of the analysis process is the key to carrying out the analysis of complex execution

traces. Our plotly-based approach is able to show most of the previously discussed views.

As an example, Figure 5.19 shows a screenshot of the interactive version of a composite

view including the following panels: space-time with outliers highlight and idleness ratio,

application progress, scheduler metrics and ABE solution.

Limitations: the plotly feature for creating interactive views from static gg-

plot2 plots is really interesting since we do not need to make big changes in our existing

analysis code. At the same time, it enables us to quickly check tasks details such as Jo-

bId and the exact duration. However, this solution scales badly in large scenarios, when

traces have too much information, with millions of tasks as when there are of many task

types or several computing resources. Despite our efforts on data aggregation to reduce

the information before creating such graphical objects, the procedure remains usable only

for small-scale scenarios. We have also tried a secondary approach using the low-level

plotly API 2, to produce interactive views without relying on the automatic conversion

from ggplot2 objects.

Plotly is incapable of handling too much data, such as when there are many task

types or resources. Alternatives to tackle the problem do exist. The bqplot or the

googleVis packages are some of them. The former follows the grammar of graphics

philosophy (as ggplot2) for IPython/Jupyter interactive notebooks. The later (googleVis)

has functions to generate HTML5 but which are much simpler since they are not layered

as we need to create customized views. The bqplot library seems more promising

because they follow a true Model-View-Controller (MVC) approach, which might scale

1See https://plot.ly/d3-js-for-r-and-shiny-charts/ for more details
2https://plot.ly/r/reference/

https://plot.ly/d3-js-for-r-and-shiny-charts/
https://plot.ly/r/reference/

103

Figure 5.19: Screenshot of an interactive view generated with plotly. When the mouse
hovers on a task, complementary information is shown, such as its type, ID, Duration,
and Start/End values. The visualization of a given task type can be hidden or revealed
by clicking on the corresponding legend. The user can also select a region to zoom on
it. The corresponding interactive view is available at http://perf-ev-runtime.
gforge.inria.fr/thesis/interactiveView1.html

Source: The Author

http://perf-ev-runtime.gforge.inria.fr/thesis/interactiveView1.html
http://perf-ev-runtime.gforge.inria.fr/thesis/interactiveView1.html

104

better. We have not yet evaluated any of these alternatives for interactive visualization,

adhering with plotly for the time being. To minimize its issues, we have reported

several bugs to plotly developers3.

5.5 Input Description

The visual performance analysis techniques presented in this work are built from

execution traces generated by the StarPU runtime system. The StarPU source code is

already instrumented to generate execution traces using the FxT library (DANJEAN;

NAMYST; WACRENIER, 2005). This library provides tracing with a limited runtime

overhead. After the execution has finished, StarPU generates an FxT binary file with the

traces, or per node ones in the case of StarPU-MPI executions. StarPU includes a tool to

convert FxT binary traces to Pajé text-based ones (SCHNORR, Lucas Mello et al., 2016).

Assuming a valid Pajé trace, we rely on the pj_dump tool from the PajeNG

toolkit4 to convert the trace from the Pajé file format to a basic CSV one. Despite the use

of this toolchain based on FxT, StarPU, and Pajé, our approach is not entirely dependent

on these tools. Our code expects a basic text-based CSV file describing events and its

timestamps as illustrated in Figure 5.21. This input data can be generated from other

runtime system or even converted from other trace formats using third-party converters.

Each column of Figure 5.21 represents one the required fields: ResourceId indicates the

computing unit where an event occurs, Value contains the event name, Start and End

indicates when the event has started and when it has finished, JobId is an event unique

identifier and Duration depicts the time spent in this event.

Figure 5.20 shows a simplified representation of our workflow. The left-side rep-

resent the steps to be executed in order to obtain the CSV files that will be used by the R

code that generates the views. Extending this workflow to support traces from other run-

time systems implies to rewrite these initial steps to ensure that the CSV files are properly

filled with the data expected by our analysis code.

Several views presented in this Chapter can be built using only a basic trace as the

one shown in Figure 5.21. This is the case of Idleness (5.1.1), Outliers (5.1.2), Bounds for

the makespan (5.1.3 and 5.2.3), and Aggregation (5.1.4). On the other hand, some views

3https://github.com/ropensci/plotly/issues?utf8=%E2%9C%93&q=is%
3Aissue+author%3Aviniciusvgp+

4https://github.com/schnorr/pajeng

https://github.com/ropensci/plotly/issues?utf8=%E2%9C%93&q=is%3Aissue+author%3Aviniciusvgp
https://github.com/ropensci/plotly/issues?utf8=%E2%9C%93&q=is%3Aissue+author%3Aviniciusvgp
https://github.com/schnorr/pajeng

105

Figure 5.20: A simplified workflow with the steps to generate views from application
execution traces.

R scripts
 ggplot2

plotly

static plots

interactive

Cleanups
Filtering
Statistics
Visualization

Cholesky (StarPU)
Execution/Tracing (FXT)

DAG

pjdumpPaje CSV

Source: The Author

Figure 5.21: A fragment of a StarPU execution trace in CSV format after conversion from
FxT and Pajé.

ResourceId Value Start End JobId Duration
1: CPU0 dpotrf 0.00000 17.22442 1347 17.224419
2: CPU1 dtrsm 17.87772 53.82597 1358 35.948254
3: CUDA0 dtrsm 18.72615 26.26818 1348 7.542038
4: CUDA2 dtrsm 18.93579 26.63687 1349 7.701083
5: CUDA1 dtrsm 20.30117 27.76634 1350 7.465176

360: CUDA0 dgemm 686.14070 696.44076 1851 10.300062
361: CPU0 dpotrf 689.27731 705.70472 1857 16.427407
362: CUDA0 dtrsm 706.39012 713.84567 1858 7.455554
363: CUDA0 dsyrk 715.15761 721.12105 1861 5.963439
364: CPU0 dpotrf 721.74629 738.10334 1864 16.357047

Source: The Author

106

Figure 5.22: Task dependencies information obtained from the application DAG provided
by StarPU.

JobId Dependent
1: 1359 1360
2: 1360 1347
3: 1360 1203
4: 1347 1203
5: 1372 1373

2312: 2149 2150
2313: 2152 1858
2314: 2151 2152
2315: 2154 1864
2316: 2153 2154

Source: The Author

need some additional data. Tracing the dependencies (5.1.5) depends on the application

DAG. This information can be provided into the execution trace or in an additional file.

In the case of StarPU traces, we retrieve this information from the application DAG (see

Figure 5.22) and then, in a second moment, we merge it with the trace dataset. As shown

in Figure 5.22, the dependency dataset contains two columns, the event identifier (JobId)

and the identifier of an event on which it depends. Events can have more than one depen-

dency, in which case each is described in a different row, e.g., event with JobId 1360 in

Figure 5.22.

The basic trace and the additional dependency file can be directly provided by a

task-based runtime. However, to create some useful visualizations, we need additional in-

formation that can be provided only by the application. This is the case of the Application

progression view (5.2.1) which relies on the indexes of the loop iteration where the task

was created. In the StarPU tracing features, applications can include their specific data in

the Tag or iteration fields. The runtime system can also trace additional data that is not

related to specific tasks or the application. This includes internal metrics and statistics

such as the ready/submitted values used in the Scheduler Task Metrics view (5.2.2).

5.6 Discussion

The visualization strategies presented in this Chapter rely on classical performance

analysis instruments such as execution traces and space-time plots. Comparing to the tools

discussed in Chapter 3, these strategies present some conceptually similar features but

with a strong focus on characteristics of task-based programming. First, we also rely on

107

space-time (ST) views since they are generic enough to be employed in the visualization

of task-based applications. In this ST plot, we include relevant task dependency edges,

which gives some idea about the application structure (AS) and at the same time pro-

vide some information reduction (IR) since we filter only important dependencies. Our

approach also provides other two IR features: idleness quantification and tasks aggrega-

tion. The computation and representation of outliers provide a transparent way to detect

anomalies (AD) in the task’s duration and makes possible to correlate them spacially and

temporally. The additional panels, with the temporal-axis aligned with the corresponding

one in the ST plot, allow us to depict execution metrics (EMS) such as the evolution of

runtime system variables along the application duration.

Our task-oriented analysis strategies also provide features that are not present in

the tools discussed in Chapter 3. The first one is the representation of the application

progression which is related to the AS but also provides a visual way to check how this

structure (i.e., the DAG) is traversed along the time. The second distinct feature is the

computation of bounds for the makespan, which provides a way to evaluate executions

and also hints about how to improve them. While most of our strategies can work with

traces from any application, the application progression view depends on some data from

the application. In the case of iterative codes, this can be as simple as tracking the loop-

index of each task. In contrast, the bounds are more generic; the only restriction is related

to the ABE that works for application with regular tasks, i.e., all tasks of the same type

have the same workload.

We believe the proposed visualization strategies can benefit both application and

runtime developers since they enable to understand performance issues and then improve

the overall performance. Application developers usually need to check how their applica-

tion behaves on a real platform. In this case, visualization strategies like the space-time

plot and the idleness quantification are helpful. Runtime metrics such as the line-plots

describing ready and submitted tasks are also useful to confirm that the application paral-

lelism is sufficient to fill the platform. Our strategies can also help application developers

when tunning runtime system parameters (e.g., scheduling policy). Using a complete

composite view as the one of Figure 5.1 in association with the faceting capabilities as

shown in Figure 5.18 helps in understanding and explaining why a certain scheduling

policy performs better than others for a given application. On the other hand, runtime de-

velopers are looking for issues and mistakes that when fixed, would globally improve the

performance of any application running on top of it. An incorrect dependency manage-

108

ment is most easier to be identified with views as the one of Figure 5.13 than analyzing

the raw text log provided by the runtime system. Application progression view and the

curve of ready tasks also helps to understand how efficiently the runtime is unrolling the

DAG of tasks.

5.7 Chapter Summary

In this Chapter, we present visualization strategies designed to meet the require-

ments of task-based applications running over hybrid platforms. These strategies get in-

spiration from classical performance analysis instruments such as execution traces and

space-time views.

Our approach is built on top of modern data analytic tools combining pj_dump,

Org-mode and the R programming language, including packages such as ggplot2, lp-

Solve, tidyverse and plotly libraries. The proposed strategies are based on enrichments

to the standard space-time view to highlight application and platform characteristics and

on synchronized additional panels that disclose more details about the application and

runtime internal information.

The next Chapter will present case studies to demonstrate how these strategies can

be employed to analyze task-based applications and improve their performance.

109

6 RESULTS ON VISUALIZATIONS STRATEGIES

In this Chapter, we present how our visualization techniques can be combined

together to attain a successful performance analysis. This analysis focus on task-based

executions running on the two hybrid platforms described in Section 6.1.1. We present

two case studies (Sections 6.2 and 6.3) based on tiled Cholesky decomposition presented

in Section 6.1.2.

6.1 Experimental Setup

Each scenario analyzed in this Chapter was executed multiple times to ensure

that our observations are reproducible. Although the observed makespans slightly differ,

the general behavior and conclusions are the same. General details about the platform

and the target application are presented in Sections 6.1.1 and 6.1.2. Low-level hardware

and software details, such as cache hierarchy, processor status, linked-libraries or OS

configuration can be found in the experiments log files presented in section 4.2 and which

are available in the data repository.

6.1.1 Platforms

The case studies presented in this chapter were executed in two heterogeneous

platforms. The first one, idcin2 is composed of a single node with 28 CPU cores and

3 GPU cards. Since StarPU needs one CPU core to handle each GPU, only 25 partici-

pate in the computation, totalizing 28 computing units (25 cores + 3 GPUs). The second

experimental platform is the cluster chifflet from the Grid’5000 site at Lille, which is a

distributed platform with nodes composed of 28 CPU cores and 2 GPUs. Similar to id-

cin2, in chifflet nodes, only up-to 25 CPU cores are used to compute tasks. As discussed

before, two cores are reserved to handle the GPUs, and another one is used to handle

the MPI messages exchanges. Table 6.1 shows a summary of the hardware/software con-

figuration of both platforms. Additional information, such as the real used source code,

linked libraries, hwloc platform description files, and the StarPU performance and band-

width models, can be found in the execution log file presented in Section 4.2 of Chapter

4.

110

Table 6.1: Summary of the hardware/software configuration of the experimental platforms
used to collect execution traces.

idcin2 chifflet
Nodes 1 8
Processors per Node 2 2
Processor Xeon E5-2697v3 2.60GHz Xeon E5-2680v4 2.40GHz
Cores per Processor 14 14
Core count 28 224
Memory 256GB 756GB
GPUs per Node 3 2
GPU card GeForce GTX TITAN X GeForce GTX 1080 Ti
GPU cores (per card) 3072 3584
GPU core count 9216 7168
GPU memory (per card) 12GB 11GB
Interconnection - Ethernet 10GbE
Linux kernel 3.2.0-4-amd64 4.9.0-3-amd64
Chameleon 0.9.1 (master) 0.9.1 (master)
StarPU 1.3 (trunk) 1.3 (trunk)
OpenMPI - 2.0.2
BLAS Eigen BLAS 3.3 OpenBLAS 0.2.19
CUDA version 7.5 7.0
CUDA Driver 352.39 375.66
GCC 4.7 6.3.0

Source: The Author

111

6.1.2 Application

In the context of task-based applications, the overall performance is intrinsically

related to the efficiency of the runtime system. For that reason, focusing our analysis

on the runtime system can help us to identify important issues and mistakes that im-

pact the overall performance of the application. However, to study the runtime system

performance, we should rely on a representative and already well-optimized application.

Using a non-optimized application can hide runtime system performance issues while a

non-representative one could lead us to problems and mistakes that have no significant

influence on the performance of commonly-executed applications.

For these reasons, we choose a Cholesky decomposition as our case study applica-

tion. This factorization is one of the most common linear algebra operations and is used

by many scientific applications. The Cholesky method consists on decompose a matrix A

into a product of a matrix L and its transpose LT (DATTA, 2010; LEON, 2014). The fac-

tor matrices L and LT are (respectively) lower and upper triangular with positive diagonal

elements:

A = LLt ⇐⇒

a11 a21 a31 · · · ai1

a21 a22 a23 · · · ai2

a31 a32 a33 · · · ai3
...

...
...

ai1 ai2 ai3 · · · aii

=

l11

l21 l22

l31 l32 l33
...

...
... . . .

li1 li2 li3 · · · lii

l11 l21 l31 · · · li1

l22 l32 · · · li2

l33 · · · li3
.

lii

The Cholesky decomposition is applicable for symmetric positive definite matri-

ces, in which case it is 2 times more efficient than the LU decomposition when solving

systems of linear equations (PRESS et al., 2007; DATTA, 2010).

In order to improve the reproducibility and the stability of our tests, we adopt the

tiled Cholesky implementation provided by the Chameleon solver. This implementation

is built on top of the StarPU runtime system (AUGONNET, Cédric et al., 2011) and

compiled with standard BLAS (CPU) and CUBLAS (GPU) libraries. Figure 6.1 shows a

simplified version of this application. The lines with calls to DPOTRF, DTRSM, DSYRK,

and DGEMM (Figure 6.1(a)) represent the creation of StarPU tasks with double-precision

implementations for CPUs and GPUs (except the DPOTRF that has only the CPU version).

The underlined labels RW and R indicate the access mode of the subsequent matrix block.

112

Figure 6.1: The pseudo-code of the tiled Cholesky decomposition and its corresponding
DAG for N = 5.

(a) Code snippet of the tiled Cholesky de-
composition.

for (k = 0; k < N; k++) {
DPOTRF(RW, A[k][k]);
for (i = k+1; i < N; i++)

DTRSM(RW, A[i][k], R, A[k][k]);
for (i = k+1; i < N; i++) {

DSYRK(RW, A[i][i], R, A[i][k]);
for (j = k+1; j < i; j++)

DGEMM(RW, A[i][j], R, A[i][k],
R, A[j][k]);

}
}

(b) Cholesky DAG for N = 5. The
number inside each node represents the
k-index of the outer loop.

0

0 0 0 0

0 0 0 0 0 0 0 0 0 0

1

1 1 1

1 1 1 1 1 1

2

2 2

2 2 2

3

3

3

4

Source: The Author

From these access mode hints, the runtime can infer the dependencies and then build the

Directed Acyclic Graph (DAG) of tasks. Figure 6.1(b) shows the corresponding DAG

for a 5 × 5 matrix. In each iteration k of the outer loop, one DPOTRF task enables the

execution of N −k− 1 DTRSM, then N −k− 1 DSYRK tasks, followed by≈ (N −k)2/2

DGEMM tasks. From the dependencies, one can observe that several iterations can be

executed simultaneously and that the number of repetitions in the internal loops decreases

at the same time as k increases. Finally, the execution time of a task highly depends on its

type (DPOTRF, DTRSM, DSYRK, and DGEMM) and on the target resource (CPU or GPU).

Note that the color scheme used in this Figure to represent the task types is respected in

all the following graphics of this document.

In multi-node executions as the ones of Section 6.3, we use a StarPU-MPI imple-

mentation of the Cholesky decomposition. Since in StarPU-MPI executions the domain

decomposition is static, the application includes two additional parameters to allow the

user to control how the input data will be distributed between the nodes. For this, the clas-

sical Two-dimensional Block-Cyclic Distribution (BLACKFORD et al., 1997) has been

113

previously modified to support multi-node runs with static decomposition under the aus-

pices of StarPU-MPI. The decomposition depends on the P × Q parameter and the number

of MPI nodes, governing how the input matrix is partitioned among nodes on a per-tile

basis. The value of P can range from one to the number of nodes. Figure 6.2 depicts the

four possible situation cases for a Cholesky factorization with eight nodes and a matrix

with 16 × 16 tiles: the data decomposition shown in the left facet is obtained when P=1 ×

Q=8 and leads to a row based distribution of tiles (one color per node); for P=2 × Q=4 and

P=4 × Q=2, shown in the center left and right facets, the data distribution is interleaved;

finally, when P=8 × Q=1, data distribution is by column as shown by the right facet. In

an ideal scenario, for a given number of nodes, the value of P should be defined so as to

minimize the communication perimeter of each node as it is related to the total volume of

communications.

Figure 6.2: Different static partitioning schemes for DTRSM tasks as dictated by the P
parameter when eight nodes are used to run Cholesky: P=1 (left, by row), P=2 (center
left), P=4 (center right), and P=8 (right, by column).

1x8 (by row) 2x4 4x2 8x1 (by column)

1 3 5 7 9 11 13 15 1 3 5 7 9 11 13 15 1 3 5 7 9 11 13 15 1 3 5 7 9 11 13 15

1
3
5
7
9

11
13
15

X Tile Coordinate

Y
 T

ile
 C

oo
rd

in
at

e

0 1 2 3 4 5 6 7

Source: (PINTO, Vinícius Garcia; SCHNORR, Lucas Mello; STANISIC; LEGRAND;
THIBAULT; DANJEAN, n.d.)

6.2 Case Study: Changing Schedulers on Hybrid Nodes

In task-based programming, the runtime system and its scheduler strategies play a

crucial role in the application performance. The makespan may vary significantly depend-

ing on the chosen scheduling policy even when using the same tasks implementations and

executing on the same hardware. These variations are difficult to explain and understand

by regarding only the execution time.

As discussed in Section 2.3.4, StarPU offers several scheduling policies. Some

114

of them are incrementally built on top of other ones, e.g., DMDA and DMDAS, but,

in practice, they present slightly different performance. For that reason, we propose a

visual analysis to try to explain the different behavior of three StarPU schedulers: DMDA,

DMDAS, and WS.

Another configuration that impacts the execution behavior is the size of the work-

load, i.e., the DAG size in task-based applications. On one hand, large DAGs are expected

to be embarrassingly parallel, almost reaching peak performance. Since such scenario

comprises hundreds of thousands of tasks, we need to use macroscopic views and indi-

cators to understand whether and how performance can be improved. On the other hand,

small DAGs have little parallelism and idle time will inevitably be incurred by task depen-

dencies. For such executions, microscopic views with fine-grained information on task

dependencies should rather be used.

The analysis of this case study was carried out with two representative workloads

for the Cholesky factorization. As summarized in Table 6.2, the first one uses large ma-

trices of 60×60 tiles of 960×960, while the second one uses smaller matrices of 12×12

tiles of size 960× 960.

Table 6.2: Summary of workloads

Workload Large (L) Small (S)
Matrix Size 57600 × 57600 11520 × 11520
Number of Tiles 60 × 60 12 × 12
Tile Size 960 × 960 960 × 960

Source: The Author

6.2.1 Workload L - Cholesky Factorization of 60×60 tiles of size 960×960

Several assumptions can be made when executing large regular DAGs such as the

one resulting from the Cholesky algorithm on a 60× 60 tiles matrix. We detail below the

expectations regarding uniformity, task dependencies issues, application progress, and

possible improvements.

• Uniformity. Task duration is expected to depend solely on their type (DGEMM,

DSYRK, DTRSM or DPOTRF) and on the type of resource (CPU or GPU) on which

it is executed. Such assumption should be visually verified, highlighting all tasks

whose duration is abnormally large compared to the others of the same type/re-

source. We treat these tasks as independent outliers, expecting their space/time

115

location is unrelated to other tasks behavior. If that is not the case, it may mean

that the whole platform has been perturbed at particular moments or that the per-

formance of a given resource differs from the others of the same type. To check

this uniformity expectation we rely on the enriched space-time view with outliers

detection presented in Section 5.1.2.

• Dependencies management. Large input matrices generate many tasks, especially

when the application starts. We, want to monitor the number of ready and sub-

mitted tasks, which can be done using the scheduler task metrics view presented

in Section 5.2.2. For this Cholesky implementation, all tasks are expected to be

submitted when the application starts. On scale, the number of task dependencies

is extremely large. Automatically selecting which ones to display is haphazard.

If a detailed view becomes necessary for some task dependencies, we rely on the

scripting capability of our framework to select and visualize the offending task de-

pendencies from the performance point of view. These meaningful dependencies

can be visualized enabling dependencies backtracking feature discussed in Section

5.1.5. A common way to find problematic task dependencies is to select tasks in

front of idle time because there should not be an idle time whenever there is enough

parallelism.

• Application progress. The task graph resulting from dense linear algebra always

share a common structure (see Figure 6.1). In a classical semi-sequential execution,

the DAG would be executed much similar to a breadth-first search. However, it is

also possible to carry out a depth-first traversal, favoring task execution on the crit-

ical path. This behavior can be visually checked using the application progression

view presented in Section 5.2.1. Such view represents the pipelining of the sets

of tasks submitted by each outer loop iteration, which can be sufficient to get an

overview of how the scheduler is handling the DAG.

• Idleness quantification. Displaying information on hundreds of thousands of tasks

on a small area in a blunt way generally leads to harmful visualization artifacts

(SCHNORR, Lucas M.; LEGRAND, 2013). For example, in a classical space-time

chart, visually estimating how much time was spent idle can be quite difficult. This

is why it is generally important to aggregate and quantify it in a meaningful and

non-ambiguous way as discussed in Section 5.1.1.

• Potential improvements. Dependencies are expected to be easily handled with

large workloads. In this scenario, the major issue is the load balancing among

116

CPUs and GPUs. To check whether improvements are still possible for a given ex-

ecution, we might rely on the classical scheduling bounds, such as the area bound

and the critical path bound discussed in Section 5.1.3. Such bounds, especially the

area bound, are expected to be tight when the workload is large and allow to esti-

mate how much further improvement can be expected. Furthermore, an ideal task

allocation can sometimes be inferred from such bounds, which may allow helping

understanding how scheduling could be improved as showed in Section 5.2.3.

Building on these expectations, we propose an enriched composite view that com-

bines a classical space-time view with several techniques presented in Chapter 5. Figure

6.3 shows the behavior of a Cholesky execution with the DMDAS scheduler on idcin2.

This view is composed of four panels: the Enriched space-time view (Figure 6.3, top) de-

picts the application states during the time augmented with outliers highlighting, idleness

quantification and the bounds for the makespan, the Application progression panel (mid-

dle) provides insights about how the application DAG is traversed, the Scheduler Task

Metrics (bottom) shows the number of submitted and ready tasks along the execution,

and the ABE solution (right) compares the real execution with the ideal partition found

by the ABE.

A first look on the Enriched space-time view (top) allows us to deduce that there is

room for improvements since the observed makespan is 62700 ms while the ABE is 59464

ms, which means a difference of 5%. The scheduling seems indeed inefficient since there

are periods where any useful computation is performed. The total idleness1 for CPUs

varies from 3 to 6%, while for GPUs it ranges from 2 to 6%. This GPU inactivity is likely

the main source of potential improvement, even if the idleness rate is similar to that shown

on CPUs since a GPU delivers a higher GFlops rate.

By analyzing the values of ready tasks in the Scheduler Task Metrics panel (Figure

6.3, bottom), we can verify that this idle time does not come from a sudden lack of ready

tasks. The submitted curve clearly indicates that all tasks have been submitted in the

beginning and that task execution started immediately after, without waiting for fully un-

rolling the DAG. As suggested in the Application Progression view (Figure 6.3, middle),

DAG traversal is rather depth-first. Many outer loop iterations are parallel (the maximum

is 30 around 40000 ms of execution), explaining why there is always a sufficient number

of ready tasks.

1As discussed in Section 5.1.1, the total idleness comprises all non-computing states including not only
the "Idle" and "Sleeping" states reported by StarPU but also the scheduling related ones, e.g., Initialization
and Data Prefetching.

117

Figure 6.3: Composite View of a Cholesky factorization with a large matrix (60×60 tiles
of 960×960) executed with the DMDAS scheduler. The first panel (top) depicts a classical
space-time view with workers on y-axis and tasks duration along x-axis. This basic view
is enriched with outliers highlighting, idleness quantification and the makespan bounds
(ABE and CPE). The second panel (middle) shows the Application Progression, which in
this Cholesky example is given by the timestamp of the iterations of the outer-loop. The
third panel (bottom) depicts two metrics provided by the StarPU scheduler to show the
amount of submitted and ready tasks along the time. The last panel (vertical bars on the
right) shows a comparison between the ideal allocation obtained in the ABE calculation
(bullets) and the real allocation (bars).

62
70

0

A
B

E
59

46
4

C
P

E
21

49

2.96%
4.17%
4.85%
2.65%
3.83%
3.38%
4.19%
3.70%
3.09%
3.37%
4.66%
2.68%
2.48%
3.44%
3.49%
3.12%
2.86%
4.48%
3.31%
2.96%
3.86%
4.63%
3.33%
1.35%
4.25%
5.87%
1.83%
1.96%

ready

submitted

0 20000 40000 60000

0
500

1000

0
10000
20000
30000

Time [ms]

ta

sk
s

CPU0
CPU1
CPU2
CPU3
CPU4
CPU5
CPU6
CPU7
CPU8
CPU9

CPU10
CPU11
CPU12
CPU13
CPU14
CPU15
CPU16
CPU17
CPU18
CPU19
CPU20
CPU21
CPU22
CPU23
CPU24
CUDA0
CUDA1
CUDA2

0

20

40

60

0 20000 40000 60000

Scheduler Task Metrics

W
or

ke
rs

ph
as

e

dgemm dpotrf dsyrk dtrsm

Application Progression

Enriched space−time view

dtrsm

dsyrk

dpotrf

dgemm

C
P

U

C
U

D
A

0

5000

10000

15000

20000

0

20

40

60

0

500

1000

1500

0

500

1000

1500

of tasks

Source: The Author

118

Since resource idleness is not a consequence of a lack of ready tasks, we can

suppose that such starvation is more likely explained either by data prefetching problem

(some tasks are ready but their input data is not yet transferred) or possibly by some

priority problem (the priorities, used by the scheduler to choose which task to schedule

first when several of them are ready, might be inadequate). The first explanation is likely

to be the right one here. Indeed, most large idle periods where some workers are not

doing useful computations also coincide with abnormally long DGEMM tasks on GPUs. A

further investigation shows that these idle periods correspond to filtered scheduling states

(not shown for clarity) where workers try to actively fetch data. For an unknown reason,

the GPUs seem to freeze during a task execution inside the proprietary CUBLAS DGEMM

kernel, ultimately blocking other tasks eagerly waiting for GPU data. Understanding why

GPUs sometimes get stuck would certainly solve the issue2 but, on the other hand, this fact

clearly suggests a weakness of the chosen scheduler which assumes that tasks duration

have small variability. Using other schedulers may, therefore, alleviate this.

The four-bar plots of the ABE solution panel (Figure 6.3, right) show the ideal

allocation when calculating the ABE. They show how the GPUs have been overused with

DGEMM tasks and under-exploited for DSYRK and DTRSM tasks. It, therefore, suggests

constraining the DSYRK and DTRSM tasks to run exclusively on GPUs. Performance

gains when constraining some tasks to GPUs were already reported in the literature by

Lima et al. (2015). However, their results were achieved using scheduler hints provided

by programmer annotations. In our case, the suggestion of when and which tasks to con-

strain to GPUs is inferred from the solution of the ABE without relying on programmer’s

knowledge about task’s architecture affinity.

Our previous analysis based on the composite view gave us hints on which changes

could be done to improve the performance. First, we have extended our experiments range

by including DMDA and WS schedulers which now allow us to analyze executions vary-

ing scheduling policies (DMDAS, DMDA, and WS). The second hypothesis has given by

ABE solution view and suggests constraining some tasks to execute only on GPUs. We

have modified the application code to force the allocation of DSYRK and DTRSM tasks to

GPUs.

2Since the CUDA and CUBLAS are closed-source tools, we cannot check the DGEMM kernel and the
transferring implementations. To try to understand this behavior we have based on StarPU-Simgrid ex-
ecutions, using the same StarPU code and the same performance models, to artificially slow-down some
DGEMM tasks on GPUs. Despite these efforts, we were not able to reproduce this behavior. We believe that
it could be related to a specific configuration of the idcin2 platform (driver, CUDA and GPU cards) since
this issue is not reproducible on other platforms and idcin2 is no longer available.

119

These changes lead us to the six-scenario comparison of Figure 6.4. This figure

represents six different executions varying the schedulers (columns) and the code (rows).

The previous used DMDAS scheduler (center) is compared with the DMDA (left) and the

WS (right). The three executions of the first row (Unconstrained) were performed using

the original code, which means the DMDAS one is exactly the same one presented in

Figure 6.3. The executions on the second row (Constrained) were done using the modi-

fied code where DSYRK/DTRSM tasks can only be executed on GPUs. In each scenario,

the space-time view is complemented by two additional panels depicting the Application

Progression and the ABE solution.

First of all, regarding the Application progression panels, it is interesting to see

how these three schedulers differ in their traversal of the DAG. While the DMDA algo-

rithm (left) has a breadth-first traversal (very few iterations of the Cholesky outer loop are

active at the same time), the DMDAS (center) has a much more depth-first traversal as

it takes the priority of the critical path into account. The traversal of the Work Stealing

(WS) is even more depth-first as almost all outer loop iterations are still in progress at the

end of the execution. Such way of progressing through the DAG is typical of WS and

favors local data accesses even though the algorithm does not rely on data transferring

modeling used by DMDA and DMDAS.

Second, when constraining the DSYRK and DTRSM tasks to run only on the GPUs

(Figure 6.4 bottom row), task allocation of these two task types then corresponds to the

ideal one. However, if such constraint allows both DMDAS and Work Stealing to obtain

near-optimal executions (within less than 2% of the lower bound as given by the ABE),

this helped only moderately the DMDA algorithm. Many synchronized idle periods can

be observed and imputed to both dependency issues (not enough parallelism is obtained

from such a strict breadth-first traversal) and particularly slow tasks (probably slowed

down by simultaneous data transfers). The Ready tasks curve of this schedulers is quite

unstable and shows some valleys where possibly there is a lack of ready tasks to fill the

workers. Interestingly, very few outlier tasks appear in the DMDAS and WS executions

although the latter still seems a bit sensitive to this, as inactivity periods on CPUs (white

areas) still correlate with the occurrence of DGEMM outliers (darker green) on GPUs.

Finally, we want to stress that such observations are no coincidence. We randomly

ran similar scenarios ten times and although the numbers always slightly differ, the gen-

eral behavior and conclusions are similar.

We also want to highlight the fact that the area bound estimations (ABE) can

120

Figure 6.4: Comparison view of six executions of the Cholesky factorization. Executions
differs in the used schedulers (columns) and the source code (rows). The first row shows
executions with the original source code (Unconstrained) using three different schedulers
(DMDA, DMDAS and WS), which means the DMDAS one is exactly the same presented
on Figure 6.3. The second row shows executions with the modified source code where
DTRSM and DSYRK tasks are constrained on GPUs. The additional panels (Application
Progression, Scheduler Metrics and ABE solution) are similar to the ones presented on
Figure 6.3.

DMDA DMDAS WS

66
94

2

A
B

E
59

74
8

C
P

E
22

01

2.7%
3.6%
2.0%
2.2%
2.1%
2.5%
2.2%
1.6%
1.8%
1.6%
2.6%
3.1%
3.2%
2.1%
3.2%
3.4%
3.8%
2.3%
2.9%
3.5%
4.0%
3.3%
2.8%
2.6%
3.1%

20.6%
20.2%
19.9%

62
70

0

A
B

E
59

46
4

C
P

E
21

49

3.0%
4.2%
4.8%
2.6%
3.8%
3.4%
4.2%
3.7%
3.1%
3.4%
4.7%
2.7%
2.5%
3.4%
3.5%
3.1%
2.9%
4.5%
3.3%
3.0%
3.9%
4.6%
3.3%
1.4%
4.2%
5.9%
1.8%
2.0%

60
96

3
A

B
E

58
45

2

C
P

E
21

46

4.8%
2.8%
2.3%
3.2%
3.3%
1.5%
3.1%
2.6%
3.6%
2.4%
2.9%
3.2%
1.8%
3.5%
2.1%
5.0%
4.8%
2.7%
2.6%
3.1%
3.3%
3.0%
2.3%
2.4%
3.6%
4.0%
2.1%
2.1%

0 20000 40000 60000 0 20000 40000 60000 0 20000 40000 60000
CPU0
CPU1
CPU2
CPU3
CPU4
CPU5
CPU6
CPU7
CPU8
CPU9

CPU10
CPU11
CPU12
CPU13
CPU14
CPU15
CPU16
CPU17
CPU18
CPU19
CPU20
CPU21
CPU22
CPU23
CPU24
CUDA0
CUDA1
CUDA2

W
or

ke
rs

dgemm dpotrf dsyrk dtrsm

0 20000 40000 60000 0 20000 40000 60000 0 20000 40000 60000

0

20

40

60

ph
as

e

0 20000 40000 60000 0 20000 40000 60000 0 20000 40000 60000
0

500

1000

1500

Time [ms]

R
ea

dy
 ta

sk
s

CPU CUDA CPU CUDA CPU CUDA CPU CUDA CPU CUDA CPU CUDA CPU CUDA CPU CUDA CPU CUDA CPU CUDA CPU CUDA CPU CUDA
0

500

1000

1500

0

500

1000

1500

0

20

40

60

0

5000

10000

15000

20000

0

500

1000

1500

0

500

1000

1500

0

20

40

60

0

5000

10000

15000

20000

0

500

1000

1500

0

500

1000

1500

0

20

40

60

0

5000

10000

15000

20000

N
um

U
nc

on
st

ra
in

ed

64
03

1

A
B

E
60

00
4

C
P

E
21

14

13.4%
13.5%
13.6%
13.8%
13.6%
13.6%
14.5%
14.1%
12.4%
12.1%
13.6%
2.9%
2.6%
4.0%
4.8%
4.1%
3.0%
3.6%
4.2%
4.1%
4.4%
4.0%
3.2%
3.5%
3.5%
3.6%
2.2%
2.5%

60
14

8
A

B
E

59
01

7

C
P

E
21

59

1.1%
0.4%
0.6%
0.8%
0.7%
1.0%
1.1%
1.2%
1.1%
0.9%
0.9%
1.2%
1.0%
1.0%
1.1%
1.6%
1.3%
1.7%
1.5%
1.5%
1.4%
1.6%
0.3%
0.3%
0.3%
2.5%
1.0%
0.9%

59
54

9
A

B
E

57
60

3

C
P

E
21

60

4.9%
3.9%
4.1%
4.6%
4.4%
3.9%
4.3%
4.7%
4.7%
4.2%
4.1%
3.4%
3.2%
3.5%
2.6%
3.8%
3.5%
3.8%
3.0%
3.3%
4.3%
3.7%
4.1%
3.5%
3.5%
3.2%
1.3%
1.2%

0 20000 40000 60000 0 20000 40000 60000 0 20000 40000 60000
CPU0
CPU1
CPU2
CPU3
CPU4
CPU5
CPU6
CPU7
CPU8
CPU9

CPU10
CPU11
CPU12
CPU13
CPU14
CPU15
CPU16
CPU17
CPU18
CPU19
CPU20
CPU21
CPU22
CPU23
CPU24
CUDA0
CUDA1
CUDA2

W
or

ke
rs

dgemm dpotrf dsyrk dtrsm

0 20000 40000 60000 0 20000 40000 60000 0 20000 40000 60000

0

20

40

60

ph
as

e

0 20000 40000 60000 0 20000 40000 60000 0 20000 40000 60000
0

500

1000

1500

Time [ms]

R
ea

dy
 ta

sk
s

CPU CUDA CPU CUDA CPU CUDA CPU CUDA CPU CUDA CPU CUDA CPU CUDA CPU CUDA CPU CUDA CPU CUDA CPU CUDA CPU CUDA
0

500

1000

1500

0

500

1000

1500

0

20

40

60

0

5000

10000

15000

20000

0

500

1000

1500

0

500

1000

1500

0

20

40

60

0

5000

10000

15000

20000

0

500

1000

1500

0

500

1000

1500

0

20

40

60

0

5000

10000

15000

20000

N
um

C
on

st
ra

in
ed

Source: The Author

121

vary significantly between the two scenarios (e.g., 60004ms for constrained DMDA vs.

57603ms for constrained Work Stealing), which can be initially surprising since these

estimates only depend on the total number of tasks and on the average execution time of

each type of tasks on each different computing resource. This can, however, be explained

by the fact that we use the sample mean of execution time, which may vary a bit. From

our investigation, this variation is not really explained by the occurrence of outliers but

rather biased toward one or another scheduler. We believe that this is the consequence of

a better locality (hence cache usage) but more complex measurements would be needed

to fully evaluate this hypothesis.

6.2.2 Workload S - Cholesky Factorization of 12×12 tiles of size 960×960

The assumptions that can be made when executing smaller DAGs are much more

related to task dependencies. Unfortunately, even in very small instances, the number of

dependencies is very large and displaying all them quickly leads to cluttered visualiza-

tions. We detail below the expectations regarding potential improvements, uniformity,

and idleness.

• Potential improvements. On small workloads, the area bound (ABE), which ig-

nores task dependencies, is known to be too optimistic. The critical path bound

(CPE) is expected to be much more relevant, especially on very small workloads

such as the one analyzed here. Still, knowing how tight they are is quite difficult

(AGULLO, E.; BEAUMONT, et al., 2015). For this reason, comparing to the ideal

allocation (CPU vs. GPU) computed by the ABE is meaningless and we focus

therefore mainly on computing and filtering task dependency chains.

• Uniformity. Even with few tasks, uniformity on tasks duration is still expected,

then highlighting outlier tasks can, therefore, be useful.

• Idleness. With a reduced amount of tasks, having a lot of idle time is expected

because of dependencies. Regardless this predominant and clearly identifiable idle-

ness, we keep the quantification of idle periods since it helps to understand why

some schedulers perform better than others. On the other hand, inspect individual

dependencies can give more precise suggestions on performance issues. It is thus

important to identify relevant (either because of the DAG structure or because they

appear to have been particularly delayed) tasks of the DAG, to backtrack their de-

122

pendencies and highlight the dynamic critical path, i.e., the last tasks upon which

they depended on.

From such expectations, we propose a space-time view enriched with dependen-

cies to pinpoint scheduling mistakes. As previously discussed in Section 5.1.5, task de-

pendencies information can be merged into the execution trace. For a Cholesky execution,

the DPOTRF tasks are good candidates to start the investigation of the dependency chain

since they release many other tasks. For this reason, in Figure 6.5 we draw the dependency

chains starting from each DPOTRF.

The execution illustrated in Figure 6.5 was completed in 729 ms while the ABE

is 434 ms and the CPE is 368 ms. The bounds may be loose, but it seems that there is

room for improvements. If we start from the end of the schedule and go backward in

time, we can see a dependency path (in red) that, until timestamp 400ms, fully respects

the alternation DPOTRF–DSYRK–DTRSM. At the very end, all tasks execute right one after

the other, which is optimal.

Figure 6.5: Space-time view of a Cholesky factorization with a small matrix (12×12
tiles of 960×960) executed with the DMDAS scheduler. Black and red lines connect-
ing tasks depict the merged dependency critical paths of DPOTRF tasks. Interactive
version available at http://perf-ev-runtime.gforge.inria.fr/thesis/
vpacasestudyfig3-interactiveView.html

72
9

A
B

E
43

4

C
P

E
36

8

CPU0
CPU1
CPU2
CPU3
CPU4
CPU5
CPU6
CPU7
CPU8
CPU9

CPU10
CPU11
CPU12
CPU13
CPU14
CPU15
CPU16
CPU17
CPU18
CPU19
CPU20
CPU21
CPU22
CPU23
CPU24
CUDA0
CUDA1
CUDA2

0 200 400 600

Time [ms]

W
or

ke
rs

dgemm dpotrf dsyrk dtrsm Dependency Paths 1 2

Source: The Author

A potential "mistake" appears in time ≈600ms where the DSYRK could have been

http://perf-ev-runtime.gforge.inria.fr/thesis/vpacasestudyfig3-interactiveView.html
http://perf-ev-runtime.gforge.inria.fr/thesis/vpacasestudyfig3-interactiveView.html

123

executed a little earlier. Slightly before, some DTRSM are not executed right after their

DPOTRF maybe because of data transfer or more likely because of a wrong priority. This

critical path (red) does not merge with the one obtained for the DPOTRF of the first it-

erations (black one). Now, when looking at the other (black) dependency path, we can

see many times that the tasks are scheduled as soon as possible as if there was some pri-

ority problem, which could possibly be solved with another scheduler. The scripting

feature allows plotting only dependencies whose duration is larger than a given threshold,

avoiding graphical clutter.

At the end of the execution, it is possible to identify another problem following

the second dependency path (red). Coming back in time from the end to the beginning of

the execution, we can verify that tasks are executed on their preferred resource (DPOTRF

on CPUs, DSYRK and DTRSM on GPUs). However, slightly before time 600 ms (≈537

ms), critical DSYRK tasks start running on the CPUs, slowing the progression towards the

end. Likewise, slightly before time 400 ms (≈358 ms), critical DTRSM tasks are executed

on the CPUs whereas they are known to be less efficient on such resources. It seems that

this scheduler makes a bad decision and that constraining DTRSM and DSYRK to be

executed on GPUs may reduce the total makespan. It is important to mention that al-

though the solutions (fix priorities evaluation by changing the scheduler, and constraining

DTRSM/DSYRK tasks to GPUs) suggested by our analysis are the same as in the previous

use case (Section 6.2.1), the underlying reasons are fundamentally different.

Based on the previous analysis, we have therefore decided to vary again the three

schedulers and forcing DSYRK and DTRSM tasks on GPUs. Figure 6.6 compares the six

resulting execution using this workload. Comparing the original unconstrained executions

(first row on top), we can observe that the behavior demonstrated by the DMDA and the

DMDAS are not so different. They both present similar workload partition between CPUs

and GPUs, keeping the last ones with occupation ratios about 90% or more. They both

have similar runtimes, with unmerged critical paths on which priority and critical task

allocation problems can be identified. The small performance gain of DMDAS (≈3.5%

faster than DMDA) is probably due to a better usage of the GPU devices. On the right side,

WS demonstrates a very bad allocation, which is not surprising because it does not take

into account the heterogeneity of the platform. There are several dynamic critical paths

in the WS scheduler, with many DTRSM and DSYRK running on CPUs. It is interesting to

note that the more equal workload partition of WS does not produce a better performance

since it quickly leads to GPUs starvation. This lack of tasks is emphasized by the curve

124

of Ready Tasks of WS.

Analyzing the constrained executions (Figure 6.6, bottom) where DTRSM and

DSYRK tasks are forced to execute only on GPUs, we can observe that such restriction

does not really help for the DMDA and DMDAS policies. Tasks on the critical path are

no longer an issue, but both schedulers still present some priority problems. The behavior

demonstrated by DMDA seems easier to understand: we see some typical list scheduling

behavior with critical DPOTRF being delayed because CPUs are used for not so critical

DGEMM tasks. If one could run these tasks earlier, it appears that the whole makespan

would be greatly improved. Surprisingly, Work Stealing strongly benefits from the im-

posed restriction and now favorably compares against DMDA and DMDAS. It is also

interesting to note that WS manages to keep all CPUs busy from the very beginning, un-

like the other two schedulers. However, GPUs are not fully exploited, in particular at the

end where they should be used to accelerate the DGEMM tasks like the DMDA and DM-

DAS strategies do. If there were a way to prevent DGEMM task execution on CPU after

time 350ms, we would probably get the best of the two scheduling strategies and be much

closer to the optimal execution time.

6.3 Case Study: Multi-node Executions with Starpu-MPI

As discussed in Section 2.3.4, the StarPU is able to handle distributed platforms

thought its StarPU-MPI extension. The major differences introduced by this extension are

the use of several runtime instances (one per node), managing inter-node communications

as tasks, and the static domain decomposition. Since these are the main changes from the

original single-node version of StarPU, they might be the source of new performance

disturbances.

In our previous single-node case study (Section 6.2), we observed that idleness

ratio was considerable low for a large enough matrix size, e.g., in average less than 5%

for executions with a 60×60 matrix (tiles of 960×960) using the DMDAS scheduler (see

Figure 6.4). However, in StarPU-MPI multi-node executions, we can observe very fre-

quent idle periods affecting all the workers (CPU/GPU), especially at the beginning of the

application.

Figure 6.7 shows one execution where this problem appears. The idleness ratio

is always greater than 10% in both nodes but is significantly greater in the second node

(≈16% to ≈25%). Despite the spread occurrence of short idle periods during the whole

125

Figure 6.6: Comparison view of six executions of the Cholesky factorization for
a matrix of 12×12 tiles of size 960×960. Executions differs in the used sched-
ulers (columns) and the source code (rows). The first row shows executions with
the original source code (Unconstrained) using three different schedulers (DMDA,
DMDAS and WS). The second row shows executions with the modified source
code where DTRSM and DSYRK tasks are constrained on GPUs. All these view
are enriched with merged dependency paths starting on DPOTRF tasks. Interactive
version available at http://perf-ev-runtime.gforge.inria.fr/thesis/
vpacasestudyfig4-interactiveView.html

DMDA DMDAS WS

76
4

A
B

E
41

8

C
P

E
35

3

36.1%
29.3%
30.4%
25.4%
41.0%
27.1%
42.8%
42.0%
44.5%
38.3%
22.1%
41.1%
33.0%
19.8%
39.8%
40.1%
34.5%
40.7%
22.8%
40.1%
40.6%
22.9%
40.3%
24.2%
40.5%
10.2%
6.9%
6.9%

73
8

A
B

E
43

1

C
P

E
35

3

32.5%
22.8%
30.2%
35.3%
27.5%
32.2%
42.6%
28.1%
24.9%
26.7%
30.4%
20.5%
27.0%
22.2%
24.6%
22.3%
20.2%
35.5%
23.2%
29.7%
40.7%
48.6%
37.1%
33.6%
47.8%
5.9%
5.7%
3.7%

10
58

A
B

E
43

9

C
P

E
36

3

31.3%
33.2%
34.4%
52.5%
40.3%
29.0%
55.3%
49.2%
25.6%
37.6%
30.1%
40.6%
53.6%
33.6%
41.6%
40.7%
23.2%
33.1%
54.6%
30.5%
24.3%
42.1%
48.1%
38.6%
18.7%
54.6%
49.2%
61.5%

0 300 600 900 0 300 600 900 0 300 600 900
CPU0
CPU1
CPU2
CPU3
CPU4
CPU5
CPU6
CPU7
CPU8
CPU9

CPU10
CPU11
CPU12
CPU13
CPU14
CPU15
CPU16
CPU17
CPU18
CPU19
CPU20
CPU21
CPU22
CPU23
CPU24
CUDA0
CUDA1
CUDA2

W
or

ke
rs

dgemm dpotrf dsyrk dtrsm
Dependency Paths

1
2

3
4

5
6

7

0 300 600 900 0 300 600 900 0 300 600 900
0

10

20

30

Time [ms]

R
ea

dy
 ta

sk
s

U
nc

on
st

ra
in

ed

81
3

A
B

E
43

3

C
P

E
36

0

40.7%
43.1%
34.9%
35.5%
41.4%
36.3%
48.5%
48.3%
47.4%
47.4%
51.4%
37.4%
44.0%
44.4%
52.2%
45.6%
44.9%
43.2%
46.5%
46.8%
47.0%
41.9%
45.6%
41.1%
44.6%
7.8%
3.6%
4.6%

80
4

A
B

E
42

6

C
P

E
36

2

41.7%
31.8%
38.4%
40.3%
40.0%
39.2%
31.8%
32.1%
47.2%
38.5%
38.5%
31.9%
34.2%
40.1%
35.4%
35.9%
35.3%
35.7%
50.9%
58.0%
55.8%
56.3%
67.9%
68.9%
68.9%
5.5%
4.6%
4.3%

80
9

A
B

E
44

0

C
P

E
36

4

44.9%
28.4%
27.2%
25.0%
40.6%
35.8%
26.0%
55.3%
25.5%
24.5%
20.9%
23.4%
36.3%
30.5%
38.8%
25.7%
19.5%
14.0%
36.8%
6.3%

20.3%
31.8%
27.3%
22.0%
21.7%
36.7%
41.2%
42.7%

0 300 600 900 0 300 600 900 0 300 600 900
CPU0
CPU1
CPU2
CPU3
CPU4
CPU5
CPU6
CPU7
CPU8
CPU9

CPU10
CPU11
CPU12
CPU13
CPU14
CPU15
CPU16
CPU17
CPU18
CPU19
CPU20
CPU21
CPU22
CPU23
CPU24
CUDA0
CUDA1
CUDA2

W
or

ke
rs

dgemm dpotrf dsyrk dtrsm
Dependency Paths

1
2

3
4

5
6

7
8

9
10

0 300 600 900 0 300 600 900 0 300 600 900
0

10

20

30

Time [ms]

R
ea

dy
 ta

sk
s

C
on

st
ra

in
ed

Source: The Author

http://perf-ev-runtime.gforge.inria.fr/thesis/vpacasestudyfig4-interactiveView.html
http://perf-ev-runtime.gforge.inria.fr/thesis/vpacasestudyfig4-interactiveView.html

126

the execution, the large periods in the beginning seems to be the most impacting ones.

Synchronized idle periods, in the beginning, are not totally unexpected since at this mo-

ment the parallelism is not yet fully unfolded. However, in the first node, they occur even

after the number of ready tasks is already enough to fill the computer resources, e.g., the

large idle period at ≈6000ms.

Figure 6.7: StarPU-MPI multi-node execution of the Cholesky factorization with a matrix
of 75×75 tiles of 960×960 using PRIO scheduler. On the bottom, a zoom over the first
7500ms of the execution where large synchronized idle periods can be identified. The red
curve shows the dependency path of task 0_5051.

A
B

E
: 1

05
19

0

A
B

E
: 9

53
23

12
42

79

11.24%
11.36%
11.7%

12.02%
11.91%

15.99%
16.82%
17.21%
17.43%
17.48%

18.38%

12.62%

24.95%

22.24%

0 40000 80000 120000

0_CPU0
0_CPU1
0_CPU2
0_CPU3
0_CPU4

0_CUDA0_0

0_CUDA1_0

1_CPU0
1_CPU1
1_CPU2
1_CPU3
1_CPU4

1_CUDA0_0

1_CUDA1_0

0 2000 4000 6000

0_CPU0
0_CPU1
0_CPU2
0_CPU3
0_CPU4

0_CUDA0_0

0_CUDA1_0

1_CPU0
1_CPU1
1_CPU2
1_CPU3
1_CPU4

1_CUDA0_0

1_CUDA1_0

Time [ms]

W
or

ke
rs

dgemm dpotrf dsyrk dtrsm 0_5051

Source: The Author

In Figure 6.7, the space-time view was enriched with dependency edges, which

help us to formulate some hypothesis. In this view, the red line shows a backward depen-

dency path starting at a DSYRK task (id 0_5051) at 0_CUDA1_0 (Node 0). This task

was chosen since it is the first task starting after a significantly long idle period. Going

back six steps in the dependency path, we can identify that the task 0_5051 has been

directly released by a very long MPI operation (red-rectangle at the top from 2504ms to

7050ms). Following-back in the path, this MPI operation was dispatched after a DGEMM

task followed by a DTRSM one on 1_CUDA1_0 (Node 1), which in turn were preceded

by another long MPI operation (from 125ms to 2420ms). These long MPI operations

could be the cause of idle periods appearing during the computation but do not seems to

127

be related with the slow start of the computation on Node 1, where the first task starts

only at 643ms at 1_CPU1.

From this initial analysis, our investigation has indicated that these idle periods are

caused by a combination of two factors: first, the way the MPI thread of StarPU handles

asynchronous communications during the beginning of the application which can explain

the slow-start on Node 1; second, the MPI threshold configuration between the eager and

the rendezvous communication modes which can be related to idle periods during the

computation, after the parallelism is sufficiently unfolded.

6.3.1 Slow-start in Remote Nodes

The initial analysis enables us to identify an issue during the beginning of the ex-

ecution where some nodes take a long time to get started. Our hypothesis suggests that

this problem is related to how StarPU-MPI handles the MPI asynchronous communica-

tions. As showed in Figure 6.8, this behavior was observed in several other executions

with different worker combinations, number of nodes, and schedulers.

Since the data partitioning between distributed nodes is static, StarPU identifies

all inter-node point-to-point communications to satisfy the data dependencies that cross

a node border. Once they are known, the per-node MPI thread of StarPU issues multiple

MPI_Isend and the corresponding MPI_Irecv operations from the start. Depending

on the input size and the number of tiles involved in a specific run, the amount of these op-

erations might be very large. The problem is that some of these operations might complete

(i.e., the communication finishes) before posting all remaining asynchronous operations.

When such scenario occurs, the application is delayed because the MPI thread handling

the communication operations has not issued an MPI_Test to detect the reception and

unlock the corresponding tasks. This negative behavior becomes worse when multiple

nodes are used and the borders among tiles have more complex configurations (see P × Q

parameters).

The solution for this first problem was to interleave MPI_Test calls between each

issue of MPI asynchronous communications. If the test call indicates that a message has

been received, the MPI thread of StarPU can satisfy an inter-node data dependency. Since

test calls provide a negligible overhead with potentially great benefits at the beginning of

the application, this solution is now mainstream in the StarPU code. After the fix, idle

periods on remote during the beginning of the computation disappear.

128

Figure 6.8: The first 8000ms of three StarPU-MPI multi-node executions of the Cholesky
factorization with a matrix of 75×75 tiles of 960×960. Slow-start issues on remote nodes
are present in the beginning of all executions whatever the scheduler used (PRIO, DM-
DAS, LWS).

0_CPU0

0_CPU4
0_CUDA0_0
0_CUDA1_0

1_CPU0

1_CPU4
1_CUDA0_0
1_CUDA1_0

0 2500 5000 7500

W
or

ke
rs

PRIO

0_CPU0

0_CPU4
0_CUDA0_0
0_CUDA1_0

1_CPU0

1_CPU4
1_CUDA0_0
1_CUDA1_0

0 2500 5000 7500

W
or

ke
rs

DMDAS

0_CPU0

0_CPU4
0_CUDA0_0
0_CUDA1_0

1_CPU0

1_CPU4
1_CUDA0_0
1_CUDA1_0

0 2500 5000 7500

Time [ms]

W
or

ke
rs

dgemm dpotrf dsyrk dtrsm 0_5051

LWS

Source: The Author

129

6.3.2 Idle Periods During the Computation

The use of interleaved MPI_Test has reduced the idle periods at the beginning of

the execution. However, the remaining idleness during the execution is still present after

the fix, indicating that the origin is elsewhere.

The root cause of this problem has been identified as the threshold to switch from

the eager to the rendezvous communication modes. The eager mode allows a send oper-

ation to complete without an acknowledgment from the other side; while the rendezvous

mode requires a reception acknowledgment. The change of communication mode is

driven by the message size. The default value of the OpenMPI 2.0.2 installation used

in all experiments is 64 KBytes. Messages smaller than such size will be sent using the

eager mode, favoring asynchronism, while larger messages are sent using the rendezvous,

for throughput. In our Cholesky case, the volume of data dependencies depends on the

tile size. For example, a commonly used squared tile of 960 8-byte elements occupies

≈7.37 MBytes. This implies that only the rendezvous protocol is used throughout the

experiments with the default eager limit. Unfortunately, the rendezvous protocol also

introduces communication aggregation: MPI requests submitted closely enough will be

sent and received together.

This aggregation behavior can be visually checked in Figure 6.9. This view in-

cludes an additional panel (bottom) with curves depicting the number (per node) of con-

current MPI operations along the time. In the space-time panel (top), the backtrack of the

dependencies of two tasks starting right after long idle periods, highlight they are delayed

due to two very long MPI operations (red and blue paths). Correlated with the end of

these communications we can observe a large number of MPI operations completing at

the same time (around 2700ms and 5700ms on Node 0 and around 8700ms on Node 1).

We have typically observed this kind of behavior, with as many as 40 7.37-MByte trans-

fers aggregated together that finish at the same time. This massive network operation may

take ≈2.5s to complete altogether, instead of completing progressively. Such undesired

behavior has been reported to the OpenMPI team, which agreed something needs to be

fixed. This behavior is harmless during most of the execution, except in the beginning

where little parallelism exists: the execution starts with a single DPOTRF task in the first

node, followed by DTRSM tasks, whose results need to be transferred to other nodes as

quickly as possible, because all tasks from other nodes depend on these first tasks to start

unrolling their part of the DAG. Good schedulers tend to execute the DTRSM tasks as

130

quickly as possible, but that leads to submitting MPI requests very closely, and thus see-

ing them all aggregated, and thus received very late. The work-around proposed by the

OpenMPI team is to force the eager mode, to avoid aggregation and instead get progres-

sive reception and thus better reactivity, even if it leads to lower network efficiency since

clearly, the beginning is very sensitive to pipelined delivery.

Figure 6.9: The first 10000ms of a StarPU-MPI multi-node execution of the Cholesky
factorization with a matrix of 75×75 tiles of 960×960 using the DMDAS scheduler. The
additional panel depicts Concurrent MPI operations which enables a correlatiion with
long MPI transfers delaying tasks 0_5315 and 1_2792.

0_CPU0
0_CPU1
0_CPU2
0_CPU3
0_CPU4

0_CUDA0_0

0_CUDA1_0

1_CPU0
1_CPU1
1_CPU2
1_CPU3
1_CPU4

1_CUDA0_0

1_CUDA1_0

A
pp

lic
at

io
n

W
or

ke
rs

dgemm dpotrf dsyrk dtrsm 0_5315 1_2792

●●●●●
●

●
●
●●

●●●●●●●●
●●●

●●●●●

●

●
●●

●●●
●
●
●
●
●
●●

●
●●

●

●
●●

●●●●●●●●
●●●●●●●●

●●
●

●
●●●●●●●

●●●●●
●●●●●

●●●●●●●●●
●●●●●●●

●●●●●●●●●●
●●●●●●●●

●●●●●●
●
●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●

●●●●●
●
●●●●●●●●●●●●●●●

●●●●●
●●●

●●●●●●●●●●
●●●●●●●●

●●●●●●●
●●●●

●●●●
●●●

●●●●●●●●●●●●●
●●●●●●

●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●
●

●

●●

●

●

●●
●
●●

●●●
●●

●●●●●●●●●
●●●●●●●

●●
●●●●

●●●●●●●●●●
●●●●●

●●●●●●●●●●●

●●●

●●●●●●●●●●●●
●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●

●
●●

●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●

●●●●●●●●
●●●●●●●●●

●●

●
●●●

●

●●●
●●●●●●●

●●
●●●

●●●●●
●●●

●●●●●●●●●●●
●
●
●●●●●●●●●●●●●

●●●●

●●●●●●●●●●●●●●●●●●

●●●
●●●●●●●●●●●●●

●●●●●●●●●

●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●●
●●

●●●
●
●●●●●●●●●●●●●●●

●●
●

●●●●●●●●●●●●

●●●●●●●●
●●●●●

●●●●
●
●●●●●●●●●●●●●●

●●●
●●●●●●●●●●●●●●●●●●●

●●●
●●●●●●●

●
●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●●●

●●●●●●●●●●●
●●●●●●●●

●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●
●

●

●●●●●●●●●●●●●●●●●●●●●●
●●●

0
20
40
60

0 2500 5000 7500 10000
Time [ms]

C
on

cu
rr

en
t

M
P

I T
as

ks

● ●0 1

Source: The Author

The fix for the second problem is to increase the eager limit to a value that encom-

passes the tile size in bytes, enabling an asynchronous exchange for all data dependencies.

We have increased the tile size to 8 MBytes to confirm that a higher eager limit (using

the btl_tcp_eager_limit option of OpenMPI) brings performance gains. Figure

6.10 presents a comparison between these two scenarios, the default eager limit (left) and

the modified one (right). The fix using a greater eager limit has lead to a reduction in the

idleness ratio in all workers of all nodes. Using the default limit (left), it is possible to see

some long MPI operations causing significant delays on several tasks (red, green, blue and

purple dependency edges) while on the modified version, these large synchronized idle

periods affecting all workers on a node have disappeared. The parallelism unfolding can

also be verified in the ready tasks panel, where a high number of ready tasks is reached

131

very quickly and sustained during the execution. The Cholesky Iteration panel shows that

the number of tiles being processed at the same time is much higher. The MPI bandwidth

performance (not depicted) is higher after the eager limit modification. The curves de-

picting MPI concurrent operations show that the aggregation behavior has also changed,

in the original execution, it possible to see a large number of MPI operations completing

at the same time while in the modified one it is possible to see that MPI operations are

progressively completed. Such changes enable a 20% execution time reduction, without

any application change.

Figure 6.10: Comparison of two StarPU-MPI multi-node executions of the Cholesky fac-
torization with a matrix of 75×75 tiles of 960×960 using LWS scheduler, P=1. On the
left, a execution with the default eager limit (64 kB), on the right, a fixed execution with
the modified eager limit.

0

20

40

60

C
ho

le
sk

y
Ite

ra
tio

n

A
B

E
: 4

25
11

A
B

E
: 4

49
25

A
B

E
: 3

87
99

A
B

E
: 4

11
19

80
58

5

31.22%
35.16%
34.71%
34.77%
36.04%

29.49%
33%

33.48%
33.06%
33.55%

36.36%
39.99%
39.96%
39.78%
39.8%

34.28%
37.52%
37.87%
37.36%
38.23%

52.56%

46.86%

49.2%

43.89%

56.83%

51.48%

53.53%

48.69%

0_CPU0

0_CPU4
0_CUDA0_0
0_CUDA1_0

1_CPU0

1_CPU4
1_CUDA0_0
1_CUDA1_0

2_CPU0

2_CPU4
2_CUDA0_0
2_CUDA1_0

3_CPU0

3_CPU4
3_CUDA0_0
3_CUDA1_0

A
pp

lic
at

io
n

W
or

ke
rs

dgemm dpotrf dsyrk dtrsm 0_5710 1_13232 2_5746 3_2995

0_CPU0

0_CPU4
0_CUDA0_0
0_CUDA1_0

1_CPU0

1_CPU4
1_CUDA0_0
1_CUDA1_0

2_CPU0

2_CPU4
2_CUDA0_0
2_CUDA1_0

3_CPU0

3_CPU4
3_CUDA0_0
3_CUDA1_0

S
ta

rP
U

 W
or

ke
rs

Callback
FetchingInput

Idle
Overhead

Progressing
PushingOutput

Scheduling
Sleeping

Submiting task

●

●

●●
●

●
●

●

●

●

●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●
●●●●●●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●●●

●

●●●

●

●

●

●

●

●

●

●

●
●●●●●●●●●●●●●●●●●●●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●●●●●●●●●
●

●

●

●

●

●

●

●

●

●
●●●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●
●

●●●●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●
●

●
●

●●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●

●

●
●●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●●●●●●●

●

●

●

●

●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●●●●●●●●●●

●

●
●●

●

●

●

●

●
●

●

●

●
●●●●●●●●●●●●●

●
●

●

●
●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●●●●●

●

●●●●●

●●●

●

●

●
●●

●

●
●

●

●●

●●●●●

●
●●●

●

●
●

●
●

●

●

●

●●●●●●●●
●

●●
●

●
●●

●●●
●

●

●
●

●

●●
●

●

●

●

●
●

●●

●

●●●●●

●
●

●
●

●●●●

●

●●●●●●●●
●

●

●

●

●

●

●
●

●●

●●
●●●●●

●

●●

●
●

●●●●●●●●●●

●

●●

●

●●●●●●●●●●●

●

●●●●●●●

●

●

●
●

●●●●●●●●

●

●●
●

●●●●●●●●●●

●

●

●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●

●
●

●

●●●

●

●

●●

●
●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●

●

●●●
●

●●

●

●

●

●

●

●●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●●
●

●

●

●

●

●

●

●●●●
●

●●

●

●●●

●

●

●

●●
●

●

●

●

●
●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●
●

●

●

●
●

●●●●

●

●

●

●
●●●●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●
●●●

●

●●

●

●

●

●

●●
●

●
●

●
●●

●

●
●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●●●●●●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●

●

●

●

●

●

●
●●●●

●

●

●

●
●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●●●●●

●

●

●●●

●
●

●

●

●

●

●

●
●

●

●

●
●●●●

●

●

●

●

●

●

●

●●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●●
●

●●●●●●●●●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●●●●●●●●●●●●
●

●

●

●●

●

●●

●

●

●

●

●●

●

●

●

●

●
●●●●●●●●

●

●

●

●

●
●

●

●

●

●

●

●

●●●●●

●
●

●

●

●

●●

●

●

●
●●●●●●●●

●

●

●●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●●

●
●

●●●●●●

●

●
●●●●●●●●

●

●

●

●

●

●

●
●

●●●
●

●

●●●●●
●

●

●
●●

●
●

●
●●●●

●

●
●●●

●
●●

●●

●

●
●

●●●
●●●●●●●●

●

●
●

●●

●
●●●●●●●

●

●●●●
●

●

●

●

●

●

●

●

●●●●●●●●●●●●

●●
●

●●●
●

●●

●
●

●●●●●●●●
●

●

●

●

●●●●●●●●●●●●●●●●
●●●●●●●●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●

●

●

●

●

●

●

●

●●
●

●

●

●●●

●●

●●●●

●

●
●

●
●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●
●●●●●●●

●

●

●

●

●

●●●●●●

●

●●

●
●

●

●

●●●

●

●●

●●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●●

●

●

●
●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●●●●●

●

●

●

●●●

●
●

●
●

●

●
●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●
●

●

●

●●●●●●●●●

●

●

●
●●

●●

●
●●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●

●
●

●

●

●

●
●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●●●●●●●●●●●

●

●

●

●●●●●

●

●

●

●

●

●
●●●●●●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●●●●●●●●●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●●●●●●●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●
●

●●●

●
●●●●●●●●●●

●

●●●

●

●
●

●

●

●

●

●
●●●●●

●

●●

●

●
●

●

●

●●●●

●
●

●

●

●

●●●

●

●

●

●

●

●
●

●●●

●

●●●●●●

●

●●●

●

●●●●●●

●

●
●●●●●●

●

●

●

●

●

●

●

●

●
●●●●●●●

●

●
●

●
●

●

●●
●●●●●●●

●●

●●●●●●●●

●
●

●

●●●●●

●

●

●

●●●●
●●

●●●●●●●●●●
●

●

●●

●

●

●

●●●●●

●

●●●●●
●●

●●●●
●

●

●
●●●●●●●●

●

●●●
●●●●●●●●●●●●●●●●●●●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●
●●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●●●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●●●●●●●●●●●●●●●●●●●●●

●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●●●●

●

●

●●

●
●●

●●●●●●

●

●
●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●●

●

●

●
●

●●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●●●●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●●●

●

●

●
●

●

●

●

●
●●●●●

●
●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●
●

●

●

●

●

●

●

●

●

●●●●

●

●

●
●

●
●

●

●

●

●
●

●

●●●●●●●●●●●●●●●●

●

●

●●

●

●

●

●

●

●●●

●

●
●●

●
●

●

●
●

●
●●●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●●●●

●

●

●●●●●●

●
●

●
●

●

●●●●

●

●
●●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●●●●●

●

●

●

●●●●

●●

●

●

●

●

●
●

●

●●●●

●

●
●

●

●●

●

●

●

●

●

●

●●●●●●

●
●

●
●●●●●●

●

●

●●●

●
●

●

●

●
●

●

●

●

●●

●
●●●●●●●

●

●

●

●

●

●

●●●●●●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●●●●●●

●

●

●
●●

●
●

●

●
●

●●●●
●

●

●●●●●●●●●●

●
●

●

●●●

●

●●●●

●

●

●
●

●

●

●

●

●

●

●

●
●

●●●●●●●●●

●
●

●

●●

●

●

●

●

●
●●●●●●●●●●

●
●●

●

●

●
●

●
●

●
●●●●●

●
●●●●

●

●●●●●

●

●

●

●

●

●

●
●●●●●●

●
●●●●

●

●

●
●

●
●●●●●●

●
●

●

●

●

●

●
●

●

●
●

●●●
●

●●●●●●●

●
●

●

●

●●●●●●●●

●●

●
●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●

●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●

●
●●0

100

200

300

R
ea

dy

● ● ● ●0 1 2 3

●

●

●

●

●●

●

●

●●●

●

●●●●●●

●

●

●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●
●

●

●
●

●

●

●●●

●

●

●

●

●●

●

●●●●●●●●

●

●

●

●
●

●

●●●●●●

●
●●●●●

●

●

●

●
●

●

●●●●●●●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●●
●

●

●

●

●●●●●

●

●●●●●●

●

●
●●●●

●

●●●●●●

●

●

●

●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●●

●●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●●●●●●●●●●

●

●

●

●

●●●

●

●

●●●●●

●

●

●●●●●●●

●●

●

●●●●●●●●

●

●●●●●●●

●

●

●

●●

●

●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●●

●

●

●
●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●●●

●

●

●

●

●
●

●

●

●

●●●

●

●●●●●●●●●●●●●●●●●●●●

●

●

●
●●●

●

●●●●●●●●●●●●

●

●

●
●

●

●

●●

●

●●●●●●

●
●●●●●●●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●●

●

●●●

●

●

●
●

●

●

●

●●

●

●●●

●

●

●

●●

●

●●●

●●●●●●●●●●●●●●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●●

●

●●●●

●

●●●●●●●●●

●
●

●

●

●

●●●●●●

●

●●●●●●●●●

●●

●

●

●

●●●

●

●

●

●

●

●●●

●

●●●●●●●●

●

●●●●●●●●●●●

●

●
●

●●

●

●●●●●●●●●●●●●●

●

●

●
●

●

●●●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●

●

●

●

●

●
●

●●

●

●
●

●
●

●

●

●

●
●

●●●●●

●

●

●

●

●●●

●
●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●●●

●

●
●

●

●

●

●

●●●●●

●

●

●●●●●●

●

●●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●●●●

●

●●●●●

●

●

●

●

●●●●●●●

●

●

●●
●

●●●●
●

●
●

●

●

●●

●
●

●

●●●●●

●●

●
●

●●●●●●●

●

●●●

●

●●●

●

●
●

●●●
●

●

●

●●●

●

●

●●●

●●

●●●●●●●●●●●●●

●

●

●

●

●

●●

●●

●
●●●●●

●

●

●

●

●
●●

●

●●

●

●●
●

●●●
●

●

●

●●●

●

●●●●●●
●

●●●●●●

●

●

●

●

●

●

●

●

●

●

●
●

●●●●●

●●●●

●●●
●

●

●●●●●●●●●●

●

●●●●

●

●●●●●●

●

●

●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●

●

●

●

●●
●

●

●●●●

●●●●

●●●●

●

●

●

●

●●●

●

●

●●●

●

●●●●

●●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●●

●●

●

●

●●

●
●●●●●

●

●

●

●

●●●●

●

●●●●

●

●●

●

●●●

●
●●●

●

●●●●●●●●●●

●
●●●●●●●●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●●●●

●●

●

●●●
●

●

●

●●●●

●

●

●

●

●

●

●

●
●

●

●

●●●●

●●

●

●

●

●●●●●●

●

●

●

●●●●●

●

●●●●●●
●

●●●●●●●●●
●

●

●●●●●

●●●●●●●

●

●●●●
●

●●

●

●●●●●●●●●

●

●●●

●

●●●●

●
●

●

●●

●

●

●

●

●

●●
●

●●

●

●

●

●

●

●

●●●●

●

●

●

●

●●

●

●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●●●●

●
●

●

●

●
●●●

●

●●

●

●

●

●

●

●

●

●

●

●●●

●

●●
●

●

●

●

●

●●●

●

●

●

●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●●●

●●

●

●

●

●

●

●

●

●

●

●

●●

●
●●

●

●

●

●

●

●

●●●●●●●●●

●

●●●●●●●●

●

●
●●●●●●●●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●
●●●●●●●●●●

●

●
●

●
●

●

●

●

●

●

●

●●●

●

●

●●

●

●●●

●

●

●

●

●

●

●

●●●

●

●

●

●●●

●

●●●●●

●

●●

●

●●●●●●●●●●●●●●●

●

●

●

●

●
●

●

●

●●●●●●●●●●

●

●

●●●●●●●●●●

●●

●

●

●

●

●

●●

●

●

●●●●●●●●●
●●

●●●●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●●

●

●

●
●●●

●

●●●●

●

●●●●●●●
●

●

●
●

●

●

●
●●●

●

●

●

●

●
●

●●●●●●●●●●●●●●
●

●

●

●●

●

●

●

●●

●●●

●

●●

●

●●

●

●

●

●

●●

●

●●●●●●●●●

●

●

●

●

●

●

●

●

●●●●●●

●

●

●●

●
●

●●

●

●
●

●●●●●●●●●●●●●

●

●

●

●●

●

●

●
●

●

●

●

●

●●●

●

●●

●

●

●
●

●

●●●●

●
●

●

●

●
●●●●●

●
●

●

●

●

●

●

●
●

●●●●

●

●

●●●

●

●

●

●●●

●

●●●
●

●

●

●
●

●

●
●●●

●
●

●●●●●●●●●●●●●●●●

●●

●●●●●

●

●

●

●●

●●
●

●●●

●
●

●

●

●
●●

●

●

●●●
●

●●●
●

●●●●●
●

●●●●

●

●

●

●
●

●

●●

●

●●●●●●●●●●●●●●

●●●●●●●●

●

●●●●●●●●●●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●●

●

●●●●●●

●

●

●●●

●

●●

●

●

●●●

●

●●●

●

●●

●

●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●

●

●

●

●

●

●●●●●●

●●
●●●●●

●

●●●●

●

●
●

●●●●●
●

●

●●●●●●●●●●●●●

●

●

●

●●●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●●●

●

●

●●●●●

●

●

●

●●●●●●●●●●●●●

●

●●●●●●●●●●●●●
●

●●
●

●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●

●

●
●

●

●

●●●●●

●●●●●●

●●●●●●

●

●●
●

●

●

●
●

●
●●●●●●●●●●●●●●●

●

●●●

●

●●●●●●●●●●●●●

●
●

●

●

●

●●

●

●

●

●

●

●

●●●

●

●
●

●
●●●●

●●●●●

●

●●●●●●●●●●●

●

●●●●●●●●●●

●

●

●

●
●

●

●●

●

●

●●

●

●

●

●

●●●

●●●●●

●

●
●

●●

●●

●●●

●

●

●
●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●
●

●●

●

●●●

●

●●●●

●

●

●●●●●●●●●●●●●●●●●

●

●

●●●●●●●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●●

●

●●

●

●

●●●●
●

●●●●●●●●●●

●

●

●

●

●

●

●●●●

●

●●

●

●

●

●

●●

●

●●●●●●●●●●●●

●

●

●

●

●●

●●

●●

●●●●

●

●●

●

●

●●●●●●●●●●●●●●

●

●

●

●

●
●●●●●

●

●

●

●

●●

●●●

●

●●●●●●●●●●●●●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●●●

●

●

●●●

●●●●●●
●

●●

●●

●

●●●

●

●

●

●

●

●●●●●

●

●

●

●●
●

●●●●●●●●●●●●●●●●●●●

●

●

●

●

●
●

●●

●

●

●●●●●●●

●

●

●

●

●

●
●●

●

●

●●●●●●

●

●●●●●●●

●

●

●

●

●

●

●●●

●

●
●

●

●

●

●●●●●

●

●

●●●●●●●●●

●

●

●

●

●●●●

●●
●

●

●●●●●●●●●

●

●

●

●●●

●

●●●●●●●●

●

●
●

●

●
●

●

●
●●●●●●●●●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●
●●●●

●
●

●●●●●●

●●●
●

●●

●
●●●●●●●●

●
●●●●●●●

●
●

●●●●
●●

●
●

●

●

●●●

●
●

●●

●

●●●●●●

●
●

●

●

●●●●●●●●●●

●
●●

●

●●●●●●

●

●

●
●

●●
●

●●●

●

●

●

●●●●●●

●

●●●●●●●●●●●●●●

●

●

●

●

●●●●

●
●●

●

●

●

●

●
●

●●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●●

●

●●

●

●
●●●●

●●
●

●●●●●●

●

●
●

●●
●

●●●●
●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●●●●

●

●●●●●

●

●●●●●●●●●●

●

●●●

●

●

●

●

●

●

●●

●

●●
●

●

●

●

●●●

●

●

●

●●●●●●●●

●

●●●●

●

●

●●●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●●

●●●●

●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●
●

●

●

●
●

●

●

●
●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●●

●

●

●

●●●●

●●

●

●

●●●●●●

●

●●●●●●●●●

●

●

●
●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●●●●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●●●●●●●●●
●

●●●●●●●●●●●●

●

●
●

●

●

●
●

●●●●●●

●

●

●

●

●

●

●

●●

●

●●

●●●●●●●

●

●

●

●

●
●

●

●

●

●

●

●●●

●

●●
●

●

●

●

●
●

●

●

●
●

●●

●

●●

●●●●●●

●

●

●

●●●

●
●

●
●

●

●

●●●●●●●●●●●●●●●●
●

●

●

●

●

●

●●●●●●

●

●

●●●●●●●●●●●●●●●●●●●

●
●

●●

●●

●

●

●

●

●

●

●

●●●●●●●●●

●

●

●

●

●

●

●

●

●●●●●

●

●●

●
●●●●●●●●●●●●●●●●●

●●

●

●

●

●

●

●

●

●

●
●

●

●●●●●●●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●●●●●●

●●

●

●

●

●

●●●

●

●

●●
●

●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●●●●●

●
●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●●●●

●

●

●

●
●

●●●●●●●

●

●●

●

●

●

●

●
●●●

●

●●●●●●

●

●

●

●●
●●●●●●

●

●
●●●

●

●●●●
●

●

●
●

●

●

●
●

●●●●
●

●

●●

●

●

●

●

●●●●●●●●●●●●●

●

●

●●

●

●●

●●●

●

●●●●●●●●●●

●
●

●
●●●

●

●

●

●
●

●
●

●
●

●

●

●●

●
●●●●●●

●●
●●

●●
●

●0

10

20

30

40

0 20000 40000 60000 80000
Time [ms]

C
on

cu
rr

en
t

M
P

I T
as

ks

Original − Default Eager Limit (64 kB)

A
B

E
: 4

42
99

A
B

E
: 4

60
82

A
B

E
: 4

07
09

A
B

E
: 4

25
21

64
33

0

11.62%
15.86%
14.37%

16%
16.83%

9.77%
12.88%
11.8%

13.47%
14.73%

15.89%
19.13%

20%
19.72%
20.27%

12.68%
17.39%
17.27%
16.19%
17.93%

38.5%

30.31%

34.76%

27.77%

44.2%

35.74%

40.69%

33.54%

dgemm dpotrf dsyrk dtrsm

Callback
FetchingInput

Idle
Overhead

Progressing
PushingOutput

Scheduling
Sleeping

Submiting task

●

●

●

●

●

●

●

●

●

●

●

●●

●●
●

●●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●
●●

●

●●

●

●●

●

●●

●

●

●

●

●●●

●

●

●
●

●●

●
●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●●●

●

●

●

●
●

●

●●
●

●

●●
●

●

●
●

●
●

●

●

●

●●
●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●●

●
●

●

●●

●
●

●●
●●●

●

●●●

●●
●●

●

●●●

●●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●●
●

●●
●

●

●
●

●●●

●

●●

●

●

●

●

●

●●
●

●●

●

●

●
●●●

●
●●

●

●

●
●

●

●

●●
●

●
●

●

●
●

●
●

●
●●

●
●

●●
●

●

●

●

●

●
●●●

●●
●

●
●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●
●

●

●●●

●

●

●

●●

●

●
●

●

●
●●

●
●

●

●
●

●

●
●

●
●

●

●●●
●

●

●

●●

●

●

●

●●
●

●

●
●

●
●

●●

●

●
●

●
●

●

●●●

●●

●
●

●

●

●
●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●●●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●
●

●

●●●
●●

●

●
●●

●
●

●

●●

●
●

●
●●

●●
●

●

●

●
●

●

●●
●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●●
●

●●

●●

●

●

●

●

●●

●●

●

●

●

●
●

●

●
●

●
●

●
●●●

●●●

●
●●●

●

●

●
●

●●

●
●

●●

●

●

●

●●
●●

●
●

●

●
●●

●
●●●●

●●

●
●

●
●

●
●

●

●

●

●
●

●●
●

●

●●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●
●●●

●●

●
●

●

●

●
●

●

●●

●●
●

●

●

●

●

●
●

●

●

●●

●
●●

●

●
●

●

●●
●

●●●
●

●

●
●

●
●●

●
●

●

●

●
●

●

●

●

●●●
●●

●●

●

●
●

●
●

●

●

●

●
●●●●

●●

●

●
●

●

●

●
●●●●

●

●

●●

●
●●

●
●

●
●

●
●

●

●

●●●
●

●
●●

●
●

●
●●●

●

●
●●●●

●

●

●
●●

●
●

●

●●

●●

●●
●

●
●

●

●

●

●

●
●●

●

●

●●●●●●●●●●●●●●●●●●●

●
●

●●●
●

●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●
●●●●●●

●

●●

●

●●●

●

●●

●

●
●

●

●
●

●●
●

●

●

●

●

●

●

●

●
●

●

●●
●

●
●

●
●

●
●

●

●

●

●
●

●●
●

●

●

●
●●

●
●

●

●
●

●

●

●
●●

●●
●

●
●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●

●

●●

●

●●●●
●

●●
●

●●●
●

●●●●

●

●

●

●

●
●

●

●
●

●

●

●
●●●

●

●
●●

●

●
●

●

●

●●

●

●

●●
●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●●

●
●

●

●

●
●

●●●

●
●

●

●
●

●
●

●●

●●
●

●
●

●
●

●●
●

●

●

●

●
●

●

●
●

●

●

●●●

●

●●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●●●

●●●

●

●

●

●

●
●

●●

●
●

●

●
●

●

●

●

●
●●

●

●
●●

●

●●

●

●●

●

●
●

●●

●

●

●

●

●
●

●

●
●●

●

●

●

●
●

●

●

●

●
●●●

●
●

●

●
●

●

●
●

●●

●

●

●●

●
●

●

●●
●

●

●
●

●
●

●

●●●

●
●●

●

●

●●

●●●

●●

●

●
●

●
●

●●

●
●

●

●
●

●●

●
●

●

●

●

●

●
●

●
●

●

●●

●
●●

●

●

●

●

●

●

●●
●

●

●
●

●
●

●
●

●●

●
●

●●●

●●

●

●●●●

●
●

●●
●

●●

●

●●

●

●●●●
●

●

●●
●

●
●

●

●

●

●

●●●

●

●

●
●

●

●

●●

●

●●

●

●
●

●

●

●

●●

●●
●

●

●●●
●

●
●

●

●

●

●

●

●

●●●

●●●

●

●

●
●

●●●●●●

●

●

●

●

●
●

●

●

●
●

●
●

●●●
●●

●
●

●

●

●

●
●●●

●●
●

●

●
●●●

●●
●

●
●

●●●
●

●
●●●

●
●

●

●
●

●
●

●

●●

●

●

●●

●

●

●
●●

●
●

●
●

●●

●
●●

●

●●

●
●

●●●

●
●

●

●
●

●

●●
●●●

●
●●●

●
●●

●●●●
●●●

●

●

●
●

●●
●●

●
●●

●
●

●●

●

●●

●●●

●

●

●●●●●●●●
●

●

●

●
●

●●
●

●●●
●●●

●●

●
●

●
●

●

●●●
●●

●●●

●
●●

●
●●

●●
●

●●

●
●

●

●●

●
●

●

●

●
●

●
●●

●

●

●

●

●

●
●

●●●
●

●●●

●

●
●

●

●
●

●●●

●

●

●●●
●●

●
●●

●

●●
●

●
●●

●

●

●

●●

●

●
●

●
●●●●●●●●●●●●●●●●●●●

●●
●●●●

●
●

●

●
●●●●●●●●●●●●

●
●

●●●●●●●●●●●●●●●●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●

●

●

●

●

●

●
●●

●●

●

●

●

●

●●

●●

●

●●

●

●

●●

●

●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●

●●
●

●
●

●

●

●

●
●

●●●

●●

●

●●●●●

●
●

●

●

●
●

●
●

●●

●

●

●
●

●

●
●●●

●

●
●●

●

●

●

●●

●
●

●

●●

●
●

●

●●

●

●
●

●●
●

●

●

●●

●

●
●

●●●

●

●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●

●
●

●

●

●
●

●
●

●
●

●
●

●

●

●

●
●

●

●

●●
●

●

●●●
●

●
●●

●

●
●

●

●

●●
●

●●

●

●

●

●
●

●

●●

●

●●

●

●●

●●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●●●

●

●●

●

●●

●
●

●

●
●

●●
●

●

●●●

●

●
●●

●
●

●

●
●

●●

●

●●

●

●

●●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●
●●●

●

●

●

●

●
●●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●●

●

●
●

●●●●

●●

●
●

●

●

●
●

●●

●

●

●

●●

●
●

●
●

●●
●

●
●

●

●

●

●

●
●

●●
●

●

●

●
●●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●
●

●●●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●
●●●

●

●

●●●

●●

●

●

●

●
●

●

●●

●●
●

●
●●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●●

●

●
●

●

●
●

●

●

●
●

●
●

●
●

●

●

●

●
●

●

●

●

●
●●

●

●●●●
●

●
●

●

●

●
●

●●●

●

●

●

●●●
●

●
●

●●

●

●

●

●
●

●

●

●

●

●
●●

●
●

●●●●

●
●

●●

●

●

●

●

●
●

●
●

●
●

●

●●

●
●

●
●

●●
●

●

●

●
●

●
●

●●

●

●

●●●●

●●
●

●
●

●●

●

●

●

●

●

●

●

●

●
●●●●●●●●

●

●
●

●

●

●●●●●●

●

●

●
●

●

●●●●

●
●●●●●●●●●●●

●
●

●●●●●●●
●

●

●●●●●●●●●●●●

●

●

●●●

●●●●●●●●●●●●

●
●

●●●●●●
●●

●●●●●●●●●●●●●●●●●●●●●●

●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●

●

●

●
●●

●

●●

●●

●

●
●

●●

●

●

●

●

●

●●

●

●

●

●

●●
●●

●
●

●
●

●●

●●
●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●●
●

●●
●

●

●

●
●

●●

●
●

●

●●
●

●
●

●
●

●

●

●

●
●●●

●

●
●

●

●●

●●

●

●

●●

●

●
●

●
●

●●●
●

●
●

●

●

●

●

●

●

●●
●●●●

●

●
●

●
●

●

●

●

●

●
●

●

●

●
●

●●
●

●

●●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●
●

●●

●

●
●

●
●

●
●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●●●

●
●

●
●

●
●●

●

●

●

●●

●

●●●

●
●

●●●●

●

●

●
●●●

●

●
●

●

●●

●
●

●●

●●

●●

●
●

●

●
●

●
●

●

●

●

●●

●

●

●●●●

●

●

●●

●
●

●

●
●

●●

●

●●●

●
●

●

●

●●

●●
●

●
●

●●

●
●

●●
●

●●
●

●

●●

●

●●●

●●

●

●

●

●

●●●

●
●

●

●

●

●
●

●
●

●●●

●●
●

●
●

●
●

●●

●

●
●

●

●●

●

●

●●
●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●●
●

●●
●

●●●
●●

●
●●

●

●
●●

●
●

●
●

●
●●●

●
●

●

●●

●●

●

●
●

●

●
●●

●
●●

●
●●

●
●●

●

●

●
●

●●

●
●

●●

●

●●

●

●
●

●

●●
●

●●●

●
●

●●

●
●●

●●
●

●
●

●

●

●

●

●

●●

●

●

●●●
●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●●

●
●

●

●

●
●

●●
●

●

●

●

●

●
●●

●

●
●

●

●

●
●●

●●●
●

●●

●

●

●

●●●
●

●

●

●
●

●
●

●
●

●●

●●
●

●

●●

●
●

●●

●

●●
●

●

●

●
●

●●
●●

●●

●●

●

●●

●

●
●

●

●
●●

●●

●
●

●

●

●

●
●●●●

●

●

●

●

●

●

●

●

●

●
●

●

●●●●

●

●
●

●
●●

●

●

●

●

●

●●
●

●
●

●

●
●

●

●
●

●

●

●●●●
●●

●
●

●●●●●●●●●●●●

●
●

●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●
●

●●
●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●
●●●●

●●●●●●●●●●●
●

●●●●●●●●●●●
●

●●

● ● ● ●0 1 2 3

●

●

●

●

●

●

●

●
●

●

●●

●

●●●

●

●●●

●

●

●

●

●

●

●

●

●

●
●

●
●●●

●
●

●

●
●

●

●
●

●
●

●

●
●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●●

●
●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●●

●

●●

●
●

●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●●●

●

●

●●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●●●

●●
●

●

●
●

●
●●

●●
●

●

●●●
●

●

●

●●

●
●

●
●

●
●

●
●

●

●

●

●

●

●
●●

●

●
●

●●●

●

●

●

●●

●

●

●●

●
●

●

●

●

●●

●
●●

●

●

●

●

●●●●

●

●
●

●

●

●

●

●

●
●●

●

●
●●●●●●●●●●

●

●●●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●●

●

●
●●

●●

●●

●
●

●

●

●
●

●

●

●

●
●

●
●

●●●●

●●
●●

●
●●

●
●

●

●
●

●●●

●●

●●
●●

●●

●

●

●●

●

●

●

●

●
●●●

●
●

●
●

●

●

●●●
●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●
●

●●●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●

●●

●
●

●
●

●

●
●●

●

●●

●

●●

●

●

●

●

●

●●
●

●

●●

●

●

●

●●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●
●

●

●●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●
●●

●
●

●●

●

●

●●

●
●

●

●

●

●

●

●●

●

●

●
●

●
●●

●

●●

●

●
●●

●

●

●
●

●

●

●●

●

●●●●●●●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●●
●

●

●

●

●

●

●

●

●

●●
●

●●
●

●

●●

●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●●

●
●

●●

●

●

●●●

●

●

●

●
●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●
●●

●●●

●
●

●●
●●●●

●

●

●

●●●●●
●

●

●

●

●

●

●●

●

●

●
●●●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●●

●

●

●●
●

●●

●
●●●

●

●●

●
●

●

●

●

●●

●●
●

●
●●●

●●

●●
●

●
●

●

●

●
●

●
●●●●

●●
●

●

●

●●

●
●

●

●
●

●

●●●

●
●

●

●
●

●●

●●●
●

●

●

●
●

●

●

●

●

●●

●●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●●

●
●

●

●

●
●

●

●

●
●

●●

●

●●

●

●●
●

●
●●

●

●
●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●
●

●
●

●
●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●
●

●

●●

●

●

●●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●●●
●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●

●

●

●●

●

●

●

●●

●●●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●
●●●●

●

●

●

●
●

●

●

●

●
●

●
●

●

●
●

●

●●

●
●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●●●●

●

●

●
●

●●
●

●
●

●

●

●

●
●●

●
●

●●●●●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●●
●

●●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●●
●

●

●

●●

●

●

●

●

●

●●●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●●●●●●●●●●●●●●●●

●

●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●

●

●
●●●●●●●●●●●●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●●●●●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●●●
●

●●

●

●●

●

●●

●

●
●

●
●

●●●

●
●●

●●

●

●
●●●●●●

●
●●●

●

●●
●

●

●
●

●

●
●

●

●●
●

●

●●

●
●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●●

●
●

●
●

●
●

●

●
●

●

●

●

●

●
●●

●

●
●

●●

●

●
●

●
●●

●
●

●

●
●●

●

●

●
●

●

●●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●●●
●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●
●

●
●

●

●

●

●●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●●

●
●

●
●●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●
●

●●

●
●●

●

●

●
●●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●

●●●●●●

●

●

●
●●

●●

●

●

●

●

●

●
●

●

●

●
●●●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●●

●●

●

●

●●

●

●

●

●
●

●

●●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●
●

●

●

●
●

●
●

●

●
●●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●●●●●●●●●●●●●●●●
●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●●●●●●●●●●●●●●●

●

●
●●

●

●

●
●

●

●

●●

●

●

●●

●

●

●

●

●●●

●

●

●●
●

●

●
●

●
●

●

●

●

●
●●

●
●

●●

●

●●

●

●
●

●
●

●

●
●

●
●

●

●

●

●●●
●

●

●

●

●

●●●●

●

●●

●
●

● ●

0 20000 40000 60000 80000
Time [ms]

Fixed − Modified Eager Limit (8 MB)

Source: The Author

6.3.3 StarPU-MPI Data Distribution Strategies

Our previous analysis has focused on resource idleness using 2 hybrid nodes. In

this section, we present an analysis using all the eight hybrid nodes of the chifflet plat-

form, comprising 48 cores and 16 GPUs. The goal of these experiments is to investigate

the influence of data distribution (P ∈ {1, 2, 4, 8}) on load balance and resulting perfor-

132

mance. These executions were performed using the LWS and DMDAS schedulers, using

input matrices of 75×75 tiles of size 1440×1440. The MPI was configured with an eager

limit higher than the tile size, which in this case is 32 MBytes. In multi-node experi-

ments, as this one, the ABE (Section 5.1.3) is computed per node and can also be used to

visualize the load distribution.

Figure 6.11 shows four executions with P equal to 1, 2, 4, and 8. Using eight nodes,

it is expected to have better performance with a P value equal to 2 since it minimizes the

nodes communication borders. Using the per-node ABE to analyze the load balancing and

comparing it to the value of P, we can observe that load balancing improves when we use a

higher value of P, up to the best case with P=8. On the other hand, the overall performance,

represented by the makespan, show that the performance is not totally related to a better

load balancing. Better results are achieved by the executions using P=2 with a makespan

of ≈110875ms, and using P=4 with a makespan of ≈113574ms, despite the fact that the

load is unbalanced as shown by the per-node ABE.

Regarding the additional panels, we can verify the reason behind the better perfor-

mance of executions with P equal to 2 or 4 is that they show a larger number of tiles being

computed in parallel, as shown by the Cholesky Iteration panel, and the MPI bandwidth

is smoother and flat along the execution time. This led to a better resources usage, as

can be confirmed by the idleness ratio, which is smaller, particularly on GPUs. These

facts demonstrate that unfolding parallelism on other nodes as early as possible is more

important than a better load distribution.

There are many negative observed factors for executions with P ∈ {1, 8}. The

execution with P=1 is particularly interesting since it demonstrates the largest load imbal-

ance among the four cases. The unequal load distribution force nodes to wait from each

other, i.e., the slowest node with the largest load limits the performance of other nodes.

This is confirmed through the ups and downs in both MPI bandwidth and number of con-

current MPI operations, like a ping-pong effect. This might indicate a rather sequential

execution as shown by the low number of ready tasks along execution. The case with P=8

shows the highest idleness and it is the case where slow-start issues are more representa-

tive, even after using the eager protocol in the MPI layer (see the previous section). This

is explained by the misplacement of initial DTRSM tasks, responsible for unlocking more

parallelism. They are not evenly distributed among nodes, despite the better total load

balance.

This case is still very intriguing because of the small 20s window between 25000ms

133

Figure 6.11: Comparison of four StarPU-MPI multi-node executions of the Cholesky fac-
torization with a matrix of 75×75 tiles of 1440×1440 using LWS scheduler. Each execu-
tion uses a different P value (1, 2, 4, 8). Each view is composed of 5 panels: the Cholesky
Iteration (first row), the application space-time panel (second row), the curves of ready
tasks (third row), the MPI bandwidth (fourth row) and the curves depicting concurrent
MPI operations (fifth row).

0

20

40

60

C
ho

le
sk

y
Ite

ra
tio

n

A
B

E
: 7

66
79

A
B

E
: 7

84
92

A
B

E
: 8

08
73

A
B

E
: 6

34
42

A
B

E
: 6

47
19

A
B

E
: 6

79
34

A
B

E
: 7

03
12

A
B

E
: 7

31
30

12
84

24

14.36%
19.22%
19.92%
19.78%
19.51%
20.83%

13.55%
17.72%
17.73%
17.33%
17.03%
19.41%

11.97%
15.91%
16.75%
16.76%
16.47%
18.13%

20.31%
27.05%
26.33%
26.31%
26.6%
27.97%

20.52%
26.19%
25.07%
26.97%
25.38%
27.34%

17.97%
23.99%
25.22%
24.05%
25.62%
25.31%

18.23%
23.52%
23.97%
22.19%
22.64%
24.14%

16.18%
22.42%
21.27%
22.23%
21.82%
23.17%

47.67%

41.99%

45.98%

40.75%

42.69%

39.98%

58.02%

53.98%

57.02%

52.4%

54.75%

49.64%

52.52%

47.62%

50.83%

44.57%

0_CPU0

0_CPU5
0_CUDA0_0
0_CUDA1_0

1_CPU0

1_CPU5
1_CUDA0_0
1_CUDA1_0

2_CPU0

2_CPU5
2_CUDA0_0
2_CUDA1_0

3_CPU0

3_CPU5
3_CUDA0_0
3_CUDA1_0

4_CPU0

4_CPU5
4_CUDA0_0
4_CUDA1_0

5_CPU0

5_CPU5
5_CUDA0_0
5_CUDA1_0

6_CPU0

6_CPU5
6_CUDA0_0
6_CUDA1_0

7_CPU0

7_CPU5
7_CUDA0_0
7_CUDA1_0

A
pp

lic
at

io
n

W
or

ke
rs

●●●●●●

●

●●

●

●●

●

●
●

●
●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●
●●

●

●●

●

●
●

●

●●●

●
●

●

●

●

●●
●

●
●

●
●

●

●

●●
●

●

●

●

●●
●

●

●●
●

●

●
●●

●
●

●

●

●●
●

●

●

●

●

●

●
●

●
●

●

●●

●
●

●

●
●

●

●
●

●

●

●●

●

●●

●●

●
●●●

●

●
●

●●

●●

●

●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●●●●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●●

●●
●

●

●

●
●

●

●

●

●

●●
●

●●
●●

●●

●
●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●

●
●

●
●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●●

●

●
●

●

●

●

●

●

●●

●

●

●

●
●●

●

●

●

●
●

●

●●
●

●
●

●

●
●

●
●●●●●

●

●●

●

●

●

●

●

●●

●
●

●

●

●●

●

●●
●

●

●

●
●

●

●●

●●

●
●●●

●

●
●●●●●●

●

●

●
●

●

●●

●

●

●
●●

●

●

●

●

●

●

●

●

●●●●●●
●●

●●

●

●

●

●
●

●

●●●
●

●

●

●

●

●●

●

●
●

●●
●●

●
●●●

●
●

●●●●●●

●

●

●●

●

●●

●●
●

●●

●

●

●
●

●
●

●

●
●

●●

●

●●

●
●

●

●

●●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●●
●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●●●
●

●

●

●●●●●●●●
●

●
●●●●●

●
●●●●●●●●●●●●●●●●●

●
●

●

●
●

●
●

●
●●●

●●

●●
●●●●

●●

●

●●
●●●

●
●

●●
●

●●

●
●

●
●

●

●

●
●●●

●
●

●

●

●

●
●

●
●

●

●

●
●

●

●

●
●

●

●●●●●●●●●●●●●●●●●
●●

●●●
●●

●●
●

●●

●

●●●●
●●●

●●●●●●●

●●
●

●●●
●

●●●●●●
●

●●
●●●

●●●●●●●

●

●

●
●

●

●

●●
●

●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●
●●●

●

●
●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●●

●
●

●

●
●●

●

●

●

●
●

●
●

●●

●●

●
●

●

●
●

●
●

●

●●

●

●

●

●●
●

●

●

●

●

●●
●

●

●

●

●●

●

●

●
●●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●●

●●
●

●

●

●●
●●

●

●

●

●

●●

●

●

●
●

●●●

●
●

●

●●●

●

●
●

●

●

●

●●

●

●

●●
●

●●
●●

●●

●●
●

●

●

●
●●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●
●

●
●

●
●

●

●

●

●

●

●●

●

●●
●

●
●

●

●
●

●

●

●●

●●●

●

●
●●

●
●

●

●

●

●

●

●

●
●●

●

●●●
●

●

●

●●

●
●

●

●

●

●
●●

●

●●

●

●●

●●
●●●

●

●●

●●

●

●

●

●

●
●

●
●

●●

●

●●

●

●

●

●

●

●

●

●●

●

●

●
●●●

●
●

●
●

●

●

●

●

●
●●●●

●●

●●

●
●

●

●●

●
●

●

●

●
●

●

●
●

●

●

●

●
●●

●

●

●

●●

●
●

●●

●●

●●

●

●

●
●●

●
●

●

●

●

●
●

●

●

●●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●●
●●

●●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●●

●
●

●

●
●●●●●●●●●●●

●
●●●

●
●

●●

●●●●
●●●●

●

●●●●
●

●

●
●

●

●●
●●●●●●

●

●
●

●
●

●

●

●

●
●●

●●●
●

●

●
●

●●●
●

●
●

●

●

●
●

●
●●●●

●

●

●●
●

●

●

●

●
●●●●●

●●

●●
●●●●

●●●

●
●●

●
●

●●●●●
●

●
●●●●

●

●

●

●

●

●
●●

●●

●

●●●●
●

●●
●

●●●●●●
●

●●
●

●
●

●●
●

●●●●●●●●●●●●●●●●●●●●●●●●

●
●

●●●●
●

●●●●●●
●●●●●●●●

●

●
●

●●●●●●●●●●●●●

●

●
●●●

●

●
●

●

●

●

●
●

●

●●
●

●

●

●
●●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●●●●

●

●

●●
●

●
●

●●●

●

●

●
●

●

●

●
●●

●
●

●●
●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●●

●

●
●

●●
●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●●

●

●●
●

●

●●●

●●

●

●●

●
●

●

●●
●

●

●
●

●
●

●

●

●●

●
●

●

●

●
●

●

●

●

●
●●

●●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●
●●

●●

●

●

●●

●

●●
●

●

●
●●●

●

●●●

●
●●●

●
●●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●
●

●●

●
●

●●
●●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●●

●

●●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●
●

●
●

●

●
●●●●

●
●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●●●●

●
●

●

●
●●

●

●

●●
●●

●

●●

●●

●

●

●●
●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●●
●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●●●
●

●

●

●

●●

●

●●

●

●

●

●

●

●●

●

●

●

●

●
●

●
●●

●●

●●
●●

●●●●●●●●●

●

●

●
●

●

●

●

●

●
●●

●●
●●●●●

●
●●

●●
●

●

●●●

●

●●

●

●

●●

●●●●●●●●●●

●●●●●●●●●

●

●

●

●
●

●●

●

●●●●●●●●

●

●●
●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●

●
●

●●●●●●●●●●●●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●

●

●●●

●●

●

●

●

●
●

●

●
●●

●●
●

●

●

●

●

●

●●

●

●

●

●●●●

●

●

●

●
●●

●
●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●
●

●
●

●

●
●

●●●

●●
●

●●●

●●●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●
●●●●

●

●

●

●
●●

●

●

●
●

●

●●

●

●

●

●

●
●●

●

●●●●

●
●

●

●

●

●

●

●●●

●

●●
●

●●

●
●

●

●

●●
●

●

●

●●

●

●

●

●

●●

●

●●

●●
●

●●

●●●●

●●
●

●

●

●●●●

●
●

●

●
●

●
●

●

●
●●

●
●

●●
●●

●

●

●
●

●

●
●

●

●

●●
●

●

●

●●●
●

●
●

●

●●

●
●

●
●

●

●

●

●●
●

●
●

●
●

●
●

●●
●

●
●●●●●●

●
●

●

●

●●●●
●●●

●

●●

●

●
●

●

●

●

●●●●●●●

●

●

●

●
●

●●●
●

●

●

●

●

●●
●

●

●●●●
●

●
●●

●

●
●●

●

●●●●●●●●●●●●

●

●
●

●●●●●●

●

●●●●

●
●

●
●

●

●

●

●

●

●

●
●●●

●
●●

●●
●●

●●

●

●
●●●

●
●

●●●●

●

●
●

●
●

●●●
●

●●●●●●
●

●

●

●
●●●●

●
●●●

●●●
●●●●●

●

●
●

●
●

●●●●●●●●●●●
●

●●
●●●●●●●●

●●
●●●●●

●

●

●

●●
●

●
●

●●

●●●

●●
●

●●●●●●
●●

●●●●

●●

●
●

●
●

●
●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●●●●●●●●●●●●●●
●●

●●

●●●●●●●●●●●●●●●●●

●

●●
●●

●
●●

●

●●●●●
●

●●●●●●●●●●●●●
●

●
●

●●●●●●●●●●●●●●●●●●
●

●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●
●

●

●●●●●●●●
●

●
●

●
●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●
●

●

●●●

●

●●

●

●

●

●

●

●●●
●

●●

●

●

●

●
●

●
●

●

●

●
●●●●●●●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●
●

●
●

●

●●●●
●

●

●
●

●
●

●

●

●

●

●

●

●

●●●
●

●

●●

●

●

●

●

●

●

●●

●

●

●●

●
●

●
●

●

●

●●
●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●
●

●
●●●●●●●●●

●
●

●
●●

●
●

●

●

●

●

●●●
●

●

●

●
●

●

●

●

●

●

●

●
●●●●

●●

●

●
●

●

●●
●

●●●
●

●

●

●●●●●●
●

●

●

●

●

●
●

●
●

●
●

●

●
●●●●

●
●

●
●

●●●●●

●

●

●

●●●
●

●
●●

●

●●

●

●●
●

●

●
●

●

●

●

●●
●

●

●●

●
●

●

●

●

●

●

●
●

●●
●●●●●●●

●
●

●

●
●

●
●

●

●

●
●

●●●●●●●●●

●

●●●
●●●●●

●
●●●●

●

●

●

●

●

●

●

●

●

●
●

●●●
●

●
●●

●
●

●
●

●●●

●

●

●

●●

●●●●
●

●

●

●
●

●

●

●

●●
●●●●●●●

●●

●●
●●

●●●●

●●
●

●
●

●
●●

●

●●
●●

●
●

●●●

●
●●

●
●●●●●

●

●

●●●●

●

●●

●

●
●

●●

●
●

●

●

●●●
●●

●
●

●

●

●

●
●●●●●●●●●●

●
●●●●

●

●

●
●●●●●●●●●●●●●●●●●●●

●●

●
●

●●●●●●●●●●●●●●
●

●
●

●●●

●
●●●●●●●●●●●●●●●●

●

●●
●

●

●

●

●●●●●●●●●●●●●●

●

●●

●
●

●

●
●●●●

●

●●

●

●●

●
●●●●●●●●

●
●●

●●●●●●●●●●●●●●●●●
●

●

●
●●●●

●
●

●

●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●

●●●●
●●●●●●●●●●●●●●●

●

●
●

●

●
●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●

●

●

●●

●

●

●●

●
●

●

●●

●
●

●

●

●●●

●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●●●

●●●●
●

●

●

●

●●

●

●

●
●

●●●●●
●

●

●

●
●

●

●●

●
●

●
●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●
●

●●

●

●
●

●

●

●●

●

●
●

●

●
●

●

●●●
●

●●●

●
●

●

●
●

●

●

●

●

●

●
●

●
●

●
●

●

●●

●

●

●●
●

●
●●

●

●

●

●

●

●●
●

●

●●●●●
●●●●

●

●

●
●

●

●

●

●

●●

●●
●

●
●

●
●

●

●

●

●

●

●●

●

●
●

●
●

●

●

●
●

●

●●
●

●
●

●

●

●

●

●

●
●

●●●●

●

●
●

●

●

●

●

●
●

●

●

●●●●●●●
●

●

●

●
●

●●

●
●●●

●

●
●

●

●
●

●
●●●

●

●
●

●

●

●●

●●

●

●
●●●●

●
●

●

●

●●●
●

●

●

●●

●●

●

●
●

●

●

●

●

●
●

●
●

●●●●●●
●

●●●●●●●●
●

●●
●●

●●

●
●

●●
●

●
●

●

●
●

●

●

●

●●
●●●

●
●●

●●
●

●
●●●

●

●●

●
●●

●

●
●

●●●
●●●●●●

●

●

●
●●●●●●

●●
●

●
●

●
●

●
●

●●●
●

●●

●
●

●

●●

●
●

●
●

●

●

●

●

●●●●●

●

●●

●

●●

●
●

●

●

●
●

●
●

●
●●

●
●

●

●
●●

●

●

●

●
●

●
●

●
●●

●

●
●●●●●●●

●
●

●●
●

●
●

●
●●●●●●●●●●●●●

●

●●

●●●●●●●●●●●●●●●

●●
●

●●

●

●

●●●●●●●●●●●●●●●●
●

●

●●

●●●●●●●●●●●●●●●
●

●●
●●

●

●●
●●●●

●

●
●

●●●
●●●●●●

●

●

●
●

●●
●

●

●●●●●
●

●●●●●●●●

●

●
●

●●●●●
●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●●
●

●●

●

●

●

●

●

●

●

●

●●
●●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●
●●●

●
●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●●

●

●

●

●

●
●

●

●●
●

●
●

●

●
●

●

●●●

●
●●

●

●●
●

●●●

●
●

●●

●●●●

●

●●●

●

●●
●●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●
●

●

●

●

●
●

●●

●
●

●

●●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●●●

●

●

●
●

●
●

●

●

●●●●●

●

●
●●

●

●
●

●
●

●●

●
●

●

●

●
●

●

●

●●

●
●

●

●●●

●
●

●●

●●●●●●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●
●

●

●

●

●
●

●
●

●●

●
●

●

●

●
●

●

●
●

●
●●●

●
●

●

●

●

●
●

●

●
●●

●

●

●
●

●

●

●

●●●

●

●

●

●

●

●●
●●

●

●

●
●

●
●●

●●●●●
●

●

●

●

●●●

●

●

●
●●

●●
●●●

●●
●●

●
●

●
●

●●●
●

●●
●

●●

●

●●●●●

●

●

●

●

●
●

●

●

●
●

●

●●

●●

●

●

●
●

●●●●●●●●●
●

●

●
●

●●
●

●●

●●

●
●

●
●●

●●
●

●

●

●
●

●

●●

●
●●●●

●
●

●
●

●

●
●●●●●

●

●
●

●
●

●
●

●

●●●

●

●●

●

●

●●
●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●●

●●
●●

●
●●●●●●●●●●

●
●●

●●
●

●●

●

●●●●●●●●●●●

●●

●●●

●

●●
●●●●●●●●●●●●

●
●●

●
●

●
●

●●●●●●●●●●●●●●●●
●

●

●

●●●
●

●●

●●
●

●●●●●●●●●●●

●

●
●

●●
●

●●●●

●●

●
●

●
●

●

●●●●●
●●

●●●●●
●●●●●●●●●●●●●

●
●●

●
●●●●●●●

●

●

●
●●●●●●●●

●

●●

●
●

●●●●
●●

●
●

●●●●●●●●●●●●●●

●
●

●

●●●●●●●●
●●●

●●
●●●

●●●

●

●
●

●

●

●

●

●

●

●
●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●
●●

●

●●●

●●

●

●●

●

●

●

●

●●●

●●

●

●

●●

●●

●
●●

●

●

●

●●

●

●

●
●

●

●

●
●●

●●●

●●●

●
●

●
●

●

●●

●

●●
●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●
●

●

●
●

●

●
●●

●
●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●●

●

●

●
●

●

●
●

●

●

●●

●

●

●
●

●

●

●
●●

●
●●●

●

●

●

●
●

●
●●●●

●

●●●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●●
●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●●●●

●
●●

●

●

●

●
●●●●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●
●●

●

●
●

●
●●

●

●
●

●
●●●

●
●

●●●

●●●●

●●
●

●

●
●●

●

●

●
●

●
●

●●

●

●●
●

●

●

●
●

●
●

●●

●
●●

●

●
●●

●●

●●

●●

●

●

●

●
●

●
●

●
●●

●
●

●

●
●

●

●●

●

●

●
●

●●●●●●●●●●

●●
●

●●

●●●
●

●

●

●

●

●
●

●●
●

●

●

●
●

●

●

●

●
●

●
●●

●

●

●●
●●●●●●●

●

●

●

●

●
●

●

●●●

●

●
●

●

●

●

●

●●●

●●
●

●
●

●

●

●

●
●

●

●

●

●●
●

●

●
●

●

●

●

●

●
●

●●
●

●
●

●

●

●

●

●●

●

●

●
●●

●
●

●

●●●●

●

●●●●●●●●●
●

●
●

●

●●
●●

●●●●●●●●●●●●●●
●

●

●●●

●
●

●
●●●●●●●●●●●●●●

●

●
●

●●
●

●

●

●
●

●●●●
●

●●●●●●

●●

●

●●
●●●

●●●

●

●●●●●
●

●
●●●

●●

●

●

●
●

●

●
●●●●

●●
●●●●●●●

●

●

●
●

●●
●●●●●●

●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●
●●●●●

●●
●

●●●●●●●●●

●

●

●
●

●●●●●●●●●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●

●
●●●●●●●

●●
●●●

●
●●0

50

100

150

R
ea

dy

● ● ● ● ● ● ● ●0 1 2 3 4 5 6 7

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●
●

●

●

●

●

●

●

● ●

●
●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ● ●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ● ● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ● ● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

● ●0

250

500

750

1000

M
P

I
(M

B
/s

)

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●
●

●●●

●

●●
●

●●●●

●

●

●●
●

●

●

●●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●

●●

●
●

●

●●

●●

●
●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●
●

●●
●

●

●

●●
●

●

●

●●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●
●

●●

●

●

●

●

●

●

●●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●●

●

●●

●

●●
●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●

●

●

●

●

●

●●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●
●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●
●

●
●

●
●

●

●●●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●●

●
●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●●

●

●

●

●

●

●
●●

●
●●

●

●

●
●

●

●

●

●

●●●●●

●

●

●

●

●

●

●●

●
●

●

●●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●
●●

●

●●

●●

●●

●

●

●

●●●●

●

●
●●

●

●●

●

●●●

●

●

●

●

●●●●

●

●

●

●

●●

●
●

●●
●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●
●

●●
●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●
●

●
●●

●●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●●●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●●●

●

●

●

●

●●●●

●

●

●●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●●●●●

●

●

●

●

●

●●

●

●●

●
●

●

●

●

●●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●●

●

●●

●
●●●●

●

●

●

●

●

●

●

●

●

●

●
●

●●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●
●

●●
●

●

●

●

●

●

●

●●

●●●
●

●

●

●
●

●

●

●
●

●●

●

●

●
●●

●

●

●●●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●●

●●●

●●

●

●
●

●

●●

●●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●●●

●●

●

●

●

●●
●

●

●
●

●

●
●

●●●●●●

●

●

●

●●

●

●●

●●

●●●

●
●

●

●

●

●

●

●

●

●
●

●

●●●

●
●

●

●

●

●●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●

●

●
●●

●
●

●

●

●
●

●●

●

●●

●

●●

●

●

●
●

●
●●

●

●
●

●
●●

●
●

●
●●●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●●

●

●

●

●
●

●●
●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●●

●

●
●

●●

●
●

●●

●

●

●

●
●●●

●

●

●

●

●●

●●

●

●●●

●●

●

●

●

●●
●

●

●

●

●
●

●●

●

●

●
●

●●

●

●

●●

●

●

●●●

●

●

●

●●
●

●
●

●●

●

●
●

●●●

●

●

●

●●●●●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●●

●

●

●

●●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●
●●●●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●
●●●●

●

●

●

●

●

●

●

●

●●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●●●●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●●●●

●

●
●

●

●

●

●●●

●

●
●

●
●

●

●

●

●
●

●

●

●●●●●

●

●
●

●

●
●

●

●

●

●

●

●

●●●
●

●

●

●

●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●
●

●
●●●●

●

●

●

●

●

●

●

●
●

●

●

●●●●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●
●

●

●

●

●

●

●●●●●

●

●

●

●

●●

●

●●●

●

●

●

●
●●●●

●●

●

●●●●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●●

●

●
●●●●●●

●●
●

●●●●

●

●●●

●

●

●●●

●
●

●

●

●

●

●●●

●

●

●

●

●

●

●●

●●

●●

●
●

●

●●

●
●

●

●●

●

●

●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●
●

●●

●

●
●

●●●

●

●

●
●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●
●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●
●●

●

●

●

●

●●

●

●
●

●●

●

●

●

●
●

●●

●●●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●●●●●●

●

●

●

●

●●

●
●

●

●

●●

●
●●

●

●

●

●

●

●
●

●
●●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●●

●

●
●

●

●

●

●●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●●

●●
●

●
●●

●

●

●

●
●

●
●

●

●●●●●●●

●

●●

●
●

●●

●●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●
●●

●●
●

●

●

●●●

●

●

●
●●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●●●●

●

●

●●

●●
●

●

●●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●●●●●●●●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●

●

●

●

●

●

●
●

●

●

●

●

●●●●●●●●●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●●

●

●

●●●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●●

●

●

●

●●

●

●

●●●●●●●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●●●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●●
●

●

●

●●

●

●

●●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●●●●

●

●

●

●

●
●●●●

●
●●

●

●
●●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●●
●

●

●

●●●●●

●

●

●●●●●

●

●

●

●
●

●
●

●
●●

●●

●
●●

●

●

●

●

●

●
●●

●●●●

●

●●●●●

●

●●●●

●

●●

●

●●●

●

●●

●

●

●●●●

●

●●

●

●●

●

●

●
●

●

●

●

●●●

●

●
●

●

●●

●
●

●●

●●●●●

●

●

●
●

●

●●

●●●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●●

●

●
●

●
●

●

●

●

●●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●
●

●
●

●

●

●●●●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●
●●

●●

●

●
●

●

●
●●

●
●●

●
●

●

●

●●

●
●

●●●●●●●

●

●
●

●

●●●

●
●

●

●

●

●●

●●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●●

●●
●●

●

●

●●

●
●●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●●●●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●

●

●
●

●

●

●

●
●

●

●●●●●●●●●●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●
●

●●●

●

●

●

●

●

●

●

●
●

●●●●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●●●●●

●

●
●

●

●

●
●

●
●

●

●

●

●

●●●

●

●

●●

●

●
●

●

●

●

●●

●
●

●

●
●

●●

●

●

●

●

●

●
●●

●

●●

●
●

●●●

●

●

●●

●

●
●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●
●

●
●

●

●

●
●

●

●

●●

●●●

●●

●

●●●●

●
●

●

●●●

●●

●
●

●

●

●
●●●

●

●

●

●

●

●
●

●

●

●
●

●
●

●●●●●●

●

●

●
●●●

●

●●
●

●

●●●●

●

●

●
●

●●●●

●

●

●●

●●

●

●

●●

●

●

●

●●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●

●
●

●

●

●

●●

●

●●

●●

●

●
●

●

●

●●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●
●

●

●●

●●

●

●

●
●●●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●●
●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●

●

●●
●

●

●

●

●

●

●●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●
●

●●●●●●●

●

●

●

●

●

●

●

●

●●●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●
●●●●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●
●

●●●

●

●

●

●●

●●

●

●

●

●
●●●

●

●
●

●

●

●●●●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●●

●

●

●

●●●●

●

●

●

●

●
●

●

●

●

●

●●

●

●●●●

●

●

●

●

●

●
●

●

●
●

●
●

●●●●

●
●

●●

●●

●●●

●

●

●
●

●●●●

●

●

●

●
●

●
●

●●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●

●

●●

●

●
●

●
●

●

●

●

●
●

●●

●

●●

●
●

●
●

●
●

●

●●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●

●●

●
●

●

●

●

●

●

●●

●

●

●

●

●●

●

●
●

●●

●

●

●

●

●

●●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●●

●

●●

●●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●
●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●

●

●●
●

●

●

●●

●●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●●●

●

●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●●●●●

●

●

●

●

●
●

●
●

●●●●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●●●

●

●

●

●
●

●

●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●
●

●
●

●●

●

●

●

●
●

●

●
●

●

●
●

●

●
●●

●

●●●●

●

●●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●

●●●

●
●●

●●●

●

●

●

●
●

●
●

●●●

●●
●

●

●

●

●
●

●

●

●●●

●

●

●

●●

●●●

●

●●●●●

●●●

●●●●

●

●●

●
●

●
●

●

●

●●●●

●

●

●

●

●
●

●

●
●●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●●●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●
●

●
●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●●
●

●●

●

●

●

●●

●

●

●
●

●

●

●

●

●●●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●●●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●

●

●

●●

●

●●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●
●

●●

●

●●

●

●

●

●

●

●

●

●

●

●●

●●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●●●●

●

●

●●
●●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●●

●●●

●

●

●
●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●●●●

●
●

●
●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●●

●●●
●

●

●

●

●

●●
●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●

●
●

●●●●

●

●

●●●●

●

●●

●

●

●

●
●

●●●●

●

●
●

●●

●

●

●
●

●●●

●

●●●

●

●●●●●
●

●

●●
●

●●
●

●●
●0

5

10

15

0 50000 100000 150000
Time [ms]

C
on

cu
rr

en
t

M
P

I T
as

ks

P = 1

A
B

E
: 6

71
67

A
B

E
: 6

99
91

A
B

E
: 7

15
89

A
B

E
: 6

53
52

A
B

E
: 6

80
09

A
B

E
: 6

90
52

A
B

E
: 7

26
66

A
B

E
: 6

42
04

11
08

75

18.31%
22.93%
22.95%
24.31%
23.88%
22.74%

13.12%
18.29%
19.55%
18.92%
18.96%
19.32%

14.96%
19.48%
19.63%
20.35%
19.54%
19.66%

16.73%
23.54%

22%
22.51%
21.89%

22%

15.16%
20.5%
20.54%
20.88%
20.91%
20.86%

17.34%
22%

22.55%
22%

21.94%
22.02%

12.24%
17.33%
16.58%
16.02%
16.91%
17.01%

20.85%
25.51%
25.83%
25.86%
25.23%
26.45%

43.31%

42%

42.95%

38.08%

39.37%

37.7%

46.88%

43.38%

43.89%

41.29%

41.08%

40.47%

40.43%

35.74%

45.75%

44.48%

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●●
●

●●●●●●●●●●●
●

●●●

●

●

●
●●

●

●●

●

●

●
●

●
●

●●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●
●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●
●

●●

●

●

●

●

●●

●

●
●

●

●

●

●●

●
●

●

●

●

●

●

●●

●

●●

●

●●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●●

●
●

●●

●

●●
●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●
●

●
●

●
●

●
●●

●
●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●●●●●●

●●

●●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●●●●●●●●●●●●●●●●●●●●●
●

●●
●●

●●●●●●
●

●●●●

●

●●
●

●

●

●

●

●
●●

●
●●●●●●●●●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●●●●●●●●●

●
●●

●

●

●

●

●

●

●●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●
●

●

●

●

●●

●

●
●

●

●●●●●●
●

●●

●
●

●

●

●●

●

●
●●●●●

●

●●

●

●

●

●

●
●●●●

●

●
●

●●●

●
●

●
●●●●●●●●●●●●●

●

●
●

●

●

●

●

●●●●●
●

●
●

●

●●●●●●●●●●
●●

●

●

●
●

●●●●●●
●●

●●

●

●
●●●●●●●●●●

●

●●●●●●●●●

●
●

●●●●●●●●

●
●●

●
●

●

●

●

●●
●

●

●

●
●●

●
●

●

●●

●

●
●

●

●●

●●
●

●●●●●●●●●

●●

●

●●

●
●

●
●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●●
●

●

●●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●●

●

●●

●

●

●
●

●●

●
●

●●●
●

●

●

●

●

●
●

●

●

●

●●

●

●
●

●

●

●

●●●

●
●

●
●

●●

●

●

●●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●●●

●

●

●
●

●

●●

●

●

●
●

●
●

●
●

●

●
●

●

●

●

●
●

●

●

●

●
●

●●

●
●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●
●

●●
●

●●
●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●
●

●

●

●

●

●

●

●●●

●
●

●
●

●

●

●

●
●●

●●●

●

●

●●●

●●
●

●

●

●

●

●

●
●

●●
●

●

●

●

●●

●

●
●

●
●

●●

●

●

●

●

●

●●

●●
●

●
●

●

●

●

●

●

●

●●●
●●

●
●

●●●●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●●
●●

●

●

●

●

●

●

●●

●

●

●●●●

●●
●

●●

●

●

●●●

●●

●

●

●●

●

●●
●

●
●

●

●

●

●

●

●●

●

●●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●
●

●●
●

●
●

●
●

●

●●

●

●

●
●

●

●●
●

●

●

●●

●●
●

●

●

●
●●

●

●

●

●

●
●

●●●●●●●●●●●●●●

●●●

●●

●

●
●●●●●●

●●●●
●

●●●●●●●●●●
●

●
●

●

●
●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●●●●●●●

●●
●●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●●

●●
●

●
●

●
●

●

●

●

●

●

●●●

●●
●

●

●

●

●
●●

●●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●●●

●

●

●
●

●●
●●

●

●

●
●

●

●
●●

●●
●

●
●

●

●

●
●

●

●
●●

●

●

●

●

●

●●●●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●

●
●

●
●

●

●

●

●
●●

●

●●●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●●
●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●●●●●●●●●●●●●●●●●●●●●●●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●
●●●●●●●●

●●●
●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●
●

●●

●

●

●
●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●●

●

●

●●

●

●

●

●

●
●

●

●●

●

●
●

●

●
●

●

●

●

●●
●

●

●

●

●

●●
●

●

●
●

●

●●●

●

●
●

●

●

●

●

●

●●
●

●

●●

●

●

●

●
●

●

●

●

●●

●●
●

●●●●●●●●

●

●

●

●

●
●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●●

●
●

●●

●

●

●

●

●
●

●●●●●●●●●●

●

●
●

●
●

●
●

●

●
●●●

●

●

●

●

●●●●●●●●●●●●
●

●

●

●

●

●

●
●●●●●●●●●●

●

●

●

●

●

●●

●●
●

●

●

●●

●
●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●
●●

●●●●●●●●●
●

●●●
●●

●●

●

●

●●

●
●

●

●
●

●
●

●
●

●
●

●
●●●

●●●●●
●

●●●●●●●
●●

●
●●

●

●
●

●

●

●

●

●●●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●
●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●●
●

●

●

●

●●
●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●●●●
●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●●

●

●

●

●

●
●●

●

●●
●

●

●
●

●
●

●●

●
●

●

●●●

●

●

●
●

●
●

●

●

●●

●

●

●

●●

●

●

●
●●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●●

●

●●
●

●
●

●

●

●●

●●
●

●

●

●
●

●●●●
●

●
●

●

●

●●●

●●

●

●
●

●
●

●
●

●

●●●●

●

●

●

●

●
●

●●

●
●

●●●●●●●●●●●●●●●●●

●
●

●
●

●

●

●●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●●

●

●
●

●

●

●●
●

●

●

●●

●
●

●●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●●●●
●

●●●●●●●●●●

●
●

●

●

●●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●
●●●●●

●
●●

●

●

●●●
●

●

●

●●●●●●●●●●●●

●

●

●

●

●

●

●
●

●
●●●

●

●

●

●
●

●

●
●●

●

●●

●
●

●●●●●
●●●●●●●●●●●●

●
●●

●

●

●●●●●●●●●
●●

●

●

●

●

●●●●●●●●●●
●●

●●●
●

●●●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●●
●

●

●

●
●

●

●

●

●

●

●●

●●●

●

●

●
●

●

●

●

●●●

●

●

●

●●●●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●●●
●

●

●●
●●

●

●

●

●

●
●

●
●●

●
●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●●

●●●

●
●

●

●

●
●

●

●●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●●●
●

●
●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●●

●
●

●
●●

●●

●
●

●
●●

●

●●●
●

●
●

●

●
●

●

●●

●

●●
●

●

●

●

●

●
●

●

●●●

●

●

●

●
●

●
●

●

●●●

●

●
●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●●●

●

●
●

●
●●

●

●

●●

●

●

●

●●
●

●
●

●

●●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●●●●●
●

●
●

●
●

●
●

●
●●●●●●●●●

●●

●

●●●

●

●

●
●

●●

●

●

●

●

●●
●

●

●

●

●

●
●●

●●●

●●●

●●
●

●●
●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●●
●

●

●

●

●●

●

●

●

●

●●

●●●●
●

●
●

●

●

●
●

●

●
●

●
●

●●

●●
●

●●

●

●

●

●

●

●●
●

●

●

●

●
●●●●●

●

●

●●

●

●

●●

●

●

●

●●
●●

●
●

●
●

●

●●

●●

●●●●●
●●

●

●●●●

●
●

●

●
●

●
●●

●●●●

●
●

●

●

●

●
●●●●●●●●●●●●

●

●
●

●●●●●●●●●●●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●
●

●
●●

●●●●●●●●●●●●●

●●
●

●

●●●●●●●●●●●●●●●●●●
●●

●●
●●

●
●●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●
●

●

●

●
●●

●●

●

●

●●

●
●●

●●

●
●

●

●●●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●●
●

●

●

●
●

●●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●
●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●●
●●

●
●

●
●

●

●●

●
●●

●

●
●

●

●

●

●

●
●

●
●

●●

●●●
●●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●●●
●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●
●

●●●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●
●

●

●●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●●

●

●●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●●●●●●
●

●

●
●

●●

●

●

●

●

●
●●

●

●

●●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●
●●

●

●●

●

●

●

●

●

●

●

●

●●●●●

●

●
●

●

●
●●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●●●●●●

●

●

●
●

●

●

●

●

●

●

●●●●

●

●
●

●

●

●

●

●●●●●●●●●●

●●
●●●●

●
●

●●●●●
●

●

●

●

●

●●

●●●
●

●●●●●●●●

●

●

●
●●●●●●●

●
●

●

●●●●●●●●●●●●
●

●

●
●

●
●●●●●●

●
●

●
●

●●●●●●●
●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●
●

●
●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●●
●

●

●
●

●

●

●

●
●

●

●
●

●

●

●
●

●

●
●

●

●

●●

●
●

●

●

●

●
●

●

●

●●

●

●
●

●●

●●

●

●
●

●

●
●

●●
●

●

●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●●●

●
●

●

●●

●

●
●

●
●●

●

●

●

●

●
●

●●

●

●

●
●

●

●
●●

●
●

●

●

●
●

●

●●●

●

●
●

●●
●

●

●●

●
●

●
●

●

●

●
●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●
●●

●

●

●
●●

●
●

●
●

●

●

●●●
●

●

●

●●

●

●

●
●●●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●●

●●
●●

●●

●●

●●

●

●
●

●
●

●
●

●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●
●

●●

●
●●●

●●
●

●

●

●

●

●●

●

●●

●
●

●●

●

●

●●

●

●●

●

●●

●

●
●

●
●

●

●
●

●

●

●
●

●●

●

●

●

●●
●

●●
●

●

●

●
●

●

●

●

●
●

●

●
●

●
●

●
●

●
●●●●

●
●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●
●

●

●

●

●●

●

●●

●

●●

●

●
●●

●
●

●●●●

●

●

●●●

●

●
●●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●●

●

●

●

●

●

●
●

●●
●

●

●●
●

●

●
●●●

●

●

●

●
●

●

●
●●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●●●

●●
●

●

●
●

●●●

●

●

●●
●

●
●

●

●

●●

●
●

●

●●
●●●

●
●

●
●●

●

●

●
●

●●
●●

●

●●

●
●●●●

●

●

●●

●

●
●

●●●

●
●

●●
●

●

●
●

●

●

●
●

●
●●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●
●

●

●●

●●

●

●●●●●●●

●
●

●

●

●

●●
●

●

●
●●●

●
●●●●●●●●

●●●
●

●

●●●
●

●
●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●
●

●
●

●●

●●

●

●

●

●

●
●

●

●●
●

●

●

●

●
●

●

●

●

●
●●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●●●
●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●●

●●

●
●

●
●

●

●

●●
●

●
●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●
●

●●

●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●
●

●
●

●●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●
●

●●●●●●●●●●●●

●
●

●

●

●

●
●

●
●

●

●

●
●

●●●●●●●●●●●●●●●●●●●●●●
●●

●

●●●

●

●

●

●●

●●

●
●

●

●

●
●

●●●
●

●
●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●●●●●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●●

●
●●●

●

●

●

●

●●●●●●●●●
●●

●
●

●

●

●
●

●

●
●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●●

●

●●●●●●
●

●●

●

●

●

●

●

●

●

●●●
●●

●
●

●

●

●
●

●

●
●

●

●●●●●●●●

●

●●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●●●●●●●●●●●●●●

●

●

●

●

●●●●●●●●●

●●
●●

●
●

●●●●●●●●●●

●

●●●●●●●●
●

●●●

●

●
●●●●●●●●●●●

●
●

●●●●●●●●●●●●●●●●●●●●●●
●

●●●

● ● ● ● ● ● ● ●0 1 2 3 4 5 6 7

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

● ●

●

●

●
●

● ●

●

●

●

●

●

● ●

●

●

●

●
● ● ●

●
●

● ●

● ●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

● ● ● ●

●

●
● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

● ●

● ●
●

●
●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

● ●
● ●

●

●

●

●

● ●

●

●

●
● ●

● ●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

● ●

●

●

● ●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

● ●

●

● ●

●

●

● ●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

● ●

●

●

●

● ●
●

●

●
●

● ●

●
●

●

●
●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
● ●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

● ●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●
●

●
●

●
●

● ●

●

●

●

●
●

●
●

● ●

●

●

●

●

●

●

●

●

●
● ●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●
●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ● ●

●

●
●

●

●
●

● ●

●

●
● ●

●

●

●
●

● ●

●

●
●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●
●

●

● ●

●

●

●
●

●

●

● ●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●
● ●

●
●

●

●
●

●
●

●

●

●
●

●

● ●

●

●

●

●

● ●

●

● ●

●

●

●

●

● ●

● ●

●

●

●

●

●

● ●

●

●

●
●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
● ●

●

●
●

●

●

●

●

●

●
●

●

●

●
● ●

●
●

●

●
●

●

●

●

● ●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ● ●

●

●

●

●
●

● ●

●

● ● ●

●
●

●
● ●

●

●

●

●
●

●

●

●
●

●

● ●
●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●
●

●

●

●
●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
● ● ●

●

● ●

●

●

●

●

●

●

● ●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●
●

●

●

●

●

●

●

●

●

●

●●●●●●●●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●●

●

●
●

●●

●

●●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●
●●●●

●
●

●●●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●●●

●

●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●●●●●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●●●●●

●

●

●

●

●

●●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●●●●●●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●●
●

●

●

●●●●●

●

●

●

●

●
●

●
●

●

●

●

●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●●●●●
●

●

●

●

●

●
●

●

●

●●

●

●
●

●
●●●●●●●●●●

●

●

●

●

●
●●●●

●

●

●

●

●●●●●●

●

●

●

●

●●●●●●

●●

●

●●●●●●●●

●

●

●

●●

●●●●●

●

●
●

●

●

●●●●●●●

●

●

●●●●●●●

●●

●

●●●●●●

●

●●●●●●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●●

●

●●
●

●

●
●●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●
●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●●

●
●

●

●●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●●●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●●●

●●

●●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●●●

●

●

●●

●●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●●●●●

●

●
●

●

●●

●
●

●

●●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●
●

●

●●●●●●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●●●●●

●

●●

●●

●
●

●●

●●

●

●

●

●

●
●●●●●●●

●

●
●

●

●

●

●

●●●
●

●

●

●

●

●
●●●●

●
●

●

●

●●●●●●
●

●
●

●

●
●●●●●●

●

●

●

●●●●●●●●

●

●

●

●●●●●●●

●
●

●●●●●●●●●

●

●

●●●●●●●

●
●●●●●●●●●

●

●

●

●

●●

●

●

●

●

●●

●●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●●
●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●●

●

●

●●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●
●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●●

●

●

●

●
●●●●●●●●

●

●●●●●●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●●

●

●●

●

●

●●●●

●

●

●

●●

●

●
●●

●

●

●

●
●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●●●

●
●

●

●

●

●
●

●

●

●

●

●●

●

●
●

●

●●●●●●●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●●●

●

●

●
●

●●

●

●

●
●

●

●●●●

●

●

●
●

●

●
●

●

●

●

●

●

●●●

●

●

●

●

●

●●

●

●●

●

●

●

●●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●●●●●●

●

●

●
●

●
●

●

●

●

●

●●●●

●

●

●

●

●●●

●

●

●
●

●
●

●
●

●

●

●

●

●

●●●●●●●
●

●

●

●

●●●

●

●

●

●●●●●●●

●

●

●●●
●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●

●

●

●

●

●

●

●●●●●●

●

●

●

●

●
●●●

●

●

●

●

●

●
●●●●●●

●

●

●

●
●

●●●
●

●

●

●

●●●●●●●●●

●
●

●

●

●

●●●●

●

●●

●
●

●●●●●●●

●

●

●●●●
●

●●

●●●●●●●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●●

●

●

●

●

●●●

●
●●

●

●

●●

●●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●●

●
●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●●●●

●

●

●●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●
●●●●●●●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●●●●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●

●●

●

●

●
●●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●●●●●●●

●

●●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●●●
●●●●●

●

●
●

●

●

●

●

●

●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●●●●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●●●●●●●●●●

●

●

●

●
●

●

●●●●

●

●
●

●

●

●

●●●

●

●●
●

●●●●●●●●

●

●

●●●●●●●●

●

●
●

●

●

●●●●●

●

●

●
●●●●●●●●

●

●

●●●●●●●●
●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●●●

●

●

●

●

●
●●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●
●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●●

●
●

●
●

●
●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●
●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●●

●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●●●●

●

●

●
●

●

●●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●●●●●●●●●●●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●●●●●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●
●

●●●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●●●

●

●

●

●

●

●

●

●●●●●●
●

●

●

●

●

●

●●●●●

●

●

●

●

●

●
●

●●●●

●

●

●

●

●●●●●●
●

●

●

●

●

●●●●●●

●

●●

●●●●●●●●●

●

●

●

●●●●●●●

●●

●
●●●●●●●

●

●

●●●●●●

●

●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●●

●

●

●
●

●●
●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●●
●

●●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●●●●●●●

●

●
●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●●●●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●●●

●

●●●●●●●●

●●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●●●
●

●

●

●

●

●

●●
●

●

●

●

●
●

●
●●●●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●
●

●

●
●●●●●●

●

●

●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●●●●●

●

●
●

●
●

●

●

●

●

●●

●

●

●●
●

●

●

●
●

●

●

●

●

●●

●●

●

●
●●●●●

●

●

●●

●

●

●●●●●●

●

●

●

●

●

●●●●

●

●

●

●

●

●●●●●●

●

●

●

●

●●●●●●

●

●

●

●

●●●●●●●●●

●

●

●

●●●●●

●
●

●
●●●●●●●●

●

●
●●●●●

●
●

●
●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●●
●

●

●

●

●

●●

●●●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●●●●●●●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●●●●●●●●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●
●●●●

●

●

●●

●

●●●

●●

●●
●

●●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●●●●●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●●

●

●
●

●

●

●

●

●

●

●●●●●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●●

●

●

●●●

●

●
●

●

●

●

●

●●●●●●●

●

●

●

●

●

●●

●●●●

●

●

●

●

●
●

●●●●
●

●

●

●

●

●

●●●●●

●

●

●

●

●●●●●●

●

●
●

●●●●●●●●●

●

●

●

●●●●●●

●

●

●

●

●●●●●●

●

●

●●●●●●●

●
●

●

●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●
●●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●●●●

●

●

●

●

●

●
●

●

●

●●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●
●●●●●●●●●●●●●●

●

●

●

●●

●●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●●●●●●●●●●●

●

●

●●

●

●

●

●

●

●●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●●●●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●●●●●●●

●

●

●

●●

●

●
●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●●●●●●●●●●●●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●●

●

●

●●●●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●●●●●

●

●

●

●

●

●

●●●

●●●
●

●

●

●

●

●●●●●●●

●

●

●●

●

●

●

●●●

●
●

●
●

●

●

●

●●●●●

●

●

●

●

●

●●●●

●

●

●

●

●●●●●●●●

●

●

●

●●●●●●●●

●●

●
●

●

●●●●●

●
●

●●●●●●

●
●

●●●●●●●●●

●

●●●●●●

0 50000 100000 150000
Time [ms]

P = 2

0

20

40

60

C
ho

le
sk

y
Ite

ra
tio

n

A
B

E
: 7

01
76

A
B

E
: 6

85
98

A
B

E
: 7

09
00

A
B

E
: 6

67
91

A
B

E
: 7

00
51

A
B

E
: 6

81
86

A
B

E
: 6

96
74

A
B

E
: 6

65
83

11
35

74

17.02%
20.88%
21.29%
21.59%
21.66%
22.33%

15.62%
21.25%
21.82%
20.76%
21.09%
23.07%

15.52%
19.26%
20.98%
19.13%
19.87%
22.03%

20.24%
23.68%
23.27%
24.22%
24.31%
24.38%

18%
21.49%
21.98%
22.23%
22.05%
21.59%

16.36%
21.06%
21.16%
19.9%
21.72%
23.89%

14.9%
19.91%
20.16%
20.08%
18.93%
23.35%

21.76%
24.87%
25.66%
25.28%

24%
25.92%

42.15%

40.93%

44.36%

42.63%

42.1%

40.4%

44.77%

44.15%

41.8%

41.21%

46.01%

42.03%

43.6%

41.32%

44.98%

43.75%

0_CPU0

0_CPU5
0_CUDA0_0
0_CUDA1_0

1_CPU0

1_CPU5
1_CUDA0_0
1_CUDA1_0

2_CPU0

2_CPU5
2_CUDA0_0
2_CUDA1_0

3_CPU0

3_CPU5
3_CUDA0_0
3_CUDA1_0

4_CPU0

4_CPU5
4_CUDA0_0
4_CUDA1_0

5_CPU0

5_CPU5
5_CUDA0_0
5_CUDA1_0

6_CPU0

6_CPU5
6_CUDA0_0
6_CUDA1_0

7_CPU0

7_CPU5
7_CUDA0_0
7_CUDA1_0

A
pp

lic
at

io
n

W
or

ke
rs

●

●

●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●

●●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●

●

●●

●

●
●●

●

●
●

●

●
●

●

●●

●
●

●●

●
●

●

●

●●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●●●●

●
●

●

●
●

●
●

●

●
●●

●
●●

●

●
●●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●
●

●●

●

●

●
●

●
●

●

●

●●●

●
●

●

●●

●

●

●
●

●

●

●●

●

●●●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●
●

●●

●●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●●

●
●

●●

●

●
●

●

●●●●
●●

●
●●●

●●

●

●

●
●●

●●●●●●
●●

●

●

●

●●

●●

●

●●

●
●

●

●
●●

●
●

●

●

●●
●

●

●

●

●
●●

●
●●

●

●●

●

●●
●

●●●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●

●
●

●

●
●

●

●

●

●

●

●●

●

●●
●

●

●
●

●
●

●

●●

●

●
●

●

●

●
●

●

●
●

●
●

●
●

●
●

●

●●

●

●

●
●

●

●●●●
●

●

●
●

●

●
●●

●●
●●

●

●

●

●
●

●
●●

●●

●●

●

●

●

●
●●

●
●

●
●

●●●●●●●

●

●
●

●
●

●

●
●

●

●
●

●

●●●●●●
●

●
●●●●●●●●●●●●

●
●●●●●●

●
●●●

●
●

●

●●●●●
●

●

●
●

●
●

●

●

●

●
●

●

●
●●

●

●
●●●●●●●●●●●●●●●●●

●
●

●●

●
●

●
●

●●
●

●●●●●

●
●●

●●
●

●●●●●

●

●
●

●●
●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●

●
●●

●

●●

●

●

●

●
●●

●

●

●

●

●

●●

●
●

●
●

●

●
●

●

●

●

●

●

●
●●●

●

●

●●●●●●●●●●

●●●
●●●●●

●

●

●

●●

●
●●●●

●●

●

●

●

●
●

●

●●

●
●

●
●●

●●

●●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●●●
●

●

●●

●
●

●

●

●

●

●

●

●●

●

●
●●

●
●

●

●●

●

●

●
●●

●

●●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●
●

●

●

●

●

●●●

●
●

●●
●●

●

●
●

●
●

●●●
●

●

●

●

●●●●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●●
●

●●
●

●

●

●
●●

●
●

●●

●

●
●

●●●

●

●
●

●●

●
●

●

●

●

●

●

●

●●●
●

●●●

●

●●
●

●
●

●
●

●●

●
●●

●
●

●●●

●●●●
●

●

●●●●

●●

●

●

●
●

●

●

●

●●

●
●●

●

●

●●

●

●
●●●

●

●●

●●

●
●

●

●

●

●●

●

●
●

●

●●

●

●

●

●●

●

●
●

●

●

●●●●

●
●

●●

●

●

●●

●
●●

●

●
●●

●

●●

●
●

●●●

●

●

●

●

●●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●
●

●
●

●

●

●●

●
●

●

●

●

●

●
●

●

●
●

●
●●

●
●

●

●●●●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●
●

●●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●
●

●

●●●

●
●

●●

●
●●

●

●

●

●

●

●
●

●
●

●●

●

●

●
●●

●

●
●

●

●●●●

●

●

●
●

●
●

●

●
●

●
●

●
●

●●
●

●
●

●

●
●●●●●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●
●

●
●

●
●

●

●
●

●●
●

●

●
●

●
●

●
●

●
●

●●
●

●

●
●

●
●●●●

●●●

●

●●●
●

●●●
●

●●
●●

●
●●

●
●

●
●●

●

●●●●●

●●

●●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●●

●

●

●

●●

●

●●

●

●

●●

●●

●
●

●●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●●●

●

●

●
●

●

●

●

●

●
●

●
●

●●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●●
●

●
●

●
●

●

●
●●

●

●

●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●
●

●

●●

●

●●
●

●
●

●

●

●●●
●

●

●●

●●

●

●●

●
●

●●●●

●

●

●

●
●

●
●

●●●

●
●

●

●
●

●
●●

●

●

●●●●

●
●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●
●

●
●●

●

●

●

●

●
●●

●
●

●

●
●

●

●

●●

●

●
●●

●

●
●

●

●
●

●

●

●

●
●

●●

●

●●●
●

●
●

●
●

●
●

●

●

●

●

●

●
●

●●
●●●

●

●

●

●

●●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●●●
●

●
●

●
●●

●

●

●●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●●●
●

●

●●

●●●●

●
●

●

●

●

●●●
●

●●

●
●

●

●

●

●

●
●

●

●●●
●

●

●
●●●●

●
●

●

●

●

●
●●

●●

●
●

●

●●●

●

●●●●
●

●
●

●●●
●

●
●

●●

●

●●
●●

●
●

●

●
●

●
●

●

●
●

●

●
●●

●
●●

●
●

●

●●

●
●

●●●●●
●●

●
●

●

●
●

●

●●
●

●
●●

●
●●

●●

●

●
●

●
●

●●
●

●
●

●●

●

●
●●

●
●

●

●

●
●

●●
●

●

●

●

●●
●

●
●

●

●
●

●

●
●

●

●

●

●●
●●●

●
●

●●

●●●

●

●●
●

●
●●

●●●●

●
●

●
●

●
●

●

●●

●●●●

●

●●
●

●●
●●●●

●●●●●
●●●●

●●
●

●

●

●

●
●

●

●
●●●●

●

●

●
●

●

●

●

●

●
●

●

●●

●●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●
●

●●

●

●

●
●

●

●

●

●●

●●
●

●
●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●

●

●●

●
●

●

●
●

●●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●●●

●●

●

●
●

●

●
●●

●●

●
●

●

●

●●
●●

●

●

●

●

●●

●

●●

●

●

●●
●

●●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●●

●●

●

●

●

●
●

●●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●
●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●●

●

●
●●

●

●
●

●

●

●

●●●●

●

●

●●

●

●

●●

●

●

●

●●

●

●
●

●
●

●

●

●●

●

●

●●●

●

●

●
●

●
●●●●

●

●

●

●●

●●●●●●●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●●●●●

●●

●
●

●●

●

●

●

●

●
●

●●

●

●

●

●

●●●●●●
●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●●
●

●

●

●

●
●

●

●●●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●●
●

●

●

●
●

●●

●

●
●

●

●

●

●

●
●●

●

●

●
●

●●
●

●

●
●

●●
●●●

●

●
●

●●

●
●

●
●

●
●●

●●

●●

●
●

●
●●●●

●
●●●

●

●●●●
●

●●●

●
●●

●

●

●
●●

●●
●●

●
●

●●●●●●●●
●●●●●

●●
●●

●
●●●●●●●●●●●●●●●●●●●●●●●

●

●●

●●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●
●

●●●
●●●●●●●●●●●●●●●

●

●
●●

●
●●

●●
●

●

●

●

●●●

●

●●
●

●

●●●

●

●

●●

●

●
●●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●●●

●

●●

●

●

●

●

●

●

●●
●

●
●

●
●

●
●

●●
●●

●●●

●

●

●

●

●
●●

●

●

●

●

●

●●
●

●
●

●
●●

●

●

●

●

●
●

●

●●
●●

●

●

●

●
●●

●

●

●

●
●

●
●

●

●●

●
●

●●

●

●

●

●●

●
●

●

●

●

●
●

●
●

●
●●

●
●

●●

●
●

●

●
●

●

●

●

●

●
●●●

●●
●

●●

●

●

●

●

●
●

●

●●
●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●
●

●

●

●

●
●●

●

●

●

●●
●●

●

●

●

●

●

●
●

●
●

●●

●

●●

●
●

●

●
●

●

●

●
●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●●●●
●

●●●●
●

●

●

●
●

●

●

●●

●
●

●

●

●●

●●

●

●

●
●

●
●

●

●
●

●

●

●
●

●

●●
●

●

●
●●

●
●

●
●

●
●

●

●
●

●

●

●

●

●

●
●

●
●

●●

●

●
●●

●

●

●

●
●●

●●●

●

●
●

●
●

●
●●

●

●

●

●

●

●●
●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●
●

●

●

●

●

●
●●

●
●●●●●●●●

●

●

●
●●

●●
●

●
●●●●●

●●
●

●
●

●

●
●

●
●●●●●●

●●

●●
●●●●●●●●

●
●●●

●

●●●●
●●●●

●

●
●

●●

●

●

●●

●
●●

●

●
●

●●●●●●
●●●●

●●●
●●

●

●●●●●●●●●●●●●

●●

●●

●●
●

●●●●
●

●●

●

●

●

●

●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●●●●●●●

●
●

●

●●

●

●●●
●

●

●
●●

●

●
●

●●

●

●

●●
●

●
●●

●

●
●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●●

●

●●●

●●

●●●

●●

●●

●

●

●

●

●●
●

●
●

●
●

●

●●

●

●●

●

●

●

●

●
●

●●●●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●●

●●

●●

●
●

●

●

●

●●

●

●

●●
●

●
●

●●
●

●

●●

●

●
●

●

●
●

●
●

●
●

●

●●
●

●●●●
●●

●
●

●
●

●
●

●●
●

●

●●

●●

●

●

●
●●

●

●
●

●

●
●

●
●●

●

●

●

●

●

●
●●

●●●●
●●

●

●●

●

●

●

●

●●

●

●
●

●

●
●

●●

●

●
●●

●

●

●

●

●
●

●
●

●

●●

●

●

●●
●

●

●
●

●
●

●

●
●●

●

●
●

●

●

●
●

●

●●

●
●

●
●

●

●

●●

●

●●

●●
●

●

●

●●
●●

●

●
●

●

●

●
●

●●●
●

●

●
●

●

●●●●●●

●
●●

●

●

●

●●
●

●
●

●
●

●●●

●●
●●

●

●

●

●

●

●

●
●●

●●

●

●

●
●

●

●
●

●

●●●●

●
●

●
●●●

●
●

●
●

●●
●●

●

●

●●
●

●

●
●

●●

●

●

●
●

●●

●

●

●
●

●

●●

●
●●

●
●

●
●

●

●

●
●

●

●

●

●

●
●

●
●

●●

●
●

●
●

●●

●
●

●●

●●

●
●

●
●

●●

●●

●
●

●

●
●

●
●

●●
●

●

●

●

●●
●

●

●

●●

●

●

●●●●

●

●
●

●
●

●
●

●

●

●●●

●

●
●

●

●
●

●

●●●
●

●
●

●●

●●●
●

●
●

●

●●●●
●

●●
●

●
●

●●

●
●

●

●

●

●

●
●

●●
●●●●

●

●

●

●

●

●
●

●
●

●

●

●●●

●

●

●

●

●

●
●●●

●

●
●

●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●

●●●

●●
●

●●

●
●

●

●
●

●●

●
●

●

●●

●

●

●●

●
●

●

●

●●

●
●

●

●●

●
●

●
●

●

●
●

●

●●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●●
●

●
●

●

●

●●
●

●

●●

●
●

●
●

●

●
●●●

●

●●

●

●

●

●
●

●

●

●

●
●

●
●●

●●

●

●

●
●

●

●
●

●

●

●

●

●●
●

●

●

●
●

●●

●

●

●
●

●
●

●
●

●●

●

●●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●
●●

●

●●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●
●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●●

●●●

●

●
●●

●

●●

●
●

●
●

●

●

●

●

●●

●

●

●

●
●●

●

●
●

●

●

●
●

●
●

●●●
●

●●●●
●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●
●●

●

●

●

●

●●

●

●●●

●

●

●
●

●

●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●●
●

●●
●

●

●

●
●

●●
●

●
●

●
●

●●

●
●

●

●

●

●
●

●

●

●

●

●●
●

●●

●

●
●

●●

●

●
●

●

●

●

●
●

●
●●

●

●
●

●
●

●

●

●

●●●

●

●

●

●

●
●

●
●

●
●

●
●

●●
●●

●●●●●●

●

●●
●

●
●

●
●

●
●

●
●

●
●

●
●

●●●
●

●

●

●●●●

●

●
●

●

●

●
●

●
●

●

●

●●●

●

●●●●
●●

●
●●

●
●●

●

●

●

●
●●●

●●
●

●●
●

●

●●

●

●●

●
●

●●●●
●●

●

●
●

●●●●

●●●●
●

●

●
●

●
●●●

●

●●
●

●●

●

●●●●●
●

●
●

●

●
●

●

●

●

●

●●

●
●

●
●

●●●

●

●

●

●

●

●●
●

●
●

●
●

●
●

●●●●
●

●

●●●
●

●

●
●●●●

●

●●●
●●

●●●●

●●●

●
●

●●
●

●
●

●

●
●

●
●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●

●

●
●

●●●
●●●

●●●●●●●●
●

●

●●
●

●
●

●●

●

●

●

●

●●

●

●

●
●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●
●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●●
●

●

●
●

●●

●

●

●

●●

●●
●●

●
●

●
●

●●

●●
●●●

●
●

●

●
●

●●●
●

●

●●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●●
●

●
●

●
●●

●
●

●●
●

●

●

●●●

●

●●●

●●

●●
●

●●
●

●

●
●

●

●

●
●

●

●

●

●
●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●●
●●

●●●

●
●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●
●

●
●●

●

●
●●

●
●

●

●
●

●
●

●●●

●

●●

●●

●

●

●

●

●●

●

●

●

●

●●●●●●●●●●●●●●

●

●

●

●
●●

●

●

●

●

●
●

●

●●
●

●

●●

●
●

●

●

●
●

●●
●●●●●●●●

●
●

●

●

●

●
●

●

●

●●

●●
●

●

●●

●

●●
●●●

●●
●

●●

●

●●
●

●

●

●

●

●

●
●

●●
●

●

●●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●●

●

●●

●

●
●

●

●

●

●

●
●

●●
●

●

●

●●

●

●

●
●

●
●

●

●

●
●●

●●●

●

●●

●

●

●
●●

●
●

●

●●●

●

●

●
●

●
●●

●

●●
●

●●
●

●
●●●●●●●●●●●

●●●
●

●
●

●
●

●

●●●●

●●
●

●
●●●

●●
●●

●
●●●●●●●●

●
●●

●
●

●

●

●●●●●●●●●●●
●

●●●

●●

●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●
●●●●●●●●●●●●●●●

●
●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●0

50

100

150

R
ea

dy

● ● ● ● ● ● ● ●0 1 2 3 4 5 6 7

●

●

●

●

●

●

●

● ●
● ●

●

● ●

●
● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

● ●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

● ● ●

●

●

●
●

●

●

●
● ● ●

●

●

●
●

●

●
●

●

●

●

●
● ●

● ●

●

●

●

●

●

●

●

●

●

●
● ●

● ●
● ●

●
●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
● ● ●

●

●
●

●
● ●

●

●
●

●

●

● ●

●

●
●

●

●

●

●

●
● ●

●
●

●

●

● ●

●

● ●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
● ● ● ●

●
●

●

●

● ● ●
●

●
●

●

●

●
●

● ●
●

●

● ●

●
●

●
●

●
●

●

●

●

● ●
● ●

● ●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●
●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

● ●
● ● ●

●

●

●

●

●

●

●

● ●

●
● ●

●

● ●

●

●

●

●

●
●

●

● ●
●

●

●

●

●

●

●
●

●
●

● ●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

● ●

●

●

●
●

●

● ●

●

●

●

●

●

●

●
●

●

●

●
●

● ●
●

●

●

● ●

●

●
●

●

●
●

●
●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
● ● ● ● ●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

● ●

●

●

●

●

● ●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

● ●

●
●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●
●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●0

250

500

750

1000

M
P

I
(M

B
/s

)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●●

●

●●●

●

●●

●

●

●●

●

●

●●●●●●●●●●●●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●●

●●

●
●

●
●●

●

●

●

●

●

●

●

●

●●

●
●●

●

●

●
●

●

●●

●

●●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●
●

●●●

●

●

●

●

●●

●

●

●

●

●●●

●

●●●●●●●
●

●

●●●●●●●●●●

●

●

●
●

●

●

●

●

●●●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●●

●

●●
●

●●●●●●●●
●

●●●
●

●●

●
●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●

●

●

●●

●

●
●

●●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●●●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●●●●●●●

●●
●●

●●●●●●●

●

●

●●

●

●

●

●●
●

●

●

●

●

●●●●●●●●●●●●●●

●

●

●●

●

●

●

●
●

●●●●

●

●●●

●

●●

●

●

●●

●

●

●

●

●
●

●●●

●
●

●●

●

●

●
●

●●●●●●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●●

●●●●●●●

●

●
●

●
●

●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●

●

●

●

●●

●

●
●

●●

●

●
●●●●●●●●●●●●

●
●

●

●●

●
●

●

●

●

●

●

●●●●●●●●●●●●●●●●

●
●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●●●●●●●●●●●●●

●●

●●●●●●●●●●●●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●●●●●●●●●●●●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●●●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●
●

●

●●

●

●●●●

●

●●

●●

●●●●●●●●●●●●●●

●

●
●

●

●
●●

●

●
●

●

●

●

●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●●●●●●

●

●●

●

●

●

●

●

●

●

●

●●

●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●

●

●
●

●

●

●
●

●●●●●●●●●●●●●●●●●●●●●

●

●
●●

●

●

●●●●●●●●●●●●●

●

●
●

●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●●

●

●

●●●●●●●●●●●●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●●●●●●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●●●●●●●●●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●●

●

●●●●●

●

●●●●

●

●●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●
●

●

●●
●●

●●

●
●

●
●

●

●

●
●

●

●

●

●●●●

●

●●●●●

●

●●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●

●
●

●

●

●

●

●

●

●

●
●

●

●●●●●●●●●

●

●●●●●●●

●

●

●

●

●
●

●●

●

●●●●●●●●●●●●●●●

●

●

●
●

●

●

●

●●●●●●●●●●●●●●●●●●
●

●●

●

●

●

●●●●●●●●●●●●●●●

●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●●

●

●

●●

●

●

●

●●

●

●

●
●●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●●

●

●●●

●●●

●
●

●

●

●

●●

●●

●

●

●

●●●●●●●●●●●●●●

●

●●

●
●

●

●
●

●●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●
●

●●●

●

●
●

●●●●

●

●

●
●

●

●

●
●

●

●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●
●

●

●

●

●
●

●●

●
●

●

●

●●●●●●●●●●●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●●●●

●●

●
●●●●●●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●●

●●●

●

●
●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●

●

●

●
●

●

●●

●
●

●

●●

●

●

●
●●●●●●●●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●

●●

●

●
●

●

●

●
●●●●●●●●●●●●●●●

●

●

●●

●

●●●●●●●●●●●●●●●●●●●●● ●

●
●

●
●

●
●●●●●●●●●●●●●●

●

●

●●●

●

●

●●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●●

●
●

●●●●●●●●●

●

●

●

●

●

●

●

●

●
●

●

●●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●●●

●

●

●●

●

●

●
●

●

●

●
●

●

●

●
●●●

●●

●●

●

●●

●

●

●

●●●●●●●●

●●

●●●●●

●

●

●

●

●
●

●

●

●

●

●

●

●●●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●●

●

●

●●●●●●●●●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●●●●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●●●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●●●●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●●●●●

●

●

●●●

●

●

●●
●

●
●

●

●

●

●

●●

●

●

●●
●

●

●●●

●

●

●●●

●

●

●

●

●
●

●

●●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●●●

●
●

●●●●

●

●

●

●

●●●

●

●

●

●●

●

●
●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●
●

●

●

●

●●●●●●●●

●

●

●

●

●

●
●

●

●

●

●

●●●●●●●

●

●●●●●●●●●●●●●●●

●

●

●

●●

●

●

●●●●●●●●●●●●●●●

●

●
●

●●

●

●●●●●●●●●●●●●●●●●●
●

●

●
●

●

●●●●●●●●●●●●

●

●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●●●●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●●

●

●

●
●●●●

●

●

●
●

●
●

●
●

●

●

●

●●
●

●
●

●

●

●

●

●●●●●●●●●●

●

●

●

●
●

●

●

●

●

●
●●●

●

●

●

●

●
●

●

●●

●

●
●

●

●

●●●●

●
●

●●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●

●

●

●●

●●

●

●

●

●

●

●

●

●●●●●●

●

●

●

●

●

●●

●
●

●

●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●●
●

●

●

●

●●●●●●●●●●●●●●

●

●

●

●
●

●

●●●●●●●●●●●●●●●●●●●

●

●

●

●

●●●●●●●●●●●●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●

●

●●

●

●●●●●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●●●●●●●●
●

●

●

●
●

●●

●
●

●

●●●

●

●

●
●

●

●

●
●

●

●

●

●

●●●●●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●●●

●

●●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●●●●

●

●
●

●●

●

●●●●●●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●

●

●

●

●
●

●

●

●
●

●

●

●●
●●●●●●●●●

●

●

●

●

●

●

●

●

●

●●●

●

●●●●●●●●●●●●●●●●●

●

●

●

●
●

●

●

●

●
●●●●●●●●●●●●●●●●●●

●

●

●

●●

●

●●●●●●●●●●●●●●

●
●

●

●

●●●●●●●●●●●●●

●

●

●

●●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●
●

●

●

●

●

●

●●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●●

●

●

●

●

●●

●

●

●

●
●

●●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●●●

●

●

●

●

●

●
●

●

●

●

●

●

●●●

●

●

●
●

●

●

●

●●

●

●●●●●●●●

●

●●

●

●●●●

●

●
●

●●●●●●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●●●●●●●●●●●●●●●●●●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●

●

●

●

●
●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●

●
●

●

●

●

●

●
●

●
●●●●●●●●●●●●●●●●

●

●

●

●
●

●

●●●●●●●●●●●●●●●

●

●

●
●

●

●●●●●●●●●●●● ●0

5

10

15

0 50000 100000 150000
Time [ms]

C
on

cu
rr

en
t

M
P

I T
as

ks

P = 4

A
B

E
: 7

29
58

A
B

E
: 7

21
25

A
B

E
: 7

15
21

A
B

E
: 7

16
06

A
B

E
: 7

01
12

A
B

E
: 7

16
23

A
B

E
: 7

07
58

A
B

E
: 7

15
01

14
94

92

22.42%
29.72%
29.95%
28.79%
28.9%
30.22%

22.73%
28.12%
28.63%
30.23%
28.7%
30.12%

22.3%
28.59%
29.33%
29.81%
28.35%
30.21%

21.98%
28.29%
29.57%
29.59%
29.01%
29.45%

23.39%
28.61%
29.12%
30.07%
29.61%
30.37%

22.47%
28.74%
28.98%
27.97%
28.91%
29.28%

23.03%
29.39%
28.59%
28.43%
28.38%
29.69%

22.77%
28.21%
28.88%
28.81%
29.29%
30.51%

57.1%

55.21%

58.18%

55.29%

58.89%

55.65%

58.92%

55.37%

60.11%

56.38%

59.13%

55.41%

59.51%

56.06%

58.6%

55.73%

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●●

●
●

●

●●●●●●●●●
●●●●●●●

●●●

●●●

●

●

●
●●

●●

●●●●●●●●●●●

●

●

●
●

●

●
●●●

●
●●●

●
●●

●

●
●

●

●●●●

●

●

●
●

●
●

●

●●

●

●

●
●

●

●

●

●
●

●●

●●
●

●●●

●

●

●

●

●●

●

●
●

●●

●
●

●
●

●
●●

●
●

●

●

●

●●

●

●

●

●

●●
●

●

●

●
●

●●

●●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●●

●
●

●●

●

●●●

●

●

●●
●

●

●
●

●
●

●

●●
●

●

●
●

●

●
●

●
●

●●

●

●

●

●

●
●

●

●●●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●●

●
●

●●
●

●●

●
●

●●

●
●●

●●●●●●●
●●●

●●
●

●●

●
●

●
●

●
●●●●●●●●●

●

●●

●
●

●

●●

●●●

●
●

●

●

●

●

●

●

●
●

●●

●

●
●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●●
●

●●

●

●

●●
●

●

●
●●

●
●

●●

●●
●●

●

●
●

●
●

●●●●
●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●●

●
●

●

●

●●●

●

●

●
●●

●

●

●

●

●

●

●
●

●
●

●
●

●

●
●

●
●

●

●

●

●

●

●
●

●

●
●●

●

●●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●
●

●
●

●
●

●

●

●●

●

●

●

●

●●

●●
●●

●
●

●●●●●●
●

●●
●

●
●

●
●

●
●

●

●

●
●

●
●

●●
●

●●

●

●

●

●

●

●
●

●

●

●
●●●

●●●●●●●●●●

●

●

●●●●●●●●●●●●

●

●
●

●●

●●●●●●●●●●●●●●●●
●●

●●●●●●●●●●●●●●●

●
●

●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●

●
●

●●●
●

●●
●

●●
●

●●

●
●

●
●

●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●
●

●●●●●●●●●●●
●

●●●●●●●●

●●
●●

●
●●

●
●

●●

●
●

●
●

●●●●

●

●

●

●
●

●
●

●

●

●

●●
●●

●
●

●
●

●

●

●
●●●

●

●

●
●

●

●
●●●

●

●●

●

●
●

●

●●

●
●

●

●

●
●●●

●
●●

●

●

●

●●

●●
●

●
●

●

●

●

●
●

●
●

●

●

●

●

●●
●

●

●

●
●

●●

●●

●

●

●

●
●

●

●

●
●

●

●●
●

●●
●

●

●

●

●

●

●●
●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●●
●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●●
●●●

●

●
●

●●

●

●

●●●
●

●
●●

●
●●●

●
●

●●
●

●

●

●
●

●
●●●●●●●●

●

●●●●

●
●

●●●●●●●

●

●●
●

●
●

●●
●●●

●●●

●

●
●

●

●●●●

●●●

●
●●●

●

●●

●●
●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●●

●
●●

●

●
●●

●
●

●●●

●
●

●●
●

●●●
●

●

●
●

●●

●
●

●●
●

●

●●

●

●
●●●

●
●

●

●

●

●

●●

●

●

●●
●

●●●●

●
●●●

●●

●
●

●

●
●

●●●
●

●

●
●●

●

●●

●
●

●

●

●●●●

●

●
●

●●
●●

●
●●●

●
●

●

●●●
●●●

●

●
●

●
●●●

●
●

●

●

●

●●
●●

●

●
●

●

●
●

●●
●

●
●

●
●●

●●
●

●
●●

●

●

●

●

●

●

●
●

●
●

●●

●
●

●

●
●

●

●
●

●

●
●●●●

●●

●●

●●
●●●●●●●●●●●●●●●●●●

●
●

●
●●●

●●●●●●●●●●
●

●●●●●●●●●●●●●
●●

●●●●●●●
●

●●●●●
●●●●●●●●●●●●

●
●

●

●●
●

●●●●●
●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●

●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●
●●●●●●●●●●●●●●●●

●
●

●●
●●●●●●●●●

●

●●
●●●●

●
●

●●
●●

●
●

●●●
●

●

●●●
●●

●●
●

●

●●●●

●●

●●

●

●
●

●●

●
●

●

●●

●

●●
●

●
●

●
●

●

●

●

●●●

●

●

●
●●

●

●

●

●

●●

●●

●●
●

●

●
●

●●
●

●

●
●

●

●
●●●

●●

●●
●●

●
●

●

●

●
●●●

●
●●

●

●

●

●

●

●●

●
●●●

●

●
●

●

●

●

●

●●

●

●●

●

●
●

●

●●

●

●

●

●
●

●●

●

●
●

●

●

●●

●

●

●●
●

●●

●
●

●
●

●●

●

●

●
●

●

●

●

●

●
●●●

●

●

●

●●

●

●

●●

●●

●

●

●

●
●

●

●●
●

●
●●

●

●
●

●
●

●
●

●●●●●●●●●●
●

●

●

●

●●●●●●

●

●

●●
●

●●●
●●

●

●●
●

●●●●

●

●

●●●

●
●

●

●

●

●

●

●

●

●●

●

●●
●

●●
●

●●

●
●

●

●

●

●●
●

●

●

●

●
●

●

●
●

●

●●

●

●
●

●
●

●
●●●●

●
●

●

●

●

●

●

●

●●●●●●

●

●

●

●
●

●

●
●

●

●
●

●

●

●●

●
●●●

●●
●●●●

●
●●●●●●

●

●

●
●●●●●●●

●●
●

●
●

●●
●

●
●

●
●

●
●

●
●●●●

●

●

●

●●
●

●

●

●

●

●

●
●

●
●

●

●●

●

●
●

●

●●

●●

●
●

●
●●

●

●
●●●

●
●

●

●

●

●●

●

●
●

●
●●

●●
●●

●
●●●

●

●
●

●
●

●

●●

●

●
●

●
●

●

●

●●
●●

●●

●
●

●●

●

●

●●●

●
●

●

●

●●●●●●●●●●●●●

●●

●●
●●●●●

●
●●●●●●●●●●●●

●
●●●●●●●●●

●
●●●●●●●●●●●●●●

●

●

●●●●●●●●●●●
●

●

●

●

●
●●●●●●●●●●

●

●
●

●

●

●
●●●

●●
●●●●●●●●●●●●

●●
●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●
●●

●
●●●●●●

●

●●●●●●●●●
●

●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●
●

●

●●●●●●●●●
●

●●●●●●
●

●

●●●
●

●●
●●●●●●●●●●●●●●●●●

●
●

●
●

●
●

●
●●●●●

●
●

●
●

●
●●●

●

●

●
●

●

●●

●

●
●

●●

●
●

●●
●●

●●

●
●

●

●
●

●●
●

●

●
●●

●●●●

●●

●

●

●●

●

●
●

●
●

●
●●

●

●
●●●●

●

●

●

●

●

●

●

●●

●

●●
●

●

●●

●

●

●

●
●

●●

●
●

●

●●

●

●

●

●
●

●

●●●●
●

●

●

●●●

●●

●

●
●

●

●
●

●

●
●

●

●

●

●
●

●
●

●
●

●
●

●

●●

●●
●●

●

●

●
●

●

●

●

●●

●●

●

●●●

●●

●

●

●

●
●

●

●

●

●

●
●●

●
●

●

●
●

●

●

●
●

●

●
●

●●

●●
●

●●
●

●

●

●

●
●

●
●●

●

●●

●

●

●●

●
●●

●

●

●

●

●●●●●

●

●●●
●

●

●
●

●
●●●●

●
●●

●●

●

●
●

●

●

●

●

●

●●
●

●
●

●

●●

●●

●●●

●
●

●

●
●●

●

●●

●

●

●

●●

●

●

●
●

●

●●

●

●
●

●
●

●
●●

●
●

●●

●

●

●●
●

●
●●

●

●

●
●

●●
●

●●●
●●

●●
●●●●●

●

●●●

●
●

●●
●

●
●

●●●●●
●

●●●●●
●

●
●

●
●●●

●

●
●

●

●●

●
●

●
●

●

●
●

●●●

●

●
●

●

●
●

●

●

●

●

●
●

●●

●●

●
●

●

●

●
●

●

●●
●●

●
●

●

●

●

●●●

●

●●

●

●

●●
●●

●●●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●●●●

●

●
●●●

●
●

●

●●●●●

●
●●●●●●

●

●
●

●
●

●
●

●●●●●●
●

●●●●●●

●

●●

●

●
●●●●●●●●●●

●
●●

●●●●●●●●●●●●
●

●●●●●●●●●●●●●
●●

●●●●●●
●

●●●●●●●●●●●●●●●
●

●
●

●
●●●

●
●

●
●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●

●
●●●●●

●●●●●●●●●●

●
●●●●●●●●●●●●●●

●
●●●●●●●●●●●

●●●●●●●●
●●

●
●●●

●●
●●

●
●

●●
●●

●●●●●●●●●●●●
●

●●●●●●
●

●●●●●●●●
●

●●●
●

●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●

●●

●

●

●
●●●

●●

●●●●●●
●●●

●
●●

●
●

●
●

●●
●●●

●
●●

●

●
●●●

●●

●

●

●

●

●
●

●
●

●
●

●
●

●

●●

●

●●

●

●

●
●

●

●●

●

●●

●

●

●

●

●●
●●

●●

●●

●

●
●

●

●

●
●●●

●

●●

●

●●

●

●
●

●●

●
●

●

●

●

●
●

●

●
●●●●

●

●●
●

●

●
●

●

●
●

●

●
●

●

●

●
●

●
●●

●

●

●

●●

●

●

●
●

●●

●

●
●

●●

●

●
●

●

●

●●
●●

●

●

●
●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●●
●

●
●●

●●

●
●

●

●

●
●

●
●

●

●

●●●

●

●

●
●

●

●

●
●

●●

●
●

●

●
●

●
●

●

●●●●
●●

●
●

●
●

●
●●

●

●
●

●
●

●

●
●

●
●

●●
●●

●
●

●
●

●

●

●

●●

●

●●

●

●

●●
●

●
●●

●

●

●

●
●

●

●
●

●●
●

●

●

●

●

●
●

●

●
●●

●
●

●●

●

●

●
●●●

●
●

●

●●

●

●
●

●

●

●●

●

●●
●●

●
●

●●

●●

●

●

●

●

●

●

●

●
●●●

●
●●●●●●●

●●●
●

●
●

●
●

●

●●●

●

●

●●
●●●

●

●
●●

●

●●
●

●
●

●
●

●
●

●

●●
●

●

●
●●

●

●●

●

●

●
●

●●

●

●●●
●

●

●●●●●

●

●

●

●

●

●
●●

●

●●
●

●

●
●

●

●●
●

●

●

●●
●

●

●

●

●
●●

●

●●●
●

●
●

●●

●
●

●

●

●
●

●
●

●
●●

●●

●

●
●●

●●
●

●●●●●●●●

●

●
●

●
●●

●

●
●

●
●●●●●

●

●

●●●●●●●
●

●●●●●●●●●●●

●
●

●
●

●
●

●●●●●●●

●
●

●●●●●●●●●●

●

●

●
●●●●●●●●●●●●●●●

●
●●●●

●●●

●
●

●●●●●●●●●●●●
●●

●
●

●●●
●

●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●
●●

●●●
●●●

●
●

●●●●
●●

●●●●●●

●
●

●●
●

●●●●

●

●
●

●
●

●●●
●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●

●
●●●

●
●●●●●●●●●●●●●

●●●●●●●●
●

●●●●●●●●●●●●●●●●●●●●

●
●

●
●

●●●●●●●●●
●

●

●●
●

●●●●●●
●●●●●●●●

●
●

●
●

●
●

●●●

●

●●●

●●●●

●

●

●

●●

●
●●●

●

●●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●●●

●

●

●●

●

●

●●

●

●●

●

●
●●

●

●
●

●
●

●

●
●

●

●
●

●

●●●
●●●●

●●

●
●

●

●
●

●

●

●●●

●

●

●

●

●

●
●

●
●

●●●
●

●

●

●

●●

●

●●
●

●

●

●

●●

●

●

●
●●

●

●●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●
●

●●●
●

●

●
●●

●●

●

●

●

●

●

●
●

●
●

●
●●

●

●●●

●●

●●

●
●

●●●●●●●●●●
●

●●

●●

●

●

●
●●

●●

●

●
●

●●●●
●

●

●●●
●

●●●●
●

●●

●●●
●

●

●

●

●

●●

●

●

●●
●

●●●
●

●●
●●

●
●

●●
●

●

●

●●

●

●●

●

●
●

●
●

●●

●●

●

●

●
●

●●●
●

●●●
●

●
●

●

●
●

●●
●

●
●

●

●●●
●●●

●
●

●
●

●
●●●●

●
●

●

●
●

●●
●

●●●●
●●●

●
●

●

●●
●

●

●●
●

●●●●●●●●●●●●●
●●

●
●

●
●●●

●
●

●
●●●●

●

●
●

●
●

●●
●●●●●●

●●
●●●

●
●

●

●

●
●

●
●

●
●●●

●

●
●

●
●●

●●
●

●
●

●
●●

●

●
●

●

●
●●

●

●
●

●●

●
●

●

●●

●

●
●

●●

●

●
●

●

●

●●●

●●

●●
●

●

●
●

●
●

●

●●
●

●●
●

●
●

●●●●●●
●●

●

●●

●●●●●●●●●●
●●

●

●

●
●

●

●●

●

●

●

●●

●

●●●●●●●●●
●●

●●●●●●

●

●●●●●●●●●●
●

●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●●●
●●

●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●
●

●●
●●●

●●●●●

●●
●

●

●

●●●
●

●●●●
●

●
●

●

●●

●

●

●

●

●
●●●

●

●
●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●
●●

●
●

●
●

●
●●

●

●
●

●●

●
●

●
●

●

●

●

●●

●●

●
●

●
●

●

●

●
●●

●

●

●

●

●●●

●

●

●
●

●
●

●●
●

●
●

●

●

●●

●

●
●

●●●●●●
●●

●●
●●●

●●●

●

●
●

●
●

●
●

●
●●

●

●●●●
●●

●

●

●

●
●

●
●

●●
●

●

●

●
●

●

●●●
●

●

●
●

●
●

●

●

●
●

●●●

●

●●●

●

●●
●●

●
●

●●

●●
●

●

●
●

●

●

●●
●

●

●
●

●

●

●

●
●

●
●

●●●

●
●

●

●●●●●●●
●

●

●

●

●●●

●

●
●

●
●

●

●

●
●

●

●

●●

●

●●

●

●

●●

●

●

●

●●

●

●
●

●
●●

●●

●

●
●●

●
●

●

●

●

●

●
●●●

●●

●
●

●
●

●

●●

●

●

●
●

●
●

●

●●

●
●●

●

●

●

●●
●

●●
●●●

●●●

●

●

●
●●

●
●●

●●

●●●
●●

●

●

●
●

●
●●

●
●

●●

●●

●●●
●●●●

●●●
●

●●

●●

●

●●●

●
●

●
●

●

●

●
●

●

●●

●●
●

●
●

●●

●

●

●●
●

●●

●

●
●●

●

●

●●
●●

●
●

●
●●

●
●

●●

●
●

●

●
●

●

●
●

●
●●

●●●
●

●

●

●●
●

●
●

●
●

●●●

●

●●●

●

●●
●

●

●

●●●●

●●

●

●

●●

●
●

●●
●

●
●

●
●

●
●

●●

●
●

●●●
●●●●●

●●●●●
●

●

●

●●●●●●
●

●

●●

●
●●

●●●●
●●●●●●●●

●

●

●

●

●

●●●●●
●

●●
●

●

●

●

●

●
●●●●●●●●●●●●●

●
●

●

●●●
●●●●●●●●

●
●●●

●●●●●●●●●●●●●●●
●

●●●●●●●
●

●●●●●●●●
●

●

●●●●

●●

●

●

●●●●●●●
●

●●●●●●●●●●
●●●●●●●●●●●●●●●●

●
●●

●●

●●●●●
●

●●●●●

●

●
●●●●●●●●●●●●

●
●●●●

●
●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●

●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●
●

●●●●●

●

●●
●

●●
●●●●●

●●●
●

●
●

●
●

●

●

●

●
●

●

●
●

●

●

●

●
●●

●
●

●●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●●

●●
●

●

●●

●
●

●
●

●●

●

●●

●

●

●
●

●
●

●

●

●
●

●

●
●●

●●

●●

●●
●

●●

●

●●

●

●●
●

●

●●

●
●

●

●

●

●

●

●●●

●

●
●

●

●

●

●
●

●

●

●

●●
●

●

●●
●●

●

●

●

●

●●●

●

●
●

●
●●

●

●

●
●●

●●
●

●

●
●

●

●●

●

●

●●
●

●
●

●

●●

●
●●

●

●●
●

●●
●●

●●
●

●●

●

●

●

●
●

●●

●●
●

●

●

●●

●

●

●

●
●●

●

●●
●●●

●
●

●

●

●

●
●

●
●

●●●
●

●●
●

●●●●

●

●●●

●●

●

●

●
●

●

●
●

●●●●

●
●

●

●●
●

●

●●●
●

●
●●●

●

●●

●
●

●●
●

●
●

●

●●

●

●
●

●

●

●

●

●
●●●

●
●

●
●

●
●●

●
●

●

●

●

●
●

●●
●

●
●●

●
●

●

●

●

●

●●
●

●
●●

●
●

●

●

●

●

●

●
●

●

●
●●

●
●

●

●
●

●

●●

●
●

●●

●●●●●
●●

●
●●

●
●●

●
●

●●
●●●●

●●
●●

●●

●

●●●

●

●●

●
●

●●

●
●●●

●

●

●
●

●●
●

●

●

●

●
●

●
●●●●

●

●
●●

●●

●
●

●

●

●
●

●

●

●●●

●

●
●

●

●●●

●●
●

●●
●

●

●
●

●

●

●

●
●

●

●

●●

●
●●●

●●

●●
●

●
●

●

●

●

●

●●●●
●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●
●

●●●●
●

●
●●

●●●●●●●●●●●●
●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●

●
●●●

●●

●●
●

●●●●●●●●●●●●●●●●●●
●●●●●●●●●

●
●●

●
●●

● ● ● ● ● ● ● ●0 1 2 3 4 5 6 7

●

●

●

●

●

●

● ●
●

●

●

●

●
●

●

●

● ●

●

●

●

● ● ●
● ●

● ● ●
●

●
●

●

●
●

●
● ●

●
● ●

●

● ●

●
●

● ●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●
●

●

●
● ●

● ●
●

●

●

●

●

●

● ● ●

●
● ●

●
●

●
●

● ●
●

●

●
● ●

●
●

●

●

●
●

●

●

●

●
●

● ●
●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●
● ● ●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

● ●

● ●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●
● ●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

● ● ●

●

●
●

●

●

●

●

● ●
●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

● ●
●

●
●

● ●

● ●

●

●
●

● ●

●

●
●

●

●
●

●
●

●
● ●

●

● ●

●

●

●

●

●

●

● ●

●

●
●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

● ●
●

●

●

●
●

●

●
●

●

●

●
●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●
●

● ● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
● ● ●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

● ●

● ●

●

●
●

●
●

●
●

●

●
●

●

● ● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●
● ●

●
●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
● ●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

● ● ● ●

● ● ● ● ●
●

●

●

● ● ●
● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●
●

● ● ●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●
●

●

●
●

●

● ●

● ●
● ● ● ● ●

● ●

●

●
●

●

● ●
● ●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●
●

● ●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●
●

● ●

●

● ●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

● ● ●
● ●

●

●

●

● ●

● ●
●

●
●

●

●

●
● ● ● ● ●

●

●

●
●

●
●

● ●

●

● ●

●

●

●

●

● ●
●

●

●

●

●

●

●
●

●
● ● ●

●
●

●

● ●

●

● ●

●

●

● ●

●
●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

● ●
●

●

●

●

●
● ● ●

●
●

● ● ●

●
● ●

● ●
●

● ●
●

●
● ● ●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

● ●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●
●

●

● ● ●

●
●

●

●
●

●

●

● ● ●
●

●

●

●

●

●

● ● ● ●

●

●

●
● ● ●

●

●

●

● ●

●
●

●
●

● ●
●

●

●

●

●
● ●

●

●

●

●

● ● ●

●

● ●

● ●

●

●

●

●
●

●
● ● ●

● ●

●

●

●

●

● ●

● ●

●
●

●
●

● ●

●

● ●
●

●
●

●
●

●
●

● ●

●

●

●

●

●

●

●

●
●

●
● ●

●
●

●

●

● ●
●

●

●

●

●

●

●

●
●

●
● ●

●
●

●
● ● ● ●

●
● ● ●

●
●

●
●

●

●

●

●
●

●

● ● ●

● ●
● ●

●

●

● ●

●

●
●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●
●

●

●

●

●

● ●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

● ● ● ●

●

●
●

●

● ●

●

● ●

●

●
●

●

●

●

●

●

● ● ●

●

●

●
● ●

●

● ● ●

●
●

●

● ●

●
●

●

●

●

●
●

●
●

●

●

● ● ●

●

● ●
●

●

●

●

●

●

●

●

●
●

● ●

●

●
●

●
●

●

●

●

●
●

●

●

● ●

●

●
●

● ●

●

●

●

● ●
●

●

●

●

●

●
●

●
● ●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●
● ●

●

●

●

●

●

● ●

● ●
●

●
●

● ●
●

●

●

●
●

●

●

●

●

●
●

●

●
● ● ●

●

●
●

●

● ●

●

●

●

●
●

●

●

●

●

●

● ● ●
●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●
●

●

●
●

●

● ● ●

●

●
●

●
●

●

●

●

● ●

●

●

● ● ● ●

●
● ● ● ●

●
●

● ●

●

●

●

●

● ●

●

● ●

●

●
●

● ●

●

●

● ●

●

● ●
●

●

●

●

●
●

●
●

● ●

●
● ●

●

●

●

●
●

●

●
● ●

● ●
● ●

● ● ●
●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

● ●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

● ●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●
●

● ● ● ●
●

● ●

●

●

●

●

●

●

●

●

● ● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●

●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●●
●

●
●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●●

●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●●

●

●

●

●●

●

●

●
●

●

●●
●

●

●

●
●

●

●

●
●

●

●

●

●
●

●
●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●●●●●●●●●●●●●●●●●●●●●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●●●

●

●

●

●

●
●

●

●
●

●

●

●●
●

●●

●●●●●●●●●●●●●●●●●●●●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●●

●

●
●

●
●

●

●
●

●

●
●

●●

●

●

●

●

●

●●

●

●
●

●●

●

●

●
●

●●

●

●
●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●
●

●

●●
●

●
●

●
●

●●

●

●

●

●
●

●

●

●
●

●

●

●

●●
●●

●

●

●

●

●

●●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●●●

●

●●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●●

●

●●

●

●

●

●●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●●
●

●●●●●●●●●●●●●●●●●

●

●
●●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●●

●
●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●●

●
●●

●

●

●
●

●

●●●●
●

●

●
●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●●

●
●●

●●●●

●

●
●●●●●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●●●●●●●●●●●●●●●●●●●●●●

●
●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●●

●
●●

●

●

●

●
●

●
●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●●

●

●●

●

●
●

●●

●

●

●

●

●●

●

●

●

●●

●

●●

●

●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●●●●

●

●●●●●●●●●●●●●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●
●●

●

●

●●

●

●●

●
●

●

●

●●

●●

●●●
●

●●

●
●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●●

●
●

●

●

●
●

●
●

●
●

●

●

●

●

●●

●

●

●
●

●●

●

●

●
●

●

●
●

●

●●

●
●●

●

●

●
●

●

●

●
●

●

●●

●

●●●●●●●●●●●●●●●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●●
●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●
●

●

●

●●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●●●●●●●●●●●●●
●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●●●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●●
●

●

●
●

●

●
●

●

●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●●●

●

●

●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●●

●

●

●

●

●

●

●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●●●

●

●

●

●

●

●
●●

●
●

●

●

●

●●
●

●

●

●

●

●

●●

●

●
●

●

●

●●

●

●●

●

●

●●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●●

●●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●
●

●
●

●

●

●

●
●

●

●●

●

●
●●

●

●

●●

●
●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●●

●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●●

●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●
●●

●

●

●

●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●●

●

●

●

●●●●●●●●●●●●●●●●●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●●

●

●●
●

●

●

●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●
●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●

●●●●●●●●●●●●●●●●●●●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●●
●

●●

●

●

●●

●

●

●

●

●

●

●
●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●●●●●●●●●●●●●●●●●●●●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●
●

●
●

●●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●●

●
●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●

●

●
●

●

●
●

●
●

●

●

●●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●
●

●

●

●

●

●
●

●

●

●●

●

●

●

●●

●●●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●
●

●●

●
●

●

●
●

●●

●
●●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●
●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●●

●

●

●

●
●

●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●●●●●●●●●●●●●●●

●

●
●

●
●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●●

●

●
●

●

●

●

●●

●

●●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●
●

●

●●●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●●●

●

●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●●

●

●●

●●

●
●●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●●●●●●●●●●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●

●

●

●●

●
●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●●

●

●●

●

●●

●

●

●

●

●

●

●●

●

●

●●●●●●●●●●●●●●●●●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●●

●
●

●

●
●

●

●●●

●●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●●●

●

●
●

●

●
●

●

●

●
●

●

●●
●●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●
●

●

●●

●

●

●

●

●

●

●●

●

●

●●●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●
●●

●

●

●●

●
●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●●●●●●●●●●●●●●●●●●●●●

●

●

●●

●

●

●●

●

●

●

●●

●
●

●

●

●

●

●

●

●●

●

●

●

●●

●●●

●

●

●

●

●

●

●
●

●

●

●●

●●

●●

●●

●●●

●
●

●

0 50000 100000 150000
Time [ms]

P = 8

Source: The Author

134

and 45000ms where a lot of parallelism is released while the remaining of the execution

(before and after) suffers from lack of it. Before that time interval, the runtime is in-

capable of unlocking enough parallelism to feed all cores because of the column-based

distribution, which makes, e.g., node 0 responsible for computing all tasks of the column

before letting other nodes to have some work to do. Moreover, it forces node 0 to send

a lot of data through the network, as shown in the MPI curve. During and after that 20s-

window, the column-based distribution keeps making one after the other responsible for

unlocking all parallelism. As long as there are enough iterations computed at the same

time, the runtime manages to keep up, but at some point, the runtime is incapable of

unlocking parallelism fast enough because of the data distribution, and performance is

degraded with a very low number of ready tasks.

A common point of all executions, no matter which P value is used, is the dif-

ference between the observed makespans and the values estimated by the ABE. In such

multi-node scenarios, matching the ABE is expected to be very hard since it does not take

communications costs into account. Despite that, the scheduling and the MPI inter-node

communication could be optimized. Regarding the panel depicting the concurrent MPI

tasks (fifth row on each one of the four views of Figure 6.11), we can suppose the pre-

sumed origin of this performance issue is related to the number of concurrent MPI com-

munications. This in itself is not a problem since these operations might be sometimes

carried out by independent pairs of nodes employing independent network links. How-

ever, when the communication concurrency is too high, this might delay MPI operations

that would unlock parallelism faster. What happens is that since MPI processes requests

in the order they were submitted by the runtime, the MPI communications needed by the

critical path get delayed by all the previously-submitted requests. This can be observed

for the P=8 case, where the first node demonstrates an enormous amount of concurrent

MPI operations, delaying all communications by as much corresponding time. Before our

investigation, the StarPU-MPI runtime provided no API or configuration to define com-

munication priorities per-task, nor to control the maximum number of concurrent MPI

operations.

We believe that a better control of MPI operations can be implemented in two ways

in StarPU: (a) to give a higher priority to those communications that release parallelism

in Cholesky (e.g., the first DTRSM tasks), and (b) to impose a limit on the number of

MPI requests issued by StarPU-MPI, so that high-priority requests are delayed at worse

by the few requests already issued. These two strategies have been implemented in the

135

development branch of StarPU after we have identified the problem. Figure 6.12 depicts

the scheduling behavior for two representative scenarios with LWS scheduler for two

cases: (left) before such modifications and (right) after, using a limit of 10 concurrent MPI

requests and giving DTRSM higher communication priority (simply inherited from the task

priority, so without application modification). After the changes were introduced, we can

see that MPI delivers a higher bandwidth for the application, especially in the crucial

starting moments where parallelism is being unfolded. The more controlled MPI requests

can be verified in the bottom plot, where the number of concurrent MPI operations is much

more contained. The Cholesky Iteration panel shows that the parallelism unfolds much

faster, in less than 10000ms, after the implemented changes. This behavior is confirmed

by the ready tasks plot, where the number of ready tasks per node (colors) responsible

for unfolding parallelism reaches a peak at the beginning of the application, while before

(left) such behavior caused a minor yet damaging slow start of the application. This has

the direct benefit of exposing in a much faster way the critical path towards application

completion and gives much more scheduling opportunities to improve performance. In

conclusion, as can be observed in this comparison, these modifications reduce the total

makespan by ≈8.5% (from 80758ms to 73895ms). Figure 6.13 shows the results are

similar when using the DMDAS scheduler, the gains are of ≈12.7% (from 76851s to

67110s).

6.4 Chapter Summary

This chapter presents case studies demonstrating how our visualization strategies

can be used to identify and fix performance issues. Our first case study shows the impact

of different StarPU scheduling policies when executing in a hybrid node. This analysis

also provided us hint about how to enhance the task partitioning among the CPU cores and

the GPUs to get closer to theoretical lower bounds. The second case study was carried out

in a multi-node hybrid platform and focuses on performance analysis of the StarPU-MPI

extension. Using our strategies, we identify performance disturbances which enabled

us to propose adjustments to mitigate their impact on the overall performance. These

improvements comprise a better management of the pipelining strategy of MPI operations

to reduce slow-start effects and resource idleness in multi-node executions and changes

in the StarPU runtime system to reduce the number of concurrent MPI operations and

increase the MPI bandwidth.

136

Figure 6.12: Comparison of two StarPU-MPI multi-node executions of the Cholesky fac-
torization with a matrix of 100×100 tiles of 960×960 using LWS scheduler and P=2. On
the left, a execution using the original StarPU code with unlimited MPI requests. On the
right, an execution after the introduction of changes to limit the number (in this case 10)
of MPI requests using task priorities of DTRSM tasks.

0

25

50

75

100

C
ho

le
sk

y
Ite

ra
tio

n

A
B

E
: 5

21
90

A
B

E
: 5

90
90

A
B

E
: 5

46
71

A
B

E
: 6

19
39

A
B

E
: 5

67
53

A
B

E
: 5

20
55

A
B

E
: 6

05
80

A
B

E
: 5

54
66

80
75

8

20.21%
21.37%
21.44%
20.54%
21.36%
21.83%

11.22%
11.7%

10.96%
11.58%
12.06%

16%

19.47%
18.81%
19.42%
19.41%
18.77%
18.96%

8.02%
8.13%
7.9%
8.34%
8.25%

12.37%

12.15%
12.68%
11.68%
12.57%
11.89%
16.08%

19.2%
20.48%
20.14%
20.8%

19.23%
20.52%

8.69%
8.67%
8.9%
8.62%
8.65%

13.41%

16.96%
16.02%
16.26%
16.02%
16.8%

17.35%

41.94%

35.4%

36.63%

25.66%

38.78%

32.07%

33.96%

21.18%

39.39%

30.03%

42.72%

35.24%

32.87%

26.01%

37.84%

31.01%

0_CPU0

0_CPU5
0_CUDA0_0
0_CUDA1_0

1_CPU0

1_CPU5
1_CUDA0_0
1_CUDA1_0

2_CPU0

2_CPU5
2_CUDA0_0
2_CUDA1_0

3_CPU0

3_CPU5
3_CUDA0_0
3_CUDA1_0

4_CPU0

4_CPU5
4_CUDA0_0
4_CUDA1_0

5_CPU0

5_CPU5
5_CUDA0_0
5_CUDA1_0

6_CPU0

6_CPU5
6_CUDA0_0
6_CUDA1_0

7_CPU0

7_CPU5
7_CUDA0_0
7_CUDA1_0

A
pp

lic
at

io
n

W
or

ke
rs

●

●

●

●

●●

●

●

●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●●

●

●●

●
●

●
●

●

●

●

●

●
●

●

●●●●
●

●
●

●
●

●
●

●
●

●

●
●

●

●
●

●●●
●

●
●

●

●●
●

●
●●●●●●

●

●●
●

●

●●
●

●●
●

●●
●

●●
●

●●

●●
●

●
●

●

●
●

●

●●
●

●

●
●●●

●

●●
●

●
●

●

●

●

●
●

●
●

●●
●

●

●
●

●
●●●

●
●

●

●

●
●

●

●●

●
●

●

●●
●

●
●

●
●

●●●

●●
●

●

●
●

●

●

●

●
●●●●

●

●●

●
●

●

●

●
●●

●
●

●
●

●

●

●
●●

●

●

●●

●●

●

●
●

●
●

●●
●●●●

●
●

●●

●

●
●

●●●●●

●

●
●

●

●

●

●

●

●●

●

●
●

●
●

●●
●

●

●

●

●

●
●

●●

●
●

●●
●

●
●●

●●

●●
●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●●●

●

●

●

●

●
●●

●●
●

●
●

●
●

●
●

●
●

●

●●

●●

●●

●

●

●

●
●●

●
●

●

●
●

●●
●●

●

●

●

●
●

●
●

●

●

●

●

●
●●

●●
●

●
●

●
●●

●●●

●
●●●

●

●●●

●

●
●

●
●●

●
●

●
●●●

●

●
●

●●●

●

●

●●●

●

●●

●

●
●●

●
●

●●
●

●

●

●

●
●

●

●

●

●●
●

●

●●
●

●
●

●
●●●

●●
●

●
●

●

●●
●

●
●

●
●

●

●
●

●

●
●●

●●
●●

●
●

●

●
●

●

●

●●

●
●●

●

●
●

●●●
●

●
●

●

●

●
●

●●

●●
●

●
●

●
●●●

●●
●●

●●●
●

●

●

●●

●

●

●
●●●●

●●●

●●●●●●●●●●●●●●●●
●●

●
●

●

●

●
●

●

●
●

●●

●

●●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●
●

●●
●●

●●●●●●●

●
●

●
●●

●●●●●●●●
●●

●
●

●●●●●
●

●●

●

●

●

●
●●

●

●
●

●

●

●
●

●

●

●
●●

●●●●●●●

●
●●

●

●

●●●
●●

●

●

●●●
●●●

●●●

●
●●

●●●

●●
●●●

●
●●

●

●

●

●

●

●

●●●
●

●

●●
●

●

●

●

●

●●●●●●●●
●●

●

●
●

●●●

●

●●●

●
●

●
●

●

●●
●

●
●

●

●

●

●

●

●
●●

●
●

●

●●

●●●

●
●

●

●●●●●●

●

●●
●

●

●
●

●
●●●●●

●
●●●●

●
●●

●
●

●
●

●●●

●
●

●
●●●●●●●●●●

●●●●●●
●●●●●

●

●
●●

●
●●

●

●●

●●●●●●
●

●
●

●

●

●
●●●

●●●
●●●●●●●●●●●●

●●●●●
●●●●●●●●●●●●

●

●
●●

●
●●●

●●
●

●

●●
●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●

●

●
●

●

●
●●●●●●●●●●●●●●●●●●●●

●

●●

●
●

●
●●

●●●●●●●●●●●●
●

●
●●●●●●●●●●●●●●

●●●●●
●●

●

●
●

●

●

●

●

●●●

●●
●

●
●●●●

●
●●

●

●

●●

●
●

●●

●

●
●

●

●●●●
●

●

●

●●●

●

●

●

●●
●

●

●

●●
●●

●●
●

●

●

●

●
●

●
●

●
●●●

●
●●

●●●

●●

●

●●●
●

●

●

●

●
●●

●
●

●
●

●
●

●

●
●

●

●

●

●
●

●

●
●

●
●

●
●●

●
●

●

●
●

●●

●
●●

●
●

●●
●

●
●●

●●

●

●●
●

●
●●●●

●
●

●
●●

●

●●
●

●

●

●
●

●
●

●●

●
●●

●
●●

●●
●

●

●●
●

●
●●

●
●

●

●
●

●
●●

●●

●

●●●

●
●●●

●
●

●

●
●●

●

●
●

●
●

●
●●●

●

●
●●

●●

●●
●

●●●●
●

●●
●

●●
●●

●
●

●
●●

●
●

●

●

●
●

●
●

●●

●●

●●

●

●

●
●

●●●●

●●●

●●

●●●

●
●

●
●

●
●●

●
●●●

●●

●●

●●
●

●●●
●

●●

●

●

●

●●●●
●

●
●

●
●

●●

●●

●
●

●●

●

●
●

●●

●
●

●●

●●

●

●●

●
●

●
●

●
●

●
●●

●
●●

●
●●

●●●

●●

●

●

●

●●●
●

●
●

●
●

●●
●

●
●●●●●●●●

●

●

●

●●
●●●●

●

●
●●

●●●●
●●

●

●●
●

●●
●

●
●●

●●●●●●●●
●

●

●●
●

●●

●●●
●

●●
●●●●

●●
●

●●
●

●●●
●●●●●

●
●

●

●●

●
●

●●

●

●●●●●●●
●●

●●●
●●

●●
●

●
●●

●
●●

●
●

●●●
●●●●●●●●●●●●

●
●●●●●●

●●●
●

●●●
●●

●
●●

●

●●

●●●
●

●
●

●●
●●

●
●●●●●●

●

●●●
●

●
●

●●●●
●●●

●●●●●●●
●●

●●●●●
●●

●
●●●●●●

●
●●●●●

●●
●●●●●●

●●●
●●

●
●●

●
●●●●

●
●●

●●
●●

●
●●●●

●
●●●●●●

●●●●●●

●
●●

●
●

●

●●●●
●

●
●●●●

●●
●

●
●●

●

●●●●●
●●

●
●●

●●
●

●
●

●
●

●
●

●●

●
●

●●●●●●
●●●

●●●
●●●●●●

●●●●
●

●

●●●
●

●

●●●●

●

●

●●
●

●●●

●
●

●

●
●

●
●

●
●

●
●●

●
●●

●
●●

●

●
●

●
●

●●●●●●●●
●●●●●●

●●
●

●
●●●●●

●●
●●●●●

●
●

●●
●●

●
●

●

●●●●●
●

●
●●●●●●

●●●●●●●●

●
●

●
●

●●●

●●
●●●

●●●
●●

●●●
●

●

●●
●●

●
●

●
●●

●●
●

●●●●

●
●●

●●

●
●

●●

●
●

●

●
●●●

●
●●

●●●●●

●●
●

●●●●
●

●
●●●●

●
●●

●●
●

●●●

●●●
●

●
●

●●
●

●
●●

●
●

●
●●●

●
●●

●●

●

●
●

●
●

●
●

●

●●●
●●

●
●●●●●●●●●●●●●●

●
●●●

●
●●

●
●●●●●●●●●●●●●●●●●

●●
●●

●

●
●

●
●●

●

●
●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●●

●●

●

●●

●
●

●
●

●●

●

●

●

●
●

●
●

●
●●

●

●

●
●

●

●

●
●

●
●

●

●●
●●

●

●●

●

●

●

●●
●

●●
●●

●

●

●

●

●

●
●

●

●

●

●●●
●

●

●
●

●
●

●
●●

●
●

●●
●●

●

●●

●
●●

●

●
●

●

●

●
●●

●●●

●

●
●

●
●

●

●

●
●

●●
●●

●●

●

●

●

●

●

●●
●

●

●
●

●●

●

●●

●

●
●

●●

●●
●

●
●

●

●●●

●●

●●●

●
●

●●
●

●
●

●
●●

●●

●
●

●
●

●

●

●
●

●●

●
●●

●

●
●

●●

●
●

●
●

●
●

●
●

●

●●
●●

●
●

●
●●

●

●
●●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●
●●

●

●●●●

●

●●●●

●

●

●

●

●
●

●●

●

●●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●●

●

●
●●

●

●

●
●

●

●

●

●

●

●
●

●
●

●●●

●●

●
●

●

●
●

●

●●
●

●
●●

●●

●

●
●

●

●
●

●●

●
●●

●

●

●

●

●

●

●
●

●●

●

●

●

●●

●

●
●

●
●

●

●

●
●

●

●
●●

●●●

●

●

●

●

●

●

●

●●

●
●

●
●

●●
●●●

●●
●

●

●

●●●●
●

●
●

●

●
●

●●

●

●●

●

●

●
●

●

●

●

●
●

●●
●●●●

●
●●

●
●●

●●
●

●
●

●●

●

●
●

●

●
●●

●

●

●●●

●●●

●

●

●

●
●

●
●

●●●
●●●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●●

●

●
●

●
●●

●

●

●●
●

●
●

●
●

●●
●

●●●●
●

●●
●

●

●●●●●●

●●
●

●●
●

●
●

●
●

●●

●
●

●

●●
●

●

●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●

●
●

●
●

●●●●

●

●

●●

●

●

●
●

●

●
●

●●●●●●●●
●

●
●

●●

●

●

●

●

●●
●

●
●

●

●

●●

●

●

●●●●●●
●

●

●

●●
●●●●●●●

●●

●
●●

●●●
●

●
●

●●

●
●●

●
●

●●

●

●

●●
●

●

●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●
●●

●
●

●●●●●●●●●●

●●
●

●
●●●●●●●●●●●●●●

●
●●

●●

●

●
●

●

●●
●●●●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●●

●
●

●

●

●
●

●●●●●●●●●●

●

●
●●

●

●
●

●

●

●

●●
●●

●●●●
●

●

●●●●●●●

●●

●
●

●

●

●
●●●

●

●
●

●
●●

●
●●●

●●●●

●●
●●

●

●●

●

●●

●

●

●

●
●

●

●●●●●●●●●
●

●

●

●●

●

●
●

●

●

●

●

●
●

●●

●●
●

●
●

●●●●●●●●
●●

●
●

●●●
●●●

●

●
●

●

●
●

●●
●

●

●●●●

●●

●
●●●

●

●●●●●●●●●●●●●●
●●●

●●
●●●●●●●●

●●●
●

●

●

●

●

●

●

●

●

●
●●

●●

●
●●

●

●●●●

●
●

●

●
●●●

●●
●

●
●

●

●
●

●

●●●
●

●

●
●

●

●●
●

●

●

●

●

●
●●

●
●

●●●●

●
●

●
●

●
●●

●●

●

●●

●

●
●

●●
●

●

●

●

●

●●

●●
●

●

●

●
●●●●●●●●

●●
●●

●

●
●

●
●

●●●●
●

●

●

●
●

●

●
●

●
●

●
●●

●

●
●

●

●

●
●

●●
●●●

●
●●

●●

●
●

●
●●●●●

●

●

●
●●●

●
●●

●
●●

●
●

●●

●●

●
●●●

●●●

●

●●

●●
●

●●
●

●

●

●
●●

●
●●

●
●

●
●●

●
●

●●
●●

●
●

●
●●●

●

●

●
●

●

●●●●
●●

●

●

●●
●

●●●

●

●

●

●●●
●●

●

●
●

●●
●

●
●●

●

●

●●●

●●
●

●●
●●

●●●
●●

●
●●

●
●

●
●

●
●

●●
●●

●●●●

●
●

●

●
●●●

●
●

●
●

●
●

●●●●

●●
●

●

●●
●

●
●

●●
●

●
●

●●

●

●●

●●●●●●

●●

●
●●

●

●

●
●

●●●
●

●●
●

●●

●

●

●●

●

●●

●
●

●

●●
●

●
●●

●

●

●
●

●●●
●

●
●

●

●

●

●

●●

●●
●

●

●

●

●
●

●●
●

●●●

●

●
●

●
●

●●
●●●

●
●●●

●●●
●

●
●●●●

●●
●●

●
●

●
●●

●●●●●
●●

●
●●●●●

●

●

●

●●
●

●

●●●
●●●●

●
●

●●●
●●●●●●●

●●
●

●

●
●●●●●●●●●●

●
●

●●●●

●
●

●●●
●

●
●●

●●●●
●●

●

●●
●●●●

●●●●●
●●

●
●

●
●

●
●●●●

●●●
●●

●
●

●●
●

●
●●●●●●●●●●●●●●

●
●●●●●●

●●●●●●●
●●●●●●●●●●

●●●
●●

●●●●●

●
●●●●●●●●

●●

●
●

●●●●●●●●
●

●

●●
●

●
●

●●
●●

●
●

●
●

●
●●●

●●

●●●
●

●●
●

●
●

●●●
●●●

●●
●●●●●

●●
●

●

●
●●●●●

●●●●●●●●●

●●

●●
●

●

●

●

●

●●

●●

●●

●●

●●

●
●●●●

●●
●●●

●
●

●●●
●

●
●

●

●

●●
●

●
●

●●●
●

●

●●●●

●

●●
●

●
●●

●●●
●

●
●●●●●●●●●●●●

●

●

●

●

●

●

●●●
●●●

●●●●

●

●
●●●●

●

●●
●●

●
●

●

●●
●

●
●●

●●●
●

●●
●

●
●

●●●●
●

●

●
●

●

●●
●

●●
●

●

●
●

●
●●●

●
●●●●●●●●●

●●
●

●●●

●

●
●

●
●●

●

●

●
●●

●●
●●

●
●●

●

●
●●

●
●●

●
●

●●
●●

●

●●●●●
●

●●
●

●●●
●

●●●●
●●

●
●

●

●●●
●●●

●
●

●●
●●●●

●●
●

●
●

●
●

●●●●
●●

●
●

●
●

●
●●

●

●●
●

●●
●

●
●●●

●●●
●●●●●

●

●●

●
●

●●●
●

●
●

●●
●●

●●●
●●●

●

●
●●

●●
●●●●

●●●
●●●●●●

●●●●●
●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●●●●●●

●

●

●●
●

●

●

●

●
●●

●●●
●

●
●

●
●

●

●
●●

●
●

●
●

●●
●

●

●

●
●

●

●

●
●

●●

●

●

●
●

●
●

●●
●●●

●●
●●

●
●●

●
●

●
●

●
●●

●

●
●

●
●●●●

●

●●
●●

●
●

●

●

●

●●
●

●
●

●

●

●
●

●●
●

●
●

●
●

●

●●

●

●●
●

●

●●

●
●●

●
●●●

●
●●

●

●
●●

●●

●●

●

●

●
●

●

●●
●

●

●●
●

●

●●

●
●

●●●
●●●

●
●●

●
●

●●●

●●●●
●

●
●

●●

●

●
●

●

●

●

●
●

●●

●

●
●

●
●●●

●●
●

●
●

●●

●●
●●●

●
●

●

●
●

●
●

●
●●

●

●●
●

●
●

●
●●

●

●

●●

●●●
●

●
●

●●
●●

●

●●
●

●
●●●

●

●●

●
●●

●
●●

●

●

●
●

●

●
●●●●

●

●
●

●●
●●

●●
●

●●●●

●
●●●

●●●

●●

●

●●
●

●

●
●

●

●
●

●
●

●
●

●●
●

●
●

●●

●
●

●

●

●●
●

●
●

●
●●

●
●●●●

●

●

●
●

●
●●

●
●●

●●
●

●
●●

●

●

●

●
●

●

●
●

●
●●●

●●
●●●

●
●

●
●

●

●
●●●

●
●●●

●

●
●

●●●●

●

●●
●●

●
●

●
●●●

●●●●●●●●

●
●

●
●●

●

●
●●●●

●
●

●●●●●●
●●●

●
●

●
●●●

●●●●●
●

●●●
●

●●●●●●●●●●●●
●

●●●
●●●●

●●●
●●

●●
●

●
●

●●
●

●●●
●●●●●●●●●●

●●●●
●●

●●●

●
●

●●●

●●
●

●
●●

●●●
●

●

●●
●●

●
●

●
●

●
●

●
●●

●●
●●●●●

●
●●●●●●

●●●●●●●●●●●●●●
●●●

●
●●●●●●●●

●
●

●●

●
●

●

●●
●

●
●●

●●●●
●

●●●●●●
●

●
●●

●

●

●●●●●

●●●●
●

●
●

●

●●
●●●

●

●
●

●
●●●●

●

●

●
●

●
●

●
●

●
●●●●●●

●
●

●

●
●

●●●
●●●

●●●●●
●

●
●●●●

●
●

●●●●
●

●

●

●
●●

●

●
●

●
●

●

●●●●
●●●●

●
●

●
●

●●●
●

●●●●●●

●
●

●
●●

●●
●

●●●
●

●

●
●

●●●
●

●●
●●●

●●●●●
●

●●
●●

●
●

●●●●●

●●●
●

●●
●●●

●●●●●
●

●
●●

●

●
●●●●●

●
●

●
●

●●●●
●●

●
●

●
●

●●
●●●●

●
●●

●●
●

●●
●●●●●

●●
●

●●
●

●●
●●

●●●●●
●●

●
●

●●●
●

●●●●●●●●●●●●●●●●●●●●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●
●●●●●

●
●

●●●

●
●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●●●●●
●●

●●●●●

●

●
●●

●
●

●●
●

●
●

●●
●●

●

●●

●

●

●
●

●
●

●●

●
●

●●●
●

●

●

●
●

●●●
●

●●

●
●

●●

●
●

●●

●

●●
●●

●
●

●●

●

●●

●

●

●
●

●●
●

●●
●●●

●

●

●●

●

●●
●

●
●

●
●●

●

●●
●

●
●

●
●

●●

●
●

●
●

●
●●

●●●
●

●

●●

●

●

●

●
●

●

●

●●●●
●

●
●

●●
●

●
●

●

●

●
●

●

●

●

●

●●●
●

●●●
●

●
●

●
●

●●

●
●

●

●

●●
●●●●

●●
●

●
●

●

●

●

●
●

●
●●

●●
●●●●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●●

●
●

●●

●

●
●

●

●●●●
●

●
●

●
●

●
●

●●
●

●

●
●

●

●

●
●

●
●

●●
●

●
●

●
●

●
●●

●
●●

●●
●

●
●

●
●

●

●●●●

●
●

●

●
●

●
●

●

●●
●

●
●

●●
●●●

●●

●●
●

●●

●●●
●●

●
●

●

●

●

●

●
●●

●

●●●●
●

●●
●●

●●

●●●
●

●

●●

●

●●●

●

●
●

●

●●

●●
●

●
●●●

●

●

●

●

●

●
●

●
●●●

●

●
●●

●●

●

●
●●

●

●

●●
●●

●

●
●

●

●●
●●

●

●

●●

●●

●
●

●

●
●●

●
●●

●

●●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●
●●●●

●

●

●

●

●

●

●

●
●

●●

●
●

●
●

●

●

●

●

●

●
●

●
●●●●

●

●

●
●

●
●

●●
●

●

●
●●●●●●●●●

●
●

●●●●●●

●
●●

●

●
●●●●●●●

●

●

●

●

●
●●●●●●●●●●●●●●●●

●

●
●

●
●

●

●●●
●

●

●●

●●●●●●

●
●●

●●●
●●●●●●●●●●●●●

●
●●

●●

●●●
●

●
●

●
●

●●●●●●●●

●

●
●

●

●

●●●

●

●

●

●

●

●
●

●
●

●
●

●
●

●

●

●●●●●●●●●●●●●●

●

●

●

●

●

●
●

●

●
●

●
●

●

●
●

●
●●●●●●

●●

●

●

●●●●●●●●●●

●●●
●

●

●

●
●

●
●

●●●●

●
●

●

●

●
●

●
●

●●●●
●

●
●

●

●

●●●●●●

●
●

●●
●

●

●
●

●

●

●

●●●●●●●●
●●●●

●

●

●
●

●

●
●

●

●

●
●●

●●
●

●

●
●

●
●

●
●

●

●

●

●

●

●
●

●●

●
●

●●●●●●●●●●●●

●
●

●

●●●
●

●●
●

●

●●●●●●●●

●

●

●
●

●●●
●

●●
●

●●
●

●
●●

●●●●
●

●●●
●●

●
●●●

●●
●

●●
●

●
●●●●●●●●

●
●

●●●●●●●●●●●●
●●●

●●
●●●●●●

●
●

●●●●●

●

●●●
●●

●●
●●

●●●●●●
●

●●●●●
●

●●●●●●●●●●●●●●

●●

●●
●

●
●

●●●●●●●●●●●●●●●●●
●●

●●●
●

●
●

●●
●

●

●

●

●

●

●
●

●

●
●

●

●
●

●
●

●●
●

●●
●

●

●●

●

●●

●

●
●

●●●●●●
●

●●

●

●

●●●

●
●

●
●

●

●

●
●

●●

●

●

●

●
●●

●
●●

●
●

●
●●●

●
●

●

●

●●
●

●●

●
●●

●
●

●
●

●
●

●
●

●
●●

●●
●

●
●●●

●●

●●
●

●

●
●

●

●
●

●

●

●

●●

●
●

●
●●

●

●
●

●
●

●●

●
●●

●

●

●●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●
●

●
●

●

●

●

●●

●
●

●●●●
●

●●
●

●●●
●

●
●

●
●

●
●

●

●●

●
●

●
●

●
●

●●●

●
●●

●

●
●

●
●

●
●

●

●
●●

●
●●●●

●●●●
●●

●

●

●
●

●

●●

●

●
●●

●

●●

●

●

●

●

●

●

●●

●

●
●●●●

●
●

●

●
●

●

●

●
●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●●
●

●●●

●
●

●
●

●

●●●

●
●

●

●
●●●

●

●●
●

●●
●

●
●

●●
●

●●
●

●
●●●

●●
●●

●●
●●●●●●●●

●

●
●

●

●●●

●

●

●

●●
●

●●

●
●

●●

●
●

●●●●
●●

●
●

●

●
●

●●●●●●
●●●

●●
●

●

●●●
●

●
●

●●●
●●

●●●●
●●

●
●●

●

●●●
●

●

●
●●

●●●●
●●●

●●
●

●

●
●

●●●●●●
●

●
●

●
●●

●
●●

●●
●

●

●
●

●●
●

●
●

●●●●●
●●

●
●●●●●●●●●

●
●

●

●●

●

●

●

●
●●

●
●

●
●

●
●

●

●●●●
●

●●●
●●●

●
●

●●●
●●

●●●●
●●●●●●●●

●●
●

●●●●
●

●●

●
●

●●●
●●

●●

●
●

●
●

●●
●

●●

●
●●●●●

●●
●●

●●●●●●●●●●●●
●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●

●●
●

●
●

●
●

●
●

●
●●●●●●●

●●

●●●
●●

●
●

●
●

●●●

●
●●●

●●●

●
●

●
●●●●

●
●●●●

●
●●

●

●●●
●●

●●●
●

●●
●

●●
●●

●
●

●
●

●
●

●

●
●

●
●

●
●●

●
●

●

●

●
●

●

●
●

●
●

●
●

●●
●●

●●

●●●●
●

●
●

●
●

●
●

●
●●

●
●●

●
●

●●●
●

●●●
●

●

●
●

●●●●●●●●●●●●
●●●●●

●

●
●●●

●
●

●
●

●
●●

●●
●

●
●

●

●

●
●●●

●
●●●

●●●
●●●

●

●●
●

●
●

●●●●●●●●●

●
●●

●
●

●
●

●
●●

●

●●●
●

●

●
●

●●
●

●
●

●●
●●

●●
●●

●

●

●
●●●

●

●

●●

●
●●

●
●

●●
●●

●

●
●●

●●
●●

●
●

●●●

●●●
●●

●
●●●●

●
●

●

●●●

●
●

●

●●●
●

●

●●●●●
●●

●

●●●
●●●

●
●

●●
●

●
●

●●●●

●●●

●

●●●
●

●
●●

●

●
●●

●●

●●
●

●
●

●
●

●
●

●
●●●●●●●●

●

●●

●●
●

●●●
●●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●●●
●

●
●●●

●
●

●
●

●
●

●

●
●●

●●●
●●●●

●
●

●
●●●

●●
●

●
●

●●●
●

●

●

●
●

●

●
●

●

●

●
●●

●●●●●
●

●

●

●

●●

●
●

●

●
●

●

●

●

●
●●●●

●

●
●

●●
●

●
●●●

●
●

●
●

●

●
●

●
●●

●●

●

●

●
●

●
●

●
●

●
●

●●

●

●
●

●
●

●●
●

●●●

●
●●

●

●
●●

●

●

●

●
●

●
●

●
●

●
●

●

●●

●

●●
●●

●
●

●
●

●●
●●●

●●

●

●
●

●

●
●

●●
●

●●●

●

●●●●
●●

●

●
●●

●

●●

●

●●●

●

●

●
●

●

●

●
●●●

●

●

●
●

●

●

●

●
●●●

●
●

●

●
●

●
●

●●

●

●
●

●●●●

●●
●●

●●
●

●
●

●

●●●

●

●●●
●

●

●

●
●●

●
●

●●●●●

●

●

●

●

●●●

●

●
●●

●
●●●

●
●

●
●

●●
●●●

●
●●

●●●

●

●

●

●

●
●

●
●

●

●●

●
●

●
●●●

●

●

●
●●●

●●
●●●

●

●

●

●
●●

●
●

●●

●

●●●
●

●
●

●
●

●●

●

●

●
●

●
●

●
●●

●
●

●

●
●

●

●

●●
●

●

●

●
●

●
●

●

●
●

●

●
●●

●

●

●
●

●●
●

●

●●

●

●

●
●

●●

●
●

●●●

●

●
●

●●
●

●
●

●

●●●●

●●

●

●
●

●
●

●
●

●●
●

●
●

●●
●●●

●

●

●

●

●

●●●
●

●

●
●

●

●

●

●
●

●

●
●●

●●
●

●
●

●

●

●●●
●

●

●

●
●

●

●
●

●●

●

●●

●
●

●●

●●

●
●

●

●
●●

●

●

●

●●
●●

●●
●●

●

●●
●

●

●
●

●

●
●

●

●

●

●

●

●
●●●●

●●

●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●

●

●
●

●

●
●●

●●●●

●

●

●
●

●
●

●

●
●

●●●●●●●●●
●

●

●
●

●

●

●

●

●

●●
●●

●
●

●●
●

●
●●

●
●

●
●

●
●

●
●●●

●
●●

●●●●
●

●
●

●
●

●●
●●

●
●●

●●●●●●●●●●●●●

●
●

●
●●

●●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●
●

●
●

●

●
●

●●●

●

●
●

●
●

●●

●●

●

●●
●

●
●

●

●
●

●

●●

●

●

●
●

●

●

●●●
●●●

●

●

●●●●●●●●●●●

●

●●●

●

●
●

●
●

●
●

●●●

●
●

●

●

●
●

●
●●

●
●

●
●

●●

●●●
●

●●●●●●●●●●●●●●
●

●

●

●
●

●

●

●
●●

●

●●

●

●●

●

●
●

●
●

●●●●●●●●●
●●●

●

●

●

●●
●

●

●

●

●
●

●
●●

●
●●●●

●
●

●

●
●●

●●
●●●●

●
●●●●

●
●

●

●

●
●

●
●

●
●

●
●

●
●

●
●●

●●●●
●

●●●
●●

●
●

●●●
●

●
●●●

●●

●

●

●
●

●●

●
●

●●●●●
●●

●

●

●
●●●●

●●●●
●●●

●●●●
●●●●●●●●●

●
●●

●●

●●

●
●

●●●●

●
●●●

●
●●

●
●●

●●●
●

●●●●●●●●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●0

100

200

300

400

R
ea

dy

● ● ● ● ● ● ● ●0 1 2 3 4 5 6 7

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●
●

● ●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●
●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

● ● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
● ●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ● ●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

● ●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

● ● ●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●
●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

0

250

500

750

1000

1250

M
P

I
(M

B
/s

)

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

● ●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

● ●

●

●
●

● ●
●

●

●

● ●
●

●

●

●
●

●

●

●
● ●

● ● ●
●

●

●
●

●
● ● ● ●

●
● ●

● ●

●

●

●
● ●

●
●

●
●

●

●
●

●

●
● ● ●

●

●

● ●

● ●
●

●

●

●
●

● ●

●

●

●

●
● ● ●

● ●
● ●

●

● ●
●

●

●

●

●

●
●

● ●
●

●

●
● ●

●
● ●

●

●
● ●

●

● ●
●

●
● ●

● ●
●

●

●

●

● ●

● ● ●
●

●

●
●

● ● ●
● ● ●

●

●

● ●

●

● ●
●

● ●
●

●

●

● ●
●

●

●

●

●

●
●

●

●
●

● ●
●

●

●

●

●

● ●
● ● ● ●

●

●

● ● ● ● ● ● ● ●

●

●

●

● ● ● ● ● ●

●

●

●

● ● ● ●

●

●

● ● ●

●

●

●

●

●

●
●

●

● ●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

● ●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

● ●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●
●

●
●

●
●

●

●
●

●
●

●
●

●

●

● ●

●

●

●

● ●
●

●

●

●

●

●
●

● ●

●
●

●
● ●

●

●

●

●

●

●

●
●

●

●

●

●
● ●

● ●

●

● ●
●

●

●

●

●

●

●
●

●

●

●

●

● ● ●

●

●

●

●

●

● ●

●
●

●
●

●
●

●

●

●

●

● ●

●
●

●

●

●
●

● ●

●
●

●
●

●

● ●
● ● ●

●
●

●
● ●

●

●
●

●

●

● ●
●

●

●

● ●

●

●

●

● ● ●
●

●

●
●

●

●
●

●

●

●
● ●

●
● ●

●

● ● ●
● ●

●
●

● ● ●

●
●

●

●
●

●
●

●

●
● ●

● ●

●

● ●
●

●

●

●

● ● ●

●

●

●

●

●

●

●
● ● ● ●

●

●

●

● ● ● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

● ●

●

●

●

●
● ●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●
● ● ●

●

●

●

● ● ● ●
●

●

●

●

●

●

● ●

●

● ●

●

●

● ●

●

●

●

● ●

● ●

●

●

●

● ●

●

● ●
●

●
●

●
●

●
●

●

●

●
●

●

●

●
●

● ● ●

●

● ● ● ●
● ● ●

●
●

●
●

● ●

● ●
●

●

● ●
● ● ● ●

●
●

●
●

●
● ●

●

●

●
●

●
●

● ● ●
● ● ● ●

●
●

● ●

● ●
●

●
●

● ● ●

● ●

●
●

●
●

● ●

●

●
●

● ● ●
● ●

● ●
●

● ●
● ●

●
● ●

●

●

●

●

●

●

●
● ● ●

●

●

●

● ●

●

●

● ●
●

●

●

●

●

●

●

●

● ●
● ●

●
●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

● ● ● ● ●

●
●

● ●

●

● ●

●
●

●

●

● ●

●

●

●

●

●

●

● ●
● ●

●

●

●
● ●

●

●

●

●

●

●

●

●
● ●

●

● ● ●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

● ●
●

●

● ●

●

●

●

●

● ● ●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●
●

●
●

●

●
● ●

● ●
●

●
● ●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ● ● ● ●
●

●

● ●

● ●

●

●

●
●

●

●

● ●

●

● ●
● ●

● ●
●

●
●

● ●

●
●

●

●

●

● ●
●

●

●
●

●

●

●
●

●
●

●

●

●

● ●

● ● ●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●
●

●
●

●

● ● ●
●

●

●
●

●

● ● ●

●

● ●
●

● ● ● ●

●
●

●

●

●
●

●

● ● ●

●
●

●

●

●
●

●

● ●

● ●
●

●
●

●
●

●

●

●
● ●

●

● ●

●

●
●

● ● ●
●

●

●

● ● ●
●● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●
●

●

●
●

● ●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

● ●
●

● ●

● ●

● ●

●

●

●

● ●

●

●

●

●

●

● ●

● ● ●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

● ● ●

●

●

●
●

●

●
●

● ● ●
●

●

●

●

●

●

●

●

● ●
●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●
● ●

● ● ● ●

● ●
● ●

●

●

●

●
●

●
● ●

● ● ●
●

●

●
●

●

● ● ● ●

●
●

●

●

● ●
●

●
● ●

●

●
●

●

●
●

● ● ●

● ●

●

●

● ●
●

● ● ●

●

● ● ●

●
●

●

●
●

● ●
●

●
●

●

●
●

● ● ●
●

●

●

● ●

●
●

●

●

● ●

●

●

●
● ●

● ●

●
●

●

●
●

●

●

●
● ●

●

●

● ● ● ● ● ● ● ● ● ●

●

●

●

●

● ● ● ● ●

●

●

●

●

● ● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

● ●

●
● ● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●
● ●

●

●

●
●

● ●

●
●

●

●

● ●

●
●

●
● ● ●

●

●

●

● ●
●

●

● ●

●

●
● ●

●

●
●

●
●

● ●
● ●

●
●

● ●

●

●

●

● ●

●
●

●

●

● ●
●

● ●

●

●

●

●

● ●
●

● ● ●

● ● ●
●

● ●

●

● ●

●
●

●

●

●

●

● ● ● ●
●

●

●

● ● ●
●

● ●

● ●

● ● ●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

● ● ●

●

●

●

●

●
● ●

●

● ●
● ●

●

●

●

●

●

●

●
●

●

● ●
● ●

●
● ● ●

●

●

●

●

●
●

●

●

●

●

●

● ●
●

●

● ●

●

● ●

●

●

●

●
●

● ● ● ●

●

●

●

●

● ● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●
● ● ●

●
● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●
●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●
●

●

●

●

●
●

●

●

●

●

● ●
●

●
● ●

●
●

●

●
●

●
●

●
●

●

● ● ●

●

●

● ● ●
● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●
●

●

●

●
●

●

●

● ●

●

●

●
●

●
●

● ● ●
●

●

●
●

● ●

●
●

●
●

●

●
●

●
●

●
●

● ●
●

●
●

●

● ●

●

●

● ● ●

● ●

● ●
●

●

●
● ●

●
● ● ● ● ●

●

●

●

● ● ●
●

●

●

●

● ●

●

●

● ●
●

●

● ●
● ●

●

●

●

●

●

● ●
●

●
● ● ●

●

●

●

●

●

●
●

●

●
● ●

●

●

●

●
●

●
●

●

●
●

●

●

●

●
●

●

●

● ●
●

● ●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

● ●
●

● ●

●

●

●

● ●

●
● ● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
● ● ●

●

● ●

●
● ● ●

●

●

●

●
●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

● ●
●

●

●
●

●

● ●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●
●

●
●

● ●
●

●

●

● ● ●

●

●
● ●

● ●

●

●
●

● ●

●

●
●

●

●

●

●
●

●
●

● ●
●

●

●

●
●

●
●

●
● ●

●

●
● ●

●

●
●

●
●

● ● ● ●
●

●

●

●

●

●
● ● ●

●

● ●
●

● ●
●

●
● ●

● ●

●

●
●

●

●
● ●

● ●

●
●

●
● ● ●

● ●
●

● ● ●

●

●

●

●

● ●

●

●
●

●

● ●

●
●

●
●

●
●

● ● ●

● ● ● ●
● ●

● ● ●
●

●

● ●
●

●

●
●

●

●

●

●
●

●

●

●
● ●

● ●
● ●

● ●

●
●

● ● ●

●

●

●

●

● ● ●
● ●

● ●
●

● ●

●

●
● ●

● ●

●

●

●
● ●

●

● ● ●

●
●

●
●

●
●

●

●
●

●

● ● ●

●

●

●

●

●0.0

2.5

5.0

7.5

10.0

0 20000 40000 60000 80000
Time [ms]

C
on

cu
rr

en
t

M
P

I T
as

ks

Unlimited MPI requests

A
B

E
: 4

92
20

A
B

E
: 5

26
23

A
B

E
: 5

10
65

A
B

E
: 5

64
10

A
B

E
: 5

09
65

A
B

E
: 4

87
21

A
B

E
: 5

35
54

A
B

E
: 5

21
85

73
89

5

21.74%
21.28%
21.3%
20.6%
21.35%
21.69%

13.19%
13.12%
13.64%
13.03%
13.65%
16.4%

18.79%
18.32%
19.51%
18.3%
18.71%
18.91%

7.15%
6.32%
5.5%
5.98%
7.05%
11.43%

12.87%
12.73%
11.98%
11.89%
12.44%
15.1%

18.42%
17.63%
17.38%
17.58%
17.92%
18.82%

9.03%
10.01%
9.38%
9.39%
9.24%
11.77%

15.16%
15.32%
14.65%
16.06%
16.08%
15.5%

37.61%

34.57%

36.78%

28.39%

35.36%

31.48%

33.38%

22.51%

38.94%

32.22%

39.88%

35.27%

34.3%

29.44%

35.08%

29.54%

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●●
●

●
●

●

●●●

●
●●

●

●

●
●

●

●

●

●

●
●●

●
●

●
●

●

●

●
●

●●●
●●●●●

●
●

●
●

●

●

●

●

●

●●

●

●

●●

●

●
●

●

●

●

●
●

●

●●

●

●
●

●
●●

●

●

●
●

●●
●●

●●●●

●
●

●

●

●
●

●
●●

●
●

●

●
●

●

●
●

●
●

●

●
●

●●
●

●

●
●●

●
●

●

●●

●
●

●●
●

●●
●

●
●

●

●

●

●

●

●
●

●

●
●

●
●●●●

●

●
●

●
●

●

●

●

●

●
●

●
●

●●
●

●●

●●
●

●
●

●●

●
●●

●
●●●●

●
●

●
●

●

●

●

●

●

●

●
●

●●

●

●
●

●

●
●

●
●●

●
●

●

●

●

●
●

●

●●
●

●
●

●

●●

●

●
●

●

●

●

●●

●

●
●

●

●

●
●

●
●

●

●

●●

●

●●

●

●
●

●
●

●

●

●

●

●
●

●●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●●

●

●
●

●●

●
●

●
●●

●

●
●

●
●●●●

●

●

●●

●
●●

●

●

●●

●

●●●
●

●●

●

●
●

●
●

●●●

●
●

●

●●

●
●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●●
●

●●
●

●
●

●●

●
●

●

●●●

●
●

●

●

●●

●●
●

●
●

●●●●

●

●
●

●

●
●

●

●
●

●
●

●

●

●

●

●

●
●

●
●

●
●

●
●

●

●
●

●

●
●

●

●
●

●●

●

●●
●

●

●
●

●

●●

●
●

●●
●

●●
●

●
●

●●

●
●

●

●
●

●
●●●●●●●

●
●

●

●

●

●

●

●

●
●

●
●

●

●
●

●●

●

●●
●

●

●●
●

●
●●

●●●
●

●

●

●●●●

●
●

●

●

●
●

●

●

●

●

●

●

●●
●●●

●
●

●●

●
●

●●
●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●●

●
●

●●
●

●●

●

●

●

●

●

●
●●

●
●

●
●●

●
●●●

●

●●●

●●
●●

●

●●

●●
●●

●

●

●

●
●●

●

●

●●●

●
●

●

●●●●●●●●●●

●●●●●
●

●●●●
●

●●●●●●●●●●
●

●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●●●

●

●

●

●

●

●
●

●●

●
●

●
●

●

●
●

●

●

●●

●

●
●●

●

●●

●
●

●●

●●

●

●
●

●
●

●●●●●●●●●●●
●

●
●

●●●
●

●
●

●
●●

●
●●●

●
●●●

●
●●●

●

●●

●

●
●

●

●

●●

●●●

●
●

●●●●●●●●●
●

●

●●
●

●●

●

●
●●●●●●●●●●●●●●●●●●

●

●

●●●●
●●

●●
●

●

●

●

●●●
●

●
●

●
●●

●

●

●●●
●

●

●

●
●

●

●

●

●●

●

●

●
●●

●

●

●

●●

●

●
●

●●
●

●
●

●
●●●

●

●
●●

●

●

●●

●

●●

●
●

●
●●

●
●●●●

●●

●
●

●●
●

●

●
●

●

●

●
●

●

●
●

●●
●

●●

●

●●
●●

●
●

●●
●

●

●

●●

●●●

●

●●

●●●●
●●

●●
●

●●
●

●

●

●
●●

●
●

●

●
●

●

●
●●

●

●●
●●

●

●
●

●●

●

●

●

●●●●

●

●
●

●

●

●

●●●

●
●●

●
●

●

●

●

●●

●

●

●
●

●●
●

●●
●

●
●

●
●

●●
●

●

●●●●

●

●
●

●
●

●●
●

●
●

●●●
●●

●
●

●
●

●
●

●●

●●
●

●

●
●

●
●●●●

●●
●

●●
●●

●

●●

●●
●●

●

●
●

●

●●●
●●

●
●●●

●●●●●

●
●

●
●

●●●
●

●
●

●

●●
●

●

●
●

●
●●●●●

●
●●

●
●●

●●

●●●
●

●
●

●
●

●●
●●

●
●

●●●●
●

●
●

●
●

●●●●●●●
●●●●●●●●●

●
●●

●
●

●
●

●
●●●●●●●

●●

●
●

●
●

●
●●

●
●

●

●

●●
●●●●●

●

●
●●

●

●
●●

●
●

●
●●

●
●●

●
●●●●●●●●●●●

●●●●
●

●
●●

●
●●

●●
●●●●

●●
●

●●

●●
●

●
●

●●●●
●

●
●

●
●

●●●●
●

●
●

●
●●●●●

●●
●

●●●●
●

●

●●
●●

●

●

●

●

●
●

●
●

●
●

●
●

●●

●●●
●●

●
●●

●●●
●●

●●●●
●

●●
●●●●

●●
●●●

●
●

●
●●

●●

●●●
●●

●

●
●

●
●●●●●

●●

●
●●●

●

●
●

●●●
●

●
●

●

●
●●

●●●
●●●

●●●●●
●

●
●

●●●
●

●

●

●
●

●
●●

●
●

●●
●

●
●●●●●●

●●●

●●
●

●
●

●
●●

●

●
●

●
●

●

●
●●●

●

●
●●

●●

●

●●
●●

●
●●●●

●
●

●●
●

●●●●●
●●●●

●●●●

●

●
●

●

●

●

●

●

●
●

●
●

●
●●●●●●●

●●
●●

●●●●●●
●

●●
●●●●

●
●●

●●●
●

●
●●●

●●
●

●●
●

●●

●
●

●

●

●
●

●●●
●●●

●●
●●

●

●
●●

●
●

●●●

●●
●

●
●

●
●●●

●●●●
●●●

●
●

●
●

●●
●

●●●●●●●
●

●●●●
●

●
●

●●
●

●●●
●●

●●●●●●
●●

●●●●●●●●●●●●

●
●

●
●●

●●
●

●
●●

●

●●●●●●●●●

●

●
●

●

●
●

●●●

●
●●●●●●●●●●●●●●●●●

●
●

●

●●
●●

●●●●
●●

●●●

●

●

●

●
●

●

●●●

●
●

●●
●

●●

●

●

●

●
●

●

●

●
●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●●●

●

●

●●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●●

●
●

●
●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●

●
●

●

●
●

●

●
●

●●●
●●

●●●

●

●
●●

●

●●
●

●

●

●●

●
●●●

●

●
●

●●
●

●●

●●

●
●

●
●

●●
●●

●

●

●●
●

●

●

●

●
●

●●●●

●

●
●

●●●●

●
●●

●

●
●

●
●

●●●

●

●
●●

●

●
●

●●

●

●●

●
●

●
●

●
●

●

●
●

●

●
●

●

●
●

●●

●

●●
●

●
●

●
●

●

●●

●●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●●●

●
●●

●

●
●●●

●
●●●●

●●
●●

●
●

●
●

●●
●●

●

●

●
●

●
●●●

●
●

●
●●

●

●
●

●
●

●

●

●
●

●●●

●

●

●
●●

●●
●

●

●

●

●●

●

●

●●●
●●

●

●●●●

●●
●

●
●●

●
●●

●
●

●

●
●

●

●

●●
●●

●
●

●●

●
●

●

●

●

●

●

●

●

●●

●●

●●

●
●

●

●
●●

●
●

●

●

●●

●

●

●
●●

●

●
●●

●

●
●●

●

●

●

●●
●

●
●●

●

●

●

●●

●●●

●
●

●●

●
●●

●
●

●●

●

●

●

●●

●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●
●

●●
●

●●

●●
●●

●●

●
●

●

●●
●

●

●

●
●

●●

●

●

●

●

●●
●

●

●

●

●●

●

●
●●●●●

●●

●●●

●

●
●

●

●●
●●●●

●
●

●

●

●●●●●●●●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●
●●

●
●

●

●
●

●

●
●●

●
●

●

●
●

●

●
●

●●
●

●

●●
●●●

●

●
●

●

●
●

●

●●
●

●
●

●●
●

●

●

●
●

●

●

●
●●

●●

●

●

●●

●

●

●●

●●
●

●
●

●●
●●●

●●

●

●

●●

●●

●

●●
●

●

●
●●

●●

●

●●

●

●
●

●

●
●

●

●

●
●

●
●

●●
●

●
●

●
●

●

●

●
●

●

●
●

●●
●

●

●●
●●●

●●●●●●●●

●●

●●●

●●

●
●●●●●●●●●●

●

●

●

●
●●

●
●●●●

●

●

●●
●

●●

●

●
●●

●●
●●●●

●

●
●

●●

●

●

●●

●
●

●

●●

●

●
●

●●●
●

●●●
●

●
●

●
●

●
●

●

●

●

●●●

●
●

●
●

●●●●

●●

●
●●●●●●●●

●●

●

●●
●●

●
●●●

●
●

●●●●●●●●●●●●●●
●●●●●●

●
●●

●
●

●●●

●
●

●

●
●●●●●●●●●

●

●

●●

●

●●
●

●
●

●●●●●●●●●●●●●●●●●

●

●

●

●●●
●●●

●●●

●●
●●●

●
●●●●●●●●●●●●●●●●●●●●●●

●
●●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●●●●

●●

●

●

●●●
●

●

●

●
●

●●●

●●

●
●●●

●
●

●
●●

●
●

●

●
●

●●
●

●

●

●
●

●

●●●

●●
●●●●

●
●●●

●

●

●

●
●

●

●

●
●●

●
●●

●

●●

●

●●

●●

●

●

●●
●●

●●●
●●●

●

●●

●

●

●

●

●●

●
●

●
●

●
●

●
●

●●
●

●
●

●
●

●
●

●

●
●

●
●●

●
●

●

●

●

●

●
●

●●

●

●
●

●
●●

●
●●

●
●

●

●●
●

●
●●

●
●●

●
●

●
●

●

●
●

●
●●●

●
●

●

●

●

●
●

●●
●●

●

●

●
●●

●
●

●
●

●●
●

●
●

●
●

●

●●
●●●●

●

●

●
●

●
●

●●
●

●
●

●

●

●●
●

●●
●●

●
●

●
●

●

●
●

●
●

●
●●●●●

●

●

●●●
●

●

●

●●
●

●
●

●●

●

●

●●
●●

●

●●

●
●●●●

●

●
●●

●

●●

●●●●
●

●
●

●●●

●●

●

●●
●

●
●

●●
●

●●
●

●●

●

●
●

●
●

●

●
●

●●
●●●

●●●
●

●
●●

●
●

●
●●●●

●●
●

●●
●

●●
●●

●
●

●●
●

●●
●

●
●

●
●

●
●

●

●
●●

●
●●

●

●

●
●

●
●

●
●

●
●

●

●
●

●●●
●●

●●●
●

●●
●●●

●●●●
●

●●●
●

●●

●

●●
●

●●
●●●

●●
●

●
●

●
●

●
●●●

●
●●

●●

●

●

●
●

●●

●

●●●●
●

●
●

●
●

●

●

●●

●●●●●

●●

●

●●

●●

●

●●●
●●●●

●
●

●

●

●

●●

●
●

●
●●●

●●●
●

●

●
●

●●
●●●●●

●●●●●●●●
●●●

●●

●
●

●
●

●●

●

●
●●●

●
●

●●●
●●●

●●

●●
●

●●●
●

●
●●●

●●●●●
●●

●●●●
●

●
●●●●

●●
●

●●●●●
●●

●●●●●●●●
●

●
●

●●
●

●
●●

●●

●
●

●●
●●

●●
●●

●

●

●
●●

●

●
●

●

●●●

●
●

●●

●
●

●

●
●●

●●●
●●●●●●●●●

●
●●

●

●●
●

●
●●

●●●
●

●●●●
●●

●

●

●●●●●●

●●

●●
●

●
●

●●
●●

●
●●●●●

●●●
●●●●●

●
●

●
●●

●●
●

●
●

●
●

●●●●
●●

●

●●●
●●●●●●●●

●

●

●●●
●

●
●

●
●

●●●●
●●●

●●●●●●
●

●●
●●●●

●

●

●

●
●

●

●
●

●
●

●
●●●

●●
●

●●●
●●

●●

●

●

●●

●
●

●
●●

●
●

●
●

●
●●

●

●

●●
●●●●●●

●●●●
●●

●
●

●
●●●●

●
●●

●
●●

●●●●●
●●

●
●

●

●

●
●

●●

●
●●

●
●

●●

●
●

●●
●

●●

●
●

●●
●

●●
●

●●
●

●●
●●●

●

●
●●●

●●●
●

●●●●●
●●●●●●

●
●●

●●
●

●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●

●

●

●

●

●

●

●
●●

●●

●
●

●

●●

●

●
●

●●●

●

●

●

●●
●

●

●
●

●

●
●●

●
●

●
●

●●
●●

●
●●

●

●

●
●●●

●

●
●

●
●

●

●
●

●

●
●

●
●

●

●
●

●
●

●
●●●●

●●

●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●
●

●●
●

●
●

●●
●

●
●●●

●

●

●

●●

●
●

●●●
●

●

●
●

●
●

●
●

●

●●
●●

●●●
●●●

●

●

●
●●

●
●

●
●●

●●
●●

●
●

●

●

●●●●
●

●

●●
●

●

●
●●●●

●
●

●●
●

●
●●

●

●
●

●

●
●

●

●●

●

●
●

●

●●●

●

●

●

●

●
●●

●
●

●

●●
●

●

●
●●

●

●●●
●

●
●

●

●

●
●

●●
●●

●●

●
●

●
●

●●
●

●●
●

●
●

●
●

●

●
●

●●●
●

●●●●
●

●●

●

●
●●●

●●

●

●

●

●
●

●
●

●

●

●
●

●

●

●●●●
●

●
●

●
●●

●●
●

●

●
●●●

●
●

●●
●

●●
●

●●
●●●

●

●

●
●

●

●
●

●
●●●

●
●●

●
●

●
●●

●

●●●●●●●●●

●

●
●

●●
●

●

●
●●

●●●

●
●

●●

●

●
●●

●●●●●●
●

●

●
●

●
●

●
●

●
●

●●●●●
●

●
●●●

●
●●

●
●●●

●
●

●

●

●

●

●

●

●●●
●

●●
●

●
●●●●●

●

●

●

●●

●

●●●
●●●

●●●
●●

●

●

●
●

●●
●

●
●●

●
●

●
●●

●
●

●●●
●

●●
●

●●
●●●

●
●

●
●●

●
●

●
●

●
●

●

●
●●●●

●●

●
●

●

●
●

●

●

●
●

●
●

●
●

●●●
●

●

●

●●
●

●●

●
●

●●●●
●●●

●●●●
●●●●●

●●

●
●●

●
●●

●
●

●
●●

●
●●

●

●●●●●
●●

●●
●●●●

●
●●●●●●●

●
●●

●●●
●

●●●●●
●

●
●●

●
●●

●
●●

●●
●

●●

●
●●

●●●
●

●
●●●

●●●
●●

●
●

●
●

●
●●●●

●

●
●

●

●

●●●●●●●

●●●

●●●●●
●

●●
●

●
●

●●
●●

●
●

●●●●●●●
●●●●●

●

●●

●
●

●

●
●●

●
●●●●●

●
●

●
●●●

●●
●●●

●●●
●●●

●
●

●●●●●●
●

●●
●

●
●●

●●
●

●
●

●●●

●
●●●

●●
●

●
●●

●
●

●

●●●
●

●●●●

●●
●●

●
●

●
●

●●
●

●
●●

●
●●

●
●●

●

●

●

●

●

●

●
●●●●

●
●

●
●●●

●

●

●
●

●

●
●

●

●

●

●

●●●

●●

●

●
●

●
●●

●●

●

●
●

●●

●●

●

●

●
●

●

●

●●

●

●

●

●

●●

●

●
●●

●

●●

●●

●

●●

●●
●

●
●

●
●

●
●

●
●

●

●●

●

●

●
●

●

●
●

●●

●

●
●●

●

●

●

●

●●
●●

●
●●

●
●

●

●

●
●●

●
●

●

●
●

●

●
●

●
●

●
●

●
●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●
●

●
●

●

●●
●

●
●●

●
●●

●

●

●
●

●

●

●
●

●●●

●

●●●
●●

●
●

●

●

●
●

●

●●

●

●
●

●

●
●●

●

●●
●

●

●
●

●

●
●

●
●●

●
●

●
●

●●
●

●
●

●●

●

●

●
●●

●

●

●●

●
●

●●●

●
●

●

●

●
●

●●

●
●

●●
●●

●
●●●

●
●

●

●

●
●

●
●

●

●
●

●
●

●

●●●

●

●●

●

●

●

●

●
●

●

●●

●

●

●●

●

●

●●

●

●

●●
●

●

●

●

●●

●
●

●

●
●

●

●

●
●

●●●
●

●

●
●

●
●●

●

●
●

●
●●

●●●
●

●●
●

●●
●

●●

●
●

●
●

●
●

●●●
●

●
●

●●

●

●
●●

●

●

●

●
●

●

●●

●
●●

●

●

●

●

●●
●

●

●

●
●

●

●

●●

●●
●

●●●
●

●●

●●

●●

●

●

●●●●
●●●

●
●

●

●
●

●●

●
●

●●

●
●

●
●

●●●

●●
●

●

●
●

●
●

●

●
●

●

●●
●

●●●
●

●●●

●
●●●●●●●●●

●
●●

●

●
●

●

●

●
●

●

●

●●

●
●

●
●

●
●

●

●
●

●

●
●

●
●●●●

●
●●●

●
●●●●●●●

●
●

●

●

●

●
●●

●

●●

●
●●

●
●

●●

●
●

●●

●

●
●●●●●●●●

●●

●
●●●●

●●●
●●●

●

●
●●●●●●●●●●●

●●●●●
●

●
●

●●
●●

●

●

●●●●●●●●●●●●

●
●

●
●●

●●●
●●

●●

●●
●

●

●

●
●

●

●

●
●

●

●●●●●●●●●●●

●
●●

●●

●●

●
●

●●●●●
●

●

●●

●
●

●●●●
●

●

●

●
●

●
●●●●

●●

●
●●●●●●●●●●●●●●●●●

●●●

●

●●
●

●●●●●●
●

●●
●

●

●●●
●●

●●●●●

●
●●

●

●●
●

●

●

●
●

●●

●

●

●

●

●

●

●●●●●

●

●
●

●
●

●●●●

●●
●

●
●

●

●●●●●●●●

●

●●●●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●●●

●

●●

●
●●●●●●●●●●

●
●

●
●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●
●

●

●

●

●

●

●
●

●
●

●

●●
●

●●

●
●

●

●

●

●

●
●

●
●●

●

●●
●

●
●

●
●

●

●

●

●

●●

●
●

●

●●●
●

●

●

●

●

●●

●

●
●

●
●●

●

●
●●

●
●

●
●

●
●

●

●
●

●
●

●
●

●

●
●

●

●

●●

●●

●●●●
●

●●
●●

●

●●●

●

●

●

●●

●

●●

●●●
●

●

●●
●

●●
●●

●
●●

●

●●

●

●
●

●●

●
●

●
●

●

●●
●

●

●
●

●
●

●
●

●
●

●
●

●

●
●

●

●

●●

●●
●●

●

●
●

●
●

●●●
●

●●
●●●

●
●

●
●

●●
●

●

●

●●●
●

●

●●

●

●●

●
●

●

●

●
●●

●

●●
●●●●

●
●

●

●
●●

●
●

●●

●
●●

●

●

●●

●●

●

●

●●●
●

●●

●●
●

●
●

●
●●

●
●

●
●●

●●●
●

●
●●

●●
●

●

●

●

●●

●

●

●
●●

●

●●●

●

●

●●●
●

●

●

●

●

●●

●●
●

●
●●

●
●

●●
●

●
●

●●●●
●●

●●
●

●●●
●●●●●●

●
●●●●

●●

●●●
●●●●

●
●●●

●
●●●

●
●

●●
●

●●
●

●
●

●
●●●●

●

●

●●●
●

●●
●

●
●

●

●

●●●●

●●
●●●

●●●
●●

●
●

●
●●

●

●

●

●

●
●

●
●

●●

●●

●●●
●●

●
●●●●

●●●●
●●

●
●

●
●

●●
●●●●

●

●
●●

●●
●

●

●
●

●●
●

●
●

●

●●●●●
●

●●

●●●
●

●
●

●
●●

●
●

●

●●
●

●

●

●●
●

●●
●

●●
●

●
●

●●●●●
●●

●

●
●

●
●●

●

●
●

●
●

●

●
●

●
●●

●

●●●
●

●

●
●●

●
●

●

●
●●●

●
●

●
●

●●●
●●

●

●●●
●

●
●●●

●
●

●●●
●●

●
●

●

●

●●●●●●
●

●●●●
●

●●
●

●
●●

●●

●

●
●

●
●

●

●

●
●

●
●●

●

●
●

●
●

●
●●

●
●

●●●
●

●

●
●

●●
●●

●
●

●●
●●

●
●●●●●●●●●

●

●
●

●
●

●
●

●

●
●

●●
●

●
●●●●●●

●●

●●
●●

●●●●●
●

●
●●

●●

●●

●●
●●●

●●
●●●

●

●●
●

●●●
●

●
●

●
●●●●

●●●
●●

●
●

●●
●

●
●

●
●●

●●
●

●
●

●

●
●

●●
●

●●●●

●●

●
●

●
●

●●

●●
●

●

●
●

●

●

●●
●

●
●●●

●
●●●●●●

●
●●●

●●●●
●

●●●
●

●●

●
●

●

●●

●
●●●●●●

●
●●

●
●

●
●

●●

●
●

●●●●●●
●●

●
●

●
●●

●

●
●●

●
●●●●●●●●

●●●
●●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●
●

●●

●

●

●
●

●●

●

●●
●●●

●●●
●

●
●

●
●

●

●
●

●

●

●

●
●

●
●

●

●●●

●
●

●

●●

●●

●

●
●

●
●

●●
●

●

●
●●

●

●

●
●

●
●

●

●
●

●●

●

●●●

●

●
●

●●

●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●
●

●

●●●

●●

●●
●●

●
●

●

●

●●

●

●
●

●●
●

●
●

●

●

●
●●●

●
●

●
●

●

●●

●

●

●●
●

●

●
●

●

●

●
●

●
●

●●●
●

●●
●

●
●

●●●
●

●
●

●●●●

●

●

●●●●

●●●●●
●●

●

●●

●

●
●

●●

●
●●

●●

●

●

●

●●

●

●

●

●
●

●
●

●
●

●
●●

●

●
●

●
●

●
●

●
●

●●●
●

●
●●●●●●

●
●

●

●●

●●●
●

●
●

●

●

●
●

●

●
●

●

●
●

●

●●

●

●●

●
●

●●

●
●

●

●●

●
●

●●

●

●

●●

●

●

●
●

●

●●
●

●
●

●
●

●●●

●

●

●

●●●

●
●●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●●●
●

●

●

●

●

●

●

●
●

●

●●●
●

●

●
●

●

●

●●

●
●

●
●

●●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●
●

●

●
●

●

●

●

●●●
●

●

●

●

●
●●

●
●●●●

●

●
●●

●
●

●

●●●

●

●

●●●●●●●●●

●

●
●

●

●

●●

●●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●●
●

●●

●

●

●●

●
●

●

●
●

●

●●●

●●

●

●●●●●●●●
●●●●●

●

●●

●

●

●●
●

●

●

●
●

●
●

●●●●

●
●●

●
●

●●

●
●

●●●●
●●

●●

●

●

●

●●

●●

●
●

●

●●●
●●●

●
●

●●●●
●●

●
●

●

●

●
●●

●●

●●

●●●
●●

●

●

●●

●
●

●●
●

●

●
●●

●
●●

●
●

●

●●

●

●
●

●
●●

●

●
●●

●
●●

●●
●

●

●

●

●
●●●●

●

●

●

●
●●

●

●

●
●

●
●

●●●

●●

●●●●●

●
●

●●●

●●●

●●

●
●

●
●●

●
●●●●●●●●

●

●

●●●●●●●
●

●

●

●
●●●●

●
●

●●●●●●

●
●●●

●●●●●●●●●●

●
●●●

●

●●●

●●

●
●

●●●●●●●●

●

●●●●●●●●
●●

●
●

●●●

●●

●●
●●●●●●●

●

●●
●●

●
●●

●

●

●

●
●

●

●●
●

●

●●●●●●
●●

●●●●●●●●●●
●●

●
●

●

●

●●

●

●

●●
●

●
●

●●
●●

●
●

●

●●

●

●●
●

●

●●●
●

●●●
●●

●

●
●●●

●●●●
●

●
●

●

●

●
●●●●

●
●

●●●
●

●●●
●●●●●

●●●●●●●●●●●●●●●●
●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

● ● ● ● ● ● ● ●0 1 2 3 4 5 6 7

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

● ●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●
●

● ● ● ● ● ●

●

●

●

●

●

● ●

●

●

●

●

● ● ● ●

●

●

●

● ●

●

●

●

● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ● ● ● ●

●
●

●

●

●

● ●

●

●

●

●

● ● ● ●

●

●

●

●

●

●

●

●

● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●
●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

● ●

●

●
●

●

● ● ● ●

●

●

●

●

●

●

●

●

● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

● ●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ● ●

●
●

●

●

●
●

● ● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●
●

●
●

● ●

● ●
●

●

●

●

●

●

●
● ●

● ●
● ●

●

●

● ● ●
●

●

●
●

●

●
●

●

●
● ● ●

●
●

●

●

●

●

●

● ● ● ●

●
● ●

●
●

●
●

●
● ●

●

● ● ●
●

●
● ● ●

●

●

●

●
●

●

●

●
●

●

●

●

●
● ● ●

● ●

● ● ●
●

●

●

● ● ●
●

●

●
●

●

● ● ●

●

●
●

●
●

●

●

● ●
●

●

●
●

●

●
● ●

●

●

● ● ●

●

●

●

●

● ● ●
●

●
●

●

●

●

●
●

●
● ●

●

●
●

●

●
●

● ●
●

●
● ●

●

●

●

●

● ● ●

●

●

●

●
●

●

● ●

●

●

●

●

●

● ● ●
●

●
●

●

●

● ●
●

●
●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

●
●

● ●

●
●

●

●

● ● ● ● ●

●

●

●

●

●

●

●

● ● ● ● ●

●

●

●

●

●

●
● ●

●
●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

● ●

●
●

● ●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●
● ● ● ● ●

● ●
●

●

●

●

● ● ●

● ● ●

●

● ●

●

●
● ●

●

●
●

●

●

●

● ●

●

●
●

● ●
●

●
●

●

●
●

●
● ● ●

● ●

●
●

● ●
●

●

●

●

●

●

●
● ●

● ●
●

●

●
● ● ●

●
●

●

●

●

●
●

●

●
●

● ●
●

●

●

●

● ● ●

●

●

●

● ● ●
●

●

●

●
●

●
●

●

●
● ●

●
●

●

● ●
●

●

●
●

●

●

●

● ●
●

●

● ●

●

● ●
● ●

●

●

●

●
●

●

●
●

●

●

● ●
●

●
● ●

● ● ●

● ●

●
●

●
●

●
●

●

●

●
●

●
● ●

● ● ●
●

●
●

●

●

●
● ●

●
●

●

●

●

●

●
●

● ●

● ●
● ●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●
● ●

●

●
● ● ● ● ● ● ●

●

●

●

●

● ●

●

●

●

●

● ● ● ● ●

●

●

●

●

●

●

●

● ● ● ● ●

●

●

●

●

●

● ● ●

●

●

●

●

● ●
●

●

●

●

●

●

●

● ●

●

●

●
●

●

● ● ●

●
● ● ●

● ● ●

●
●

●
●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●
● ●

●

● ●

●

●

●

● ●
● ● ●

●
●

●

● ● ●

●
●

●
●

● ● ●
● ●

●

●
●

●
●

●
●

●

●

● ●

●
●

●

● ●
●

●
●

●

●
●

● ●

●

●

●

●
● ●

●

●

●
●

●
●

●

● ● ●

● ●
●

●
● ●

● ●

●
●

●
● ●

●
●

●
● ● ●

●
●

●

●
● ●

●

●

● ●
● ●

●

● ●
● ●

●

●

●
●

●

●

● ● ●

●
● ● ● ●

●

●
●

●

● ● ●

●
●

●
●

●

●

● ●

●

●

●

●

●

●
●

● ● ●
●

●
●

● ● ●
●

● ● ●
●

●

●

●

●
●

●

●

●
● ●

● ●
●

●

●

●
● ●

●
●

●

●
●

● ●
●

●

●
●

●

●
●

●

● ● ●
●

● ●

●

●

●
● ●

● ● ●
●

●

●

●

●

●

● ●

●

●
●

●

● ● ● ● ●

●

●

●

●

●

●

●

● ● ● ● ●

●

●

●

●

●

●
● ●

●
●

●
●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

● ●

●
●

●
●

●

● ●

●

●

● ● ●
●

●
●

●

●
●

●

●

● ●

●

● ●

●

● ●
●

● ●
●

●

●

●
● ●

●

● ●

●

●

● ●

●
●

●

●

● ●

●
●

● ●
●

●

●
●

●
●

●

●
● ●

● ●

●

●
●

●
●

●

●
●

●

●

●
●

●
●

●
●

●
● ●

●
● ●

●

●
●

●

●
●

●
●

●

●
●

● ●
●

●
●

● ●

●

●
●

● ●
●

●

●

●

●
●

●

●

●

●
●

● ●

●
●

●
●

●
● ●

●

●

●
●

●
●

●

●
●

●

●
●

● ●
●

●

●

● ●
●

●

●

● ●
● ●

●

●

●

●
●

●
●

●

●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●
● ●

● ●

●
●

●
● ●

●
●

●

●
●

●
●

●
● ●

●

●

● ● ●
●

● ●
● ●

●
● ●

●

●
● ●

● ●
●

●

●
● ● ● ●

●

●

●

●

● ● ● ●
●

●

●
● ●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●
● ●

●

●
● ●

●

●
● ●

●
●

●

●

●

●

●

●
● ●

● ●
●●

●

●

● ●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●
● ●

●
● ● ●

●

● ● ●

● ●

● ●

● ●

●

●

●

●

●
●

●

●

● ●
● ●

●

● ●

●

●

● ● ●

●
●

● ●

●

●

●

●

●

●
●

●
●

●

●
●

●
●

● ●

●

●

●

● ● ●
●

●

●

●
●

●

●

●

●
●

●
●

● ●
●

● ●
● ●

●
●

●

●
●

●
●

●

●

●
● ● ●

●

● ●

●

●
●

● ●
●

●

●

●

●

●

●

● ●

●
● ● ●

●
● ●

●

● ● ●

●
●

● ●
●

● ●
●

●

● ● ● ●

●
● ●

●
●

●

●

●

●

●
●

● ●
●

●

●

●

●
●

●
●

●
●

● ●
● ● ●

●

●

●

●

●

●
●

● ● ● ●
● ●

●
●

●
● ●

●

●
●

●

● ●

●

● ●
●

●

●

●

●

●

●

● ●

●

●
●

●

●
●

●

●
●

●

●

●

●

●
● ● ●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

●

●

● ● ●

●

●

●

● ● ● ● ●
●

●

●

●

●

●

●

● ● ● ● ●

●

●

●

●

●

●

● ●

●

●
● ●

● ●
●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●
●

●
●

●
●

●
●

●

●

● ●

● ● ●

●

●

●
●

● ●

●
●

● ● ●

● ●

● ●
●

●

●

● ●

● ●

●

●

●

● ●
● ●

●

●

●

● ●

● ●

●

●

● ● ●
●

●

●
●

●
●

●
●

●

● ● ●
●

● ●
●

●

●

● ●
●

● ●

●

● ●

●

●

●
●

● ●
● ●

●
● ● ● ●

●

●
●

●
●

●
●

●
●

●
●

●
● ● ●

● ● ●

●

●

●

●
●

●
●

● ●

●

●

●
●

●

● ● ●

● ●

●

● ● ●
●

●

●
●

● ●
● ● ●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●
● ●

● ● ●
● ●

●

●

●

●
● ● ● ●

●

●
● ●

● ●
●

●

●
●

●

●
●

●

●

●

● ●
●

● ●
●

●

●

●
●

●
●

●

●

●
● ●

●
●

●

●
●

●

● ●
● ●

●

●
●

●

●
●

●
●

●
● ●

● ● ● ● ● ●

●

●

●

●

● ● ●

●

●

●

● ● ● ● ●
●

●

●

●

●

●

●

● ● ● ● ●

●

●

●

●

●

●

● ●
●

●
● ●

●
● ●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

● ● ●

●

●
●

●
●

●

●
●

●

●

●

●

● ●

●

● ●
●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●
● ●

●
●

●
●

●
●

●
●

● ●
● ●

●
●

●

●

●

●
● ●

●

●

●
●

● ●
●

● ● ●
●

●
●

●
●

●

● ● ● ● ● ● ● ● ●

● ●

●
●

● ●

●

● ● ●

●

●

●

● ●
●

●

● ●

●

●

● ●
●

●

●

●

●
●

●
●

●

●

●

●
● ●

●

●

●
●

●

●

●
●

●

● ●

●

●
●

●

●

●

●

● ●

●
●

● ●

● ●
● ●

●
●

●

●

● ● ● ● ●
● ●

● ● ●
●

●
●

● ● ●

●

●
● ●

●

●
●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●
●

●
●

●

●
●

●

●
●

●

●
●

●
● ●

●

●

●
● ●

●
●

● ● ●
●

● ●

●

●

● ● ●

●

●

●

● ● ● ● ●
●

●

●

●

●

●

●

●
● ● ● ●

●

●

●

●

● ●

● ●

●
●

●

●
●

●
●

●
●

●
●

●

●

●

●

●
●

●

● ●

●

●
●

● ●

●

● ●
●

●

●

●

● ● ●
●

● ● ●
●

●

●

●

● ●

●

●

●

●
● ●

●

●
●

● ●

● ●

●

●

●

●
●

●
●

● ●

●

●
●

●

●

● ●

●
●

●

●

●

●

●

●
● ●

● ● ●

● ●

● ●

● ●

● ●

●

●

●

●

●

●
● ●

●
● ●

●
● ●

●
● ●

●

● ● ●

●

●

●

●
●

●

● ●

●

●

●

●

●
●

●

● ●
● ● ●

●

●

●

●

●

●

● ●
●

●

●

●

● ●

● ●

● ●

●

●

● ●

●

●
● ● ●

● ●
● ●

●

● ●
●

●

● ● ●
●

●
●

●

●

● ●
●

● ● ● ●
●

●
●

●

●

● ●

●

● ● ● ● ●
● ●

● ●

●

●

●

● ●

● ●

●

● ●

●

●

●

●
●

●
● ●

●

●

●
●

●

●

● ●
●

●
●

● ●
●

● ● ●
● ●

●

●
● ●

●

● ●

●

●

●
● ●

●
●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●
●

● ●
●

● ●

● ● ●

●

● ●
● ● ●

●

● ● ●

●

●
● ● ●

●
● ●

●

● ●

● ●

0 20000 40000 60000 80000
Time [ms]

Limited MPI requests using task priorities

Source: The Author

137

Figure 6.13: Comparison of two StarPU-MPI multi-node executions of the Cholesky fac-
torization with a matrix of 100×100 tiles of 960×960 using DMDAS scheduler and P=2.
On the left, a execution using the original StarPU code with unlimited MPI requests. On
the right, an execution after the introduction of changes to limit the number (in this case
10) of MPI requests using task priorities of DTRSM tasks.

0

25

50

75

100

C
ho

le
sk

y
Ite

ra
tio

n

A
B

E
: 5

21
67

A
B

E
: 5

88
28

A
B

E
: 5

52
75

A
B

E
: 6

20
63

A
B

E
: 5

68
82

A
B

E
: 5

28
90

A
B

E
: 5

98
60

A
B

E
: 5

58
78

76
85

1

30.27%
32.58%
33.6%

35.26%
35.49%
36.28%

11%
11.22%
11.14%
11.1%

10.62%
11.86%

24.08%
25.97%
27.72%
28.63%
29.28%
29.82%

4.39%
5.08%
4.78%
5.27%
5.37%
5.51%

16.79%
16.88%
16.9%

16.94%
17.11%
16.98%

30.24%
32.11%
33.06%
34.39%
34.88%
35.45%

9.88%
9.86%

10.33%
9.99%
10.5%

10.07%

24.1%
26.21%
28.55%
28.67%
29.4%

28.73%

32.88%

30.05%

28.48%

25.51%

27.82%

28.08%

26.64%

20.25%

30.5%

26.91%

30.99%

29.67%

28.82%

22.63%

27.67%

26.3%

0_CPU0

0_CPU5
0_CUDA0_0
0_CUDA1_0

1_CPU0

1_CPU5
1_CUDA0_0
1_CUDA1_0

2_CPU0

2_CPU5
2_CUDA0_0
2_CUDA1_0

3_CPU0

3_CPU5
3_CUDA0_0
3_CUDA1_0

4_CPU0

4_CPU5
4_CUDA0_0
4_CUDA1_0

5_CPU0

5_CPU5
5_CUDA0_0
5_CUDA1_0

6_CPU0

6_CPU5
6_CUDA0_0
6_CUDA1_0

7_CPU0

7_CPU5
7_CUDA0_0
7_CUDA1_0

A
pp

lic
at

io
n

W
or

ke
rs

●

●

●●●●

●●

●

●

●

●

●●●

●

●

●
●●●●

●
●

●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●
●

●
●

●
●●●●●

●
●

●

●

●

●

●
●●

●●
●

●
●

●

●

●
●

●
●

●●●

●

●
●

●

●

●

●●

●
●●

●

●

●

●

●
●

●
●

●
●

●
●

●
●●●

●●●●
●●●

●

●
●

●

●

●
●

●
●

●
●●●●

●

●

●

●
●

●
●●●

●

●

●
●

●●
●

●●
●●

●

●
●

●
●●

●●
●●

●
●●●●●●●

●●
●●

●●
●●

●

●

●

●

●

●
●

●

●●
●●●●

●
●

●●●●●
●●

●

●
●●

●

●●
●

●
●

●

●

●
●●●●●

●
●●●

●●

●
●

●

●
●

●

●

●●

●

●

●

●

●
●●●●●●●

●
●●

●

●●●

●

●
●

●●●●
●●

●●
●

●●
●●

●●
●

●●
●●●●●

●●
●

●
●

●●●
●

●●●
●●●●●●●●●●●

●

●
●

●
●

●
●●●

●●●●●●●●●
●●●

●●●
●

●●●
●●●

●●●●●●
●●●●●

●●●●
●●●

●●●●●
●

●●●●
●●●●●●●●

●●●●●●
●

●
●●●●●●●●●●●

●●●●●
●●●●●

●●●●
●●●●●●●●

●●
●●●

●●●●
●

●●●●●●●
●●●●●●●●●

●
●●●●●●

●●●●
●

●●●●●
●●

●
●●

●●●
●●

●●
●

●
●

●
●●

●●●●●
●●

●●
●●

●

●●●●

●
●●

●●●
●●●

●●●
●

●●●

●●●
●●●●

●
●

●
●

●●
●

●
●●●●●

●●
●

●●●●

●
●●

●
●●●●●

●●
●

●
●

●

●●

●

●●
●●●

●
●

●
●●●

●
●

●

●
●

●
●

●●

●
●

●●

●

●
●●

●

●

●

●

●

●
●●●

●
●

●●●

●

●
●

●●●●
●●●

●
●

●

●●

●

●
●

●

●

●
●●●●

●●
●

●
●

●
●

●●

●

●●●
●●

●●●
●

●

●
●●

●

●●

●
●

●
●

●●●
●●

●
●

●
●

●
●●●

●
●●●●

●●●

●
●●●●

●

●●●●●
●

●
●

●

●
●

●
●

●
●

●

●
●

●●●
●

●●
●

●
●

●●

●●●●●●
●●

●
●

●
●

●●●●●
●

●●
●

●●●
●

●
●

●●
●●

●●●
●

●●●
●

●●●
●

●

●●
●

●
●●●

●●●●
●

●●
●

●●
●

●
●

●

●
●●

●

●
●

●
●

●●

●●●●●
●●

●●

●●●
●

●●
●●●●

●●
●

●●
●

●●

●
●

●●
●

●
●●●

●
●

●●
●

●●
●

●●●●
●

●
●●

●
●

●

●●
●

●●●

●
●

●
●

●
●●●●

●
●

●
●●●●●

●●●
●●●●●●●●●●●●●●

●

●

●●
●●

●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●
●●●●●

●
●●●●●●●●●●●●●●●●●●●●

●●
●●●

●
●●●●●●●●●●●●●●●

●
●●●

●
●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●

●
●

●

●

●

●
●

●●

●

●●●
●

●

●

●

●

●●●●

●●●●

●
●

●

●

●●

●●
●

●
●

●
●

●

●

●●●●●
●

●

●
●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●
●

●●●
●●●●●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●
●

●
●

●
●

●

●
●

●

●
●

●

●
●

●
●●

●●●●

●●
●

●
●

●

●
●●●

●
●●●●

●

●
●

●
●

●

●

●
●

●●●●

●

●

●

●

●●●●●●●
●

●●
●●

●●

●

●●
●

●●●

●●●
●

●●●

●

●

●●
●

●●

●
●●●●

●
●●

●
●

●

●●

●
●●●

●
●

●
●

●●●●●●●●●

●

●

●
●●●

●
●●●

●●

●
●●●●●●●

●●
●●

●

●
●

●

●

●

●●●●
●●●●●

●
●●●

●●●●
●●

●●●●●●●●●
●

●

●
●

●●

●
●●●●●●●●●●

●●
●

●
●●

●●●●●
●

●●●●●●●●●
●●

●●
●●●

●●
●●

●●●
●

●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●

●●
●●●●●●●●

●●●
●●●●●●●●●●●●●●●●●●●●

●●●●●
●

●●●●●
●

●●●●●●●●●●●●●●
●●

●
●●

●●●●●●●●●●●●●●
●●●●

●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●
●

●●

●
●

●
●

●

●
●

●

●
●

●

●

●

●

●

●
●

●
●

●
●

●

●
●●

●●

●●●●●

●
●

●●●

●●●
●

●●
●

●

●

●
●●●●

●●

●

●

●
●

●●
●●●

●●●
●

●

●

●

●

●

●
●●

●●●
●

●●●
●●●●●

●

●

●
●

●●●

●

●
●

●

●

●●

●
●

●

●

●●
●

●

●
●

●
●●

●

●●
●

●●

●
●

●
●

●●
●

●●●●
●

●
●●

●

●
●

●●
●

●

●

●●●

●

●●●

●

●

●
●

●●●●●●
●●

●●●●●
●

●

●●

●●●●

●
●●●●

●

●

●
●●●●●

●●●●

●●

●●●
●●●●

●
●

●

●

●●●●●●
●●

●

●●●
●

●●
●●

●●
●●

●●
●

●●

●

●

●
●●●

●●●●●●●●
●

●●
●●●●●

●
●

●
●●●

●●●●●
●●●●●

●

●●●●
●●

●●●
●●●●●●●●●●●

●
●●

●

●●
●●

●●●●●●●●●●
●●●

●
●

●
●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●

●●●●●●●●●●●●●●●●●●●●●●
●●●●

●●●●●●●●●●●
●

●●
●

●●
●

●●
●●●●●●●●

●●●●●●
●

●●
●●

●●●
●●●●●●●●●

●●●●●●
●●●

●●●●●●●●
●●

●●●●
●

●
●

●●●●●●●
●●●●●●●●●●●●●●●

●●●●●●●
●●

●●●●
●●●●

●
●

●●
●

●●●●●●
●●

●●●●●●
●

●
●

●
●●●

●
●●

●●
●●●●●

●●●
●●

●●●
●●●●●

●●
●

●●
●●●●

●●
●●

●

●

●
●

●●●
●●

●●●
●

●
●●●●●

●●

●
●●●●

●●
●●

●
●

●
●

●
●

●●
●

●

●

●●

●

●
●

●●●

●
●

●

●●●

●
●

●●

●

●●●
●

●●
●

●

●●
●

●

●●●
●

●

●●

●

●●
●

●
●

●
●

●

●●
●

●

●●

●●●●●●●●

●
●

●

●
●

●

●

●●

●
●

●●
●

●

●●●
●

●●
●

●

●
●●

●
●

●
●

●
●●

●

●●●●

●
●

●
●

●●
●

●

●●●●

●
●●

●●

●

●
●●●

●●
●●

●
●

●

●●●●
●

●●●
●●

●●
●●

●
●●●

●●●

●●
●

●

●
●●

●
●

●
●

●●
●●

●●●
●

●●

●

●

●

●●●●

●●●●●

●●●

●●
●

●

●●
●

●
●

●
●●●●

●●
●●●

●●
●

●
●

●●
●

●
●

●
●●●

●
●●●●

●●
●●

●
●

●

●

●●
●

●●●
●

●

●
●

●

●
●

●
●

●●●●

●
●

●

●
●

●●
●●●

●●
●

●●
●

●
●●●●●●

●●
●●

●
●

●●●

●●
●●●

●●●●●
●●●●

●●
●

●

●●●●●●
●

●
●●

●●●
●●●●●●

●
●

●●●●●●●●●●●●●

●
●●

●●
●●●●●●●●●●●●●●

●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●
●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●●

●

●●

●●

●●

●
●

●

●
●

●
●

●

●

●

●

●●●●●

●

●

●
●

●

●

●●
●

●
●

●
●

●

●
●

●

●

●

●

●

●
●●

●●
●●●

●
●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●
●

●
●

●
●

●●
●●

●●●

●●

●

●

●
●

●
●●

●

●

●

●

●

●

●
●●

●●●●
●●

●
●●

●●

●

●

●

●

●●
●●

●

●

●

●

●

●

●

●
●

●●●
●●●

●

●
●

●●●

●
●●

●●●●

●

●
●●

●●●●

●

●●●

●
●

●
●

●
●●

●●

●

●
●

●●

●
●●●

●

●
●●●●●●●

●
●

●

●

●

●
●●

●●●●
●

●

●
●●

●●●●
●

●●
●

●

●
●

●
●●

●●●

●
●●

●●●●●
●

●
●●

●
●●

●
●

●

●
●

●●●●●●●●
●●

●
●

●●●

●
●●●●●●●●●●●

●●
●

●

●
●

●●
●

●●●●●●●●●●●●
●

●●
●●

●
●

●●●●●●●●●●●
●●

●●
●●●●●●●●●●●●●●●

●●●
●●●

●●●●

●

●
●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●
●●

●●●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●●

●

●●●●

●

●

●

●●

●

●
●

●
●

●

●●

●

●

●

●
●

●
●

●
●

●
●

●
●

●●●
●●●

●●

●
●●

●

●

●●●
●

●
●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●

●●

●●
●●●

●
●

●

●

●●
●

●●●
●

●●●●●
●

●
●

●
●

●

●

●
●●

●
●

●●
●

●

●

●

●

●
●

●●●●●●
●●●●

●

●
●●●●

●
●

●●●●
●●●

●●

●●●●
●●

●●

●
●

●
●●

●

●

●

●●

●

●

●

●
●

●●●●
●●

●
●

●

●
●

●

●

●●

●

●●●●●●●●●
●

●
●

●
●

●
●●●

●

●
●●●●●●●

●
●●●●●

●
●●

●●●
●

●
●

●●●●●●●●
●●●●

●
●●

●●
●

●
●●●●

●●●

●
●●

●●●●●

●
●

●●●
●●●●●●●●

●
●

●●●●
●●●●●●●●

●●●
●●

●
●●●●●●●●●●●●●●●

●●●
●●●●●●●

●●
●●

●
●●●●●●●●●●●●●●●●●●●

●●●
●●●●●●●●●

●●●
●●●●●●●●●●

●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●●

●
●

●
●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●●

●

●
●

●
●●

●●
●

●

●
●

●
●

●

●

●●

●
●

●

●

●
●

●
●

●
●

●
●

●●
●

●
●

●
●

●

●

●
●

●●

●
●

●●

●
●●●

●
●

●●
●●

●●
●●●●●

●

●

●

●●●
●

●
●

●
●

●

●

●

●

●
●

●●●
●●●●●

●●
●

●

●

●

●
●

●

●

●●
●

●
●

●
●●

●

●

●
●

●
●●●●

●●
●●

●

●●

●

●

●●
●

●
●

●
●

●

●

●
●●●●●●●

●●●●●●●●●●

●

●

●●

●
●●

●
●

●

●●
●

●
●

●●
●●●

●●●●

●

●

●

●
●●

●●
●

●

●

●
●●●●●●●

●●●
●

●
●

●
●●

●
●

●
●●

●●●●●●
●

●

●

●

●

●
●●

●

●
●●●

●●●●●●
●

●●
●

●●
●

●
●

●●
●●●●●●●

●●●●●

●●

●
●

●●●●●●●●●●●●●●●●●
●●●●●●

●●
●●●●●●●●

●●
●●

●●●
●●●

●●●
●●●●

●●●●●●●
●●●●●●●●●●●●●●

●
●●

●●●●●●●●●●●●●●●●●●●●●●●
●●

●●●●
●●●

●●●●●●●●●●●●
●

●●●●●●●●
●●

●
●●●●●●

●●●●●●
●

●●●●
●●●●●●●●●

●●●
●●●●●

●
●

●●●●●●●●
●●

●●●
●●

●●
●●

●●●
●●●

●●
●

●●
●●●●●

●

●●●●●●●
●●

●
●

●
●

●●●●●●●●●●
●●

●●●
●●●

●●

●●●
●

●
●

●●●
●

●
●●●

●●
●

●●
●

●●●●●●
●

●

●
●●●●●●

●
●

●
●

●
●

●
●

●●●
●●●●

●
●●

●●●●●

●
●●

●
●

●
●

●●
●

●●
●

●
●●

●
●

●

●

●
●●

●

●

●
●

●
●

●●●

●●

●●●
●●●

●
●

●
●

●

●
●

●
●

●●

●●
●

●●●

●
●

●

●
●

●●
●●●●●

●

●

●●

●
●

●

●

●●
●

●

●●
●●●

●

●
●●●●●

●●●

●

●
●●

●
●

●
●

●
●●●

●●●
●●

●●
●

●
●●

●●●
●

●●

●
●●●●

●●

●●
●●

●●

●●

●

●

●●

●●●●●
●

●

●
●●●

●●
●●

●

●
●●

●

●
●●●

●
●●●●

●●●●

●●●
●

●
●

●
●●

●●●●
●●

●●
●

●●

●●

●●
●●

●
●

●●●●●

●

●●●

●
●●

●

●●
●

●●●●
●

●
●

●●●

●●●●
●●

●●●

●●●●

●
●

●

●●●
●●●

●●
●●

●●●
●●●●●●

●●
●●

●
●●●●●●

●

●
●

●●●
●●●●

●●
●

●●●●●●
●

●●
●

●●●●●
●●●●●●●●

●●
●●●

●●
●

●●●●●●●●●●●●●●●●●●●●
●

●●
●●

●●
●

●●●●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●
●

●
●

●●
●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●●

●

●

●
●●

●

●

●
●

●

●
●●

●●
●●●

●

●

●
●

●

●

●
●

●
●

●
●●●

●●●●●●
●●

●
●

●

●

●

●●●

●

●

●

●

●

●

●
●

●
●

●●
●●●

●
●●

●
●

●

●

●●

●●●
●

●
●

●

●
●

●
●

●●
●●

●
●●●●

●

●

●●

●

●

●
●

●●●
●

●

●

●

●

●
●●●●●●●

●●●●●●●

●
●●●

●

●
●

●
●

●

●
●

●●

●
●

●
●●●●●●

●●●●
●●

●

●

●●

●

●
●

●

●

●
●●●●●

●
●

●
●

●●
●

●●●
●

●

●●●●
●●●

●
●

●
●

●●●
●

●
●

●

●
●●●●●●●●●●

●●●

●
●

●●●

●●●●●●●●●●●●
●●

●●●

●
●●

●●
●●●●●●●●

●●●●
●●●●

●●●●●●●●●●
●●●●

●
●●

●
●●

●●●●●●●●●
●

●●●●●●●
●●●●●●●

●●●
●●●●●

●●●●●●●
●●●

●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●

●
●

●●●●●●●●●●
●●

●●●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●
●●●

●

●

●
●

●

●●

●
●●

●
●●

●

●

●
●

●
●

●
●●●

●

●●

●

●

●

●

●

●●
●●●

●
●

●
●

●

●

●

●
●

●●
●

●
●●●

●

●●
●

●●

●
●

●

●●●
●

●●
●

●

●
●

●
●

●●●●●
●●●●

●●
●

●

●
●

●
●

●
●

●●

●●●

●
●

●

●

●
●●

●●●●
●●

●
●

●●

●●
●

●
●●●

●
●●

●

●
●●●●●●●●●●

●●●●●●●●●●●
●●●

●●

●

●

●
●

●●
●

●

●

●

●
●●

●
●

●
●

●

●
●

●
●●●

●

●

●
●●

●●●●●●
●●●

●

●●

●

●●●

●
●●

●
●●●●●●●●

●
●

●
●

●
●

●
●

●
●

●●
●●●●●●●●

●●●●

●
●●●●●

●
●●●●●●●●

●●●●

●
●●

●
●●

●
●●●●●●●

●●

●●●
●

●

●●●●●●●●●●●●●●
●●●●●●

●
●

●●●●●●●●●●●
●●●

●●●●●●●●●●●●●●●●
●●●●●●●

●●●●●●
●●●●●●

●●●●●●●●●●●●
●

●●●●●●
●●●●●●●●●●●●●

●●
●●●●●●●●●●●●●●

●●●●●●●●

●●●●●●●●●
●●●●●●●●●

●●●●
●●●●

●●●●●
●●●

●
●●●

●●
●●●

●●●●
●

●●
●●●●●●

●
●●●

●●●●
●

●●●●●
●●

●●
●●●●●

●

●
●●●●●

●
●●●●●●●

●
●

●●
●●

●●●●
●

●●
●●

●●●●
●●●

●
●

●
●

●●●●●
●

●●●
●

●●

●
●

●
●

●

●
●●

●
●

●●

●●

●
●

●
●●

●
●

●
●●

●●
●

●●●
●●

●
●

●●●●●●●●●

●●
●

●
●

●
●

●
●●●

●●●●
●●

●

●●

●

●
●

●

●●●●●

●●
●

●

●

●

●●

●
●●

●
●

●
●

●

●
●●●●●

●

●
●

●●
●

●
●

●

●●

●

●

●●
●

●
●

●
●●

●
●

●

●
●

●●●●●●●

●
●●

●
●

●

●●●

●●

●
●●

●
●

●
●

●

●
●●

●
●

●●●●●

●●

●
●●

●

●

●

●

●

●●●
●

●●
●

●
●

●●

●

●●●●●

●
●

●●●

●
●

●

●●●●●
●

●●
●●●●

●
●

●●
●

●●
●●

●●●
●

●
●

●●●●
●●●

●
●

●

●●●●●
●

●●●
●

●
●

●●●●
●

●

●●

●

●

●●●
●●

●●●●●●●

●

●

●

●●

●

●
●●

●
●●●●●●

●

●●
●

●

●

●
●●

●●
●●●

●
●

●●
●

●

●

●●●●●
●

●
●●

●
●

●●●
●●

●●
●

●●

●

●
●

●
●●

●
●●

●●
●

●
●

●

●
●●

●●
●●

●
●●

●
●●

●●●●
●

●

●

●
●●

●●
●●●

●●
●●

●●●
●

●
●

●●
●●

●
●●

●●
●●●

●
●●●●●●●

●
●

●●●
●

●
●

●●
●

●
●●●●

●●●●●●●●●●●●●●●●●●●●●●●●0
100
200
300
400
500

R
ea

dy

● ● ● ● ● ● ● ●0 1 2 3 4 5 6 7

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

● ● ●
● ●

●

●

●

● ● ●

●

●

●

● ● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●
●

● ●

●
●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

● ● ●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●
●

● ●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

● ●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
● ● ●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

● ●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

● ●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

● ●

●
●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

● ●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0

250

500

750

1000

1250

M
P

I
(M

B
/s

)

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

● ●

●

●

● ●

● ●

●
●

●
●

● ●

●

●

● ●

●

● ●
●

● ● ●
● ●

● ● ● ● ● ● ● ● ● ● ●
●

●

●
●

● ● ● ●
●

● ● ● ● ● ●
● ●

● ● ● ● ● ● ● ● ●
● ● ●

●
●

●

●
● ●

●

●
● ● ●

●
●

●
● ●

● ●
●

● ● ● ● ●
●

● ● ●
● ●

● ●
●

●
● ●

●

● ●
● ●

●

●
●

● ● ● ● ●
●

●
● ● ●

●
●

●
●

●

●
●

●
● ● ● ● ●

●
●

●

●

● ● ●

●
●

●

●
● ● ● ● ● ● ●

●

●
●

●

●
●

●

●
●

● ● ● ●

●

●

●

● ● ● ● ● ● ● ●

●
● ●

● ● ● ● ●

●

●

●

● ● ●
●

●

●

● ● ●
●

●

●

●

● ●

●
● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●
●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
● ●

● ●

●

● ● ● ●

●

●

●

●

● ●

●
●

●
● ● ● ●

●

●
● ● ● ●

● ●
● ●

●
●

●
● ●

●

●

●

●
●

●

●

● ● ●
●

● ●

●
●

●
●

● ●
●

●

●

● ●

●
●

● ●

●

● ● ●
●

●
● ● ●

●
● ● ●

●
● ●

●
●

●
● ● ● ● ● ●

● ●
●

● ●
●

●

● ●
●

●
● ● ●

●

●
●

●

●

●
●

●

● ● ● ● ●
●

●
● ● ● ●

●
● ● ●

●
● ● ●

●
● ● ● ●

●

● ●
● ●

●
●

●

●

●
● ● ● ● ● ● ● ●

●

●

●

● ●

●

● ●
●

● ●

●

● ●
●

● ● ● ●

●

●

●

● ● ● ●

●

●

● ● ● ●

●

●

●

● ●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

● ●

● ● ● ●

●

●

● ●

●
●

● ● ●
●

● ● ● ●

●

● ● ● ● ● ●
● ●

●
● ●

●
●

●
● ●

●

●
● ● ●

● ●
●

● ● ● ● ● ●
●

● ●
●

● ●
●

● ● ● ● ● ● ● ● ●

●

● ● ● ●
●

● ● ●
●

● ● ● ● ●

●

●

● ● ● ● ● ● ●
●

●
●

● ●
●

● ●

● ●
●

● ● ● ●
● ● ●

●

●
● ●

●

●
● ●

●
● ●

●

●
●

● ●
●

● ● ●
●

●
●

● ●
● ● ●

● ●

●
●

● ● ● ● ●
● ●

●

●

●
● ●

●
● ● ● ● ●

●
●

●
● ● ●

● ●
● ●

●

● ●
● ● ● ●

● ●

●
●

●

● ● ● ●

● ●

● ● ● ●

●

●

●

● ●

●

●
● ● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●
● ●

●

●

●

● ●

●

●
●

●
● ●

●
●

●

●

●

● ●
●

●
●

●

●
● ●

● ●
●

●
● ●

●

●

●

●

● ● ● ● ● ● ● ●
●

● ●
● ●

●

●
● ● ●

● ●

● ●
●

● ● ●

●
●

●
● ●

●
●

● ● ●

●

●
● ● ●

● ●
●

●

●

● ●
●

●
● ● ●

●

●
● ● ● ●

● ●
●

●

●

●

●
●

●

●
●

●
● ●

●

●
● ● ● ●

● ●
●

●

●
●

●
●

● ● ● ●

●

● ●
● ● ●

●
●

●
● ●

●

● ●

●

● ● ● ●

●

●
● ● ● ● ● ● ● ● ● ● ● ●

●
●

●
●

● ●

●

●
● ●

● ● ●
● ● ● ●

●
● ● ●

●
● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●
●

●

●

●

●

● ●

● ●

●

●

●

●
●

●

●

●

●

●

●
● ●

● ●

●
●

●
●

●
●

●

●

●
●

●

●

●

●
●

● ●

●

●

● ● ●
●

●
●

●

●

●
● ●

●
●

●
● ● ● ● ● ● ● ●

●

●

● ●
●

●
●

●

● ● ●
● ●

●

●

● ●
● ● ● ● ●

●
●

● ● ● ●

●

● ●
●

●

●
●

●

●

●
●

● ●
● ● ● ● ●

●

●
● ●

● ●
● ● ● ●

●
●

● ● ●
● ● ● ●

● ● ●

●

● ● ● ● ● ● ● ●
● ●

● ●
●

●

●

●

● ● ● ●
● ●

●
●

●
●

●

●

●

●
● ● ● ● ● ● ●

●

●

●

● ● ● ● ● ●

●

●

● ● ● ●

●

●

●
● ● ●

●
●

● ●

●

●

●

●

●
●

●

●

● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

● ●
●

●

●
● ●

●

●

● ● ●

●

●
● ● ● ●

●
●

● ● ●
● ● ●

●

● ● ● ●
● ● ● ● ● ● ●

●
● ●

● ● ● ●
●

●

● ●

● ● ●

●

● ● ● ●
● ●

● ●
● ● ●

● ● ●

●

● ●
●

●

● ●

●

●
●

●
● ● ● ●

●
●

● ●
●

●
● ●

● ●
●

●
● ● ●

●
●

● ●
● ●

●
● ●

●
● ● ● ● ● ●

● ●

●

●
●

● ● ● ● ● ●
● ●

● ●
●

● ● ● ●
●

●

● ●
●

●
● ● ●

●
●

●
●

●
●

●

●

●
● ●

● ● ● ● ●
● ● ●

●

●

●

●

● ●
● ● ●

●
● ●

● ●

●

● ● ● ● ● ●

●

●

● ● ● ●

●
●

● ● ● ●

●

●

● ●

●

●

●

●
● ●

● ●

●

●

● ●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

● ● ●
● ●

● ●

● ● ● ●

● ●

● ●

●

●
●

●

●

●

●
●

● ●
●

● ●

● ● ●
●

●
●

●
●

● ●
● ● ● ● ● ● ● ● ●

●
● ● ● ●

●

●

●

●

●

●
●

●

●

●
● ●

●
●

● ●

●

●
●

●

●

● ● ●
●

● ●

●

●

●
● ●

●

●
● ● ● ● ● ●

● ●

● ●

●

●

●

●
●

●
●

●

●

● ●
●

● ● ●
●

● ● ●
●

●

● ●
● ●

● ● ● ●

●

●

●
● ● ● ● ● ● ● ●

●
● ●

● ●
●

●
●

●

● ●
● ●

●

●

●
● ●

●
●

●
●

●
● ● ● ● ●

●

●

●
● ● ●

●

●

●

● ● ●

● ●

● ●

●
●

●

● ● ●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●
●

●

●

●

●

● ●

●

●
●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

● ●
●

●

●
● ● ● ●

●

● ● ● ● ● ●

●

● ● ● ● ● ●

●

● ●
● ●

● ●

●
●

● ●
● ● ● ●

● ●

●

● ● ● ●
● ● ●

● ● ● ● ● ● ● ● ● ●
●

●
●

● ●
● ●

●

●

● ● ●
● ●

● ● ●
●

● ●
●

● ●
● ●

●

● ● ● ● ● ● ●

●

● ● ●
●

●
● ● ●

●
● ● ● ●

● ●

●
● ●

●

● ●
● ● ● ● ●

● ● ● ● ● ● ● ●
● ● ● ●

● ●
●

● ●
● ● ●

●
● ● ●

● ●
● ●

●
● ● ●

● ● ●
● ●

●

● ● ●
●

● ●
● ● ● ●

● ●
●

● ●

●

●

●
● ● ●

● ●
● ● ●

● ●
● ● ●

● ●0

5

10

15

20

0 20000 40000 60000 80000
Time [ms]

C
on

cu
rr

en
t

M
P

I T
as

ks

Unlimited MPI requests

A
B

E
: 4

80
11

A
B

E
: 5

13
85

A
B

E
: 5

09
86

A
B

E
: 5

47
89

A
B

E
: 5

00
78

A
B

E
: 4

80
13

A
B

E
: 5

32
87

A
B

E
: 5

24
51

67
11

0

25.5%
27.86%
29.46%
28.41%
30.3%
30.66%

11.43%
11.94%
11.71%
11.49%
11.91%

12%

19.46%
21.42%
23.12%
23.47%
23.57%
23.2%

4.22%
4.4%
4.63%
4.94%
4.7%
4.63%

15.6%
15.37%
15.65%
15.42%
15.31%
15.67%

26.89%
29.03%
30.16%
29.22%
30.63%
31.53%

7.55%
7.58%
7.69%
7.67%
7.7%
7.54%

17.11%
19.21%
19.44%
21.97%
21.97%
22.3%

30.09%

26.15%

28.81%

24.02%

24.26%

24.23%

24.57%

19.18%

30.25%

25.27%

28.45%

27.4%

25.58%

22.07%

22.42%

21.6%

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●●

●

●●●

●

●

●

●
●

●●
●

●
●

●

●

●●●

●
●

●

●●●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●●

●
●

●

●
●●●

●

●
●

●

●

●●

●

●●●

●
●●

●●
●

●

●●●

●

●●
●●

●

●
●

●

●
●

●
●●

●●
●

●

●
●●

●●●●
●●●●●

●
●

●
●

●●
●

●
●●●

●●

●●●●●

●
●

●●
●●●●●●●

●●
●●●●

●
●●●●

●
●●●●●●●●●●●●●●●

●●
●●

●●●●●●
●

●●●●●●●●●
●●●●

●●
●●●●

●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●●●●
●●●●

●
●●●●●●●

●●●●●●●●
●

●●●●●
●●●●●●●

●●●
●●

●●●
●

●
●●●●●●●

●●●●●●●●
●●●●●●

●●●●
●

●●●●●

●●●
●●●●●●●●●●

●
●

●●●●
●●

●●●
●

●●
●●

●
●●●●●●●●●●●●

●●
●

●●
●●●

●●●●●●●●●
●

●
●●

●●●
●

●●

●
●●

●
●

●●●
●●●

●●●●
●

●
●●●●●●

●
●●●

●●
●●

●●
●

●
●●●

●
●

●
●●●●●●●●

●●●●
●

●●●●●●
●●●●●

●
●

●
●●●

●●●
●

●

●●●●●●
●

●
●●●●●

●●

●
●●●●

●
●●

●●
●

●
●●●●●●●●

●●●
●●●

●●●●
●

●
●●

●
●●●

●
●

●
●●●●●●

●●
●●

●●●●●
●

●

●●●●
●●

●●
●●●

●●
●

●●
●

●●●
●

●●
●

●●●●

●
●●

●●
●

●●●

●●
●

●
●

●●
●●●

●
●

●

●●
●

●
●

●

●

●

●

●
●●

●
●

●
●

●●
●

●
●●

●
●●

●

●
●

●●

●●
●●●

●

●●●●●●

●
●

●
●●●

●●●●
●●●●●●●

●

●●●
●●

●●●
●

●
●

●
●●●

●●

●●
●

●●
●●

●
●

●
●

●
●

●
●

●●

●●
●

●
●●

●
●●●

●
●

●
●

●

●●●
●

●●
●

●●

●●
●

●
●●

●●●●
●

●●●
●

●●●●

●●
●

●
●

●●●
●●

●●
●●●

●●●●●
●●

●●●●
●

●
●●●

●●●●●

●
●

●●●
●

●●●●●●●●●●●●●●●●●
●

●●
●

●
●

●●●●●●●●●●●●●●●●●●●●●
●

●
●●

●
●

●●●●●●●●●●●●●●●
●●

●●
●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●●

●

●●●●

●●

●
●

●
●

●●
●

●
●

●

●
●

●●

●

●

●

●
●

●

●

●●

●

●●
●

●●●
●

●●●

●

●●

●

●●

●
●●

●●
●

●

●

●

●
●●

●●●
●●

●●

●●●

●

●●●●●
●

●
●

●

●
●

●●●●●
●●●

●
●●●

●
●●●

●
●●●

●●
●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●

●●●●●●●●●●
●

●●●●●●●●
●

●●●●●
●●●●●●●●●●●●●●●●●

●●●●
●●●

●

●

●

●

●●

●
●

●

●

●

●

●●

●
●●●

●
●

●

●

●
●

●

●

●
●

●

●●
●●

●
●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●
●

●
●

●●

●

●

●●
●

●

●
●●

●
●

●●

●

●●

●

●●
●●●●●

●

●

●●
●

●
●●●

●●●

●

●
●

●●●●●
●●●●

●

●●
●

●●
●●●

●

●●
●

●
●●●

●●
●●●●●●

●
●●●●●●●

●●●
●●●●

●●●●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●
●●●●●●●●●●●●●●●●●●●●●●

●●●●●●
●●●●●●●●●●

●●●●●
●●

●●●●●
●●●

●●●●●●●●●●●●●●●●
●●●●

●●●
●●●●●●●●●●

●●●
●

●●●
●●●●●

●●●
●●●●

●●
●●●

●●
●●●●

●
●●●●●●●●●●●●●●●●

●●●●●●●
●●●●●●●

●
●●

●●●●●●
●●●●

●●
●●●

●●●●
●

●●
●●●●●

●●●●●●●●●●●●●●
●●

●●●●
●●

●
●●●●

●●●●●●
●

●●●●●●

●●
●●●

●●●●
●●●

●●●●
●

●●●
●●●●

●
●●●●

●●
●

●●
●

●●●

●
●●

●
●●●

●●
●

●●●●
●●●

●●
●●

●
●●

●●●
●●

●●
●

●
●●●●

●
●

●●
●●●

●●●●
●

●●●●
●●

●
●●●

●●●
●●●●

●
●

●
●●

●●●●●

●
●●

●●
●●●●

●●
●●

●
●●

●●
●

●●●
●

●●
●

●●●●●●●
●●

●
●

●●
●●

●●●●
●

●●●
●

●
●●●

●
●

●
●●●

●

●●
●

●
●

●
●●●

●
●●

●
●

●●
●

●
●

●●
●

●●●

●
●●

●
●●

●
●

●
●

●

●
●●

●
●●

●

●●

●

●●
●

●
●

●●●
●

●●●
●

●●
●

●
●●●

●
●

●●●●

●●

●●●
●

●

●●
●

●
●●

●
●●

●●

●●
●●

●●

●
●

●●●
●●●

●
●●

●
●●

●●●
●

●

●●●
●

●●●●

●
●●●

●●
●●

●
●●●●●●

●

●
●

●
●●

●●●●●●●

●

●
●

●
●

●●●●
●

●
●

●
●

●●●●
●●

●
●●

●●●●
●●●●

●
●●

●
●●●

●
●●

●
●●●●

●
●●

●●●●

●●●●●●
●●●●●●

●
●

●●●●●●●
●●●●

●●●●●●●
●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●

●

●

●
●●

●

●

●

●

●

●●

●

●

●●
●

●●

●●

●
●

●
●

●
●

●
●

●

●●●
●

●●

●

●●●●

●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●●●●

●

●

●
●●

●
●

●
●

●

●
●

●

●

●

●
●●●●

●●●●●

●

●●
●

●

●
●●

●
●

●●●

●●●●●●●

●

●●●

●●●●●

●●
●

●
●●●

●
●●●●

●
●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●

●

●

●

●

●

●

●
●●

●●
●

●
●●

●

●
●●

●

●
●

●

●●

●●

●
●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●●

●●
●●●

●

●

●

●

●

●●
●●

●
●●●

●●
●

●
●

●
●●●

●

●●●
●

●

●
●●●

●
●●

●

●
●

●●●
●●●●●●

●
●●●●

●
●●

●●●●

●●●●●

●
●●●

●●●●●
●●●●●●

●
●●●●●●

●
●

●●
●●

●●●●●●
●●

●
●●●●●●●●●●

●●●
●●●

●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●

●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●●

●
●●

●

●

●

●
●●

●
●

●

●

●
●

●●

●
●

●

●
●●

●

●

●
●

●
●●

●

●

●

●●
●

●

●

●

●
●●●

●

●

●●●●
●

●

●
●

●
●

●

●●●
●

●
●

●
●●●●●

●

●●
●

●
●●

●
●

●●
●

●

●●

●

●●●●●
●●

●

●●●
●●●

●
●

●●●
●●●●

●
●

●●
●●●●

●●●●●●●●●●●●●●●●●●●●
●●●●●●

●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●●
●●●●

●●●●●●●●
●●●●

●●●●●●
●●

●●●●●●●●
●●●●●●●●●●●

●●●
●

●●●●●●●●●●●
●●●●●●●●●

●●●●
●●●

●
●●●●●

●●●●●
●●●

●
●●●●●●●●

●
●●●●

●●
●

●●●●●●●
●

●●●●●●●
●●

●
●●●●

●●●●●●●●●
●●●●●

●●
●●

●●●
●●●●

●●●
●

●●●●●●●
●

●●●●●

●
●

●●●●●
●●●●

●
●

●●
●●

●
●

●●
●●●●

●●●●●
●●

●
●●●●●

●●●●
●

●
●

●
●●●

●●
●

●
●●●●

●●●
●●

●
●●

●●
●●●

●
●●●●●●●●

●
●●

●●
●●●●●●●

●
●●

●
●●●

●●●●●
●●●●

●

●
●●

●●●

●●●

●●●
●

●
●

●●
●

●
●●●

●

●
●●

●●
●

●●

●
●

●
●

●●●●●
●●

●
●●

●●
●●●

●●
●●

●
●●

●●
●

●

●●●
●

●●

●

●
●●●

●●●

●●
●●●

●●
●

●●
●●

●●

●
●

●●●●
●

●●●
●

●

●●
●

●

●●
●

●●●●

●
●

●

●●●●

●
●

●●●

●

●●

●●
●

●●
●

●
●

●●
●●

●
●●●

●

●
●

●
●

●

●

●●●

●
●

●●●●

●●●●

●●●●●
●●

●
●

●●

●●●●

●●●
●●●●●●

●
●

●●●
●●

●●●
●

●
●

●

●●

●
●●●●

●
●●●●

●

●
●

●●●●●●●●
●●●●●

●
●●●●

●
●●

●
●●●●●

●

●
●

●●●●●●

●●
●●●●●●●

●
●●

●●●●
●●

●●●●●●●●●●●●●●●●●●●
●

●

●●●●●●●●●●●●●●●●●●●
●

●●
●

●
●

●

●

●

●

●
●

●

●
●

●
●●

●

●

●

●●

●

●

●

●
●

●

●
●

●
●●

●

●
●

●

●

●●
●

●

●

●

●

●

●●●
●●

●

●

●●

●

●

●
●●

●
●

●●●
●

●
●

●

●

●
●

●●
●

●●
●

●
●

●●
●●

●
●●●

●●●
●

●

●
●●

●●
●

●
●

●●
●●

●
●

●●
●●●

●●●●●
●●●

●●●
●

●●●●●
●

●●
●●

●●●●
●●●●●●●●●●●●

●●●
●

●

●

●

●

●

●

●●

●
●

●
●●

●

●

●

●

●●
●

●
●

●●●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●
●

●●
●●●

●

●●

●●

●
●●

●
●●●

●

●
●●●●

●●●
●

●

●
●

●●

●
●

●●
●

●●
●

●●●
●

●●
●●

●●
●●

●

●

●

●

●
●●●●

●●
●

●●
●●

●●
●

●●
●●●●

●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●●●

●●●●●
●

●●●●
●

●●●●●
●●

●
●●●●●●

●
●●●●●

●●●●●●●●●
●

●●
●●●●●●●●●●●●●●●

●●●●●●
●

●●●
●●●●●●

●
●●●●●●●

●●
●

●
●

●●●
●●●●

●●
●●●

●●●
●●●

●
●●●●●●●●●

●●●●●●●●●●●●●●●
●

●
●●●

●●●
●

●●●●●●
●

●
●●●●

●●
●●

●
●●

●●
●

●●
●●●●

●●●●●
●

●●●●●
●●

●
●

●●●●●
●

●
●

●●●●●
●

●
●●

●●●●

●
●●

●●●●●●●
●●●●●

●
●●

●●●●●●
●

●●●
●●

●
●

●
●●

●●●●●
●●

●
●●●●

●●●●●
●●

●
●●

●●
●

●
●●●

●●●
●

●
●●

●●●●●
●

●●

●
●

●●
●

●
●●●●

●
●●

●
●●

●●●●
●

●●●

●●
●

●●●●●●●●●
●●

●
●

●●●
●●

●
●

●
●

●●●
●●

●●

●●
●

●●
●

●●

●●

●

●●●●●●
●●

●
●

●●●

●

●
●●

●
●

●

●●●
●●

●●●

●●
●

●

●

●

●●●
●

●●●

●
●

●
●

●
●

●●

●

●
●

●

●●
●

●●

●
●

●

●

●
●●●●

●●
●

●●

●
●

●

●

●●

●●

●●
●●●●

●●
●

●

●

●
●

●●
●

●

●●
●

●●
●●

●
●●●

●●

●

●●
●

●●●●●●

●

●
●

●

●

●
●

●
●●

●●
●●

●●●
●

●
●●●

●●●
●

●

●

●●
●

●
●

●
●●

●●●

●
●

●●●

●●●

●
●

●●
●

●●●●●

●●
●

●●●
●

●●
●

●●
●

●●●●
●

●
●

●
●●●●●

●
●●●

●●●

●
●

●●●●●

●●
●●●

●
●

●
●●

●
●

●●
●●

●●

●●
●

●●
●●●●●●●●●●●●●●●●

● ● ● ● ● ● ● ●0 1 2 3 4 5 6 7

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

● ●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

● ●
●

●

●

●

●
●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●
●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●
●

●

●
● ●

● ●
● ●

●

●

● ●

● ● ● ● ● ●

●

●

● ●
● ● ● ●

●
● ●

●
● ● ● ● ● ●

● ● ● ● ● ● ●

● ●
● ● ● ●

● ● ● ●
●

●
● ● ● ●

● ● ●
● ●

●

●

● ●
●

●
● ● ● ● ● ● ●

●
●

●

●

● ●
●

●
●

●
● ●

● ● ● ●
● ●

● ●
●

●

●

●
● ●

●
● ● ● ●

● ● ●
● ●

●
●

● ● ● ●
● ●

●

●

● ●
●

● ●

●

●
● ● ●

●
●

●
●

●

●
●

● ●
● ● ●

● ●
●

● ● ● ●
●

●

●
● ● ● ● ●

● ● ●

●

● ● ● ●

●

● ● ● ● ● ●
●

●

●

●

●

●
● ● ● ● ●

●

●

●

● ● ● ● ●

● ●

●

● ● ●

●

●
●

● ● ●

●
●

● ●

●

●
● ● ●

●
●

● ●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ● ● ●

● ● ●

●

●
● ● ●

●
●

● ●

●

● ●
● ●

●
●

●
●

●
●

● ● ●
●

●
●

●
●

●
●

●

●

● ●
● ●

●
● ● ●

●

● ● ●

●
●

●
● ● ●

● ●
●

● ● ●
● ● ● ● ●

● ●
●

● ●

●

●
● ●

●
●

● ●

●

●

●
●

● ● ● ● ●
●

●
●

● ●
●

● ●

●

● ●

● ●
●

●
●

● ●
●

●
●

●

●

● ●
● ●

●

●

●

●
● ● ●

● ● ● ●
● ● ● ● ● ●

●
●

●
● ●

● ● ●
●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●
●

● ●
●

● ● ● ●
●

●
●

●
●

●
●

●

●

●

● ● ● ● ●

●

●
●

●
●

●
●

● ●
●

●

●

●

●
● ● ● ●

●

●

●

● ● ●

● ●

●

● ● ●

●

●

● ●

●

● ● ● ●

●

●

●

●

●
● ●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

● ●
●

●
● ●

●
●

●
●

● ●

●

● ● ● ● ●
●

●

●

●

●
●

●

●

● ● ●
●

● ● ● ●
●

● ● ●
● ● ● ●

● ●

●

●

● ●
●

●
●

●

● ●
● ●

● ● ●
●

● ●
● ● ●

●
● ●

● ● ● ● ●

●
● ● ●

●
●

●
●

● ●

●
● ● ● ●

● ●

●

● ●
● ●

●
● ● ● ● ●

●
● ●

●

●

●

● ●

●

● ●

●

●

●
● ● ●

●

●
● ●

● ●
●

●
● ● ●

●

● ● ●
● ●

●
● ●

●

●
●

●

●
● ●

●

●
●

●
●

● ● ●
● ● ●

● ●
●

● ● ● ● ● ● ●
●

● ●

●

●

●

●
● ●

● ●

●
●

●
●

● ●
●

● ●
● ● ●

●
● ● ● ● ●

●

●

● ●
● ● ● ● ●

●

●

●
● ●

●
●

● ●

●

●
● ● ● ●

●

●

●

●

●

● ●
●

●
●

● ●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

● ● ●
●

●

● ●

●

●

●
●

●

●
●

●
●

●

●
● ●

●
●

● ● ● ●

●
●

●

● ● ●

●

● ●

●

●
●

●
● ●

●

● ● ●
●

● ●

● ●

●

●

● ●
●

●

●

●
●

●

●
● ● ●

● ● ● ●
●

●
●

●
●

●
●

● ● ● ●
●

●

●

●

●
● ●

● ●

●

●
● ● ● ●

●

●

●
●

● ●
●

●
●

●
●

●

●

●
● ● ● ● ●

●
● ● ● ● ●

●

● ●
●

●
● ●

●

●

● ● ● ● ●
●

●
●

●
● ● ●

● ● ●
●

● ● ●
●

●

●

●

●

●
● ●

● ●
● ●

●
● ● ●

●
● ●

●
● ● ● ●

●
●

● ● ● ●
● ●

●

●

●
● ● ● ●

●

●

●

● ●

● ●
●

●
● ● ●

●
● ●

● ●
● ● ● ●

●
●

●
●

●

●
● ●

● ● ●
●

●

●

● ●

●

●

●

●

●

●

●

● ●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

● ●

●
●

● ●

● ●

●

●
● ●

●

●

● ● ●

● ●

● ●
●

●

●
●

●

● ● ●
●

● ● ● ●

●

● ●
●

●
● ● ● ● ●

●
● ●

●
●

● ● ●
●

●
● ●

●

●

● ●
● ●

● ●
● ●

●
● ●

●

● ● ●
● ● ● ●

●
● ● ●

●
●

●

● ●

● ● ●

●

●

●

●
●

● ●
●

●
●

● ●
● ● ●

● ● ● ● ● ●
● ● ● ● ●

●
●

● ● ●
● ●

●
● ●

●

●
● ● ● ● ●

●

●

● ●
●

●
●

● ● ● ●

●
● ● ● ● ●

●

●

● ●

● ● ● ● ● ●

●

●
● ● ● ●

●
●

●

● ● ● ● ● ● ● ● ● ● ● ●

●

●

●

●

●
● ● ● ● ●

●

●
●

● ● ● ● ● ●

●

●

● ● ● ●

●

●

● ● ●

●

●

● ●

● ●

●

●

●
●

●

●

● ●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
● ● ●

●

●

●

● ●

●

●
● ●

●

●

●
●

●

●

●
●

●

● ● ● ● ●
●

●

● ●
●

●
● ●

●

●
●

●
● ● ●

● ● ●

● ● ●

●
● ● ●

● ● ●

●
●

● ● ● ● ● ● ● ●

●
●

● ● ●
●

● ● ● ●
●

●

● ●

●

●
●

●

● ● ●
●

●
● ● ● ● ●

●
●

●
●

●
●

● ● ● ● ● ● ● ● ●
●

●

● ●
●

● ●
●

●

●
● ●

● ● ● ●
● ● ●

●

●
● ●

●

●
● ●

● ● ●
●

● ● ●
●

●
●

●
●

●
● ● ● ● ●

●
●

●
●

● ●
●

● ● ● ●

●

● ● ● ●
●

● ● ●
● ● ● ●

●

● ●

● ●
●

● ● ● ●

●

●

●

● ● ● ● ● ●

●

●

● ● ● ●

●

●

● ● ●

●

●

● ●

●
●

●

●

●
●

●●

●

● ●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

● ● ●

●
● ●

● ● ●
● ●

●
● ●

●
●

●
●

●
●

●
●

●

●
●

●
●

● ● ●
●

●

●

●
● ● ●

● ● ●
●

●
●

●
●

●

●
● ● ● ● ● ● ● ●

● ●
●

●
● ●

●
●

●
●

● ● ● ●
●

●
●

●
●

●
● ●

● ●
●

●
●

●

● ●

●

● ● ●
● ●

● ● ●
● ●

●

● ●
●

● ●
● ●

●
● ● ● ● ●

●
●

● ●

●

●
● ●

● ●

●
●

●
● ● ●

●

●

● ●
●

●
● ●

●
● ●

● ● ● ●
● ● ● ●

●
●

●

●
● ● ●

● ●
●

● ●
●

●

●

●
● ●

●
●

● ● ● ● ● ● ●
●

● ● ● ●
●

●
●

●

●

●

● ● ●

●

● ●
● ●

●

●

●
●

●
● ● ●

●

●
●

●
● ●

●

●

●

●
●

●

●

●

●

●

● ●

●

● ●
●

●
●

● ●

●

●

●

●

● ●

● ●
●

●

●

●

●

●

●

● ●

●

●
● ●

●
● ●

●

●

●

●

●

● ● ●

●

● ●

●

●

●

● ● ● ●
●

●

●

● ●
● ●

● ● ● ● ● ● ●
●

● ●
●

●
●

● ● ● ●
●

●
●

● ● ●
● ● ● ●

●
●

●

● ●

● ●
●

●
● ● ●

●

● ● ●
●

●
●

●

● ●

●

● ● ● ●

●
●

●

● ●

● ●
● ●

●
● ● ●

●
● ● ●

●

●
● ●

●
● ●

●
●

●
●

● ●
●

●

●
●

● ●

●

●
●

●

● ● ● ●
●

●
● ● ● ● ●

●
●

●
● ● ● ●

●
●

●
●

● ●
●

● ●
●

● ●
●

●

● ● ●
● ●

●

● ● ● ●
●

●

● ● ●
●

●
● ● ● ● ● ● ●

●

●

● ● ●
●

●

● ● ● ●
●

● ●
●

●
●

●
●

● ●
●

●
●

● ● ●

●

● ● ● ● ●
●

●
● ●

●
● ●

●
● ● ●

●
●

●
● ●

●
● ●

●
● ●

● ● ● ●
●

● ● ● ● ●
●

0 20000 40000 60000 80000
Time [ms]

Limited MPI requests using task priorities

Source: The Author

138

On considerably large scenarios, the use of our performance analysis strategies has

enabled us to propose changes that increase the overall performance. However, in small

scenarios, similar changes have amplified unexpected scheduling decisions that seem to

be related to task priority issues. Since the information available in the execution traces

is not sufficient to clarify these points, we propose, in Chapter 7, a further investigation

using Simgrid and GDB. This combination of simulation and debugging enables us to

inspect and monitor the internal variables and queues of the scheduler.

139

7 PROPOSED DEBUG STRATEGIES

Sometimes the insights of the macro visual analysis techniques previously dis-

cussed on Chapters 5 and 6 are not enough to understand some scheduler decisions since

these techniques rely on the analysis of execution traces after the end of the execution,

i.e., post-mortem analysis. This way, our assumptions and its verifications are limited by

the amount of observed data collected. However, inspecting in detail some scheduling

decisions requires the verification of many other variables, which cannot be traced in a

non-intrusive way. Moreover, specific potentially wrong scheduling decisions are very

often hard to reproduce because of the stochastic nature of the runtime. In order to better

understand why some unexpected decisions are taken by the StarPU scheduler, we pro-

pose to use simulated executions in conjunction with a GDB session to collect and inspect

the scheduler internal state.

In this Chapter, we detail how we build this strategy and how it can be useful

to confirm or refute some assumptions about bad scheduling decisions. In Section 7.1

we present an execution where we highlight some scheduling decisions that seem to be

inadequate. Section 7.2 presents the tools and concepts used to build our debug-based

analysis strategies. Finally, Section 7.3 presents our approach to visualize the scheduler

internal state when scheduling a given task.

7.1 A Representative Example

In Section 6.2.2 we have reported that constraining some tasks to execute only

on the GPUs has amplified some potential scheduling mistakes. Figure 7.1 allows us to

focus on one of the executions represented in Figure 6.6. The basic view remains the

same (DMDAS, constrained), but we have increased the number of backward steps when

computing dependencies. As previously discussed, on one hand, constraining DTRSM and

DSYRK tasks to GPUs has mitigated the issue of tasks on the critical path, but on the other

hand, it has also highlighted dependency issues which seems to be related to the tasks

priorities.

The circled edges in Figure 7.1 show some examples of scheduling decisions that

seem to be inadequate. Ideally, the execution of a task should start as soon as all its depen-

dencies have been satisfied. In practice, this is not always possible since sometimes a data

transfer is required to start the new task. This is probably the scenario of the dependency

140

Figure 7.1: A space-time view representing the execution of a Cholesky factorization
(matrices 12×12 tiles of 960×960). Some dependencies edges are encircled to illustrate
some potential mistakes of the StarPU scheduler.

80
4

A
B

E
42

6

C
P

E
36

2

41.7%

31.8%

38.4%

40.3%

40.0%

39.2%

31.8%

32.1%

47.2%

38.5%

38.5%

31.9%

34.2%

40.1%

35.4%

35.9%

35.3%

35.7%

50.9%

58.0%

55.8%

56.3%

67.9%

68.9%

68.9%

5.5%

4.6%

4.3%

0 200 400 600 800

CPU0
CPU1
CPU2
CPU3
CPU4
CPU5
CPU6
CPU7
CPU8
CPU9

CPU10
CPU11
CPU12
CPU13
CPU14
CPU15
CPU16
CPU17
CPU18
CPU19
CPU20
CPU21
CPU22
CPU23
CPU24
CUDA0
CUDA1
CUDA2

W
or

ke
rs

Dependency Paths 1 2 3 4 5 dgemm dpotrf dsyrk dtrsm

Source: The Author

edges that are circled with green (CPU-GPU) and magenta (GPU-GPU). However, it is

not possible to confirm that using only this view.

The dependencies encircled in yellow represent a different case, where the delay

when starting the new task cannot be explained by data transfers since both new and

previous tasks are allocated on the same device. In these cases, the delays might be

related to the task priorities, which are defined by the application programmer to help the

scheduler in the decision of which task to schedule first when several of them are ready.

However, the priorities are not included in the execution trace. Furthermore, even if they

were included, they would be not really useful since they are evaluated considering the

scheduler state at the moment when they are tagged as ready and not when their execution

actually starts.

7.2 Methods and Materials

As discussed, the information available in the execution traces is not enough to

investigate the issues with delayed tasks since we cannot reproduce or understand the

estimations computed by the scheduler when scheduling a new task. To proceed a fur-

141

ther investigation on scheduler decisions we build on the simulated executions offered

by StarPU in conjunction with Simgrid which enables us to inspect and collect the val-

ues of internal control variables and queues. These values can be used to rebuild the

scheduler state at given moment and them confirm or refute assumptions concerning the

scheduling decisions. In the following subsections, we present some concepts and tools

concerning the simulated executions. To simulate a StarPU execution, Simgrid relies on

the Performance Models (7.2.1) collected during a real execution. These models provide

the amount of time that should be added to the simulated time to simulate the execution

of each task type on each computing resource. Subsection 7.2.2 details how Simgrid is

able to simulate StarPU executions. The Subsection 7.2.4 depicts which data is collected

during the simulation. Finally, we present the StarPU modifications required to allow our

analysis.

7.2.1 Performance Models

As discussed in Section 2.3.4, some StarPU scheduling policies are based on per-

formance models. These models keep a history of the time spent to perform a task on a

resource or to execute paired data transfers between different resources. From this infor-

mation, the scheduler can estimate in advance the duration of a task on a given resource

and the time to transfer the data from another resource if needed. By default, these perfor-

mance models are recorded at the end of each execution in order to improve scheduling

decisions of future ones. This way, the performance models can be seem as a part of the

output data produced by an execution, and then we gather and include them as a section

in the execution log file.

7.2.2 StarPU/Simgrid simulated executions

SimGrid (CASANOVA et al., 2014) is a simulation toolkit that aims to offer versa-

tile simulation of large-scale distributed systems. As reported by Stanisic, Thibault, et al.

(2015), the StarPU runtime system has been modified to cooperate with SimGrid in order

to simulate task-based executions on hybrid architectures comprising multicores and sev-

eral GPUs. Their approach is based on both simulation and emulation. In the emulation

side, the StarPU control and scheduling code is modified by replacing POSIX synchro-

142

nization calls to similar ones provided by SimGrid. This modified runtime/scheduler code

is actually executed while the real computation of CPU and GPU kernels (the tasks) and

the data transfers are simulated by SimGrid that manages the simulated time.

Since this solution has been validated with a similar Cholesky application as well

with several other more complex ones, it is the ideal tool to support our investigation. The

performance models computed by StarPU can be used to simulate a task-based execution

with Simgrid, which allows us to simulate a previous real execution. This environment

provides a more controllable, stable and reproducible scenario to investigate the StarPU

scheduling decisions. It is also independent of the platform where the experiments were

executed, so the investigation can be carried out on the same machine that is used to

analyze the traces.

7.2.3 StarPU Scheduler Internals

When using scheduling policies based on performance modeling (e.g., DMDA and

DMDAS), StarPU perform a series of estimations to decide on which computing resource

the task will be scheduled. These estimations are built considering the current state of

the scheduler, the task performance model, the architecture model and some user-defined

parameters to prioritize one or other characteristic. In the end, the StarPU scheduler

decides to put the task in the worker where it will be completed first.

In order to understand why a given scheduling decision was taken, we should

inspect the scheduler state at the moment where a task is being scheduled, just after the

computation of all the estimations.

7.2.4 GDB Scripts to Capture the Scheduler State

Since such specific scheduling informations are not available in the execution

trace, and it would be expensive to record them for all the application tasks, we decide

to use the GDB debugger to pause the execution, collect useful information and then

proceed.

We design a set of GDB scripts that are executed when a given task is being sched-

uled. These scripts collect the following data from the core of the StarPU scheduler

framework:

143

• estimated duration of the new task: a list of sizeNresources (whereNresources is the

number of computing resources) with the time required to perform the task being

scheduled on each resource;

• estimated data transfers: a list of size Nresources with the expected duration to

perform all data transfers required by to be able to execute the new task on the

given resource;

• estimated termination time: a list of size Nresources with the time when the new

task will be completed if executed on this given resource;

• estimated start time: a list of size Nresources with the time when the execution of

the new task will start if executed on this given resource;

• queued tasks: a table with the ready tasks already scheduled on each computing

resource;

• user fit parameters: a list of parameters to prioritize some criteria when computing

the estimation (e.g., give a higher weight for data transfers);

• fitness: a list of size Nresources with the fitness value computed to execute the new

task on each resource. This value is computed using the state of the worker, the task

duration and transfer estimations, and the user fit parameters.

Other less important variables are also collected to help in the investigation.

7.2.5 StarPU Modifications

Some modifications were made in the StarPU code to enable our analysis. The

first one is the inclusion of environment variables to raise a signal when a task with a

given ID is being scheduled. This enables us to pause the execution of the application

and run our GDB scripts to get the scheduler state at the exact moment where the task is

scheduled. Other modifications comprise additional fields in the StarPU control variables

to help in the reconstruction of the scheduler state.

7.3 A Visual Representation of the Scheduler State

From the data collected by our GDB scripts when a given task is being sched-

uled, we propose a visual representation of the scheduler state. This view represents the

144

scenario built by the scheduler to estimate which is the best worker to schedule the new

task. The view is inspired on the space-time one presented on Section 5.1. It depicts the

internal state of scheduler reconstructed by interpreting the data gathered using GDB.

Figure 7.2 shows the scheduler state when scheduling a DGEMM task with ID

1530. In this experiment, DSYRK and DTRSM tasks are constrained to GPUs, so their

execution on CPUs is disabled.

This view builds on the space-time view, so it describes the scheduling states of

the workers along the time. These states are represented by the colors brown, orange

and beige. The brown rectangles are used to represent the estimated task duration. Since

these two GPU cards are identical, the estimated durations are almost the same. In the

line representing the resource that was chosen to execute the task we also plot a smaller

rectangle representing the new task being scheduled. The orange rectangle represents the

estimated duration of data transfers required to execute the new task on this resource. In

this case, the CUDA1.0 resource is the one which requires the faster transfer to perform

the task. The beige rectangles represent an estimation of the time required to finished

the tasks that are already scheduled in the worker. This estimation comprises tasks that

are scheduled in two queues, for this reason, inside this area, we plot smaller rectangles

representing the queued tasks. All these tasks are already tagged as ready for execution. In

the higher level we plot the ready tasks that are waiting for execution in the worker queue

while in the lower one, we plot tasks that are in the current tasks queue but whose status

is not running. This second queue is present only in workers where the pipeline feature

is enabled. The vertical red line represents the moment when the execution was paused

(now) and the green one indicates the best termination time for the new task without

considering the time to perform required data transfers. The fitness computed for each

valid resource is also included in the views, as well as, the worker status, the ability to

execute the task and the best worker.

The interactive features provided by plotly are particularly useful to check com-

plementary data of tasks in scheduler state views. In this scenario, the plotly limitations

discussed in Section 5.4 are not a constraint, since the amount of data to plot at a given

time is always very small. Figure 7.3 shows a screenshot of the interactive version of the

scheduler state view. Hovering over the new task or over the queued ones, it is possible

to inspect task details such as task type, prediction duration, predicted start, ID, priority,

predicted data transfers, task status, and queue. Comparing such attributes of the new task

with the queued ones can help to understand the scheduler decisions.

145

Figure 7.2: A visual representation of the internal state of the StarPU DMDAS scheduler
when scheduling a DGEMM task with ID 1530. For all workers which are able to execute
this task, we plot the estimated time to execute the current scheduled tasks (rectangles in
beige), to transfer the data required by the new task (rectangles in orange) and to execute
the new task (rectangles in brown). Smaller rectangles represent the already queued tasks
(green, blue and purple tasks in the beige area) and the new task (green task in the brown
area on CUDA 1.0). The color scheme used in DGEMM, DSYRK and DTRSM tasks is the
same of previous figures.

Fitness: 7676.8

Fitness: 48469.5

Fitness: 10574.3

Fitness: 0

Now Best EndBest Worker: CUDA 1.0

STATUS_UNKNOWN

STATUS_UNKNOWN

STATUS_EXECUTING

STATUS_EXECUTING

CanExecute: TRUE

CanExecute: TRUE

CanExecute: TRUE

CanExecute: TRUE

●

●

●

●

 CPU 0

 CPU 1

 CUDA 0.0

 CUDA 1.0

2800000 2900000 3000000
Time

W
or

ke
rs

Scheduled Tasks Est. Data Transfer Est. Task Duration

State when scheduling task − 1530

Source: The Author

Figure 7.3: Screenshot of a Web interactive view of the StarPU scheduler state
generated with plotly. When the mouse hovers on a task, complemen-
tary information is showed, such as its type, predicted Duration, predicted Start,
ID, priority, predicted data transfers and status. The corresponding interactive
view is available at http://perf-ev-runtime.gforge.inria.fr/thesis/
interactiveViewSched1.html

Source: The Author

http://perf-ev-runtime.gforge.inria.fr/thesis/interactiveViewSched1.html
http://perf-ev-runtime.gforge.inria.fr/thesis/interactiveViewSched1.html

146

7.4 Chapter Summary

In this chapter, we present an analysis strategy based on StarPU-Simgrid simu-

lated executions in conjunction with a GDB session to investigate scheduling decisions

at the moment they are taken. This combination of debugging and simulation tools gives

us additional information that is not available in the traces. From this data, we build a

visual representation of the scheduler state which depicts the estimations computed by

the scheduler when choosing the best worker to execute a new task.

The next Chapter will present an analysis of the scheduler state for a set of tasks

that seem to be delayed due to potential incorrect scheduling decisions. For each task, we

compare the estimation computed during the scheduling with the actual execution.

147

8 RESULTS ON DEBUG STRATEGIES

In this Chapter, we present a detailed investigation of scheduler decisions using

the scheduler view presented on Chapter 7. In the analysis, we focus the investigation

in three scenarios: dependencies between tasks that execute on different resources of the

same type (e.g., GPU0-GPU1), dependencies of tasks executing on different resources of

distinct type (e.g., CPU-GPU) and dependencies of tasks that are executed on the same

resource (e.g., GPU0-GPU0).

8.1 Experimental Setup

This investigation is performed using a StarPU instance compiled with SimGrid

support which provides us a more stable and reproducible environment. To ensure we are

not considering a mistake due to the simulation feature or, on the other side, a problem

that appears only in real executions, we have selected only issues that are present in both

real and simulated executions. In addition, we repeat the simulation ten times, to be sure

that the issue in question is omnipresent. As shown in Figure 8.1, all repetitions are stable,

the traces are visually very similar and dependency issues are present in all executions.

All these executions were executed using the same performance models collected in the

experiments discussed in Section 6.2.2.

8.2 Investigating Scheduling Decisions in the First Half of the Execution

At the beginning of the execution, the parallelism is not yet totally unfolded, which

means that the number of ready tasks may not be enough to fill all the resources. For this

reason, any delay in the execution of tasks in the critical path will further delay this un-

folding step and retard the full occupation of computing resources which can significantly

impact the overall performance.

To investigate this scenario, first, we select representative tasks (pointed tasks on

Figure 8.2), then we rerun the simulation stopping the execution during the scheduling of

these tasks to inspect the internal state of the scheduler and try to figure out why they were

not executed before. This way, if we are investigatingN tasks, we needN simulated runs,

each one stopping on the scheduling of a different task. This is required since currently it

148

Figure 8.1: The space-time view of ten simulated (StarPU+SimGrid) executions of the
Cholesky factorization (matrices with 12×12 tiles of 960×960).

86
0

A
B

E
44

5

C
P

E
40

4

41.5%
24.1%
24.7%
24.7%
35.6%
39.7%
40.1%
40.8%
42.7%
42.7%
42.7%
53.8%
64.7%
59.2%
58.1%
64.2%
64.2%
64.2%
64.2%
64.2%
64.2%
64.2%
73.3%
64.8%
76.5%
4.7%
4.6%
6.5%

86
0

A
B

E
44

5

C
P

E
40

4

41.5%
24.1%
24.7%
24.7%
35.6%
39.7%
40.1%
40.8%
42.7%
42.7%
42.7%
53.8%
64.7%
59.2%
58.1%
64.2%
64.2%
64.2%
64.2%
64.2%
64.2%
64.2%
73.3%
64.8%
76.5%
4.7%
4.6%
6.5%

87
5

A
B

E
44

5

C
P

E
40

3

37.9%
35.9%
25.9%
27.0%
34.1%
39.1%
39.5%
40.1%
42.7%
42.7%
42.7%
53.8%
64.7%
59.2%
58.1%
64.2%
64.2%
64.2%
64.2%
64.2%
64.2%
64.2%
73.3%
64.8%
76.5%
5.0%
4.3%
4.3%

86
0

A
B

E
44

5

C
P

E
40

4

41.5%
24.1%
24.6%
24.7%
35.6%
39.7%
40.1%
40.8%
42.7%
42.7%
42.7%
53.8%
64.7%
59.2%
58.1%
64.2%
64.2%
64.2%
64.2%
64.2%
64.2%
64.2%
73.3%
64.8%
76.5%
4.7%
4.6%
6.5%

86
0

A
B

E
44

5

C
P

E
40

4

41.5%
24.1%
24.7%
24.7%
35.6%
39.7%
40.1%
40.8%
42.7%
42.7%
42.7%
53.8%
64.7%
59.2%
58.1%
64.2%
64.2%
64.2%
64.2%
64.2%
64.2%
64.2%
73.3%
64.8%
76.5%
4.7%
4.6%
6.5%

86
0

A
B

E
44

5

C
P

E
40

4

41.5%
24.1%
24.7%
24.7%
35.6%
39.7%
40.1%
40.8%
42.7%
42.7%
42.7%
53.8%
64.7%
59.2%
58.1%
64.2%
64.2%
64.2%
64.2%
64.2%
64.2%
64.2%
73.3%
64.8%
76.5%
4.7%
4.6%
6.5%

86
0

A
B

E
44

5

C
P

E
40

4

41.5%
24.1%
24.7%
24.7%
35.6%
39.7%
40.1%
40.8%
42.7%
42.7%
42.7%
53.8%
64.7%
59.2%
58.1%
64.2%
64.2%
64.2%
64.2%
64.2%
64.2%
64.2%
73.3%
64.8%
76.5%
4.7%
4.6%
6.5%

86
0

A
B

E
44

5

C
P

E
40

4

41.5%
24.1%
24.7%
24.7%
35.6%
39.7%
40.1%
40.8%
42.7%
42.7%
42.7%
53.8%
64.7%
59.2%
58.1%
64.2%
64.2%
64.2%
64.2%
64.2%
64.2%
64.2%
73.3%
64.8%
76.5%
4.7%
4.6%
6.5%

87
5

A
B

E
44

5

C
P

E
40

3

37.9%
35.9%
25.9%
27.0%
34.1%
39.1%
39.5%
40.1%
42.7%
42.7%
42.7%
53.8%
64.7%
59.2%
58.1%
64.2%
64.2%
64.2%
64.2%
64.2%
64.2%
64.2%
73.3%
64.8%
76.5%
5.0%
4.3%
4.3%

86
0

A
B

E
44

5

C
P

E
40

4

41.5%
24.1%
24.7%
24.7%
35.6%
39.7%
40.1%
40.8%
42.7%
42.7%
42.7%
53.8%
64.7%
59.2%
58.1%
64.2%
64.2%
64.2%
64.2%
64.2%
64.2%
64.2%
73.3%
64.8%
76.5%
4.7%
4.6%
6.5%

dm
das−

1
dm

das−
10

dm
das−

2
dm

das−
3

dm
das−

4
dm

das−
5

dm
das−

6
dm

das−
7

dm
das−

8
dm

das−
9

0 250 500 750

CPU0
CPU1
CPU2
CPU3
CPU4
CPU5
CPU6
CPU7
CPU8
CPU9

CPU10
CPU11
CPU12
CPU13
CPU14
CPU15
CPU16
CPU17
CPU18
CPU19
CPU20
CPU21
CPU22
CPU23
CPU24

CUDA0_0
CUDA1_0
CUDA2_0

CPU0
CPU1
CPU2
CPU3
CPU4
CPU5
CPU6
CPU7
CPU8
CPU9

CPU10
CPU11
CPU12
CPU13
CPU14
CPU15
CPU16
CPU17
CPU18
CPU19
CPU20
CPU21
CPU22
CPU23
CPU24

CUDA0_0
CUDA1_0
CUDA2_0

CPU0
CPU1
CPU2
CPU3
CPU4
CPU5
CPU6
CPU7
CPU8
CPU9

CPU10
CPU11
CPU12
CPU13
CPU14
CPU15
CPU16
CPU17
CPU18
CPU19
CPU20
CPU21
CPU22
CPU23
CPU24

CUDA0_0
CUDA1_0
CUDA2_0

CPU0
CPU1
CPU2
CPU3
CPU4
CPU5
CPU6
CPU7
CPU8
CPU9

CPU10
CPU11
CPU12
CPU13
CPU14
CPU15
CPU16
CPU17
CPU18
CPU19
CPU20
CPU21
CPU22
CPU23
CPU24

CUDA0_0
CUDA1_0
CUDA2_0

CPU0
CPU1
CPU2
CPU3
CPU4
CPU5
CPU6
CPU7
CPU8
CPU9

CPU10
CPU11
CPU12
CPU13
CPU14
CPU15
CPU16
CPU17
CPU18
CPU19
CPU20
CPU21
CPU22
CPU23
CPU24

CUDA0_0
CUDA1_0
CUDA2_0

CPU0
CPU1
CPU2
CPU3
CPU4
CPU5
CPU6
CPU7
CPU8
CPU9

CPU10
CPU11
CPU12
CPU13
CPU14
CPU15
CPU16
CPU17
CPU18
CPU19
CPU20
CPU21
CPU22
CPU23
CPU24

CUDA0_0
CUDA1_0
CUDA2_0

CPU0
CPU1
CPU2
CPU3
CPU4
CPU5
CPU6
CPU7
CPU8
CPU9

CPU10
CPU11
CPU12
CPU13
CPU14
CPU15
CPU16
CPU17
CPU18
CPU19
CPU20
CPU21
CPU22
CPU23
CPU24

CUDA0_0
CUDA1_0
CUDA2_0

CPU0
CPU1
CPU2
CPU3
CPU4
CPU5
CPU6
CPU7
CPU8
CPU9

CPU10
CPU11
CPU12
CPU13
CPU14
CPU15
CPU16
CPU17
CPU18
CPU19
CPU20
CPU21
CPU22
CPU23
CPU24

CUDA0_0
CUDA1_0
CUDA2_0

CPU0
CPU1
CPU2
CPU3
CPU4
CPU5
CPU6
CPU7
CPU8
CPU9

CPU10
CPU11
CPU12
CPU13
CPU14
CPU15
CPU16
CPU17
CPU18
CPU19
CPU20
CPU21
CPU22
CPU23
CPU24

CUDA0_0
CUDA1_0
CUDA2_0

CPU0
CPU1
CPU2
CPU3
CPU4
CPU5
CPU6
CPU7
CPU8
CPU9

CPU10
CPU11
CPU12
CPU13
CPU14
CPU15
CPU16
CPU17
CPU18
CPU19
CPU20
CPU21
CPU22
CPU23
CPU24

CUDA0_0
CUDA1_0
CUDA2_0

Time [ms]

W
or

ke
rs

factor(pathid)
1

2

3

4

5

6

7

8

dgemm dpotrf dsyrk dtrsm

Source: The Author

149

is not possible to ask to StarPU for stopping the simulation at more than one scheduling

point.

Figure 8.2: Space-time view with markers (black pins) to indicate representative delayed
tasks. The scheduling state of these tasks will be investigated in the next sections.

86
0

A
B

E
44

5

C
P

E
40

4

41.5%

24.1%

24.7%

24.7%

35.6%

39.7%

40.1%

40.8%

42.7%

42.7%

42.7%

53.8%

64.7%

59.2%

58.1%

64.2%

64.2%

64.2%

64.2%

64.2%

64.2%

64.2%

73.3%

64.8%

76.5%

4.7%

4.6%

6.5%

●

● ● ●

●

● ●

●

CPU0

CPU1

CPU2

CPU3

CPU4

CPU5

CPU6

CPU7

CPU8

CPU9

CPU10

CPU11

CPU12

CPU13

CPU14

CPU15

CPU16

CPU17

CPU18

CPU19

CPU20

CPU21

CPU22

CPU23

CPU24

CUDA0_0

CUDA1_0

CUDA2_0

0 250 500 750

Time [ms]

W
or

ke
rs

factor(pathid)
1

2

3

4

5

6

7

8

dgemm dpotrf dsyrk dtrsm

Source: The Author

The tasks highlighted in black in Figure 8.2 present a similar behavior, each one

executes on the same resource of its last dependency and seems to be delayed by the

execution of a third task. This situation seems to be related to a mistake in the task-

priorities defined by the application. For this reason, we inspect the scheduler state when

they were scheduled.

For the DSYRK task with ID 1333, in the Scheduler state view on the top of Figure

8.3, we can see that best worker to execute this task is CUDA0 which has the lowest fitness

value, since it requires the faster data transfer. CUDA1 will be available earlier (green dot)

once it has less tasks waiting in the queue, however it requires a longer data transfer. After

having chosen a worker, the StarPU scheduler should compute the best position to push

the new task to the worker queue of ready tasks. This is done by comparing the priorities

of the new task with the queued ones. Since the new task has priority 23, it will be pushed

in front of all tasks already waiting in the queue (priorities 19 and 15). The space-time

view on the middle of Figure 8.3, that shows the final trace of this execution, allows

us to confirm that DSYRK 1333 was executed on CUDA0. The bottom of this Figure

shows a comparison between the scenario estimated by the scheduler and the executed

one. This zoomed view allows us to confirm that the new task has, in fact, executed

before the queued ones (DTRSM tasks with IDs 1324 and 1328). In an ideal scenario, the

150

task 1333 should also be executed before the task 1322 since this one has lower priority

(23 versus 21). However, in practice, this situation is not possible for two reasons. First,

task 1322 is already on the current queue (represented by lower rectangles in the figure),

which is, in fact, a pipeline queue. This way, even if its status is not yet RUNNING, the

scheduler cannot preempt it to prioritize the task 1333. The second reason is the data

transfer required by task 1333 to start its execution.

In the end, we can conclude that there is no mistake in this scheduler decision. The

best worker was properly selected and the priorities were correctly considered. In fact,

the delay of task 1333 is due to the StarPU pipeline mechanism that prevents task 1333 to

execute right after the task 1320 (its last dependency).

The analysis of other selected tasks, such as the DSYRK 1434 in CUDA2, the

DTRSM 1585 in CUDA2 and the DSYRK 1657 in CUDA1, show they were also delayed

because of the pipeline mechanism since the worker choice and the priorities were re-

spected. In Figure 8.4 we present only the comparison between the estimated and the

obtained execution to show their similarity with the previously investigated case (DSYRK

1333).

On the other hand, the DTRSM 1510 is a different case. As depicted by the sched-

uler state view in Figure 8.5, this task does not require a data transfer to be executed on

the chosen worker (CUDA2). This way, the only limitation is the pipeline queue which

already contains another task (DTRSM 1425) with the same priority. If it was possible to

push the new task directly to the front of the pipeline queue, we could estimate a gain of

7.8ms (≈1%) changing only this scheduling decision. This estimation of gain is inferred

from the difference between the time the last dependency is completed and the time when

the task 1510 starts.

All the previous discussed tasks were scheduled in the same workers of its last

dependency. We have also inspected the scheduling of tasks where the last dependency

was executed in another worker (tasks marked with red pins in Figure 8.2). In such cases

the conclusion is similar, priorities are correctly defined and are properly respected by

the scheduler, the new tasks cannot start before due to both required data transfers and

the pipeline mechanism, as can be checked in Figure 8.6. Each of the three parts of this

figure shows a comparison between the scheduler estimation and the obtained execution

of tasks whose last dependency was executed in a different worker. All of them require

a data transfer as illustrated by the orange area. We can confirm that their priorities have

been correctly respected by comparing the priority value of the new task with the priority

151

Figure 8.3: A comparison between the estimations computed by StarPU dur-
ing the scheduling step of the DSYRK task 1333 and the obtained execution.
The vertical red line represents the moment when the execution was stooped
and when the scheduler state was collected. The top panel shows the estima-
tions computed by the StarPU scheduler when scheduling the task 1333 (inter-
active version at http://perf-ev-runtime.gforge.inria.fr/thesis/
interactiveSchedView1333.html). The middle panel shows the trace obtained
in the end of the execution (interactive version at http://perf-ev-runtime.
gforge.inria.fr/thesis/interactiveFinalView1333.html). The bot-
tom one shows a zoom over estimated state of CUDA0, which is the worker chosen to
execute the task, and the obtained execution.

Fitness: 53785.9
Fitness: 52958.3
Fitness: 52958.3
Fitness: 52958.3
Fitness: 52958.3
Fitness: 52958.3
Fitness: 52958.3
Fitness: 52958.3
Fitness: 52958.3
Fitness: 52958.3
Fitness: 52958.3
Fitness: 52958.3
Fitness: 52958.3
Fitness: 52958.3
Fitness: 52958.3
Fitness: 52958.3
Fitness: 52958.3
Fitness: 52958.3
Fitness: 52958.3
Fitness: 52958.3
Fitness: 52958.3
Fitness: 52958.3
Fitness: 52958.3
Fitness: 52958.3
Fitness: 52958.3
Fitness: 6652.2
Fitness: 14759.2
Fitness: 11539.4

Now Best EndBest Worker: CUDA 0.0

STATUS_UNKNOWN
STATUS_UNKNOWN
STATUS_UNKNOWN

STATUS_SLEEPING
STATUS_SLEEPING
STATUS_SLEEPING
STATUS_SLEEPING
STATUS_SLEEPING
STATUS_SLEEPING
STATUS_SLEEPING
STATUS_SLEEPING
STATUS_SLEEPING
STATUS_SLEEPING
STATUS_SLEEPING
STATUS_SLEEPING
STATUS_SLEEPING
STATUS_SLEEPING
STATUS_SLEEPING
STATUS_SLEEPING
STATUS_SLEEPING
STATUS_SLEEPING
STATUS_SLEEPING
STATUS_SLEEPING
STATUS_SLEEPING
STATUS_SLEEPING
STATUS_SLEEPING
STATUS_SLEEPING
STATUS_SLEEPING

CanExecute: TRUE
CanExecute: TRUE
CanExecute: TRUE

CanExecute: FALSE
CanExecute: FALSE
CanExecute: FALSE
CanExecute: FALSE
CanExecute: FALSE
CanExecute: FALSE
CanExecute: FALSE
CanExecute: FALSE
CanExecute: FALSE
CanExecute: FALSE
CanExecute: FALSE
CanExecute: FALSE
CanExecute: FALSE
CanExecute: FALSE
CanExecute: FALSE
CanExecute: FALSE
CanExecute: FALSE
CanExecute: FALSE
CanExecute: FALSE
CanExecute: FALSE
CanExecute: FALSE
CanExecute: FALSE
CanExecute: FALSE
CanExecute: FALSE
CanExecute: FALSE

●

●

●

 CPU 0
 CPU 1
 CPU 2
 CPU 3
 CPU 4
 CPU 5
 CPU 6
 CPU 7
 CPU 8
 CPU 9

 CPU 10
 CPU 11
 CPU 12
 CPU 13
 CPU 14
 CPU 15
 CPU 16
 CPU 17
 CPU 18
 CPU 19
 CPU 20
 CPU 21
 CPU 22
 CPU 23
 CPU 24

 CUDA 0.0
 CUDA 1.0
 CUDA 2.0

2240000 2280000 2320000 2360000

Time

W
or

ke
rs

Scheduled Tasks Est. Data Transfer Est. Task Duration

StarPU Scheduler State when scheduling task − 1333

41.5%
24.1%
24.6%
24.6%
35.6%
39.7%
40.1%
40.8%
42.7%
42.7%
42.7%
53.8%
64.7%
59.2%
58.1%
64.2%
64.2%
64.2%
64.2%
64.2%
64.2%
64.2%
73.3%
64.8%
76.5%
4.7%
4.6%
6.5%

●

CPU0
CPU1
CPU2
CPU3
CPU4
CPU5
CPU6
CPU7
CPU8
CPU9

CPU10
CPU11
CPU12
CPU13
CPU14
CPU15
CPU16
CPU17
CPU18
CPU19
CPU20
CPU21
CPU22
CPU23
CPU24

CUDA0_0
CUDA1_0
CUDA2_0

0 250 500 750

Time [ms]

W
or

ke
rs

factor(pathid)
1

2

3

4

5

6

7

8

dgemm dpotrf dsyrk dtrsm

Space−time view of the execution

Id: 1333
Priority: 23Id: 1322

Priority: 21

Id: 1324
Priority: 19

Id: 1328
Priority: 15 CUDA 0.0

30 40 50 60

W
or

ke
rs

Scheduled Tasks Est. Data Transfer Est. Task Duration

Comparison between the scheduler estimation and the obtained execution

Id: 1321 Id: 1323 Id: 1334 Id: 1335 Id: 1347

Id: 1326 Id: 1327 Id: 1346 Id: 1369 Id: 1359

Id: 1320 Id: 1322 Id: 1333 Id: 1358 Id: 1324 Id: 1336CUDA0_0

30 40 50 60
Time [ms]

W
or

ke
rs

dgemm dpotrf dsyrk dtrsm Dependency 1

Source: The Author

http://perf-ev-runtime.gforge.inria.fr/thesis/interactiveSchedView1333.html
http://perf-ev-runtime.gforge.inria.fr/thesis/interactiveSchedView1333.html
http://perf-ev-runtime.gforge.inria.fr/thesis/interactiveFinalView1333.html
http://perf-ev-runtime.gforge.inria.fr/thesis/interactiveFinalView1333.html

152

Figure 8.4: Comparison of the scheduler estimations and the obtained executions for three
tasks: DSYRK 1434, the DTRSM 1510 and the DTRSM 1585.

Id: 1434
Priority: 20Id: 1423

Priority: 19

Id: 1348
Priority: 18

Id: 1337
Priority: 18

Id: 1349
Priority: 17

Id: 1329
Priority: 14 CUDA 2.0

80 100 120 140

W
or

ke
rs

Scheduled Tasks Est. Data Transfer Est. Task Duration

Comparison between the scheduler estimation and the obtained execution when scheduling Task 1434

Id: 1325 Id: 1422 Id: 1423 Id: 1434 Id: 1348 Id: 1337 Id: 1349 Id: 1435 Id: 1425

Id: 1351 Id: 1379 Id: 1362 Id: 1388 Id: 1338 Id: 1457 Id: 1350 Id: 1447 Id: 1352 Id: 1409

Id: 1396 Id: 1339 Id: 1424 Id: 1403 Id: 1360 Id: 1446 Id: 1328 Id: 1436 Id: 1340 Id: 1361

CUDA2_0

80 100 120 140
Time [ms]

W
or

ke
rs

dgemm dpotrf dsyrk dtrsm Dependency 1

Ta
sk

 1
43

4

Id: 1585
Priority: 14Id: 1523

Priority: 12

Id: 1374
Priority: 11

Id: 1506
Priority: 11

Id: 1376
Priority: 9

Id: 1393
Priority: 7 CUDA 2.0

250 270 290

W
or

ke
rs

Scheduled Tasks Est. Data Transfer Est. Task Duration

Comparison between the scheduler estimation and the obtained execution when scheduling Task 1585

Id: 1513 Id: 1522 Id: 1523 Id: 1585 Id: 1559 Id: 1586 Id: 1374 Id: 1605 Id: 1502 Id: 1506 Id: 1622

Id: 1364 Id: 1440 Id: 1551 Id: 1515 Id: 1441 Id: 1566 Id: 1516 Id: 1366 Id: 1572 Id: 1452

Id: 1451 Id: 1431 Id: 1514 Id: 1383 Id: 1525 Id: 1430 Id: 1595 Id: 1588 Id: 1443 Id: 1462

Id: 1410

Id: 1405

Id: 1399 Id: 1647

CUDA2_0

250 270 290
Time [ms]

W
or

ke
rs

dgemm dpotrf dsyrk dtrsm Dependency 1

Ta
sk

 1
58

5

Id: 1657
Priority: 11Id: 1629

Priority: 10

Id: 1635
Priority: 9

Id: 1537
Priority: 7

Id: 1546
Priority: 6

Id: 1599
Priority: 6

Id: 1538
Priority: 6

Id: 1492
Priority: 5 CUDA 1.0

375 400 425

W
or

ke
rs

Scheduled Tasks Est. Data Transfer Est. Task Duration

Comparison between the scheduler estimation and the obtained execution when scheduling Task 1657

Id: 1589 Id: 1581 Id: 1590 Id: 1393 Id: 1577 Id: 1598 Id: 1606 Id: 1650 Id: 1528 Id: 1674 Id: 1547 Id: 1658 Id: 1644

Id: 1527 Id: 1517 Id: 1648 Id: 1629 Id: 1657 Id: 1635 Id: 1537 Id: 1546 Id: 1599 Id: 1538 Id: 1651 Id: 1492 Id: 1681

Id: 1479 Id: 1649 Id: 1486 Id: 1666 Id: 1473 Id: 1615 Id: 1555 Id: 1548 Id: 1592 Id: 1591 Id: 1562

CUDA1_0

375 400 425
Time [ms]

W
or

ke
rs

dgemm dpotrf dsyrk dtrsm Dependency 1

Ta
sk

 1
65

7

Source: The Author

153

Figure 8.5: A comparison between the estimations computed by StarPU during the
scheduling step of the DSYRK task 1510 and the obtained execution.

Fitness: 15994.4
Fitness: 15994.4
Fitness: 15994.4
Fitness: 15994.4
Fitness: 43040.5
Fitness: 23087.5
Fitness: 23087.5
Fitness: 23087.5
Fitness: 43040.5
Fitness: 43040.5
Fitness: 43040.5
Fitness: 22857.9
Fitness: 15994.4
Fitness: 15994.4
Fitness: 15994.4
Fitness: 15994.4
Fitness: 15994.4
Fitness: 15994.4
Fitness: 15994.4
Fitness: 15994.4
Fitness: 15994.4
Fitness: 15994.4
Fitness: 15994.4
Fitness: 15994.4
Fitness: 15994.4
Fitness: 10768.6
Fitness: 15729.7

Fitness: 5098

Now Best EndBest Worker: CUDA 2.0

STATUS_UNKNOWN
STATUS_UNKNOWN
STATUS_UNKNOWN

STATUS_EXECUTING
STATUS_EXECUTING
STATUS_EXECUTING
STATUS_SLEEPING
STATUS_SLEEPING
STATUS_SLEEPING
STATUS_SLEEPING
STATUS_SLEEPING
STATUS_SLEEPING
STATUS_SLEEPING
STATUS_SLEEPING
STATUS_SLEEPING
STATUS_SLEEPING
STATUS_SLEEPING
STATUS_SLEEPING
STATUS_SLEEPING
STATUS_SLEEPING
STATUS_SLEEPING
STATUS_SLEEPING
STATUS_SLEEPING
STATUS_SLEEPING
STATUS_SLEEPING
STATUS_SLEEPING
STATUS_SLEEPING
STATUS_SLEEPING

CanExecute: TRUE
CanExecute: TRUE
CanExecute: TRUE

CanExecute: FALSE
CanExecute: FALSE
CanExecute: FALSE
CanExecute: FALSE
CanExecute: FALSE
CanExecute: FALSE
CanExecute: FALSE
CanExecute: FALSE
CanExecute: FALSE
CanExecute: FALSE
CanExecute: FALSE
CanExecute: FALSE
CanExecute: FALSE
CanExecute: FALSE
CanExecute: FALSE
CanExecute: FALSE
CanExecute: FALSE
CanExecute: FALSE
CanExecute: FALSE
CanExecute: FALSE
CanExecute: FALSE
CanExecute: FALSE
CanExecute: FALSE
CanExecute: FALSE
CanExecute: FALSE

●

●

●

 CPU 0
 CPU 1
 CPU 2
 CPU 3
 CPU 4
 CPU 5
 CPU 6
 CPU 7
 CPU 8
 CPU 9

 CPU 10
 CPU 11
 CPU 12
 CPU 13
 CPU 14
 CPU 15
 CPU 16
 CPU 17
 CPU 18
 CPU 19
 CPU 20
 CPU 21
 CPU 22
 CPU 23
 CPU 24

 CUDA 0.0
 CUDA 1.0
 CUDA 2.0

2350000 2400000 2450000

Time

W
or

ke
rs

Scheduled Tasks Est. Data Transfer Est. Task Duration

StarPU Scheduler State when scheduling task − 1510

41.5%
24.1%
24.6%
24.6%
35.6%
39.7%
40.1%
40.8%
42.7%
42.7%
42.7%
53.8%
64.7%
59.2%
58.1%
64.2%
64.2%
64.2%
64.2%
64.2%
64.2%
64.2%
73.3%
64.8%
76.5%
4.7%
4.6%
6.5% ●

CPU0
CPU1
CPU2
CPU3
CPU4
CPU5
CPU6
CPU7
CPU8
CPU9

CPU10
CPU11
CPU12
CPU13
CPU14
CPU15
CPU16
CPU17
CPU18
CPU19
CPU20
CPU21
CPU22
CPU23
CPU24

CUDA0_0
CUDA1_0
CUDA2_0

0 250 500 750

Time [ms]

W
or

ke
rs

factor(pathid)
1

2

3

4

5

6

7

8

dgemm dpotrf dsyrk dtrsm

Space−time view of the execution

Id: 1510
Priority: 17Id: 1425

Priority: 17

Id: 1426
Priority: 16

Id: 1511
Priority: 16

Id: 1329
Priority: 14

Id: 1374
Priority: 11 CUDA 2.0

140 160 180

W
or

ke
rs

Scheduled Tasks Est. Data Transfer Est. Task Duration

Comparison between the scheduler estimation and the obtained execution

Id: 1349 Id: 1435 Id: 1425 Id: 1510 Id: 1426 Id: 1511 Id: 1437 Id: 1329 Id: 1512

Id: 1447 Id: 1352 Id: 1409 Id: 1330 Id: 1353 Id: 1467 Id: 1476 Id: 1532 Id: 1448

Id: 1436 Id: 1340 Id: 1361 Id: 1427 Id: 1341 Id: 1521 Id: 1484 Id: 1428 Id: 1429

CUDA2_0

140 160 180
Time [ms]

W
or

ke
rs

dgemm dpotrf dsyrk dtrsm Dependency 1

Source: The Author

154

of queued ones. By comparing task IDs in the plot depicting the obtained execution we

can confirm that new tasks were executed immediately after the pipelined ones.

Figure 8.6: Comparison of the scheduler estimations and the obtained executions for three
tasks: DSYRK 1521, the DSYRK 1595 and the DTRSM 1648.

Id: 1521
Priority: 17Id: 1341

Priority: 14

Id: 1428
Priority: 14

Id: 1343
Priority: 12

Id: 1355
Priority: 11

Id: 1383
Priority: 10

Id: 1385
Priority: 8 CUDA 0.0

160 180 200 220

W
or

ke
rs

Scheduled Tasks Est. Data Transfer Est. Task Duration

Comparison between the scheduler estimation and the obtained execution when scheduling Task 1521

Id: 1435 Id: 1425 Id: 1510 Id: 1426 Id: 1511 Id: 1437 Id: 1329 Id: 1512 Id: 1438 Id: 1542 Id: 1414 Id: 1513 Id: 1522

Id: 1352 Id: 1409 Id: 1330 Id: 1353 Id: 1467 Id: 1476 Id: 1532 Id: 1448 Id: 1458 Id: 1491 Id: 1418 Id: 1497 Id: 1364

Id: 1340 Id: 1361 Id: 1427 Id: 1341 Id: 1521 Id: 1484 Id: 1428 Id: 1429 Id: 1343 Id: 1355 Id: 1451 Id: 1431

Id: 1410

Id: 1405

Id: 1399

Id: 1392

Id: 1384

Id: 1375

Id: 1365

Id: 1354

Id: 1342

Id: 1485

CUDA0_0

160 180 200 220
Time [ms]

W
or

ke
rs

dgemm dpotrf dsyrk dtrsm Dependency 1

Ta
sk

 1
52

1

Id: 1595
Priority: 14Id: 1430

Priority: 12

Id: 1443
Priority: 9

Id: 1385
Priority: 8

Id: 1479
Priority: 7

Id: 1486
Priority: 6 CUDA 0.0

260 280 300 320

W
or

ke
rs

Scheduled Tasks Est. Data Transfer Est. Task Duration

Comparison between the scheduler estimation and the obtained execution when scheduling Task 1595

Id: 1523 Id: 1585 Id: 1559 Id: 1586 Id: 1374 Id: 1605 Id: 1502 Id: 1506 Id: 1622 Id: 1376 Id: 1526 Id: 1454

Id: 1440 Id: 1551 Id: 1515 Id: 1441 Id: 1566 Id: 1516 Id: 1366 Id: 1572 Id: 1452 Id: 1471 Id: 1536 Id: 1614

Id: 1514 Id: 1383 Id: 1525 Id: 1430 Id: 1595 Id: 1588 Id: 1443 Id: 1462 Id: 1587 Id: 1518 Id: 1385 Id: 1597

Id: 1596

Id: 1647

Id: 1503

Id: 1498

CUDA0_0

260 280 300 320
Time [ms]

W
or

ke
rs

dgemm dpotrf dsyrk dtrsm Dependency 1

Ta
sk

 1
59

5

Id: 1648
Priority: 11Id: 1517

Priority: 10

Id: 1537
Priority: 7

Id: 1546
Priority: 6

Id: 1492
Priority: 5 CUDA 1.0

350 370 390 410

W
or

ke
rs

Scheduled Tasks Est. Data Transfer Est. Task Duration

Comparison between the scheduler estimation and the obtained execution when scheduling Task 1648

Id: 1526 Id: 1454 Id: 1589 Id: 1581 Id: 1590 Id: 1393 Id: 1577 Id: 1598 Id: 1606 Id: 1650 Id: 1528

Id: 1536 Id: 1614 Id: 1527 Id: 1517 Id: 1648 Id: 1629 Id: 1657 Id: 1635 Id: 1537 Id: 1546 Id: 1599

Id: 1385 Id: 1597 Id: 1479 Id: 1649 Id: 1486 Id: 1666 Id: 1473 Id: 1615 Id: 1555 Id: 1548

CUDA1_0

350 370 390 410
Time [ms]

W
or

ke
rs

dgemm dpotrf dsyrk dtrsm Dependency 1

Ta
sk

 1
64

8

Source: The Author

8.3 Investigating Scheduling Decisions at the End of the Execution

At the end of the execution, there are few tasks to execute and the scheduler does

not have much choice. The best decision is to minimize data transfers and execute each

task of the critical path on the fastest resource available. In this part of the execution,

the repeated simulations are more unstable with variations in the critical path of the last

tasks (e.g., third and ninth execution in Figure 8.1) since there are more workers than

ready tasks. We have selected three tasks (marked with black pins in Figure 8.7) that are

delayed in most part of the simulated executions presented in Figure 8.1.

The first delayed task in this scenario is a DTRSM on CUDA1 with ID 1800. As

155

Figure 8.7: Space-time view with markers (black pins) to indicate representative delayed
tasks in the end of the execution. The scheduling state of these tasks will be investigated
in the next sections.

86
0

A
B

E
44

5

C
P

E
40

4
41.5%

24.1%

24.7%

24.7%

35.6%

39.7%

40.1%

40.8%

42.7%

42.7%

42.7%

53.8%

64.7%

59.2%

58.1%

64.2%

64.2%

64.2%

64.2%

64.2%

64.2%

64.2%

73.3%

64.8%

76.5%

4.7%

4.6%

6.5%
●

● ●

CPU0

CPU1

CPU2

CPU3

CPU4

CPU5

CPU6

CPU7

CPU8

CPU9

CPU10

CPU11

CPU12

CPU13

CPU14

CPU15

CPU16

CPU17

CPU18

CPU19

CPU20

CPU21

CPU22

CPU23

CPU24

CUDA0_0

CUDA1_0

CUDA2_0

0 250 500 750

Time [ms]

W
or

ke
rs

factor(pathid)
1

2

3

4

5

6

7

8

dgemm dpotrf dsyrk dtrsm

Source: The Author

showed in Figure 8.8, this task is also delayed due to the effects of the pipeline mechanism

and to the required data transfers, which are the same reasons as the ones discussed in the

previous section. The last two tasks, the DSYRK 1822 and on the DSYRK 1833, both on

CUDA2, are delayed by the required data transfers since the worker queues are empty.

At this point of the execution, there is almost no room for improvements; the scheduler

is working on the critical path, executing sequences of DTRSM-DSYRK-DPOTRF tasks.

Since there are only few tasks to be executed, there is not enough time to overlap the data

transfer required by the new task with the execution of other ones. This way, sometimes

the worker will be in idle waiting for the conclusion of a data transfer before executing

the task.

8.4 Experiments with Modified Pipeline Size

As discussed in previous sections, the scheduler decisions taken by StarPU seems

to be correct in terms of choice of best worker and task priority. However, some tasks

are negatively impacted by the effects of the pipeline mechanism. In GPU resources, this

feature allows overlapping task management with the execution of previous tasks, which

in general benefits the overall performance. To check the impact of this configuration on

the execution of some delayed tasks, we rerun the experiments using a smaller size for

156

Figure 8.8: Comparison of the scheduler estimations and the obtained executions for three
tasks: DSYRK 1800, the DSYRK 1822 and the DTRSM 1833.

Id: 1800
Priority: −1Id: 1764

Priority: −8
 CUDA 1.0

720 730 740 750

W
or

ke
rs

Scheduled Tasks Est. Data Transfer Est. Task Duration

Comparison between the scheduler estimation and the obtained execution
when scheduling Task 1800

Id: 1792 Id: 1763 Id: 1783 Id: 1788 Id: 1793

Id: 1787 Id: 1782 Id: 1764 Id: 1800 Id: 1789

Id: 1778 Id: 1768 Id: 1796 Id: 1784 Id: 1801 Id: 1802

CUDA1_0

720 730 740 750
Time [ms]

W
or

ke
rs

dgemm dpotrf dsyrk dtrsm Dependency 1

Ta
sk

 1
80

0

Id: 1822
Priority: −4 CUDA 2.0

790 795 800 805

W
or

ke
rs

Scheduled Tasks Est. Data Transfer Est. Task Duration

Comparison between the scheduler estimation and the obtained execution
when scheduling Task 1822

Id: 1822

Id: 1819

Id: 1818 Id: 1826

CUDA2_0

790 795 800 805
Time [ms]

W
or

ke
rs

dgemm dpotrf dsyrk dtrsm Dependency 1

Ta
sk

 1
82

2

Id: 1833
Priority: −7 CUDA 2.0

825 830 835 840

W
or

ke
rs

Scheduled Tasks Est. Data Transfer Est. Task Duration

Comparison between the scheduler estimation and the obtained execution
when scheduling Task 1833

Id: 1830 Id: 1833CUDA2_0

825 830 835 840
Time [ms]

W
or

ke
rs

dgemm dpotrf dsyrk dtrsm Dependency 1

Ta
sk

 1
83

3

Source: The Author

157

the pipeline queue.

Figure 8.9 presents the space-time view of two executions, on the top, an exe-

cution using the standard pipeline size, which is 2, while on the bottom the modified

version with a smaller size (1). As expected, the standard execution is faster since the

pipeline mechanism improves the utilization ratio of GPU resources. In contrast, a de-

tailed analysis shows the modified version progress deeper into the critical path, i.e., the

first seven DPOTRF tasks are executed sooner in the modified version and their critical

paths show fewer delayed tasks thanks to the absence of lower priority tasks in pipeline

queue. After this point, StarPU schedules the tasks almost exclusively in the GPU re-

sources, which favors the standard execution that uses these resources more efficiently

thanks to the pipeline mechanism.

Figure 8.9: Comparison of a execution with the standard pipeline size (top) and the mod-
ified one (bottom).

86
0

A
B

E
44

5

C
P

E
39

7

41.5%
24.1%
24.6%
24.6%
35.6%
39.7%
40.1%
40.8%
42.7%
42.7%
42.7%
53.8%
64.7%
59.2%
58.1%
64.2%
64.2%
64.2%
64.2%
64.2%
64.2%
64.2%
73.3%
64.8%
76.5%
4.7%
4.6%
6.5%

CPU0
CPU1
CPU2
CPU3
CPU4
CPU5
CPU6
CPU7
CPU8
CPU9

CPU10
CPU11
CPU12
CPU13
CPU14
CPU15
CPU16
CPU17
CPU18
CPU19
CPU20
CPU21
CPU22
CPU23
CPU24

CUDA0_0
CUDA1_0
CUDA2_0

0 250 500 750

Time [ms]

W
or

ke
rs

factor(pathid)
1

2

3

4

5

6

7

8

dgemm dpotrf dsyrk dtrsm

Execution with standard Pipeline size

87
6

A
B

E
46

9

C
P

E
39

9

44.9%
12.7%
26.1%
26.6%
26.5%
38.4%
46.1%
44.1%
46.9%
47.0%
47.8%
50.5%
50.7%
52.3%
52.3%
52.3%
52.3%
62.9%
68.2%
68.2%
78.1%
78.1%
78.4%
4.9%
9.6%
5.5%

CPU0
CPU1
CPU2
CPU3
CPU4
CPU5
CPU6
CPU7
CPU8
CPU9

CPU10
CPU11
CPU12
CPU13
CPU14
CPU15
CPU16
CPU17
CPU18
CPU19
CPU20
CPU21
CPU22

CUDA0_0
CUDA1_0
CUDA2_0

0 250 500 750

Time [ms]

W
or

ke
rs

factor(pathid)
1

2

3

4

5

6

7

8

dgemm dpotrf dsyrk dtrsm

Execution with modified Pipeline size

Source: The Author

8.5 Chapter Summary

In this chapter, we investigate a set of scheduler decisions by using the previously

discussed analysis strategy based on simulation and debugging. From the visual repre-

sentation of the scheduler state, we compare the estimated scenario with the executed one

158

in order to check where the task was scheduled and how it was allocated in the worker

queues.

Our analysis focus on selected tasks whose execution does not starts as soon as

their last dependency has finished. We investigate the scheduler behavior regarding re-

spect for priorities and the correct choice of the best worker. We conclude that the sched-

uler estimations and decisions are correct and that delays in some tasks can be explained

by two other reasons: data transfers and the pipeline mechanism. For the transfers is-

sue, we can suppose a solution would be to perform the prefetch sooner. Currently, the

prefetch is performed after the moment when a task is marked as ready (all dependencies

solved). To avoid this delay, the prefetch should use a speculative strategy to consider

not only ready tasks but also those that will be tagged as ready in a near future, i.e., tasks

whose last dependency is already running. Regarding the issues caused by the pipeline

mechanism, a possible solution would be to preempt tasks with lower priorities from the

current queue and swap them with the new (higher-priority) one since completely disable

pipelining will compromises overall performance.

These suggestions for modifications were reported and discussed with the StarPU

developers since the required changes demand extensive knowledge about the runtime

system. However, implementing them will deeply impact the scheduling model that is

currently used. As a consequence, these changes have not yet been incorporated in the

source code.

159

9 CONCLUSIONS AND PERSPECTIVES

In this chapter, we present the final remarks of this thesis. We start with the con-

clusions of this work in Section 9.1. The perspectives and future work are discussed in

Section 9.2. Finally, in Section 9.3 we list our accepted publications and contextualizes

the StarVZ project.

9.1 Conclusions

Current HPC architectures consist of a combination of multicore processors with

accelerator devices. This paradigm shift in the HPC landscape has exposed the limita-

tions of traditional parallel programming and analysis tools. In this scenario, task-based

programming models are becoming popular as a solution to handle the heterogeneity and

the scalability of such platforms. Unfortunately, existing performance analysis tools are

unfit to fully understand task-based executions since these ones are supported by dynamic

runtime systems. This runtime support provides finer synchronizations, load balancing,

automatic data transfers, and dynamic scheduling. For this reason, execution traces of

task-based application can be much richer than ones of classical parallel programming

applications which motivates the design of specific analysis strategies.

In this thesis, we presented performance analysis strategies for task-based appli-

cations executing on hybrid platforms supported by dynamic runtime systems. These

strategies were designed to meet the requirements of such complex hardware/software

stack and comprise application aspects, platform specification and runtime system state.

Our strategies are built on top of modern data analysis tools and of well-established per-

formance analysis concepts. The three main contributions are:

• a set of performance analysis strategies for task-based applications supported by

dynamic runtime systems. These strategies are presented in Chapter 5 and com-

prise the addition of visualization layers to enrich the traditional space-time view

and the inclusion of synchronized extra panels to disclose more details about the

application, the runtime system, and the platform;

• an incremental and on-demand approach to extend standard visualizations with en-

richments and synchronized extra panels. This approach is used to implement the

strategies discussed in Chapters 5 and 7 and allows to extend and improve the anal-

160

ysis strategies building on existing panels without a complete redesign.

• a workflow based on simulation and debugging to inspect and analyze application

parameters (e.g., priorities) and runtime scheduler decisions. This debugging ap-

proach is presented in Chapter 7 and provides a visualization of the internal state of

scheduler showing the estimations computed during task scheduling.

• case-study analyses demonstrating both how to achieve performance improvements

and how to understand scheduling decisions. These case studies are presented in

Chapters 6 and 8.

We demonstrate the effectiveness of our strategies by analyzing execution traces

from a Cholesky decomposition implemented with the StarPU task-based runtime system

and running on hybrid (CPU/GPU) platforms. By using our visualization techniques,

we are able to identify and fix performance issues comprising the bad task partitioning

between computing resources (GPUs or cores), slow-start in distributed executions and

mismanagement of MPI operations. By using our debug-based analysis strategies, we

are able to inspect the scheduler state which allows us to better understand the StarPU

decisions. This kind of analysis helps to confirm or refute assumptions about potential

scheduling mistakes.

9.2 Perspectives

This thesis has raised several points that could progress in the future. In this sec-

tion, we list some opportunities to continue and extend our research on performance anal-

ysis strategies.

9.2.1 Analysis of other task-based applications and runtime systems

As discussed in 2.3.5, other runtime systems (e.g., XKaapi and OmpSs) are similar

to StarPU, and our analysis strategies should be applicable to them as well. Figure 9.1

shows a demonstration of how our analysis strategies can be used to build visualizations

from traces of the OmpSs runtime system. OmpSs traces are rich enough to enable us to

build visualizations with the same panels as StarPU ones.

It must be highlighted that this visualization is built from a non-optimized and

under development application, which explains the bad resources occupation for the time

161

being. This application provides a CPU-GPU task-based implementation for the D3Q19

Lattice-Boltzmann Method (SCHEPKE; MAILLARD; NAVAUX, 2009) which is a nu-

merical method for simulating viscous fluid flow. As future work, we plan to continue

porting our visualization strategies to this runtime system since they can be useful during

the application optimization.

Figure 9.1: Visualization of a task-based application executed with the OmpSs runtime
system.

Source: The Author

9.2.2 Performance Anomalies on Xeon Phi Knights Landing architecture

GPUs are the dominant accelerator technology for the time being, however other

technologies are also used (see Figure 2.2). One of these accelerators is the Intel Xeon

Phi Knights Landing (JEFFERS; REINDERS, J.; SODANI, 2016) which is an x86-based

many-core processor with up to 72 physical cores and up to 288 hardware threads. In this

generation, Xeon Phi processors can be used as the main processor of the system.

162

To demonstrate the usability of our performance analysis strategies in platforms

with such accelerator technology, we execute the tiled Cholesky decomposition provided

by Chameleon and implemented with StarPU. We use a platform with a 68-core Intel

Xeon Phi 7250 processor with 110 GB of DDR4 memory. Since such platform is very

homogeneous, we expect a uniform execution with very few performance disturbances.

However, in practice, we observe several curious issues affecting several cores.

Figure 9.2 shows an execution with the DMDAS scheduler on this platform. To

reduce potential perturbations, we disabled the hardware threads and dedicated one physi-

cal core to the main thread of StarPU. This way, the application is executed with 67 cores.

Despite that, we can observe several cores where almost all tasks are tagged as outliers.

The idleness ratio varies from 1.54% to 3.91% which suggests some unequal load bal-

ancing. As future work, we plan a further investigation to identify the cause and fix these

performance issues which can be useful not only to this generation but also give us some

insights to tackle future many-core architectures.

9.2.3 StarVZ

Most parts of the visualization strategies proposed in this work are being reimple-

mented and integrated into an open source project called StarVZ1. This project is being

conducted in a cooperative effort with other participants. Some figures in Section 6.3

were already built using the new StarVZ code, while others (Sections 5 and 6.2) uses the

original prototype code.

For the time being, StarVZ is being extended to support more accurate bounds for

the makespan, which probably will be more precise, in particular, for small executions as

the ones of Sections 6.2.2 and 7.1.

9.3 Publications

9.3.1 Accepted

• PINTO, Vinicius Garcia; STANISIC, Luka; LEGRAND, Arnaud; SCHNORR, Lu-

cas Mello; THIBAULT, Samuel; DANJEAN, Vincent. Analyzing Dynamic Task-

1https://github.com/schnorr/starvz

https://github.com/schnorr/starvz

163

Figure 9.2: An overview of a Cholesky execution on the Intel Xeon Phi platform with a
matrix of 60×60 tiles of 960×960 using the DMDAS scheduler.

Source: The Author

164

Based Applications on Hybrid Platforms: An Agile Scripting Approach. In: PRO-

CEEDINGS of the Third Workshop on Visual Performance Analysis, VPA@SC

2016, Salt Lake, UT, USA, November 18, 2016. [S.l.]: IEEE Press, 2016. (VPA

’16), p. 17–24. Held in conjunction with SC16. DOI: 10.1109/VPA.2016.008

• PINTO, Vinícius Garcia; SCHNORR, Lucas Mello; STANISIC, Luka; LEGRAND,

Arnaud; THIBAULT, Samuel; DANJEAN, Vincent. A visual performance analysis

framework for task-based parallel applications running on hybrid clusters. Con-

currency and Computation: Practice and Experience, v. 0, n. 0, p. 1–27. DOI:

10.1002/cpe.4472

• PINTO, Vinicius Garcia; STANISIC, Luka; LEGRAND, Arnaud; SCHNORR, Lu-

cas Mello; THIBAULT, Samuel; DANJEAN, Vincent. Detecção de Anomalias de

Desempenho em Aplicações de Alto Desempenho baseadas em Tarefas em Clus-

ters Híbridos. In: ANAIS do CSBC 2018 - 17º WPERFORMANCE - WORK-

SHOP EM DESEMPENHO DE SISTEMAS COMPUTACIONAIS E DE COMU-

NICAÇÃO. [s.l.: s.n.], 2018. p. 97–110

9.3.2 Other accepted publications during the Ph.D.

These articles were also published during the Ph.D. but their content is not directly

related to the subject of this thesis.

• PINTO, Vinícius Garcia; LORENZON, Arthur F.; BECK, Antonio Carlos S.; MAIL-

LARD, Nicolas; NAVAUX, Philippe O. A. Energy Efficiency Evaluation of Multi-

level Parallelism on Low Power Processors. In: ANAIS do XXXIV Congresso da

Sociedade Brasileira de Computação (WPerfomance - XIII Workshop em Desem-

penho de Sistemas Computacionais e de Comunicação). Porto Alegre: [s.n.], 2014.

p. 1825–1836

• PINTO, Vinícius Garcia; HERBSTRITH, Vinicius Alves; SCHNORR, Lucas M.

Replicating the Performance Evaluation of an N-Body Application on a Manycore

Accelerator. In: 2015 International Symposium on Computer Architecture and

High Performance Computing Workshop (SBAC-PADW). [s.l.: s.n.], Oct. 2015.

p. 19–24. DOI: 10.1109/SBAC-PADW.2015.17

https://doi.org/10.1109/VPA.2016.008
https://doi.org/10.1002/cpe.4472
https://doi.org/10.1109/SBAC-PADW.2015.17

165

BIBLIOGRAPHY

A.P., Davison et al. Sumatra: A Toolkit for Reproducible Research. In: STODDEN, V.;

LEISCH, F.; PENG, R.D. (Eds.). Implementing Reproducible Research. Boca Raton,

Florida.: Chapman & Hall/CRC, Mar. 2014. p. 57–79.

ABDULAH, Sameh et al. ExaGeoStat: A High Performance Unified Software for Geo-

statistics on Manycore Systems. IEEE Transactions on Parallel and Distributed Sys-

tems, IEEE Computer Society, n. 1, p. 1–1, 2018. DOI: 10.1109/TPDS.2018.

2850749.

AGULLO, E.; AUMAGE, O., et al. Achieving High Performance on Supercomputers

with a Sequential Task-based Programming Model. IEEE Transactions on Parallel and

Distributed Systems, PP, n. 99, p. 1–1, 2017. DOI: 10.1109/TPDS.2017.276606

4.

AGULLO, E.; BEAUMONT, O., et al. Bridging the Gap between Performance and Bounds

of Cholesky Factorization on Heterogeneous Platforms. In: 2015 IEEE International Par-

allel and Distributed Processing Symposium Workshop. [S.l.: s.n.], May 2015. p. 34–45.

DOI: 10.1109/IPDPSW.2015.35.

AGULLO, E.; BOSILCA, G., et al. Poster: Matrices over Runtime Systems at Exas-

cale. In: . High Performance Computing, Networking, Storage and Analysis

(SCC), 2012 SC Companion: [s.l.: s.n.], Nov. 2012. p. 1332–1332. DOI: 10.1109/

SC.Companion.2012.168.

AGULLO, Emmanuel et al. Implementing Multifrontal Sparse Solvers for Multicore Ar-

chitectures with Sequential Task Flow Runtime Systems. ACM Trans. Math. Softw.,

ACM, New York, NY, USA, v. 43, n. 2, 13:1–13:22, Aug. 2016. DOI: 10.1145/

2898348.

. qr-mumps. [S.l.: s.n.]. Available from: <http://buttari.perso.

enseeiht.fr/qrmumps/>. Visited on: 2 July 2018.

. Task-Based Multifrontal QR Solver for GPU-Accelerated Multicore Archi-

tectures. In: 2015 IEEE 22nd International Conference on High Performance Computing

(HiPC). [S.l.]: IEEE, Dec. 2015. p. 54–63. DOI: 10.1109/HiPC.2015.27.

ASANOVIC, Krste et al. A View of the Parallel Computing Landscape. Commun. ACM,

ACM, New York, NY, USA, v. 52, n. 10, p. 56–67, Oct. 2009. DOI: 10.1145/156276

4.1562783.

https://doi.org/10.1109/TPDS.2018.2850749
https://doi.org/10.1109/TPDS.2018.2850749
https://doi.org/10.1109/TPDS.2017.2766064
https://doi.org/10.1109/TPDS.2017.2766064
https://doi.org/10.1109/IPDPSW.2015.35
https://doi.org/10.1109/SC.Companion.2012.168
https://doi.org/10.1109/SC.Companion.2012.168
https://doi.org/10.1145/2898348
https://doi.org/10.1145/2898348
http://buttari.perso.enseeiht.fr/qrmumps/
http://buttari.perso.enseeiht.fr/qrmumps/
https://doi.org/10.1109/HiPC.2015.27
https://doi.org/10.1145/1562764.1562783
https://doi.org/10.1145/1562764.1562783

166

AUGONNET, Cédric et al. StarPU-MPI: Task Programming over Clusters of Machines

Enhanced with Accelerators. In: Recent Advances in the Message Passing Interface:

19th European MPI Users’ Group Meeting, EuroMPI 2012, Vienna, Austria, Septem-

ber 23-26, 2012. Proceedings. Ed. by Jesper Larsson Träff, Siegfried Benkner and Jack

J. Dongarra. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. p. 298–299. DOI:

10.1007/978-3-642-33518-1_40.

AUGONNET, Cédric et al. StarPU: a unified platform for task scheduling on heteroge-

neous multicore architectures. Concurrency and Computation: Practice and Experi-

ence, John Wiley & Sons, Ltd., v. 23, n. 2, p. 187–198, 2011.

AYGUADÉ, Eduard et al. An Extension of the StarSs Programming Model for Platforms

with Multiple GPUs. In: [s.l.]: Springer, Berlin, Heidelberg, 2009. p. 851–862. DOI: 10.

1007/978-3-642-03869-3_79.

BADIA, Rosa M.; HERRERO, José R., et al. Parallelizing dense and banded linear alge-

bra libraries using SMPSs. Concurrency and Computation: Practice and Experience,

John Wiley & Sons, Ltd., v. 21, n. 18, p. 2438–2456, Dec. 2009. DOI: 10.1002/cpe.

1463.

BADIA, Rosa M.; LABARTA, Jesús, et al. Programming Grid Applications with GRID

Superscalar. Journal of Grid Computing, Kluwer Academic Publishers, v. 1, n. 2, p. 151–

170, 2003. DOI: 10.1023/B:GRID.0000024072.93701.f3.

BELLENS, Pieter et al. CellSs: a Programming Model for the Cell BE Architecture. In:

ACM/IEEE SC 2006 Conference (SC’06). [S.l.]: IEEE, Nov. 2006. p. 5–5. DOI: 10.

1109/SC.2006.17.

BENDER, Michael A.; RABIN, Michael O. Scheduling Cilk Multithreaded Parallel Pro-

grams on Processors of Different Speeds. In: PROCEEDINGS of the Twelfth Annual

ACM Symposium on Parallel Algorithms and Architectures. Bar Harbor, Maine, USA:

ACM, 2000. (SPAA ’00), p. 13–21. DOI: 10.1145/341800.341803.

BERKELAAR, Michel et al. lpSolve: Interface to ’Lp_solve’ v. 5.5 to Solve Linear/In-

teger Programs. [S.l.], 2015. R package version 5.6.13. Available from: <https://

CRAN.R-project.org/package=lpSolve>. Visited on: 29 Aug. 2018.

BLACKFORD, L. S. et al. ScaLAPACK user’s guide. [S.l.]: Society for Industrial and

Applied Mathematics, 1997.

https://doi.org/10.1007/978-3-642-33518-1_40
https://doi.org/10.1007/978-3-642-03869-3_79
https://doi.org/10.1007/978-3-642-03869-3_79
https://doi.org/10.1002/cpe.1463
https://doi.org/10.1002/cpe.1463
https://doi.org/10.1023/B:GRID.0000024072.93701.f3
https://doi.org/10.1109/SC.2006.17
https://doi.org/10.1109/SC.2006.17
https://doi.org/10.1145/341800.341803
https://CRAN.R-project.org/package=lpSolve
https://CRAN.R-project.org/package=lpSolve

167

BLUMOFE, R. D.; LEISERSON, C. E. Scheduling multithreaded computations by work

stealing. In: PROCEEDINGS of the 35th Annual Symposium on Foundations of Com-

puter Science. Washington, DC, USA: IEEE Computer Society, 1994. (SFCS ’94), p. 356–

368. DOI: 10.1109/SFCS.1994.365680.

BLUMOFE, Robert D.; LEISERSON, Charles E. Scheduling Multithreaded Computa-

tions by Work Stealing. J. ACM, ACM, New York, NY, USA, v. 46, n. 5, p. 720–748,

Sept. 1999. DOI: 10.1145/324133.324234.

BLUMOFE, Robert D et al. Cilk: An efficient multithreaded runtime system. Journal of

parallel and distributed computing, Elsevier, v. 37, n. 1, p. 55–69, 1996.

BOSILCA, G. et al. Flexible Development of Dense Linear Algebra Algorithms on Mas-

sively Parallel Architectures with DPLASMA. In: 2011 IEEE International Symposium

on Parallel and Distributed Processing Workshops and Phd Forum. [S.l.: s.n.], May 2011.

p. 1432–1441. DOI: 10.1109/IPDPS.2011.299.

BOSILCA, George et al. DAGuE: A Generic Distributed DAG Engine for High Perfor-

mance Computing. Parallel Computing, Elsevier Science Publishers B. V., Amsterdam,

The Netherlands, The Netherlands, v. 38, n. 1-2, p. 37–51, Jan. 2012. DOI: 10.1016/

j.parco.2011.10.003.

BRENDEL, R. et al. Edge Bundling for Visualizing Communication Behavior. In: 2016

Third Workshop on Visual Performance Analysis (VPA). [S.l.: s.n.], Nov. 2016. p. 1–8.

DOI: 10.1109/VPA.2016.006.

BRINKMANN, Steen et al. TEMANEJO 1.3 - Manual. [S.l.], 2017. p. 27. Available

from: <https://fs.hlrs.de/projects/temanejo/Temanejo_manual-

1.3.pdf>. Visited on: 31 Jan. 2018.

BRINKMANN, Steffen; GRACIA, José; NIETHAMMER, Christoph. Task Debugging

with TEMANEJO. In: CHEPTSOV, Alexey et al. (Eds.). Tools for High Performance

Computing 2012. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. p. 13–21. DOI:

10.1007/978-3-642-37349-7_2.

BSC. Mercurium Compiler. [S.l.: s.n.], 2018. Available from: <https://pm.bsc.

es/mcxx>. Visited on: 4 Jan. 2018.

. Nanos++ Runtime. [S.l.: s.n.], 2018. Available from: <https://pm.bsc.

es/nanox>. Visited on: 4 Jan. 2018.

https://doi.org/10.1109/SFCS.1994.365680
https://doi.org/10.1145/324133.324234
https://doi.org/10.1109/IPDPS.2011.299
https://doi.org/10.1016/j.parco.2011.10.003
https://doi.org/10.1016/j.parco.2011.10.003
https://doi.org/10.1109/VPA.2016.006
https://fs.hlrs.de/projects/temanejo/Temanejo_manual-1.3.pdf
https://fs.hlrs.de/projects/temanejo/Temanejo_manual-1.3.pdf
https://doi.org/10.1007/978-3-642-37349-7_2
https://pm.bsc.es/mcxx
https://pm.bsc.es/mcxx
https://pm.bsc.es/nanox
https://pm.bsc.es/nanox

168

BSC. OmpSs User Guide. [S.l.: s.n.], June 2017. Available from: <https://pm.

bsc.es/ompss-docs/user-guide/OmpSsUserGuide.pdf>. Visited on: 4

Jan. 2018.

. Programming with OmpSs. [S.l.: s.n.], June 2017. Available from: <https:

//pm.bsc.es/ompss-docs/book/ProgrammingWithOmpSs.pdf>. Visited

on: 4 Jan. 2018.

CALLAHAN, Steven P. et al. VisTrails: Visualization Meets Data Management. In: PRO-

CEEDINGS of the 2006 ACM SIGMOD International Conference on Management of

Data. Chicago, IL, USA: ACM, 2006. (SIGMOD ’06), p. 745–747. DOI: 10.1145/

1142473.1142574.

CASANOVA, Henri et al. Versatile, Scalable, and Accurate Simulation of Distributed

Applications and Platforms. Journal of Parallel and Distributed Computing, Elsevier,

v. 74, n. 10, p. 2899–2917, June 2014. DOI: 10.1016/j.jpdc.2014.06.008.

CEBALLOS, Germán et al. Analyzing performance variation of task schedulers with

TaskInsight. Parallel Computing, North-Holland, v. 75, p. 11–27, July 2018. DOI: 10.

1016/J.PARCO.2018.02.003.

CEDERMAN, D; TSIGAS, P. Dynamic Load Balancing Using Work-Stealing. In: HWU,

Wen-Mei W (Ed.). GPU Computing Gems: Jade Edition. [S.l.]: Elsevier, 2011. p. 485–

499.

CERN; OPENAIRE; COMMISSION, European. Zenodo - Research. Shared. [S.l.: s.n.].

Available from: <https://zenodo.org>. Visited on: 18 Jan. 2018.

CHAPMAN, B. et al. Using OpenMP: Portable Shared Memory Parallel Program-

ming. [S.l.]: MIT Press, 2008. (Scientific Computation Series, v. 10).

CHEN, T. et al. Cell Broadband Engine Architecture and its first implementation—A

performance view. IBM Journal of Research and Development, v. 51, n. 5, p. 559–572,

Sept. 2007. DOI: 10.1147/rd.515.0559.

CHIRIGATI, Fernando et al. ReproZip: Computational Reproducibility With Ease. In:

PROCEEDINGS of the 2016 International Conference on Management of Data. San

Francisco, California, USA: ACM, 2016. (SIGMOD ’16), p. 2085–2088. DOI: 10 .

1145/2882903.2899401.

CORMEN, T.H. et al. Introduction to Algorithms. [S.l.]: MIT Press, 2009.

COULOMB, Kevin et al. Visual trace explorer (ViTE). [S.l.: s.n.], 2009.

https://pm.bsc.es/ompss-docs/user-guide/OmpSsUserGuide.pdf
https://pm.bsc.es/ompss-docs/user-guide/OmpSsUserGuide.pdf
https://pm.bsc.es/ompss-docs/book/ProgrammingWithOmpSs.pdf
https://pm.bsc.es/ompss-docs/book/ProgrammingWithOmpSs.pdf
https://doi.org/10.1145/1142473.1142574
https://doi.org/10.1145/1142473.1142574
https://doi.org/10.1016/j.jpdc.2014.06.008
https://doi.org/10.1016/J.PARCO.2018.02.003
https://doi.org/10.1016/J.PARCO.2018.02.003
https://zenodo.org
https://doi.org/10.1147/rd.515.0559
https://doi.org/10.1145/2882903.2899401
https://doi.org/10.1145/2882903.2899401

169

COUTEYEN CARPAYE, Jean Marie; ROMAN, Jean; BRENNER, Pierre. Design and

analysis of a task-based parallelization over a runtime system of an explicit finite-volume

CFD code with adaptive time stepping. Journal of Computational Science, Elsevier,

Mar. 2017. DOI: 10.1016/J.JOCS.2017.03.008.

DANALIS, A. et al. PTG: An Abstraction for Unhindered Parallelism. In: 2014 Fourth

International Workshop on Domain-Specific Languages and High-Level Frameworks for

High Performance Computing. [S.l.: s.n.], Nov. 2014. p. 21–30. DOI: 10.1109/WOLF

HPC.2014.8.

DANJEAN, Vincent; NAMYST, Raymond; WACRENIER, Pierre-André. An Efficient

Multi-level Trace Toolkit for Multi-threaded Applications. In: . Euro-Par 2005

Parallel Processing. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. p. 166–175.

DATTA, B.N. Numerical Linear Algebra and Applications, Second Edition. [S.l.]:

Society for Industrial and Applied Mathematics (SIAM, 3600 Market Street, Floor 6,

Philadelphia, PA 19104), 2010. (Other Titles in Applied Mathematics).

DINAN, James et al. Scalable Work Stealing. In: PROCEEDINGS of the Conference

on High Performance Computing Networking, Storage and Analysis. Portland, Oregon:

ACM, 2009. (SC ’09), 53:1–53:11. DOI: 10.1145/1654059.1654113.

DOMINIK, Carsten. The Org Mode 7 Reference Manual - Organize Your Life with

GNU Emacs. [S.l.]: Network Theory Ltd., 2010.

DONGARRA, J. et al. With Extreme Computing, the Rules Have Changed. Computing

in Science Engineering, v. 19, n. 3, p. 52–62, May 2017. DOI: 10.1109/MCSE.

2017.48.

DOSIMONT, Damien; CORRE, Youenn, et al. Ocelotl: Large Trace Overviews Based on

Multidimensional Data Aggregation. In: NIETHAMMER, Christoph et al. (Eds.). Tools

for High Performance Computing 2014. [S.l.]: Springer International Publishing, 2015.

p. 137–160. DOI: 10.1007/978-3-319-16012-2_7.

DOSIMONT, Damien; LAMARCHE-PERRIN, Robin, et al. A Spatiotemporal Data

Aggregation Technique for Performance Analysis of Large-scale Execution Traces.

en. [S.l.: s.n.], Sept. 2014.

DURAN, Alejandro; AYGUADÉ, Eduard, et al. OmpSs: A Proposal For Programming

Heterogeneous Multi-Core Architectures. Parallel Processing Letters, v. 21, n. 02, p. 173–

193, 2011.

https://doi.org/10.1016/J.JOCS.2017.03.008
https://doi.org/10.1109/WOLFHPC.2014.8
https://doi.org/10.1109/WOLFHPC.2014.8
https://doi.org/10.1145/1654059.1654113
https://doi.org/10.1109/MCSE.2017.48
https://doi.org/10.1109/MCSE.2017.48
https://doi.org/10.1007/978-3-319-16012-2_7

170

DURAN, Alejandro; KLEMM, Michael. The Intel® Many Integrated Core Architec-

ture. In: 2012 International Conference on High Performance Computing & Simula-

tion (HPCS). [S.l.]: IEEE, July 2012. p. 365–366. DOI: 10.1109/HPCSim.2012.

6266938.

ESCHWEILER, Dominic et al. Open Trace Format 2: The Next Generation of Scalable

Trace Formats and Support Libraries. In: APPLICATIONS, Tools and Techniques on the

Road to Exascale Computing, Proceedings of the conference ParCo 2011, 31 August - 3

September 2011, Ghent, Belgium. [S.l.: s.n.], 2011. p. 481–490. DOI: 10.3233/978-

1-61499-041-3-481.

FAVERGE, Mathieu et al. PaStiX Parallel Sparse direct Solver. [S.l.: s.n.]. Available

from: <https://gitlab.inria.fr/solverstack/pastix>. Visited on: 2

July 2018.

FOSTER, I. Designing and Building Parallel Programs: Concepts and Tools for Par-

allel Software Engineering. [S.l.]: Addison-Wesley, 1995. (Literature and Philosophy).

FRIGO, Matteo; LEISERSON, Charles E.; RANDALL, Keith H. The Implementation of

the Cilk-5 Multithreaded Language. In: PROCEEDINGS of the ACM SIGPLAN 1998

Conference on Programming Language Design and Implementation. Montreal, Quebec,

Canada: ACM, 1998. (PLDI ’98), p. 212–223. DOI: 10.1145/277650.277725.

GAMBLIN, Todd. Spack 0.10 documentation. [S.l.: s.n.], 2018. Available from: <htt

ps://spack.readthedocs.io/>. Visited on: 15 Jan. 2018.

GAMBLIN, Todd et al. The Spack package manager: Bringing order to HPC software

chaos. In: IEEE. HIGH Performance Computing, Networking, Storage and Analysis,

2015 SC-International Conference for. [S.l.: s.n.], 2015. p. 1–12.

GAREY, M. R.; GRAHAM, R. L. Bounds for multiprocessor scheduling with resource

constraints. SIAM Journal on Computing, SIAM, v. 4, n. 2, p. 187–200, 1975.

GASTER, Benedict. Heterogeneous computing with OpenCL. [S.l.]: Morgan Kauf-

mann, 2012. p. 277.

GAUTIER, T. et al. XKaapi: A Runtime System for Data-Flow Task Programming on

Heterogeneous Architectures. In: 2013 IEEE 27th International Symposium on Parallel

and Distributed Processing. [S.l.: s.n.], May 2013. p. 1299–1308.

https://doi.org/10.1109/HPCSim.2012.6266938
https://doi.org/10.1109/HPCSim.2012.6266938
https://doi.org/10.3233/978-1-61499-041-3-481
https://doi.org/10.3233/978-1-61499-041-3-481
https://gitlab.inria.fr/solverstack/pastix
https://doi.org/10.1145/277650.277725
https://spack.readthedocs.io/
https://spack.readthedocs.io/

171

GAUTIER, Thierry; BESSERON, Xavier; PIGEON, Laurent. KAAPI: A Thread Schedul-

ing Runtime System for Data Flow Computations on Cluster of Multi-processors. In:

PROCEEDINGS of the 2007 International Workshop on Parallel Symbolic Computa-

tion. London, Ontario, Canada: ACM, 2007. (PASCO ’07), p. 15–23. DOI: 10.1145/

1278177.1278182.

GAUTIER, Thierry; FERREIRA LIMA, Joao Vicente, et al. Locality-Aware Work Steal-

ing on Multi-CPU and Multi-GPU Architectures. In: 6TH WORKSHOP ON PROGRAMMA-

BILITY ISSUES FOR HETEROGENEOUS MULTICORES (MULTIPROG). Berlin, Ger-

many: [s.n.], Jan. 2013.

GAVISH, Matan; DONOHO, David. A Universal Identifier for Computational Results.

Procedia Computer Science, v. 4, p. 637–647, 2011. Proceedings of the International

Conference on Computational Science, ICCS 2011. DOI: 10.1016/j.procs.2011.

04.067.

GRAHAM, R. L. Bounds for Certain Multiprocessing Anomalies. Bell System Technical

Journal, Blackwell Publishing Ltd, v. 45, n. 9, p. 1563–1581, Nov. 1966. DOI: 10.

1002/j.1538-7305.1966.tb01709.x.

. Bounds on Multiprocessing Timing Anomalies. SIAM Journal on Applied

Mathematics, Society for Industrial and Applied Mathematics, v. 17, n. 2, p. 416–429,

1969.

GROPP, W.; LUSK, E.; SKJELLUM, A. Using MPI: Portable Parallel Programming

with the Message-Passing Interface. [S.l.]: MIT Press, 2014. (Scientific and Engineer-

ing Computation).

GROUP, MIT CSAIL Supertech Research. The Cilk Project. [S.l.: s.n.]. Available from:

<http://supertech.csail.mit.edu/cilk/>. Visited on: 22 Nov. 2017.

GUO, Yi et al. Work-first and help-first scheduling policies for async-finish task par-

allelism. In: 2009 IEEE International Symposium on Parallel Distributed Processing.

[S.l.: s.n.], May 2009. p. 1–12. DOI: 10.1109/IPDPS.2009.5161079.

HAUGEN, Blake et al. Visualizing Execution Traces with Task Dependencies. In: PRO-

CEEDINGS of the 2Nd Workshop on Visual Performance Analysis. Austin, Texas: ACM,

2015. (VPA ’15), 2:1–2:8. DOI: 10.1145/2835238.2835240.

https://doi.org/10.1145/1278177.1278182
https://doi.org/10.1145/1278177.1278182
https://doi.org/10.1016/j.procs.2011.04.067
https://doi.org/10.1016/j.procs.2011.04.067
https://doi.org/10.1002/j.1538-7305.1966.tb01709.x
https://doi.org/10.1002/j.1538-7305.1966.tb01709.x
http://supertech.csail.mit.edu/cilk/
https://doi.org/10.1109/IPDPS.2009.5161079
https://doi.org/10.1145/2835238.2835240

172

HENNESSY, J.L.; PATTERSON, D.A. Computer Architecture: A Quantitative Ap-

proach. [S.l.]: Elsevier Science, 2017. (The Morgan Kaufmann Series in Computer Ar-

chitecture and Design).

HENON, P.; RAMET, P.; ROMAN, J. PaStiX: a high-performance parallel direct solver

for sparse symmetric positive definite systems. Parallel Computing, North-Holland, v. 28,

n. 2, p. 301–321, Feb. 2002. DOI: 10.1016/S0167-8191(01)00141-7.

HERMANN, Everton et al. Multi-GPU and Multi-CPU Parallelization for Interactive

Physics Simulations. In: Euro-Par 2010 - Parallel Processing: 16th International Euro-

Par Conference, Ischia, Italy, August 31 - September 3, 2010, Proceedings, Part II.

Ed. by Pasqua D’Ambra, Mario Guarracino and Domenico Talia. Berlin, Heidelberg:

Springer Berlin Heidelberg, 2010. p. 235–246. DOI: 10.1007/978-3-642-15291-

7_23.

HESS, Joey. git-annex. [S.l.: s.n.]. Available from: <https://git-annex.branc

hable.com/>. Visited on: 17 Jan. 2018.

HOQUE, Reazul et al. Dynamic task discovery in PaRSEC. In: PROCEEDINGS of the

8th Workshop on Latest Advances in Scalable Algorithms for Large-Scale Systems -

ScalA ’17. New York, New York, USA: ACM Press, 2017. p. 1–8. DOI: 10.1145/

3148226.3148233.

HOWELL, M. Homebrew, the missing package manager for OS X. [S.l.: s.n.]. Avail-

able from: <https://brew.sh/>. Visited on: 15 Jan. 2018.

HUYNH, A.; TAURA, K. Delay Spotter: A Tool for Spotting Scheduler-Caused Delays

in Task Parallel Runtime Systems. In: 2017 IEEE International Conference on Cluster

Computing (CLUSTER). [S.l.: s.n.], Sept. 2017. p. 114–125. DOI: 10.1109/CLUSTE

R.2017.82.

HUYNH, An et al. DAGViz: A DAG Visualization Tool for Analyzing Task-parallel Pro-

gram Traces. In: PROCEEDINGS of the 2Nd Workshop on Visual Performance Analysis.

Austin, Texas: ACM, 2015. (VPA ’15), 3:1–3:8. DOI: 10.1145/2835238.2835241.

INRIA. KSTAR OpenMP compiler. [S.l.: s.n.], 2018. Available from: <http://kst

ar.gforge.inria.fr>. Visited on: 5 Jan. 2018.

INRIA; CNRS; UNIVERSITÉ DE BORDEAUX. StarPU Handbook. [S.l.: s.n.], 2017.

Available from: <http://starpu.gforge.inria.fr/doc/html>. Visited on:

5 Jan. 2018.

https://doi.org/10.1016/S0167-8191(01)00141-7
https://doi.org/10.1007/978-3-642-15291-7_23
https://doi.org/10.1007/978-3-642-15291-7_23
https://git-annex.branchable.com/
https://git-annex.branchable.com/
https://doi.org/10.1145/3148226.3148233
https://doi.org/10.1145/3148226.3148233
https://brew.sh/
https://doi.org/10.1109/CLUSTER.2017.82
https://doi.org/10.1109/CLUSTER.2017.82
https://doi.org/10.1145/2835238.2835241
http://kstar.gforge.inria.fr
http://kstar.gforge.inria.fr
http://starpu.gforge.inria.fr/doc/html

173

INRIA; UTK; UCD; KAUST. Chameleon: A dense linear algebra software for het-

erogeneous architectures. [S.l.: s.n.]. Available from: <https://project.inria.

fr/chameleon/>. Visited on: 2 July 2018.

INTEL. A Guide to Vectorization with Intel® C++ Compilers. [S.l.: s.n.]. Available

from: <https://software.intel.com/sites/default/files/8c/a9/

CompilerAutovectorizationGuide.pdf>. Visited on: 4 Dec. 2017.

. Intel® Cilk™ Plus. [S.l.: s.n.]. Available from: <https://www.cilkpl

us.org/>. Visited on: 22 Nov. 2017.

ISAACS, K. E. et al. Combing the Communication Hairball: Visualizing Parallel Execu-

tion Traces using Logical Time. IEEE Transactions on Visualization and Computer

Graphics, v. 20, n. 12, p. 2349–2358, Dec. 2014. DOI: 10.1109/TVCG.2014.

2346456.

ISAACS, Kate. LLNL/ravel: Ravel MPI trace visualization tool. [S.l.: s.n.]. Available

from: <https://github.com/LLNL/ravel>. Visited on: 7 Feb. 2018.

ISAACS, Katherine E. et al. State of the Art of Performance Visualization. In: .

EuroVis - STARs. [S.l.]: The Eurographics Association, 2014. DOI: 10.2312/eurov

isstar.20141177.

JEFFERS, J.; REINDERS, J. Intel Xeon Phi Coprocessor High Performance Program-

ming. [S.l.]: Elsevier Science, 2013.

JEFFERS, J.; REINDERS, J.; SODANI, A. Intel Xeon Phi Processor High Perfor-

mance Programming: Knights Landing Edition. [S.l.]: Elsevier Science, 2016. Avail-

able from: <https://books.google.com.br/books?id=DDpUCwAAQBAJ>.

KELLER, Rainer et al. Temanejo: Debugging of Thread-Based Task-Parallel Programs in

StarSS. In: Tools for High Performance Computing 2011: Proceedings of the 5th In-

ternational Workshop on Parallel Tools for High Performance Computing, Septem-

ber 2011, ZIH, Dresden. Ed. by Holger Brunst. Berlin, Heidelberg: Springer Berlin Hei-

delberg, 2012. p. 131–137. DOI: 10.1007/978-3-642-31476-6_11.

KERGOMMEAUX, Jacques Chassin de; OLIVEIRA STEIN, Benhur de. Pajé: An Exten-

sible Environment for Visualizing Multi-threaded Programs Executions. In: .

Euro-Par 2000 Parallel Processing. Berlin, Heidelberg: Springer Berlin Heidelberg,

2000. p. 133–140.

https://project.inria.fr/chameleon/
https://project.inria.fr/chameleon/
https://software.intel.com/sites/default/files/8c/a9/CompilerAutovectorizationGuide.pdf
https://software.intel.com/sites/default/files/8c/a9/CompilerAutovectorizationGuide.pdf
https://www.cilkplus.org/
https://www.cilkplus.org/
https://doi.org/10.1109/TVCG.2014.2346456
https://doi.org/10.1109/TVCG.2014.2346456
https://github.com/LLNL/ravel
https://doi.org/10.2312/eurovisstar.20141177
https://doi.org/10.2312/eurovisstar.20141177
https://books.google.com.br/books?id=DDpUCwAAQBAJ
https://doi.org/10.1007/978-3-642-31476-6_11

174

KNÜPFER, Andreas et al. The Vampir Performance Analysis Tool-Set. In: Tools for

High Performance Computing: Proceedings of the 2nd International Workshop on

Parallel Tools for High Performance Computing, July 2008, HLRS, Stuttgart. Ed. by

Michael Resch. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. p. 139–155. DOI:

10.1007/978-3-540-68564-7_9.

KNUTH, D. E. Literate Programming. The Computer Journal, Oxford University Press,

v. 27, n. 2, p. 97–111, Feb. 1984. DOI: 10.1093/comjnl/27.2.97.

LABARTA, Jesús. The OmpSs programming model and its runtime support. [S.l.: s.n.],

May 2015. Available from: <https://charm.cs.illinois.edu/workshops/

charmWorkshop2015/slides/CharmWorkshop2015_keynote_jesus.

pdf>. Visited on: 4 Jan. 2018.

LEON, S.J. Linear Algebra with Applications. [S.l.]: Pearson, 2014. (Featured Titles

for Linear Algebra).

LIMA, João V.F. et al. Design and Analysis of Scheduling Strategies for Multi-CPU and

Multi-GPU Architectures. Parallel Computing, North-Holland, v. 44, p. 37–52, Mar.

2015. DOI: 10.1016/j.parco.2015.03.001.

MELLO SCHNORR, Lucas. Some Visualization Models applied to the Analysis of

Parallel Applications. 2009. PhD thesis. DOI: 10183/37179.

MEUER, Hans Werner et al. The TOP500: History, Trends, and Future Directions in

High Performance Computing. 1st. [S.l.]: Chapman & Hall/CRC, 2014.

MOR, Stefano; MAILLARD, Nicolas. Dynamic Workload Balancing Deques for Branch

and Bound Algorithms in the Message Passing Interface. Int. J. High Perform. Syst. Ar-

chit., Inderscience Publishers, Inderscience Publishers, Geneva, SWITZERLAND, v. 3,

n. 2/3, p. 77–86, May 2011. DOI: 10.1504/IJHPSA.2011.040461.

MUNAFÒ, Marcus R. et al. A manifesto for reproducible science. Nature Human Be-

haviour, Nature Publishing Group, v. 1, n. 1, p. 0021, Jan. 2017. DOI: 10.1038/

s41562-016-0021.

NIELSEN, Lars Holm. Sharing your data and software on Zenodo. [S.l.: s.n.], May

2017. DOI: 10.5281/zenodo.802100. Available from: <https://doi.org/

10.5281/zenodo.802100>. Visited on: 18 Jan. 2018.

https://doi.org/10.1007/978-3-540-68564-7_9
https://doi.org/10.1093/comjnl/27.2.97
https://charm.cs.illinois.edu/workshops/charmWorkshop2015/slides/CharmWorkshop2015_keynote_jesus.pdf
https://charm.cs.illinois.edu/workshops/charmWorkshop2015/slides/CharmWorkshop2015_keynote_jesus.pdf
https://charm.cs.illinois.edu/workshops/charmWorkshop2015/slides/CharmWorkshop2015_keynote_jesus.pdf
https://doi.org/10.1016/j.parco.2015.03.001
https://doi.org/10183/37179
https://doi.org/10.1504/IJHPSA.2011.040461
https://doi.org/10.1038/s41562-016-0021
https://doi.org/10.1038/s41562-016-0021
https://doi.org/10.5281/zenodo.802100
https://doi.org/10.5281/zenodo.802100
https://doi.org/10.5281/zenodo.802100

175

NVIDIA. NVIDIA CUDA C Programming Guide v9.0. [S.l.: s.n.], 2017. p. 300. Avail-

able from: <http://docs.nvidia.com/cuda/cuda-c-programming-

guide/index.html>. Visited on: 11 Dec. 2017.

. PARALLEL THREAD EXECUTION ISA v6.0. [S.l.: s.n.], 2017. p. 302.

Available from: <http://docs.nvidia.com/cuda/pdf/ptx%7B%5C_

%7Disa%7B%5C_%7D6.0.pdf>. Visited on: 11 Dec. 2017.

. VampirTrace | NVIDIA Developer. [S.l.: s.n.], 2018. Available from: <htt

ps://developer.nvidia.com/vampirtrace>. Visited on: 6 Feb. 2018.

OPENMP Application Program Interface: Version 3.0, May 2008. [S.l.]: OpenMP Archi-

tecture Review Board, 2008. Available from: <http://www.openmp.org/wp-

content/uploads/spec30.pdf>. Visited on: 22 Nov. 2017.

OPENMP Application Program Interface: Version 4.0, July 2013. [S.l.]: OpenMP Archi-

tecture Review Board, 2013. Available from: <http://www.openmp.org/wp-

content/uploads/OpenMP4.0.0.pdf>. Visited on: 9 Mar. 2018.

PAGANO, Generoso et al. Trace Management and Analysis for Embedded Systems. In:

2013 IEEE 7th International Symposium on Embedded Multicore Socs. [S.l.]: IEEE, Sept.

2013. p. 119–122. DOI: 10.1109/MCSoC.2013.28.

PILLET, V. et al. PARAVER: A Tool to Visualize and Analyze Parallel Code. In: .

Proceedings of WoTUG-18: Transputer and occam Developments. [S.l.: s.n.], Mar.

1995. p. 17–31.

PINTO, Vinicius Garcia. Escalonamento por roubo de tarefas em sistemas Multi-CPU

e Multi-GPU. Mar. 2013. MA thesis – Programa de Pós-Graduação em Computação,

Instituto de Informática, Universidade Federal do Rio Grande do Sul, Porto Alegre. DOI:

10183/71270.

PINTO, Vinícius Garcia; HERBSTRITH, Vinicius Alves; SCHNORR, Lucas M. Repli-

cating the Performance Evaluation of an N-Body Application on a Manycore Accelera-

tor. In: 2015 International Symposium on Computer Architecture and High Performance

Computing Workshop (SBAC-PADW). [S.l.: s.n.], Oct. 2015. p. 19–24. DOI: 10.1109/

SBAC-PADW.2015.17.

PINTO, Vinícius Garcia; LORENZON, Arthur F.; BECK, Antonio Carlos S.; MAIL-

LARD, Nicolas; NAVAUX, Philippe O. A. Energy Efficiency Evaluation of Multi-level

Parallelism on Low Power Processors. In: ANAIS do XXXIV Congresso da Sociedade

http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
http://docs.nvidia.com/cuda/pdf/ptx%7B%5C_%7Disa%7B%5C_%7D6.0.pdf
http://docs.nvidia.com/cuda/pdf/ptx%7B%5C_%7Disa%7B%5C_%7D6.0.pdf
https://developer.nvidia.com/vampirtrace
https://developer.nvidia.com/vampirtrace
http://www.openmp.org/wp-content/uploads/spec30.pdf
http://www.openmp.org/wp-content/uploads/spec30.pdf
http://www.openmp.org/wp-content/uploads/OpenMP4.0.0.pdf
http://www.openmp.org/wp-content/uploads/OpenMP4.0.0.pdf
https://doi.org/10.1109/MCSoC.2013.28
https://doi.org/10183/71270
https://doi.org/10.1109/SBAC-PADW.2015.17
https://doi.org/10.1109/SBAC-PADW.2015.17

176

Brasileira de Computação (WPerfomance - XIII Workshop em Desempenho de Sistemas

Computacionais e de Comunicação). Porto Alegre: [s.n.], 2014. p. 1825–1836.

PINTO, Vinicius Garcia; MAILLARD, Nicolas. Work Stealing on Hybrid Architectures.

In: 13TH Symposium on Computer Systems (WSCAD-SSC 2012). Los Alamitos: IEEE

Computer Society, Oct. 2012. p. 17–24. DOI: 10.1109/WSCAD-SSC.2012.28.

PINTO, Vinícius Garcia; SCHNORR, Lucas Mello; STANISIC, Luka; LEGRAND, Ar-

naud; THIBAULT, Samuel; DANJEAN, Vincent. A visual performance analysis frame-

work for task-based parallel applications running on hybrid clusters. Concurrency and

Computation: Practice and Experience, v. 0, n. 0, p. 1–27. DOI: 10.1002/cpe.

4472.

PINTO, Vinicius Garcia; STANISIC, Luka; LEGRAND, Arnaud; SCHNORR, Lucas

Mello; THIBAULT, Samuel; DANJEAN, Vincent. Analyzing Dynamic Task-Based Ap-

plications on Hybrid Platforms: An Agile Scripting Approach. In: PROCEEDINGS of the

Third Workshop on Visual Performance Analysis, VPA@SC 2016, Salt Lake, UT, USA,

November 18, 2016. [S.l.]: IEEE Press, 2016. (VPA ’16), p. 17–24. Held in conjunction

with SC16. DOI: 10.1109/VPA.2016.008.

. Detecção de Anomalias de Desempenho em Aplicações de Alto Desempenho

baseadas em Tarefas em Clusters Híbridos. In: ANAIS do CSBC 2018 - 17º WPERFOR-

MANCE - WORKSHOP EM DESEMPENHO DE SISTEMAS COMPUTACIONAIS E

DE COMUNICAÇÃO. [S.l.: s.n.], 2018. p. 97–110.

PRESS, W.H. et al. Numerical Recipes 3rd Edition: The Art of Scientific Computing.

[S.l.]: Cambridge University Press, 2007.

R CORE TEAM. R: A Language and Environment for Statistical Computing. Vienna,

Austria, 2018. Available from: <https://www.R-project.org/>. Visited on: 29

Aug. 2018.

REINDERS, James. Intel Threading Building Blocks: Outfitting C++ for Multi-core

Processor Parallelism. Sebastopol, USA: O’Reilly & Associates, Inc., 2007.

SANDERS, J.; KANDROT, E. CUDA by Example: An Introduction to General-Purpose

GPU Programming. [S.l.]: Pearson Education, 2010.

SCHEPKE, Claudio; MAILLARD, Nicolas; NAVAUX, Philippe O. A. Parallel Lattice

Boltzmann Method with Blocked Partitioning. International Journal of Parallel Pro-

https://doi.org/10.1109/WSCAD-SSC.2012.28
https://doi.org/10.1002/cpe.4472
https://doi.org/10.1002/cpe.4472
https://doi.org/10.1109/VPA.2016.008
https://www.R-project.org/

177

gramming, v. 37, n. 6, p. 593–611, Dec. 2009. DOI: 10.1007/s10766-009-0113-

x.

SCHNORR, Lucas M.; LEGRAND, Arnaud. Visualizing More Performance Data Than

What Fits on Your Screen. In: . Tools for High Performance Computing 2012.

Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. p. 149–162.

SCHNORR, Lucas Mello et al. The Paje trace file format. [S.l.], 2016.

SCHULTE, Eric et al. A multi-language computing environment for literate programming

and reproducible research. Journal of Statistical Software, Foundation for Open Access

Statistics, v. 46, n. 3, p. 1–24, 2012.

SIEVERT, Carson et al. plotly: Create Interactive Web Graphics via ’plotly.js’. [S.l.],

2017. R package version 4.7.1. Available from: <https://CRAN.R-project.

org/package=plotly>. Visited on: 29 Aug. 2018.

SOTTILE, Matthew; MATTSON, Timothy G.; RASMUSSEN, Craig E. Introduction to

Concurrency in Programming Languages. 1st. [S.l.]: Chapman & Hall/CRC, 2009.

STALLMAN, Richard et al. GNU Emacs Manual. 17. ed. Boston, USA: Free Software

Foundation, 2017. p. 635. Available from: <https://www.gnu.org/software/

emacs/manual/pdf/emacs.pdf>. Visited on: 4 Dec. 2017.

STANISIC, Luka; LEGRAND, Arnaud; DANJEAN, Vincent. An Effective Git And Org-

Mode Based Workflow For Reproducible Research. ACM SIGOPS Operating Systems

Review, ACM, New York, NY, USA, v. 49, n. 1, p. 61–70, Jan. 2015. DOI: 10.1145/

2723872.2723881.

STANISIC, Luka; THIBAULT, Samuel, et al. Faithful performance prediction of a dy-

namic task-based runtime system for heterogeneous multi-core architectures. Concur-

rency and Computation: Practice and Experience, v. 27, n. 16, p. 4075–4090, Nov.

2015. DOI: 10.1002/cpe.3555.

STODDEN, V.; LEISCH, F.; PENG, R.D. Implementing Reproducible Research. [S.l.]:

Taylor & Francis, 2014. (Chapman & Hall/CRC The R Series).

STONE, John E.; GOHARA, David; SHI, Guochun. OpenCL: A Parallel Programming

Standard for Heterogeneous Computing Systems. Computing in Science & Engineer-

ing, v. 12, n. 3, p. 66–73, May 2010. DOI: 10.1109/MCSE.2010.69.

https://doi.org/10.1007/s10766-009-0113-x
https://doi.org/10.1007/s10766-009-0113-x
https://CRAN.R-project.org/package=plotly
https://CRAN.R-project.org/package=plotly
https://www.gnu.org/software/emacs/manual/pdf/emacs.pdf
https://www.gnu.org/software/emacs/manual/pdf/emacs.pdf
https://doi.org/10.1145/2723872.2723881
https://doi.org/10.1145/2723872.2723881
https://doi.org/10.1002/cpe.3555
https://doi.org/10.1109/MCSE.2010.69

178

TOPCUOGLU, H.; HARIRI, S.; WU, Min-You. Performance-effective and low-complexity

task scheduling for heterogeneous computing. IEEE Transactions on Parallel and Dis-

tributed Systems, v. 13, n. 3, p. 260–274, Mar. 2002. DOI: 10.1109/71.993206.

TOSS, Julio; GAUTIER, Thierry. A New Programming Paradigm for GPGPU. In: Euro-

Par 2012 Parallel Processing: 18th International Conference, Euro-Par 2012, Rhodes

Island, Greece, August 27-31, 2012. Proceedings. Ed. by Christos Kaklamanis, Theodore

Papatheodorou and Paul G. Spirakis. Berlin, Heidelberg: Springer Berlin Heidelberg,

2012. p. 895–907. DOI: 10.1007/978-3-642-32820-6_88.

VALIANT, Leslie G.; G., Leslie. A bridging model for parallel computation. Commu-

nications of the ACM, ACM, v. 33, n. 8, p. 103–111, Aug. 1990. DOI: 10.1145/

79173.79181.

WANG, Endong et al. Intel Math Kernel Library. In: HIGH-PERFORMANCE Comput-

ing on the Intel® Xeon Phi™: How to Fully Exploit MIC Architectures. Cham: Springer

International Publishing, 2014. p. 167–188. DOI: 10.1007/978-3-319-06486-

4_7.

WICKHAM, Hadley. ggplot2: Elegant Graphics for Data Analysis. [S.l.]: Springer-

Verlag New York, 2016. Available from: <http://ggplot2.org>. Visited on: 29

Aug. 2018.

. tidyverse: Easily Install and Load the ’Tidyverse’. [S.l.], 2017. R package

version 1.2.1. Available from: <https://CRAN.R-project.org/package=

tidyverse>. Visited on: 29 Aug. 2018.

WILSON, James M. Gantt charts: A centenary appreciation. European Journal of Op-

erational Research, v. 149, n. 2, p. 430–437, Sept. 2003.

YAZDANPANAH, Fahimeh. An approach for analyzing auto-vectorization potential of

emerging workloads. Microprocessors and Microsystems, v. 49, Supplement C, p. 139–

149, 2017. DOI: https://doi.org/10.1016/j.micpro.2016.11.014.

https://doi.org/10.1109/71.993206
https://doi.org/10.1007/978-3-642-32820-6_88
https://doi.org/10.1145/79173.79181
https://doi.org/10.1145/79173.79181
https://doi.org/10.1007/978-3-319-06486-4_7
https://doi.org/10.1007/978-3-319-06486-4_7
http://ggplot2.org
https://CRAN.R-project.org/package=tidyverse
https://CRAN.R-project.org/package=tidyverse
https://doi.org/https://doi.org/10.1016/j.micpro.2016.11.014

	Acknowledgments
	Abstract
	Resumo
	Résumé
	List of Figures
	List of Tables
	List of Abbreviations and Acronyms
	List of Algorithms
	Contents
	1 Introduction
	1.1 Objectives and Contributions
	1.2 Research Context
	1.3 Thesis Outline

	2 Context
	2.1 Hybrid HPC Architectures
	2.2 Programming Hybrid Architectures
	2.2.1 Task-Based Programming

	2.3 Runtime Systems for Task-Based Parallel Programming
	2.3.1 PaRSEC
	2.3.2 OmpSs
	2.3.3 XKaapi
	2.3.4 StarPU
	2.3.5 Discussion

	2.4 Chapter Summary

	3 State of The Art
	3.1 Traditional BSP-based Visualization
	3.1.1 ViTE
	3.1.2 Paraver
	3.1.3 Vampir
	3.1.4 Ravel
	3.1.5 Edge Bundling extension for Vampir
	3.1.6 FrameSoc/Ocelotl

	3.2 Task-oriented Visualization
	3.2.1 Execution Traces with Dependencies
	3.2.2 DAGViz
	3.2.3 Delay Spotter
	3.2.4 Temanejo
	3.2.5 TaskInsight

	3.3 Discussion
	3.4 Chapter Summary

	4 Methodology
	4.1 A Reproducible Report
	4.2 Generating Input Data
	4.2.1 Git and Org-mode Strategy
	4.2.2 Handling Complex Software Stacks with Spack
	4.2.3 Rebuilding the Software Stack
	4.2.4 Storage of Large Files in GIT

	4.3 Chapter Summary

	5 Proposed Visualizations Strategies
	5.1 Enriched Space-time View
	5.1.1 Idleness
	5.1.2 Outliers or Task Duration Anomalies
	5.1.3 Bounds for the Makespan
	5.1.4 Aggregation
	5.1.5 Dependencies

	5.2 Additional Views
	5.2.1 Application Progression
	5.2.2 Scheduler Task Metrics
	5.2.3 ABE Solution

	5.3 Comparing Views
	5.4 Interactive Views
	5.5 Input Description
	5.6 Discussion
	5.7 Chapter Summary

	6 Results on Visualizations Strategies
	6.1 Experimental Setup
	6.1.1 Platforms
	6.1.2 Application

	6.2 Case Study: Changing Schedulers on Hybrid Nodes
	6.2.1 Workload L - Cholesky Factorization of 60×60 tiles of size 960×960
	6.2.2 Workload S - Cholesky Factorization of 12×12 tiles of size 960×960

	6.3 Case Study: Multi-node Executions with Starpu-MPI
	6.3.1 Slow-start in Remote Nodes
	6.3.2 Idle Periods During the Computation
	6.3.3 StarPU-MPI Data Distribution Strategies

	6.4 Chapter Summary

	7 Proposed Debug Strategies
	7.1 A Representative Example
	7.2 Methods and Materials
	7.2.1 Performance Models
	7.2.2 StarPU/Simgrid simulated executions
	7.2.3 StarPU Scheduler Internals
	7.2.4 GDB Scripts to Capture the Scheduler State
	7.2.5 StarPU Modifications

	7.3 A Visual Representation of the Scheduler State
	7.4 Chapter Summary

	8 Results on Debug Strategies
	8.1 Experimental Setup
	8.2 Investigating Scheduling Decisions in the First Half of the Execution
	8.3 Investigating Scheduling Decisions at the End of the Execution
	8.4 Experiments with Modified Pipeline Size
	8.5 Chapter Summary

	9 Conclusions and Perspectives
	9.1 Conclusions
	9.2 Perspectives
	9.2.1 Analysis of other task-based applications and runtime systems
	9.2.2 Performance Anomalies on Xeon Phi Knights Landing architecture
	9.2.3 StarVZ

	9.3 Publications
	9.3.1 Accepted
	9.3.2 Other accepted publications during the Ph.D.

	Bibliography

