D. Gu, Z. Wang, Y. Shen, Q. Li, and Y. Li, In-situ TiC particle reinforced Ti-Al matrix composites: Powder preparation by mechanical alloying and Selective Laser Melting behavior, Appl. Surf. Sci, vol.255, pp.9230-9240, 2009.
DOI : 10.1016/j.apsusc.2009.07.008

A. B. Spierings, N. Herres, and G. Levy, Influence of the particle size distribution on surface quality and mechanical properties in additive manufactured stainless steel parts, Solid Free. Fabr. Symp. -An Addit. Manuf. Conf. SFF 2010, pp.397-406, 2010.

H. Shipley, D. Mcdonnell, M. Culleton, R. Coull, R. Lupoi et al., Optimisation of process parameters to address fundamental challenges during selective laser melting of Ti-6Al-4V: A review, Int. J. Mach. Tools Manuf, vol.128, pp.1-20, 2018.

B. Song, S. Dong, H. Liao, and C. Coddet, Process parameter selection for selective laser melting of Ti6Al4V based on temperature distribution simulation and experimental sintering, Int. J. Adv. Manuf. Technol, vol.61, pp.967-974, 2012.

M. Simonelli, Y. Y. Tse, and C. Tuck, The formation of ? + ? microstructure in as-fabricated selective laser melting of Ti-6Al-4V, J. Mater. Res, vol.29, pp.2028-2035, 2014.

H. Attar, M. Calin, L. C. Zhang, S. Scudino, and J. Eckert, Manufacture by selective laser melting and mechanical behavior of commercially pure titanium, Mater. Sci. Eng. A, vol.593, pp.170-177, 2014.
DOI : 10.1016/j.msea.2013.11.038

N. F. Afnor and . Iso, ASTM 52900 Fabrication additive -Principes généraux -Terminologie, 2016.

J. Andre, Fr2567668 -Dispositif Pour Realiser Un Modele De Piece Industrielle, 1986.

A. F. Mojtaba and . Niaki, The impacts of Additive Manufacturing on firms ' competitiveness : An empirical investigation, 5th Int, Conf. Prod. Eng. Manag, 2015.

. Scopus, , 2018.

J. Seppälä and A. Hupfer, Topology Optimization in Structural Design of a LP Turbine Guide Vane: Potential of Additive Manufacturing for Weight Reduction, Struct. Dyn., ASME, vol.7, pp.7-28, 2014.

T. Primo, M. Calabrese, A. Prete, and A. Anglani, Additive manufacturing integration with topology optimization methodology for innovative product design, Int. J. Adv. Manuf. Technol, vol.93, pp.467-479, 2017.
DOI : 10.1007/s00170-017-0112-9

T. Dbouk, A review about the engineering design of optimal heat transfer systems using topology optimization, Appl. Therm. Eng, vol.112, pp.841-854, 2017.

B. Vayre, F. Vignat, and F. Villeneuve, Designing for Additive Manufacturing, Procedia CIRP, vol.3, pp.632-637, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00733693

G. A. Adam and D. Zimmer, Design for Additive Manufacturing-Element transitions and aggregated structures, CIRP J. Manuf. Sci. Technol, vol.7, pp.20-28, 2014.
DOI : 10.1016/j.cirpj.2013.10.001

A. Ewald and J. Schlattmann, Design guidelines for laser metal deposition of lightweight structures, J. Laser Appl, vol.30, p.32309, 2018.
DOI : 10.2351/1.5040612

E. Uhlmann, R. Kersting, T. B. Klein, M. F. Cruz, and A. V. Borille, Additive Manufacturing of Titanium Alloy for Aircraft Components, Procedia CIRP, vol.35, pp.55-60, 2015.

R. Cunningham, A. Nicolas, J. Madsen, E. Fodran, E. Anagnostou et al., Analyzing the effects of powder and post-processing on porosity and properties of electron beam melted Ti-6Al-4V, Mater. Res. Lett, vol.5, pp.516-525, 2017.

M. Simonelli, Y. Tse, and C. Tuck, Further Understanding of Ti6Al4V Selective Laser Melting Using Texture Analysis, Proc. 23rd Annu. ?, pp.480-491, 2012.

N. Serres, D. Tidu, S. Sankare, and F. Hlawka, Environmental comparison of MESO-CLAD® process and conventional machining implementing life cycle assessment, J. Clean. Prod, vol.19, pp.1117-1124, 2011.

M. J. Cotteleer, 3D opportunity: Additive manufacturing paths to performance, innovation, and growth, SIMT Addit. Manuf. Symp, p.23, 2014.

, Introduction to additive manufacturing technology, a guide for designers and engineers, Eur. Powder Metall. Assoc, pp.28-34, 2015.

D. Thomas, Costs, benefits, and adoption of additive manufacturing: a supply chain perspective, Int. J. Adv. Manuf. Technol, vol.85, pp.1857-1876, 2016.

N. Guo and M. C. Leu, Additive manufacturing: Technology, applications and research needs, Front. Mech. Eng, vol.8, pp.215-243, 2013.
DOI : 10.1007/s11465-013-0248-8

K. V. Wong and A. Hernandez, A Review of Additive Manufacturing, ISRN Mech. Eng, pp.1-10, 2012.

A. A. Shapiro, J. P. Borgonia, Q. N. Chen, R. P. Dillon, B. Mcenerney et al., Additive Manufacturing for Aerospace Flight Applications, J. Spacecr. Rockets, vol.53, pp.952-959, 2016.
DOI : 10.2514/1.a33544

Y. Liu, Additive manufacturing techniques and their biomedical applications, Fam. Med. Community Heal, vol.5, pp.286-298, 2017.
DOI : 10.15212/fmch.2017.0110

URL : https://doi.org/10.15212/fmch.2017.0110

B. Schoinochoritis, D. Chantzis, and K. Salonitis, Simulation of metallic powder bed additive manufacturing processes with the finite element method: A critical review, Proc. Inst. Mech. Eng. Part B J. Eng. Manuf, vol.231, pp.96-117, 2017.

M. Losertová and V. Kube?, Microstructure and mechanical properties of selective laser melted Ti6Al4V alloy, IOP Conf. Ser. Mater. Sci. Eng, vol.266, p.12009, 2017.

N. Shayesteh-moghaddam, S. E. Saghaian, A. Amerinatanzi, H. Ibrahim, P. Li et al., Anisotropic tensile and actuation properties of NiTi fabricated with selective laser melting, Mater. Sci. Eng. A, vol.724, pp.220-230, 2018.

L. Hitzler, J. Hirsch, B. Heine, M. Merkel, W. Hall et al., On the anisotropic mechanical properties of selective laser-melted stainless steel, Materials (Basel), vol.10, p.1136, 2017.

C. Deckard and J. J. ,

J. F. Beaman and . Darrah, Method and Apparatus for Producing Parts by Selective Sintering, 1992.

, EOS

K. Subramanian, N. Vail, J. Barlow, and H. Marcus, Selective laser sintering of alumina with polymer binders, Rapid Prototyp. J, vol.1, pp.24-35, 1995.
DOI : 10.1108/13552549510086844

M. M. Savalani, L. Hao, and R. A. Harris, Evaluation of CO2 and Nd:YAG Lasers for the Selective Laser Sintering of HAPEX®, Proc. Inst. Mech. Eng. Part B J. Eng. Manuf, vol.220, pp.171-182, 2006.

J. Yang, H. Yu, J. Yin, M. Gao, Z. Wang et al., Formation and control of martensite in Ti6Al-4V alloy produced by selective laser melting, Mater. Des, vol.108, pp.308-318, 2016.

E. Chlebus, B. Ku?nicka, T. Kurzynowski, and B. Dyba?a, Microstructure and mechanical behaviour of Ti-6Al-7Nb alloy produced by selective laser melting, Mater. Charact, vol.62, pp.488-495, 2011.

L. Facchini, E. Magalini, P. Robotti, A. Molinari, S. Höges et al., Ductility of a Ti6Al-4V alloy produced by selective laser melting of prealloyed powders, Rapid Prototyp. J, vol.16, pp.450-459, 2010.

H. Attar, K. G. Prashanth, A. K. Chaubey, M. Calin, L. C. Zhang et al., Comparison of wear properties of commercially pure titanium prepared by selective laser melting and casting processes, Mater. Lett, vol.142, pp.38-41, 2015.

M. W. Wu and P. H. Lai, The positive effect of hot isostatic pressing on improving the anisotropies of bending and impact properties in selective laser melted Ti-6Al-4V alloy, Mater. Sci. Eng. A, vol.658, pp.429-438, 2016.

T. M. Mower and M. J. Long, Mechanical behavior of additive manufactured, powder-bed laserfused materials, Mater. Sci. Eng. A, vol.651, pp.198-213, 2016.

Z. Hu, H. Zhu, H. Zhang, and X. Zeng, Experimental investigation on selective laser melting of 17-4PH stainless steel, Opt. Laser Technol, vol.87, pp.17-25, 2017.

G. Miranda, S. Faria, F. Bartolomeu, E. Pinto, S. Madeira et al., Predictive models for physical and mechanical properties of 316L stainless steel produced by selective laser melting, Mater. Sci. Eng. A, vol.657, pp.43-56, 2016.

D. Wang, C. Song, Y. Yang, and Y. Bai, Investigation of crystal growth mechanism during selective laser melting and mechanical property characterization of 316L stainless steel parts, Mater. Des, vol.100, pp.291-299, 2016.

V. G. Smelov, A. V. Sotov, A. V. Agapovichev, and T. M. Tomilina, Selective Laser Melting of Metal Powder of Steel 3161, IOP Conf. Ser. Mater. Sci. Eng, vol.142, 2016.

H. K. Rafi, T. L. Starr, and B. E. Stucker, A comparison of the tensile, fatigue, and fracture behavior of Ti-6Al-4V and 15-5 PH stainless steel parts made by selective laser melting, Int. J. Adv. Manuf. Technol, vol.69, pp.1299-1309, 2013.

C. Tan, K. Zhou, W. Ma, P. Zhang, M. Liu et al., Microstructural evolution, nanoprecipitation behavior and mechanical properties of selective laser melted highperformance grade 300 maraging steel, Mater. Des, vol.134, pp.23-34, 2017.

G. Casalino, S. L. Campanelli, N. Contuzzi, and A. D. Ludovico, Experimental investigation and statistical optimisation of the selective laser melting process of a maraging steel, Opt. Laser Technol, vol.65, pp.151-158, 2015.

T. H. Becker and D. Dimitrov, The achievable mechanical properties of SLM produced Maraging Steel 300 components, Rapid Prototyp, J, vol.22, pp.487-494, 2016.

J. J. Yan, D. L. Zheng, H. X. Li, X. Jia, J. F. Sun et al., Selective laser melting of H13: microstructure and residual stress, J. Mater. Sci, vol.52, pp.12476-12485, 2017.

M. Mazur, P. Brincat, M. Leary, and M. Brandt, Numerical and experimental evaluation of a conformally cooled H13 steel injection mould manufactured with selective laser melting, Int. J. Adv. Manuf. Technol, vol.93, pp.881-900, 2017.

J. ?afka, R. Mend?ický, M. Ackermann, and D. Tuhá?ek, SHAPE AND SIZE ACCURACY OF 3D-PRINTED ALSI12 PARTS, Acta Metall. Slovaca, vol.21, p.278, 2015.

D. Dai, D. Gu, H. Zhang, J. Xiong, C. Ma et al., Influence of scan strategy and molten pool configuration on microstructures and tensile properties of selective laser melting additive manufactured aluminum based parts, Opt. Laser Technol, vol.99, pp.91-100, 2018.

J. H. Martin, B. D. Yahata, J. M. Hundley, J. A. Mayer, T. A. Schaedler et al., 3D printing g of high-strength aluminium alloys, Nature, vol.549, pp.365-369, 2017.

A. A. Raus, M. S. Wahab, M. Ibrahim, K. Kamarudin, A. Ahmed et al., Mechanical and physical properties of AlSi10Mg processed through selective laser melting, AIP Conf. Proc, 2017.

E. Kundakc?o?lu, I. Lazoglu, Ö. Poyraz, E. Yasa, and N. Cizicio?lu, Thermal and molten pool model in selective laser melting process of Inconel 625, Int. J. Adv. Manuf. Technol, 2018.

C. Li, R. White, X. Y. Fang, M. Weaver, and Y. B. Guo, Microstructure evolution characteristics of Inconel 625 alloy from selective laser melting to heat treatment, Mater. Sci. Eng. A, vol.705, pp.20-31, 2017.

J. J. Lewandowski and M. Seifi, Metal Additive Manufacturing: A Review of Mechanical Properties, Annu. Rev. Mater. Res, vol.46, pp.151-186, 2016.

R. Konecná, L. Kunz, G. Nicoletto, and A. Baca, Fatigue crack growth behavior of Inconel 718 produced by selective laser melting, Frat. Ed Integrità Strutt, vol.10, pp.31-40, 2016.

X. Zhao, J. Chen, X. Lin, and W. Huang, Study on microstructure and mechanical properties of laser rapid forming Inconel 718, Mater. Sci. Eng. A, vol.478, pp.119-124, 2008.

X. Wang and K. Chou, Effects of thermal cycles on the microstructure evolution of Inconel 718 during selective laser melting process, Addit. Manuf, vol.18, pp.1-14, 2017.

S. A. Ghani, S. R. Mohamed, W. S. Harun, and N. A. Noar, Physical evaluations of Co-CrMo parts processed using different additive manufacturing techniques, p.100001, 2017.

Y. Ye, T. Jiao, J. Zhu, and J. Sun, Adaptation and micro-structure of Co-Cr alloy maxillary complete denture base plates fabricated by selective laser melting technique, Lasers Med. Sci, 2018.

L. Zhou, T. Yuan, R. Li, J. Tang, G. Wang et al., Selective laser melting of pure tantalum: Densification, microstructure and mechanical behaviors, Mater. Sci. Eng. A, vol.707, pp.443-451, 2017.

A. Ivekovi?, N. Omidvari, B. Vrancken, K. Lietaert, L. Thijs et al.,

. Kruth, Selective laser melting of tungsten and tungsten alloys, Int. J. Refract. Met. Hard Mater, vol.72, pp.27-32, 2018.

M. Khan and P. Dickens, Selective laser melting (SLM) of gold (Au), Rapid Prototyp, J, vol.18, pp.81-94, 2012.

M. Khan and P. Dickens, Selective laser melting (SLM) of pure gold for manufacturing dental crowns, Rapid Prototyp, J, vol.20, pp.471-479, 2014.

T. Ikeshoji, K. Nakamura, M. Yonehara, K. Imai, and H. Kyogoku, Selective Laser Melting of Pure Copper, JOM, 2017.

J. Dawes, R. Bowerman, and R. Trepleton, Introduction to the Additive Manufacturing Powder Metallurgy Supply Chain, Johnson Matthey Technol. Rev, vol.59, pp.243-256, 2015.

L. T. Ltd, , 2018.

J. O. Yin, G. Chen, S. Y. Zhao, Y. Ge, Z. F. Li et al., Microstructural characterization and properties of Ti-28Ta at.% powders produced by plasma rotating electrode process, J. Alloys Compd, vol.713, pp.222-228, 2017.

J. H. Tan, W. L. Wong, and K. W. Dalgarno, An overview of powder granulometry on feedstock and part performance in the selective laser melting process, Addit. Manuf, vol.18, pp.228-255, 2017.

H. Attar, K. G. Prashanth, L. C. Zhang, M. Calin, I. V. Okulov et al., Effect of powder particle shape on the properties of in situ Ti-TiB composite materials produced by selective laser melting, J. Mater. Sci. Technol, vol.31, pp.1001-1005, 2015.

V. Seyda, D. Herzog, and C. Emmelmann, Relationship between powder characteristics and part properties in laser beam melting of Ti-6Al-4V, and implications on quality, J. Laser Appl, vol.29, p.22311, 2017.

X. Goso and A. Kale, Production of titanium metal powder by the HDH process, J. South. African Inst. Min. Metall, vol.111, pp.203-210, 2011.

G. Chen, P. Tan, S. Y. Zhao, W. W. He, and H. P. Tang, Spherical Ti-6Al-4V Powders Produced by Gas Atomization, vol.704, pp.287-292, 2016.

M. Entezarian, F. Allaire, P. Tsantrizos, and R. A. Drew, Plasma atomization: A new process for the production of fine, spherical powders, JOM, vol.48, pp.53-55, 1996.

X. P. Li, K. M. O'donnell, T. B. Sercombe, K. M. O'donnell, and T. B. Sercombe, Selective laser melting of Al-12Si alloy: Enhanced densification via powder drying, Addit. Manuf, vol.10, pp.10-14, 2016.

L. E. Criales, Y. M. Ar?soy, and T. Özel, Sensitivity analysis of material and process parameters in finite element modeling of selective laser melting of Inconel 625, Int. J. Adv. Manuf. Technol, vol.86, pp.2653-2666, 2016.

T. B. Sercombe and X. Li, Selective laser melting of aluminium and aluminium metal matrix composites: review, Mater. Technol, pp.1-9, 2016.

R. J. Hebert, Viewpoint: metallurgical aspects of powder bed metal additive manufacturing, J. Mater. Sci, vol.51, pp.1165-1175, 2016.

M. Rombouts, J. P. Kruth, L. Froyen, and P. Mercelis, Fundamentals of selective laser melting of alloyed steel powders, CIRP Ann. -Manuf. Technol, vol.55, pp.60395-60398, 2006.

U. Bertoli, A. J. Wolfer, M. J. Matthews, J. P. Delplanque, and J. M. Schoenung, On the limitations of Volumetric Energy Density as a design parameter for Selective Laser Melting, Mater. Des, vol.113, pp.331-340, 2017.

C. Lin, T. Wirtz, F. Lamarca, and S. J. Hollister, Structural and mechanical evaluations of a topology optimized titanium interbody fusion cage fabricated by selective laser melting process, J. Biomed. Mater. Res. Part A, vol.83, pp.272-279, 2007.

B. Cheng, S. Shrestha, and K. Chou, Stress and deformation evaluations of scanning strategy effect in selective laser melting, Addit. Manuf, vol.12, pp.240-251, 2016.

M. Xia, D. Gu, G. Yu, D. Dai, H. Chen et al., Selective laser melting 3D printing of Ni-based superalloy: understanding thermodynamic mechanisms, Sci. Bull, vol.61, pp.1013-1022, 2016.

C. Desrayaud, E. M. De-saint-etienne, S. Etienne, E. Nationale, J. Parot et al., morphologie des cordons produits Résumé Résultats et discussion Matériel et méthode Références, pp.4-5, 2016.

L. Thijs, F. Verhaeghe, T. Craeghs, J. Van-humbeeck, and J. P. Kruth, A study of the microstructural evolution during selective laser melting of Ti-6Al-4V, Acta Mater, vol.58, pp.3303-3312, 2010.

G. Kasperovich, J. Haubrich, J. Gussone, and G. Requena, Corrigendum to "Correlation between porosity and processing parameters in TiAl6V4 produced by selective laser melting, Mater. Des, vol.112, pp.160-161, 2016.

A. M. Mancisidor, F. Garciandia, M. S. Sebastian, P. Álvarez, J. Díaz et al., Reduction of the residual porosity in parts manufactured by selective laser melting using skywriting and high focus offset strategies, Phys. Procedia, vol.83, pp.864-873, 2016.

, ASTM B265-15, Standard Specification for Titanium and Titanium Alloy Strip, Sheet, and Plate, 2015.

E. Aeby-gautier, Les alliages de titane, Cours -Ec. Des Mines Nancy

S. Naka, Etude des mécanismes de déformation plastique à basse température de monocristaux de phase ?, 1983.

V. A. Joshi, Titanium alloys : an atlas of structures and fracture features, 2006.

Y. Combres, Propriétés du titane et de ses alliages, Tech. l'ingénieur, vol.33, p.21, 1999.

Y. Combres and C. Champin, Traitements thermiques des alliages de titane, Tech. l'ingénieur, M1335, vol.33, p.24, 2013.

J. L. Murray, Calculation of the titanium-aluminum phase diagram, Metall. Trans. A, vol.19, pp.243-247, 1988.

A. Ducato, L. Fratini, M. L. Cascia, and G. Mazzola, An Automated Visual Inspection System for the Classification of the Phases of Ti-6Al-4V Titanium Alloy, pp.362-369, 2013.

Y. Combres, Propriétés du titane et de ses alliages, Matériaux Magnétiques Multimatériaux, vol.4, 2010.

C. Loier, G. Thauvin, A. Hazotte, and A. Simon, Influence of deformation on the ???+? transformation kinetics of Ti-6wt.%Al-4wt.%V alloy, J. Less-Common Met, vol.108, pp.90225-90230, 1985.

R. Boyer, G. Welsch, and E. W. Colilngs, Materials Properties Handbook: Titanium Alloys, 1994.

C. C. Liu, X. Lu, L. Zhang, W. L. Song, J. B. Tong et al., Fabrication of microfine spherical Ti-6Al-4V alloy powders based on hydrogen decrepitation and plasma spheroidisation, Powder Metall, vol.59, pp.229-235, 2016.

M. Simonelli, Y. Y. Tse, and C. Tuck, On the texture formation of selective laser melted Ti-6Al-4V, Metall. Mater. Trans. A Phys. Metall. Mater. Sci, vol.45, pp.2863-2872, 2014.

W. Xu, M. Brandt, S. Sun, J. Elambasseril, Q. Liu et al., Additive manufacturing of strong and ductile Ti-6Al-4V by selective laser melting via in situ martensite decomposition, Acta Mater, vol.85, pp.74-84, 2015.

P. ,

S. Kobryn,

. Semiatin, Microstructure and texture evolution during solidification processing of Ti-6Al-4V, J. Mater. Process. Technol, vol.135, pp.865-873, 2003.

J. B. and J. Gockel, Understanding Ti-6Al-4V Microstructure Control in Additive Manufacturing via\rProcess Maps, Solid Free, Fabr. Symp, p.666, 2013.

J. Gockel, L. Sheridan, S. P. Narra, N. W. Klingbeil, and J. Beuth, Trends in Solidification Grain Size and Morphology for Additive Manufacturing of Ti-6Al-4V, JOM, vol.69, pp.2706-2710, 2017.

T. Wang, Y. Y. Zhu, S. Q. Zhang, H. B. Tang, and H. M. Wang, Grain morphology evolution behavior of titanium alloy components during laser melting deposition additive manufacturing, J. Alloys Compd, vol.632, pp.505-513, 2015.

M. Simonelli, Y. Y. Tse, and C. Tuck, Microstructure of Ti-6Al-4V produced by selective laser melting, J. Phys. Conf. Ser, p.371, 2012.

F. Bartolomeu, S. Faria, O. Carvalho, E. Pinto, N. Alves et al., Predictive models for physical and mechanical properties of Ti6Al4V produced by Selective Laser Melting, Mater. Sci. Eng. A, vol.663, pp.181-192, 2016.

X. Zhao, S. Li, M. Zhang, Y. Liu, T. B. Sercombe et al., Comparison of the microstructures and mechanical properties of Ti-6Al-4V fabricated by selective laser melting and electron beam melting, Mater. Des, vol.95, pp.21-31, 2016.

B. Van-hooreweder, D. Moens, R. Boonen, J. Kruth, and P. Sas, Analysis of Fracture Toughness g and Crack Propagation of Ti6Al4V Produced by Selective Laser Melting, Adv. Eng. Mater, vol.14, pp.92-97, 2012.

G. B. Olson and M. Cohen, A Perspective on Martensitic Nucleation, Annu. Rev. Mater. Sci, vol.11, pp.1-32, 1981.

J. Christian, G. Olson, and M. Cohen, Classification of Displacive Transformations : What is a Martensitic Transformation?, J. Phys. IV, p.5, 1995.
URL : https://hal.archives-ouvertes.fr/jpa-00254049

W. Mei, J. Sun, and Y. Wen, Martensitic transformation from ? to ?? and ?? phases in Ti-V alloys: A first-principles study, J. Mater. Res, vol.32, pp.3183-3190, 2017.

T. Ahmed and H. J. Rack, Phase transformations during cooling in ?+? titanium alloys, Mater. Sci. Eng. A, vol.243, pp.206-211, 1998.

C. Zhao, K. Fezzaa, R. W. Cunningham, H. Wen, F. De-carlo et al., Real-time monitoring of laser powder bed fusion process using high-speed X-ray imaging and diffraction, Sci. Rep, vol.7, pp.1-11, 2017.

U. Bertoli, G. Guss, S. Wu, M. J. Matthews, and J. M. Schoenung, In-situ characterization of laser-powder interaction and cooling rates through high-speed imaging of powder bed fusion additive manufacturing, Mater. Des, vol.135, pp.385-396, 2017.

T. F. Broderick, A. G. Jackson, H. Jones, and F. H. Froes, The effect of cooling conditions on the microstructure of rapidly solidified Ti-6Al-4V, Metall. Trans. A, vol.16, pp.1951-1959, 1985.

C. Kusuma, The effect of laser power and scan speed on melt pool characteristics of pure titanium and Ti-6Al-4V alloy for Selective Laser Melting, 2014.

L. Germain, N. Gey, R. Mercier, P. Blaineau, M. Humbert et al., An advanced approach to reconstructing parent orientation maps in the case of approximate orientation relations: Application to steels, Acta Mater, vol.60, pp.4551-4562, 2012.

S. S. Al-bermani, M. L. Blackmore, W. Zhang, and I. Todd, The origin of microstructural diversity, texture, and mechanical properties in electron beam melted Ti-6Al-4V, Metall. Mater. Trans. A Phys. Metall. Mater. Sci, vol.41, pp.3422-3434, 2010.

S. C. Wang, M. Aindow, and M. J. Starink, Effect of self-accommodation on ?/? boundary populations in pure titanium, Acta Mater, vol.51, pp.35-36, 2003.

J. Yang, H. Yu, Z. Wang, and X. Zeng, Effect of crystallographic orientation on mechanical anisotropy of selective laser melted Ti-6Al-4V alloy, Mater. Charact, vol.127, pp.137-145, 2017.

W. Xu, E. W. Lui, A. Pateras, M. Qian, and M. Brandt, In situ tailoring microstructure in additively manufactured Ti-6Al-4V for superior mechanical performance, Acta Mater, vol.125, pp.390-400, 2017.

W. Xu, S. Sun, J. Elambasseril, Q. Liu, M. Brandt et al., Ti-6Al-4V Additively Manufactured by Selective Laser Melting with Superior Mechanical Properties, Jom, vol.67, pp.668-673, 2015.

L. Zhang and H. Attar, Selective Laser Melting of Titanium Alloys and Titanium Matrix Composites for Biomedical Applications: A Review, vol.18, pp.463-475, 2016.

S. Leuders, M. Thöne, A. Riemer, T. Niendorf, T. Tröster et al., On the mechanical behaviour of titanium alloy TiAl6V4 manufactured by selective laser melting: Fatigue resistance and crack growth performance, Int. J. Fatigue, vol.48, pp.300-307, 2013.

T. Voisin, N. P. Calta, S. A. Khairallah, J. Forien, L. Balogh et al., Defects-dictated tensile properties of selective laser melted Ti-6Al-4V, Mater. Des, vol.158, pp.113-126, 2018.

C. Qiu, N. J. Adkins, and M. M. Attallah, Microstructure and tensile properties of selectively laserg melted and of HIPed laser-melted Ti-6Al-4V, Mater. Sci. Eng. A, vol.578, pp.230-239, 2013.

H. Gong, K. Rafi, H. Gu, G. D. Ram, T. Starr et al., Influence of defects on mechanical properties of Ti-6Al-4V components produced by selective laser melting and electron beam melting, Mater. Des, vol.86, pp.545-554, 2015.

D. Deng, R. L. Peng, H. Brodin, and J. Moverare, Microstructure and mechanical properties of Inconel 718 produced by selective laser melting: Sample orientation dependence and effects of post heat treatments, Mater. Sci. Eng. A, vol.713, pp.294-306, 2018.

C. Kumar, M. Das, C. P. Paul, and K. S. Bindra, Comparison of bead shape, microstructure and mechanical properties of fiber laser beam welding of 2 mm thick plates of Ti-6Al-4V alloy, vol.105, pp.306-321, 2018.

R. Rai, J. W. Elmer, T. A. Palmer, and T. Debroy, Heat transfer and fluid flow during keyhole mode laser welding of tantalum, Ti-6Al-4V, 304L stainless steel and vanadium, J. Phys. D. Appl. Phys, vol.40, pp.5753-5766, 2007.

M. Courtois, M. Carin, P. L. Masson, S. Gaied, and M. Balabane, A complete model of keyhole and melt pool dynamics to analyze instabilities and collapse during laser welding, J. Laser Appl, vol.26, p.42001, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01115508

R. Lin, H. Wang, F. Lu, J. Solomon, and B. E. Carlson, Numerical study of keyhole dynamics and keyhole-induced porosity formation in remote laser welding of Al alloys, Int. J. Heat Mass Transf, vol.108, pp.244-256, 2017.

H. Gong, K. Rafi, H. Gu, T. Starr, and B. Stucker, Analysis of defect generation in Ti-6Al-4V parts made using powder bed fusion additive manufacturing processes, Addit. Manuf, vol.1, pp.87-98, 2014.

R. Li, J. Liu, Y. Shi, L. Wang, and W. Jiang, Balling behavior of stainless steel and nickel powder during selective laser melting process, Int. J. Adv. Manuf. Technol, vol.59, pp.1025-1035, 2012.

M. J. Matthews, G. Guss, S. A. Khairallah, A. M. Rubenchik, P. J. Depond et al., Denudation of metal powder layers in laser powder bed fusion processes, Acta Mater, vol.114, pp.33-42, 2016.

P. Bidare, I. Bitharas, R. M. Ward, M. M. Attallah, and A. J. Moore, Fluid and particle dynamics in laser powder bed fusion, Acta Mater, vol.142, pp.107-120, 2018.

S. M. Gaytan, L. E. Murr, F. Medina, E. Martinez, M. I. Lopez et al., Advanced metal powder based manufacturing of complex components by electron beam melting, Mater. Technol, vol.24, pp.180-190, 2009.

B. Zhang, Y. Li, . @bullet-qian, Q. Bai, and . Bai, Defect Formation Mechanisms in Selective Laser Melting: A Review, Chinese J. Mech. Eng, vol.30, pp.515-527, 2017.

R. Li, Y. Shi, Z. Wang, L. Wang, J. Liu et al., Densification behavior of gas and water atomized 316L stainless steel powder during selective laser melting, Appl. Surf. Sci, vol.256, pp.4350-4356, 2010.

F. Medina, Reducing metal alloy powder costs for use in powder bed fusion additive manufacturing: Improving the economics for production, 2013.

W. J. Sames, F. Medina, W. H. Peter, S. S. Babu, and R. R. Dehoff, Effect of Process Control and Powder Quality on Inconel 718 Produced Using Electron Beam Melting, 8th Int. Symp. Superalloy, vol.718, pp.409-423, 2014.

H. Qi, M. Azer, and A. Ritter, Studies of standard heat treatment effects on microstructure and mechanical properties of laser net shape manufactured INCONEL 718, Metall. Mater. Trans. A Phys. Metall. Mater. Sci, vol.40, pp.2410-2422, 2009.

B. Liu, R. Wildman, C. Tuck, I. Ashcroft, and R. Hague, Investigation the effect of particle size distribution on processing parameters optimisation in selective laser melting process, Int. Solid Free. Fabr. Symp. an Addit. Manuf. Conf, pp.227-238, 2011.

W. J. Sames, F. A. List, S. Pannala, R. R. Dehoff, and S. S. Babu, The metallurgy and processing science of metal additive manufacturing, Int. Mater. Rev, vol.61, pp.315-360, 2016.

A. Cooke and J. Slotwinski, Properties of Metal Powders for Additive Manufacturing: A Review of the State of the Art of Metal Powder Property Testing, 2012.

J. A. Slotwinski and E. J. Garboczi, Metrology Needs for Metal Additive Manufacturing Powders, Jom, vol.67, pp.538-543, 2015.

H. Ali, H. Ghadbeigi, and K. Mumtaz, Effect of scanning strategies on residual stress and mechanical properties of Selective Laser Melted Ti6Al4V, Mater. Sci. Eng. A, vol.712, pp.175-187, 2018.

J. P. Kruth, L. Froyen, J. Van-vaerenbergh, P. Mercelis, M. Rombouts et al., Selective laser melting of iron-based powder, J. Mater. Process. Technol, vol.149, pp.616-622, 2004.

M. F. Zaeh and G. Branner, Investigations on residual stresses and deformations in selective laser melting, Prod. Eng, vol.4, pp.35-45, 2010.

A. H. Nickel, D. M. Barnett, and F. B. Prinz, Thermal stresses and deposition patterns in layered manufacturing, Mater. Sci. Eng. A, vol.317, pp.1179-1179, 2001.

L. Ma and H. Bin, Temperature and stress analysis and simulation in fractal scanning-based laser sintering, Int. J. Adv. Manuf. Technol, vol.34, pp.898-903, 2007.

B. Qian, Y. S. Shi, Q. S. Wei, H. B. Wang, Q. Bo et al., The helix scan strategy applied to the selective laser melting, Int. J. Adv. Manuf. Technol, vol.63, pp.631-640, 2012.

A. Kudzal, B. Mcwilliams, C. Hofmeister, F. Kellogg, J. Yu et al., Effect of scan pattern on the microstructure and mechanical properties of Powder Bed Fusion additive manufactured 17-4 stainless steel, Mater. Des, vol.133, pp.205-215, 2017.

D. Gu, Y. C. Hagedorn, W. Meiners, G. Meng, R. Batista et al., Densification behavior, microstructure evolution, and wear performance of selective laser melting processed commercially pure titanium, Acta Mater, vol.60, pp.3849-3860, 2012.

H. Gong, H. K. Rafi, N. Karthik, T. L. Starr, and B. E. Stucker, Defect morphology in Ti-6Al-4V parts fabricated by selective laser melting and electron beam melting, Solid Free. Fabr. Symp. Symporisum Proceeding, pp.440-453, 2013.

B. Song, S. Dong, B. Zhang, H. Liao, and C. Coddet, Effects of processing parameters on microstructure and mechanical property of selective laser melted Ti6Al4V, Mater. Des, vol.35, pp.120-125, 2012.

H. Ali, L. Ma, H. Ghadbeigi, and K. Mumtaz, In-situ residual stress reduction, martensitic decomposition and mechanical properties enhancement through high temperature powder bed pre-heating of Selective Laser Melted Ti6Al4V, Mater. Sci. Eng. A, vol.695, pp.211-220, 2017.

M. Qian, W. Xu, M. Brandt, and H. P. Tang, Additive manufacturing and postprocessing of Ti6Al-4V for superior mechanical properties, MRS Bull, vol.41, pp.775-783, 2016.

J. Yang, J. Han, H. Yu, J. Yin, M. Gao et al., Role of molten pool mode on formability, microstructure and mechanical properties of selective laser melted Ti-6Al-4V alloy, Mater. Des, vol.110, pp.558-570, 2016.

R. Cunningham, S. P. Narra, C. Montgomery, J. Beuth, and A. D. Rollett, Synchrotron-Based X-ray Microtomography Characterization of the Effect of Processing Variables on Porosity Formation in Laser Power-Bed Additive Manufacturing of Ti-6Al-4V, Jom, vol.69, pp.479-484, 2017.

C. Lun, A. Leung, S. Marussi, R. C. Atwood, M. Towrie et al., In situ X-ray imaging of defect and molten pool dynamics in laser additive manufacturing, Nat. Commun, vol.9, pp.1-9, 2018.

J. Han, J. Yang, H. Yu, J. Yin, M. Gao et al., Microstructure and mechanical property of selective laser melted Ti6Al4V dependence on laser energy density, Rapid Prototyp, J, vol.23, pp.217-226, 2017.

C. Qiu, C. Panwisawas, M. Ward, H. C. Basoalto, J. W. Brooks et al., On the role of melt flow into the surface structure and porosity development during selective laser melting, Acta Mater, vol.96, pp.72-79, 2015.

S. Gorsse, C. Hutchinson, M. Gouné, and R. Banerjee, Additive manufacturing of metals: a brief review of the characteristic microstructures and properties of steels, Ti-6Al-4V and highentropy alloys, Sci. Technol. Adv. Mater, vol.18, pp.584-610, 2017.

G. Kasperovich and J. Hausmann, Improvement of fatigue resistance and ductility of TiAl6V4 processed by selective laser melting, J. Mater. Process. Technol, vol.220, pp.202-214, 2015.

B. Dutta and F. H. Froes, The Additive Manufacturing of Titanium Alloys, Addit. Manuf. Titan. Alloy, pp.1-10, 2016.

S. Cao, Z. Chen, C. V. Lim, K. Yang, Q. Jia et al., Defect, Microstructure, and Mechanical Property of Ti-6Al-4V Alloy Fabricated by High-Power Selective Laser Melting, Jom, vol.69, pp.2684-2692, 2017.

T. Vilaro, C. Colin, and J. D. Bartout, As-fabricated and heat-treated microstructures of the Ti-6Al-4V alloy processed by selective laser melting, Metall. Mater. Trans. A Phys. Metall. Mater. Sci, vol.42, pp.3190-3199, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00624108

S. Cao, R. Chu, X. Zhou, K. Yang, Q. Jia et al., Role of martensite decomposition in tensile properties of selective laser melted Ti-6Al-4V, J. Alloys Compd, vol.744, pp.357-363, 2018.

S. Tammas-williams, P. J. Withers, I. Todd, and P. B. Prangnell, The Effectiveness of Hot Isostatic Pressing for Closing Porosity in Titanium Parts Manufactured by Selective Electron Beam Melting, Metall. Mater. Trans. A Phys. Metall. Mater. Sci, vol.47, pp.1939-1946, 2016.

L. E. Murr, S. A. Quinones, S. M. Gaytan, M. I. Lopez, A. Rodela et al., Microstructure and mechanical behavior of Ti-6Al-4V produced by rapid-layer manufacturing, for biomedical applications, J. Mech. Behav. Biomed. Mater, vol.2, pp.20-32, 2009.

B. Vandenbroucke and J. Kruth, Selective laser melting of biocompatible metals for rapid manufacturing of medical parts, Rapid Prototyp, J, vol.13, pp.196-203, 2007.

M. Donachie, Titanium: A Technical Guide, ASM Int, vol.99, p.469, 1988.

B. Vrancken, L. Thijs, J. Kruth, and J. Van-humbeeck, Heat treatment of Ti6Al4V produced by Selective Laser Melting: Microstructure and mechanical properties, J. Alloys Compd, vol.541, pp.177-185, 2012.

L. E. Murr, S. M. Gaytan, E. Martinez, F. Medina, and R. B. Wicker, Next Generation Orthopaedic Implants by Additive Manufacturing Using Electron Beam Melting, Int. J. Biomater, vol.2012, pp.1-14, 2012.

S. Nag and R. Banerjee, Laser deposition and deformation behavior of Ti-Nb-Zr-Ta alloys for orthopedic implants, J. Mech. Behav. Biomed. Mater, vol.16, pp.21-28, 2012.

R. Z. Valiev, I. V. Alexandrov, Y. T. Zhu, and T. C. Lowe, Paradox of Strength and Ductility in Metals Processed Bysevere Plastic Deformation, J. Mater. Res, vol.17, pp.5-8, 2002.

B. Baufeld, O. Van-der-biest, and S. Dillien, Texture and Crystal Orientation in Ti-6Al-4V Builds Fabricated by Shaped Metal Deposition, Metall. Mater. Trans. A, vol.41, pp.1917-1927, 2010.

P. J. Fopiano, M. B. Bever, and B. L. Averbach, Phase transformations during heat treatment of the alloy Ti-6Al-4V, ASM Trans Q 62, pp.324-332, 1969.

J. Williams and M. Blacknurn, A comparison of phase transformations in three commercial titanium alloys, ASM Trans Q, vol.60, p.373, 1967.

J. R. Cahoon, W. H. Broughton, and A. R. Kutzak, The determination of yield strength from hardness measurements, Metall. Trans, vol.2, pp.1979-1983, 1971.

M. Simonelli, Y. Y. Tse, and C. Tuck, Effect of the build orientation on the Mechanical Properties and Fracture Modes of SLM Ti-6Al-4V, Mater. Sci. Eng. A, vol.616, pp.1-11, 2014.

D. Agius, K. Kourousis, and C. Wallbrink, A Review of the As-Built SLM Ti-6Al-4V Mechanical Properties towards Achieving Fatigue Resistant Designs, vol.8, p.75, 2018.

D. Bhattacharyya and G. ,

R. Viswanathan, D. Denkenberger, H. L. Furrer, and . Fraser, The role of crystallographic and geometrical relationships between ? and ? phases in an ?/? titanium alloy, Acta Mater, vol.51, pp.4679-4691, 2003.

A. L. Pilchak and J. C. Williams, Observations of Facet Formation in Near-? Titanium and Comments on the Role of Hydrogen, Metall. Mater. Trans. A, vol.42, pp.1000-1027, 2011.

H. K. Rafi, N. V. Karthik, H. Gong, T. L. Starr, and B. E. Stucker, Microstructures and Mechanical Properties of Ti6Al4V Parts Fabricated by Selective Laser Melting and Electron Beam Melting, J. Mater. Eng. Perform, vol.22, pp.3872-3883, 2013.

B. E. Carroll, T. A. Palmer, and A. M. Beese, Anisotropic tensile behavior of Ti-6Al-4V components fabricated with directed energy deposition additive manufacturing, Acta Mater, vol.87, pp.309-320, 2015.

C. Qiu, G. A. Ravi, C. Dance, A. Ranson, S. Dilworth et al., Fabrication of large Ti6Al-4V structures by direct laser deposition, J. Alloys Compd, vol.629, pp.351-361, 2015.
DOI : 10.1016/j.jallcom.2014.12.234

URL : http://pure-oai.bham.ac.uk/ws/files/18428145/Qiu_et_al_Fabrication_large_Ti_6Al_4V_Journal_Alloys_Compounds_2015.pdf

S. Palanivel, A. K. Dutt, E. J. Faierson, and R. S. Mishra, Spatially dependent properties in a laser additive manufactured Ti-6Al-4V component, Mater. Sci. Eng. A, vol.654, pp.39-52, 2016.
DOI : 10.1016/j.msea.2015.12.021

J. S. Keist and T. A. Palmer, Role of geometry on properties of additively manufactured Ti-6Al-4V structures fabricated using laser based directed energy deposition, Mater. Des, vol.106, pp.482-494, 2016.

A. E. Wilson-heid, Z. Wang, B. Mccornac, and A. M. Beese, Quantitative relationship between anisotropic strain to failure and grain morphology in additively manufactured Ti-6Al-4V, Mater. Sci. Eng. A, vol.706, pp.287-294, 2017.
DOI : 10.1016/j.msea.2017.09.017

A. Yadollahi and N. Shamsaei, Additive manufacturing of fatigue resistant materials: Challenges and opportunities, Int. J. Fatigue, vol.98, pp.14-31, 2017.

A. Pilchak and A. Bhattacharjee, The Effect of Microstructure on Fatigue Crack Initiation in Ti6Al-4V, ICF12, vol.2, pp.1-10, 2012.

H. Galarraga, R. J. Warren, D. A. Lados, R. R. Dehoff, and M. M. Kirka, Fatigue crack growth mechanisms at the microstructure scale in as-fabricated and heat treated Ti-6Al-4V ELI manufactured by electron beam melting (EBM), Eng. Fract. Mech, vol.176, pp.263-280, 2017.

X. P. Jiang, C. Man, M. J. Shepard, and T. Zhai, Effects of shot-peening and re-shot-peening on four-point bend fatigue behavior of Ti-6Al-4V, Mater. Sci. Eng. A, vol.468, issue.470, pp.137-143, 2007.

P. Edwards and M. Ramulu, Effect of build direction on the fracture toughness and fatigue crack g growth in selective laser melted Ti-6Al-4-V, Fatigue Fract. Eng. Mater. Struct, vol.38, pp.1228-1236, 2015.

C. Beachem, Fractography-Microscopic Cracking Process, 1976.

V. Ramachandran, A. C. Raghuram, R. Krishnan, and S. K. Bhaumik, Failure analysis of engineering structures methodology and case histories, Asme, 2005.

V. Cain, L. Thijs, J. Van-humbeeck, B. Van-hooreweder, and R. Knutsen, Crack propagation and fracture toughness of Ti6Al4V alloy produced by selective laser melting, Addit. Manuf, vol.5, pp.68-76, 2015.
DOI : 10.1016/j.addma.2014.12.006

P. Rangaswamy, M. L. Griffith, M. B. Prime, T. M. Holden, R. B. Rogge et al., Residual stresses in LENS® components using neutron diffraction and contour method, Mater. Sci. Eng. A, vol.399, pp.72-83, 2005.

J. Tao, S. Hu, and L. Ji, Effect of micromorphology at the fatigue crack tip on the crack growth in electron beam welded Ti-6Al-4V joint, Mater. Charact, vol.120, pp.185-194, 2016.

C. Qiu, N. J. Adkins, and M. M. Attallah, Selective laser melting of Invar 36: Microstructure and properties, Acta Mater, vol.103, pp.382-395, 2016.
DOI : 10.1016/j.actamat.2015.10.020

URL : http://pure-oai.bham.ac.uk/ws/files/24942063/Qui_et_al_Selective_laser_melting_Acta_Materialia_2016.pdf

M. G. Moletsane, P. Krakhmalev, N. Kazantseva, A. Plessis, I. Yadroitsava et al., Tensile Properties and Microstructure of Direct Metal Laser-Sintered Ti6Al4V (Eli) Alloy, South African J. Ind. Eng, vol.27, 2016.
DOI : 10.7166/27-3-1667

URL : http://sajie.journals.ac.za/pub/article/download/1667/717

M. Averyanova, P. Bertrand, and B. Verquin, Effect of initial powder properties on final microstructure and mechanical properties of parts manufactured by selective laser melting, Ann. DAAAM Proc. Int. DAAAM Symp, vol.21, pp.1531-1532, 2010.

R. Ding and I. P. Jones, In situ hydride formation in titanium during focused ion milling, J. Electron Microsc. (Tokyo), vol.60, pp.1-9, 2011.
DOI : 10.1093/jmicro/dfq066

URL : https://academic.oup.com/jmicro/article-pdf/60/1/1/5852643/dfq066.pdf

K. Das, P. Choudhury, and S. Das, The Al-O-Ti (Aluminum-Oxygen-Titanium) System, ChemInform, p.34, 2003.
DOI : 10.1361/105497102770331271

, A. B348-13, Standard Specification for Titanium and Titanium Alloy Bars and Billets, 2013.

A. B. Spierings, M. Voegtlin, T. Bauer, and K. Wegener, Powder flowability characterisation methodology for powder-bed-based metal additive manufacturing, Prog. Addit. Manuf, vol.1, pp.9-20, 2016.

A. V. Smirnov and A. D. Nachinkov, Nitriding of titanium at reduced partial pressure of nitrogen, Met. Sci. Heat Treat, vol.2, pp.399-402, 1960.

Y. Hu and J. Leck, Performance of the titanium sublimation trap in relatively poor vacuum systems, Vacuum, vol.37, pp.757-762, 1987.

C. Kohlhauser, C. Hellmich, C. Vitale-brovarone, A. R. Boccaccini, A. Rota et al., Ultrasonic Characterisation of Porous Biomaterials Across Different Frequencies, Strain, vol.45, pp.34-44, 2009.

J. Roux, B. Hosten, B. Castagnede, and M. Deschamps, Caractérisation mécanique des solides par spectro-interférométrie ultrasonore, Rev. Phys. Appl, vol.20, pp.351-358, 1985.

B. Auld, Acoustic fields and waves in solids, 1973.

S. Baste and J. M. Morvan, Under load strain partition of a ceramic matrix composite using an ultrasonic method, 1996.

B. Audoin, S. Baste, and B. Castagnède, Estimation de l'intervalle de confiance des contantes d'élasticite identifiées à partir des vitesses de propagation ultrasonores, C. R. Acad. Sci. Paris. serie II, pp.679-686, 1991.

E. Dieulesaint and D. Royer, Application au traitement de signal, Ondes élastiques dans les solides, 1974.

S. Baste and M. Deschamps, Identification des constantes d'élasticité à partir des vitesses de propagation dans un plan principal de symétrie, 1989.

S. Baste and B. Hosten, Evaluation de la matrice d'élasticité des composites orthotropes par g propagation ultrasonore en dehors des plans principaux de symétrie, Classif. Phys. Abstr, vol.25, pp.161-168, 1990.

S. Baste and R. E. Bouazzoui, Suivi Ultrasonore de l'Endommagement Anisotrope d'un Composite SiC-SiC Unidirectionnel, 1992.

B. Hosten, Stiffness matrix invariants to validate the characterization of composite materials with ultrasonic methods, Ultrasonics, vol.30, pp.365-370, 1992.

T. Zhang, Imagerie multi-résolution par tomographie aux rayons X : application à la tomographie locale en science des matériaux, Ecole doctorale IMEP2 spécialité MMGE, 2013.

R. Penelle, P. Paillard, and T. Baudin, Modélisation et Simulation de la Croissance de grains et de la recristallisation primaire, J. Phys. IV, vol.5, p.5, 1995.

L. Chongmo and M. Hillert, A metallographic study of diffusion-induced grain boundary migration in the Fe-Zn system, Acta Metall, vol.29, pp.90032-90040, 1981.

J. I. Langford and A. J. Wilson, Scherrer after sixty years: A survey and some new results in the determination of crystallite size, J. Appl. Crystallogr, vol.11, pp.102-113, 1978.

T. Sercombe, N. Jones, R. Day, and A. Kop, Heat treatment of Ti-6Al-7Nb components produced by selective laser melting, Rapid Prototyp. J, vol.14, pp.300-304, 2008.

M. Humbert, H. Moustahfid, F. Wagner, and M. Philippe, Evaluation of the high temperature texture of the ? phase of a TA6V sample from the individual orientations of grains of the low temperature ? phase, Scr. Metall. Mater, vol.25, pp.377-382, 1994.

N. Gey and M. Humbert, Specific analysis of EBSD data to study the texture inheritance due to the ? ? ? phase transformation, J. Mater. Sci, vol.38, pp.1289-1294, 2003.

M. H. Yoo, Slip, twinning, and fracture in hexagonal close-packed metals, Metall. Trans. A, vol.12, pp.409-418, 1981.

J. Wang, J. P. Hirth, and C. N. Tomé, 1¯012) Twinning nucleation mechanisms in hexagonal-closepacked crystals, Acta Mater, vol.57, pp.5521-5530, 2009.

M. Bevis and A. G. Crocker, Twinning Modes in Lattices, Proc. R. Soc. A Math. Phys. Eng. Sci, vol.313, pp.509-529, 1969.

B. A. Bilby and A. G. Crocker, The Theory of the Crystallography of Deformation Twinning, Proc. R. Soc. A Math. Phys. Eng. Sci, vol.288, pp.240-255, 1965.

J. W. Christian and S. Mahajan, Deformation twinning, Prog. Mater. Sci, vol.39, pp.1-157, 1995.

Y. Zhang, Z. Li, C. Esling, J. Muller, X. Zhao et al., A general method to determine twinning elements, J. Appl. Crystallogr, vol.43, pp.1426-1430, 2010.

M. H. Yoo and J. K. Lee, Deformation twinning in h.c.p. metals and alloys, Philos. Mag. A, vol.63, pp.987-1000, 1991.

D. M. Vallance and M. Bevis, The interaction of slip dislocations with twin boundaries, Scr. Metall, vol.4, pp.90206-90207, 1970.

Y. Minonishi, S. Morozumi, and H. Yoshinaga, Accommodation around {1011} twins in titanium, Scr. Metall, vol.19, pp.90246-90253, 1985.

S. Xu, Crystallographic analysis of twin variant selection and twin-twin junctions in commercially pure titanium, 2018.
URL : https://hal.archives-ouvertes.fr/tel-01743596

J. Peirs, W. Tirry, B. Amin-ahmadi, F. Coghe, P. Verleysen et al., Microstructure of adiabatic shear bands in Ti6Al4V, Mater. Charact, vol.75, pp.79-92, 2013.

L. E. Murr, A. C. Ramirez, S. M. Gaytan, M. I. Lopez, E. Y. Martinez et al., Microstructure evolution associated with adiabatic shear bands and shear band failure in ballistic plug formation in Ti-6Al-4V targets, Mater. Sci. Eng. A, vol.516, pp.205-216, 2009.

P. S. Follansbee and G. T. Gray, An analysis of the low temperature, low and high strain-rate deformation of Ti?6Al?4V, Metall. Trans. A, vol.20, pp.863-874, 1989.

A. J. Wagoner-johnson, C. W. Bull, K. S. Kumar, and C. L. Briant, The influence of microstructure and strain rate on the compressive deformation behavior of Ti-6Al-4V, Metall. Mater. Trans. A, vol.34, pp.295-306, 2003.

D. Tromans, Elastic Anisotropy of HCP Metal Crystals and Polycrystals, Ijrras, vol.6, pp.462-483, 2011.

K. Rekedal and D. Liu, Fatigue Life of Selective Laser Melted and Hot Isostatically Pressed Ti-6Al-4v Absent of Surface Machining, 56th AIAA/ASCE/AHS/ASC Struct. Struct. Dyn. Mater. Conf, 2015.

A. Fatemi, R. Molaei, S. Sharifimehr, N. Shamsaei, and N. Phan, Torsional fatigue behavior of wrought and additive manufactured Ti-6Al-4V by powder bed fusion including surface finish effect, 2017.

Y. T. Lee, M. Peters, and G. Welsch, Elastic moduli and tensile and physical properties of heattreated and quenched powder metallurgical Ti-6Al-4V alloy, Metall. Trans. A, vol.22, pp.709-714, 1991.

F. Montheillet and L. Briottet, Endommagement et ductilité en mise en forme, Tech. l'Ingenieur, vol.33, 2009.

Y. Liu, Y. Yang, S. Mai, D. Wang, and C. Song, Investigation into spatter behavior during selective laser melting of AISI 316L stainless steel powder, Mater. Des, vol.87, pp.797-806, 2015.

W. E. King, H. D. Barth, V. M. Castillo, G. F. Gallegos, J. W. Gibbs et al., Observation of keyhole-mode laser melting in laser powder-bed fusion additive manufacturing, J. Mater. Process. Technol, vol.214, pp.2915-2925, 2014.

J. A. Ramos, D. L. Bourell, and J. J. Beaman, Surface Over-Melt During Laser Polishing of Indirect-SLS Metal Parts, MRS Proc, vol.758, 2002.

D. Wang, W. Dou, and Y. Yang, Research on Selective Laser Melting of Ti6Al4V: Surface Morphologies, Optimized Processing Zone, and Ductility Improvement Mechanism, vol.8, p.471, 2018.

C. Teng, D. Pal, H. Gong, K. Zeng, K. Briggs et al., A review of defect modeling in laser material processing, Addit. Manuf, vol.14, pp.137-147, 2017.

D. Rosenthal, Mathematical Theory of Heat Distribution During Welding and Cutting, Wleding J, vol.20, pp.220-234, 1941.

P. Promoppatum, S. Yao, P. C. Pistorius, and A. D. Rollett, A Comprehensive Comparison of the Analytical and Numerical Prediction of the Thermal History and Solidification Microstructure of Inconel 718 Products Made by Laser Powder-Bed Fusion, Engineering, vol.3, pp.685-694, 2017.

M. Tang, P. C. Pistorius, and J. L. Beuth, Prediction of lack-of-fusion porosity for powder bed fusion, Addit. Manuf, vol.14, pp.39-48, 2017.

K. E. Puttick, Ductile fracture in metals, Philos. Mag, vol.4, pp.964-969, 1959.

V. Tvergaard and A. Needleman, Analysis of the cup-cone fracture in a round tensile bar, Acta Metall, vol.32, pp.157-169, 1984.