, Abaqus version 6.13 documentation collection, 2013.

A. J. Maire, E. Gimenez, and N. , Sauvant-Moynot V. Experimental study of the compression behaviour of syntactic foams by in situ X-ray tomography, Acta Mater, vol.55, issue.5, pp.1667-1679, 2007.

A. S. Hijrah, M. N. Amirah, A. H. Zuhailawati, H. Anasyida, and A. S. , Effect of NaCl as a space holder in producing open cell A356 aluminium foam by gravity die casting process, Procedia Chem, vol.19, issue.1, pp.234-240, 2016.

Y. Amani and A. Öchsner, Finite element simulation of arrays of hollow sphere structures, Materialwiss. Werkstofftech, vol.46, pp.462-476, 2015.

Y. Amani, A. Takahashi, P. Chantrenne, S. Maruyama, S. Dancette et al., Thermal conductivity of highly porous metal foams: Experimental and image based finite element analysis, Int. J. Heat Mass Transfer, vol.122, pp.1-10, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01890593

E. Amsterdam, P. R. Onck, and J. T. Hosson, Fracture and microstructure of open cell aluminum foam, J. Mater. Sci, vol.40, pp.5813-5819, 2005.
DOI : 10.1007/s10853-005-4995-8

E. Amsterdam, J. H. De-vries, J. T. De-hosson, and P. R. Onck, The influence of strain-induced damage on the mechanical response of open-cell aluminum foam, Acta Mater, vol.56, issue.3, pp.609-618, 2008.

E. Andrews, W. Sanders, and L. J. Gibson,

, Compressive and tensile behaviour of aluminum foams, Mater. Sci. Eng., A, vol.270, issue.2, pp.113-124, 1999.

E. W. Andrews, G. Gioux, P. Onck, and L. J. Gibson, Size effects in ductile cellular solids. Part II: Experimental results, Int. J. Mech. Sci, vol.43, issue.3, pp.701-713, 2001.

C. H. Arns, M. A. Knackstedt, W. V. Pinczewski, and E. J. Garboczi, Computation of linear elastic properties from microtomographic images: methodology and agreement between theory and experiment, Geophysics, vol.67, issue.5, pp.1396-1405, 2002.
DOI : 10.1190/1.1512785

M. F. Ashby, Properties and selection: Nonferrous alloys and special-purpose materials, ASM International Handbook CommitteeASM handbook, vol.02, 1990.

U. A. Atturan, S. H. Nandam, B. S. Murty, and S. Sankaran,

, Processing and characterization of in-situ TiB2 stabilized closed cell aluminium alloy composite foams, Mater. Des, vol.101, issue.1, pp.245-253, 2016.

, Avizo 9 User's Guide, 2016.

L. Babout, E. Maire, J. Y. Buffière, and R. Fougères, Characterization by X-ray computed tomography of decohesion, porosity growth and coalescence in model metal matrix composites, Acta Mater, vol.49, issue.11, pp.2055-2063, 2001.
URL : https://hal.archives-ouvertes.fr/hal-00475312

D. Baillis, R. Coquard, and S. Cunsolo,

, Effective conductivity of Voronoiâ??s closed-and open-cell foams: analytical laws and numerical results, J. Mater. Sci, vol.52, pp.11146-11167, 2017.

J. Banhart,

, Manufacture, characterisation and application of cellular metals and metal foams, Prog. Mater. Sci, vol.46, issue.6, pp.559-632, 2001.

Y. Bao and T. Wierzbicki,

, On fracture locus in the equivalent strain and stress triaxiality space, Int. J. Mech. Sci, vol.46, issue.1, pp.81-98, 2004.

B. K. Bay, T. S. Smith, D. P. Fyhrie, and M. Saad, Digital volume correlation: three-dimensional strain mapping using X-ray tomography
DOI : 10.1007/bf02323555

, Exp. Mech, vol.39, issue.3, pp.217-226, 1999.

F. Beckmann, R. Grupp, A. Haibel, M. Huppmann, M. Nöthe et al., In-situ synchrotron X-ray microtomography studies of microstructure and damage evolution in engineering materials, Adv. Eng. Mater, vol.9, issue.11, pp.939-950, 2007.

C. Beckmann and J. Hohe,

, A probabilistic constitutive model for closed-cell foams, Mech. Mater, vol.96, issue.1, pp.96-105, 2016.

C. Berre, S. L. Fok, P. M. Mummery, J. Ali, B. J. Marsden et al., Failure analysis of the effects of porosity in thermally oxidised nuclear graphite using finite element modelling, J. Nucl. Mater, vol.381, issue.2, pp.1-8, 2008.

A. Bignon, J. Chouteau, J. Chevalier, G. Fantozzi, J. Carret et al., Effect of micro-and macroporosity of bone substitutes on their mechanical properties and cellular response, J. Mater. Sci.: Mater. Med, vol.14, pp.1089-1097, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00475144

S. Birosca, J. Y. Buffière, F. A. Garcia-pastor, M. Karadge, L. Babout et al.,

, Three-dimensional characterization of fatigue cracks in Ti-6246 using X-ray tomography and electron backscatter diffraction, Acta Mater, vol.57, pp.5834-5847, 2009.

K. Boomsma and D. Poulikakos,

, On the effective thermal conductivity of a three-dimensionally structured fluid-saturated metal foam, Int. J. Heat Mass Transfer, vol.44, issue.4, pp.827-836, 2001.

K. Boomsma, D. Poulikakos, and F. Zwick, Metal foams as compact high performance heat exchangers, Mech. Mater, vol.35, pp.1161-1176, 2003.
DOI : 10.1016/j.mechmat.2003.02.001

Y. Boonyongmaneerat and D. C. Dunand,

. Ni-mo, Cr foams processed by casting replication of sodium aluminate preforms, Adv. References Eng. Mater, vol.10, issue.4, pp.379-383, 2008.

A. Borbély, F. Csikor, S. Zabler, P. Cloetens, and H. Biermann,

, Three-dimensional characterization of the microstructure of a metal-matrix composite by holotomography, Mater. Sci. Eng., A, vol.367, issue.2, pp.40-50, 2004.

A. Bouterf, J. Adrien, E. Maire, X. Brajer, F. Hild et al., Identification of the crushing behavior of brittle foam: from indentation to oedometric tests, J. Mech. Phys. Solids, vol.98, pp.181-200, 2017.

L. Brabant, J. Vlassenbroeck, Y. D. Witte, V. Cnudde, M. N. Boone et al.,

, Three-dimensional analysis of high-resolution X-ray computed tomography data with Morpho+, Microsc. Microanal, vol.17, issue.2, pp.252-263, 2011.

M. Bracconi, M. Ambrosetti, M. Maestri, G. Groppi, and E. Tronconi, A systematic procedure for the virtual reconstruction of open-cell foams, Chem. Eng. J, vol.315, pp.608-620, 2017.

M. Q. Brewster, J. Y. Buffière, E. Maire, J. Adrien, J. P. Masse et al., In situ experiments with X-ray tomography: an attractive tool for experimental mechanics, Exp. Mech, vol.50, issue.3, pp.289-305, 1992.

J. Y. Buffière, E. Ferrie, H. Proudhon, and W. Ludwig,

, Three-dimensional visualisation of fatigue cracks in metals using high resolution synchrotron X-ray micro-tomography, Mater. Sci. Technol, vol.22, issue.9, pp.1019-1024, 2013.

A. Burteau, F. N'guyen, J. D. Bartout, S. Forest, Y. Bienvenu et al., Impact of material processing and deformation on cell morphology and mechanical behavior of polyurethane and nickel foams, Int. J. Solids Struct, vol.49, pp.2714-2732, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00726018

A. Byakova, I. Kartuzov, S. Gnyloskurenko, and T. Nakamura, References aluminum foams, Adv. Mater. Sci. Eng, vol.2014, pp.1-9, 2014.

V. V. Calmidi and R. L. Mahajan, The effective thermal conductivity of high porosity fibrous metal foams, J. Heat Transfer, vol.121, issue.2, p.466, 1999.

X. Q. Cao, Z. H. Wang, H. W. Ma, L. M. Zhao, and G. T. Yang, Effects of cell size on compressive properties of aluminum foam, Trans. Nonferrous Met

. Soc and . China, , vol.16, pp.351-356, 2006.

O. Caty, E. Maire, S. Youssef, and R. Bouchet,

, Modeling the properties of closed-cell cellular materials from tomography images using finite shell elements, Acta Mater, vol.56, pp.5524-5534, 2008.

T. Chartier, C. Chaput, F. Doreau, and M. Loiseau, Stereolithography of structural complex ceramic parts, J. Mater. Sci, vol.37, pp.3141-3147, 2002.

S. H. Chan and A. Ngan, Statistical distribution of forces in stressed 2-D low-density materials with random microstructures, Mech. Mater, vol.38, issue.12, pp.1199-1212, 2006.

C. E. Chulia, D. Pouget, C. Viana, and M. , Fabrication of porous substrates: a review of processes using pore forming agents in the biomaterial field, J. Pharm. Sci, vol.97, issue.3, pp.1135-1154, 2008.

L. Y. Chen, J. S. Yu, T. Fujita, and M. W. Chen, Nanoporous copper with tunable nanoporosity for SERS applications, Adv. Funct. Mater, vol.19, issue.8, pp.1221-1226, 2009.
DOI : 10.1002/adfm.200801239

Y. Chen, R. Das, and M. Battley, Effects of cell size and cell wall thickness variations on the stiffness of closed-cell foams

, Int. J. Solids Struct, vol.52, issue.1, pp.150-164, 2015.

Y. Chen, R. Das, and M. Battley, Effects of cell size and cell wall thickness variations on the strength of closed-cell foams, Int. J. Eng. Sci, vol.120, pp.220-240, 2017.

B. Choi, I. Yeo, J. Lee, W. K. Kang, and T. Song,

, Pillar-supported vacuum insulation panel with multi-layered filler material, Int. J. Heat References Mass Transfer, vol.102, pp.902-910, 2016.

C. C. Chu and A. Needleman, Void nucleation effects in biaxially stretched sheets, J. Eng. Mater. Technol, vol.102, issue.3, p.249, 1980.
DOI : 10.1115/1.3224807

P. Colombo, Conventional and novel processing methods for cellular ceramics, Philos. Trans. R. Soc., A, vol.364, pp.109-124, 1838.
DOI : 10.1098/rsta.2005.1683

S. C. Cox, J. A. Thornby, G. J. Gibbons, M. A. Williams, and K. Mallick, 3D printing of porous hydroxyapatite scaffolds intended for use in bone tissue engineering applications, Mater. Sci. Eng., C, vol.47, pp.237-247, 2015.

Z. Dai, K. Nawaz, Y. G. Park, J. Bock, and A. Jacobi, Correcting and extending the Boomsma-Poulikakos effective thermal conductivity model for three-dimensional, fluid-saturated metal foams, Int. Commun. Heat Mass Transfer, vol.37, issue.6, pp.575-580, 2010.
DOI : 10.1016/j.icheatmasstransfer.2010.01.015

C. Dangelo, A. Ortona, and P. Colombo,

, Finite element analysis of reticulated ceramics under compression, Acta Mater, vol.60, issue.19, pp.6692-6702, 2012.

J. R. Davis, Tensile testing, 2004.

G. R. Davis and J. Elliott,

, Artefacts in X-ray microtomography of materials, Mater. Sci. Technol, vol.22, issue.9, pp.1011-1018, 2013.

J. G. Dellinger, J. Cesarano, and R. D. Jamison,

, Robotic deposition of model hydroxyapatite scaffolds with multiple architectures and multiscale porosity for bone tissue engineering, J. Biomed. Mater. Res., Part A, vol.82, issue.2, pp.383-394, 2007.

P. Delroisse, P. J. Jacques, E. Maire, O. Rigo, and A. Simar, Effect of strut orientation on the microstructure heterogeneities in AlSi10Mg lattices processed by selective laser melting, Scr. Mater, vol.141, pp.32-35, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01665950

Z. Y. Deng, J. F. Yang, Y. Beppu, M. Ando, and T. Ohji, Effect of agglomeration on mechanical properties of porous zirconia fabricated by partial sintering, J. Am. Ceram. Soc, vol.85, issue.8, pp.1961-1965, 2002.

M. Descamps, T. Duhoo, F. Monchau, J. Lu, P. Hardouin et al., Manufacture of macroporous ?-tricalcium phosphate bioceramics, J. Eur. Ceram. Soc, vol.28, issue.1, pp.149-157, 2008.

S. Deville,

, Freeze-casting of porous ceramics: a review of current achievements and issues

. Eng and . Mater, , vol.10, pp.155-169, 2008.

S. Deville, E. Maire, G. Bernard-granger, A. Lasalle, A. Bogner et al.,

, Metastable and unstable cellular solidification of colloidal suspensions, Nat. Mater, vol.8, pp.966-972, 2009.

I. Duarte, E. Ventura, S. Olhero, and J. M. Ferreira, A new class of closed-cell aluminium foams reinforced with carbon nanotubes

, Tecnol. Mater, vol.28, issue.1, pp.5-8, 2016.

I. Duarte, M. Vesenjak, and L. Krstulovi?-opara,

, Compressive behaviour of unconstrained and constrained integral-skin closed-cell aluminium foam, Compo. Struct, vol.154, issue.1, pp.231-238, 2016.

N. Dukhan, P. D. Quiñones-ramos, E. Cruz-ruiz, M. Vélez-reyes, and E. P. Scott, One-dimensional heat transfer analysis in open-cell 10-ppi metal foam, Int. J. Heat Mass Transfer, vol.48, pp.5112-5120, 2005.

J. A. Elliott, A. H. Windle, J. R. Hobdell, G. Eeckhaut, R. J. Oldman et al., In-situ deformation of an open-cell flexible polyurethane foam characterised by 3D computed microtomography, J. Mater. Sci, vol.37, issue.8, pp.1547-1555, 2002.

A. Elmoutaouakkil, L. Salvo, E. Maire, and G. Peix, 2D and 3D characterization of metal foams using X-ray tomography, Adv. Eng. Mater., References, vol.4, issue.10, pp.803-807, 2002.
URL : https://hal.archives-ouvertes.fr/hal-01538076

A. T. Erturk and T. Sahin, Novel molding method and enhanced cell homogeneity in the powder metallurgical route for production of closed cell Al-foam, Acta Phys. Pol., A, vol.131, pp.39-42, 2017.

J. Escoda, F. Willot, D. Jeulin, J. Sanahuja, and C. Toulemonde, Estimation of local stresses and elastic properties of a mortar sample by FFT computation of fields on a 3D image, Cem. Concr. Res, vol.41, issue.5, pp.542-556, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00553658

Z. Esen and ?. Bor, Processing of titanium foams using magnesium spacer particles, Scr. Mater, vol.56, issue.5, pp.341-344, 2007.
DOI : 10.1016/j.scriptamat.2006.11.010

A. Etiemble, J. Adrien, E. Maire, H. Idrissi, D. Reyter et al.,

, 3D morphological analysis of copper foams as current collectors for Li-ion batteries by means of X-ray tomography, Mater. Sci. Eng., B, vol.187, issue.1, pp.1-8, 2014.

L. Facchini, N. Vicente, I. Lonardelli, E. Magalini, P. Robotti et al., Metastable austenite in 17-4 precipitation-hardening stainless steel produced by selective laser melting, Adv. Eng. Mater, vol.12, issue.3, pp.184-188, 2010.
DOI : 10.1002/adem.200900259

N. C. Fahlbusch, W. Becker, V. A. Kolupaev, and G. Geertz, Nonlinear material behaviour and failure of closed-cell polymer foams, Acta. Mech, vol.227, issue.11, pp.3113-3121, 2016.
DOI : 10.1007/s00707-015-1533-x

L. A. Feldkamp, L. C. Davis, and J. W. Kress, Practical cone-beam algorithm, J. Opt. Soc. Am. A, vol.1, issue.6, p.612, 1984.
DOI : 10.1364/josaa.1.000612

A. Ferre, S. Dancette, and E. Maire,

, Damage characterisation in aluminium matrix composites reinforced with amorphous metal inclusions, Mater. Sci. Technol, vol.31, issue.5, pp.579-586, 2014.

F. Fischer, G. T. Lim, U. A. Handge, and V. Altstädt, Numerical simulation of mechanical properties of cellular materials using computed tomography analysis, J. Cell. Plast, vol.45, issue.5, pp.441-460, 2009.

E. J. Garboczi and A. R. Day,

S. M. Gaytan, L. E. Murr, E. Martinez, J. L. Martinez, B. I. Machado et al., Comparison of microstructures and mechanical properties for solid and mesh cobaltbase alloy prototypes fabricated by electron beam melting, An algorithm for computing the effective linear elastic properties of heterogeneous ma-140 References terials: three-dimensional results for composites with equal phase poisson ratios, vol.43, pp.3216-3227, 1995.
DOI : 10.1007/s11661-010-0388-y

C. Geuzaine and J. F. Remacle, Gmsh: A 3-D finite element mesh generator with built-in pre-and post-processing facilities, Int. J. Numer. Meth. Eng, vol.79, issue.11, pp.1309-1331, 2009.
DOI : 10.1002/nme.2579

L. J. Gibson and M. F. Ashby, Cellular solids: structure and properties. Cambridge solid state science series, 1999.

G. Gioux, T. M. Mccormack, and L. J. Gibson, Failure of aluminum foams under multiaxial loads, Int. J. Mech. Sci, vol.42, issue.6, pp.1097-1117, 2000.
DOI : 10.1016/s0020-7403(99)00043-0

J. L. Grenestedt and K. Tanaka, Influence of cell shape variations on elastic stiffness of closed cell cellular solids, Scr. Mater, vol.40, issue.1, pp.71-77, 1998.

T. Guillén, Q. Zhang, G. Tozzi, A. Ohrndorf, H. Christ et al., Compressive behaviour of bovine cancellous bone and bone analogous materials, microCT characterisation and FE analysis, J. Mech. Behav. Biomed. Mater, vol.4, issue.7, pp.1452-1461, 2011.

A. L. Gurson, Continuum theory of ductile rupture by void nucleation and growth: Part I-Yield criteria and flow rules for porous ductile media, J. Eng. Mater. Technol, vol.99, issue.1, p.2, 1977.

M. Hakamada and M. Mabuchi, Mechanical strength of nanoporous gold fabricated by dealloying, Scr. Mater, vol.56, issue.11, pp.1003-1006, 2007.

M. Hakamada and M. Mabuchi, Preparation of nanoporous Ni and Ni-Cu by dealloying of rolled Ni-Mn and Ni-Cu-Mn alloys, J. Alloys Compd, vol.485, issue.2, pp.583-587, 2009.

J. Han, C. Hong, X. Zhang, J. Du, and W. Zhang, Highly porous ZrO2 ceramics fabricated by a camphene-based freeze-casting route: microstructure and properties, J. Eur. Ceram. Soc, vol.30, issue.1, pp.53-60, 2010.
DOI : 10.1016/j.jeurceramsoc.2009.08.018

A. M. Harte, N. A. Fleck, and M. Ashby, Fatigue failure of an open cell and a closed cell aluminium alloy foam, Acta Mater, vol.47, issue.8, pp.2511-2524, 1999.

A. Harte, The fatigue strength of sandwich beams with an aluminium alloy foam core, Int. J. Fatigue, vol.23, issue.6, pp.499-507, 2001.

J. J. Haslam and F. F. Lange, Strengthening of porous mullite and zirconia CMC matrices by evaporation/condensation, J. Am. Ceram. Soc, vol.89, issue.6, pp.2043-2050, 2006.
DOI : 10.1111/j.1551-2916.2006.01017.x

J. Hay, P. Agee, and E. Herbert,

, Continuous stiffness measurement during instrumented indentation testing, Exp. Tech, vol.34, issue.3, pp.86-94, 2010.

K. Hazlehurst, C. J. Wang, and M. Stanford, Evaluation of the stiffness characteristics of square pore CoCrMo cellular structures manufactured using laser melting technology for potential orthopaedic applications

, Mater. Des, vol.51, issue.1, pp.949-955, 2013.

G. T. Herman, Fundamentals of computerized tomography: image reconstruction from projections

E. Hernández-nava, C. J. Smith, F. Derguti, and S. Tammas-williams, References foams produced by additive manufacturing, Acta Mater, vol.15, issue.1, pp.387-395, 2009.

M. Houmard, Q. Fu, M. Genet, E. Saiz, and A. P. Tomsia, On the structural, mechanical, and biodegradation properties of HA/?-TCP robocast scaffolds, J. Biomed. Mater. Res., Part B, vol.101, issue.7, pp.1233-1242, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01196354

H. Y. Hsueh, Y. C. Huang, R. M. Ho, C. H. Lai, T. Makida et al., Nanoporous gyroid nickel from block copolymer templates via electroless plating, Adv. Mater, vol.23, pp.3041-3046, 2011.
DOI : 10.1002/adma.201100883

P. Hu, J. Yao, and Z. Chen, Analysis for composite zeolite/foam aluminum-water mass recovery adsorption refrigeration system driven by engine exhaust heat, Energy Convers. Manage, vol.50, issue.2, pp.255-261, 2009.
DOI : 10.1016/j.enconman.2008.09.022

L. Hu, R. Benitez, S. Basu, I. Karaman, and M. Radovic, Processing and characterization of porous Ti2AlC with controlled porosity and pore size, Acta Mater, vol.60, issue.18, pp.6266-6277, 2012.

I. Jeon, T. Asahina, K. J. Kang, S. Im, and T. J. Lu, Finite element simulation of the plastic collapse of closed-cell aluminum foams with X-ray computed tomography, Mech. Mater, vol.42, issue.3, pp.227-236, 2010.

N. Jha, D. P. Mondal, D. Majumdar, J. Badkul, A. Jha et al., Highly porous open cell Ti-foam using NaCl as temporary space holder through powder metallurgy route, Mater. Des, vol.47, issue.1, pp.810-819, 2013.
DOI : 10.1016/j.matdes.2013.01.005

B. Jiang, N. Zhao, C. Shi, and . Li-j, Processing of open cell aluminum foams with tailored porous morphology, Scr. Mater, vol.53, issue.6, pp.781-785, 2005.

B. Jiang, Z. Wang, and N. Zhao, Effect of pore size and relative density on the mechanical properties of open cell aluminum foams, Scr. Mater, vol.56, issue.2, pp.169-172, 2007.

W. Jiang, S. S. Sundarram, and W. Li,

, References Fabrication of microcellular metal foams with sphere template electrodeposition, Manuf. Lett, vol.2, issue.4, pp.118-121, 2014.

H. D. Jung, S. W. Yook, H. E. Kim, and Y. H. Koh, Fabrication of titanium scaffolds with porosity and pore size gradients by sequential freeze casting, Mater. Lett, vol.63, pp.1545-1547, 2009.

A. Jung, M. Wocker, Z. Chen, and H. Seibert,

, Microtensile testing of open-cell metal foams -Experimental setup, micromechanical properties, Mater. Des, vol.88, pp.1021-1030, 2015.

C. Kadar, E. Maire, A. Borbély, G. Peix, J. Lendvai et al.,

, X-ray tomography and finite element simulation of the indentation behavior of metal foams, Mater. Sci. Eng., A, issue.1, pp.321-325, 2004.

A. C. Kak and M. Slaney, Principles of computerized tomographic imaging, 1988.

J. H. Kim, D. Kim, M. G. Lee, and J. Lee,

, Multiscale analysis of open-cell aluminum foam for impact energy absorption, J. Mater

. Eng and . Perform, , vol.25, pp.3977-3984, 2016.

M. Kobayashi, H. Toda, Y. Kawai, T. Ohgaki, K. Uesugi et al.,

, High-density three-dimensional mapping of internal strain by tracking microstructural features, Acta Mater, vol.56, issue.10, pp.2167-2181, 2008.

G. W. Kooistra, V. S. Deshpande, and H. N. Wadley, Compressive behavior of age hardenable tetrahedral lattice truss structures made from aluminium, Acta Mater, vol.52, issue.14, pp.4229-4237, 2004.

C. Körner and R. F. Singer, Processing of metal foamsâ??challenges and opportunities, Adv. Eng. Mater, vol.2, issue.4, pp.159-165, 2000.

D. Lacroix, A. Chateau, M. P. Ginebra, and J. Planell,

, Micro-finite element models of bone tissue-engineering scaffolds, Biomaterials, vol.27, issue.30, pp.5326-5334, 2006.

J. Lachambre, E. Maire, J. Adrien, and D. Choqueuse,

, In situ observation of syntactic foams under hydrostatic pressure using X-ray tomography, Acta Mater, vol.61, issue.11, pp.4035-4043, 2013.

G. A. Lara-rodriguez, I. A. Figueroa, M. A. Suarez, O. Novelo-peralta, I. Alfonso et al., A replication-casting device for manufacturing open-cell Mg foams, J. Mater. Process. Technol, vol.243, pp.16-22, 2017.

L. Lefebvre, J. Kelber, L. Jierry, V. Ritleng, and D. Edouard,

, Polydopamine-coated open cell polyurethane foam as an efficient and easy-to-regenerate soft structured catalytic support (S2CS) for the reduction of dye, J. Environ. Chem. Eng, vol.5, pp.79-85, 2017.

N. Lenoir, M. Bornert, J. Desrues, P. Bésuelle, and G. Viggiani, Volumetric digital image correlation applied to X-ray microtomography images from triaxial compression tests on argillaceous rock, Strain, vol.43, issue.3, pp.193-205, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00541503

H. Li, S. M. Oppenheimer, S. I. Stupp, D. C. Dunand, and L. C. Brinson, Effects of pore morphology and bone ingrowth on mechanical properties of microporous titanium as an orthopaedic implant material, Mater. Trans, vol.45, issue.4, pp.1124-1131, 2004.

L. Li, P. Xue, Y. Chen, and H. S. Butt, Insight into cell size effects on quasi-static and dynamic compressive properties of 3D foams, Mater. Sci. Eng., A, vol.636, issue.1, pp.60-69, 2015.

Q. Li, L. Chen, J. Ding, J. Zhang, X. Li et al., Open-cell phenolic carbon foam and electromagnetic interference shielding properties, Carbon, vol.104, issue.1, pp.90-105, 2016.

X. Liu, M. N. Rahaman, G. E. Hilmas, and B. S. Bal, Mechanical properties of bioactive glass (13-93) scaffolds fabricated by robotic deposition for structural bone repair, Acta Biomater, vol.9, issue.6, pp.7025-7034, 2013.

A. Macchetta, I. G. Turner, and C. R. Bowen, Fabrication of HA/TCP scaffolds with a graded and porous structure using a camphenebased freeze-casting method, Acta Biomater, vol.5, issue.4, pp.1319-1327, 2009.

M. E. Babout, L. Buffière, J. Y. Fougeres, and R. , Recent results on 3D characterisation of microstructure and damage of metal matrix composites and a metallic foam using X-ray tomography, Mater. Sci. Eng., A, issue.1, pp.216-219, 2001.
URL : https://hal.archives-ouvertes.fr/hal-01538278

M. E. ,

, X-ray tomography applied to the characterization of cellular materials. Related finite element modeling problems, Compos. Sci. Technol, vol.63, issue.16, pp.2431-2443, 2003.

M. E. Gimenez, N. Sauvant-moynot, V. Sautereau, and H. ,

, X-ray tomography and three-dimensional image analysis of epoxy-glass syntactic foams, Philos. Trans. R. Soc., A, vol.364, pp.69-88, 1838.

M. E. Colombo, P. Adrien, J. Babout, L. Biasetto, and L. , Characterization of the morphology of cellular ceramics by 3D image processing of X-ray tomography, J. Eur. Ceram. Soc, vol.27, issue.4, pp.1973-1981, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00434154

M. E. ,

, X-ray tomography applied to the characterization of highly porous materials, Annu. Rev. Mater. Res, vol.42, pp.163-178, 2012.

M. E. Adrien, J. Petit, and C. , Structural characterization of solid foams, C. R. Phys, vol.15, pp.674-682, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01538209

C. F. Martin, C. Josserond, L. Salvo, J. J. Blandin, P. Cloetens et al., Characterisation by X-ray micro-tomography of cavity coalescence during superplastic deformation, Scr. Mater, vol.42, issue.4, pp.375-381, 2000.

J. P. Masse, L. Salvo, D. Rodney, Y. Brechet, and O. Bouaziz, Influence of relative density on the architecture and mechanical behaviour of a steel metallic wool, Scr. Mater, vol.54, issue.7, pp.1379-1383, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00141503

S. A. Mcdonald, G. Dedreuil-monet, Y. T. Yao, A. Alderson, S. Meille et al., Mechanical properties of porous ceramics in compression: on the transition between elastic, brittle, and cellular behavior, J. Eur. Ceram. Soc, vol.32, issue.15, pp.3959-3967, 2012.

M. A. Mendes, S. Ray, and D. Trimis, Evaluation of effective thermal conductivity of porous foams in presence of arbitrary working fluid, Int. J. Therm. Sci, vol.79, pp.260-265, 2014.

N. Michailidis, F. Stergioudi, H. Omar, D. Papadopoulos, and D. N. Tsipas, Experimental and FEM analysis of the material response of porous metals imposed to mechanical loading, Colloids Surf., A, vol.382, pp.124-131, 2011.

P. Miranda, A. Pajares, E. Saiz, A. P. Tomsia, and F. Guiberteau, Mechanical properties of calcium phosphate scaffolds fabricated by robocasting, J. Biomed. Mater. Res., Part A, vol.85, issue.1, pp.218-227, 2008.
DOI : 10.1002/jbm.a.31587

T. Miyoshi, M. Itoh, S. Akiyama, and A. Kitahara, Alporas aluminum foam: production process, properties, and applications, Adv. Eng. Mater, vol.2, issue.4, pp.179-183, 2000.
DOI : 10.1002/(sici)1527-2648(200004)2:4<179::aid-adem179>3.0.co;2-g

M. Modest,

R. Transfer, , 2013.

L. Montanaro, Y. Jorand, G. Fantozzi, and A. Negro, Ceramic foams by powder processing, J. Eur. Ceram. Soc, vol.18, issue.9, pp.1339-1350, 1998.
DOI : 10.1016/s0955-2219(98)00063-6

N. Murray,

, Microstructure evolution during solid-state foaming of titanium, Compos. Sci. Technol, vol.63, issue.16, pp.2311-2316, 2003.

L. E. Murr, K. N. Amato, S. J. Li, Y. X. Tian, and X. Y. Cheng, Gaytan References Next generation orthopaedic implants by additive manufacturing using electron beam melting, Int. J. Biomater, vol.2012, issue.1, p.245727, 2012.
DOI : 10.1155/2012/245727

URL : http://downloads.hindawi.com/journals/ijbm/2012/245727.pdf

L. E. Mur-12b]-murr, S. M. Gaytan, D. A. Ramirez, E. Martinez, J. Hernandez et al., Metal fabrication by additive manufacturing using laser and electron beam melting technologies, J. Mater. Sci. Technol, vol.28, issue.1, pp.1-14, 2012.

M. Napolitano, R. Romano, and R. Dragonetti,

, Open-cell foams for thermoacoustic applications. Energy, vol.138, pp.147-156, 2017.

T. G. Nieh, K. Higashi, and J. Wadsworth, Effect of cell morphology on the compressive properties of open-cell aluminum foams

, Mater. Sci. Eng., A, vol.283, pp.105-110, 2000.

Z. Nie, Y. Lin, and Q. Tong,

, Modeling structures of open cell foams, Comput. Mater. Sci, vol.131, pp.160-169, 2017.

M. Y. N&apos;jock, E. Camposilvan, L. Gremillard, E. Maire, D. Fabrègue et al., Characterization of 100Cr6 lattice structures produced by robocasting, Mater. Des, vol.121, pp.345-354, 2017.

I. H. Oh, N. Nomura, and S. Hanada,

, Microstructures and mechanical properties of porous titanium compacts prepared by powder sintering, Mater. Trans, vol.43, issue.3, pp.443-446, 2002.

Y. Okanoue, M. Ikeuchi, R. Takemasa, T. Tani, T. Matsumoto et al., Comparison of in vivo bioactivity and compressive strength of a novel superporous hydroxyapatite with beta-tricalcium phosphates, Arch. Orthop. Unfall-Chir, vol.132, issue.11, pp.1603-1610, 2012.

O. B. Olurin, N. A. Fleck, and M. F. Ashby, Deformation and fracture of aluminium foams, Mater. Sci. Eng., A, vol.291, pp.136-146, 2000.

J. Parthasarathy, B. Starly, S. Raman, and A. Christensen, Mechanical evaluation of porous titanium (Ti6Al4V) structures with electron beam melting (EBM), J. Mech. Behav. Biomed. Mater, vol.3, issue.3, pp.249-259, 2010.

E. Pardieu, N. T. Chau, T. Dintzer, T. Romero, D. Favier et al.,

, Polydopamine-coated open cell polyurethane foams as an inexpensive, flexible yet robust catalyst support: a proof of concept, Chem. Commun, vol.52, pp.4691-4693, 2016.

V. Paserin, S. Marcuson, J. Shu, and D. S. Wilkinson, CVD technique for Inco nickel foam production, Adv. Eng. Mater, vol.6, issue.6, pp.454-459, 2004.

F. Pecqueux, F. Tancret, N. Payraudeau, and J. M. Bouler, Influence of microporosity and macroporosity on the mechanical properties of biphasic calcium phosphate bioceramics: modelling and experiment, J. Eur. Ceram. Soc, vol.30, issue.4, pp.819-829, 2010.
URL : https://hal.archives-ouvertes.fr/hal-02140591

C. Petit, S. Meille, and E. Maire, Cellular solids studied by X-ray tomography and finite element modeling -a review, J. Mater. Res, vol.28, pp.2191-2201, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01538214

C. Petit, E. Maire, S. Meille, J. Adrien, S. Kurosu et al., CoCrMo cellular structures made by electron beam melting studied by local tomography and finite element modelling, Mater. Charact, vol.116, issue.1, pp.48-54, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01538192

C. Petit, E. Maire, S. Meille, and J. Adrien, Two-scale study of the fracture of an aluminum foam by X-ray tomography and finite element modeling, Mater. Des, vol.120, pp.117-127, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01538187

C. Petit, E. Maire, S. Meille, and J. Adrien, Two-scale study of the fracture of an aluminum foam by X-ray tomography and finite element modeling, Materials & Design, vol.120, pp.117-127, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01538187

C. Petit, S. Meille, E. Maire, L. Gremillard, J. Adrien et al., Fracture behavior of robocast HA/?-TCP scaffolds studied by X-ray tomography and References finite element modeling, J. Eur. Ceram. Soc, vol.37, pp.1735-1745, 2017.

D. V. Pugh, A. Dursun, and S. G. Corcoran, Formation of nanoporous platinum by selective dissolution of Cu from Cu0

, J. Mater. Res, vol.18, issue.1, pp.216-221, 2003.

D. T. Queheillalt, D. D. Hass, D. J. Sypeck, and H. N. Wadley, Synthesis of open-cell metal foams by templated directed vapor deposition, J. Mater. Res, vol.16, issue.4, pp.1028-1036, 2001.

D. A. Ramirez, L. E. Murr, S. J. Li, Y. X. Tian, E. Martinez et al., Open-cellular copper structures fabricated by additive manufacturing using electron beam melting, Mater. Sci. Eng., A, vol.528, pp.5379-5386, 2011.

C. Renghini, A. Giuliani, S. Mazzoni, F. Brun, E. Larsson et al.,

, Microstructural characterization and in vitro bioactivity of porous glass-ceramic scaffolds for bone regeneration by synchrotron radiation X-ray microtomography, J. Eur. Ceram. Soc, vol.33, issue.9, pp.1553-1565, 2013.

S. Rivera, M. Panera, D. Miranda, B. Varela, and F. J. , Development of dense and cellular solids in crcomo alloy for orthopaedic applications

P. Eng, , vol.10, pp.2979-2987, 2011.

A. P. Roberts and E. J. Garboczi, Elastic moduli of model random three-dimensional closed-cell cellular solids, Acta Mater, vol.49, issue.2, pp.189-197, 2001.

A. P. Roberts and E. J. Garboczi, Computation of the linear elastic properties of random porous materials with a wide variety of microstructure, Proc. R. Soc. London, Ser.A, vol.458, pp.1033-1054, 2002.

I. Rosenthal, A. Stern, and N. Frage,

, Microstructure and mechanical properties of AlSi10Mg parts produced by the laser beam additive manufacturing, AM) technology. Metallogr., Microstruct., Anal, vol.3, issue.6, pp.448-453, 2014.

S. Roux, F. Hild, P. Viot, and D. Bernard,

, Three-dimensional image correlation from X-ray computed tomography of solid foam, Composites, Part A, vol.39, issue.8, pp.1253-1265, 2008.

J. L. Rowsell and O. Yaghi,

, Metal-organic frameworks: A new class of porous materials, Microporous Mesoporous Mater, vol.73, issue.2, pp.3-14, 2004.

E. Saenz, P. S. Baranda, and J. Bonhomme, Shear properties on aluminum metal foams prepared by the melt route, MRS Proc, vol.521, issue.1, p.197, 1998.

E. Saiz, L. Gremillard, G. Menendez, P. Miranda, K. Gryn et al., Preparation of porous hydroxyapatite scaffolds, Mater. Sci. Eng., C, vol.27, issue.3, pp.546-550, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00434156

C. Sandino, J. A. Planell, and D. Lacroix,

, A finite element study of mechanical stimuli in scaffolds for bone tissue engineering, J. Biomech, vol.41, issue.5, pp.1005-1014, 2008.

A. Sanchez-martinez, A. Cruz, M. González-nava, and M. A. Suárez, Main process parameters for manufacturing open-cell Zn-22Al-2Cu foams by the centrifugal infiltration route and mechanical properties, Mater. Des, vol.108, issue.1, pp.494-500, 2016.

N. Sarkar, J. G. Park, S. Mazumder, A. Pokhrel, C. G. Aneziris et al., Al2TiO5-mullite porous ceramics from particle stabilized wet foam, Ceram. Int, vol.41, issue.5, pp.6306-6311, 2015.

M. Scheffler and P. Colombo, Cellular ceramics: structure, manufacturing, properties and applications, 2005.

T. Schlordt, S. Schwanke, F. Keppner, T. Fey, N. Travitzky et al., Robocasting of alumina hollow filament lattice structures, J. Eur. Ceram. Soc, vol.33, pp.3243-3248, 2013.

T. B. Sercombe, X. Xu, V. J. Challis, R. Green, S. Yue et al., Failure modes in high strength and stiffness to weight scaffolds produced by selective laser melting, Mater. Des, vol.67, pp.501-508, 2015.

K. Shahzad, J. Deckers, Z. Zhang, J. P. Kruth, and J. Vleugels, Additive manufacturing of zirconia parts by indirect selective laser sintering, J. Eur. Ceram. Soc, vol.34, issue.1, pp.81-89, 2014.

C. Shuai, P. Li, J. Liu, and S. Peng, Optimization of TCP/HAP ratio for better properties of calcium phosphate scaffold via selective laser sintering, Mater. Charact, vol.77, pp.23-31, 2013.

A. E. Simone and L. J. Gibson, Effects of solid distribution on the stiffness and strength of metallic foams, Acta Mater, vol.46, issue.6, pp.2139-2150, 1998.

A. E. Simonea and L. J. Gibsonb, Aluminum foams produced by liquid-state processes, Acta Mater, vol.46, issue.9, pp.3109-3123, 1998.

R. Singh, P. D. Lee, T. C. Lindley, C. Kohlhauser, C. Hellmich et al., Characterization of the deformation behavior of intermediate porosity interconnected Ti foams using micro-computed tomography and direct finite element modeling, Acta Biomater, vol.6, issue.6, pp.2342-2351, 2010.

M. Snajdar-musa, G. Mari?, and K. Grilec, Nanoindentation of closed cell Al alloy foams subjected to different heat treatment regimes, Composites, Part B, vol.89, issue.1, pp.383-387, 2016.

Z. Song and S. Nutt, Expansion mechanisms in foaming aluminum melts, Metall. Mater. Trans. A, vol.39, issue.9, pp.2215-2227, 2008.
DOI : 10.1007/s11661-008-9573-7

B. Soni and S. Biswas, References of 6061-T6 Al alloy fabricated by pressurized salt infiltration casting method, Mater. Charact, vol.130, pp.198-203, 2017.
DOI : 10.1016/j.matchar.2017.06.008

S. R. Stock, MicroComputed tomography: methodology and applications, 2009.

A. R. Studart, U. T. Gonzenbach, E. Tervoort, and L. J. Gauckler, Processing routes to macroporous ceramics: a Review, J. Am. Ceram. Soc, vol.89, issue.6, pp.1771-1789, 2006.
DOI : 10.1111/j.1551-2916.2006.01044.x

URL : http://www.nonmet.mat.ethz.ch/research/speru/publications/01_Processing_Routes_to_Macroporous_Ceramics.pdf

Y. Sun, Q. M. Li, T. Lowe, S. A. Mcdonald, and P. J. Withers, Investigation of strain-rate effect on the compressive behaviour of closed-cell aluminium foam by 3D image-based modelling, Mater. Des, vol.89, pp.215-224, 2016.

Y. Sun, X. Zhang, Z. Shao, and Q. Li,

, Image-based correlation between the meso-scale structure and deformation of closed-cell foam, Mater. Sci. Eng., A, vol.688, pp.27-39, 2017.

A. Szlancsik, B. Katona, K. Bobor, K. Májlinger, and I. Orbulov, Compressive behaviour of aluminium matrix syntactic foams reinforced by iron hollow spheres, Mater. Des, vol.83, issue.1, pp.230-237, 2015.
DOI : 10.1016/j.matdes.2015.06.011

URL : http://real.mtak.hu/26140/7/compressive_behaviour_of_aluminium_matrix_syntactic_foams.pdf

A. Takaichi, . Suyalatu, T. Nakamoto, N. Joko, N. Nomura et al.,

, Microstructures and mechanical properties of Co-29Cr-6Mo alloy fabricated by selective laser melting process for dental applications, J. Mech. Behav. Biomed. Mater, vol.21, issue.1, pp.67-76, 2013.

S. Terzi, L. Salvo, M. Suéry, N. Limodin, J. Adrien et al., In situ X-ray tomography observation of inhomogeneous deformation in semi-solid aluminium alloys, Scr. Mater, vol.61, issue.5, pp.449-452, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01668898

C. I. Thomson, M. J. Worswick, A. K. Pilkey, D. J. Lloyd, and G. Burger, Modeling void nucleation and growth within periodic clusters of particles, J. Mech. References Phys. Solids, vol.47, issue.1, pp.1-26, 1998.
DOI : 10.1016/s0022-5096(98)00088-x

W. C. Thomas and R. R. Zarr, Thermal response simulation for tuning PID controllers in a 1016 mm guarded hot plate apparatus, ISA Trans, vol.50, issue.3, pp.504-512, 2011.
DOI : 10.1016/j.isatra.2011.02.001

X. Tian, D. Li, and J. Heinrich, Rapid prototyping of porcelain products by layer-wise slurry deposition (LSD) and direct laser sintering, Rapid Prototyp. J, vol.18, issue.5, pp.362-373, 2012.
DOI : 10.1108/13552541211250364

H. Toda, T. Kobayashi, M. Niinomi, T. Ohgaki, M. Kobayashi et al., Quantitative assessment of microstructure and its effects on compression behavior of aluminum foams via high-resolution synchrotron X-ray tomography, Metall. Mater. Trans. A, vol.37, issue.4, pp.1211-1219, 2006.

T. Tomita, S. Kawasaki, and K. Okada,

, A novel preparation method for foamed silica ceramics by sol-gel reaction and mechanical foaming, J. Porous Mater, vol.11, issue.2, pp.107-115, 2004.

S. Tomyangkul, P. Pongmuksuwan, and W. Harnnarongchai, Chaochanchaikul K. Enhancing sound absorption properties of open-cell natural rubber foams with treated bagasse and oil palm fibers, J. Reinf. Plast. Compos, vol.35, issue.8, pp.688-697, 2016.

J. M. Tulliani, L. Montanaro, T. J. Bell, and M. Swain,

, Semiclosed-cell mullite foams: preparation and macro-and micromechanical characterization, J. Am. Ceram. Soc, vol.82, issue.4, pp.961-968, 1999.

N. Tuncer, L. Salvo, E. Maire, and G. Arslan, A preliminary study on cell wall architecture of titanium foams, M. R. S. Proc, vol.1188, issue.1, p.408, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01538249

N. Tuncer, G. Arslan, E. Maire, and L. Salvo, Influence of cell aspect ratio on architecture and compressive strength of titanium foams
URL : https://hal.archives-ouvertes.fr/hal-00632698

, Mater. Sci. Eng., A, vol.528, pp.7368-7374, 2011.

, Tvergaard V. References Fract, vol.17, issue.4, pp.389-407, 1981.

V. Tvergaard,

, On localization in ductile materials containing spherical voids, Int. J. Fract, vol.18, issue.4, pp.237-252, 1982.

V. Tvergaard and A. Needleman, Analysis of the cup-cone fracture in a round tensile bar, Acta Metall, vol.32, issue.1, pp.157-169, 1984.

D. Ulrich, B. Van-rietbergen, H. Weinans, and P. Rüegsegger,

, Finite element analysis of trabecular bone structure: a comparison of image-based meshing techniques, J. Biomech, vol.31, pp.1187-1192, 1998.

S. Van-bael, G. Kerckhofs, M. Moesen, G. Pyka, J. Schrooten et al.,

, Micro-CT-based improvement of geometrical and mechanical controllability of selective laser melted Ti6Al4V porous structures, Mater. Sci. Eng., A, vol.528, pp.7423-7431, 2011.

E. Verhulp, B. Van-rietbergen, and R. Huiskes,

, A three-dimensional digital image correlation technique for strain measurements in microstructures, J. Biomech, vol.37, issue.9, pp.1313-1320, 2004.

M. Vesenjak, C. Veyhl, and T. Fiedler, Analysis of anisotropy and strain rate sensitivity of open-cell metal foam, Mater. Sci. Eng., A, vol.541, issue.1, pp.105-109, 2012.

C. Veyhl, I. V. Belova, G. E. Murch, A. Öchsner, and T. Fiedler, On the mesh dependence of non-linear mechanical finite element analysis, Finite Elem. Anal. Des, vol.46, issue.5, pp.371-378, 2010.

S. Voltolina, P. Marín, F. V. Díez, and S. Ordóñez,

, Open-cell foams as beds in multiphase reactors: residence time distribution and mass transfer, Chem. Eng. J, vol.316, pp.323-331, 2017.

V. Hagen, H. Bleck, and W. ,

. Compressive, tensile and shear testing of melt-foamed aluminium, MRS Proc, vol.521, issue.1, p.199, 1998.

E. Vorndran, M. Klarner, U. Klammert, L. M. Grover, S. Patel et al., 3D powder printing of ?-tricalcium phosphate ceramics using different strategies
DOI : 10.1002/adem.200800179

. Eng and . Mater, , vol.10, pp.67-71, 2008.

T. Wada, K. Yubuta, A. Inoue, and H. Kato,

, Dealloying by metallic melt, Mater. Lett, vol.65, issue.7, pp.1076-1078, 2011.

X. Wang, J. M. Ruan, and Q. Y. Chen, Effects of surfactants on the microstructure of porous ceramic scaffolds fabricated by foaming for bone tissue engineering, Mater. Res. Bull, vol.44, issue.6, pp.1275-1279, 2009.

X. C. Xia, X. W. Chen, Z. Zhang, X. Chen, W. M. Zhao et al., Effects of porosity and pore size on the compressive properties of closed-cell Mg alloy foam, J. Magnesium Alloys, vol.1, issue.4, pp.330-335, 2013.

X. H. Yang, J. X. Bai, H. B. Yan, J. J. Kuang, T. J. Lu et al.,

, An analytical unit cell model for the effective thermal conductivity of high porosity open-cell metal foams, Transp. Porous Media, vol.102, issue.3, pp.403-426, 2014.

X. Yao, S. Tan, and D. Jiang,

, Improving the properties of porous hydroxyapatite ceramics by fabricating methods, J. Mater. Sci, vol.40, pp.4939-4942, 2005.

Y. Yao, H. Wu, and Z. Liu,

, A new prediction model for the effective thermal conductivity of high porosity open-cell metal foams, Int. J. Therm. Sci, vol.97, pp.56-67, 2015.

S. Youssef, E. Maire, and R. Gaertner,

, Finite element modelling of the actual structure of cellular materials determined by X-ray tomography, Acta Mater, vol.53, issue.3, pp.719-730, 2005.

C. J. Yu, H. H. Eifert, J. Banhart, and J. Baumeister, Metal foaming by a powder metallurgy method: production, properties and applications, Mater. Res. Innovations, vol.2, issue.3, pp.181-188, 1998.
DOI : 10.1007/s100190050082

Y. Zhang, L. Hu, J. Han, and Z. Jiang, References Freeze casting of aqueous alumina slurries with glycerol for porous ceramics, Ceram. Int, vol.36, issue.2, pp.617-621, 2010.

C. Y. Zhao, W. Lu, and Y. Tian, Heat transfer enhancement for thermal energy storage using metal foams embedded within phase change materials (PCMs), Sol. Energy, vol.84, issue.8, pp.1402-1412, 2010.
DOI : 10.1115/1.802908.paper117

URL : http://wrap.warwick.ac.uk/5399/1/WRAP_Tian_Solar%20Energy%20%28Accepted%20Version%29%2029-March-2010.pdf

L. Zhang, J. M. Ferreira, S. Olhero, L. Courtois, T. Zhang et al., Modeling the mechanical properties of optimally processed cordierite-mullite-alumina ceramic foams by X-ray computed tomography and finite element analysis, Acta Mater, vol.60, issue.10, pp.4235-4246, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01538225

T. Zhang, E. Maire, J. Adrien, P. R. Onck, and L. Salvo, Local tomography study of the fracture of an ERG metal foam, Adv. Eng. Mater, vol.15, issue.8, pp.767-772, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00933917

X. C. Zhang, F. Scarpa, R. Mchale, A. P. Limmack, and H. X. Peng, Carbon nano-ink coated open cell polyurethane foam with micro-architectured multilayer skeleton for damping applications, RSC Adv, vol.6, pp.80334-80341, 2016.
DOI : 10.1039/c6ra15868d

URL : https://research-information.bristol.ac.uk/files/82428207/RSC_Advances_plain.pdf

J. Zhou, C. Mercer, and W. Soboyejo,

, An investigation of the microstructure and strength of open-cell 6101 aluminum foams

, Metall. Mater. Trans. A, vol.33, issue.5, pp.1413-1427, 2002.

J. Zhou, S. Allameh, and W. Soboyejo,

, Microscale testing of the strut in open cell aluminum foams, J. Mater. Sci, vol.40, issue.2, pp.429-439, 2005.

H. Zhu, B. V. Sankar, R. T. Haftka, S. Venkataraman, and M. Blosser, Optimization of functionally graded metallic foam insulation under transient heat transfer conditions, Struct. Multidiscipl. Optim, vol.28, issue.5, pp.349-355, 2004.