W. A. Braunecker and K. Matyjaszewski, Prog. Polym. Sci, vol.32, issue.1, p.93, 2007.

M. K. Georges, R. P. Veregin, P. M. Kazmaier, and G. K. Hamer, Macromolecules, vol.26, issue.11, p.2987, 1993.

R. P. Veregin, M. K. Georges, P. M. Kazmaier, and G. K. Hamer, Macromolecules, vol.26, issue.20, p.5316, 1993.

J. Wang and K. Matyjaszewski, J. Am. Chem. Soc, vol.117, issue.20, p.5614, 1995.

J. Hui, Z. Dong, Y. Shi, Z. Fu, W. Yang et al., , vol.4, p.55529, 2014.

J. Hua, X. Li, Y. Li, L. Xu, and Y. Li, J. Appl. Polym. Sci, vol.104, issue.6, p.3517, 2007.

R. Wei, Y. Luo, and Z. Li, Polymer, vol.2010, issue.17, p.3879

L. Hlalele, D. R. .-d`hooge, C. J. Dürr, A. Kaiser, S. Brandau et al., Macromolecules, vol.47, issue.9, p.2820, 2014.

J. Zhu, D. Zhou, X. Zhu, and G. Chen, J. Polym. Sci., Part A: Polym. Chem, issue.10, p.2558, 2004.

D. H. Solomon, E. Rizzardo, and P. Cacioli, Commonwealth Scientific And Industrial Research Organization), Eur. Pat. Appl. 0135280A3, 1986.

T. Fukuda, T. Terauchi, A. Goto, K. Ohno, Y. Tsujii et al., Macromolecules, vol.29, issue.20, p.6393, 1996.

J. Nicolas, Y. Guillaneuf, C. Lefay, D. Bertin, D. Gigmes et al., Prog. Polym. Sci, vol.2013, issue.1, p.63

R. B. Grubbs, Polym. Rev, vol.51, issue.2, p.104, 2011.

M. Maric, Nitroxide Mediated Polymerization: From Fundamentals to Applications in Materials Science

D. Gigmes, The Royal Society of Chemistry: Cambridge, pp.153-198, 2016.

D. Benoit, V. Chaplinski, R. Braslau, and C. J. Hawker, J. Am. Chem. Soc, p.3904, 1999.

D. Benoit, S. Grimaldi, S. Robin, J. Finet, P. Tordo et al., J. Am. Chem. Soc, vol.122, issue.25, p.5929, 2000.

M. Rodlert, E. Harth, I. Rees, and C. J. Hawker, J. Polym. Sci., Part A: Polym. Chem, p.4749, 2000.

C. Cheng, K. Qi, E. Khoshdel, and K. L. Wooley, J. Am. Chem. Soc, vol.128, issue.21, p.6808, 2006.

N. L. Hill and R. Braslau, Macromolecules, vol.38, issue.22, p.9066, 2005.

J. Ruehl, A. Nilsen, S. Born, P. Thoniyot, L. P. Xu et al., Polymer, vol.48, issue.9, p.2564, 2007.

J. K. Wegrzyn, T. Stephan, R. Lau, and R. B. Grubbs, J. Polym. Sci., Part A: Polym. Chem, issue.14, p.2977, 2005.

A. Sundararaman, T. Stephan, and R. B. Grubbs, J. Am. Chem. Soc, vol.130, issue.37, p.12264, 2008.

Y. Cai, K. B. Aubrecht, and R. B. Grubbs, J. Am. Chem. Soc, vol.133, issue.4, p.1058, 2011.

S. Harrisson, P. Couvreur, and J. Nicolas, Macromolecules, vol.44, issue.23, p.9230, 2011.

A. Métafiot, Y. Kanawati, J. Gérard, B. Defoort, and M. Mari?, Macromolecules, vol.2017, issue.8, p.3101

A. Moayeri, B. Lessard, and M. Mari?, Polym. Chem, 2011.

C. Zhang and M. Mari?, Polymers, vol.2011, issue.3, p.1398

V. Consolante and M. Mari?, J. Appl. Polym. Sci, vol.127, p.3645, 2013.

J. Vinas, N. Chagneux, D. Gigmes, T. Trimaille, A. Favier et al., Polymer, vol.49, issue.17, p.3639, 2008.

C. Farcet, J. Belleney, B. Charleux, and R. Pirri, Macromolecules, vol.35, issue.13, p.4912, 2002.

C. Farcet, B. Charleux, and R. Pirri, Macromolecules, vol.34, issue.12, p.3823, 2001.

J. Nicolas, C. Dire, L. Mueller, J. Belleney, B. Charleux et al., Macromolecules, vol.39, issue.24, p.8274, 2006.

J. Nicolas, S. Brusseau, and B. Charleux, J. Polym. Sci., Part A: Polym. Chem, issue.1, p.34, 2010.

D. L. Trumbo, Polym. Bull, p.629, 1993.

P. Sarkar, A. K. Bhowmick, and . Adv, , vol.4, p.61343, 2014.

S. Georges, M. Bria, P. Zinck, and M. Visseaux, Polymer, vol.55, p.3869, 2014.

B. Lessard and M. Mari?, Macromolecules, p.7881, 2008.

C. Lefay, J. Belleney, B. Charleux, O. Guerrret, and S. Magnet, Macromol. Rapid Commun, vol.25, issue.13, p.1215, 2004.

L. Couvreur, B. Charleux, O. Guerret, and S. Magnet, Macromol. Chem. Phys, vol.204, issue.17, p.2055, 2003.

B. Lessard, S. Schmidt, and M. Maric, Macromolecules, p.3446, 2008.

B. Lessard, A. Graffe, and M. Maric, Macromolecules, vol.40, p.9284, 2007.

C. Dire, J. Belleney, J. Nicolas, D. Bertin, S. Magnet et al., J. Polym. Sci., Part A: Polym. Chem, vol.46, issue.18, p.6333, 2008.

Q. Ma and K. L. Wooley, J. Polym. Sci., Part A: Polym. Chem, vol.38, issue.S1, p.4805, 2000.

D. Benoit, E. Harth, P. Fox, R. M. Waymouth, and C. J. Hawker, Macromolecules, vol.33, p.363, 2000.

E. M. Glebov, L. G. Krishtopa, V. Stepanov, and L. N. Krasnoperov, J. Phys. Chem. A, p.9427, 2001.

C. H. Hornung, M. A. Alvarez-diéguez, T. M. Kohl, and J. Tsanaktsidis, Beilstein J. Org. Chem, p.120, 2017.

F. Chauvin, P. Dufils, D. Gigmes, Y. Guillaneuf, S. R. Marque et al., Macromolecules, vol.39, issue.16, p.5238, 2006.

S. Liu, S. Srinivasan, M. C. Grady, M. Soroush, and A. M. Rappe, Int. J. Quant. Chem, vol.114, p.345, 2014.

J. Barth, M. Buback, P. Hesse, and T. Sergeeva, Macromolecules, p.4023, 2010.

B. Wenn and T. Junkers, Macromol. Rapid Commun, vol.37, p.781, 2016.

E. Cadova, J. Dybal, J. Kriz, P. Vlcek, M. Janata et al., Macromol. Chem. Phys, 1657.

B. Lessard, C. Tervo, and M. Maric, Macromol. React. Eng, vol.3, p.245, 2009.

Y. Guillaneuf, D. Gigmes, S. R. Marque, P. Astolfi, L. Greci et al., Macromolecules, vol.40, p.3108, 2007.

B. Charleux, J. Nicolas, and O. Guerret, Macromolecules, vol.38, p.5485, 2005.

B. Lessard, E. Ling, M. Morin, and M. Mari?, J. Polym. Sci., Part A: Polym. Chem, p.1033, 2011.

J. Nicolas, L. Mueller, C. Dire, K. Matyjaszewski, and B. Charleux, Macromolecules, vol.42, issue.13, p.4470, 2009.

G. Gryn'ova, C. Y. Lin, and M. L. Coote, Polym. Chem, vol.2013, issue.13, p.3744

D. Contreras-lopez, M. Albores-velasco, and E. Saldivar-guerra, J. Appl. Polym. Sci, 2017.

G. Odian, Principles of Polymerization, pp.466-505, 2004.

M. Fineman and S. D. Ross, J. Polym. Sci, vol.1950, issue.2, p.259

T. Kelen and F. Tu?do?s, J. Macromol. Sci., Chem, vol.1975, issue.1, p.1

P. W. Tidwell and G. A. Mortimer, J. Polym. Sci., Part A: Gen. Pap, vol.3, p.369, 1965.

F. R. Mayo and F. M. Lewis, J. Am. Chem. Soc, vol.66, issue.9, p.1594, 1944.

K. A. Rusakova, I. M. Kuznetsova, N. A. Vargasova, M. F. Margaritova, S. G. Alekseyeva et al., Vysokomol. Soyed, p.2815, 1974.

D. Contreras-lopez, E. Saldivar-guerra, and G. Luna-barcenas, Eur. Polym. J, p.1760, 2013.

N. Kamachi and A. Kajiwara, Macromolecules, vol.29, issue.7, p.2378, 1996.

M. Morton, P. P. Salatiello, and H. Landfield, J. Polym. Sci, vol.1952, issue.3, p.279

S. Beuermann, M. Buback, T. P. Davis, N. Garcia, R. G. Gilbert et al., Macromol. Chem. Phys, vol.204, issue.10, p.1338, 2003.

K. Liang, M. Dossi, D. Moscatelli, and R. A. Hutchinson, Macromolecules, vol.42, p.7736, 2009.

B. Lessard, C. Tervo, S. Wahl, F. J. Clerveaux, K. K. Tang et al., Macromolecules, vol.2010, issue.2, p.868

W. J. Runckel and L. A. Goldblatt, Ind. Eng. Chem, vol.38, issue.7, p.749, 1946.

K. D. Safa and M. H. Nasirtabrizi, Polymer Bulletin, vol.57, p.293, 2006.

M. Gordon and J. S. Taylor, J. Chem. Tech. and Biotech, vol.1952, issue.9, p.493

T. G. Fox, Bull. Am. Phys. Soc, vol.1, p.123, 1956.

E. A. Dimarzio and J. H. Gibbs, J. Polym. Sci., Part A: Polym. Chem, issue.136, p.121, 1959.

L. A. Wood, J. Polym. Sci., Part A: Polym. Chem, vol.28, issue.117, p.319, 1958.

R. A. , Orwoll In Physical Properties of Polymers Handbook

J. E. Mark, , pp.93-101, 2007.

D. Guseva, P. Komarov, and A. V. Lyulin, J. Chem. Phy, p.114903, 2014.

P. Claudy, J. M. Létoffé, Y. Camberlain, and J. P. Pascault, Polymer Bulletin, vol.9, p.208, 1983.

P. J. Flory, Principles of Polymer Chemistry

P. J. Flory, , pp.541-594, 1975.

J. B. Rosenholm, Advances in Colloid and Interface Science, vol.146, p.31, 2009.

E. Yara-varon, A. S. Fabiano-tixier, M. Balcells, R. Canela-garayoa, A. Bily et al., , 2016.

C. M. Hansen, In Hansen Solubility Parameters, A User's Handbook, pp.1-26, 2007.

E. A. Manias;-l and . Utracki, Polymer Blends Handbook

J. S. Higgins, J. E. Lipson, and R. P. White, Phil. Trans. R. Soc. A, p.1009, 2010.

M. Benaglia, A. Alberti, L. Giorgini, F. Magnoni, and S. Tozzi, Polym. Chem, 2013.

M. Mertoglu, S. Garnier, A. Laschewsky, K. Skrabania, and J. Storsberg, Polymer, vol.46, issue.18, p.7726, 2005.

R. P. Quirk, ;. H. Zhuo;-s, ;. Y. Jang, and . Lee,

G. Lizarraga, In Applications of Anionic Polymerization Research, pp.2-27, 1998.

H. Elias, Macromolecules: Synthesis, Materials, and Technology, vol.2

H. Elias and E. , , vol.20, pp.681-736, 1984.

J. Chiefari, Y. Chong, F. Ercole, J. Krstina, J. Jeffery et al., Macromolecules, p.5559, 1998.

W. A. Braunecker and K. Matyjaszewski, Prog. Polym. Sci, vol.32, issue.1, p.93, 2007.

M. K. Georges, R. P. Veregin, P. M. Kazmaier, and G. K. Hamer, Macromolecules, vol.26, issue.11, p.2987, 1993.

R. P. Veregin, M. K. Georges, P. M. Kazmaier, and G. K. Hamer, Macromolecules, vol.26, issue.20, p.5316, 1993.

J. Wang and K. Matyjaszewski, J. Am. Chem. Soc, vol.117, issue.20, p.5614, 1995.

D. H. Solomon, E. Rizzardo, and P. Cacioli, Commonwealth Scientific and Industrial Research Organization), Eur. Pat. Appl. 0135280A3, 1986.

G. Moad,

E. Rizzardo, Nitroxide Mediated Polymerization: From Fundamentals to Applications in Materials Science

D. Gigmes, The Royal Society of Chemistry: Cambridge, pp.1-44, 2016.

J. Nicolas, Y. Guillaneuf, C. Lefay, D. Bertin, D. Gigmes et al., Prog. Polym. Sci, vol.2013, issue.1, p.63

J. , Drobny In Handbook of Thermoplastic Elastomers

J. G. Drobny, Plastics Design Library: Norwich, pp.161-178, 2007.

R. C. Bening;-w and . L. Korcz;-d, Handlin In Modern Styrenic Polymers: Polystyrenes and Styrenic Copolymers, pp.463-500, 2003.

J. L. Pradel, B. Ameduri, and B. Boutevin, Macromol. Chem. Phys, 1999.

J. L. Pradel, B. Boutevin, and B. Ameduri, J. Polym. Sci., Part A: Polym. Chem, p.3293, 2000.

B. Keoshkerian, M. Georges, M. Quinlan, R. Veregin, and B. Goodbrand, Macromolecules, p.7559, 1998.

D. Benoit, E. Harth, P. Fox, R. M. Waymouth, and C. J. Hawker, Macromolecules, vol.33, p.363, 2000.

C. Cheng, K. Qi, E. Khoshdel, and K. L. Wooley, J. Am. Chem. Soc, vol.128, p.6808, 2006.

J. K. Wegrzyn, T. Stephan, R. Lau, and R. B. Grubbs, J. Polym. Sci., Part A: Polym. Chem, p.2977, 2005.

A. Sundararaman, T. Stephan, and R. B. Grubbs, J. Am. Chem. Soc, vol.130, p.12264, 2008.

Y. Cai, K. B. Aubrecht, J. Grubbs, and . Amer, Chem. Soc, p.1058, 2010.

D. Benoit, V. Chaplinski, R. Braslau, and C. J. Hawker, J. Am. Chem. Soc, p.3904, 1999.

D. Benoit, S. Grimaldi, S. Robin, J. Finet, P. Tordo et al., J. Am. Chem. Soc, vol.122, p.5929, 2000.

H. Matsuoka, Y. Suetomi, P. Kaewsaiha, and K. Matsumoto, Langmuir, vol.25, p.13752, 2009.

S. Harrisson, P. Couvreur, and J. Nicolas, Macromolecules, vol.44, p.9230, 2011.

S. Harrisson, P. Couvreur, P. , and J. Nicolas, Macromol. Rapid Commun, vol.33, p.805, 2012.

A. Métafiot, Y. Kanawati, J. Gérard, B. Defoort, and M. Maric, Macromolecules, vol.2017, issue.8, p.3101

J. Vinas, N. Chagneux, D. Gigmes, T. Trimaille, A. Favier et al., Polymer, p.3639, 2008.

M. K. Georges, G. K. Hamer, and N. A. Listigovers, Macromolecules, p.9087, 1998.

C. Detrembleur, V. Sciannamea, C. Koulic, M. Claes, M. Hoebeke et al., Macromolecules, vol.35, p.7214, 2002.

A. Behr and L. Johnen, ChemSusChem, vol.2, issue.12, p.1072, 2009.

P. Sarkar, A. K. Bhowmick, and . Adv, , vol.4, p.61343, 2014.

R. P. Quirk and ;. , Huang In New Monomers and Polymers

R. P. Quirk, , vol.374, 1983.

J. M. Bolton, M. A. Hillmyer, and T. R. Hoye, ACS Macro Lett, p.717, 2014.

A. Matsumoto, K. Mizuta, and T. Otsu, J. Polym. Sci., Part A: Polym. Chem, issue.10, p.2531, 1993.

J. M. Yu, P. Dubois, and R. Jérôme, Macromolecules, vol.29, p.8362, 1996.

B. Charleux, J. Nicolas, and O. Guerret, Macromolecules, vol.38, p.5485, 2005.

J. Nicolas, C. Dire, L. Mueller, J. Belleney, B. Charleux et al., Macromolecules, vol.39, p.8274, 2006.

J. Nicolas, S. Brusseau, and B. Charleux, J. Polym. Sci., Part A: Polym. Chem, p.34, 2010.

B. Lessard, C. Aumand-bourque, R. Chaudury, D. Gomez, A. Haroon et al.,

B. Valla, M. White, and . Maric, Intern. Polymer Processing, vol.26, p.197, 2011.

S. Georges, M. Bria, P. Zinck, and M. Visseaux, Polymer, vol.55, p.3869, 2014.

H. K. Mahabadi, J. Appl. Polym. Sci, 1535.

X. Q. Zhang and C. H. Wang, J. Polym. Sci., Part B: Polym. Phys, vol.32, p.1, 1994.

P. Hattam, S. Gauntlett, J. W. Mays, N. Hadjichristidis, R. N. Young et al., Macromolecules, vol.24, issue.23, p.6199, 1991.

H. Pasch,

B. Trathnigg, In Multidimensional HPLC of Polymers

H. Pasch,

B. Trathnigg, , pp.37-90, 2013.

C. Petit, B. Luneau, E. Beaudoin, D. Gigmes, and D. Bertin, J. Chromatogr. A, p.128, 2007.

A. Métafiot, J. Gérard, B. Defoort, and M. Maric, J. Polym. Sci., Part A: Polym. Chem, vol.56, issue.8, p.860, 2018.

G. S. Ananchenko, M. Souaille, H. Fischer, C. Lemercier, and P. Tordo, J. Polym. Sci. A: Polym. Chem, p.3264, 2002.

S. Beuermann and M. Buback, Prog. Polym. Sci, 2002.

C. Burguiere, M. Dourges, B. Charleux, and J. P. Vairon, Macromolecules, vol.12, p.3883, 1999.

J. Nicolas,

E. Guégain and ;. Guillaneuf, Nitroxide Mediated Polymerization: From Fundamentals to Applications in Materials Science

E. Gigmes, The Royal Society of Chemistry: Cambridge, pp.305-348, 2016.

C. Dire, B. Charleux, S. Magnet, and L. Couvreur, Macromolecules, vol.40, issue.6, p.1897, 2007.

B. Lessard and M. Maric, J. Polym. Sci., Part A: Polym. Chem, p.2574, 2009.

A. Moayeri, B. Lessard, and M. Maric, Polym. Chem, 2011.

M. Berger and I. Kuntz, J. Polym. Sci., Part A: Polym. Chem, 1687.

M. Fineman and S. D. Ross, J. Polym. Sci, vol.1950, issue.2, p.259

T. Kelen and F. Tudos, J. Macromol. Sci., Chem, vol.1975, issue.1, p.1

P. W. Tidwell and G. A. Mortimer, J. Polym. Sci., Part A: Gen. Pap, vol.3, p.369, 1965.

M. A. Dubé,

E. Saldivar-guerra,

I. Zapata-gonzales, Handbook of Polymer: Synthesis, Characterization, and Processing

E. Saldivar-guerra and . Vivaldo-lima, , pp.105-125, 2013.

H. Benoit, Z. Grubisic, P. Rempp, P. Decker, and J. Zilliox, J. Chim. Phys, vol.63, p.1507, 1966.

R. B. Grubbs, Polym. Rev, pp.51-104, 2011.

G. S. Ananchenko, M. Souaille, H. Fischer, C. Lemercier, and P. Tordo, J. Polym. Sci. A: Polym. Chem, p.3264, 2002.

G. Gryn'ova, C. Y. Lin, and M. L. Coote, Polym. Chem, vol.2013, issue.13, p.3744

W. J. Runckel and L. A. Goldblatt, Ind. Eng. Chem, vol.38, issue.7, p.749, 1946.

N. Kamachi and A. Kajiwara, Macromolecules, vol.29, issue.7, p.2378, 1996.

S. Beuermann, M. Buback, T. P. Davis, N. Garcia, R. G. Gilbert et al., Macromol. Chem. Phys, vol.204, p.1338, 2003.

N. Hadjichristidis, J. Mays, W. Ferry, and L. J. Fetters, J. Polym. Sci., Polym. Phys. Ed, vol.22, p.1745, 1984.

M. Gordon and J. S. Taylor, J. Chem. Tech. Biotech, vol.2, p.493, 1952.

J. Nicolas, C. Dire, L. Mueller, J. Belleney, B. Charleux et al., Macromolecules, vol.39, p.8274, 2006.

C. Lefay, J. Belleney, B. Charleux, O. Guerret, and S. Magnet, Macromol. Rapid Commun, p.1215, 2004.

J. W. Reed and W. L. Jolly, J. Org. Chem, p.3963, 1977.

R. N. Cavalcanti and ;. Forster-carneiro,

M. T. Gomes,

M. A. Rostagno and ;. M. Prado,

M. A. , Meireles In Natural Product Extraction: Principles and Applications

M. A. Rostagno and J. M. Prado, The Royal Society of Chemistry: Dorchester, pp.1-57, 2013.

M. D. Gehlsen, K. , and F. S. Bates, Macromolecules, vol.1992, issue.2, p.939

S. Schlogl, M. Trutschel, W. Chassé, G. Riess, and K. Saalwachter, Macromolecules, vol.47, p.2759, 2014.

L. J. Fetters,

D. J. Lohse;-r and . Colby, Physical Properties of Polymers Handbook, 2007.

, Chapter 25, pp.447-454

S. Grimaldi, J. Finet, F. Le-moigne, A. Zeghdaoui, P. Tordo et al., Macromolecules, vol.33, issue.4, p.1141, 2000.

A. Goto and T. Fukuda, Prog. Polym. Sci, vol.29, p.329, 2004.

S. Robin, O. Guerret, J. Couturier, R. Pirri, and Y. Gnanou, Macromolecules, vol.35, p.3844, 2002.

D. R. D'hooge, M. Reyniers, and G. B. Marin, Macromol. React. Eng, vol.7, issue.8, p.362, 2013.

D. Gigmes, D. Bertin, C. Lefay, Y. Guillaneuf, and M. Sim, , vol.18, p.402, 2009.

B. Lessard, C. Tervo, and M. Maric, Macromol. React. Eng, vol.3, pp.245-256, 2009.

C. J. Hawker, E. Elce, J. L. Dao, W. Volksen, T. P. Russel et al., Macromolecules, 1996.

B. Zhang, Y. Ma, D. Chen, J. Xu, and W. Yang, J. Appl. Polym. Sci, vol.2013, issue.1, p.113

D. W. Van-krevelen,

K. Te, Nijenhuis In Properties of Polymers, 4

D. J. Meier, J. Polym. Sci, vol.26, p.81, 1969.

D. J. Meier, , vol.11, p.400, 1970.

F. S. Bates, Annu. Rev. Phys. Chem, p.525, 1990.

L. Blanchard, J. Hesse, and S. L. Malhotra, Can. J. Chem, p.3170, 1974.

S. Harrisson, P. Couvreur, and J. Nicolas, Use of Solvent Effects to Improve Control over Nitroxide-Mediated Polymerization of Isoprene

, Macromol. Rapid Commun, vol.33, pp.805-810, 2012.

D. R. Morey and J. W. Tamblyn, The Fractional Precipitation of Molecular-Weight Species from High Polymers. Theories of the Process and Some Experimental Evidence, J. Phys. Chem, vol.51, issue.3, pp.721-746, 1947.

A. Kotera, Polymer Fractionation

M. J. Cantow and . Ed, , pp.44-66, 1967.

B. Suppaibulsuk, P. Prasassarakich, and G. L. Rempel, Factorial Design of Nanosized Polyisoprene Synthesis via Differential Microemulsion Polymerization, Polym. Adv. Technol, vol.21, pp.467-475, 2010.

H. Sato and Y. Tanaka, H-NMR Study of Polyisoprenes, J. Polym. Sci.: Polym. Chem, vol.17, pp.3551-3558, 1979.

P. Sarkar and A. K. Bhowmick, Synthesis, Characterization and Properties of a Bio-based Elastomer: Polymyrcene, vol.4, pp.61343-61354, 2014.

J. M. Widmaier and G. C. Meyer, Glass Transition Temperature of Anionic Polyisoprene, Macromolecules, vol.14, pp.450-452, 1981.

W. Michaeli, A. Grefenstein, and W. Frings, Synthesis of Polystyrene and Styrene Copolymers by Reactive Extrusion, Adv. Polym. Tech, vol.12, issue.1, pp.25-33, 1993.

X. Yuan, Y. Guan, S. Li, and A. Zheng, Anionic Bulk Polymerization to Synthesize Styrene-Isoprene Diblock and Multiblock Copolymers by Reactive Extrusion, J. Appl. Polym. Sci, 2014.

J. Wang, X. Yuan, D. Shan, and A. Zheng, Styrene/Isoprene/Styrene Thermoplastic Elastomer Prepared by Anionic Bulk Polymerization in a Twin-Screw Extruder, Int. Polym. Proc, vol.2015, issue.1, pp.44-50

T. Fukuda, T. Terauchi, A. Goto, K. Ohno, Y. Tsujii et al., Mechanisms and Kinetics of NitroxideControlled Free Radical Polymerization, Macromolecules, vol.29, pp.6393-6398, 1996.

G. Gryn'ova, C. Y. Lin, and M. L. Coote, Which Side-Reactions Compromise Nitroxide Mediated Polymerization?, Polym. Chem, vol.2013, issue.13, pp.3744-3754

C. J. Hawker, G. G. Barclay, and J. Dao, Radical Crossover in Nitroxide Mediated "Living" Free Radical Polymerizations, J. Am. Chem. Soc, vol.118, pp.11467-11471, 1996.

B. Charleux, J. Nicolas, and O. Guerret, Theoretical Expression of the Average Activation-Deactivation Equilibrium Constant in

, Controlled/Living Free-Radical Copolymerization Operating via Reversible Termination. Application to a Strongly Improved Control in NitroxideMediated Polymerization of Methyl Methacrylate, Macromolecules, vol.38, issue.13, pp.5485-5492, 2005.

J. D. Peterson, S. Vyazovkin, and C. A. Wight, Kinetics of the Thermal and Thermo-Oxidative Degrdation of Polystyrene, Polyethylene and Poly(propylene), Macromol. Chem. Phys, vol.202, pp.775-784, 2001.

B. Stuhn, The Relation Between the Microphase Separation Transition and the Glass Transition in Diblock Copolymers, J. Polym. Sci., Part B: Polym. Phys, vol.30, pp.1013-1019, 1992.

R. D. Spaans, M. Muhammad, and M. C. Williams, Probing the Interfacial Region of Microphase-Separated Block Copolymers by Differential Scanning Calorimetry, J. Polym. Sci., Part B: Polym. Phys, vol.37, pp.267-274, 1999.

J. Letoffe, L. Champion-lapalu, D. Martin, J. Planche, J. Gerard et al., Analyse Thermique de Bitumes Routiers modifies par des Polymeres, Bull. Lab. Ponts Chaussees, vol.229, pp.13-20, 2000.

J. Masson, S. Bundalo-perc, and A. Delgado, Glass Transitions and Mixed Phases in Block SBS, J. Polym. Sci., Part B: Polym. Phys, vol.43, pp.276-279, 2005.

R. Van-den-berg, H. De-groot, M. A. Van-dijk, and D. R. Denley, Atomic Force Microscopy of Thin Triblock Copolymer Films, Polymer, vol.35, issue.26, pp.5778-5781, 1994.

A. K. Khandpur, S. Foerster, F. S. Bates, I. W. Hamley, A. J. Ryan et al., Polyisoprene-Polystyrene Diblock Copolymer Phase Diagram near the Order-Disorder Transition, Macromolecules, vol.28, issue.26, pp.8796-8806, 1995.

C. Hansen, Hansen Solubility Parameters, A User's Handbook, pp.1-26, 2007.

E. Yara-varon, A. S. Fabiano-tixier, M. Balcells, R. Canela-garayoa, A. Bily et al., Is it Possible to Substitute Hexane with Green Solvents for Extraction of Carotenoids? A Theoretical versus Experimental Solubility Study, vol.6, pp.27750-27759, 2016.

R. Roy, J. K. Park, W. Young, S. E. Mastroianni, M. S. Tureau et al., Double-Gyroid Network Morphology in Tapered Diblock Copolymers, Macromolecules, vol.44, pp.3910-3915, 2011.

C. P. Esneault, S. F. Hahn, and G. F. Meyers, Development of Elastomers Based on Fully Hydrogenated Styrene-Diene Block Copolymers, Block Copolymer Science and Technology

I. W. Hamley and . Ed, , pp.341-362, 2004.

D. K. Parker, Emulsion Polymers (Noncatalytic Diimide Hydrogenation), Polymeric Materials Encyclopedia, 12 Volume Set

J. C. Salamone and . Ed, , pp.2048-2053, 1996.

S. F. Hahn, An Improved Method for the Diimide Hydrogenation of Butadiene and Isoprene Containing Polymers, J. Polym. Sci., Part A: Polym. Chem, vol.30, pp.397-408, 1992.

Y. Wang and M. A. Hillmyer, Oxidatively Stable Polyolefin Thermoplastics and Elastomers for Biomedical Applications, ACS Macro Lett, vol.6, pp.613-618, 2017.

J. Nicolas, S. Brusseau, and B. Charleux, A Minimal Amount of Acrylonitrile Turns the Nitroxide-Mediated Polymerization of Methyl Methacrylate into an Almost Ideal Controlled/Living System, J. Polym. Sci., Part A: Polym. Chem, issue.1, pp.34-47, 2010.

P. Piya-areetham, P. Prasassarakich, and G. L. Rempel, Organic Solvent-Free Hydrogenation of Natural Rubber Latex and Synthetic Polyisoprene Emulsion Catalyzed by Water-Soluble Rhodium Complexes, Journal of Molecular Catalysis A: Chemical, vol.372, pp.151-159, 2013.

Q. T. Shubhra, A. K. Alam, and M. A. Quaiyyum, Mechanical Properties of Polypropylene Composites: A Review, JTCM, vol.2011, issue.3, pp.362-391

R. H. Carey, E. F. Schulz, and G. J. Dienes, Mechanical Properties of Polyethylene, Ind. Eng. Chem, vol.42, issue.5, pp.842-847, 1950.

J. L. Jordan, D. T. Casem, J. M. Bradley, A. K. Dwivedi, E. N. Brown et al., Mechanical Properties of Low Density Polyethylene

, J. dynamic behavior mater, vol.2, pp.411-420, 2016.

Y. Araki, D. Shimizu, Y. Hori, K. Nakatani, and H. Saito, Mechanical Properties and Microphase Structure of Hydrogenated S-SB-S Triblock Copolymers, Polymer Journal, vol.45, pp.1140-1145, 2013.

J. Camacho, E. Diez, I. Diaz, and G. Ovejero, Hansen Solubility Parameter: From Polyethylene and Poly(vinyl acetate) Homopolymers to Ethylene-Vinyl Acetate Copolymers, Polym. Int, vol.66, pp.1013-1020, 2017.

L. J. Fetters and M. Morton, Synthesis and Properties of Block Polymers. I. Poly-?-methylstyrene-polyisoprene-poly-?-methylstyrene, Macromolecules, vol.1969, issue.5, pp.453-458

J. M. Yu, P. Dubois, and R. Jérôme, Poly[alkyl methacrylate-b-butadiene-b-alkyl methacrylate] Triblock Copolymers: Synthesis, Morphology, and Mechanical Properties at High Temperatures, Macromolecules, vol.29, issue.26, pp.8362-8370, 1996.

J. M. Asua, Prog. Polym. Sci, vol.27, pp.1283-1346, 2002.

A. Matsumoto, K. Mizuta, and T. Otsu, J. Polym. Sci., Part A: Polym. Chem, issue.10, pp.2531-2539, 1993.

S. Agarwal, Q. Jin, M. Samarendra, and . Sym, , pp.197-212, 1105.

R. R. Gowda, E. , and Y. Chen, In Encyclopedia of Polymer Science and Technology

A. Seidel and E. , , pp.1-37, 2013.

J. T. Trotta, M. Jin, K. J. Stawiasz, Q. Michaudel, W. Chen et al., J. Polym. Sci., Part A: Polym. Chem, vol.55, pp.2730-2737, 2017.

J. Rieger, J. Therm. Anal. Calorim, vol.46, issue.3, pp.965-972, 1996.

J. Suenaga, D. M. Sutherlin, and J. K. Stille, Macromolecules, vol.17, pp.2913-2916, 1984.

S. Xu, J. Huang, S. Xu, and Y. Luo, Polymer, vol.54, pp.1779-1785, 2013.

R. A. Cockburn, R. Siegmann, K. A. Payne, S. Beuermann, T. F. Mckenna et al., Biomacromolecules, vol.12, pp.2319-2326, 2011.

J. M. Bolton, M. A. Hillmyer, and T. R. Hoye, ACS Macro Letters, vol.2014, issue.8, pp.717-720

Y. Araki, D. Shimizu, Y. Hori, K. Nakatani, and H. Saito, Polymer Journal, vol.45, pp.1140-1145, 2013.

G. Delaittre, Nitroxide Mediated Polymerization: From Fundamentals to Applications in Materials Science; D. Gigmes, pp.199-263, 2016.

J. M. Asua, Prog. Polym. Sci, vol.27, pp.1283-1346, 2002.

A. Matsumoto, K. Mizuta, and T. Otsu, J. Polym. Sci., Part A: Polym. Chem, issue.10, pp.2531-2539, 1993.

S. Agarwal, Q. Jin, M. Samarendra, and . Sym, , pp.197-212, 1105.

R. R. Gowda, E. , and Y. Chen, In Encyclopedia of Polymer Science and Technology

A. Seidel and E. , , pp.1-37, 2013.

J. T. Trotta, M. Jin, K. J. Stawiasz, Q. Michaudel, W. Chen et al., J. Polym. Sci., Part A: Polym. Chem, vol.55, pp.2730-2737, 2017.

J. Rieger, J. Therm. Anal. Calorim, vol.46, issue.3, pp.965-972, 1996.

J. Suenaga, D. M. Sutherlin, and J. K. Stille, Macromolecules, vol.17, pp.2913-2916, 1984.

S. Xu, J. Huang, S. Xu, and Y. Luo, Polymer, vol.54, pp.1779-1785, 2013.

R. A. Cockburn, R. Siegmann, K. A. Payne, S. Beuermann, T. F. Mckenna et al., Biomacromolecules, vol.12, pp.2319-2326, 2011.

J. M. Bolton, M. A. Hillmyer, and T. R. Hoye, ACS Macro Letters, vol.2014, issue.8, pp.717-720

Y. Araki, D. Shimizu, Y. Hori, K. Nakatani, and H. Saito, Polymer Journal, vol.45, pp.1140-1145, 2013.

, Brockmann, Type I, 150 mesh), calcium hydride (CaH2, 90-95 % reagent grade) and 1,4-dioxane (? 99 %) were purchased from Sigma-Aldrich and used as received. Toluene (? 99 %), methanol (MeOH, ? 99 %) and tetrahydrofuran (THF, 99.9 % HPLC grade) were obtained from Fisher Scientific and used as received. 2-Methyl-2, ? Materials. ?-Myrcene (My, ? 90 %), basic alumina (Al2O3

. N-propionyloxy-succinimide, was prepared according to a published method 1 from 2-(tert-butyl[1-(diethoxyphosphoryl)-2,2-dimethylpropyl]aminooxy)-2-methylpropionic acid, also known as MAMA-SG1 (BlocBuilder TM , BB, 99 %, also known as NHS-BlocBuilder (NHS-BB)

N. N-hydroxy-succinimide-;-n and . '-dicyclohexylcarbodiimide, 99 %, purchased from Aldrich and used as received). N-tert-Butyl-N-[1-diethylphosphono-(2,2-dimethylpropyl)] nitroxide (SG1, > 85 %) was kindly donated by Noah Macy of Arkema and used as received. Styrene (S, 99 %) was obtained from Fisher Scientific and was purified to remove the inhibitor (ptert-butylcatechol) by passing through a column of basic alumina mixed with 5 weight % calcium hydride and then stored in a sealed flask under a head of nitrogen in a refrigerator until needed. The deuterated chloroform (CDCl3, 99.8 %) used as a solvent for proton and carbon nuclear magnetic resonance, H and 13 C NMR) was obtained from Cambridge Isotopes Laboratory, vol.98

, Polymerization of ?-myrcene (with styrene) by NMP. The (co-)polymerizations were performed in a 25-mL three-necked round-bottom glass flask equipped with a reflux condenser, a thermal well and a magnetic stir bar. The flask was placed inside a heating mantle and the whole set-up mounted on top of a magnetic stirrer

, the reactor was sealed with the rubber septa after the addition of NHS-BB (0.204 g, 0.427 mmol) and the stir bar. My (10.514 g, 77.178 mmol) and previously purified S (2.043 g, 19.616 mmol) were then injected with a disposable needle into the reactor. For this experiment, the initial molar ratio of monomers and NHS-BB was calculated to give theoretically a My/S copolymer sample with target number-average molecular weight Mn,theo = (MMyfMy,0 + MSfS,0) DP = 30 kg

. Lyon, After purging, the reactor was heated at a rate of about 10 °C.min -1 to the desired polymerization temperature (T = 120 °C for My/S-20) with continuous nitrogen purge. The time at which the reactor temperature reached 100 °C was taken arbitrarily as the commencement of the reaction (t = 0 min). Samples were then taken from the reactor periodically by a syringe until the end of the experiments or until the samples became too viscous to withdraw. Reactions were then stopped by removing the reactor from the heating mantle and letting the contents cool down to room temperature, while under continuous nitrogen purge. For each sample withdrawn during the polymerization, the crude polymer was precipitated with excess methanol. After filtration and recovery, the precipitated polymer was dried at 40 °C under vacuum in the oven overnight to remove unreacted monomers. Samples were analyzed by nuclear magnetic resonance (NMR) and gel permeation chromatography (GPC). Specifications of the GPC and the NMR are fully described in the Characterization section, 2018.

, mol -1 , molecular weight distribution ? = 1.26 and the molar composition of S in the final copolymer was FS = 0.15 according to NMR spectroscopy. The exact same procedure was followed for all My/S copolymerizations and My homopolymerizations

, Chain-extension of poly(myrcene) P(My) homopolymer macroinitiator and poly(myrcene-stat-styrene)

, P(My) homopolymers and P(My-stat-S) statistical copolymers were chain-extended with purified S and/or My at 110 °C or 120 °C in 50 wt% toluene solution or in bulk. The experimental setup and procedures were the same as the syntheses for the P(My) and P(My-stat-S) polymers described earlier. The entire set of formulations for the chain-extension experiments is shown in Table 3, from P(My) macroinitiators, and Table 7.B, from P(My-stat-S) macroinitiators. An example is given to illustrate the chain-extension of My/S, P(My-stat-S) statistical copolymer macroinitiator with styrene and/or ?-myrcene

, After sealing the reactor, previously purified S (6.49 g, 62.31 mmol) removal of the supernatant, the wet cake was dried under vacuum at 50 °C to obtain the My/S-20-S block copolymer. The chain-extended products were characterized by GPC, calibrated with poly(styrene) PS standards, g, Mn = 9.9 kg.mol -1 , ? = 1.26) and toluene

, INSA Lyon, tous droits réservés P(My) My-2: 1 H NMR (CDCl3, 300 MHz, RT): ? = 5.50-5.30 (t br, vol.1, 2018.

, were quantified by comparing the three integrated areas at ? = 5.50-5.30 ppm (one olefinic proton of 1,2-addition), ? = 5.25-5.00 ppm (two olefinic protons of 1,4-addition, one olefinic proton of 1,2-addition and one olefinic proton of 3,4-addition), The three different types of configuration, 1,4-, 1,2-and 3,4-P(My)

, Figure S2a. 1 H NMR spectrum of P(My) My-2 in CDCl3 (300 MHz) at room temperature

, d (cis-and trans-), 1C), 124.1 (s, 2C, INSA Lyon, tous droits réservés P(My) Macroinitiator My-12: 13 C NMR (CDCl3, 300 MHz, RT): ? = 137.4 (s, 1C), vol.9, pp.37-44, 2018.

, 1 (2) and 40.4 (3) ppm correspond to aliphatic carbon from 3,4-P(My) (1), vinylic carbons from 3,4-and 1,2-P(My) (2) and aliphatic carbons from, *Signals at ? =, vol.154

, P(My-b-S) My-11-Sa: 1 H NMR (CDCl3, 300 MHz, RT): ? = 7.20-6.86 (m br, 3H PS ), 6.80-6.25 (m br, 2H PS )

, copolymer (FS) was calculated by comparing the two integrated areas corresponding to the five aromatic protons of PS (? = 6.25-7.25 ppm) and the three aliphatic protons of PS, the eight aliphatic protons and the six protons of the two methyl groups of P(My) (? = 1.20-2.15 ppm), The molar composition of S in the final P(My-b-S)

, Figure S4a. 1 H NMR spectrum in CDCl3 (300 MHz) at room temperature of dried P(My-b-S) diblock copolymer My-11-Sa after recovery, using methanol as the precipitant, vol.1, p.4

F. S13a, Normalized GPC traces for My and S chain-extensions from My-rich My/S-07 and S-rich My/S-55 macroinitiators at 110 °C or 120 °C in bulk or in toluene. Chain-extensions a) My/S-07-My

P. Sarkar and A. K. Bhowmick, Synthesis, Characterization and Properties of a Bio-based Elastomer: Polymyrcene, vol.4, pp.61343-61354, 2014.

S. Georges, M. Bria, P. Zinck, and M. Visseaux, Polymyrcene Microstructure revisited from Precise High-Field Nuclear Magnetic Resonance Analysis, Polymer, vol.55, pp.3869-3878, 2014.

C. Lefay, J. Belleney, B. Charleux, O. Guerret, and S. Magnet, End-Group Characterization of Poly(acrylic acid) Prepared by Nitroxide-Mediated Controlled Free-Radical Polymerization, Macromol. Rapid Commun, vol.25, issue.13, pp.1215-1220, 2004.

J. Nicolas, C. Dire, L. Mueller, J. Belleney, B. Charleux et al., Living Character of Polymer Chains Prepared via Nitroxide-Mediated Controlled Free-Radical Polymerization of Methyl Methacrylate in the Presence of a Small Amount of Styrene at Low Temperature, Macromolecules, vol.39, issue.24, pp.8274-8282, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00119071

F. R. Mayo and F. M. Lewis, Copolymerization. I. A Basis for Comparing the Behavior of Monomers in Copolymerization; The Copolymerization of Styrene and Methyl Methacrylate, J. Am. Chem. Soc, vol.66, issue.9, pp.1594-1601, 1944.

M. Fineman and S. D. Ross, Linear Method for Determining Monomer Reactivity Ratios in Copolymerizations, J. Polym. Sci

. Chem, , vol.5, pp.259-262, 1950.

T. Kelen and F. Tüdös, Analysis of the Linear Methods for Determining Copolymerization Reactivity Ratios. I. A New Improved Linear Graphic Method, J. Macromol. Sci. Chem, vol.9, issue.1, pp.1-27, 1975.

P. W. Tidwell and G. A. Mortimer, An Improved Method of Calculating Copolymerization Reactivity Ratios, J. Polym. Sci., Part A: Polym. Chem, vol.3, pp.369-387, 1965.

, basic alumina (Al2O3, Brockmann, 150 mesh), calcium hydride (CaH2, 90-95% reagent grade), 1,4-dioxane (? 99%) and 2-methyltetrahydrofuran (Me-THF, ? 99% anhydrous) were purchased from Sigma-Aldrich and used as received, Toluene (? 99%), methanol (MeOH, ? 99%), tetrahydrofuran (THF, p.9

, 99% ACS reagent) were obtained from Fisher Scientific and used as received. 2-Methyl-2-[N-tert-butyl-N-(1-diethoxyphosphoryl-2,2-dimethylpropyl)-aminoxy]-N-propionyloxy-succinimide, also known as NHS-BlocBuilder (NHS-BB), was prepared according to a published method 1 from 2-(tert-butyl[1-(diethoxyphosphoryl)-2,2-dimethylpropyl]aminooxy)-2-methylpropionic acid, HPLC grade) and morpholine (?

T. M. Blocbuilder and . Bb, N-hydroxy-succinimide (NHS, 98%, purchased from Aldrich and used as received) and N,N'-dicyclohexylcarbodiimide (DCC, 99%, purchased from Aldrich and used as received), Styrene (S, 99%), methyl methacrylate (MMA, 99%), glycidyl methacrylate (GMA, 97%), tert-butyl acrylate (tBuA, 99%) and maleic anhydride, p.99

, All formulations for My/GMA copolymerizations are found in Table 2. For every reaction, the initial molar ratio of monomers and NHS-BB was calculated to give a My/GMA copolymer sample with target number-average molecular weight Mn,theo = (MMyfMy,0 + MGMAfGMA,0)DP = 30 kg, ? My/GMA copolymerization by NMP. All copolymerizations were done in a 10-mL three-necked round, vol.32, p.350

, 156 mmol) were added to the reactor and mixing commenced with the stir bar. A thermocouple was inserted through one of the reactor ports via a thermal well. A mixture of ethylene glycol/reverse osmosis water (30/70 vol%) was circulated via a chiller (Fisher Scientific Isotemp 3016D Digital Refrigerated Bath, 4 o C) through the condenser connected to the second neck of the reactor. The reactor was sealed and a purge of ultra-pure nitrogen was then introduced to the reactor for 30 min. The purge was vented through the reflux condenser, vol.32

, INSA Lyon, tous droits réservés sample withdrawn, the crude polymer was precipitated with excess methanol and then dried first under intense air and at 50 °C under vacuum. Nuclear magnetic resonance (NMR) and gel permeation chromatography (GPC) were used to characterize the samples, 2018.

=. Xmy, 6%) at the end of the experiment (t = 300 min) and the molar composition of GMA in the final copolymer was FGMA = 0.58 as determined by 1 H NMR. The final product exhibited Mn = 21.9 kg.mol -1 and ? = 1.45, as determined by GPC. All final My/GMA copolymer characteristics can be found in Table 3. The exact same procedure was followed for My homopolymerization

. ?-chain-extension-of-p(my-stat-gma)-macroinitiator-with-my and S. Gma, All chain-extensions from P(My-stat-GMA) macroinitiators were performed in a very similar setup to that used for the My/GMA copolymerizations with the use of a 25-mL reactor. All formulations can be found in Table 4B. As a brief illustration, My/GMA-78-GMA/My was synthesized using a statistical P(My-stat-GMA) copolymer (My/GMA-78, FMy = 0.78, Mn = 11.3 kg.mol -1 , ? = 1.27, 1.011 g, 0.0895 mmol) that was added to the reactor along with toluene (7.615 g), My (0.603 g, 4.426 mmol) and previously purified GMA (5.967 g, 42.021 mmol). The contents were mixed and bubbled with nitrogen for 30 min, then heated to 110 o C and allowed to react for 60 min while maintaining a nitrogen purge

, The results of the chain-extensions from P(My-stat-GMA)s are given in Table 4C. The same procedure was applied for the synthesis of P(My-b-GMA) diblock copolymer from P(My) macroinitiator, kg.mol -1 , ? = 1.50 (GPC) and FGMA = 0.65 ( 1 H NMR)

, Synthesis of poly(?-myrcene-block-2-hydroxy-3-morpholinopropyl methacrylate) P(My-b-HMPMA)

, A conventional reflux apparatus with a 10-mL three-necked round-bottom glass flask was used. P(My-b-GMA)

, Table S2b in Supporting Information) was dissolved in Me-THF (~ 5.3 g) and then morpholine (0.330 g, 3.791 mmol, 6.4 eq. relative to GMA repeating units) was added. The reaction medium was vigorously mixed and deoxygenated via N2 nitrogen purge. The final product was precipitated in reverse osmosis water (formation of a dispersion which aggregated with time), decanted, filtered via a Büchner funnel and the resulting white polymer was dried at 50 o C under vacuum. A quantitative conversion of GMA units in HMPMA units was determined by 1 H NMR (Figure 9). 91% of P(My-b-HMPMA) was produced, exhibiting Mn = 26.5 kg.mol -1 and ? = 1.91 (Supporting Information, Figure S11b). The complete experimental conditions and results can be found in the Supporting Information, Table S2b. Dynamic Light Scattering (DLS) was eventually used to measure the hydrodynamic diameter of P(My-b-HMPMA) particles dispersed in water

, The GPC was equipped with 3 Waters Styragel ® HR columns (HR1 with a molecular weight measurement range of 10 2 -5 X 10 3 g.mol -1 , HR2 with a molecular weight measurement range of 5 X 10 2 -2 X 10 4 g.mol -1 and HR4 with a molecular weight measurement range of 5, grade THF as the mobile phase (flow rate of 0.3 mL.min -1 ), vol.10, pp.3-6

, mol -1 ) and a guard column was used. Mn values were determined by calibration with linear narrow molecular weight distribution PS standards (PSS Polymer Standards Service GmbH, molecular weights ranging from 682 g, X 10 5 g

, Differential scanning calorimetry (DSC, Q2000TM from TA Instruments) was used under N2 atmosphere

, A temperature range from -90 °C to + 100 °C using three scans per cycle (heat/cool/heat) at a rate of 10 °C.min -1 was typically set. For the Tg measurement, only the second heating run was taken into account to eliminate the thermal history. The reported Tgs were calculated using the inflection method from the change in slope observed in the DSC traces. DLS measurements were performed with a Malvern Zetasizer Nano equipped with a 532 nm 50 mW green laser. The error is given as the standard deviation from three separate repeats. The samples were prepared by dissolving P(My-b-HMPMA) diblocks in THF and adding dropwise reverse osmosis water while stirring. The suspension was heated at 50 o C for 30 min and the THF was then eliminated by dialysis, Indium was used as a standard to calibrate temperature while heat flow was calibrated via benzoic acid standard

J. Vinas, N. Chagneux, D. Gigmes, T. Trimaille, A. Favier et al., Polymer, vol.49, issue.17, p.3639, 2008.

P. Sarkar, A. K. Bhowmick, and . Adv, , vol.4, p.61343, 2014.

S. Georges, M. Bria, P. Zinck, and M. Visseaux, Polymer, vol.55, p.3869, 2014.

, INSA Lyon, tous droits réservés Please see page 297 for NMR assignments corresponding to P(GMA) (blue indexes) and P(My, 2018.

, PS: 1 H NMR (CDCl3, 300 MHz, RT): ? = 7.20-6.86 (m br, 3H), 6.80-6.25 (m br, 2H)

, The molar composition of My, GMA and S in the final P[(My-stat-GMA)-b-S] diblock copolymer was calculated by comparing three integrated areas: -? = 7.20-6.25 ppm, five aromatic protons of PS. -? = 5

. Fmy, 2 = 0.06 and FS,2 = 0.81 were calculated for My/GMA-37-S

F. S10b, DSC traces (second heating run) of P(My-stat-GMA) statistical copolymers. The red crosses indicate the changes in slope observed

M. Fineman and S. D. Ross, J. Polym. Sci, vol.1950, issue.2, p.259

F. R. Mayo and F. M. Lewis, J. Am. Chem. Soc, vol.66, issue.9, p.1594, 1944.

T. Kelen and F. Tu?do?s, J. Macromol. Sci., Chem, vol.1975, issue.1, p.1

P. W. Tidwell and G. A. Mortimer, J. Polym. Sci., Part A: Gen. Pap, vol.3, p.369, 1965.

P. Sarkar, A. K. Bhowmick, and . Adv, , vol.4, p.61343, 2014.

C. Lefay, J. Belleney, B. Charleux, O. Guerret, and S. Magnet, Macromol. Rapid Commun, vol.25, issue.13, p.1215, 2004.

J. Nicolas, C. Dire, L. Mueller, J. Belleney, B. Charleux et al., Macromolecules, vol.39, issue.24, p.8274, 2006.

P. J. Flory, Principles of Polymer Chemistry

P. J. Flory, , pp.541-594, 1975.

G. Odian, Principles of Polymerization, pp.466-505, 2004.

C. M. Hansen, In Hansen Solubility Parameters, A User's Handbook, 2 nd ed, pp.1-26, 2007.

E. Yara-varon, A. S. Fabiano-tixier, M. Balcells, R. Canela-garayoa, A. Bily et al., , 2016.

V. Kholodovych,

W. J. Welsh, Physical Properties of Polymers Handbook

J. E. Mark, , pp.611-618, 2007.

, ? Materials. ?-Myrcene (My, ? 90%), basic alumina (Al2O3, Brockmann, Type I, 150 mesh), calcium hydride

, ACS reagent) were purchased from Sigma-Aldrich and used as received. Toluene (? 99%), methanol (MeOH, ? 99%), methylene chloride (CH2Cl2, 99.9% certified ACS), chloroform (CHCl3, 99.8%) and tetrahydrofuran (THF, 99.9% HPLC grade) were obtained from Fisher Scientific and used as received. 2-Methyl-2, ?95% reagent grade), thiophenol (97%) and benzene (? 99%

. N-propionyloxysuccinimide, Telechelic poly(ethylene-statbutylene) difunctional initiator PEB-(SG1)2 terminated with N-tert-Butyl-N-[1-diethylphosphono-(2,2-dimethylpropyl)] nitroxide (SG1) was produced relying on a published synthesis route 2 , from hydroxyl terminated poly(ethylene-stat-butylene) (PEB-(OH)2, Kraton TM D2205) obtained from Kraton, acryloyl chloride (98%) acquired from Sigma-Aldrich and BlocBuilder TM . Styrene (S, 99%) was obtained from Fisher Scientific and isobornyl methacrylate (IBOMA, Visiomer® Terra) was obtained from Evonik, and both S and IBOMA were purified by passing through a column of basic alumina mixed with 5 wt% calcium hydride and then stored in a sealed flask under a head of nitrogen in a refrigerator until needed, also known as NHS-BlocBuilder (NHS-BB), was prepared according to a published method 1 from 2-(tert-butyl[1-(diethoxyphosphoryl)-2,2-dimethylpropyl]aminooxy)-2-methylpropionic acid, also known as MAMA SG1 (BlocBuilder-MA TM , (BB)

, middle neck), a thermal well, and a magnetic stir bar. The reactor was placed inside a heating mantle, and the whole setup mounted on top of a magnetic stirrer. Table 1 gives the formulations for the various My/IBOMA copolymerizations studied. For example, for the experiment My/IBOMA-50 (molar fraction of IBOMA in the initial feed fIBOMA,0 = 0.50), the reactor was sealed with rubber septa after the addition of NHS-BB, ? My/IBOMA Copolymerization by NMP. The copolymerizations, depicted in Figure 1a, were done in a 10 mL three-necked round-bottom glass flask equipped with a vertical reflux condenser

, 381 g, 17.478 mmol) and previously purified IBOMA (3.897 g, vol.17, p.529

, INSA Lyon, tous droits réservés discarded and were not used in mechanical testing. For each specimen, the thickness and the width were measured at five different points along the small center portion with a digital caliper, 030150F128) and the average, 2018.

, The mechanical response of Co/IBOMA-My-IBOMA/Co (Co = S) to torsional oscillation at 0.15 Hz and 1%

, The solid rectangular fixture (SFR) was used, consisting of an upper and a lower holder with insets. Rectangular bars (thickness = 1.05 ± 0.04 mm; width = 8.91 ± 0.13 mm; length = 46.13 ± 0.24) were made by solvent casting, following the above protocol used for preparing the tensile bars. Prior to the torsion tests, dynamic amplitude sweeps at 0.15 Hz and varying strain from 0.01 to 100% were conducted at various temperatures to ensure the material was kept within the linear viscoelastic regime

/. Co, Co chain-ends was performed as described elsewhere 9,10 . The micro-phase behavior of Co/IBOMA-My-IBOMA/Co (Co = My) triblock polymer was studied by

, Atomic Force Microscopy (AFM)

. Hz, The used cantilevers are Bruker TAP 300A with a radius of curvature of the tip of 8 nm. Data analyses were processed using the Nanoscope Analysis software (version 1.5). The samples were prepared as follows: the polymer (~ 0.5 g) was fully dissolved in chloroform (~ 10 mL) and one or two drops was spin coated on a silicon wafer, previously rinsed with acetone and cleaned by UV-O3 for 30 min

, ? References of the experimental section

J. Vinas, N. Chagneux, D. Gigmes, T. Trimaille, A. Favier et al., Polymer, p.3639, 2008.

B. Lessard, C. Aumand-bourque, R. Chaudury, D. Gomez, A. Haroon et al., Intern. Polymer Processing, vol.26, issue.2, p.197, 2011.

P. Sarkar, A. K. Bhowmick, and . Adv, , vol.4, p.61343, 2014.

S. Georges, M. Bria, P. Zinck, and M. Visseaux, Polymer, vol.55, p.3869, 2014.

H. K. Mahabadi, J. Appl. Polym. Sci, 1535.

X. Q. Zhang and C. H. Wang, J. Polym. Sci., Part B: Polym. Phys, vol.32, p.1, 1994.

P. Hattam, S. Gauntlett, J. W. Mays, N. Hadjichristidis, R. N. Young et al., Macromolecules, vol.24, issue.23, p.6199, 1991.

H. Pasch,

B. Trathnigg, In Multidimensional HPLC of Polymers

H. Pasch,

B. Trathnigg, , pp.37-90, 2013.

J. Nicolas, S. Brusseau, and B. Charleux, J. Polym. Sci., Part A: Polym. Chem, p.34, 2010.

C. Petit, B. Luneau, E. Beaudoin, D. Gigmes, and D. Bertin, J. Chromatogr. A, p.128, 2007.

, INSA Lyon, tous droits réservés Figure S5c. 81 MHz 31 P NMR spectra of dried P(My-grad-IBOMA)-SG1 macroinitiators My/IBOMA-82 (top) and My/IBOMA-44 (down, chemical structure in bottom left) in CDCl3 at room temperature with diethyl phosphite as an internal reference, 2018.

M. Fineman and S. D. Ross, J. Polym. Sci, vol.1950, issue.2, p.259

F. R. Mayo and F. M. Lewis, J. Am. Chem. Soc, vol.66, issue.9, p.1594, 1944.

T. Kelen and F. Tu?do?s, J. Macromol. Sci., Chem, vol.1975, issue.1, p.1

P. W. Tidwell and G. A. Mortimer, J. Polym. Sci., Part A: Gen. Pap, vol.3, p.369, 1965.

P. Sarkar, A. K. Bhowmick, and . Adv, , vol.4, p.61343, 2014.

D. W. Van-krevelen,

K. Te, Nijenhuis In Properties of Polymers, 4

F. S10c, Atomic force microscopy phase images (left image, 2 ?m x 2 ?m; right image, 0.8 ?m x 0.8 ?m) under tapping mode of operation of the surface morphology of triblock copolymer My-35-IBOMA/My cast film. The dark domain represents the My component

, INSA Lyon, tous droits réservés ? Hydrogenation of the synthesized S-I-S triblock copolymers. PI mid-segment of the triblock copolymer was saturated using the method developed by Hahn 2 , which does not require the use of high-pressure H2. The unsaturated polymer was first dissolved in p-xylene (35-40 mL per gram of polymer) at 50 °C, and then p-toluenesulfonyl hydrazide (TSH, 2.4 equiv. to the double bond), tributylamine (TBA, 2.5 equiv. to the double bond) and small amount of 2,6-di-tert-butyl-4-methylphenol (BHT) were added. The reaction mixture was stirred at 125 °C for 3 hours under nitrogen atmosphere, and then allowed to cool to room temperature. The polymer was precipitated by adding cold methanol to the solution, and the methanol was decanted after stirring for 1 hour. The polymer was purified by repeating the precipitation using p-xylene/methanol system, and then dried under vacuum at 50 °C overnight, 2018.

, Styrene (S) conversion was determined using the vinyl protons of the monomer (? = 6.80-6.70, 5.80-5.70 and 5.30-5.20 ppm, 3H) and the aromatic protons of both monomer and polymer (? = 7.50-6.90 ppm, 5H). The hydrogenation degree (HD) was also determined by 1 H NMR via the PS aromatic protons, Isoprene conversion was determined by gravimetry. IBOMA conversion was obtained using the 1 H NMR peaks of the vinyl protons of the monomer (? = 6.05 and 5.50 ppm, 2H) and the aromatic proton of both monomer and polymer

, Water Breeze, differential refractive index RI 2414 detector, 40 o C) with HPLC grade THF as the mobile phase (flow rate of 0.3 mL.min -1 ). The GPC was equipped with 3 Waters Styragel ® HR columns (HR1 with a molecular weight measurement range of 10 2 -5 x 10 3 g.mol -1 , HR2 with a molecular weight measurement range of 5 x 10 2 -2 x 10 4 g.mol -1 and HR4 with a molecular weight measurement range of 5 x 10 3 -6 x 10 5 g.mol -1 ) and a guard column was used. Mn values were determined by calibration with 10 linear narrow molecular weight distribution PI standards, The number-average molecular weights (Mn) and the dispersities (? = Mw/Mn) were measured using gel permeation chromatography (GPC, p.0

, Please see the characterization section of Chapter 3 for the detailed protocols of DSC, TGA, DMA, AFM analyses and tensile testing

, ? References of the experimental section

B. Lessard, C. Aumand-bourque, R. Chaudury, D. Gomez, A. Haroon et al., Intern. Polymer Processing, vol.26, issue.2, p.197, 2011.

S. F. Hahn, An Improved Method for the Diimide Hydrogenation of Butadiene and Isoprene Containing Polymers, J. Polym. Sci., Part A: Polym. Chem, vol.30, pp.397-408, 1992.

, Appendix for Chapter 5: Experimental section ? Materials. 2,6-Di-tert-butyl-4-methylphenol (BHT, ? 99%), p-toluenesulfonyl hydrazide (TSH, 97%), tributylamine (TBA, ? 98.5%), polystyrene-block-polyisoprene-block-polystyrene with 14 wt% styrene (abbreviated S4-I-S4, specification sheet below, product number = 432393) and 22 wt% styrene (abbreviated S8-I-S8, specification sheet below, product number = 432415) were purchased from Sigma-Aldrich and used as received, INSA Lyon, tous droits réservés e, vol.99, pp.p-xylene, 2018.

, INSA Lyon, tous droits réservés ? Hydrogenation of commercial S-I-S. Please see the characterization section of the Chapter 4 for the detailed protocol, 2018.

, The hydrogenation degree (HD) of the TSH-treated S-I-S was determined by 1 H NMR, using the PS aromatic protons (? = 7.50-6.90 ppm, 5H) and the PI olefin peak

, Water Breeze, differential refractive index RI 2414 detector, 40 o C) with HPLC grade THF as the mobile phase (flow rate of 0.3 mL.min -1 ). The GPC was equipped with 3 Waters Styragel ® HR columns (HR1 with a molecular weight measurement range of 10 2 -5 x 10 3 g.mol -1 , HR2 with a molecular weight measurement range of 5 x 10 2 -2 x 10 4 g.mol -1 and HR4 with a molecular weight measurement range of 5 x 10 3 -6 x 10 5 g.mol -1 ) and a guard column was used. Mn values were determined by calibration with 10 linear narrow molecular weight distribution PI standards, The number-average molecular weights (Mn) and the dispersities (? = Mw/Mn) were measured using gel permeation chromatography (GPC, p.0

, The stress-strain features of the commercial triblock copolymers were determined using a MTS Insight material testing system with a 5 kN load cell at room temperature and a cross-head speed of 10 mm.min -1 . Dog-bone style tensile specimens (ASTM D638 type V for reference, overall length = 63.5 mm, overall width = 9.53 mm) were prepared either by solvent casting or by hot press. To cast the film, the polymer sample was fully dissolved in dichloromethane (~ 80 wt%) for an hour with continuous stirring using a magnetic stir bar, The solution was cast into