Skip to Main content Skip to Navigation
Theses

Roles of astroglial cannabinoid type 1 receptors (CB1) in memory and synaptic plasticity

Abstract : The endocannabinoid system is an important modulator of physiological functions. It is composed of cannabinoid receptors, their endogenous lipid ligands (the endocannabinoids) and the enzymatic machinery for endocannabinoid synthesis and degradation. The type-1 cannabinoid receptors (CB1) are expressed in different cell types of the brain and are known to be involved in memory processes. Endocannabinoids are mobilized in an activity-dependent manner in brain areas involved in the modulation of memory such as the hippocampus. In this brain region, CB1 receptors are mainly expressed at neuronal pre-synaptic terminals where their stimulation inhibits the release of neurotransmitters, thereby modulating several forms of synaptic activity. Besides their expression in neurons, CB1 receptors are also expressed in astrocytes. Along with the pre- and post-synaptic neurons, astrocytes are part of the “tripartite synapse”, where they participate in synaptic plasticity and associated memory processes. Interestingly, modulation of astroglial CB1 receptors has been proposed to facilitate glutamatergic transmission in the hippocampus. In this brain area, astrocytes regulate the activity of N-methyl-D-aspartate receptors (NMDARs) through the control of the synaptic levels of their co-agonist D-serine, thereby mediating long-term synaptic plasticity. However, the mechanisms inducing D-serine release by astrocytes are still not identified. Interestingly, our laboratory showed that the negative effect of exogenous cannabinoids on spatial working memory is mediated by astroglial CB1 receptors through a NMDAR-dependent mechanism in the hippocampus, but the physiological role of astroglial CB1 remains unknown. One of the forms of memory involving CB1 receptors is novel object recognition (NOR) memory. The exogenous stimulation of hippocampal CB1 receptors inhibits the consolidation of long-term NOR formation. Constitutive global deletion of CB1 receptors in mice leaves NOR memory intact, suggesting that endogenous CB1 receptor signaling is not necessary for long-term NOR. However, recent studies pointed-out that, likely due to compensatory mechanisms, the global deletion of the CB1 gene might mask cell type-specific roles of CB1 receptors, indicating that more sophisticated tools are required to fully understand the physiological roles of the endocannabinoid system in complex behavioral functions. In this work, we investigated the physiological role of the astroglial CB1 receptors on NOR memory formation and synaptic plasticity. By using a combination of genetic, behavioral, electrophysiological, imaging and biochemical techniques, we showed that endogenous activation of astroglial CB1 receptors is necessary for the consolidation of long-term NOR memory, through a mechanism involving the supply of D-serine to enhance synaptic NMDARs-dependent plasticity in the dorsal hippocampus. This study uncovers an unforeseen mechanism underlying D-serine release, triggering NMDARs activity and long-term memory formation.ory.
Document type :
Theses
Complete list of metadatas

Cited literature [577 references]  Display  Hide  Download

https://tel.archives-ouvertes.fr/tel-02062314
Contributor : Abes Star :  Contact
Submitted on : Friday, March 8, 2019 - 5:18:07 PM
Last modification on : Monday, March 11, 2019 - 10:27:09 AM

File

ROBIN_LAURIE_2018.pdf
Version validated by the jury (STAR)

Identifiers

  • HAL Id : tel-02062314, version 1

Collections

Citation

Laurie Robin. Roles of astroglial cannabinoid type 1 receptors (CB1) in memory and synaptic plasticity. Neurons and Cognition [q-bio.NC]. Université de Bordeaux, 2018. English. ⟨NNT : 2018BORD0283⟩. ⟨tel-02062314⟩

Share

Metrics

Record views

344

Files downloads

587