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Abstract

Sigfox rises as a promising candidate dedicated for long-distance and low-power
transmissions in the IoT backgrounds. Ultra Narrow Band (UNB), being the com-
munication technology chosen by Sigfox, allows to transmit information through
signals whose bandwidth is very limited, typically 100 Hz. Due to the imprecision
restraint on electronic devices, it is impossible to transmit UNB signals in orthog-
onal channels. The natural radio access for this kind of system is thus random
ALOHA, in both time and frequency domain. This random access can induce
collisions which degrades the networks performance.

The aim of this thesis is to characterize the capacity of UNB based networks,
as well as to enhance its performance, by considering the randomness in time and
frequency.

The first contribution of the thesis, is the theoretical and numerical capacity
evaluation under idealized and realistic channel conditions, for mono base sta-
tion (BS) case. Under idealized conditions, we have quantified this capacity for
generalized ALOHA case and extended for replications. We highlight the time-
frequency duality in UNB systems, and that there exists an optimum replication
number for a given network parameter set.

Under realistic conditions, we have taken into account the specific spectral in-
terference of UNB systems and propagation path loss (without and with Rayleigh
fading) to characterize the performance, with the aid of stochastic geometry.

The second contribution is the enhancement of UNB network performance
in single BS case. We propose to use successive interference cancellation (SIC)
in UNB networks, which allows to mitigate the interference. We have provided
a theoretical analysis by considering both SIC and the spectral interference, for
mono-BS case. We bring to light the efficiency of SIC in enhancing UNB system
performance.

The third contribution is the improvement of UNB systems, by exploiting the
multiple BS diversity. An analytical performance evaluation considering the sim-
plest selection combining is conducted. In particular, we consider the interference
viewed by all the BSs are correlated. Then we apply more complex signal combin-
ing technologies such as MRC (max ratio combining) and EGC (equal gain com-
bining), and even interference cancellation across multi-BS in UNB networks. We
evaluate the performance improvement that each technology can bring, and com-
pare them with each other. We highlight the efficiency of these multi-BS technolo-
gies which allow us to achieve significant performance enhancement compared to
mono-BS (e.x. 125 times better performance with global SIC).

Last but not least, we experimentally verify the the spectral interference model
and network capacity on a cognitive radio testbed.
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Résumé

La compagnie Sigfox est reconnue comme un acteur prometteur pour des trans-
missions de longue-distance et faible consommation, dans le contexte de 1'IoT. La
modulation a bande ultra étroite (Ultra Narrow Band (UNB)), la technologie de
communication choisie par Sigfox, permet de transmettre des informations dans
des bandes de signal trés étroites (typiquement 100 Hz). A cause de I'imprécision
fréquentielle causée par les oscillateurs générateurs de fréquence, il n’est pas réal-
iste de transmettre des signaux UNB dans des canaux parfaitement orthogonaux.
L’acces naturel au canal radio pour le systeme de UNB est de type ALOHA, avec
un aspect aléatoire a la fois en en temps et en fréquence. Cet acces aléatoire peut
introduire des collisions qui dégradent la performance du réseau.

Le but de cette these est de caractériser la capacité des réseaux basés sur UNB,
ainsi que d’améliorer la performance en considérant I’aspect aléatoire en temps et
en fréquence.

La premiere contribution de cette thése, est une évaluation de la capacité en
théorie et en simulation pour une seule station de base (BS), sous des conditions de
canal idéaliste ou réaliste. En conditions idéalistes, nous avons exprimé la capacité
pour le cas de ’ALOHA généralisé, et 'avons étendu aux cas de réplications. Pour
les conditions réalistes, nous avons pris en compte l'interférence spectrale d’"UNB
et le path loss (sans et avec Rayleigh fading) afin de caractériser la performance
des réseaux UNB, avec I'outil géométrie stochastique.

La deuxiéme contribution est d"appliquer I’annulation successive d’interférence
(SIC), qui nous permet d’atténuer les interférences, dans des réseaux de UNB.
Nous avons fourni une analyse théorique de la performance des réseaux en con-
sidérant le SIC et I'interférence spectrale de UNB, pour le cas de mono-BS. Nous
avons démontré que le SIC permet d’améliorer efficacement les performances des
systemes UNB.

La troisieme contribution est ’amélioration de la performance des réseaux
UNB, en exploitant la diversité de multi-BS. Nous avons fait une analyse théorique
de performance en considérant multi-BS et selection combining (SC). En parti-
culier, nous avons considéré que l'interférence vue par chaque BS est corrélée.
Nous avons ainsi démontré mathématiquement que cette corrélation ne peut pas
étre supprimée dans des systémes UNB. Ensuite, nous avons appliqué les tech-
nologies de la combinaison des signaux plus complexes comme MRC (max ratio
combining) et EGC (equal gain combining), ainsi que le SIC a travers multi-BS.
Nous avons évalué I'amélioration de performance que chaque technologie ap-
porte, et les avons comparées. Nous avons souligné I'efficacité de ces technologies
qui nous permettent d’obtenir des gains importants comparés au cas mono-BS
(e.x. 125 fois plus de réduction d’erreur avec SIC globale).

La derniere contribution est une validation expérimentale du modele d’interférence
spectrale de UNB, ainsi que la capacité des réseaux UNB, sur un testbed de radio
FIT/Cortexlab.
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XXV

Notations

Throughout this thesis, the probability is represented by IP, while the power is
represented by P. The probability of event A on the condition of variable a is
denoted by P(Ala). And the joint probability of event A and event B is denoted
by P(A N B).

For a random continuous variable X, its CDF (cumulative distribution func-
tion) is defined by Fx(x) = P(X < x) =P (ffoo fx(t)dt), with fx as its probabil-

ity density function. Its expectation is denoted and defined by IE [X] = [*_xf(x)dx.

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2018LY SEI069/these.pdf
© [Y. Mo], [2018], INSA Lyon, tous droits réservés



Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2018LY SEI069/these.pdf
© [Y. Mo], [2018], INSA Lyon, tous droits réservés



Synthese de contributions

XXVii

Cette these est pour buts de fournir une vision scientifique a la premiére tech-
nologie (i.e. Ultra Narrow Band) dédiée commercialement a 1'loT, de donner une
évaluation de la capacité des réseaux basés sur UNB, et d’en plus proposer des

solutions pour améliorer sa performance.

Les contributions principales de cette thése, qui répondent aux objectives men-

tionnés d’avant, sont:

1. Une caractérisation de capacité fondamentale des réseaux UNB, sous les

conditions de canal idéalistes pour une seul stations de base (BS). Cette con-
tribution quantifie théoriquement la capacité des réseaux pour 1’acces mul-
tiple spécifique de UNB (i.e. le Random-FTMA) qui est unslotté en temps
et en fréquence [1]. Puis elle a été étendue en cas de ALOHA généralisé
qui inclue quatre cas: slotté/unslotté en temps/fréquence ALOHA. Cette
analyse de ALOHA généralisé est ensuite poursuivie par le cas avec des ré-
plications [2]. Je souligne la dualité de temp-fréquence dans le systéemes de
UNB, ainsi que l'obtention d’un nombre optimal de réplications pour une
configuration de parameétres. Les résultats principaux de cette contribution
vont étre détaillés en Section 0.2.

. Une évaluation de performance des réseaux UNB sous les conditions de
canal réalistes, toujours pour mono-BS. Cette contribution fournit des ex-
pressions théoriques de la probabilité de coupure (OP) : la premiere con-
sidere le path-loss due a la propagation, l'interférence spectrale causée par
’acces au canal aléatoire de UNB, ainsi que ’hypothése d'un seul interférent
a chaque collision [3]; la deuxiéme prend en compte le fading de Rayleigh
et I'interférence agrégée (ou la perte d'un paquet peut venir de la collision
de plusieurs interférents) conjointement [4]. Ces analyses sont faites avec
I'aide de l'outil géométrie stochastique. Les résultats principaux de cette
contribution vont étre détaillés en Section 0.3.

. L'optimisation de performance des réseaux UNB en appliquant la technolo-
gie SIC (annulation successive d’interférence) qui permet d’atténuer les in-
terférences d’une maniere récursive, dans le cas de mono-BS [5]. Cette con-
tribution analyse 1'OP en prenant en compte le SIC et I'aspect aléatoire de
UNB conjointement, sous les conditions réalistes. Cette contribution a dé-
montré que le SIC est pertinent a améliorer la performance de UNB, et que
le fading favorise 1'efficacité de SIC. Ces résultats vont étre détaillés en Sec-
tion 0.4.

. L’amélioration de performance des systemes UNB, en exploitant la diver-
sité spatiale de multi-BS. Cette contribution applique les technologies de la
combinaison des signaux et SIC a travers de multiples BSs. Le plus simple
slection combining (SC) a été d’abord considéré dans ’analyse théorique, en
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supposant que les interférences pergus par toutes les BS sont corrélées [6].
Puis MRC (max ratio combining) et EGC (equal gain combining) sont ap-
pliqués, dans le but de combiner les signaux non-décodés pour obtenir un
output de meilleure qualité. Deux fagons d’appliquer SIC (localement et
globalement) ont été réalisées. Enfin, cette contribution évalue et compare
I’amélioration apportée par chaque technologie mentionnée [7]. Les résul-
tats principaux de cette contribution vont étre détaillés en Section 0.7.

5. Une validation expérimentale du modéle d’interférence spectrale de UNB,
ainsi que la capacité des réseaux UNB, sur un testbed de radio FIT/Cortexlab.
Les résultats principaux de cette contribution vont étre détaillés en Section
0.8.

0.1 Modélisation de UNB

La technologie UNB vise a réaliser des transmissions a longue distance et basse
consommation, de méme que, CSS (LoRa) et RPMA (Ingenu) [8]. La spécificité
d’un systeme UNB, est que 1’occupation spectrale du signal est tres petite (typ-
iquement 100 Hz), comparée aux systemes classiques. Cela permet d’avoir une
portée de transmission tres large (jusqu’a 50km), et une consommation d’énergie
ultra basse (I’autonomie de batterie d"un device peut aller jusqu’a 20 ans). UNB
est donc adapté pour des objets qui envoient des messages de petite taille (typ-
iquement 100 a 200 bits), et qui ont besoin d"une autonomie de 10 a 20 ans.

0.1.1 Accés multiple

La principale caractéristique de UNB est liée & un phénomene typique dans des
objets électroniques : l'imprécision des oscillateurs lors de la génération de la
fréquence porteuse. Actuellement, les oscillateurs ordinaires (0.25 ppm) ont une
incertitude de 217Hz a la fréquence de 868MHz, ce qui est plus large que la bande
individuelle de UNB [9]. De ce fait, la séparation du spectre en canaux n’est plus
pertinente. Par conséquent, 1’accés au canal est RFTMA (Random Frequency and
Time Multiple Access), ot les objets choisissent leur moment d’émission et leur
fréquence porteuse d'une maniere aléatoire et continue, comme illustrée dans la
Fig. 1. D’un c6té, cela permet de s’affranchir des échanges nécessaires a 1’allocation
de ressources, et d’utiliser des oscillateurs de low-cost. Mais d’un autre co6té, cela
ne protege pas des interférences et collisions.

Les transmissions des nceuds ne sont pas slottées en temps, puisque chaque
neeud peut commencer ou terminer une émission a un moment aléatoire. Par
conséquent, le niveau d’interférence peut varier lors d'une transmission. Cela
corresponde a ALOHA classique qui a déja été étudié dans beaucoup de littéra-
ture [10,11]. Dans cette these, nous ne considérons pas cet aspect-la. Nous nous
intéressons plus a 1’aspect aléatoire et continue en fréquence, ce qui n’a jamais été
étudié dans dans des réseaux cellulaires.
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p S$1(f1) S2(f2) Sa(fa)
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FIGURE 1: Exemple de répartition des nceuds en temps et en
fréquence

0.1.2 Topologie et hypotheéses

Dans cette thése, nous nous concentrons sur un moment observé. Nous sup-
posons que la densité spatiale de nceuds soit Ag. Les localisations de nceuds suit
une distribution HPPP (Poisson point process homogene). A chaque moment, les
neeuds décident indépendamment de transmettre un paquet, avec la probabilité
p. Donc sur le moment observé, la densité de noeuds actifs vaut A, = pAo. UNB
est dédié a des devices qui transmettent sporadiquement, cette probabilité p est
donc tres basse, ce qui conduit a A << Ag. Nous utilisons dans cette thése A, au
lieu de Ay pour indiquer que la densité actifs de nceuds (ou N le nombre actifs de
neeuds).

Les nceuds sont supposés d’avoir le méme comportement: les transmissions
se dont avec la méme puissance d’émission et gain d’antenne. L’évaluation de
performance est donc basée sur la distribution de SINR (signal to interference
and noise ratio) instantanée, afin d’assurer que le niveau de SINR soit stable au
moment observé.

Mono-BS

Pour le cas de mono-BS, nous considérons une cellule avec une seule BS en son
centre, comme montrée dans la fig. 2. La BS est constamment en mode réception,
et scanne toute la ressource fréquentielle B pour détecter toute transmission. Les
neceuds sont distribués aléatoirement et uniformément dans le disque, de rayon
["m, M), avec ry, définissant une zone d’exclusion ot aucun nceud est déployé.

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2018LY SEI069/these.pdf
© [Y. Mo], [2018], INSA Lyon, tous droits réservés



XXX

Multi-BS

Pour le cas de multi-BS, nous avons considéré deux scénarios: le premier est la
topologie tradition ale, ot les localisations des BSs se forment en treillis carré et la
distance entre chaque BS est identique, comme montré dans la Fig. 3(a); ’autre est
la topologie souvent utilsée dans des analyses théoriqurs, ou la distribution des
BSs suit une loi HPPP (ce qui est indépendante de celle de nceuds), avec la densité

'

Tx
{

x desirednode |

1%

37

vy — th interferer

Base —station I
2
"""" 2 (
A 7y
() .

FIGURE 2: Exemple de topologie mono-BS: la zone couverte est
[7m, rMm], en orange le noeud désiré situé a la distance ry; en bleu les
interférents a une distance ry

Ay, , comme montré dans la Fig. 3(b).

4.5

35

25

*
* Ky * kX o
o % o oF o
o 4 ¥ o o % o
- * ¥ oy * %
¥ * Ok 4 * *
* * * * HK *
3 * Ok 3 * ”
D ¥y % |
*
K * * * *
* * o
0 ok o
K % ok * * * K
* * * * * *
* * * * %&%
* ¥ *x
lx * « x % ¥ * * oy
« ¥
* % * *
b o X sy o o
(g& (o} * 0 ¥ o
* Fxe * x X E *
* % * ok * ]
HHox gk * * *
*7 n X * 4 * .
[ * * X * ¥ *ooEE
* *** % s
#* £o .  X© * o
* # % * % *
L * L \** L L * L *
05 1 15 2 25 3 85 4 45 5

(a) Locations of BSs form square lattice x10*

T
k * A P T
- * T, *

45t o

* * * *
o 4 * f** «
b * 4

45 i % % * *x *

* 3K *
* O *
35[0 ek ¥ o ¥ 4
¥ % * * !
*
o x %
3 ﬁf* * * ;& **i; * 5
* ook Fx X * X
* * * . * ¥
25;?%5& % * *
* * * * %
* st * " P!
2 * * #% *
*op * O %
* * *
* % * *
15k %0 * 0 |
*
* * *
L * x % F 1
1 0 * *
¥ * © % o *
* K
* *
¥ ox ¥ X * .
05 * ¥ * % ]
* %
o ke *
* * *

0 . KT O o ok

0o 05 1 5 2 25 3 35 4 45 5

(b) Locations of BSs follow PPP

FIGURE 3: Topologie de multi-BS. Les points blues sont des nceuds
distribués, les points rouges sont des BSs. (a) les localisations des
BS sont quadrillées ot la distance entre chacune des BSs est iden-
tique; (b) la localisations des BS suit une loi HPPP avec la densité

Ap.

0.1.3 Modele d’interférence spectrale

Les nceuds sélectionnent leur fréquence porteuse aléatoirement et indépendam-
ment. Pour 2 nceuds transmettant simultanément, le niveau d’interférence pergu
dépend de I’écart fréquentiel entre le paquet désiré (a la fréquence f) et le paquet
interférent (a fy) : 0f =| fx — f, |. Nous avons estimé le facteur d’interférence a
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partir du filtre réaliste de Sigfox, avec deux modeles: une fonction rectangulaire
et une fonction Gaussienne.

1 T T

— UNB realistic model
Gaussian model -
Rectangular model: AR
Rectangular model: UB
Rectangular model: LB

Interference power in Watt

! ! L | N ! I
-600 -400 -200 0 200 400 600
frequency spacing in Hz

o T T

10— — UNB realistic model -
Gaussian model
20 Rectangular model: AR | 7|
30 Rectangular model: UB | _|

Rectangular model: LB
40 -

50 = -l
60 4
<70 = A

Interference power in dB

-600 -400 -200 0 200 400 600
frequency spacing in Hz

FIGURE 4: Le coefficient d’interférence vs la différence en
fréquence Jy entre le paquet désiré et le paquet interférant

Modéle rectangulaire

D’abord, nous notons que l'interférence peut étre divisés en deux parties. Dans la
premiére partie, le niveau d’interférence est au alentour de —50 dB. Un seul inter-
férent dans cette partie n’a pas d’impact au packet désiré puisque son niveau est
tres bas. Dans la deuxiéme partie, le niveau d’interférence augmente trés rapide-
ment quand J f se réduit, ce qui peut aller jusqu’a 0 dB. Un paquet qui apporte une
contribution d’interférence comme celle-ci a beaucoup plus de chance a perturber
le paquet désiré. La transition se fait dans la zone de 100 — 400Hz, qui dépend de
la critére imposée par le systeme.

Par conséquent, nous considérons que le niveau d’interférence soit constant
dans la zone fréquentielle superposée de deux signaux. La contribution d"un in-
terférent peut alors étre modélisée comme une fonction rectangulaire:

Iinax f07’ 5f§A/2,

PR =1 1., for O6f > AJ2.

ou A correspond au largeur de bande qui transite le niveau d’interférence.

Modele Gaussienne

Le modele rectangulaire peut faciliter les calculs comme il est trés simple, cepen-
dant il perd des détails de I’évolution d’interférence en fonction de  f. Nous avons
donc I'approximé avec une fonction Gaussienne :

150 a7
;B (éf) - 0_\/277_[ exp o (2)
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avec ¢ = 60 pour une transmission de 100 bit/s [12].

Nous pouvons voir dans la Fig. 4 que le modele Gaussienne (en rose) reflete
presque tous les détails du filtre réaliste de Sigfox (en noir). Il va étre utilisé
dans toutes les analyses ol1 nous considérons l'interférence spectrale spécifique de
UNB. Alors que le modele rectangulaire inclue la borne supérieure UB (en rouge),
la borne intérieure LB (en bleu), et l'optimal AR (en vert). Ces trois bornes vont
étre utilisées en Section 0.3.

0.2 La 1ére contribution

Cette section présente les résultats principaux de la premiére contribution: 1’analyse
de la performance des réseaux UNB sous les conditions de canal idéaliste, pour le
cas de mono-BS.

Les études existantes basées sur ALOHA considérent souvent FH (frequency
hopping) ot1 la ressource fréquentielle est découpé parfaitement en canaux orthog-
onaux [13]. L'aspect aléatoire et continue dans le domaine de fréquence comme
celui de UNB n’a jamais été considéré. Nous complétons donc ces études de
ALOHA en prenant en compte l'aspect totalement aléatoire de fréquences cen-
trales dans cette contribution, afin de caractériser la voie montant d’ALOHA basé
sur UNB.

0.2.1 Hypotheéses

Dans cette étude, le réseau est limité a une BS qui collecte les données des nceuds
qui sont a portée. Nous considérons que tous les noceuds sont percus avec la méme
puissance. A chaque instant, seulement un sous-ensemble de ces nceuds N trans-
met. Nous supposons que tous les nceuds ont le méme comportement: Un nceud
se réveille toutes les T, secondes pour envoyer un message qui dure T secondes.
La condition de canal est idéaliste, donc la puissance recue de chaque paquet est
identique peu importe ou se situe des nceuds. Avec cette hypothese-la, quand
deux paquets sont en collisions, nous perdons les deux. Cela représente le pire
cas.

Pour le cas TS (slotté en temps), comme la ressource en temps est découpé en
slots, chaque nceud actif choisit un time-slot aléatoirement pour transmettre. Donc
la probabilité qu'un interférant transmette pendant le méme slot que l'utilisateur
désiré est : P, = 7/T,. Alors que pour le cas TU (non-slotté en temps, ce qui cor-
respond au cas réaliste de UNB Sigfox), le recouvrement partiale peut aussi intro-
duire des collisions. Nous supposons qu'une fois qu’il y a un recouvrement tem-
porale entre deux paquets (peu importe que c’est 1% ou 99%), nous perdons les
deux. C’est-a-dire que quand un interférent sélectionne son moment d’émission
au tour de [—T, T] comparé a celui du noeud désiré, nous perdons le paquet désiré.
Par conséquent, la probabilité d’étre en collision en temps devient 27/ T, en TU.

Le méme principe s’applique dans le domaine des fréquences. La ressource
fréquentielle totale est B Hz. Nous utilisons le modele rectangulaire présent en
Section 0.1.3 pour définir la bande fréquentielle de sensibilité aux interférences b.
Nous définissons b = 116Hz. Pour le cas FS (slotté en fréquence), la probabilité
d’étre en collision est pr = b/ B. Alors que pour le cas FU, cette probabilité devient
ps = 2b/B puisque le découvrement partiale en fréquence peut aussi introduire
des collisions.
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0.2.2 ALOHA généralisé

Nous considérons un utilisateur désiré qui est choisi aléatoirement. Nous évalu-
ons la probabilité que cet utilisateur désiré perd ses messages, avec la présence de
N autres utilisateurs.

Analyse théorique

Dans le protocole de ALOHA classique, tous les paquets sont transmis dans le
méme canal. Donc il est aléatoire seulement en domaine temporal. Si le nombre
totale de paquets générés suit une distribution de Poisson, la probabilité de succes
d'un paquet donné est [10]:

Pip = e ™% 3)

avec a; = 1 pour le cas TS, a; = 2 pour TU, et G; = Np; comme le nombre
moyen de paquet générés par tous les autres utilisateurs durant la transmissions
du paquet désiré.

Pour des systemes de frequency hopping qui possedent pl—f = B/b canaux
orthogonaux [11], eq.(3) devient :

Ppy = e~ 4P (4)

Nous étendons ces deux équations au cas ALOHA généralisé, qui décrit tous
les cas. La probabilité de coupure (OP) pour ALOHA généralisé est alors :

OP =1 — ¢ 4Gy (5)

Ntb
T, B
paquet désiré, a; = 2 (resp.1) pour time-unslotted (TU) (resp. time-slotted (TS)),
ay = 2 (resp.1) pour frequency-unslotted (FU) (resp. frequency slotted (FS)). Le
cas FUTU correspond au scénario réaliste de Sigfox.

Cette expression OP eq.(5) nous montre la dualité temporale et fréquentielle
dans le protocole de ALOHA, o1 nous pouvons inter-échanger les parametres en
temps (a; et p;) et ceux en fréquence (as et py) pour obtenir la méme OP. Cette
découverte apporte une flexibilité a la configuration du réseau. Si c’est difficile de
réaliser TS et FS conjointement, cette dualité nous permet de choisir lequel relaxer
selon les critéres imposées, par exemple le cotit de déploiement des nceuds.

avec Gty = Npipy = comme le trafic moyen durant la transmission du

Résultats numériques et comparaison

Nous avons lancé des simulations de Monte-Carlo sur Matlab, en prenant la méme
hypotheses que 'analyse théorique, dans le but de valider 1’expression de OP
eq.(5). Nous présentons les résultats pour le cas de FUTS (af = 2, a; = 1) et
FUTU (ay = 2, a; = 2) dans cette section. Pour étre plus réaliste, les transmissions
sont faites sur la bande ISM 868 MHz.

Nous présentons en Fig. 5 la comparaison de OP en théorie et en simulations,
en variant deux parametres : le nombre total d’utilisateurs N + 1 et la ressource
spectrale totale B.
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FIGURE 5: OP en théorie et en simulations, en variant le nombre
d’utilisateurs non-désirés N, pour les cas de FUTS et FUTU, b =
116Hz, B = 12000Hz, T = 2s, et T, = 12 heures.

Nous avons aussi tracé le throughput en Fig. 6, en variant la charge de réseaux
Giy. Cette fois-ci nous considérons tous les 4 cas. Nous pouvons remarquer que
le FSTS apporte la meilleure performance, puisque 1'espace temporale et spectrale
est toute divisée en canaux orthogonaux, la probabilité de collision est donc min-
imisée. Au contraire, FUTU a la pire performance a cause de recouvrement tem-
porel et fréquentiel. Finalement, FSTU et FUTS se superposent grace a la dualité
en temps-fréquence.
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FIGURE 6: Network throughput as a function of the load for all

o)

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2018LY SEI069/these.pdf
© [Y. Mo], [2018], INSA Lyon, tous droits réservés



XXXV

0.2.3 ALOHA généralisé avec répliques

Pour améliorer le taux de succeés des transmissions, le mécanisme (nous mon-
trons ici que pour le cas FUTS) de réplication illustré dans la Fig. 7 est appliqué.
Nous supposons que chaque message est transmis exactement 7, fois durant le
Ty, indépendamment du succes ou non de la transmission précédente. 7, est donc
prédéfini et identique pour tous les nceuds. Chaque nceud actif i € [1,--- , N + 1]
choisit au hasard une fréquence porteuse f; et un time-slot t; pour chaque réplique.

A p PURT T A
La fenétre temporale allouée pour une réplique est . De méme, la largeur en
r

fréquence alloué pour chaque réplique est ainsi -2;. Un message est considéré
r
succes en transmission si au moins une de ses 71, répliques réussit.

4 Frequency I st replication
i 2nd replication
1_"'*
d
Node 3
Node 2
Mode 1
of{3,4) Mode 3 Nadad
Mode 1
" Mode 4
Maode 2

Time

FIGURE 7: lllustration de réplique n, = 2 pour la durée de message
d et la période de message T)

Analyse théorique

Dans le cas avec des répliques 71, le nombre de paquets générés durant 'intervalle
temporal et fréquentiel augmente. Donc la charge de réseau devient n, - Gy =
n NTbh
T, B
devient:

Ainsi, la probabilité qu'une réplique donnée soit correctement recue

Ps(n,) = e~ %% e (6)

Nous supposons que la probabilité de succes d"une réplique est indépendent
de celles d’avant. En conséquent, I'OP d'un messsage est la probalité que toutes
ses n, répliques soient perdues :

op(n,) = (1- e—“f“fth"r)"’ @)

les notations sont identiques que celles dans eq.(5).
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Résultats numériques et comparaison

Nous avons choisi le cas FUTS a appliquer dans des simulations pour valider
I'expression de I'OP avec des répliques eq.(7).

Sur la Fig. 8, on peut vérifier que la théorie décrit correctement 1’évolution de
I’OP en fonction de 7, et de N. En conséquence, le parameétre G;f est un parametre
unifié qui modélise correctement la charge du réseau. Ainsi, dans la suite du
papier, nous utiliserons eq.(7) pour I'évaluation des performances.

D’autre part, la Fig. 8 confirme que le mécanisme de réplication est capable
d’améliorer la probabilité de succes d'un message transmis. En effet, la croissance
de n, permet d’augmenter la chance qu’au moins un paquet soit bien re¢u, donc
de réduire I'OP. En revanche, la réplication multiplie aussi le nombre de messages
envoyés dans l'intervalle temporel fixé. Cela accroit 1'utilisation du canal et la
probabilité de collision.

10
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FIGURE 8: OP vs nombre de répliques n, avec différents nombres
de nceuds actives N, b = 116 Hz, B =12 kHz, T = 25, T}, = 75s.

0.3 La2éme contribution

Cette section présente les résultats principaux de la deuxiéme contribution: I’analyse
de la performance des réseaux UNB sous les conditions de canal réalistes, pour le
cas de mono-BS. Nous avons dérivé deux expressions théorique de 1'OP: (1) nous
considérons que le path-loss due a la propagation en espace libre et I'interférence
spectrale spécifique de UNB qui vient d'un interférant; (2) nous considérons le
Rayleigh fading et la contribution agrégée de plusieurs interférants, et le path-
loss pour toutes les propagations. La géométrie stochastique est utilisé dans le
deuxieme cas.

0.3.1 Hypotheses

Dans cette étude, le réseau est toujours limité a une unique BS (Base Station) qui
collecte les données des nceuds a sa portée. Comme illustré dans la Fig. 2, les
nceuds sont distribués uniformément dans un disque, dont la portée est [ry,, 7).
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La positionnement des nceuds peut étre modélisé par un HPPP (Poisson point
processus homogene ) spatiale [14], avec la densité A; sue ’espace Euclidien R?.
Dans cette contribution, nous nous focalisons sur un moment échantillonné pour
observer les transmissions simultanées. Comme les nceuds n’envoient pas tres
souvent, nous utilisons la densité active de nceuds A (qui est trés petite par rapport
a A;) pour observer le réseau.

Nous nous concentrons sur un nceud désiré donnée x a la distance r,. Et tous
les autres nceuds actifs sont des interférents potentiels y a la distance r,. La BS
est supposée étre constamment en mode réception, et capable de scanner toute
la bande B pour des transmissions potentielles. Nous considérons que tous les
neceuds transmettent avec la méme puissance d’émission et gain d’antenne.

0.3.2 Analyse théorique

L’OP sous les conditions réalistes est définie comme la probabilité que le paquet
donnée soit perdu, donc son SINR (rapport de Signa-Interference-bruit) est en-
dessous d'un seuil prédéfini o*. L'OP est basé sur le SINR instatanée qui est as-
sumé étre stable durant le moment observé. Donc 1'OP pour un nceud désiré x qui
se situe a distance r, par rapport a la BS est:

P,
OP = P(SINR, < ") =P T <o 8
SINR, < 7) =P (2 <) ®
avec la puissance requ du nceud désiré, P; le coefficient d'interférence, W le bruit
et 7" le seuil de SINR prédéfini.
La puissance reque peut étre écrire comme :

Pszgx"’;a'P(l) )

avec « > 2 le path-loss; g le coefficient de Rayleigh fading qui est une variable
aléatoire suivant une lois exponentielle ¢ ~ exp (1); et hy le gain de canal de
référence a la distance r.

Pj peut étre obtenue par la somme des contributions de tous les interférents :

Pr=" Y gy BOf) - R (10)

ye{A—x}

Impact de path-loss et modele d’interférence en Gaussien

Pour avoir une premiere intuition de l'acces aléatoire spectrale de UNB, nous
avons d’abord négligé le fading et le bruit. Nous considérons que l'atténuation
en espace libre (x = 2). Ainsi, nous utilisons le SIR (rapport signal-interférence)
comme une version simplifiée de SINR. Nous considérons que I'interférence néces-
saire a la perte d'un paquet provient d’un seul interférent, car c’est le cas le plus
fréquent dans un systeme de UNB [12]. Avec ces hypotheses, 1'OP s’écrit:

OP =P(SIR < 7*) =P (113 < 7*) (11)
I
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Nous considérons tout d’abord le cas ol seuls deux nceuds sont actifs (un
neeud désiré x, et un interférent y). A partir de eq.(9) et eq.(10), nous pouvons
exprimer le SIR du nceud désiré :

P PR ()1
SIR_PI_ry_Z-ﬂ((sf)-Po—<7’x> B (f) (2

avec B (6f) le coefficient d’interférence en Gaussien illustrée en eq.(2).
Un paquet est considéré perdu si son SIR < ¢*,i.e. quand :

ry <13/ 7B (6f) (13)

Nous décomposons (13) en appliquant la formule des probabilités totales en
fonction de 6 f. L'OP devient :

or = ["® (v < rafr B 6Ior ) P (1) s 04

Nous exprimons tout d’abord P (6f). Le noeud désiré et l'interférent choi-
sissent leur fréquence f, et f, aléatoirement, indépendamment et uniformément
dans [0, B]. Dong, l’écart fréquentiel d f suit la distribution suivante :

2(1-9Y for
11’(5f)—{3< B> forof € [0.5] (15)

0 elsewhere

Nous calculons ensuite P <ry < ra/7B(Of)|6f ) , en intégrant sur le variable

aléatoire r,. Les noceuds sont supposés étre distribués selon un processus ponctuel
de Poisson. Leur distance respective a la BS suit donc une distribution linéaire.
IP (r) représente la probabilité qu'un noeud soit a la distance (rayon) r dans une
surface discoide [ry,, "m]

2r 2r

———F = — forr e[y,
P(r)=Q na—ra ¥ et (16)

0 elsewhere

2 _ .2 2
avec k® = ry; — 1y,

Puis les calcules sont faites en fonction de la valeur de rn/y*B (6f). Nous le
présentons pas tous les détails dans cette section, mais nous référons les intéressés
a lire le chapter 4. Nous présentons ’OP finale avec une r, donnée :

OP — b]bz (“27*[‘5(:{) _r’"z) P (5f) d(5f+/bjl 1. (6f) dof (17)
(L SN 150ayie 62\ 6f 2 p 52
_[75117 erf(\/ﬁ)—k B\/Eexp<202>+ez—eBc5f b1+2{5f_
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avec les constantes suivantes :

erz Zrm2
d:Bkz, €:7B2k2, b():O

oo () 5) ) e () ) )

Nous étendons (17) au cas ot N > 2 nceuds sont actifs. Cependant, nous
considérons que l'interférence nécessaire a la perte d"un paquet provient d'un seul
interférent, car c’est le cas le plus fréquent dans un systeme de UNB. Dans ce
cas, n'importe lequel de ces N — 1 (tous les noeuds sauf celui désiré) peut étre
I'interférent. En conséquence, la probabilité de succeés est la probabilité qu’aucun
de ces N — 1 n’interrompe le nceud désiré. Donc la probabilité de coupure devient

OP(yy =1—(1—0P)N"! (18)

Impact conjoint de Rayleigh fading, path-loss et modéle d’interférence rectan-
gulaire

Dans cette partie, nous considérons un canal plus complexe: avec path-loss, Rayleigh

fading, le bruit et l'interférence agrégée (AIP). Cependant, pour obtenir une ex-

pression tractable, nous utilisons le coefficient d’interférence § (Jf) rectangulaire

(i.e. les courbes en verte, rouge et bleu en Fig. 4) comme présenté en eq.(1).
L’expression de SINR avec ces hypothéses devient :

o
SINR = g"PIeriWO (19)

avec P; l'interférence aggrégée comme montrée en eq.(10), et W le bruit Gaussien

filtré.
Ainsi, pour un nceud donné x a la distance ry, son OP s’écrit :
*(W+P
OP = P <gx < W) (20)
ry" - DBy

Comme I’AIP est une variable aléatoire, cette probabilité peut s’écrire comme

la suivante :
)] 1)
(a) W + P]
=1-Ep {exp < r;”‘ P’ )] (22)

- 1—eXP< = P’) ‘B [eXp <_7;‘P;5>]
(=W
(=W

OP = Ep, |:1P(gx_ T " P/I

= 1 —exp -s) - Ep, [exp (=P - s)]

D1 —exp (~W+s) - Ly, (5)
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ou Ep, représente 'espérance de P, selon la théorie de probabilité.; (a) vient de
CDF (cumulative density function) de la variable exponentiel g,; (b) nous re-

*
ret - B
de I'AIP [14].

Les calcules se poursuivent par la dérivation de la transformée de Laplace
Lp, (s). Nous référons les intéressés a lire la Section 4.3.2 pour des détails. Nous
donnons I'expression finale de cette transformée de Laplace :

plagons s =

(c) nous replagons le second terme par la Laplace de Laplace

Lp,(s) = ex —ZNA/rM<1— P S >rdr (23)
Pis) = exp o 14+s-b-r,* 1+s-c-ry" vy

ol b et ¢ sont définis par les parametres de modele rectangulaire b = I,y - P} et

,.)/*

¢ =Ly Py s=——.
min ~ L 7’;“ ) Pé

0.3.3 Résultats numérique et validation

Nous présentons les résultats de simulations avec différents coefficients d’interférence.
Pour le modele rectangulaire, nous considérons trois groupes de parameétres: le
modéle approximé (AR, la courbe verte en Fig. 4), la borne supérieure (UB, la
courbe rouge), et la borne inférieure (LB, la courbe bleu). Leurs valeurs sont :

AR :A = 145Hz, Iyax = 0dB, I, = —75dB (24)
UB:A = 300Hz, Iyax =0dB, I, = —47.284B
LB:A = 116Hz, Iy = —6.8dB, I, = —75dB

Nous montrons en Fig. 9-10 la comparaison des résultats en simulations et
en théorie. Nous avons tracé 1'OP en fonction de la distance du nceud désiré r,
et la densité de nceuds actifs A. Sur ces deux figures, nous pouvons valider la
théorie pour la cas sans-fading eq.(18). Pour le cas avec fading, I'OP obtenue par
la théorie eq.(21) corresponde bien a celle obtenue par les modeles rectangulaires.
Donc nous pouvons en déduire que les deux expressions de I'OP sont validées.

De plus, I'évolution de I’'OP avec le modele réaliste de Sigfox (la courbe noire
en trait) est entre la UB et la LB, ce qui est cohérent. Le modele AR surestime
légerement quand r, est petit, puis il devient plus précis quand r, grandit. Ces
résultats confirment le choix de parametres pour les modéle AR, UB at LB, ainsi
que la scalabilité des modeles rectangulaires.
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Les phénomenes classiques sont aussi vérifiés dans : la croissance de I'OP est
induite par la croissance de ry et N. En effet, quand les transmissions simultanées
sont nombreuses, les noeuds ont plus de chance d’étre en collision. De méme,
quand le nceud désiré est trop loin de la BS, I'interférent potentiel a plus de chance

d’avoir une puissance plus élevée. LOP du noeud désiré est donc plus élevée.

0.4 La3éme contribution

Cette section présente les résultats principaux de la troisieme contribution: ’application

de annulation d’interférence successive (SIC) dans les réseaux de UNB, ainsi que
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I'analyse de performance en considérant conjointement le SIC et l'interférence
spectrale de UNB, pour le cas de mono-BS.

Depuis les deux conributions précédentes, nous avone bien réalisé que la limi-
tation de performance des réseaux UNB est son accés aléatoire en fréquence. Afin
de mutualiser les ressources nécessaires, nous nous concentrons sur la réduction
des interférences du c6té BS. Nous considérons le SIC, une technologie qui permet
d’enlever les interférences d’une maniere récursive, en exploitant la dynamique
des puissances regues. Le SIC a été démontré comme trés avantageux pour des
transmissions a bas débit [15], et les réseaux I'IoT en particulier [16]. Néanmoins,
ces études ne peuvent pas étre directement appliquées aux transmissions UNB.
En effet, le modele spécifique d’interférence doit étre pris en compte.

Dans cette contribution, nous proposons d’analyser le bénéfice du SIC dans
des réseaux UNB. Nous exploitons les résultats dans la premiere partie de la Sec-
tion 0.3.2, qui caractérise la performance de UNB sans SIC en prenant en compte
que le path-loss.

0.5 Modélisation et Hypothese

Les hypothéses sont identique que la premiére partie de la Section 0.3.2. Nous
considérons une cellule avec une seule BS en son centre. La BS est constamment en
mode réception, et scanne toute la bande B pour détecter toute transmission. Les
neceuds sont distribués aléatoirement et uniformément dans le disque, de rayon
[rm, M), avec 1y, définissant une zone d’exclusion ott aucun nceud est déployé.
Nous supposons que N nceuds sont actifs (chacun envoie un paquet) au moment
observé, et que leur paquets sont émis avec les méme puissance et gain d’antenne.
La propagation étant supposée se faire en espace libre, la puissance pergue a la BS
dépend uniquement de la distance parcourue.

Les nceuds sélectionnent leur fréquence porteuse aléatoirement et indépen-
damment. Il a été montré que l'interférence nécessaire pour perdre un paquet était
généralement imputable a un seul interférent [12]. Pour 2 nceuds transmettant si-
multanément, le niveau d’interférence percu dépend de l'écart fréquentiel entre le
paquet désiré (a la fréquence fy) et le paquet interférent (a f,) : of =| fx — fy |-
Dans cette contribution, nous utilisons le facteur d’interférence Gaussien B ()
en eq.(2).

0.5.1 Principale du SIC

Le principe du SIC est de décoder les paquets supplémentaires apres le processus
d’un récepteur simple. Supposons que la BS recoit I paquets en méme temps,
qui sont tous en collision. Avec un récepteur simple, seulement le paquet le plus
fort (en terme de SINR ou la puissance regue) peut étre correctement décodé, tant
que son SINR est au dessus du seuil prédéfini. Mais avec un récepteur SIC, ce
paquet premiérement décodé va étre reconstruit puis soustrait de la somme de
signaux en collision. La contribution du premier paquet étant retirée, de paquets
supplémentaires deviennent décodables. Ainsi, le récepteur SIC arrive a décoder
plus de paquets qu'un récepteur simple. Le processus de reconstruire, soustraire
et décoder est une itération du SIC. SIC continue en itération jusqu’a ce que le plus
haut SIR ne dépasse plus le seuil prédéfini.
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Comme illustrée en Fig. 11, la itération 0 représente le processus d"un récepteur
simple, et SIC commence par la itération 1. Le récepteur simple arrive a décoder
de signaux singleton (i.e. paquets 4, 7 sur le schéma), ou le signal le plus fort en
collisions (i.e. paquet 1, 9). Basé sur les signaux décodés par le récepteur simple,
SIC va les reconstruire et retirer leur contribution, ainsi le paquet 2 et 8 devien-
nent décodables. Apres une SIC itération, nous avons déja décodé deux paquets
supplémentaires. Le paquet 5 et 6 ne sont décodable ni par le récepteur simple, ni
par le récepteur SIC. Cela vient du fait que leur puissances regues sont déja trés
bas, ainsi leur interférence mutule rend leur SIR encore plus bas. Par conséquent,
leur SIR ne dépasse jamais le seuil, ils restent alors undécodés.

Power

g
2
: [+] [sm H @ Freq
Power
Iteration O
2
Wﬂ B> s

Freq

Power
Iteration 1

& Freq

Power
1 Iteration 2>

Freq

FIGURE 11: Schéma du SIC. Le paquets sont positionnés a dif-
férentes fréquences centrales, avec différents niveau de puissance
regue.

0.6 Analyse théorique

Pour mesurer la performance du réseau, nous utilisons toujours la métrique OP
(Outage Probability).

Nous considérons deux nceuds actifs au moment d’observation : un nceud
désiré x (resp. interférent y) a la distance r, (resp r,). En espace libre, le SIR
(Signal to Interference Ratio) du paquet désiré (celui envoyé par le noceud désiré)

s’écrit :
b (:*0)2 ()1
SIRy = P (%)2,5(5f) B <7x> ﬁ(éf) (2)

avec Py la puissance a la distance de référence ry.

L’expression de 'OP dans le cas d'un récepteur simple a été dérivée dans la
premiere partie de la Section 0.3.2. Dans ce cas, seulement le paquet le plus fort
pouvait étre décodé (si son SIR était supérieur a ¢*). Avec un récepteur SIC, ce
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paquet va étre reconstruit et sa contribution retirée du signal recu. Ce proces-
sus continue tant qu'un nouveau paquet peut étre décodé. Cependant, dans cette
analyse théorique, nous nous concentrons sur une seule itération du SIC, puisque
que nous avons fait I’hypothese qu’il y a un seul interférent. Nous supposons que
le récepteur SIC retire parfaitement les paquets décodés. Ainsi, quand deux pa-
quets interferent mutuellement, une fois que 1'un est correctement décodé, I'autre
va aussi étre décodé grace au SIC.

Pour que le paquet du nceud désiré x soit perdu malgré la présence du SIC,
il faut que les SIR de x et de y soient tous les 2 inférieurs a v*. L'OP du paquet
d’intérét avec SIC donc s’écrit:

OPsic = P (SIRx < v*NSIRy, < 7¥) (26)

Puisque le SIR du x et y dépendent d'un méme Jf, ces probabilités sont cor-
rélées. Nous ne pouvons donc pas les traiter indépendamment. Nous calculons
I’OP avec SIC en utilisant la loi de la probabilité totale: avec comme variables
d’intégration r,, ry et 5f. L'intégration a été faite en décomposant le calcul sur
plusieurs supports d'intégration selon la valeur de/y*pB (6 f) (plus de détails peu-
vent étre trouvés dans le chapter 5). Enfin, nous étendons eq.(26) au cas de N util-
isateurs (dont un nceud désiré, et N — 1 interférents potentiels). Dans ce cas-13, le
paquet du nceud désiré est correctement regu si aucun de ces N — 1 I'interrompe.
L’expression finale de 'OP avec du SIC devient:

OPsic(n) = 1 — (1 — OPgic)N ™! 27)

L’obtention de cette expression est montrée dans le ??. Elle dépend de plusieurs
parametres: la taille du cellule [y, 7], la bande totale B, le nombre de nceuds ac-
tifs N, et le seuil du SIR «*.

0.6.1 Résultats numérique et validation

Nous avons lancé des simulations de Monte Carlo pour valider eq.(27). La topolo-
gie du réseau et les hypothese restent identiques a celles de la théorie. Dans un
premier temps, nous n'imposons pas de limitation sur les itérations du SIC. Nous
avons évalué le pourcentage des paquets décodés par rapport a différentes itéra-
tions du SIC sur Fig. 12. L'itération 0 correspond au décodage d'un récepteur
simple, et les itérations supérieures au SIC. Nous observons que les itérations
nécessaires augmentent lors que le nombre de nceuds accroit. Néanmoins, c’est
toujours la 1ere itération qui apporte I'amélioration la plus importante. Cela con-
firme la pertinence de I’hypothese d"une seule itération.
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W SIC iteration O

96,08% SIC iteration 1

87,99% SIC iteration 2
SIC iteration 3
76,58%
21,27%
1,54%
3,92%
0,47% 2,15% 0,04%

N=50/km*2 N=200/km*2 N=500/km*2

Decoded pakcet percentage

FIGURE 12: Pourcentage de paquets décodés vs itération du SIC,
pour différentes nombres de nceuds, B =96 kHz, r,,, = 30m, rp; =
1000 m, v* = 6.8 dB.

La Fig. 13 présente la performance du récepteur simple et celle du SIC, théorique-
ment et par simulation. Nous pouvons voir que les simulations du SIC (points)
coincident parfaitement avec la théorie (ligne). Nous avons obtenus les méme
comportements en variant B et 7* (& voir dans le chapter 5). Par conséquent,
I'expression théorique eq.(27) est validée. En plus, nous vérifions les comporte-
ments classiques, par exemple 'OP augmente quand le nombre de nceuds aug-
mente. En effet, quand le trafic est plus dense, la performance du réseau se dé-
grade.

©  OP without SIC
v OP with SIC
theory

Outage Probability

I I I I I I
0 10 20 30 40 50 60 70 80 90 100
Active node number N

FIGURE 13: OP sans SIC vs avec SIC, pour différents nombres de
nceuds N, B =96 kHz, r,;, = 30 m, )y = 1000 m, v* = 6.8 dB.

0.6.2 Analyse de la performance du SIC

. oy 2 . Y] OP,p51¢—OPs1c
Nous analysons l'efficacité du SIC dans cette partie. Nous définissons =—5—-"-5I¢
no.

comme le gain du SIC, pour caractériser I’amélioration relative du SIC sur le ré-
cepteur simple. Pour généraliser 1’étude, nous caractérisons l'activité du réseau
par la densité normalisée de nceuds, i.e. 'occupation spectrale moyenne. Cela est
défini par l'occupation spectrale de tous les nceuds actifs sur la bande totale 2%

(un signal de UNB occupe 100 Hz typiquement).
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T
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FIGURE 14: Gain de SIC, pour différents seuils de SIR y* (dB), et la

densité de noeuds % constante, r;, = 30 m, )y = 1000 m.

10°

. . .
—e—SIR threshold y'=5 dB
—*—SIR threshold +'=6.8 dB
—9—SIR threshold 1'=10 dB

Gain of SIC
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Normalized node density N*100/B

FIGURE 15: Gain de SIC, pour différentes densités de nceuds %,

et différents seuils du SIR ¢* (dB), ,, = 30 m, ) = 1000 m.

Nous avons évalué ce gain en maintenant la densité normalisée constante.
Comme montré dans la Fig. 14, peu importe a quel ordre de grandeur est le nom-
bre de nceuds, I'amélioration apportée par le SIC est identique une fois que la
densité normalisée reste constante. De plus, nous avons vérifié I'évolution du
gain quand la densité de nceuds n’est plus constante. Comme nous pouvons voir
dans Fig. 15, la performance du SIC dégrade lors que la densité normalisée ou le
seuil du SIR augmente.

Ces résultats peuvent étre directement exploités pour ajuster les parameétres du
systéme en fonction du trafic visé. Par exemple, pour un nombre de nceuds donné,

nous pourrons adapter la bande passante totale pour atteindre les performances
attendues.
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0.7 La4éme contribution

Cette section présente la quatrieme contribution de la these : ’exploitation de la
diversité spatiale de multiple BS dans le but d’améliorer la performance des sys-
temes UNB. Nous appliquons différents technologies de combinaison de signaux,
puis I'annulation d’interférence a travers des multi-BS. Nous analysons en théorie
pour le cas slection combining, puis nous évaluons numériquement I’amélioration
de performance par rapport a mono-BS pour toutes les technologies.

Dans la plus part de réseaux cellulaires, une BS serve les utilisateurs (i.e. les
neceuds) dans sa cellule. Les noeuds sont alors attachés a cette spécifique BS, les
échanges sont faites qu’avec la BS concernée. Mais dans le réseau de Sigfox, les
neeuds ne sont attachés a aucune BS. Cela introduit la conséquence ot un signal
peut étre aperqu par plusieurs BS. De plus, chaque BS a un point de vu différente
pour des signaux transmis. Parce que les BSs ne sont pas toutes a la méme distance
pour un nceud donné (donc l'atténuation n’est pas la méme), ainsi que le signal
passe de conditions de canal diverses pour arriver a chaque BS. De méme, le signal
en question n’a pas vécu la méme scénarios d’interférence. Donc c’est possible que
le signal soit perdu a une BS, et qu’il soit décodé proprement a une autre BS. Cette
diversité spatiale (en temps, en fréquence et en espace) peut étre tres pertinente a
exploiter pour améliorer la performance du réseau.

Les technologies de combinaison de signaux est le plus commun pour ex-
ploiter a diversité spatiale de multi-récepteurs. Elles visent a combiner les sig-
naux regus par chaque BS, méme si aucun entre eux est décodé. Avec la combinai-
son, la contribution du signal désiré est ajoutée de fagcon constructive, cependant
I'interférence et le bruit sont moyennés. Cela conduit a une augmentation signi-
ficative en SINR. Ainsi, le signal désiré a plus de chance d’étre décodé.

Dans cette contribution, nous évaluons la SC (slection combining), la EGC
(equal gain combining) et la MRC (max ratio combining). Puis nous appliquons
le SIC (déja introduit dans la 3éme contribution) a travers des multiple BS.

0.7.1 Principe de SC/EGC/MRC

Un signal donné est apercu par chaque BS avec de différents niveaux de SIR. Nous
considérons le canal de ce signal a chaque BS comme une branche de combinateur
de signaux. Nous supposons que les signaux de toutes les branches ont la méme
phase, donc c’est juste le niveau de puissance qui joue.

Nous avons présenté en Fig. 16 le schéma de SC/EGC/MRC. Un symbole x
(dont I'amplitude est £1) est transmit et percu par les BSs (i.e. les branches). Sur
la iéme branche, son amplitude est impactée par h; qui représente la condition
de canal (donc le gain de canal) de la BS;. Durant la transmission, le bruit et
lI'interférence est ajouté. Cela changera I’amplitude du symbole.
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FIGURE 16: Schéma de SC/EGC/MRC. x représente le symbole

transmit, /; le gain de canal de BS;, N; et PI; sont le bruit et

l'interférence vecu par le signal sur la branche BS;, et w; le poids
sur la ieme branche.

SC sélectionne le signal de la meilleur qualité (en terme de SIR) parmi toutes
les branches, pour décider si le message contenu dans le signal peut étre décodé
ou pas (i.e. si son SIR dépasse ou pas le seuil). Si SC échoue, le paquet sera envoyé
dans le combinateur EGC ou MRC.

Dans le cas de EGC et MRC, la sortie du combinateur est 1’enveloppe de la
somme des signaux pondérées sur toutes les branches. L'objectif est de max-
imiser le SINR de la sortie en choisissant les poids. En EGC, les poids sont iden-
tiques pour chaque branche. Alors qu’en MRC, dans la plus part de littérature
ou l'interférence n’est pas considérée, le poids est proportionnel au gain de canal
de la branche. Mais dans les réseaux de UNB ot 'acceés a radio est aléatoire,
l'interférence ne peut pas étre ignorée. Par conséquent, quand le gain du canal k;
est élevé sur une branche, le SINR; n’est pas nécessairement élevé (quand le signal
est gravement affecté par l'interférence).

Donc dans cette contribution, nous considérons que le poids pertinent w; est
proportionnel au SINR de la branche, qui refletent la condition de canal et le
niveau d’interférence. Nous pouvons alors exprier le SINR du combinateur EGC
et MRC comme la suivante :

K
SINR, = Zwi-SINRi (28)
i=1
avec K branches, et les poids comme :

SINR;
YK SINR,
w;(EGC) =1

wi(MRC) =

0.7.2 Principe de SIC locale

Pour mieux exploiter la diversité de multi-BS, nous appliquons le SIC a travers
plusieurs BSs. Cela nous permet de bénéficier conjointement la diversité spatiales
et la diversité en puissance recue. Nous proposons de le faire en deux fagons : la
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FIGURE 17: Schéma de SIC locale chez chaque BS. Les BSs proce-

dent SIC localement, puis transmettent leur paquets décodés au

back-haul. Ite0 représente le procésus d'un récepteur simple;
L’itération maximum du SIC est défini a 2.

SIC ite2

maniere local et la miniere globale. Nous supposons que toutes les BS arrivent a
reconstruire et soustraire les signaux parfaitement.

Pour le SIC locale a chaque BS, les BSs ne communique pas directement en-
tre elles. Elles procédent SIC localement jusqu’a la derniere itération, puis elles
envoient leur paquets décodés au back-haul, comme montré en Fig. 17. Avec
la présence de diversité spatiale, les paquets non-décodés chez une BS peut étre
décodés chez une autre. Puisque le back-haul collecte tous les paquets décodés
depuis toutes les BSs, la performance est meilleure que mono-BS qui procede SIC.
L’itération maximum est prédéfinie.

0.7.3 Principe de SIC globale

Dans le cas globale, les BSs cooperent pour effectuer le SIC. Toutes les BSs fait le
SIC localement, puis envoyer leur paquets décodés a leur voisines par des liens
directs, apres chaque itération de SIC. Comme illustrée en Fig. 18, le terme IP(i, j)
contient les paquet décodés par BS;, apres la jeme SIC itération. Nous supposons
que IP(i, j) contient tous les détails de signaux nécessaire pour qu’ils puissent étre
reconstruites par les BSs voisines.

Apres chaque SIC itération, IP(7, j) va étre broadcast a toutes les BSs voisines.
Puis, les BSs peuvent exploiter les IP(i, j) envoyés par leur voisines, reconstruire
les paquets qu’elles ont besoin, et éliminer la contribution des paquets indésir-
ables. En conséquence, le paquets qui étaient interféré deviennent décodable chez
des BSs grace a IP(i, j). Ce processus est effectué par toutes les BSs apres chaque
itération. A la fin, toutes les BSs groupent leur paquets décodés de toutes les itéra-
tion sum(IP (i, j)), et les transférent au back-haul.
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FIGURE 18: Schéma du SIC globale a travers multi-BS. IP(i, j) con-
tient les paquets décodés par la ieme BS, apres la jeme SIC itéra-
tion.

0.7.4 Résultats numériques

Dans cette section, nous évéaluons la performance de toutes technologies men-
tionnés avant : SC, MRC, EGC, local SIC chez chaque BS et SIC globale a travers
multi-BS. Pour observer le gain apporté par les multi-BS, nous avons aussi tracé la
performance de mono-BS et la BS la plsu proche (en terme de distance physique).
C’est toujours le terme OP=P(SIR < 7*) qui représente la performance du réseau.
Nous avons négligé le bruit dans cette contribution parce que son niveau est beau-
coup plus bas que l'interférence.

Nous avons fait les simulations de Monte-Carlo sur Matlab, avec ces parameétres
prédéfinis : les nceuds et les BSs sont distribués aléatoirement en HPPP (comme
montrée en Fig. 3 (b)) dans une carré de 200km x 200km; 1’exposant de propaga-
tion & = 2; le Rayleigh fading qui suit une lois exponentielle avec le moyenne
égale a 1; et le seuil de SIR v* = 7dB. Nous avons présenté en Fig. 19-20 'OP
en fonction de la charge normalisée %Z et la ressource fréquentielle totale B, pour
toutes les technologies.
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FIGURE 19: OP vs la charge normalisée /)\TZ’ avec B = 12kHz, v* =
7 dB.

D’abord, nous pouvons observer que les technologies de multi-BS ont toujours
une meilleure performance que mono-BS. Puis nous remarquons que OP;¢4rst Bs)
est moins bon que le SC. C’est du fait d’avoir plusieurs variables aléatoires comme
fading et I'interférence de UNB qui impactent le SIR. Ainsi, la plus courte distance
(i.e la BS la plus proche) n’a pas nécessairement meilleur performance.

Ensuite, nous notons que EGC/MRC sont toujours plus performants que SC.
C’est parce que le processus de EGC/MRC est basé sur les résultats de SC. Si un
paquet réussit a étre décodé par une des BS, il n’y a pas besoin de I’envoyer dans
le EGC ou MRC combinateur. Nous combinons seulement les paquets qui sont de
faible qualité (bas SIR;) sur toutes les branches. Ainsi, ¢’est normal que EGC/MRC
sont plus performant que SC.

En outre, nous remarquons que le MRC est plus performant que EGC. En effet,
les poids de MRC prennent en compte la gain de canal et I'interférence, donc ils
sont capable de maximiser le SIR de la sortie du combinateur MRC. Au contraire,
les poids de EGC sont identiques sur toutes les branches, qui égalise les signaux de
bonne ou de faible qualité. En conclusion, EGC est moins performant que MRC,
méme s’il est plus simple a implémenter.

Puis nous pouvons noter que le SIC globale a travers multi-BS est plus perfor-
mant que le SIC locale chez chaque BS. Ce n’est pas surprenant parque le SIC glob-
ale permet de partager les informations parmi toutes les BSs. Ainsi, le SIC globale
arrivent a reconstruire et soustraire les paquets décodés par les autres BSs. Cela
lui permet de décoder plus de paquets que faire du SIC localement chez chaque
BS. C’est aussi la raison que le SIC globale est plus performant que MRC. Puisque
MRC additionne en méme temps les signaux et les interférences, alors que le SIC
globale arrivent a retirer les interférences.
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FIGURE 20: OP vs la bande totale B, maximum 1 SIC itération, avec
%:10, v* =7 dB.

Ce qui est intéressant c’est quand nous comparons Fig.19(A, B), nous remar-
quons que le SIC (locale ou globale) a seulement une amélioration légere de per-
formance quand on augmente le nombre d’itération maximum. En outre, plus le
nombre d’itération augment, plus la complexité de systemes accroit, et plus nous
avons besoin de ressources de calculs. Avec ces résultats, nous savons maintnant
que nous pouvons avoir de performance similaire avec 1 ou plus de SIC itérations.

0.8 La 5éme contribution

Dans cette section, nous présentons les résultats principaux de la cinquieme con-
tribution : la validation expérimentale du modele d’interférence, et de la capacité
du réseau sous des conditions idéalistes.

0.8.1 Présentation des outils
FIT/CorteXlab

Nous utilisons la plate-forme radio FIT/Cortexlab (future internet of things cog-
nitive radio testbed) pour faire des expérimentations. Cette plate-forme nous
permet d’évaluer différent aspects de radio congnitivs dans des scénarios réal-
istes [17]. CorteXlab utilise architecture de réseau développé par IoT-lab, il inte-
gre des noeuds SDR (software defined radio) et offre un acces et manipulation a
distance.

Le testbed est installé dans une chambre isolée de toutes les ondes interférences
externes, et est couverte de matériel qui absorbe des ondes électromagnétique.
Donc la condition de canal (comme path-loss, fading, shadowing , etc.) est to-
talement sous controle des utilisateurs. En plus, cela nous permet de répéter des
expérimentations avec le méme scénario.

Les nceuds que nous utilisons pour faire de I'expérimentation, sont les nceuds
SDR qui consistent a 22 cartes USRP (Universal Software Radio Peripheral). Ces
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cartes peuvent étre transmetteurs et récepteurs, dont la fréquence d’opération
peut varier de 400 MHz a 4.4 GHz.

GNU Radio

Les cartes USRPs sont seulement programmable avec GNU Radio pour le mo-
ment. GNU Radio est un logiciel gratuit et open-source qui fournit des bloques de
traitement de signal pour implémenter le software radio [18]. Le software radio
est un systeme de radio qui faut le traitement de signal en logiciel a la place de
circuit hardware intégré. Nous pouvons utiliser les bloques existants sur GNU
Radio, ou créer nos bloques en programmant en Python ou C++. Nous utilisons
le logiciel graphique GRC (GNU Radio companion) ot nous pouvons mettre en
place les bloques en flow-graph.

0.8.2 Planning de I’expérimentation

Comme montrée en Fig. 21, nous utilisons des cartes USRPs (les points en vert et
bleu) pour émuler des signaux UNB et transmettre. La réception se fait par une
station de base Sigfox qui est installée dans la salle de CorteXlab totalement isolée.
Comme la chambre est couverte de matériels absorbant des ondes électromagné-
tiques, les murs et les sols n’engendrent pas de réflexion et obstacles indésirables.
Ainsi, nous avons mis la puissance d’émission de chaque nceud au méme niveau,
leur puissance recu est donc identique a celle d’émission peu importe ot ils se
situent. Une condition de canal idéaliste est donc émulée.
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FIGURE 21: L'emplacement de la BS Sigfox et les cartes USRPs dans
la chambre de Cortexlab.

0.8.3 Validation de coefficient d’interférence

Nous avons vérifié le coefficient d’interférence, comme il est le base de toutes les
analyses théorique dans cette these.

Nous nous focalisons sur deux signaux, celui désiré x a la fréquence centrale
fx qui ne change pas, et celui d’interférent y a la fréquence f, qui est d’abord
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superposé avec fy, puis décalé au fur et a mesures de f;. Cette écarte génere
Of = |fx — fy| que nous avons mentionné dans toutes les autres contributions.

Nous avons tracé le coefficient expérimentale d’interférence en fonction de
I"écarte fréquentielle 5 f, sur la Fig. 22. Nous remarquons les coefficients de Gaussien
et de AR ont tous légerement sur-estimé celui obtenu par des expérimentations.
Globalement, le coefficient expérimental peut étre mieux approximé par un mod-
ele rectangulaire plus étroite.

—Experimental
— Gaussian model
—Rectangular AR model

dB

Interference coefficient 5(df) in

-100 0 100
frequency spacing df in Hz

FIGURE 22: Le coefficient d’interférence expérimentale.

0.8.4 Validation de OP sous conditions de canal idéalistes

Puis nous avons vérifié la probabilité de coupure sous les conditions de canal
idéalistes (o1 la puissance recue de chaque paquet est identique) par les expéri-
mentations. Nous nous concentrons sur l'interférence spectrale, donc les trans-
missions sont synchronisées pour négliger I'impact temporal. Le nombre de trans-
missions simultanées est N.

Nous avons dérivé les expression théorique de 1'OPy,, en supposant qu’il y a
un interférent a chaque collision et que le bruit est négligeable:

2- Aex rimental (N-1)
Exprimental : OPy, =1 — <1 — Z}) (29)
A . (N-1)
Gaussien : OPy, =1 — <1 — 265”551%) (30)
2- A\ V7Y
Rectangulaire AR : OPy, =1 — <1 — BAR> (31)

avec Agxprimentat = 63 Hz, Agaussien = 116 Hz, et Ayr = 145 Hz. Ces valeurs
de A viennent de la limite de f quand le coefficient dépasse —7 dB, qui sont
observables en Fig. 22.

Nous avons tracé en Fig. 23 une comparaison de I’'OP obtenue par des ex-
périmentations et par les théories. Nous pouvons observer que 1'OP obtenue par
des expérimentations (la ligne noire pointillée) est trés proche de 1'OPy;, par le
coefficient expérimentale (la ligne noire solide). La premiere est légerement au-
dessus de la seconde. Cette légere différence vient probablement de I'hypotheése
en théorie ot nous avons supposé un seul interférent (mais l'interférence agrégée
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peut arriver en expérimentations), et la négligence de bruit en théorie. Mais glob-
alement, le coefficient expérimental décrit bien 1’évolution de I’OP réalistes. Cela
montre la cohérence du coefficient expérimental.

1 T T

=% -Experimental

—a—Theory: Experimental model
—e—Theory: Gaussian model
—v—Theory: rectangular AR model| |

08

Outage probability OP

o
©
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I I I I
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FIGURE 23: OP vs la ressource fréquentielle totale B en Hz. Le
nombre de transmission simultanées N = 10, et la sensibilité de la
Bs Sigfox yv* =7 dB.
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1.1 Context of thesis

IoT (Internet of Things) has been a hot issue in recent years, both in the research
tields, and on the market. It refers to networks of physical devices that have com-
munications capabilities. The expectation that everything is going to be connected
is leading the trend. It is foretold that, by 2020, there will be 20 billions of com-
municating objects in the world [19]. These objects collect and transfer informa-
tion. They are also designed to support many sorts of applications: they can vary
from indoor to outdoor, from smart meter’s several bytes of data per day to vehi-
cle monitor’s huge amount of information per milliseconds, from bluetooth, WiFi
to sub-GHz technologies, and from battery-based such as fire alarm to always
charged such as video surveillance [20]. With different features, their particular
requirements vary.

However, most of the devices do not have ultimate demands in terms of la-
tency or data rate. They only have a small amount of data to transfer, and do not
require a response within a milliseconds delay. Thus, a single collecting point can
serve, from a capacity point of view, a high number of nodes. For low density de-
ployments, this permits a coverage of tens of kilometers. Nonetheless, the major-
ity of this kind of devices are battery-based. As the frequent battery maintenance
is to be avoided due to the high number of nodes, a low energy consumption
is also a strong requirement for IoT. Therefore, the challenges for IoT networks
are to achieve high scalability to handle massive nodes, to be able to manage a
bursty access to the medium, to have wide coverage, while keeping low energy
consumption, and low node cost.

Devices which have these demands are difficult to be integrated into tradi-
tional cellular networks due to their sporadic activities. That’s why recent tech-
nologies have come to the scene, dedicated to LPWAN (Low Power Wide Area
Network) [8], such as NB-IoT, which has been included to the 3GPP standardiza-
tion, and is the narrow band system based on LTE ; CSS, commercially known as
LoRa, provides the possibility for people to build their own LoRaWAN; RPMA
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2 Chapter 1. Introduction

which is developed by Ingenu; and UNB (Ultra Narrow Band), developed and
patented by the French company Sigfox, was the first one to be commercially ini-
tiated for IoT purpose.

Interestingly, two opposite approaches have been exploited to perform the tar-
geted long range transmission. Spreading spectrum is considered in LoRa and
RPMA, while UNB permits to transmit messages by using extreme narrow-band
signals (100-200 Hz, about one thousand times smaller than the whole channel
bandwidth). Both approaches aim at realizing long-range transmissions, the for-
mer is achieved by by the spreading coding gain, whereas the latter is achieved
by its very low noise level. The key advantages of UNB are its simplicity and its
wider practical coverage than the others [8]. We focus on UNB in this thesis.

1.2 Motivations

In a UNB system, the signal used to transfer information occupies a very small
band compared to classical systems, typically 100Hz. This is about one thousand
times narrower than the whole frequency resources (typically 192kHz). UNB sig-
nal transmissions are performed on the 868 MHz (resp. 915 MHz) ISM band in
Europe (resp. in the USA).

The main specificity of UNB is linked to the oscillator imprecision, which is a
typical phenomenon in electronic devices. It characterizes the fact that there exists
an offset between the targeted frequency and the actual generated one. This im-
precision comes from oscillators factoring. To the best of our knowledge, regular
low-cost oscillators (0.25ppm drift) can lead to an inaccuracy of 217Hz for a tar-
geted frequency at 868MHz. This uncertainty is larger than the individual UNB
signal bandwidth. Thus it is not realistic to obtain perfectly orthogonal channels
in UNB systems, if we want to keep the low-cost attribute.

As a consequence, the natural and dedicated channel access scheme for UNB is
RFTMA (Random Frequency and Time Multiple Access), which is an Aloha-type
scheme. Different from traditional Aloha, RFTMA generates randomness in both
time and frequency domains. Each node sends its messages at any moment and at
a carrier frequency randomly chosen at its will, without preliminarily analyzing
the channel state. The advantage of this approach, is that the classical overhead
dedicated to the reservation of radio resources is saved, and that the use of low-
cost oscillators is possible. Nonetheless, as there is no control, collisions may oc-
cur. This interference potentially generated by simultaneous transmissions needs
to be alleviated.

Although Sigfox’s network is deployed worldwide and renowned to be effi-
cient for low data rate and long range transmissions, there are still many open
questions such as: what's its scalability when numerous simultaneous transmis-
sions happen? What is the network capacity in realistic conditions, when fac-
ing fading and internal/external interferences? How to deal with the collisions
caused by non-synchronized unpredicted emissions? How to improve the net-
work performance without changing its random radio access?

I have thus considered UNB during the three years of my thesis. The objec-
tives are not only to provide a more scientific vision to this first technology com-
mercially initiated for IoT purpose, but also to evaluate its network capacity, and
to further propose solutions for enhancing the performance. I highlight that this
thesis is based on the results of a previous PhD, and his two papers [9,12].
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1.3 Contributions and organization of thesis

The thesis starts firstly with the state of the art of IoT, the context of LPWAN
and the problematics of the technology (i.e. UNB) that I study in this these, in
chapter 2. Then I present my contributions from chapter 3 to chapter 7 which are
stated in details in the following paragraph. Finally, I conclude the thesis and raise
the perspectives in chapter 8.

My contributions which respond to the previously mentioned objectives are:

1. Fundamental capacity characterization of UNB networks, under idealistic
channel conditions for single base station (BS) case. I theoretically quantify
the capacity for the specific random-FTMA multiple access of UNB, then I
extend it to generalized Aloha case (including slotted /unslotted time/frequency
Aloha) and broadened it for replications. I highlight the time-frequency du-
ality in UNB systems, and that there exists an optimum replication number
for a given network parameter set. This contribution is reported in chapter 3.

2. Evaluation of the UNB system performance under realistic channel condi-
tions, still for single BS case. I derive and exploit two theoretical expressions
of the outage probability: the first one considers the path-loss due to the
propagation, the spectral interference caused by the random radio access of
UNB, and in the condition of only one interferer at each collision; the sec-
ond one has included the joint impact of Rayleigh fading and the aggregated
interference (where a failure can come from several collision packets) in ad-
dition. I highlight that these analysis are carried out by leveraging on the
powerful mathematical tool stochastic geometry, and reported in chapter 4.

3. Enhancement of the UNB networks’ performance from the single base sta-
tion’s side. I apply the well-known SIC (Successive Interference Cancella-
tion) to mitigate the spectral interference of UNB systems in a recursive way.
I provide a theoretical analysis of the outage probability, when considering
jointly SIC and the specific spectral randomness of UNB. Realistic channel
conditions with path-loss is considered. I note that SIC brings benefits in
enhancing UNB system performance, and that fading delivers an additional
degree of freedom which improves the performance of SIC. This contribu-
tion is reported in chapter 5.

4. Improvement the UNB systems performance, by exploiting the spatial diver-
sity of multiple base stations. I propose to perform signal combining and in-
terference cancellation technologies across multi-BS. Firstly, I demonstrate a
theoretical performance analysis for the simplest Selection Combining (SC),
when considering the correlation among the interferences viewed by all the
BSs. Secondly, I attack more complex ones, such as Max Ratio Combining
(MRC) and Equal Gain Combining (EGC), which combine undecoded sig-
nals of all the BSs in the purpose of obtaining a better-quality output. Then
I propose to apply two methods: local SIC and global SIC across multi-
BS. Finally, I evaluate the performance improvement of all the technologies
(compared to single BS). These technologies exploiting multi-BS diversity
are proved to be significantly beneficial in improving UNB networks’ scala-
bility. We can gain until 125 times better performance with global SIC. And
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4 Chapter 1. Introduction

I highlight that these results provide a choice among the technologies ac-
cording to the improvement needs and the implementation complexity. This
contribution is reported in chapter 6.

5. Experimental verification of the the UNB spectral interference coefficient
and the network capacity. I conduct the experiments on a cognitive radio
testbed FIT/Cortexlab, where the transmissions are emulated by soft-ware
defined radio equipments and the reception is performed by a Sigfox base
station. I obtain the realistic interference coefficient from the experiments,
and compare it with the Gaussian and rectangular models used in the theo-
retical analysis. The result shows that both Gaussian and rectangular mod-
els have over-estimated the realistic coefficient, but it also gives an insight
of how to adapt it. Then I verify the experimental performance with the
theoretical ones, under idealized channel conditions. This contribution is
reported in chapter 7.
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In this chapter, we present an overview of Internet of Things (IoT) concerning
its evolution from wireless sensor networks, as well as its current needs and con-
nectivity technologies. Among these enabling technologies, LPWAN (Low Power
Wide Area Network) stands out as ideal candidate for the numerous power-critical,
long-range and low-throughput IoT devices. The issued challenges and studies of
LPWAN are presented, along with the introduction of several technologies exist-
ing on the market. Then, we focus on the Ultra-Narrow-Band (UNB) technique
deployed by the company Sigfox, which is the main technology that I worked on
during this thesis. Its definition, specificity and related scientific works are pro-
vided. Finally, we summarize and discuss some relevant and open issues in the
research field.

2.1 IoT overview

2.1.1 Evolution and challenges of IoT

Internet of things (IoT), as a big part of evolution predicted in 5G (the fifth genera-
tion), has been gaining a lot of attention in recent years. IoT is the network which
connects physical devices, vehicles, and even buildings without human involve-
ment [21]. It extends the connectivity beyond computers and phones to virtually
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any object that has a chip and a radio interface. It is expected to allow heteroge-
neous objects to communicate with each other, by bridging diverse technologies.

At the beginning, the services offered by IoT were focused on Smarthome that
is realized by M2M (machine to machine) systems. They connect devices at home
such as thermostats, energy meters, lighting control systems, music streaming and
control systems, remote video streaming boxes, and pool systems, etc. Most of
these systems have some connectivity through a Web site so that a user can man-
age them through a standard Web browser or a smartphone app. But the scale of
devices was very limited. Gradually, the applications in M2M has been enlarged
to all objects and even living things, such as health surveillance, smart grids and
smart cities. Thus not only the number of people learning the advantages of IoT
is growing, but also the number of objects to be connected is rising.

Over time, the needs towards IoT are also evolving. In terms of data rate need,
it can vary from smart meter’s several bytes of data per day to vehicle monitor’s
huge amount of information (some hundreds of megabytes) per milliseconds. In
respect of latency criticality, it varies from several seconds such as animal track-
ing to less than one milliseconds such as real-time medical operations in distance.
With regards to the connectivity, it varies from robot movements’ several cen-
timeters to outdoor tracking’s some fifty kilometers. And in terms of scale of
connected objects, it varies from several sensors at one’s home to some thousands
of sensors/actuators in a smart building.

To follow these growing needs, the challenges of IoT [22] [23] include :

o The scalability to manage bursty connection demands from massive objects

e Adapting the design of devices, in order to fit customers’ requirements in
respecting availability of anywhere and anytime

e Exploiting new enabling technologies, for the purpose of fulfilling the com-
patibility of heterogeneous things

e Upgrading the Internet architecture, in oder to fit the tremendous number
of objects connecting to it

e Promoting the architecture standardization for IoT, in the favor of users’
choices and the creating a competitive environments for companies

e Figuring out the solutions for numerous demands of low-power and event-
driven communication

e Maintaining the security levels and respecting privacy issues

e Ensuring the quality of service to customers at an efficient cost

In this thesis, I focus on the connecting technologies, where lie my research
interests in the PHY and MAC layers.
2.1.2 Enabling technologies in IoT

Enabling technologies, as a crucial element in IoT, allow heterogeneous objects to
communicate with their gateways, with the base stations and with each other. As
the technologies like 5G are coming, more and more applications requires high
transmission speed and real-time monitoring. However, in the market of IoT,
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FIGURE 2.1: Wireless IoT connectivity technologies

there are still a lot of event-driven applications which demand the use of simple
and power-critical devices. They request very low energy consumption and long
battery life (which lasts several years) to avoid the cost of battery replacement.

There are many sorts of criteria to list these connectivity technologies into
groups, for example the communication ranges, the topologies or the autonomies.
From my point of view, they can be sorted into four main types depending on the
power efficiency demand of the devices (high and low power), and the communi-
cation ranges (long and short range).

High power represents the connectivity technologies which consume much
energy that their battery have to be always charged or often changed. Meanwhile,
low power is dedicated to power-critical devices, whose battery has to last long
time. Long and short ranges represent respectively the technologies that allow
long and short communication distances, while ensuring the quality of service.
As presented in Fig. 2.1, the wireless connectivity technologies for IoT are listed
and sorted according to their communication range.

The part below will introduce the representative technologies of each type.

e High power & short range:

The two important representatives in this type are WiFi and Bluetooth [24].
WiFi allows devices to connect and exchange information within a distance of
100m, inside 2.4GHz UHF and 5GHz SHF ISM radio bands. It has the capabil-
ity of video monitoring. Bluetooth represents the technology which allows data
exchange within a short distance, by using the 2.4GHz ISM band.

The common features of this type are: high bandwidth, high data rate, low la-
tency, and very short communication range. They are ideal candidates for IoT ap-
plications such as smart vehicles, smart grids and wearable devices, whose scale
of data to deliver within a short time interval is very high. Meanwhile, their good
features cause certainly high energy consumption, thus they do not fit applica-
tions that are power-critical.
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e High power & long range:

Traditional cellular networks provide long range communication, typical ones
are GSM and LTE. Thanks to their widely deployed base stations in the world, the
large communication coverage can be ensured, and the additional deployment
cost can be saved. However, LTE is neither originally designed to fit the link
budget requirement of IoT devices, nor optimized for their traffic patterns [24]. To
make LTE more suitable for IoT, some improvements targeting IoT devices have
been taken into account in the 3GPP standardization [25].

Despite their advantages, the technologies of this type still consume high de-
vice energy because of the secure yet complex signaling mechanisms such as listen
before talk and roaming, the high speed data service and high quality voice ser-
vices. What’s more, cellular networks connecting devices are mostly complex and
at high cost (e.x. smart phones), thus it is difficult to deploy them at a large scale.

e Low power & short range:

Many technologies are conceived for this type of communication, there are
Z-Wave, IEEE 802.15.4, Bluetooth Low Energy (BLE), and IEEE 802.11 PSM [26].
Some specific communication technologies are also in use like RFID, Near Field
Communication (NFC) and ultra-wide bandwidth (UWB).

IEEE 802.15.4 standard is mainly refereed for ultra low power devices [27]. It
intends to offer the fundamental lower network layers of a type of wireless per-
sonal area network (WPAN) which focuses on low-cost, low-speed ubiquitous
communication between devices. It supports robust transmissions with DSSS
(Direct-Sequence Spread Spectrum) and the O-QPSK (Offset Quadrature Phase
Shift Keying) modulation scheme giving a bit rate of 250 kb/s. Multi-hop topolo-
gies can extend its relatively short ranges (at maximum 50m).

Bluetooth Low Energy (BLE) [28] can provide robust transmissions. It is mostly
used for monitoring applications, such as heart rate monitors or temperature re-
mote controllers. BLE is already popular in the majority of smart phones and
largely used for mobile applications. It uses the GFSK (Gaussian Frequency-Shift
Keying) modulation to obtain a maximal 2 Mb/s bit rate. And the maximal range
announced is 10m.

IEEE 802.11 PSM (Power Saving Mode) [29] is an energy-optimized mode
specified in the 802.11b version. With 22MHz of bandwidth, it can achieve un-
til 11Mb /s within the range of 100m.

NEC [30] enables two electronic devices to communication within 10 cm. It
works on the 13.56 MHz ISM band, and provides a data rate ranging from 106 to
424 kbs. It is mostly used in smart phone mobile payment, credit card contactless
payment, and electronic tickets.

As for UWB [31], it can provide high data rate and robust communication,
since it spreads the transmitting information over a very large bandwidth (>500
MHz). It can attain 1 Gbit/s, but the range is limited to less than 60 cm. Its re-
cent applications include personal area network, indoor localization and precision
tracking, etc.

On the whole, we can have a main idea of these technologies” common fea-
tures: they are dedicated to ultra low power devices, but restraint to very short-
range usage.
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e Low power & long range:

The enabling technologies of this type are called LPWAN (Low Power Wide
Area Networks) [32]. They have been emerging since recent years to fulfill the
requirement of about 11% of IoT connections. The well-known technologies are:
LoRa, Sigfox, Ingenu, Weightless and NB-IoT. LPWAN is a novel paradigm which
treats the trade-off between communication range and energy efficiency. It is
promising to achieve a few to tens of kiloliters of connectivity range, and a battery
life of ten years or beyond jointly.

LPWAN is the main context of my thesis. In order to give an more global
insight of LPWAN, each of the technologies will be introduced with more details
and their issued studies in the section below.

2.2 The emergence of LPWAN

LPWAN (Low Power Wide Area Network) is a very recent term (appeared in
2013), referring to a very wide area network (covering up to several tens of kilome-
ters range in rural areas with a single access point). The objective of such network
is to provide a connectivity to the Internet for a huge number of nodes deployed
anywhere, in the IoT context. LPWAN gateways are thus needed to settle com-
munication with the devices in their vicinity. To limit the operational cost of the
operators, a limited access infrastructure is expected. As a consequence, a col-
lecting point should serve many nodes deployed in a very wide area. However,
this can not be obtained by tuning up the emission power, because the low energy
consumption is very essential for the IoT nodes.

In addition, the ISM license-free bands are usually used for LPWAN transmis-
sions, which allows to further reduce the network cost (because the cost to use
licensed bands can be very high). Furthermore, LPWAN is expected to handle
sporadic small data packets, thus it targets new applications such as smart cities,
smart metering, logistics, wildlife monitoring and tracking, home automation and
safety, etc.
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FIGURE 2.2: Examples of targeted applications for LPWAN
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2.21 Objectives of LPWAN

As one of the fastest growing technologies in the emerging IoT environment, LP-
WAN is expected to provide ubiquitous connectivity for smart cities or rural areas.
All these applications pave the way to new markets, and new business operators.
Besides, as the infrastructure cost is low, newcomers have joined the historical tele-
coms operators by launching their proprietary transmission technology. Among
them, we can cite SemTech along with LoRa Alliance with the LoRa technology,
SigFox with UNB (Ultra Narrow Band) technology, and Ingenu with RPMA tech-
nology (Random Phase Multiple Access).

The LPWAN context reveals a new scientific challenge which is moving from
the data rate expansion, to the forthcoming number of devices growth, and follow
the path lead by dense WSN. To sum up, the objective is to define new techniques
that verify:

e low energy consumption: data has to be sent with the least emission power,
and with the smallest time duration;

e low device and infrastructure costs: BSs number should be the minimized,
while the devices have to be simple, light and with low computation capa-
bilities;

e capability of handling burst transmission of small size packets;
e scalability and capability to handle a very high number of nodes;

e extended coverage.

2.2.2 Existing technologies of LPWAN

The second requirement can be obtained, for the most shared vision, by a star
topology with very long range (devices are directly communicating with the BS
(Base Station)). To achieve such range, one can:

e Increase the transmission power (but this solution is not appropriate due to
the increased power consumption)

e Design ultra sensitive and intelligent receivers (this can be expensive but
feasible)

e Design new transmission technologies. This is the solution that has been
adopted lately by operators and scientific community. In practice, two main
directions have been taken:

- spectrum spreading (LoRa with CSS, or Ingenu with RPMA): data is
sent on a much larger band than their baseband occupation. This fre-
quency diversity allows to recover a signal even if its PSD (Power Spec-
tral Density) is lower than the noise floor, because specific coding pat-
terns can provide attractive decoding gains. Besides, one transmission
can choose among various spreading codes (which verify good correla-
tion properties). Thus simultaneous transmissions are in control (when
the number is not very high).
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- spectrum reducing (SigFox with UNB, and 3GPP NB-IoT): data is sent
at a very low rate with a simple modulation scheme, so as to ensure
a minimal spectrum occupation. The advantage of such technique is
that the perceived noise (after signal filtering) is reduced as it linearly
depends on the signal spectrum occupation.

For both techniques, the long transmission range can be achieved, but by
different methods: UNB achieves it thanks to the very narrow bandwidth
which induces very low noise power; while LoRa achieves by its coding
gain [8].

Currently, the available LPWA communication technologies include a large
variety of alternatives such as 3GPP Narrow-Band IoT (NB-IoT), Long-Term Evo-
lution for Machines (LTE-M), CSS (known as LoRa), UNB (known as Sigfox), and
RPMA (used by Ingenu and Weightless).

e LoRa:

LoRa is a patented wireless communication technology developed by a French
companyCycleo and then acquired by Semtech in 2012. It uses the ISM unlicensed
bands 868 MHz (Europe) and 915 MHz (North America), and FSK (frequency-shift
keying) modulation [33]. Its radio access scheme is CSS (Chirp Spread Spectrum),
where the data is spread with a sequence obtained through a continuous varying
carrier frequency. This spreading factor, varying from 27 to 2!2, affects the trans-
mission bandwidth (from 500 Hz to 125 kHz), as well as the data rate (from 0.37
to 27 kbps) [34]. The communication range it can attain is announced to be 22 km.

e RPMA:

RPMA (Random Phase Multiple Access) is developed and used by an Amer-
ican company Ingenu in 2015. RPMA is based on DSSS (Direct-Sequence Spread
Spectrum), where data is spread by a Gold Code after being DBPSK modulated.
Its spreading factor varies from 2 to 2!3 [35]. Transmissions are performed in the
2.4 GHz ISM band, with a typical bandwidth as 1 MHz, and with a random time
delay. The data rate varied from 0.06 to 30 kbps, according to the used spreading
factor. And the maximal communication distance it can achieve is 10 km [34].

e NB-IoT:

NB-IoT (Narrow band IoT) is made available as a part of Release-13 around
mid 2016. It can be supported with only software upgrade on top of existing LTE
infrastructure, and can co-exist with GSM, GPS and LTE. It can be deployed inside
a single GSM carrier of 200 kHz, inside a single LTE physical resource block (PRB)
of 180 kHz or inside an LTE guard band [36]. Thus its transmission bandwidth
is relative narrow compared to GSM and LTE. NB-IoT uses single-carrier Fre-
quency Division Multiple Access (FDMA) on the uplink and Orthogonal FDMA
(OFDMA) on the downlink. The data rate is limited to 250 kbps for the multi-tone
downlink communication and to 20 kbps for the single-tone uplink communica-
tion [32].

e UNB:
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UNB (Ultra Narrow Band) is developed and patented by the French company
Sigfox around 2011, which was the first one to be commercially initiated for IoT
purpose. It is operated at the 868 MHz (resp 915 MHz) ISM band in Europe (resp
in the USA). The specificity of UNB is that its transmitted signal occupies, typically
100 Hz (in Europe) and 600 Hz (in the USA) [37]. This occupied bandwidth is very
narrow compared to its available total bandwidth, which is typically 192 kHz.
The radio access is RFTMA (Random Frequency Time Multiple Access). By using
simply the DBPSK modulation, UNB can achieve until 63 km as range, the data
rate is yet constraint to 100 bit per second [34].

The Sigfox and LoRa ecosystems are mature and are now under commercial-
ization in various countries and cities. While the NB-IoT specification was re-
leased in June 2016, thus it still needs time to be established. UNB and NB-IoT
are both run by operators where the network is established by private companies.
Unlike them, LoRa provides large flexibility, it offers local network deployment
and its specification is open resource [38].

2.2.3 Studies of LPWAN

Aside from the market, LPWAN network has recently fostered many academic
works. There exist enormous studies of LoRa, as it is frequently exposed as a
promising technology and promoted by many companies (for example IBM, Or-
ange, Bouygues, ZTE, etc.) which group the LoRa Alliance. The evaluation of
its capacity and scalability [39-41] has been catching attention in the research
filed. The performance enhanced by controlling the spreading factor and emis-
sion power [42] has been proposed as well.

Being the only standardized technology using cellular networks, NB-IoT has
also been largely studied, such as the evaluation of its coverage [36,43]. A work
of its deployment when using the LTE infrastructure, shows that NB-IoT suffers
from high path loss and high interference from non NB-IoT cells [44].

Apart from the individual work of each technology, UNB, NB-IoT, LoRa and
RPMA are often compared technically, in terms of data rate, latency, communica-
tion range, and simultaneous active users [32,45-47], etc.

Through the brief introduction of each technology, we can already have an
insight about their data rate: NB-IoT has the highest data rate, at 250 kbps for
the sake of using large bandwidth; LoRa and RPMA can achieve around 30 kbps
thanks to the spread spectrum; while UNB is very limited in this aspect [34] due
to its limited bandwidth.

However, the challenge of LAPWAN is not only about the expansion of data
transmission speed, the coverage is a very important aspect as well. The cover-
age of LoRa and Sigfox are evaluated by real-world experimental tests [48]. As
the UNB uses the spectrum efficiently, it experiences very low noise level which
results in very high receiver sensibility and very wide coverage. LoRa achieves
long range by its spread spectrum which is resistant to the noise and the coding
gain [32]. With respect to the maximal number of users, while guaranteeing an
acceptable quality of service, LoRa can simultaneously support 6 users, UNB 100
users, and RPMA is announced to be able to serve 1000 users [34].

Moreover, LoRa and Sigfox both operate in the 868 MHz ISM unlicensed band,
their co-existence is thus also a hot research issue. Because they may cause con-
flicts to each other or to other existing systems in the same band [49]. As presented
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in Fig. 2.3, the CSS spreads the signal over a wide bandwidth, which spreads also
the signal power. The resulting signal amplitude is affected by the noise, which
makes it hard to be detected or jammed. The processing gain enables the signal
resilience to interference [50] and noise. Therefore, CSS signals is only affected by
a very low proportion (in terms of frequency) when they are interfered by a UNB
signal. On the contrary, UNB concentrates the signal power in a narrow band,
which results in a rather good resistance when interfered by spreading signals
like CSS.

Both CSS and UNB should be resistant when facing the interference with each
pother. Nevertheless, the authors in [50] have proved that UNB performs better
in long range communication when interfered with LoRa.

UNB
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Spread spectrum signal interferer /W::;T\ spectrum
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FIGURE 2.3: [Illustration of Ultra-Narrow-Band and Spread
Spectrum in the frequency domain (the figure source is from
http:/ /www.densenetworks.com)

For the aspect of energy efficiency, LoRa performs remarkably well, while
UNB only achieves similar network lifetime to LoRa at extremely low data rate.
Both of them consume much more energy when the payload size increases, com-
pared to other technologies such as BLE [26]. The devices communicating on CSS
or UNB thus have their lifetime dropping very quickly when the data packets
have big size.

2.3 Ultra Narrow Band

Ultra-Narrow-Band systems are defined such that each individual node occupies
an extremely narrow frequency band to transmit its signal. This band is signifi-
cantly smaller than the total available frequency resource, and is usually around
a few hundred Hz. In 2004, Walker [51,52] was the first one to propose the use of
VMSK (Very Minimum Shift Keying) to compress data transmission in the most
possibly narrow band. However, in practice, this modulation technique did not
reach the claimed ultra narrow frequency occupancy [53].

In 2011, networks based on Ultra-Narrow-Band are deployed by the company
Sigfox for IoT purpose, dedicated to low-throughput, low-power, and long-range
point-to-point transmissions. Since then, UNB has been catching attentions in
both the IoT markets and the research fields.
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2.3.1 Frequency Drift in UNB System

As presented in the previous section, the ultra narrow band occupancy is obtained
by transmitting at a very low data rate (100bps) in SigFox’s network. The trans-
mitted signal of UNB thus occupies a band of 100 Hz (in Europe, and 600 Hz in
USA), inside a typical possible band of 192kHz to 2MHz. The dedicated modula-
tion technique is the DBPSK (Differential Binary Phase-Shift Keying) [54].

The specificity of such system is the "frequency drift" phenomenon: the oscil-
lator’s imprecision which induces an offset between the targeted frequency and
the actual one. Regular low-cost oscillators have a deviation around 0.25-2 ppm
(parts-per-million) [55]. For example, for an operating frequency band of f = 800
MHz and a typical oscillator jitter df = 0.25 — 2 ppm, the uncertainty of carrier
frequency positioning would be around Dy = 200 — 1600 Hz. This imprecision is
larger than the transmission band occupied by an individual UNB signal. In this
case, i.e., when the frequency uncertainty is higher than the signal bandwidth, we
refer the system as UNB. We note that precise oscillators exist, but they can be
very expensive (up to several thousands of dollars each), thus it is not profitable
to deploy them in large scales.

One may note that the carrier frequencies also suffer from an additional shift
while the oscillators are heating during transmission, but this feature is well man-
aged in SigFox’s BS.

2.3.2 UNB Multiple Access

As the frequency drift is inevitable in UNB system, it is unrealistic to obtain non-
overlapping frequency channels. Accordingly, the channelization is not pertinent,
as it would just lead to the waste of frequency resources and high device cost.
The transmissions of IoT devices are sporadic and unpredictable, it is thus hard
to synchronize (in temporal domain) all the nodes since they don’t have the same
wake-up duty circle. As a consequence, a specific dedicated MAC (Multiple Ac-
cess Control) is considered for UNB systems. This channel access scheme is named
RFTMA (Random Frequency and Time Multiple Access) [12], which is ALOHA-
based without preliminary channel sensing.

The traditional pure ALOHA [10] is a random scheme for the medium access,
where there exists only one channel, and all devices transmit on the same channel
at any moment they want. The only degree of freedom is the time, thus the trans-
mitted data has a high probability to be lost and resent when it is in collisions.
In the case of UNB, the medium access is both random in time and in frequency
domain. The degrees of freedom is added to two, the collision probability is thus
lower than pure ALOHA scheme.

With RFTMA, each device sends its messages at any moment and at a carrier
frequency randomly chosen at its will, as illustrated in Fig. 2.4, without previ-
ously analyzing the channel state. The advantage of this approach is the reduce
of nodes’ energy consumption, complexity and cost. The classical overhead dedi-
cated to the reservation of radio resources is saved, so is the energy consumed on
exchanging data with the gateway. Moreover, this feature allows to use cheaper
oscillators which are more suitable for massive deployment. Nonetheless, as there
is no control, the network can suffer from high interference and collision proba-
bility [56]. Indeed, as nodes transmit randomly, partial overlap may occur in time
and in frequency between two or several packets, as illustrated in Fig. 2.5. Thus
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the interference may vary during the transmission of given packets. This interfer-
ence generated by simultaneous transmissions can cause packet losses, thus needs
to be avoided in UNB networks.

In the network of Sigfox, a mechanism of replications has been applied to en-
sure the reliability of the network, in spite of the potential interference caused by
the random MAC protocol. The number of replications has been fixed at 3. Each
of the replications is transmitted at a different frequency, within a random time
interval despite the success state of the previous ones.

Observed signal (V)

Frequency (Hz)

Time (s)

FIGURE 2.4: Global view of UNB signals’ temporal & spectral
repartitions
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FIGURE 2.5: Precise example of nodes’ temporal & spectral repar-
tition

Indeed, there exist a lot of more complex and "optimized" medium access pro-
tocols for wireless sensor networks. The historical ones [57] [58] are : CSMA/CA
(Carrier-Sense Multiple Access with Collision Avoidance), where a sensor node
listens to the channel before transmitting, and it only emits when the channel
is in the state "Idle" when no any nodes else are using it. CSMA /CA requires
nodes to be able to sense the medium, and to sense it every time they have some-
thing to transmit. This demand consumes additional energy before transmitting;
RTS/CTS (Request to Send/ Clear to Send) where nodes send a request to the des-
tination in the first place. Then if the medium is free and the destination succeeds
in receiving the request, it will send back a CTS to the source. After verifying the
positive response of the destination, the source then transmits its data. RTS/CTS
is inefficient because of its many exchanges with the destination which consume
energy and cause intensify traffic loads. Besides, the packets of requirements and
responses have almost the same size than a data packet in UNB (around 12 bytes).
Thus sending a RTS packet has the same probability to be in collision than send-
ing a UNB data packet. Therefore, RTS/CTS is less efficient than RFTMA in UNB
systems; Slotted-ALOHA where the medium is organized by time-slot, so is the
transmitting moment of nodes. The more recent ones are all based on scheduling,
such as TDMA (Time Division Multiple Access) and FDMA (Frequency Division
Multiple Access) and CDMA (Code Division MA). They require the knowledge
of the network topology to divide the resources into time or frequency slots, and
to establish a schedule to assign active nodes to different resources or codes. The
collision probabilities are reduced because the transmissions are performed on as-
signed orthogonal channels.

Despite the various MAC protocols, there do not exist studies that propose to
change the medium access scheme of Sigfox’s network, to the best of our knowl-
edge. The first reason is the inevitable frequency drift due to the oscillators, which
makes the frequency scheduling-based schemes unrealistic. The second reason is
that other MAC protocols can hardly reach such low energy consumption and low
cost than RFTMA, since the listen-before-talk schemes oblige the nodes to wake
up during longer time.
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Therefore, in the purpose of maintaining the advantages of low cost and low
power consumption, the Random-FTMA is currently the most pertinent multiple
access for UNB systems.

2.3.3 Star topology

The atomic network element of SigFox’s network is the star topology, where the
one base station (BS) is centered in a large cell. The BS receives the data emitted by
a huge amount of nodes (i.e. devices) spreading all over the cell. From a receiver’s
point of view, the monitored bandwidth B (which is also the total available fre-
quency resource) is filled with a combination of narrow-banded signals randomly
located in time and frequency, as shown in Fig.2.4. The demodulation of signals
relies on efficient SDR (Software Design Radio) algorithms which are designed to
analyze the total band, to detect transmitted signals and to retrieve the data. The
process is accomplished by a FFT block applied to the received signal, which is
followed by an adaptive detector. This detector aims at identifying the spectral
signature of the transmitted UNB signals. Therefore, it is not problematic to de-
tect UNB signals that are uncontrollably shifted in frequency. For each detected
transmission, the appropriate frequency band is filtered and demodulated with a
standard DBPSK demodulator.

2.3.4 Existing studies of UNB

Researches concerning UNB in the context of IoT started to show up after the
launch of Sigfox company. Besides the studies of LPWAN where UNB is men-
tioned, the works which evaluate and optimize the UNB based IoT networks have
emerged as well.

The authors in [12] have analyzed the Aloha-type multiple access scheme of
UNB, and provided a modeling of the collisions between UNB packets. They have
proved that in practice, when more than two simultaneous transmissions happen,
the failure of the targeted message is generally due to a unique interferer. They
have also evaluated UNB networks’ capacity when comparing Discrete RFETMA
(like frequency hopping) and Continuous RFTMA (this one correspond to the ac-
tual scheme of Sigfox). They have confirmed that Continuous RFTMA performs
better with the presence of frequency drift [9], and that it was less expensive with-
out an exigence of frequency precision.

Thanks to its long range and small RF power, UNB is also an attractive candi-
date for satellite communication. An analytical model to evaluate UNB networks’
performance by considering the temporal and spectral randomness, in both terres-
trial and satellite context, is provided in [59]. The authors went further to take into
account the Doppler effect due to the LEO satellite. The resulting frequency drift
causes interference, which has an significant impact of UNB performance [60].

An evaluation of Sigfox networks” performance for long-range localization is
provided in [61], when using received signal strength indicator (RSSI) as criteria.
Moreover, the authors in [62] proposed to use adjustable pulse UNB. And they
demonstrated that its performance is better, in terms of coverage and the sup-
ported number of connections, than the 3GPP LTE repetition mechanism.

The authors in [63] have proposed an experimental architecture which enables
to optimize Sigfox’s UNB system, when considering the inter-cell and intra-cell
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interference. Their preliminary results show the experimental architecture’s fea-
sibility of PHY and MAC context data collection, channel occupancy, link quality
modeling and network optimization.

2.4 Summary and Discussion

In this chapter, we presented an overview of IoT and its current needs. From the
base stations’ side, it not only concerns the expansion of data rate, but also the
scalability to connect a large scale of devices and the capacity to manage bursty
transmissions. From the devices’” side, the energy consumption and cost are big
issues, as most of the devices are battery-based. We have sorted the enabling tech-
nologies into groups according to the power consumption and transmission range
requirements. Among them, we cited LPWAN which has emerged recently to re-
spond to the demands of low-power and long-range transmission applications.
We provided an introduction and related scientific works of the main LPWAN
technologies (i.e. LoRa, RPMA, NB-IoT and UNB).

From my point of view, these LPWAN technologies are complementary, e.x.
Sigfox is dedicated to extremely low data rate and not latency-critical applica-
tions, whereas LoRa provides higher data rate and is able to deliver relatively low
latency. From different aspects as energy consumption, communication range,
maximal number of supported users, data rate and cost, etc., one can choose the
technology that fits the best according to his/her needs. The choice among these
technologies may be driven by the confidentiel consideration. For instance, if the
user wants to be the owner of the data, the LoRa soluition (which gives the possi-
bility to build local area networks) may be more suitable than Sigfox (which stores
the clients’ data).

Particularly, we introduced UNB with more details, as it builds the background
of my thesis. We gave the definition of UNB. We presented the frequency drift
phenomenon that exists in all the low-cost oscillators, which makes it unrealistic
to obtain perfectly orthogonal channels in UNB systems. We thus presented the
dedicated radio access for UNB: Random-FTMA which is random is time and in
frequency domains, and which results in high collision probability. The reason
why this access scheme has been chosen and why it is so far the most pertinent
multiple access for UNB systems has been stated. The typical star network topol-
ogy has also been mentioned. Finally, we presented the existing UNB-related re-
search works in the context of IoT.

As we mentioned in Section 1.2, there are still many open questions in UNB
networks. Some of them will be answered in the coming chapters.
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Chapter 3

Performance of UNB networks
with ideal channel
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In this chapter, we characterize the UNB-based networks” performance with
ideal channel conditions, where all transmissions are received with the same power
level in a single cell. The first main contribution is the derivation of an expression
of the outage probability, for the generalized ALOHA systems (which includes
the frequency-unslotted systems such as UNB). This analysis brings to light the
duality of ALOHA in time and frequency domain. The second contribution of
this chapter is that we have extended the generalized ALOHA analysis to the
case with replications. We show that the replications can bring significant im-
provement, and that there exists an optimal number of transmissions for the same
message which allows to achieve the highest reliability.
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3.1 Introduction

In this chapter, we take into account the carrier frequency uncertainty to evalu-
ate the ALOHA protocol behavior. The Base Station (BS) collects signals that oc-
cur randomly, generated in an unslotted way both in the time and the frequency
domains (RFTMA: Random Frequency and Time Multiple Access). This can be
viewed as a more general case of the well-known ALOHA medium access [10].
The main difference is that, for UNB systems, interference occurs only in a por-
tion of the frequency band. In this case, the interference cannot be easily processed,
neither by transmitter cooperation or signal post-processing at the receiver as in
literature [64]. One goal of this chapter is to introduce this new RFTMA scheme
and provide its theoretical characterization. The other goal is to evaluate the UNB
performance with replication mechanism, where we bring the diversity in trans-
missions.

3.1.1 Studies about ALOHA

Previous works on ALOHA-based schemes do not consider full and continuous
randomness in frequency domain. Usually, the band is divided into several per-
fectly orthogonal channels, and frequency hopping (FH) is considered [13]. How-
ever, few works consider the frequency offset. In [65], its impact on the relative
phase between considered symbols is taken into account. In [66], the authors con-
sider that most of the frequency errors are within the signal bandwidth, thus they
do not consider UNB. In [67], the authors consider K nodes with random fre-
quency offsets relative to a common carrier frequency, and focus on the use of a
wide-band receiver to take advantage of the jitters.

We thus complement these studies by considering a uniform and continuous
randomness of the carrier frequencies to characterize an UNB-based ALOHA up-
link in this chapter.

3.1.2 Studies about replication mechanism

In the literature [68], the reliability of data delivery can be achieved by two ways:
retransmission-based mechanism and redundancy-based mechanism. The basic prin-
ciple of the retransmission schemes is to repeatedly transmit the failed message
which cannot be recovered at the receiver. The demand of replication happens
until a correct message arrives. In order to know if the message is correctly re-
ceived or not between the transmitter and receiver, an acknowledgment mech-
anism must be applied [69]. However, this kind of protocol requires a downlink
transmission, in other words the reservation of transmission resources. This might
further aggravate the inherent congestion of the medium.

Besides, in the redundancy-based mechanism, multiple copies of the same mes-
sage are transmitted based on Erasures Coding [70], which allows a receiver to
recover the information from independent message loss. The popular types of
Erasure Coding are Reed-Solomon codes [71], low-density parity-check (LDPC)
codes [72], Fountain Codes [73]. Among these coding schemes, the simplest one
is the replication mechanism.
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The performance of retransmission mechanism and redundancy-based mech-
anism are theoretically evaluated and compared in [74] in term of the energy ef-
ficiency. Indeed, both retransmission-based mechanism and redundancy-based mech-
anism are able to improve the data delivery reliability, but also consume a lot of
battery-energy of a sensor node which is inherently limited. Besides, this theoret-
ical analysis highlights that Erasure Coding mechanism is out-performing com-
pared to the replication mechanism in term of reliability and energy efficiency,
for the case of a low packet loss rate and low number of hops. In addition, a
lot of studies have considered the compromise between the higher performance
achieved by replications, and the higher energy consumption in classical trans-
mission schemes [75-77].

In the UNB network using Random-FTMA scheme, the one-hop communica-
tion between active node and base-station is essential to reduce the energy con-
sumption. We thus consider in this chapter the replication mechanism, which is
redundancy-based.

The organization of the chapter is as follows. In Section 3.2 we define a general
model of the network and give all the hypothesis. In Section 3.3-3.4, we develop
a theoretical analysis of generalized ALOHA outage probability, and present the
numerical validation and results. In Section 3.5-3.6 we extend the generalized
ALOHA derivation along with replication mechanism, and present its numerical
results and exploitation. Section 3.7 concludes the chapter.

3.2 Modeling and Hypothesis

In this chapter, we focus on a unique base-station (BS) covering a large number
of nodes distributed in its coverage. We assume that there are N + 1 active nodes
during the observed time interval, whose data is collected by the BS at the cell
center. The nodes (IoT devices) are uniformly deployed in the cell, which can be
modeled by a Poisson point process [78].

We consider that the messages of all nodes are received at the base station with
the same power. This corresponds to the case with a perfect power control loop,
thus idealized channel conditions. In idealized conditions, the distance between
each node and the BS has no more impact on the performance (as there is no path
loss). Accordingly, we can consider the topology as if the nodes are distributed at
the same distance, as illustrated in Fig. 3.1.

Meanwhile, the performance under ideal channel conditions also correspond
to the worst case. Indeed, when colliding packets are received at the same power
level, both are lost. Whenever two packets are collided, we lose both of them.
On the contrary, if the received powers are sufficiently unbalanced, the capture
effect may allow to decode at least the strongest one [79]. This leads to better
performance than the case of idealized conditions. We thus characterize in this
chapter the lower bound of the network success probability.
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y-th interferer Ty

ISV B

“=--.___x desired node

FIGURE 3.1: Illustration of network topology: area range is
[rm, rMm], orange point is the desired node, at a distance of ry; blue
points are interfering nodes, at a distance of r,.

3.2.1 Behaviors in the Time Domain

We assume that all nodes have the same behavior: each node transmits a message
of duration 7 seconds, every T, seconds on average. For the time-slotted (TS) case,
any active node randomly selects a time-slot, since the temporal resource is sepa-
rated by slots. Thus in the time domain, the transmissions either do not collide at
all (when they choose different time-slots), or collide for the whole duration (when
they choose the same time-slot). Accordingly, when two packets select the same
time-slot, they are in collision, and we lose both of them. Therefore, p; = /T,
is the expected temporal generation rate for a single user, as well as the temporal
collision probability, in time-slotted case.

As for the time-unslotted case (TU, which corresponds to the realistic case in
Sigfox networks), partial overlap can also induce collisions. We assume that once
there is an temporal overlap (no matter it covers 1% or 99% of the packet’s du-
ration) between two message packets, they are in collision. Thus both packets
are lost because they have the same received power level. Consequently, when
an interfering node selects its emission moment into [—7, 7] of the desired node,
we lose the desired node’s issued message. Accordingly, the temporal collision
probability becomes p; = 27/ T),.

3.2.2 Behaviors in the Frequency Domain

Besides, transmissions are performed within a dedicated band, which has band-
width B (Hz). Each transmission occupies a bandwidth b (Hz) which represents
a very small fraction py = b/B of the total channel bandwidth B. Thus, py is the
spectral occupancy ratio for a single active user. Similarly, in frequency-slotted
(FS) case, the signals are in collision of they choose the same frequency slot. Thus
the frequency collision probability is b/ B for FS case.

As for the frequency-unslotted (FU) system, the nodes chooses their carrier fre-
quency randomly and continuously [9] on the total available band B. This choice
is independent for each node without any prior knowledge on the occupation,
exactly as performed in Sigfox network and in the previous chapters. There can
be thus partial frequency overlapping among several signals. Since we consider
ideal channel conditions where the received power of each packet is identical, the
capture effect can not be applied in this chapter. When the frequency overlap is
non null, the packets in collision will all be lost. Accordingly, when an interfering
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packet selects its carrier frequency inside [—b, b] to that of the desired packet, they
run into collision which causes the loss of both packets. The frequency collision
probability thus becomes 2b/B for the FU case. These notations are reported in
Table 3.1.

Observed signal (V)

100

Frequency (Hz)

Time (s)

FIGURE 3.2: Example of a time-frequency UNB realization, for b =
116Hz, B = 12kHz, T = 2s, during 100s.

From the base-station point of view, the total dedicated band contains, from
time to time, transmitted ultra narrow signals at random carrier frequencies. For
each detected transmission, the BS extracts the signal at the estimated frequency
of interest, and decodes the packet. Such a detection and estimation can be done
as described in a Sigfox patent [80].

An example of channel occupancy realization is presented on Fig. 3.2. We can
observe the sparse time-frequency occupations of signals. The three highest peaks
(in red) correspond to transmissions that experienced collisions, while the others
are interference-free. One may note that the widths (both in time and frequency
domain) differ among the collision peaks. This is due to the frequency-unslotted
and time-unslotted selection, which induce partial collision in time and frequency
domain.

Finally, one may note that a key advantage of UNB is that the noise floor
No = k- T - b (with k Boltzmann constant, and T the temperature in Kelvin). The
noise, which is proportional to the bandwidth, can highly reduced in UNB sys-
tems compared to classical systems. This allows to cover an exceptionally large
area with each BS (up to 50km). The noise floor is very low compared to the inter-
ference which is the main limitation of the system performance. We thus neglect
the noise in this chapter. This allows us to focus on the specific spectral inter-
ference due to the collisions issuing from uncontrolled random medium access,
without the random impact of noise.
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TABLE 3.1: Table of Notations

N Number of potentially interfering nodes
T Packet duration

T, Average transmission period
b Individual signal spectrum occupancy

B Bandwidth of the available channel

p+ Expected temporal generation rate = Tlp

ps Frequential occupancy ratio = %

1, for time-slotted (TS) ALOHA

14 =
! 2, for time-unslotted (TU) ALOHA
U 1, for frequency-slotted (FS) ALOHA
fo- 2, for frequency-unslotted (FU) ALOHA

Gir  Time-frequency load in the network = Np;py
fi Carrier frequency of user i € {1; N}

OP Outage probability
n, Number of replications

Ny, Optimum number of replications

Minimum number of replications

T'min

3.3 Generalized ALOHA: theoretical analysis

In this section, we theoretically analyze the outage probability of generalized ALOHA
system, in particularly the FUTU (frequency-unslotted and time-unslotted) case
which corresponds to the nodes’ realistic behaviors in Sigfox networks.

The goal of the base station is to decode all transmitted messages, from all the
users. However, without sake of generality, in this analysis, we consider the trans-
mission status of a given user, called the desired user. We evaluate the probability
to have its message lost, due to other N users called interferers.

We derive a theoretical expression for the OP (outage probability), as a func-
tion of the main system parameters : the whole transmission band B; each signal’s
frequency occupancy with respect to the carrier [—b/2; b/2] Hz; the wake-up duty
cycle of nodes T); the time duration of a message 7, the potential interfering nodes
during the observed time interval N, and also the slotted /unslotted indicators a;
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and a; in time and frequency. The first four factors influence the channel occu-
pancy of each message in time and frequency domains.

3.3.1 Success Probability of Original ALOHA

In the original ALOHA protocol, all packets are sent on the same frequency chan-
nel. Thus, only the transmission time is random. As shown in [10], if the total
number of generated packets in the network is Poisson distributed, and even if
partial-time collision leads to the packet loss, the success probability of a given
user denotes:

Pip = e %Gt (3.1)

with a; = 1 for time-slotted ALOHA (TS), a; = 2 for time-unslotted ALOHA
(TU), and G; = Np; the average number of packets generated by all the other
users during the considered packet transmission.

3.3.2 Success Probability of Frequency Hopping System

In addition, it was shown in [11], that for frequency hopping systems with pl—f =
B/b frequency channels having the same bandwidth, eq.(3.1) becomes

Ppy = e “PrGt (3.2)

In the following, we extend these equations to the unslotted frequency selec-
tion, and provide a new expression that describes all cases.

3.3.3 Outage Probability of generalized ALOHA

Theorem 1. The ALOHA outage probability with slotted or unslotted time, and
slotted or unslotted frequency, along with uniform distribution in time and fre-
quency domain, is given by:

OP =1 — e~ %% Crf (3.3)

. Ntb
with th = Nptpf = Tp B

packet transmission, a; = 2 (resp.1) for time-unslotted (TU) (resp. time-slotted
(TS)) case, ay = 2 (resp.1) for frequency-unslotted (FU) (resp. frequency slotted
(FS)) case.

as the average traffic load during the the considered

Proof. For the slotted frequency selection case, i.e., for « ¢ =1, Theorem 1 simpli-
fies to 1—eq.(3.2).

The proof now focuses on the unslotted frequency selection ay = 2. In order
to derive the expression in this case, we need to consider the pulse shaping filter
of UNB signals. The steep filter edges that can be observed in Fig. 3.2, allow us
to approximate the transmitted signal spectrum by a rectangular function with
bandwidth b centered at the actual carrier frequency. We use this model to derive
the theoretical throughput.
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Any desired packet will be correctly received if it does not experience colli-
sions. A collision occurs when there is an overlap both in time and frequency
domain, between the desired (at the frequency fy) and an interfering packet (at
the frequency f;). In the frequency domain, this implies that their respective fre-
quencies fy and f; verify: |fo — fi| <.

We consider that the transmitting nodes’ carrier frequencies are uniformly dis-
tributed in the total available bandwidth B. Thus, in the continuous case, spectral
collision occurs when at least one undesired user chooses a frequency in the vul-
nerable band [fy — b, fo + b]. This happens with the probability 2 - b/B. Thus, the
spectral collision probability for a unique potential interfereris af - pr withay = 2.
Therefore, the probability that a packet is successfully received, given k additional
simultaneous transmissions, can be expressed as:

]Ps/k = (1 - thpf)k . (34)

As the total number of packets are generated according to a Poisson point
process with rate G;, the probability to have k users transmitting during (partly or
totally) the desired packet’s transmission denotes [78]:

(:Gy)F e

Plk) = =7

(3.5)

Therefore, we can have the probability of success for the targeted packet as:

P, =Y Py P(k) (3.6)
k=0

00 k
=Y Py (& Gy) e UG
k=0

k!

_aG v (@G (1 appy) )
—e . Z x

k=0
— e—(Xth . e(Dth-(llefpf))

= e~ MsCuf,

Here we complete the proof. O

In practice, the network behaves as if we use the classical ALOHA protocol re-
stricted to the ps portion of the undesired users. As a consequence, the number of
packets created during a time period and in the frequency collision interval is also
Poisson distributed, with an average generation rate of potential time-colliding
packets Gir = Gt - py.

Corollary 1. Time and frequency domain are dual in the ALOHA protocol.

The relevance of Corollary 1. lies on the fact that the time (#; and p;) and
frequency (ay and ps) parameters can be indifferently interchanged in eq.(3.3).
This brings flexibility when designing the network parameters.
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3.4 Generalized ALOHA: numerical results

In this section, firstly we validate the analytical expression of the generalized
ALOHA expression eq.(3.3). Secondly, we use the expression to derive the net-
work throughput. The we analyze the throughput in all ALOHA cases.

The Monte-Carlo simulations are performed on Matlab, with the same hypoth-
esis of the theories we have derived before. According to different result preci-
sions, the simulations runs vary from 10° to 10° times. We recall all the hypothesis
as the following;:

TABLE 3.2: Simulations hypothesis for mono-BS idealized chan-
nels

BS number | nodes distribution | desired node | path loss | fading | replicas

1 random random no no no

3.4.1 Validation

We present simulation results for the frequency-unslotted case (ay = 2) in this
section. To be as realistic as possible, we consider typical values used in SigFox’s
network. Transmissions are performed in the 868 MHz ISM band, and each indi-
vidual signal occupies a bandwidth b = 116 Hz during T = 2s.

Based on these realistic values, Monte Carlo simulations were conducted for
both time-slotted (a; = 1) and unslotted (x; = 2) cases. Besides, we have tested
two kinds of signal shape, depending on the considered filter. The first one is the
rectangular filter, which corresponds exactly to the case treated in the Theorem 1.
of the previous section. The second one is a realistic filter as used in SigFox: a
realistic signal spectrum shape obtained by a 1255th order lowpass FIR filter, with
a 100 Hz cut-off frequency.

Along with this realistic filter, we can evaluate the accuracy of the rectangular
model, as well as the validity of the theorem. These numerical results are com-
pared to the theoretical ones eq.(3.3).

We present on Fig. 3.3-3.5 the comparison of the theoretical and simulation
outage probability (OP), as a function of the three unconstrained parameters of
the network: total of users N + 1, total available bandwidth B, and individual
packet period T),.
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FIGURE 3.3: Simulated and theoretical OP as a function of the
number of undesired users N, for the time slotted and unslotted
case, for b = 116Hz, B = 12000Hz, T = 2s, and T, = 12 hours.
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FIGURE 3.4: Simulated and theoretical OP as function of the total
available bandwidth B, for the time slotted and unslotted case, for
b = 116Hz, N = 1000000, T = 2s, and T, = 12 hours.
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FIGURE 3.5: Simulated and theoretical OP as a function of the tem-
poral generation period Tp, for the time slotted and unslotted case,
for b = 116Hz, B = 12000Hz, T = 2s, and N = 100000.

As expected, we can first note that the error probability increases with the
number of users, while it decreases with the available bandwidth and the tem-
poral generation period. More importantly, we verify on all these figures the ac-
curacy of the theoretical analysis. Indeed, both theoretical expression and rectan-
gular model simulation curves coincide, for the time-slotted (in blue) and time-
unslotted (in red) cases. Besides, the realistic filter simulation also seems to per-
fectly coincide. However, if we get more precision (zoom on Fig. 3.3), we can ob-
serve that the rectangular model actually overestimates a little the real case. This
is due to the fact that the rectangular model slightly overestimates the interference
level in the collision band.

To conclude, the proposed theoretical eq.(3.3) provides a tight upper-bound
on the realistic frequency-unslotted case.

3.4.2 Throughput derivation and analysis

To further analyze the network behavior, we use eq.(3.3) to deduce the through-
put of the network T, as a function of the average total load per time-frequency
resource Giy:

T = Gyre ™Y1 = Npype Nupiasps (3.7)

We plot on Fig. 3.6 the throughput as a function of the load G;¢. As time and
frequency can be independently slotted or unslotted, there are 4 possible scenar-
ios : frequency-slotted (resp. unslotted) time-slotted : FSTS (resp. FUTS), and
frequency-slotted (resp. unslotted) time-unslotted : FSTU (resp. FUTU). We can
tirst note that the FSTS case is the best one, as the time-frequency space is divided
into orthogonal resources, thus minimizing the probability of collision. On the op-
posite, FUTU is the worst one as partial overlapping is possible both in time and
frequency domain. Finally, FSTU and FUTS coincide due to the time-frequency
duality as stated in Corollary (1). Therefore, there are in fact only 3 distinct curves,
according to the possible values of the product a; - ay.
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FIGURE 3.6: Network throughput as a function of the load for all

)

One may note that the time-frequency duality brings flexibility. Indeed, if the
precision of the frequency and of the time are difficult to handle jointly, FSTS can
not be achieved. The duality between FSTU and FUTS allows to decide which
constraint to relax, independently of the impact on the performances, but based
for example, on the network deployment cost.

Furthermore, the best achievable load can be evaluated. We derive eq.(3.7)

with respect to G;¢. The maximum throughput is obtained when this derivation

equals to 0, thus Gyf = Npipy = —L_and can be expressed as:

qucf’

1
T = e L, (3.8)
LA (Xf

Besides, we can verify the best achievable load on Fig. 3.6. There are in practice
3 optimum throughputs depending on the values of ay and a;: T = 1/e (for FSTS),
1/2e (obtained for either FSTU or FUTS), or 1/4e (for FUTU).

When we replace p; and py by their original definitions (as shown in Table 3.1),
this constraint in eq.(3.8) can also be written as:

N T,
B ap-ap-T-b (39)

We can observe that for a given configuration induced by the targeted appli-
cation and the targeted rate (i.e. T, T, and b fixed), and a given configuration for
at - ag, the ratio N/B is a constant. It is thus straightforward to dimension the
network transmission band for a targeted number of users.

In these two sections 3.3-3.4, we have derived and validated the theoretical
expression of the outage probability for all the configurations (time slotted or un-
slotted, and frequency slotted or unslotted). We have exploited the theoretical
expression to derive the throughput. This analysis will be exploited and extended
in the next two sections.
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3.5 Generalized ALOHA with replications: theoretical anal-
ysis

In this section, we propose to use the replication mechanism to enhance the net-
works’ reliability. We theoretically extend the outage probability eq.(3.3) of the
previous section, to the generalized ALOHA case when considering the number
of replications.

3.5.1 Mechanism of replications

To improve the service probability for each transmitting node, we illustrate in
Fig. 3.7 the replication mechanism applied to generalized ALOHA systems. We
assume that each message (with transmission duration ) should be transmitted
within the message lifetime T,,. The duration of one time-slot is equal to the dura-
tion of one transmission 7. For example, in time-slotted case such as Fig. 3.7 (a,c),

there are % time-slots available during one message lifetime.

We consider that each message is repeated exactly 7, times during the message
lifetime T, regardless of the success of previous replications. 7, is thus considered
predefined and identical for all nodes.

For slotted (FS or TS) cases, the length of the temporal window allocated for

a replication is %, similarly the length of frequency window is %. Each node
randomly selects a time (or frequency) slot in this window to repeat its message.
On the contrary, the emission moment and carrier frequency selection are totally
randomly for each replication of each message, in the unslotted (FU or TU) cases.

One message is successfully transmitted when at least 1 of the n, attempts
succeeds. Otherwise, the message is considered lost.
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FIGURE 3.7: Illustration of replication n, = 2 for (a). Frequency-

Slotted Time-Slotted case; (b). Frequency-Slotted Time-Unslotted

case; (c). Frequency-Unslotted Time-Slotted case; (d). Frequency-

Unslotted Time-Unslotted case; with duration of message 7, period

of message T, message frequency occupancy b, and total available
band B.

3.5.2 Derivation of generalized ALOHA with replications

The expression eq.(3.3) represents the success probability of one message without
replications. With the replication mechanism, the number of packets generated
during the observed temporal and spectral interval increases, and the number of
potential interfering packet increases.

We assume that the replications of the same message will never be in collision
with each other. Therefore, with the presence of N other users’ replications, the
n, NTb

T,B

The number of generated messages follows Poisson distribution, thus the num-
ber of all generated replications is Poisson distributed as well [81]. Accordingly,
for generalized ALOHA cases, the probability that a given replication is correctly
received can be expressed as:

averaged traffic load becomes 7, - G; =

Ps(n,) = e~ %% Curr (3.10)
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As replications are identical, one message is successfully received when at
least one of its replications is correctly received at the base station. We have made
the assumption that the replications experience independent transmission condi-
tions, and that the success probability of any replication is independent of the
collision on the previous ones. Accordingly, the outage probability of one useful
message is the probability that all of its 1, replications are lost. It can be expressed
as:

OP(n,) = (1 - e**t“fGrfnr)”’ (3.11)

with a; = 1 for time-slotted case; ®; = 2 for time-unslotted case; ap =1 for
frequency-slotted case; ay = 2 for frequency-unslotted case.

3.6 Generalized ALOHA with replications: numerical re-
sults

In this section, we compare the numerical results (performed by simulations on
Matlab) with the theoretical OP(n,) established in eq.(3.11). Then we exploit this
expression to estimate the optimum replication number for different parameter
designs. At the end, we evaluate the minimum replication number for targeted
quality of service, i.e. for a fixed OP.

We recall all the hypothesis (which are identical to the theory ones except the
realistic interference model) as the following;:

TABLE 3.3: Simulations hypothesis for mono-BS idealized chan-
nels with replications

BS number | nodes distribution | desired node | path loss | fading | replicas

1 random random no no n,

3.6.1 Validation

As we can see, the expression of OP(n,) depends on the following parameters:
th, at, 0f and n,. We thus consider the impact of 4 parameters: B, Ty, 1y and
N, for a given system where a; and ay is predefined. We choose the case FUTS
to conduct simulations so that we can see the specific spectral collisions of UNB
signals (as the phenomenon of temporal randomness is already well-known).

We do not consider b variation, as it is constrained by the transmission tech-
nology which typically is 116 Hz. Furthermore, as we verify the time-slotted case,
the exact values of T and T}, are not important, but rather the number of available
slots for each message is: % Thus, we fix T = 1, and only vary T),.

We have plotted on Fig. 3.8-3.10, the comparison of the theoretical OP with the
simulated one, as a function of the replication numbers, when varying N, B, or
T,. We can first observe that the curves do not match perfectly, but theory still
provides a good estimation of the observed OP, especially for low n,. More im-
portantly, the theory correctly describes the evolution of the OP as a function of
n,. The cause of the inaccuracy when #, is high, comes from the fact that we use
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realistic interference model in the simulations. In realistic filter, the interference
depends on the frequency spacing between the desired packet and the interfer-
ing packet, which is not limited to b. Thus when there are many simultaneous
transmissions, the packets having a spacing larger than b can cause the loss of the
desired packet (as their contributions can be added together). Whereas in the the-
ory, we have made the assumption that there is no interference if the spacing is
larger than b. That’s why the numerical OP is higher than the theory.

Besides, we notice that the evolution of OP is convex as the replications 7,
increases. For the first part, where OP decreases when 1, rises, We can highlight
the fact that the replication mechanism is able to greatly improve the probability
of successful transmission of a message. Indeed, for the sake of the n,’s increase,
the chance that one message is successfully received rises.

However, for the second part, OP increases when the number of replications
n, goes up. This is because the repetitions multiply the number of packets sent by
the nodes within a fixed time interval, and thus increases the channel utilization
and the collision probability. Therefore, for a large number of replication n,, the
temporal and frequency resources become overloaded, the increase of collisions
thus bypasses the benefit of adding redundancy.

Consequently, there is an optimum number of replications which allows to
obtain the highest message throughput (corresponding to the lowest OP), as we
can observe on Figure 3.8-3.10.

+ N=200 ke e
N=300

w0l ¥ N=400 o
* N=500
o N=600
* N=700 -
—theory

Outage probability

[s]

4 5 6 7 8 9 10
Number of replication n

FIGURE 3.8: OP vs number of replications 7, with different number
of active users N, for time-slotted frequency-unslotted case, b =
116Hz, B = 12kHz, T = 1s, T, = 75s.
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FIGURE 3.9: OP vs number of replications #, with different band-
width B, for time-slotted frequency-unslotted case, N = 1000,
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FIGURE 3.10: OP vs number of replications #, with different mes-
sage period T), for time-slotted frequency-unslotted case, N =
1000, b = 116Hz, B = 12 kHz, T = 1s.

3.6.2 Replication number optimization

Since the theory evolution is consistent with the simulated one, we use from
now on eq.(3.11) to estimate the optimum number of replications which allows
to achieve the lowest OP in this part.

As we can see in the figures of the last section, there exists always an optimum
number of replications which allows us to achieve the lowest OP. We thus define
1y, as this optimum number.

Therefore, in order to find out the Moy analytically, we can derive eq.(3.11)
with respect to 1, as following:

—vct(foffn,

dopr :<1 — e_IXtDéfthHy>m Am (1 B e-atafc;tfn,> N wsfGyppe

an, Py (3.12)
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P
= 0. We do not consider the

ny
ny
case where (1 — e uyGrpny = 0, as this would lead to a null OP. Thus the

expression of 1,,, can be deduced from the second term of the multiplication:

As OP is convex, My, can be obtained when

_ aa Gy nrefatafcffnr
In (1 e muchtfnr) + fl_g—atwfctf"r =0

We note that n,,, can not be solved mathematically by hand. Nonetheless, its
value can be numerically evaluated from the eq.(3.12). We have defined the values
of Gif, at, a5 and a range of n, on Matlab, according to the expression eq.(3.12),
Matlab is able to find the lowest OP. Thus the corresponding replications number
is the n,,,, that we are look for.

We have plotted on Fig. 3.11 when considering different values of the time-
frequency traffic load Gy for all the ALOHA cases.

Globally, we can observe for all the cases that when the traffic load increases,
the optimal number of replications My decreases. Indeed, when collision proba-
bility is already significant, the replication mechanism makes transmissions even
more difficult to succeed. Hence for high traffic load cases, the n,,, = 1, which
indicates that it is better not to have replications. On the contrary, for low G; 1z the
replication mechanism allows to take advantage of the under-used resources to
improve the transmission reliability.

Thus, from this theoretical analysis, we can confirm that the optimal number of
replication decreases when the network is overloaded, which could be caused by:
too many active users during the observed time interval; users sending message
too often; or limited available frequency resources.
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FIGURE 3.11: Optimum replication number n,, , vs time-frequency
traffic load Gy, for all ALOHA cases.

However, when we compare the value of n,,, for a given traffic load, in dif-
ferent ALOHA cases, we observe that we need more replications in FSTS case to
achieve the best reliability. This is at first glance abnormal, but understandable.
To explain this phenomenon, we have plotted in Fig. 3.12 the OP of all ALOHA
cases as a function of #n,. In fact, we remark that the lowest OP for each ALOHA
scenario is different. The lowest OP of FSTS case (around 10~°) is much lower
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than the three other cases (above 10~3), thus FSTS will need more replications to
achieve its lowest OP. That’s why the n,,, of FSTS is higher than other cases.

The observation gives us another insight to analyze the the impacts of replica-
tions, which we present in the next part.

FUTS & FSTU

Outage Probability OP

[ |——FUTU FSTS

108 L L L L L I I
0 5 10 15 20 25 30 35 40

Replication number nr

FIGURE 3.12: OP vs replication number n,, with th = 0.04, for all
ALOHA cases.

3.6.3 Minimum replication number of targeted QoS

In reality, we do not need the reliability to be as low as 10~° (as shown in Fig. 3.12).
Reaching the highest achievable reliability is not the purpose for most IoT net-
work users. The objective is usually to maintain a certain predefined quality of
service (QoS), such as keeping the error probability below a given threshold (e.x.
OP=10"2). To do so, only a minimum replication number is sufficient.

As we can see in Fig. 3.12, if we want to keep OP below 1072, we only need
2 replications for the FSTS system, meanwhile we need 4 replications for the
FSTU/FUTS system. Moreover, the OP of FUTU system is always higher than the
targeted 10~2 whatever the traffic load is, it can thus never attain the demanded
service level.

In this part, we estimate numerically the minimum replication number n, , ,
which is necessary to attain a targeted OP. This minimum number is not only
attached to the system design (e.x. slotted or not), but also to the traffic load Gi.
Therefore, we have plotted the variation of estimated 7, as a function of traffic
load, by keeping the predefined OP=10"2 in Fig. 3.13, and OP=10"" in Fig. 3.14.

Firstly, we observe that the value of 1., rises up when G increases. Indeed,
when the network traffic becomes denser, more replications are needed to achieve
the demanded QoS.

Secondly, we remark that for the same traffic load, slotted systems need less
replications than unslotted systems when all of them are capable to attain the
targeted OP. The exceptions occur when in some cases, the number of replications
to achieve the targeted OP does not exist. For example, in Fig. 3.13 where OP=
1072, the minimum replication number is not found when G, exceeds certain
limits in FUTU and FSTU/FUTS cases.
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Thirdly, when we compare this two figures, we can note that the necessary
minimum replication number decreases when the targeted OP becomes higher,
for the same system. In Fig. 3.14, the n,,, of FSTS system is always 1, which
indicates that no replications are needed to achieve the demanded QoS.

Finally, we highlight that for FUTU system which corresponds to the realistic
Sigfox network, the minimum replications stops mostly at 3. This phenomenon
implies that the FUTU system performance is limited when the traffic load is high.
But is also confirms the choice of 3 replications [37] in Sigfox system.

However, we note that this analysis represents the worst case. Indeed, the
packets are assumed to be received with the same power in this analysis, thus we
lose all of them in collisions. But in realistic scenarios, the replications are received
with different power levels due to the path losses. This puts an additional degree
of freedom in the FUTU system, and we can thus at least decode the strongest one.
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FIGURE 3.13: Minimum replication number n, . vs traffic load
th, for OP= 0.01, in all ALOHA cases.
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3.7 Conclusion

In this chapter, we have firstly evaluated theoretically the extension of the ALOHA
scheme to the case of time-frequency random access, as experienced for example
the UNB transmissions in IoT networks. Then we have extended the expression
of generalized ALOHA with the involvement of replications.

In the first analysis, we have derived and validated the theoretical expression
of the outage probability for all the ALOHA configurations (time slotted or unslot-
ted, and frequency slotted or unslotted). We have found out that the OP depends
on three parameter: the time-frequency traffic load Gy, the indicator of temporal
randomness &, and the indicator of spectral randomness a¢. We have exploited
the analytical OP to derive the throughput which depends also on the three pa-
rameters. We have highlighted that frequency randomness and time randomness
identically affect the throughput, and that they can be interchanged without loss
of performances. This duality is promising as it opens the field to transposition
of all existing results on ALOHA to unslotted-frequency networks. Moreover, we
have derived the expression of the highest achievable throughput, as well as the
condition to reach it. We have brought to light that the highest throughout is only
related to the values of a; and ay.

In the second analysis with replications, we have also derived an analytical
OP with the number of replications 7,. Similarly to the first analysis, the OP ex-
pression is related to the three parameters mentioned above, and we have 1, in
addition. Besides, we have highlighted that, for each traffic load density, OP rises
up then decreases with the increase of n,. Thus there exists an optimal number
of replications, which allows to achieve the best reliability. At the end, we have
evaluated the minimum replication number to achieve targeted quality of service
(such as OP=10"°). We have brought to light that this result can be used to de-
sign the number of replications in order to adapt to network load, and quality of
service demands.
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We note that the results of this chapter is constraint by the ideal channel con-
ditions where all messages are received with the same power level. It can thus
be followed by further studied with the involvement of signal power attenuation
(such as path loss and fading).

Another limitation is the fact that the replication number is predefined (even
it corresponds to the realistic case of Sigfox). But it can at least give us an insight
about the impact of replication mechanism on UNB systems, and be furthered by
self-adapting replication mechanisms.
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In this chapter, we quantify the UNB system performance with realistic chan-
nel conditions. We derive two theoretical expressions of the outage probability:
the first one considers the path-loss due to the propagation, the spectral interfer-
ence caused by the random radio access of UNB, and the assumption of only one
interferer at each collision; the second one includes Rayleigh fading and the ag-
gregated interference (where a failure can come from several collision packets) in
addition, always with the path-loss and the spectral interference. We compare the
OP in both analysis, in order to evaluate the impact of Rayleigh fading. Then we
estimate the maximum number of nodes that the network can support simulta-
neously by exploiting the two theoretical expressions. We evaluate also the the
spectral efficiency of UNB networks without and with guard band. We note that
the powerful mathematical tool stochastic geometry is used in the second analysis
where fading is involved.
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4.1 Introduction

Different from last chapter where we have assumed idealized channel conditions,
we consider the power attenuation which is more realistic in this chapter. Particu-
larly, we consider the path-loss and fading as they are representative phenomena
in most of the wireless communication scenarios.

4.1.1 Related works of path-loss & fading

In realistic environments, the received signal is attenuated, especially for such
long range transmission. According to Shannon [82], the path-loss is the main
contributor of the received signal power attenuation, which depends mainly on
the distance between the transmitter and the receiver.

Moreover, multiple paths of signals caused by all the obstacles and reflectors in
the environment are inevitable. Thus the impact of fading has also to be taken into
account when considering realistic channel conditions. There are two types of fad-
ing: the slow fading and the fast fading. The dormer refers to the case where the
amplitude and phase change imposed by the channel can be considered roughly
constant over the period of use, while the latter varies during the period [83].
Studies about the impact of slow fading and fast fading on systems such ALOHA
or slotted ALOHA have existed from a long time ago [84,85]. Nonetheless, to the
best of our knowledge, none of the works has considered the interference induced
by the spectral randomness of UNB.

We thus consider the impact of path-loss and Rayleigh fading since it is the
most applicable one in urban environment. But in this chapter, we only focus on
the statistic property of the fading factor, whose impact to the received power is
considered constant during the observe temporal interval.

4.1.2 Related works of PPP & Stochastic Geometry

To characterize the performance in large-scale wireless networks, the wireless net-
work node positions are usually modeled by the well-known spatial Poisson point
process (PPP) [14]. PPP refers to a type of random mathematical object that con-
sists of points randomly located on a mathematical space. The point process often
have convenient mathematical properties, and can be analyzed with the aid of
mathematical tools such as stochastic geometry. Other approaches rely on deter-
ministic lattices [86,87] where the geographical area (urban, rural, and downtown)
and the population activity are taken into account to approach the real world’s
non-uniform and irregular traffic distributions.

However, for UNB systems, PPP integrates more efficiently the spatial stochas-
tic nature of the nodes distribution as well as the attenuation laws, compared to
deterministic lattices. More importantly, marked PPP [88] provides a means of
coping with additional random properties such as shadowing or fading if they
are not spatially correlated. A large variety of networks have been studied by
the PPP modeling, in particular cellular networks [89], wireless sensor networks
[88,90-93], and cognitive wireless networks [94,95]. Stochastic geometry is an
efficient tool to study the average behavior over many spatial realizations of a
network whose nodes are placed according to some probability distribution.

The above mentioned references focus on finding the interference (intra-cell or
inter-cell) distribution which can be characterized by its Laplace transform [14],
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in large-scale wireless networks. The well-known distributions (such as Gaus-
sian, inverse Gaussian, gamma, and inverse gamma distribution) are often used
to characterize the interference’s Laplace distribution. The authors in [96] was one
of the pioneers to use the Laplace transform method in characterizing the interfer-
ences in cellular networks. Besides, there are other different methods which allow
to approximate the interference distribution, e.g. with moments matching [97],
with the central limit theorem [98-100] or with the cumulants-based method [101].
These approaches mainly allow to obtain the first moments (mean and variance)
of the AIP’s (Aggregated Interference Power) probability density function (PDF)
or the cumulative density function (CDF). Accordingly, closed-form expressions
can be derived for both the interference distribution and the signal-to-interference
ratio (SIR) which is the main indicator of transmission quality.

However, there does not exist a general closed-form interference Laplace trans-
form which we can apply to any kinds of systems. Several works have been con-
ducted by finding the PDF of interference, in systems where transmissions are
performed in adjacent channels (thus barely interfering) [102-107].

4.1.3 Motivation and Contributions of this Chapter

In UNB networks, carrier frequencies are randomly chosen in a continuous inter-
val. This has not been considered in the above-mentioned works, to the best of
our knowledge.

A way to introduce this random characteristic in the stochastic geometry model
is to consider a marked spatial Poisson Point Process (PPP). In addition to the
random parameter (i.e. the nodes” position) included in PPP, the marks can rep-
resent other random parameters such as nodes” random emission moments and
their randomly chosen carrier frequencies. Thus the marked PPP can model the
interference contribution by other simultaneous transmissions (from one given
transmission’s point of view).

We exploit in this chapter two complementary approaches. Firstly, we de-
rive an analytic expression of a UNB-based system performance, when consider-
ing both the path-loss and the specific interference model (which approximates
precisely the realistic one) of UNB systems. Secondly, we take into account the
Rayleigh fading and use the stochastic geometry to find the distribution of SIR,
but with a simplified interference model (because we cannot find tractable ex-
pression when considering realistic interference model according to our very first
calculations).

One may note that the shadowing which causes the fluctuation of the received
signal power (due to obstacles on the propagation path between transmitter and
receiver), should also be considered in realistic channels. But It has been shown
in [108] that a marked PPP with shadowing is equivalent to a PPP without shad-
owing by adapting the power strength in the model. It is thus neglected for the
sake of simplicity.

The rest of the chapter is constructed as follows: in Section 4.2 we model the
network’s topology and behavior, and we state all the hypothesis that will be
used. In Section 4.3, we derive theoretically the expressions of outage probabil-
ity in UNB network for two approaches. The first part (Section 4.3.1) considers
the impact of path-loss and the Gaussian interference coefficient. And the second
part (Section 4.3.2) considers the joint impacts of path-loss, Rayleigh fading and
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rectangular interference coefficient. Then, in Section 4.4, we validate the two the-
oretical analysis by simulations. In Section 4.5, we exploit the theories to estimate
the network capacity and the spectral efficiency . Finally, we conclude the chapter
in Section 4.6.

4.2 Modeling and assumptions

421 Network topology

Single base station (BS) is the atomic pattern to analyze the performance of cellular
networks. We thus consider in this chapter the uplink of a UNB network, where
nodes communicate only with a single BS. The BS covers a finite circular area with
a known radius and gathers the information from nodes located inside. Inter-cell
interference is therefore not considered for simplicity’s sake. Nonetheless, this can
be done by modifying the Gaussian additive noise strength distribution as done
in [109]. Indeed, the total interference produced by all the nodes beyond a given
distance (i.e. the nodes in other cells) tends to become Gaussian additive noise
when this distance is large enough [110].

We suppose that nodes are distributed randomly in a disk form area, whose
range is [t *m], as shown in Fig. 4.1. Nodes are positioned inside the cell, except
for the inner disk of the radius r,, in the cell. In realistic Sigfox networks, there
does not exist the limitation of r,,,, but we have made this assumption to ensure the
mathematical tractability by avoiding singularity at the base-station location [92].
For example, when the distance r between a node and the BS tends to be 0, the
path loss 2 (in free space case) tends to be infinity, which is not convenient to
derive closed-form expressions.

The random nodes’ positions can be modeled by a spatial homogeneous Pois-
son point process (HPPP) of density A; that lies in the Euclidean plan R2. In this
chapter, we focus on one observed moment. It is like we virtually sample a tem-
poral duration very, and we choose one sampling moment to observe the simul-
taneous transmissions. Due to the very small duty cycle of the nodes, we prefer
to use the active nodes density A (nodes/m?), which is considered stable at the ob-
served moment. One may note that A << A;. The active nodes are a subset of the
deployed nodes, thus the active nodes’ positions can also be modeled by a HPPP
with density A. We thus do not consider the temporal interference in this chapter,
which helps us to understand how the partial spectral interference impacts solely
the network performance .

We assume that all the nodes have the same behaviors: their data packets are
transmitted with the same emission power and antenna gain. In realistic net-
works, the nodes in different categories may have different emission power lev-
els, or they are under fractional power control according to their distance to the
BS [111]. But we do not consider this feature in this chapter for the sake of sim-
plicity.

The BS is considered to be always in reception mode, and to scan the whole
bandwidth for potential transmissions (as done in SigFox network). For each de-
tected transmission (even simultaneous ones), the BS processes the incoming mes-

sage(s).
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y-th interferer Ty
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FIGURE 4.1: Illustration of network topology: area range is
[rm, M|, orange point is the desired node, at a distance of ry; blue
points are interfering nodes, at a distance of r,,

4.2.2 Interference model for a single interferer

We define A as the set of active nodes at the observed moment. The point pro-
cess can thus be assimilated as a random sequence, where the set of points A4 are
successively randomly selected in a space R?. Without loss of generality, we con-
sider that node x is the desired node, while all the others are called interfering nodes
as they can collide with the desired node. For a given transmission range 7, the
attenuation of the signal power received at the base-station denotes:

he(r,t) =g(t) ho-1r7%, v € [Fm, TMm] 4.1)

where & > 2 is the path loss exponent; g is the Rayleigh channel coefficient,
which is a random variable following an exponential distribution of unitary mean
g ~ exp (1) considered as constant during the observation instant; and Ay is the
reference channel gain determined at the reference distance ro = 1 m.

Shadowing is neglected for the sake of simplicity, as stated in Section 4.1.3, but
could be introduced with a marked PPP.

At the BS side, the received signal is the sum of active nodes’ signals and can
be expressed as follows:

r(t) =y he(re, t) % B fo, t) % 52(8) + {; },/hc(ry,t)*he(fy,t)*sy(t)er(t)
ye{A—x

(4.2)

where, for any active node x,y € A, s(t) is the modulated symbol; &, (f,t) is the
transmission FIR filter centered on the randomly chosen carrier frequency f; *
denotes the convolution operator; and w(t) is an additive white Gaussian noise
with zero mean and variance 0.

To recover the desired signal, the sum of the signal received at BS is filtered at
the carrier frequency of the desired node fy, with the matching filter (h,(fx, ) =
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he(fx,t)). The filtered desired signal can be thus written as follows:

' (fart) = Be(f, t) % 7(t)
=7\/hc(re,t) - he(fu, t) % he(fr,t) % 52(2)

+ Y ey ) Te(fy #) # Be(f £) 5y (1) + e(fe £) x w(t)  (43)

ye{A—x}

where the first term represents the filtered desired signal power; the second term
represents the filtered AIP (Aggregated Interference Power); and the third term
represents the filtered noise power.
We can extract the received power corresponding to the signal of the desired
node x :
P = he(ry,t) - Po = gu - 1% - P (4.4)

with Py =< |h.(f,t) *h.(f,t) * s(t)|* > which is identical to all signals, and P}
stands for kg - Pp.

Similarly, the interference power I, caused by a single interferer (at the dis-
tance of r,) on the desired signal denotes:

Iy = he(ry, t) - B(| fx = fy) - =gy 1" B fx = fy]) B (4.5)

with B(|fx — fy|) = j:ggygiz E? §‘| — the rejection coefficient, defined as the recep-
tion filter is centered on a different frequency than the transmission filter. The

rejection coefficient quantifies the portion of interfering signal which is kept after
filtering, it is thus also called interference coefficient. It depends on the frequency
spacing between the two carrier frequencies 6f = |f, — f,|. Since the UNB signals
select their carrier frequencies randomly and independently (as stated in Section
2.3.2), this partial overlap between two signals exists. As illustrated in Fig. 4.2, the
black curve stands for a realistic interference coefficient in SigFox’s network. We
can observe that the highest interference level (i.e. B(df) = 1) is achieved when
0f = 0, while it tends to 0 as the interferer’s frequency moves away from the
desired node’ frequency (i.e. when ¢ f increases).

We can approximate this interference with two models. We can note that the
actual interference coefficient can be divided into two main areas. Transition oc-
curs between 200 — 400Hz, depending on the considered criterion. When Jf is
small enough, the contribution of a unique interferer can be significant, i.e. until 0
dB when two signals are totally overlapped. Thus a unique interferer in this area
has high probability to cause the desired packet’s loss. On the contrary, when ¢ f
is larger, the interference level becomes much lower, i.e. below —50dB. Hence a
unique interferer in this area will have almost no impact on the performance of the
desired node. Accordingly, a single interferer’s contribution can be approximated
by two constants in these two areas, thus by a rectangular function:

) IDnax for Of <A,
B(of) = { Lw  for of > A. (4.6)

where A corresponds to the width of & that creates high interference level.
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We can also approximate the interference coefficient by a zero-mean Gaussian
function, depending on the frequency difference Jf (the pink curve on Fig. 4.2):

= 202
B (of) v P (4.7)
with o = 60 for a 100 bit/s transmission [12].

Fig. 4.2 illustrates all the interference models. The black curve represents the
realistic UNB interference model, which is traced based on the SigFox network.
The pink curve represents the Gaussian function eq.(4.7), which fairly approxi-
mates the realistic one, and will be used in section 4.3.1. The rectangles in green,
red and blue represent respectively the approximated rectangular model (AR), the
upper bound (UB) and the lower bound (LB). They will be used in Section 4.3.2.
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FIGURE 4.2: Behavior of the interference coefficient vs the fre-
quency spacing J f between the desired signal and the interferer

4.3 Theoretical analysis for UNB Networks in Spectral-Spatial
Dimensions

In this section, we evaluate the networks performance with regards to the OP
(Outage Probability). The OP is defined as the probability that a packet is lost,
thus the SINR (Signal to Interference and Noise Ratio) of the desired node is lower
than a predefined threshold (we use 7* to note it). This threshold is normally de-
signed according to the sensibility of the receiver. The OP derivation is thus based
on instantaneous SINR, which we assume to be stable at the observed moment.
Therefore, the OP of any desired node x located at r, from the BS denotes:

P,
- < A*) = 5 < A .
OP = P(SINR, < 7*) ]P<PI+W_7> (4.8)
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with Py = g, - r;* - P} the desired node received power as in eq.(4.4), P; the total
interference power, W the noise power and y* the predefined SINR threshold. We
use IP to represent probability, and P to represent power.

P; is obtained by summing the contribution of each interferer, as presented in
eq.(4.5):

Pr= ), g1, B6f) P (4.9)

ye{A—x}

In this chapter, the OP will be evaluated in 2 cases. We start with a simple
scenario in Section 4.3.1, where we consider a simplified channel gain with only
path-loss (no Rayleigh fading and no noise), and the Gaussian interference coef-
ficient is used. We then extend it to a more complete case in Section 4.3.2, where
we take into account Rayleigh fading, the noise, and the rectangular interference
coefficient.

4.3.1 Impact of path loss and approximated Gaussian model

In order to have a first intuition of the random spectrum access impact on network
performance, we first neglect fading and noise, and consider only the free space
propagation (x = 2) in this section. We derive the OP when considering path-
loss and the spectral interference, by evaluating the SIR (Signal to Interference
Ratio) as a simplification of the SINR. We use the approximated Gaussian model
(pink curve in Fig. 4.2) to measure the interference coefficient. We focus on the
spectral interference coming from only one interferer, as this is the most frequent
case according to actual SigFox network analysis [12]. A more general case of the
aggregation of several interferers will be treated in the next section.
According to the assumptions above, we have OP as:

OP =P(SIR < 7*) =P (g < 7*> (4.10)
I

We first consider two active nodes (one desired node x at the distance of 7y,
and one interfering node y at the distance of ), before generalizing it to N active
nodes. From eq.(4.4) and eq.(4.5), the SIR of the desired node can be expressed as:

P, re2- P )\ 1
SIR:S:XO:(y> . 4.11
P BN B \r) B 1

A packet is considered lost if its SIR < ¥, i.e. when :

OP = P(ry < rq/7'B (5)) (4.12)

this step implies that the outage probability can be transformed into the probabil-
ity that one interferer y falls into the circular area whose radius is r,/y*B (6 f ). We
can call this circular area as interfering area.
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We decompose eq.(4.12) by using the law of total probability with respect to
the conditioning variable J f. Hence, the OP becomes:

oP = /03113 (SIR < 7*|6f) - P (6f) dof (4.13)

:/0311)<ry<m/7 B (5f) ](5f> (6f) dof

with B being the total available frequency resource in Hz, and IP(Jf) being the
probability distribution of f.

First of all, we express IP (6f). The desired and interfering nodes choose their
frequencies f, and f, randomly and uniformly within [0, B]. Thus, their spectral
difference J f has the following probability distribution function:

2/ f
P (5f) = { B (1 - B> for §f € [0, B] (4.14)

0 elsewhere

Secondly, we calculate IP (ry <ra/7*B (6f) ](5f> .

Since the distribution of nodes follows Poisson point process, their respective
distance to the BS follows a uniform distribution. IP (r) represents the probability
of being at a random distance (radius ) in a disk form area of [ry,, 7]

o forr € [rm, M|
{rﬁrakz M (4.15)

0 elsewhere

P(r)=

2

with k2 = r3, — 72,

OP for a given 7y

For any desired node at a given distance ry, the only random variables in the
expression of OP in eq.(4.13) are r, and Jf. We can thus derive the conditional

probability with respect to ¢ f, according to the ranges of rn/v*B (9f):

P (v < ro/r B @)1
[P ) e if /1B (0F) <

/7 B(of) .
_ /r P (r,) dry  ifrm <ra/7B(6f) <rm
/ (ry) dry if ro/ 7B (6f) 2 m
0 fra/v*B(0f) < T,
1"

- (;fzf )20 it < /T B ) < 7 (4.16)
1 ifra/v*B(6f) > rum
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The first case in eq.(4.16) (resp. the third case) renders the fact that, the targeted
range threshold is so small (resp. so high) that, in the targeted area, no node can
be (resp. all the nodes are) closer. The second case is the intermediate case, and its
value depends on the desired node location.

We update eq.(4.13) according to eq.(4.16), and replace B (4 f ) by the zero-mean
Gaussian function as shown in eq.(4.7). After the integration over J f, OP becomes:

OP:/OBIP(ry<rx,/fy B (5f) |5f> (6f) dof

b (7, —T'm by
=0+ [ ( 75(5[) )Il’(éf)déf+/ 1-P (5f) dof

by
. Sf > 150avy*c < f2> 5f?
75av* erf + ex + e~ —¢eBd
! (\/202 aar P\ ) T T

{(5 i 2] (4.17)

with the following constants:

21,2 2 >
=B g 0

v () 5) ) e () 7))

The integral bounds by, b and b, were obtained as follows. Since 1, < r/7*B (6f) <

Tx T -

2
rmis equivalent to 2 <\/9*B (6f) < M, it can be expressed as f ! <(W) 1) <

2
Sof < B~ <<r’") 7&) As the range of Jf is [0, B], we have to put a min func-

tion to constrain these integral bounds in case they exceed B. One may note that

2
B(6f) € [0,1] according to its definition. Thus, b; exists only if ( > < 7

Otherwise b; would be null, and the last term of integral would be null too.

Eq.(4.17) represents the OP when there are 2 active nodes. We now extend it
to N active nodes. In this case, any of the N — 1 nodes (i.e. all nodes except the
desired node) can be an interfering node. We recall that we consider only one
interferer at each collision, thus no AIP is included. Accordingly, the transmission
success means that the desired node is not interrupted by any of N — 1 nodes.
Consequently, the outage probability is given by:

OP(yy =1—(1—0P)N"! (4.18)

OP for average 7,

The OP derived in the previous part concerns a given . In practice, the distance
of the desired node can vary all over the cell. We show the complementary calcu-
lation steps for average r, in this part.
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Different from last part, we now have an additional random variable, i.e. the
desired node’s distance r,. We thus complement the steps after the computation

of eq. (4.16) which is expressed as the following:

P <ry <ra/r*B(6f)lof N rx>
0 ifrn/vB(0f) <1,

rxzv*ﬁ(lf;) — T’ if iy < 1o/ 7B (0F) < i

1 ifra/v*B(6f) > rum

This probability is conditional on r, and 6 f.

(4.19)

We can compute IP (ry <rn/7vB(6f)|of ) by integrating with respect to ry
from now on. However, as the conditions in eq.(4.19) depends on both ry and ¢ f,
the expression is computed differently depending on the range of Jf, which can
be very tricky. We have distinguished 4 cases based on the value of /y*B (6f)
which characterizes the relative positioning of the desired and interfering node:

o case 1: \/v*B(6f) < 7. This case is directly related to the first line in

eq.(4.19). Due to inequality transitivity, the ro/7*B (0f) < ran/7*B (0f) <
rm condition and the eq.(4.12) condition imply that ro < r,. This is not

achievable, as there is no nodes distributed inside the exclusion area of ra-
dius r,,. Thus, for such 0f , it is not possible to find a node close enough

to the BS to create sufficient interference. Thus, IP (ry <ro/vB(Of)|6f ) is
null.

case 2: 2 <./7*B(Jf) < 1. This corresponds to the case where the interfer-
ing node must be closer to the receiver than the desired node (but not in the
exclusion area). In this case, the left inequality in the second line in eq.(4.19)

is verified as ry, < rx/7*B (0f) is equivalent to [ < I <./y*B(0f) < 1.

Hence, all desired nodes satisfying r, € [

,T contribute to this
Tk M]
case.

case 3: 1 < /y*B(0f) < Vr—”"f Contrarily to the second case, here the inter-
fering node can be further from the receiver than the desired node. In this

case, nodes with a distance r, € {rm, } verify the right inequality in

™
1*B(Sf)
the second line of eq.(4.19), while those such that r; € [ﬁ((sf)' rM] verify
the third line.

case 4: \/7*B (6f) > M. In this last case, even the closest desired user is
interfered by any node in the cell. This is directly related to the third line in

eq.(4.19), which leads to < " < /7*B(5f). So P (ry < r/7*BEf)Iof) =

1.

Accordingly, we can compute the integral with respect to r,, in the four cases

stated above:
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P <ry <r ,B(éf)|5f> (4.20)
0 if\/ v B (0f) <,
™ Ty ,}, ‘B((Sf)—rm 21y . "
I = Sdn i<\ /Bf) <1
T*B(3f)
— /V*MT rh*ﬁ(}fp—rm 7 dry
+/ 2, if 1<y Bf) < 2
fV B (of) =
(0 1f\/W< m,
a * T'm
) I lfmgmg
s FOr BN S S TBE <
1 if\ /B (of) =

with the following constants :

4

p—

~ 2K
P
[

p o Ay Ty
24 K k2

oo Tm

)4

a1y
f=uti

This conditional probability segmented in 4 cases is plotted in Fig. 4.3. Each
case is plotted with a different color. We can not see the first curve in cyan because
it equals to 0 whatever éf is. We can observe that the red line which represents
eq.(4.20), is actually composed by different parts of the 4 curves according to the
value of §f. the calculation of eq.(4.20) is thus very tricky because of the complex
segmentations, as well as all the range bounds and conditions to follow. In or-
der to make sure that we do not make mistakes in the calculations, we have run

simulations (the red points) on Matlab.

As the red line and red points coincide

perfectly, we can prove the accuracy of our theoretical analysis of eq.(4.20).
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FIGURE 4.3: Validation of eq.(4.20), and its segmentation in the

four parts of the conditional probability IP (ry <ra/7B(6)|Of ) ,
depending on different values of frequency spacing df, with v* =
10dB, B =12kHz, r;;, = 30 m, and rp; = 60 m.

Similar to the case OP for a given ry, the outage probability is then computed
by integrating on 6 f as following :

op= [P (s < /B eI6r ) P 07) dos

2] a .

d

w7 (oogtary +er B +1) Pies) aos

b3
+/b4 1xP(6f) dof (4.21)

with

by = min (51 ((2‘2)2 ;) ,B) by = 0

One may note that B (6f) € [0,1]. Thus, b3 exists only if (%:)2 < 7*. Ifnot, b3
would be null, and the last term of integral would be null too.

Similarly, we can extend eq.(4.21) to N users case.

We remark that the expression of OP for both cases are related to: N, B, v*.
The difference is that OP for a given ry is directly related to the distance of the
desired node ry, where we treat it as a known parameter. Whereas the expression
of OP for average ry is related to the range of the cell [r,,, rm]. The first one can
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give us the network performance at one specific distance, which can help in posi-
tioning some important nodes. The latter provides a global view of performance
through the whole cell.

We note that the OP used for the comparison in Sections 4.4-4.5 is the OP for
a given ry, in order to keep an homogeneity with Section 4.3.2 (where we can not
find tractable expression for average ry). The numerical validation and exploita-
tion results of OP for average ry (the N users’ extension of eq.(4.21)) can be found
in Appendix A.

4.3.2 Joint Impact of Path-loss, Rayleigh fading and approximated rect-
angular model

In this section, we derive the OP for a more complex channel model. In addition
to the geometric path-loss, Rayleigh fading and noise are considered. Different
from Section 4.3.1 where we consider a unique interferer at each collision, we con-
sider the aggregated interference power (AIP) in this section. However, to obtain
tractable expressions, the spectral interference coefficient f(df) is now described
by the rectangular model (e.g. green, red and blue curves in Fig. 4.2) as presented
in eq.(4.6). The expression of B(éf) becomes less complex when using the rect-
angular model. The limitation is that, as we can see in Fig. 4.2, the rectangular
models can not reflect all the details of the realistic model.
The SINR expression exploited in this section is given by:

_“-Pé

SINR = - x 0

4.22
Pr+W ( )

where W is the filtered additive white Gaussian noise power.
Accordingly, for any node x located at 7, from the BS, OP can be written as:

*(W+PI)>

4.23
- r;a . Pé ( )

Since the AIP (Aggregated Interference Power) P is itself a random variable,
this probability can be expressed as follows:

")/* (W + P[)

P,) ] (4.24)

where Ep, stands for the expected value of the random variable Py, in probability
theory [112].

As gy represents the coefficient of Rayleigh fading which follows an exponen-
tial distribution of unitary mean g, ~ exp(1), we can use its CDF (Cumulative
distribution function), and obtain:

OP =1—Ep, [exp (—W)] (4.25)
x - 0

—7r'W 7Py
=1-—exp <rx”‘-P6> -Ep, [exp <_7’xa'P6>]

=1—exp(—W-s)-Ep [exp(—P;-5s)]
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*

_r
re - Py

The second term is nothing but the Laplace transform of the AIP’s probability
density function (PDF) [14]:

where s =

‘CPI (S) = Ep, [exp (_PI S)] . (4.26)
Then, eq.(4.25) can be rewritten as:
OP=1—exp(—W:-s)-Lp,(s) (4.27)

which establishes the relation between OP and the Laplace transform of the AIP’s
PDE. It is worth noting that this relation holds because the Rayleigh fading has
been considered.

Laplace transform of AIP

This section aims at deriving an analytical expression of eq.(4.26), by following the
track of existing studies on stochastic geometry for wireless networks. We provide
here the steps leading to the final result.

Active nodes are distributed independently and uniformly in a circular area,
with a HPPP (Homogeneous Poisson Point Process) of density A. The Laplace
transform derivation first relies on the fact that the AIP Pj is given as a sum, with
respect to the active nodes of the HPPP, of a unique function :

P = gly(ry) (4.28)

with:
Iy(”y) =8y 7’y_“ -B(3f)- Py (4.29)

which describes the random interference contribution I, of a non-desired node
eq.(4.9). It depends on the position of the considered node r, which is the random
variable in normal spatial HPPP, and on two additional random variables B (6 f)
and gy.

In our case, the rejection coefficient B(df) along with g, are not related to
the node position, and are generated independently to each other. Thus M =
gy - B(df) forms a spatially non correlated and homogeneous random parameter,

independently of r, *, and acts as a mark on the HPPP.
We can now express the Laplace transform of AIP in eq.(4.26) as:

Lp,(s) = Ep, [exp ( Yo L(ry) s)] (4.30)

ye{A-x}

=Ep, [[ [exp (—1Iy(ry) -5)]

@ exp (— /]R2 (1 —Eum [e_ly(yy)'s]) )\d@)

(a) comes from the PGFL (Probability Generating Functional) of a point process
[113], for a function f(x), we canhave E [T co f(x)] = exp (—A [z (1 — f(x)) dx);
A is the intensity of the homogeneous point process; M = g, - B(df) represents the
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random mark; and IR? represents the space where we selects randomly our set of
active nodes.

In the context of this chapter, the points space IR? is the single cell bounded by
[*m,7m]. We replace I, (r,) by its definition, the Laplace transform of the AIP thus
becomes:

21 pr L ,
Lp,(s) = exp ( / /M E, 5(5f) [e*é’y-fy B(of)-Fo SD Arydryd9> (4.31)

with A is the intensity of HPPP, as well as the node density in nodes/ mZ. Tt is
defined as the ratio between the number of simultaneously active nodes N and
the surface of the cell where nodes are deployed.

According to probability theory, the moment generating function (MGF) is an
alternate way to do mathematical analysis compared to PDF or CDF [114]. For
any random variable X, its MGF can be seen as the expectation of the random
variable e!X, thus E [etX ] . The MGF of a random variable following an exponential
distribution (with parameter A), is IE [etX } = ﬁ [96]. In our case, the fading factor
gy ~ exp(1) is the exponential random variable with A = 1. More importantly, as
8y, B(6f), and ry are mutually independent, we can consider t = —s - B(3f) -1, "
P{. We thus obtain:

1
/Lp,(s):exp< 27()\/ ( — Epgsp) 155 B0 17 P’] )rydry> (4.32)

We consider the rectangular model (eq.(4.6)) defined in Section 4.2.2 for B(Jf),

2
the rejection factor follows a Bernoulli distribution with probability p = R

Thus, the expectation term in the integral part of eq.(4.32) can be rewritten as:

E 1
PN 1 s~ B(3f) -1y% - B
1 1
=p. 1—1p).-
P 1+s-1max-r;“-P6+( P) 155 Iy 13" B,

1 1
-y 4 (1-p) 433
P 1+s-b-ry""+( p) 1+s-c-r,” (4.33)
where b and c are respectively defined by b = I - P) and ¢ = I, - Pj, and
s = 73 o Combining eq.(4.32) and eq.(4.33), the Laplace distribution of the

ry® - P

aggregated interference can be derived as:
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Lp,(s) = ex —27'[/\/rM<1— P __1=v >rdr
Pis) = exXp . 14+s-b-r,* 14s-c-ry" ey

o T [ ATy L ——y
=exp T ) rydry ) — Tydry

" 1+s-b-r,
N——
A B(s)
M 1_p
— ———rdr 4.34
/rm 1+s-c-ry_"‘y 4 (4:34)
C(s)

The integral A can be analytically computed and expressed as below:

2 2

T —
A= / U rydry = M 5 T (4.35)
Ym

OP final expression

By using eq.(4.34) and eq.(4.27), we can compute OP, for any desired node x
positioned at distance ry from the base-station, and involving the path-loss and
Rayleigh fading effect:

OP=1—exp(—W-s)-Lp,(s) (4.36)
=1—exp(—W:-s) ~exp(—27r)\(A—B(s) —C(s)))

with the constants A, B (s) and C (s) as shown in eq.(4.34).

One may note that B (s) and C (s) can not be analytically expressed for the
general case, but are numerically computable. Nonetheless, for specific value of
the path-loss exponent «, the theoretical integration is possible. We present in
the next part the expressions of OP for two cases of interest: x = 2 (free space
propagation), and &« = 4 (relatively lossy environments and for the case of full
specular reflection from the earth surface).

OP for free space x =2

When a = 2, we can compute B (s) and C (s):

'm
B(s):/rm 1+S'pb‘ry_2rydry:Z(r%/f—rfn)—kg-s-b-ln(rﬁ/f—rfn) (4.37)

L e I—p 1—-p
C(S):/rm m?’yd}’y:T(rﬁ/I_ri)_" 2 -S~C~h’1(}’%\4—}’2m)
(4.38)
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Combining with A eq.(4.35), we can have the Laplace function of AIP as:

r%i +sb TApsb 7%1 + sc A(1—p)sc
Lp(s) = 2 1 sh e (4.39)
M M
Then, OP can be obtained as:
OP=1—exp(—s-W)-Lp,(s) (4.40)
e (_S W) (7’%1 +Sb>7mpsb <7’%1 +SC>nA(1p)sc
B P 2 +sb 2, +sc
with s = %
ry-- Py
OP for flat earth model o« = 4
Similarly, when & = 4, we can compute B (s) and C (s) as shown below:
™M p
B(s) = / S 141
() T 1+S'b~1’y_4y 4 ( )
2 2
P ’ p 12\/sb — r27/sb
=5 (ry — ) + 5 +/sb - arctan < msb+r%/1r%1
Vi 1 _ p
C(s) = / ————rydr 4.42
(s) T 1—|—s-c~ry_4y Y ( )
1-— 1-— 12/5C — 124/sc
= P (rig—12) + Tp -/sc - arctan <W)
Combining with A eq.(4.35), we can derive the Laplace function of AIP as:
2 b— 2 b
Lp,(s) = exp (nAP /sb - arctan (W) (4.43)
ray/sc — rip/sc
+ TIA (1 - p) \/§ - arctan (W))

Then, OP can be expressed as:
OP=1—exp(s-W)-exp (n/\p /sb - arctan ( ")

2 2
+ 71_')\ (1 —_ p) ﬁ arctan (W>>

2 2
SC+ 1"

2 2
r2\/sb — 12, sb) (4.44)

*

i

ry - P}
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We will use this theoretical expression of OP to evaluate the network capacity
in terms of maximum number of simultaneous nodes. Results are shown in the
next section.

4.4 Validation

In this section, we compare simulation results of OP for a given distance ry, to
the theoretical ones: eq.(4.18) for the case with path-loss and unique interferer;
eq.(4.36) for the case with jointly path-loss, Rayleigh fading and aggregated inter-
ference (AIP).

In our simulation framework, transmissions are performed with the UNB mod-
ulation technique. Binary data are broadcast with a DBPSK modulation at a very
low rate (R, = 100 bps). The transmitted signal thus occupies a very narrow band
(i.e. about b = 100 Hz). Transmissions are realized at a randomly chosen carrier
frequency in a much larger band B. We also target the SINR threshold as v* = 6.8
dB, corresponding to a bit-error-rate of 10~ with a DBPSK modulation. We recall
the simulations” hypothesis here:

TABLE 4.1: Simulations hypothesis for mono-BS realistic channels
(*notation: wo = without.)

BS number | nodes distribution | desired node | pathloss | fading AIP replicas

1 random at given ry o wo/with | wo/with no

Simulations are performed with different interference rejection coefficients.
We consider the real shape of the UNB interference model (black curve on Fig.
4.2), the Gaussian model (pink curve on Fig. 4.2) as well as the rectangular model.
For the rectangular model, we consider three set of parameters, which correspond
to an approximated rectangular model (AR, green curve on Fig. 4.2), an upper
bound (UB, red curve on Fig. 4.2) and a lower bound (LB, blue curve on Fig. 4.2),
whose values are:

AR :A = 145Hz, Iyax = 0dB, I, = —75dB (4.45)
UB:A = 300Hz, Iygx =0dB, I, = —47.284B
LB:A = 116Hz, Iy = —6.8dB, I, = —75dB

We use the exhaustive research method to determine the AR model param-
eters. This AR model assures the accuracy for cases where the targeted SINR
threshold is 6.8 dB and the desired node at the edge of the cell range. Indeed, we
have identified that higher distances lead to a wider rectangle. Thus, r, = r; pro-
vides the most pessimistic rectangular model over the cell. Since the AR model
depends on *, we introduce an UB and a LB of the rectangular model, to estimate
the bounds of OP in eq.(4.36).

We present on Fig. 4.4-4.6 the comparison between simulation and theory re-
sults. OP is plotted as a function of the desired node’s distance r,, the node density
A, and the frequency resource B respectively. On all these figures, we can observe
that for the no-Rayleigh fading case, realistic simulation results match well with
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FIGURE 4.4: OP as a function of the desired node’s distance ry, for
B=96kHz, N =6,ry = 10 km, r, = 1 m, v* = 6.8 dB and path
loss « = 2.

Gaussian theoretical ones eq.(4.18). Besides, for Rayleigh fading case, the OP ob-
tained with the theoretical model eq.(4.36) fits very well with the simulated results
obtained with the associated rectangular model. Therefore, we can deduce that
the equations eq.(4.18) and eq.(4.36), as well as the accuracy of the approximated
Gaussian model, are validated.

In addition, the evolution of OP with realistic UNB filter (black dash curve)
lies between the UB (red curves) and LB (blue curves). As regards the AR model
(green curves), it slightly overestimates the realistic simulations, which comes
from the choice of this model’s parameters. Nonetheless, when r, becomes larger,
OP can be more accurately estimated by the AR model. These results all confirm
the pertinent choice of the AR model, UB and LB, and the scalability of the rectan-
gular models.

4.5 Numerical results and exploitation

4.5.1 Numerical results analysis

Aside from the validation of theoretical expressions, we can draw further conclu-
sions from Fig. 4.4-4.6. In Fig. 4.4, we can see that OP increases when r, increases.
Indeed, when the desired node x is further from BS, its received power is more at-
tenuated because of the path loss. This makes the desired signal more vulnerable
to interferers.

Interestingly, we can observe that OP(no-Rayleigh) is lower than OP(Rayleigh)
when 7, is small. But when r, exceeds a certain distance, these two cases have
identical outage probabilities (and close to the real shape simulation results). This
phenomenon comes from the impacts of Rayleigh fading.

We have deduced from eq.(4.12) that if one interferer falls into an interfering
area (whose radius depends on the received power of the desired node x), it will
interrupt the desired node.
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FIGURE 4.5: OP as a function of active nodes density A, for B = 96
kHz, ry = 7km, rpr = 10 km, 7, = 1 m, v* = 6.8 dB and path loss
o =2.
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FIGURE 4.6: OP as a function of bandwidth B, for N = 6,7, = 7
km, rpy = 10 km, ry, = 1m, 9v* = 6.8 dB and path loss & = 2.

Rayleigh fading can amplify or attenuate the received signal power, thus di-
minish or broaden the interfering area. If the received power of the desired node
gets attenuated because of the fading, the interfering area becomes larger. Because
the desired signal becomes vulnerable thus interferers far away from the BS can
also interrupt it. Hence we have more potential interfering nodes, thus higher
probability to be collided in this case. Meanwhile, if the desired node’s received
power gets amplified, this interfering area becomes smaller. Because the desired
signal becomes stronger, thus interferers should be closer to the BS to be able to
interrupt it, which leads to less interfering nodes. When r, is small, the interfering
area’s increase is much remarkable than its decrease. Thus, such a node (at small
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ry) is sensitive to fading. On the contrary, when r, is high, the interfering area’s in-
crease is bounded by the cell limit )1, and thus the increase of potential interferers
is less significant. Hence, such node (at large ry) is barely affected by the fading.
That’s why when the desired node is far from BS, OP(no Rayleigh) is almost at the
same level as OP(Rayleigh).

In Fig. 4.5-4.6, we have fixed the desired node’s distance so that the same per-
formance is obtained without and with Rayleigh fading. We can see that OP in-
creases when the node density A increases, or when the bandwidth B decreases.
Indeed, as there are more nodes transmitting at the same time, or when the avail-
able transmission resource becomes less, the chance that their frequencies fall
into the interfering zone gets higher. More interestingly, the gap between OP(no-
Rayleigh) and OP(Rayleigh) is not influenced by A or B. Hence eq.(4.18) can be
used for high r, cases, whereas eq.(4.36) is needed for low r, ones.

Besides, these results have also confirmed the hypothesis in Section 4.3.1 where
we have assumed one unique interferer. Indeed, OP(no Rayleigh) has considered
the contribution of a unique interferer, whereas OP(Rayleigh) has considered the
aggregated interference (AIP). The fact that these two OPs converge when ry is
high confirms that one interferer has almost the same contribution than AIP.

4.5.2 Estimation of the network capacity

In this section, we exploit the OP theoretical expressions to find out the maximum
capacity. This parameter is defined in this study by the maximum number of
active nodes N that the network can support simultaneously, while maintaining
a given OP constraint. We note that this maximum node number can be obtained
because the cell range is bounded. We have reported on Fig. 4.7-4.9 the capacity
for a targeted OP= 10, by considering the no-Rayleigh fading case eq.(4.18); and
the Rayleigh fading case eq.(4.36). Capacities estimated by the UB and LB provide
us the reliable range of the maximum active nodes, and the AR model provides a
good estimation, though not that exact.

In Fig. 4.7, we can observe that the capacity increases almost linearly with the
available bandwidth. Indeed, as B increases, we obtain a higher capacity thanks to
less interference in the frequency domains. It is thus easy to scale the bandwidth
in accordance to the number of nodes to serve, when keeping the same targeted
OP.

In Fig. 4.8, we can note that the overall capacity decreases when r, increases.
As the desired node moves progressively away from the BS, its received signal
gets strongly attenuated. Hence, in order to successfully detect the desired node,
the maximum node number has to be degraded.

Similarly, in Fig. 4.9, we vary the cell radius rj;. As the cell size increases,
the overall capacity increases. Indeed, when the cell surface becomes larger, by
keeping r, unchanged, the desired node is perceived closer to BS than other nodes.
This makes the desired node’s signal more resistant to interference, thus easier to
be detected. Therefore, the maximum node number increases for the targeted OP.
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FIGURE 4.7: Maximum node number vs bandwidth B, for targeted
OP =0.1,ry =7km, ry =10 km, r, = 1 m, v* = 6.8 dB and path
loss & = 2.
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FIGURE 4.8: Maximum node number vs desired node distance r,,
for targeted OP = 0.1, B = 96 kHz, ry = 10 km, r, = 1 m,
7* = 6.8 dB and path loss & = 2.
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FIGURE 4.9: Maximum node number vs cell range r,, for targeted
OP =0.1,B=96kHz, ry =7km, r, = 1 m, v* = 6.8 dB and path
loss « = 2.

4.5.3 Evaluation of the Spectral Efficiency

Finally, for a fairer comparison of the effective use of the bandwidth, we consider
now the spectral efficiency. This term is determined as the ratio of the maximum
node number and the bandwidth %.

We compare the spectral efficiency in two cases: without and with a guard
band, for different values of a, as shown in Fig. 4.10-4.11. The without guard
band corresponds to the ideal case, where the nodes’ carrier frequencies can be
obtained, by random selection on the whole frequency resource B. However, in re-
alistic UNB networks, the oscillator jitter causes imprecise carrier positions, which
can cause the carrier frequencies jumping outside of B. Therefore, the frequency
resource band B should be separated by a guard interval, which must be taken
into account in the spectral efficiency. We consider here a 1736 Hz guard band,
which corresponds to the operating frequency transmission 868 MHz and stan-
dard deviation of frequency jitter of 2 ppm. This allows to ensure that no actual
carrier frequency would fall outside the intended band.

We choose the AR model to study the spectral efficiency, when varying the
path loss exponents. By observing Fig. 4.10, we can note that for small bandwidth
such as B = 12 kHz, the spectral efficiency is highly degraded by the guard band.
This is due to the fact that a big portion of the band is wasted for the guard band to
counteract the frequency jitter. Meanwhile, the impact of guard band diminishes
as B increases. Hence for the large band width, the spectral efficiency seems the
same for both cases (e.x. the green ones).

More interestingly, for each B, there exists a highest spectral efficiency ob-
tained with an optimal a. This is because when « increases, the received signal
power of both the desired node and interfering nodes diminishes. In the first part
of the curves, as the desired node is near to the BS, this decrease of power is more
important for interfering nodes which can be anywhere in the cell. Meanwhile,
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in the second part, when « exceeds a certain value, the power reduction is so se-
vere that the desired node has no more advantage. Thus N, first increases then
decreases.

However, by observing Fig. 4.11, we note that this concave behavior is smoothened

when r, is closer to rps. Indeed, when the desired node is almost at the edge of the
cell, it is disadvantageous compared to all the interfering nodes. Hence the more
« grows, the more the spectral efficiency degrades.

42100
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FIGURE 4.10: Maximum node number to bandwidth ratio %
(nodes/Hz) vs exponent path-loss «, for r); = 10 km, ry = 2 km,
rm = 1m, v* = 6.8 dB, with and without guard band
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FIGURE 4.11: Maximum node number to bandwidth ratio N’g“
(nodes/Hz) vs exponent path-loss «, for ry; = 10 km, ry = 7 km,
rm = 1m, v* = 6.8 dB, with and without guard band

Following the previous observation, we have plotted in Fig. 4.12 the optimal
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bandwidth B (for the guard band case) to achieve the highest ratio %, as a func-
tion of the path loss exponent a. This figure provides the optimal choice for B,
according to the propagation characteristics. We observe that for urban areas such
as « = 4, we need a thiner bandwidth than for rural areas to reach the highest
spectral efficiency. Hence it also allows us to make effective use of the available
bandwidth.

~
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BW of highest spectral efficiency (kHz)

60 - A

40 8
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FIGURE 4.12: Bandwidth for highest spectral efficiency ( N’g“x) Vs

exponent path-loss «, for rpy = 10 km, vy = 2 km, r, = 1 m,
v* = 6.8 dB, with guard band

4.6 Conclusion

In this chapter, we have studied the UNB network, whose main specificity is the
use of Random-FTMA scheme, which leads to a new behavior of the interference.
We have considered two models to approximate the interference coefficient: Gaus-
sian model which reflects almost all the details of the realistic one; and rectangu-
lar model which facilitates the theoretical analysis. With these two models, we
have quantified the performance of the UNB network, in terms of uplink network
capacity, when considering realistic channel conditions (path-loss and Rayleigh
fading).

In the first case, we have consider only the path-loss in free space propagation
(where & = 2), and the interference contribution due to a unique interferer. The
Gaussian model is used in this case. We have theoretically derived the outage
probability (OP) for the case where the desired node situates at a given distance
1y, and then extended it to the case where the desired node can be anywhere in
the cell (i.e. at average distance). The former gives us the performance of at one
specific distance, which helps in positioning devices having critical demands (e.x.
its OP should be under 107). The latter gives us a global insight of the whole
cell’s performance.

In the second case, we have taken into account the Rayleigh fading and the
aggregated interference of all the potential interfering node, in addition to the
path-loss a which is no more restraint to 2. The rectangular model is used. We
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have defined three set of rectangular models in order to have a complete point of
view: the approximated one (AR), the upper bound (UB), and the lower bound
(LB). The nodes’ distribution follows homogeneous PPP, we have thus treated the
random variables (i.e. the fading and the frequency spacing) as a mark on the
HPPP. We have provided the expression of analytical OP, by deriving the Laplace
transform of the aggregated interference in closed form when using the properties
of marked HPPP.

We have then compared the two theoretical OP expressions (for given distance
of desired node) with the simulations. The results have showed that the theoret-
ical OP obtained by both models conform well to the ones obtained by simula-
tions. We have observed classical network behaviors: the network performance
degrades when the traffic is too loaded, or when the frequency resource is too
limited, or when the desired node is too far away from the base station. Besides,
we have remarked interesting phenomena: the impact of fading diminishes when
the desired node moves away from the BSs, and the OP(no-Rayleigh) has identi-
cal performance than OP(Rayleigh) when the desired node positions near the cell
edge.

Moreover, we have then exploited the analytical expressions to estimate net-
work capacity, with respect to the maximum simultaneous number of nodes that
the network can support, for a targeted OP. We have noted that the capacity in-
creases when the cell range increases (while keeping the desired node’s position
unchanged), or when the desired node moves towards the BS (because it becomes
less vulnerable), or when the the frequency resource becomes larger (thus the
nodes have less chance to collide).

Finally, we have evaluated the spectral efficiency as a function of the path-
loss exponent, for without and with guard bands. We have observed that the
guard bands degrades vastly the spectral efficiency when the resource B is limited,
and this is improved when the resource becomes larger. We have also remarked
that when the desired node is close to the BS, the variation of spectral efficiency
is concave as a function of x. And this phenomenon is smoothened when the
desired node is further. We have highlighted that the bandwidth which achieves
the highest spectral efficiency depends on the propagation condition, which can
help us to make efficient use of the available bandwidth.

To conclude, we believe that this theoretical work is very useful for the study
of UNB network capacity and its deployment. This study can be furthered by
taking into account the temporal activity rate of the nodes. It can also serve as a
theoretical basis for further studies such as multiple receivers.
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Chapter 5

Mono-BS performance
enhancement: SIC
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Now that we have characterized the UNB networks capacity in the two pre-
vious chapters, we have clear awareness of what affects the performance: the un-
controlled interference cause by the time-frequency randomness can notably affect
the networks’ reliability.

In this chapter, we focus on the enhancement of the UNB networks’ perfor-
mance from the single base station’s side. We propose to use the well-known
SIC (Successive Interference Cancellation) to mitigate the spectral interference of
UNB systems in a recursive way. We provide a theoretical analysis of the outage
probability, when considering jointly SIC and the specific spectral randomness of
UNB. We consider realistic channel conditions with path-loss (without fading),
and we exploit the expression of outage probability derived in Section 4.3.1 where
we have made the same hypothesis with a simple receiver. Then we numeri-
cally compare the performance of SIC for without and with the involvement of
Rayleigh fading. We highlight that the fading brings an additional degree of free-
dom, which improves the performance of SIC.

5.1 Introduction

The dedicated multiple access of UNB is R-FTMA, where the nodes access both
the temporal and spectral resources randomly, as presented in Section 2.3.2. The
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interference caused by this randomness can significantly affect the networks per-
formance. In Sigfox’s networks, in order to keep the advantageous solutions of
low-cost and low energy consumption, it is hard to control the interference at the
transmitters’ (devices) side. We thus focus on the interference mitigation at the BS
(Base Station) side in this chapter.

Among the IC (Interference Cancellation) technologies, we can first cite PIC
(Parallel Interference Cancellation). PIC processes simultaneously all the users
and cancels their interference after they have all been independently decoded.
However, PIC is considered unprofitable for massive practical implementations,
as it demands precious hardwares [115].

SIC (Successive Interference Cancellation) is another IC technology, which at-
tempts to remove the interference in a recursive way [116,117], by exploiting the
diversity of the received signals strength. Certainly, SIC can only bring benefits if
only the signals have different levels of strength, thus not in perfect power control
systems.

SIC is expected to be the most efficient IC-based methodology in terms of
Bit-Error-Rate performance. Nevertheless, as the accuracy and robustness de-
mand increases, the complexity of iterative detection and decoding process grows
too. Hence there is a trade-off between the performance of SIC and its com-
plexity [118]. SIC was proved to be highly beneficial when low-rate codes are
used [15]. We thus consider SIC in this chapter.

More recently, the authors in [16] have considered SIC receiver to improve IoT
networks performance. A normalized theoretical analysis of the capture proba-
bility by considering the MPR (Multiple Packet Reception) and SIC is presented.
Different channel models, such as path loss, general fading and shadowing are
considered. This study confirms the adequacy of the SIC to IoT. However, the in-
terference model refers only to the aggregated power of interferers’ contribution
when the same channel is used. In a UNB system, as nodes select their frequency
randomly in a continuous space, overlaps of signals can generate interference with
an additional degree of freedom. Indeed, in UNB network, the interference also
depends on the frequency spacing of potential interferers. For this reason, we
cannot directly derive the UNB performances from this generalized analysis.

Therefore, in this chapter, we propose to analyze the SIC benefits in a UNB
network. We exploit the results presented in Section 4.3.1, which characterizes
analytically the performance of UNB with a simple receiver when considering
both the path-loss and the spectrum random access.

The rest of this chapter is organized as follows : Section 5.2 gives the modeling
and hypothesis. Section 5.3 provides the theoretical analysis of the performance
without and with SIC. The numerical results and the validation of theory are given
in Section 5.4, then Section 5.6 concludes.

5.2 Modeling and Assumptions

The network topology and hypothesis are exactly the same as those in Section 4.3.1.
We consider a network with a single BS located at the cell center. The BS is sup-
posed to be constantly in reception state. Nodes (devices) are positioned ran-
domly and uniformly in a disk area, defined by the radius [y, 7pm]. 7 corresponds
to an exclusion area around the BS where no node is deployed. Thus, free space
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propagation model can be used without having the path loss being co when the
distance tends to 0.

We suppose that all nodes have the same behavior: the information packets
have the same size, are sent with the same emission power and antenna gain, and
nodes have the same wake-up duty cycle. The channel condition is realistic where
we consider the frees space path-loss (no fading is involved). Since nodes have
various positions, their received power at the BS differs because of the path-loss.

We focus on the contribution of a unique interferer as it is the most frequent
case [12]. We suppose that the desired node transmits at frequency fy, and the
potential interfering node at frequency f,. The main parameter is their frequency
spacing 6f = |fx — fy|, which determines the interference contribution of each
interfering node. When two nodes choose their frequency close enough, interfer-
ence generated would cause packet losses.

We use the Gaussian interference coefficient as presented in Section 4.2.2, which
estimates perfectly the interference coefficient compared to the realistic one in Sig-
fox’s network:

B(of) = exp 27 (5.1)

with ¢ = 60 for a 100 bit/s transmission.

5.3 Theoretical Analysis

In this section, we derive the outage probability (OP) of UNB systems with SIC
receiver. We focus on the OP foraverage r, case where the desired node can be
anywhere. Even if this brings more complexity in the computation, it is still more
representative for all nodes at different distances in a cell. We firstly recall some
principle steps of OP foraverage r, derivation in Section 4.3.1, then we exploit and
extend it to the case with SIC receiver. We neglect the noise in this chapter, thus
SIR (rather than SINR) is used to decide whether one packet is lost.

5.3.1 Preliminary: OP derivation without SIC

In Section 4.3.1, we have derived the OP for a simple receiver, when considering
both the spectral randomness and path-loss. We report here the main derivation
steps as a basis for adapting to the SIC case in Section 5.3.2.

We consider the case where there are only two nodes (node x as the desired
node and node y as the interfering one) at the observed moment. The OP of the
desired node x can be written as:

OP = P (SIR, < 7*) (5.2)

We suppose that node x (resp. node y) is at a distance of r, (resp. r,). Py is
the signal power at the reference distance ry. With a free space propagation model
(the path-loss coefficient is 2), the SIR of the desired node is:

Po(%)z ry S|
o ()L 5.3
" n(2) B <’) p(of) 9
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Consequently, (5.2) can also be expressed as:

OP =P <ry <ra/7*B (5f)> (5.4)

According to the law of total probability, we split eq.(5.4) depending on the

value of \/y*B (6f), conditionally to §f. We obtain an expression depending on
several parameters: the total available bandwidth B, the SIR threshold *, and
the range of the area [y, ¥m]:

or = ["® (1, < rafrplanler ) ¥ o) dos
- :1 <w;(5f)+b7*/3(5f)+c> P (5f) dof

by d . .

by
+/b4 1P (5f) dof (55)

with the following constants:

4 4 2,2 2

2k’ 2k4 k4 k2
- @, e = _i
2k4 2k4
1,2 1,.2 4 7,2
k k* k2

2

2 _ 2.
where k= = ry; —r

mrs
2
and with the following integral edges: by = min | B! (%) Ay,ﬂ) ,B), by =
2
min (frl (%) ,B) by = min (ﬁl <(rM) ,Yk) ,B>, and by = 0;
and where P (6f) which represents the probability distribution function of 6f =

|fx — fy|- As the carrier frequency of the two nodes are randomly and indepen-
dently chosen in [0, B], we have:

2/ 6f
]P(éf){B(lB> for §f € [0, B] 56)

0 elsewhere

The final expression of OP without SIC eq.(5.5) will be explored and extended
to derive the OP with SIC in the following part.

5.3.2 OP derivation with SIC

In this section, we consider that the BS uses a SIC receiver to extract additional
packets. The network behavior and the assumptions remain the same.
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The principle of SIC is to successively decode packets contained in the received
signal. Its process begins after the simple receiver’s process. Suppose that the BS
simultaneously receives, for example | packets, which are all in collision. With a
simple receiver, only the packet having the highest SIR (or received power, de-
pending on the measure criteria) can be correctly decoded, as long as its SIR is
above the required threshold. Meanwhile, with SIC, the knowledge on this packet
can be exploited to reconstruct the interfering signal. Then the SIC receiver sub-
tracts the reconstructed signal from the sum of received signals. The SIC receiver
performs the decoding on the remaining / — 1 packets. The process of reconstruc-
tion, retriever and decoding consists one iteration of SIC. The process goes on
iteratively until the packet with the highest SIR doesn’t fulfill the criteria for suc-
cessful decoding.

Asillustrated in Fig. 5.1, the iteration 0 represents the simple receiver’s process,
and the SIC receiver begins from the iteration 1. The simple receiver is able to
decode singleton signal (i.e. the packets 4, 7 on the scheme), or the strongest signal
when in collisions (i.e. the packets 1, 9). Based on the signals decoded by the
simple receiver, the SIC receiver reconstruct them and retrieve their contributions,
thus now packet 2 and 8 become decodable. SIC process its first iteration, and
we can have two more packets (i.e. packet 2 and 8) decoded compared to simple
receiver. We can note that the packet 5 and 6 are not decodable by neither the
simple receiver nor the SIC receiver. The reason may come from the fact that their
received power are already very low, thus their mutual interference renders very
low SIR. Since their SIR never surpass the predefined threshold, packet 5 and 6
remain undecodable.

Power

T
Power

Iteration 0>
2
Wﬂ B> s

Freq

Power
Iteration 1
£

Freq

Power
1 Iteration 2>

Freq

FIGURE 5.1: SIC process scheme. The packets are positioned at dif-

ferent carrier frequencies, and they have different levels of received

power. The iteration 0 represents the simple receiver’s process, and
the SIC receiver begins from the iteration 1.

We evaluate the SIC performance by focusing on the first iteration of SIC (i.e.
the 1 iteration), as we make the assumption that there is only one interferer at
each collision. The case where a collision is caused by the aggregation of several
interferers is still neglected. Besides, since we neglect the noise, one singleton
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packet can always be decoded even its received power is very low (i.e. the packet 4
on the Fig. 5.1), because its SIR tends to be very high when there is no interference.
Thus the errors come from the packets that can not be decoded by the simple
receiver, such as packets 5 and 6 on Fig. 5.1.

We further suppose that the SIC receiver can perfectly reconstruct decoded
signals, and subtract them from the received signals without leaving residues.
Hence, when two nodes are interfering each other, once one of them is successfully
decoded, the other one will also be decoded thanks to the SIC.

To derive the outage probability, we identify two scenarios where the packet
transmitted by the node x can be decoded: (1) when node x is directly decoded
by the BS, as its SIR is high enough; (2) when node x is not decoded in the first
place, but the interfering node y is: thanks to the SIC receiver, node x can then be
decoded. Hence the success probability of the desired node can be expressed as:

Py =P (SIR: > 7v*) + P (SIR, < 4*NSIR, > ") (5.7)
Thus the OP becomes:
OPsjc =1 — 1P
=1- (]P (SIRy > v*) + P (SIRy < y*NSIR, > ") )
=P (SIRy < ") =P (SIRx < y*NSIR, > 7*) (5.8)

The first part (P (SIR, < 7*)) is already available in Section 5.3.1. As the
SIR of node x and node y depend on the same frequency difference ¢ f, their re-
lated probabilities are correlated. Therefore, we cannot treat the joint probability
P (SIR; < 9* N SIR, > 79*) by simply multiplying the two issued probabilities.

We derive P (SIRx <7*NSIRy > 'y*) in the following part:

P (SIRy < v* N SIR, > 7* (5.9)
Y

_ /OBIP (ry < ra/ 1B (6F) N1y < y*;"(mw) P (5f) dof

We use a similar method as in Section 4.3.1 to derive this probability. We com-
pute the inner part of the integral by observing its dependence on the value of
V7B (6f), the intersection of the two inequality constraints can be to 2 cases:

( <ra/vB(5f)N \/W ) (5.10)
P (v < ry/rp W)W) it/ B (6) <1,
) ﬂ’(w e f)|5f> NGIGIES

We now evaluate the probabilities eq.(5.10) separately for each case in the fol-
lowing parts.

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2018LY SEI069/these.pdf
© [Y. Mo], [2018], INSA Lyon, tous droits réservés



5.3. Theoretical Analysis 75

For the case\/y*B (6f) <1

It is related to the first line in eq.(5.10). In this case, the interfering node is al-
ways closer to the receiver than the desired node. This probability is computed by
evaluating all cases for r,:

P (ry sr ’)’*,B (5f)“5f> (5_11)
0 if\/7°B (of) < =,

= M 2 4% . 2

= / . T’x'Y,B(]fzf) T'm - P (ry) dry if%g VB <1

T*B(Of)
{0 if\/y*B(of) < r'"
a % if Tn
W+b75(5f)+c er S\/’)’ﬁ Sl

(5.12)

with the same constants 4, b, ¢ as the no-SIC case eq.(5.5).

IP (1) represents the probability that any node in a disk form area of [r,, ry] is
located at a distance r from the BS. As nodes positions are distributed uniformly
and randomly, we have:

P(r)=

ra =12k (5.13)

2 2
S forr € [rm, M|
0 elsewhere

b2 2 2
with k% = ry, — 17,

For the case\/y*B (6f) > 1

This is related to the second case of eq.(5.10). It indicates that the interfering node
can be further from the receiver than the desired node. We also decompose it
conditionally to 7 as follows:

P (ry S ﬁ( f)| f) (5.14)

=¥ ( Vool m") i)

The first term inside the integral in the condition of f and ry, actually repre-
sents the probability that r, is smaller that a specific value, in the considered range

[P, M)
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P (Vy < *‘B(f)wfmrx)

0 if <y
B reen =
_ oo
= P(r) dr, ifr, <
/ (ry) dry ifr < ZiGs < Tm
0 if I >r
| B reen =M
(0 if <
B Srpen S
1 72 ri )
L T R T T 5.15
KRy Bef) Kk VM reen M (5.15)
0 if I >r
B reen =M

The first part is null because the condition implies that node 2 enters the exclu-
sive zone (where the radius is smaller than ;). As no nodes can be in this zone,
the probability is zero. The second part corresponds to the fact that the interfering
node is in the area range, but the integral upper limit depends on the location of
the desired node. As\/*B (df) > 1, the third condition of eq.(5.15) indicates that
ry is larger that rp;. Meanwhile, as rq is constrained by [ry,, 7], thus it leads to a
null probability.

The expression of the probability in condition of J f eq.(5.14) can thus be com-
puted by integrating r,:

P(“ vwn'f)

1 7?2 27y .
| e (v ) e sy <
0 i v*ﬁ(ﬁf)z%f

d
————Fey BOf)+ fi 1<y B(of) <
0 ift\/r*B(of) = M
with the following constants:
4 4 2, 2
™M T'm M Tm
dl == ﬁ/ e1 = @/ fl = - k4 (5'17)

Final Expression

Now we have the results of both two cases, eq.(5.12) and eq.(5.16), which are all
conditional to 6 f. We can then derive the joint probability of two correlated events,
by integrating on 6 f:
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P (SIR; < 9*NSIR, > ")

by a
= <+b'y*,6(5f)—|—c> ‘P (6f) dof

by 7*18 (5f)
by dl .
+/b3 <W+31’Yﬁ(5f)+fl>']l)(5f)d5f

The integral edges by, by, b3 are the same than the OP without SIC in eq.(5.5).
Therefore, the OP of the SIC receiver can be written as :

OPsjc =P (SIRy < v*) =P (SIR < yv*NSIRy, > 7*)

_ [ (d=d) IRY
s <'y*[3((5f)+( )Y B )+ (f f1)> P (5f) déf

+ ;3 1-P (5f) dof (5.19)

The result of integral computation is shown as below, the OP with SIC for the
2 users case:

_2[@=d)o?rx [ Of A
OPg;c _B{ 2150 erfi (@) +75(e —eq)y" erf <\/%7>]b3 (5.20)
by
d—dp)oy/2 2 (e —e1)y*150 — f) (6f)*
+!(ff1)5f( e )7y J;;(f)]
nexpza b

)

Finally, we can now extend eq.(5.20) to the N users case. We still observe one
desired node, while there are N — 1 potential interfering nodes at the observed
moment. As we neglect errors due to aggregated interference, the desired node
is successfully decoded when no interfering node succeeds in interrupting the
desired node. Therefore the OP with SIC is given by:

OPsjeny = 1 — (1 — OPgic)™ ! (5.21)

5.4 Validation and Numerical Results

In this section we show the comparison of theoretical and simulation results, in
order to validate the analytic expression of OP with SIC, as well as to demonstrate
the impacts of SIC.
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5.4.1 Validation

In order to validate OPgc(y) in eq.(5.21), Monte Carlo simulations based on real-
istic network parameters have been carried out with Matlab. We consider a single
BS, with nodes randomly deployed with a spatial Poisson process in the BS cover-
age. We have considered 4 main network parameters: the number of active nodes
N at the considered moment, the total available bandwidth B, the SIR threshold
v*, and the range of nodes’ distribution area [r,,, 7).

We recall the hypothesis (identical for both the theory and simulations) on
Table 5.1, in order to have a more clearer point of view:

TABLE 5.1: Simulations hypothesis for mono-BS SIC with free
space

BS number | nodes distribution | desired node | pathloss | fading | AIP | replicas

1 random random free space no no

no

Firstly, we have evaluated the variation in the decoded packet percentages
against different SIC iterations, as depicted in Fig. 5.2. The iteration 0 corresponds
to the decoding process of a simple receiver. The interference cancellation part of
the SIC receiver starts with iteration 1. In this figure, no limitation is imposed on
the SIC: decoding is performed until no additional nodes can be decoded. We can
notice that when we raise the number of active nodes, the required SIC iterations
increase as well. This is due to the fact that the collisions due to several interferers
have increased, thus more SIC iterations allow to decode more additional packets.

Nonetheless, the 1st iteration brings the most significant performance improve-
ment in all cases. These results can confirm the hypothesis that only one single
interferer is the most frequent case. They can as well confirm that one iteration is
accurate to evaluate the SIC performances, as was supposed in Section 5.3.2.

W SIC iteration O

SIC iteration 1
96,08%

87,99% SIC iteration 2
SIC iteration 3
76,58%
21,27%
1,54%
3,92%
0,47% 2,15% 540

N=50/km A2 N=200/km 2 N=500/km*2

Decoded pakcet percentage

FIGURE 5.2: Decoded packet percentage vs different SIC iterations,
for different active node numbers, B = 96 kHz, v* = 6.8 dB, r,,, =
30 m, rp; = 1000 m.

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2018LY SEI069/these.pdf
© [Y. Mo], [2018], INSA Lyon, tous droits réservés




5.4. Validation and Numerical Results 79

Fig. 5.3-5.4 present the performance of the simple receiver and the SIC receiver,
when varying the active node number and the SIR threshold, both by simulation
and theory. We can observe that simulations (points) coincide perfectly with the
theory (lines). Therefore, we can conclude that the theoretical expression eq.(5.21)
is validated.

Besides, we verify the classical behavior of the OP when varying the different
parameters. Indeed, as the number of active nodes N in a certain bandwidth
grows, or as the threshold of SIR 7* increases, the OP decreases. The choice of
v* is predefined according to the demanded QoS. These phenomena reveal that
when nodes are too dense for the total available bandwidth, or when the condition
of success becomes too strict, the network performance degrades.

5.4.2 Analysis of SIC performance

We analyze the impact of SIC in terms of performance improvement in this part.
As demonstrated in Fig. 5.3-5.4, the SIC receiver’s outage probability is always
lower when compared to the simple receiver. This is because the SIC process is
based on the signals firstly decoded by the simple receiver, thus SIC allows to
decode additional packets. Accordingly, we can conclude that SIC is beneficial
in mitigating the interference induced by the random spectrum access of UNB
systems.

107 |

©  OP without SIC
v OP with SIC
theory

Outage Probability

I I I I I I
0 10 20 30 40 50 60 70 80 90 100
Active node number N

FIGURE 5.3: OP without SIC vs with SIC, for different active node
numbers N, B = 96 kHz, r;; = 30 m, rp; = 1000 m, v* = 6.8 dB.
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///,
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——theory

Outage Probability
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SIR threshold ~ (dB)

FIGURE 5.4: OP without SIC vs with SIC, for different SIR thresh-
old v* (dB), B =96 kHz, N = 10, r;, = 30 m, r; = 1000 m.

To further evaluate the SIC improvement, we define the gain of SIC as P
which is the percentage of error reduction thanks to SIC. We use it as an indicator
of the SIC efficiency. Besides, for the sake of generality, we characterize the net-
work activity by the normalized spectral use, which is the total active nodes” spec-
trum occupation over the total bandwidth. Typically one signal occupies 100Hz
spectrum in UNB, thus the normalized spectral use is %.

We have evaluated the gain of SIC by maintaining the normalized spectral use
at a constant level, as demonstrated in Fig. 5.5. The idea is to test whether the
SIC gain changes for different scales of node number, while keeping the ratio %%
fixed. We can observe that no matter how the scale of node number changes, as
long as the normalized spectral use is constant, their SIC improvement is identical.

Furthermore, we verify the evolution of SIC gain when the normalized spectral
use is not constant. As shown in Fig. 5.6, we can see that the SIC gain degrades as
the normalized spectral use increases. And for the same normalized spectral use,
when the success decoding criteria becomes more strict (thus v* becomes higher),

we obtain lower gain of SIC.

0.3

0.25 —*—N=100 B=12 kHz
—&—N=1000 B=120 kHz
—v—N=5000 B=600 kHz
—*—N=10000 B=1200kHz

02

0.15 [

Gain of SIC

011

0 I I I I I I
5 6 7 8 9 10 1 12 13 14 15

SIR threshold 4 (dB)

FIGURE 5.5: Gain of SIC, as a function of SIR threshold v* (dB),

and constant normalized spectral use %, rm = 30m, rpr = 1000

m.
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—e—SIR threshold v'=5 dB
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FIGURE 5.6: Gain of SIC, as the function of normalized spectral use
100N "and different SIR thresholds 7* (dB), r, = 30 m, r) = 1000
m.

Such results can be directly exploited to simply adapt the network parameters
to the targeted load. For instance, for a given node number, we can adapt the
bandwidth to obtain the expected SIC gain. Furthermore, these results also allow
to foresee the SIC performance for different normalized spectral use.

5.5 SIC performance with Rayleigh fading

The performance of SIC that we analyze in the previous sections consider only
the free space propagation where the path loss coefficient is « = 2, and we have
seen that the gain of SIC is somehow limited. In this section, we consider the
Rayleigh fading, with the purpose of seeing if the additional degree of freedom
will improve the performance of SIC. What’s more, we take into account other
propagation in addition to verify if the impact of fading is constant for different a.
We note that we still focus on the interference due to only one interferer, and thus
only one SIC iteration.

5.5.1 Joint impact of free space and Rayleigh fading
Analytical intuition

In the theory, the OP with fading and SIC is the probability that neither the desired
node nor the interfering node is decoded by the SIC receiver. It can be expressed
as:

OPgsic = P (SIR, < 7" NSIR, < 7¥) (5.22)
2 2
gx% gy%g
X < ,)/* ﬁ y

=P s N
QABEH T BB S
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with g, and g, the Rayleigh fading coefficients, which are independent random
parameters following the same exponential distribution, whose mean equals to 1,
thus g ~ exp(1).

Compared to OPsjc with only path loss, this above probability has two more
random variables, i.e. the fading factors g, and g,. Thanks to them, the correlation
between the two events diminishes.

We did not compute the OPsc with fading in eq.(5.22). But we note that it can
be derived by considering g—; and % as Gamma distributed variables. The most
important is that this expression gives us an intuition of how the fading coefficient
can impact the OP.

Numerical results

We have plotted in Fig. 5.7-5.8 the numerical results of OP without/with SIC, for
the cases without/with the influence of fading. The propagation is still free space
here. The hypothesis are listed in Table 5.2.

TABLE 5.2: Simulations hypothesis for mono-BS SIC with free
space and fading

BS number | nodes distribution | desired node | pathloss | fading | AIP

replicas

1 random random free space | wo/with | no

no

We can observe that when there is no SIC, the system with or without fading
(blue and red lines with triangles) has similar performance. The reason is that the
fading factor g ~ exp(1), thus on average it impacts homogeneously the received
power of nodes uniformly distributed in the cell. When SIC is not applied in the
system, the simple receiver decodes only the strongest signal in collisions. Hence
the percentage of decoded signals does not evolve with the presence of fading.

Meanwhile, when there is SIC, the OP with fading has better performance
than OP without fading, as shown the blue and red lines with circles in Fig. 5.7-
5.8. Indeed, when we consider only the path loss, the received power level is
only related to the distance between nodes and the BS, whose distribution is pre-
dictable. However, when we add a random factor, i.e. the fading, the diversity
of the received power of each node increases. This diversity helps to release the
dependence caused by Jf as shown in eq.(5.22), thus helps the SIC receiver in
decoding colliding signals.
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FIGURE 5.7: OP without/with SIC and without/with fading, for
different B, N = 30, v* = 6.8 dB, r;;, = 30 m, r);y = 1000 m.
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FIGURE 5.8: OP without/with SIC and without/with fading, for
different rp;, N = 30, B = 96 kHz v* = 6.8 dB, r;, = 30 m.

5.5.2 Joint impact of various propagation « and Rayleigh fading

We wanted to verify if the fading brings always higher SIC efficiency when the
propagation is not free space. The propagation exponent « is normally in the
range « € [2,4] depending on the environment.

In this condition, the OPg;c becomes:

&y 1B (of) 8x 1B (6f)
Through this analytical expression, we can already heave an insight that the

higher « is, the faster the received power degrades at a given distance.
We have conducted simulations with the hypothesis listed in Table 5.3:
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TABLE 5.3: Simulations hypothesis for mono-BS SIC with a and

fading
BS number | nodes distribution | desired node | pathloss | fading | AIP | replicas
1 random random « wo/with | no no

We have thus plotted on Fig. 5.9 the numerical OP without/with SIC for with-
out/with fading, as well as the issued gain of SIC, as a function of the propa-
gation exponent «. We can firstly remark that the gain of SIC degrades when «
increases. Because the increase of a severely decreases the received power of both
the desired node x and the interfering node y. Hence the probability that both
SIRy and SIR, are below the threshold becomes higher.

Secondly, we note that the OP (s1c with fading) tends to converge to OP (sic without fading)

when a increases. This is due to the fact that the SIR of all the nodes have degraded
(when « increases), which causes less packets being decoded at the simple receiver
process. The chance that the signals decoded by the simple receiver are singletons
increases, thus the chance that SIC receiver decodes additional packets decreases.

More interestingly, we can observe that in free space propagation (i.e. « = 2),
the Rayleigh fading brings more gain of SIC. This confirms the phenomena that
we have observed in the Section 5.5.1.

Meanwhile, when the environment becomes more lossy and has more specular
reflections, (i.e. a tends to 4), the the fading brings slightly worse performance
to the SIC receiver. This is not surprising, because the the power of all nodes are
already significantly and negatively affected by the increase of a. The randomness
brought by the fading has no more benefits in adding the diversity when SIC
receiver is decoding. Thus the fading is no more advantageous in improving the
SIC performance when the path loss exponent is high.
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FIGURE 5.9: OP without/with SIC and without/with fading, for
different path loss exponent &, N = 30, B = 96 kHz ¢* = 6.8 dB,
rm = 30m, rpy = 10 km.

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2018LY SEI069/these.pdf
© [Y. Mo], [2018], INSA Lyon, tous droits réservés



5.6. Conclusion 85

5.6 Conclusion

In this chapter, we have considered to enhance the performance of UNB based
IoT networks from single base station’s side. The specific interference caused by
the random radio access is a main limitation of the system. Therefore, we have
proposed to apply the Successive Interference Cancellation methodology to the
UNB system, in order to mitigate the interference impact.

We have derived the theoretical expression of OP with SIC receiver, by consid-
ering the specific random spectrum access of UNB and the free space propagation.
We have considered only the contribution of a unique interferer at each collision,
and thus only the performance of the one SIC iteration. We have exploited the
analytical OP expression in Section 4.3.1 with the same hypothesis, and derived a
closed-form expression of OP(gjc).

Then we have shown numerical results. Primarily, we have conducted the
simulations without limiting the SIC iterations. We have found out that it was
always the first iteration of SIC that brings the most significant performance im-
provement. We have thus confirmed the hypothesis of only 1 SIC iteration used
in the theoretical analysis. Secondly, we have validated the theoretical OPg;c) by
comparing it with simulations where we have constrained the SIC iteration to 1.
According to the analytic and numerical results, SIC has effectively reduced the
probability of errors in UNB system compared to a simple receiver. Besides, we
have defined the term normalized spectral use by %Y and the term SIC gain by
the error reduction percentage thanks to SIC. We have used them to evaluate the
SIC performance. We have highlighted that the increase of the normalized spec-
tral use would cause the degradation of SIC performance; and that for the same
normalized spectral use (no matter what the scale of node number becomes), the
SIC efficiency to enhance the network performance maintains constant.

Finally, we have evaluated the SIC performance with the involvement of Rayleigh
fading, in different propagation conditions. We have observe that, in free space
propagation, the OP (sic witn fading) 18 lower than OP (s1c without fading)- We have thus
deduced that the diversity delivered by the fading is advantageous in enhancing
the efficiency of SIC, in free space. But when the propagation exponent increases,
the OP (s1c with fading) 1 identical to OP (sic witnout fading)- We have thus brought to
light that the fading brings no more benefits in improving the SIC gain when the
environment becomes more lossy.

This chapter gives us an insight about how SIC can enhance the performance
of UNB networks. Indeed, SIC can be a perfect candidate to mitigate the UNB’s
partial spectral interference. We note that the high complexity (the many itera-
tions) is still a big constraint to implement it in realistic systems. But one SIC
iteration as demonstrated in this chapter is feasible.

One may note that this study can be extended to multiple base stations sce-
narios, which brings spatial diversity and may increase the SIC efficiency. It can
also be furthered when considering the partial temporal interference (as we con-
sider only the spectral interference in this chapter). Moreover, the combination
of replications and SIC can be very efficient. Because once one replication (of the
same packet) is decoded, it can be reconstructed and retrieve the contribution of
its other replications, thus more additional singletons will appear and be decoded.

We have assumed that the SIC receiver can perfectly reconstruct and retrieve
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signals without leaving residues, in the analysis in this chapter. But in real imple-
mentations, this perfectness is very hard to reach. It demands very high receiver
sensibility (to distinguish signals having very similar powers) and high computa-
tion resources (to reconstruct the large-scale of signals). Thus imperfect receivers
can be considered in future works.
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88 Chapter 6. Multi-BS diversity

In this chapter, we exploit the spatial diversity of multiple base stations, in
the purpose of enhancing the UNB systems performance. We analyze the im-
pact of different combining technologies, which are performed across multiple
BSs. Firstly, we analyze theoretically the simplest Selection Combining (SC). In the
presence of path-loss and spectral randomness of UNB, we consider the spectral
interference viewed by each BS are correlated. Secondly, we continue the analy-
sis of SC, by adding a random factor: the Rayleigh fading. We have derived an
expression of outage probability when assuming that the interferences are inde-
pendent. However, this OP is proved to be not accurate to the simulation results,
thus the hypothesis of independence is proved not to be appropriate in UNB sys-
tems.

Then we attack more complex ones such as Max Ratio Combining (MRC),
Equal Gain Combining (EGC), and even Successive Interference Cancellation (SIC)
across cooperated base stations. Finally, we evaluate numerically the multi-BS di-
versity gain of all the mentioned technologies when compared to single BS.

6.1 Introduction

In most cellular systems, one BS (Base Station) is supposed to serve devices in a
specific service area [119]. Nonetheless, when devices send data to their intended
BS, they are also captured by adjacent BSs. Thus, a BS actually receives the sum
of its useful information, the contribution of devices intended to neighboring BSs,
and noise. If the BSs independently decode the signal, the neighbor devices are
seen as interferers.

Moreover, in long-distance transmissions, one signal can be perceived by many
surrounding or even far-away BSs. Each BS gets a different point of view of the
transmitted signals. Indeed, they are not located at the same distance from the
transmitting devices, so the transmitted signals experience diverse channel con-
ditions to reach each BS. Similarly, they do not experience the same interference
pattern. It is possible that lost packets from a given BS can be properly decoded at
another BS. Therefore, taking advantage of the diversity (in time, frequency and
space) of multiple BS can be beneficial to improve the system performance.

The earliest works about multiple receivers consider them independent and
non-cooperative [120]. As packets experience different channel conditions, when
one packet fails to be seized by one BS, it is still possible to be captured by an-
other one. The authors in [121] analyzed a cellular network’s performance of non-
cooperative receivers, for slotted ALOHA case. A recent theoretical analysis of the
throughput for multiple receivers with perfect power control is presented in [122].

Besides, the interaction and cooperation among BSs also came on the scene, by
using different combining and interference cancellation technologies. This coop-
eration is usually operated at the back-haul, where all BSs transmit their perceived
signals. This data center collects information from each BS and treats them jointly.
This architecture can be referred to Cloud-RAN (radio access network) [123]. This
kind of architecture depends on the intelligence of the BSs, and leaves the remote
devices simple and light.

Combining technologies, in a general sense, aim at combining the signals each
BS receives, even if none of them can decode it. In this case, the desired user’s
contribution is constructively added, while interference and noise are averaged,
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leading to a significant increase in the SINR. Thus, the desired signal is more likely
to be decoded. Maximum ratio combining (MRC) and optimum combining are
often analyzed for multiple BSs, by using stochastic geometry as tools [124] [125].
The most frequent assumption is that each node is attached to its nearest BS. With
the use of Poisson Point Process, the BS is supposed to be within the Veronoi cell
of the user [124]. However, this hypothesis is idealized, and does not fit in our
network where nodes are not attached to one specific BS.

Selection combining, as one the combining technologies, selects the strongest
signal (of the same message) perceived by all the BSs. Once this strongest signal
managed to be decoded, the issued message is considered successfully received.
The majority of the existing works about selection combining neglect the depen-
dence among the channels, and thus assume that they are independent [126]. In-
deed, with the presence of fast fading, this correlation is weakened, but it does not
disappear. The assumption of independent channels is only valid for certain node
densities as proved by [126] [127]. In this chapter, we consider only the path-loss,
which faces directly the dependence among the links between the issued node
and each BS.

All the above-mentioned works are based on traditional channel access where
there is either no collision (as transmissions are performed on different orthogonal
channels), or total overlap in the frequency domain. However, due to the continu-
ous selection of carrier frequency in UNB networks, partial frequency overlapping
has to be considered. To the best of our knowledge, no such analytical studies of
multiple BSs for R-FTMA (the specific radio access of UNB, can be refereed to
Section 2.3.2) has been conducted.

Therefore, the novelty of this chapter is to:

1. analyze the spatial diversity (namely SC, selection combining) of multiple
BSs for a UNB system, by taking into account the spatial correlation be-
tween the received signals. The main contribution is to provide a closed-
form theoretical expression of the performance for 2 BSs case with selection
combining, as well as to promote this methodology to general K BSs.

2. verify that the hypothesis in most literature that the interference viewed by
each BS is independent, is not valid in UNB systems. This confirms the
uniqueness of UNB systems (especially its random frequency access), and
the necessity to analyze the performance when considering the correlation
(i.e. the last contribution).

3. implement MRC/EGC and SIC across distributed multi-BS systems where
the radio access is not controlled. The contribution is the performance en-
hancement evaluation and comparison of these techniques, and an overview
of their implementation complexity.

The rest of this chapter is organized as follows: we give the network topol-
ogy and hypothesis Section 6.2. We analyze theoretically the selection combining
when considering that the interference is correlated in Section 6.3. Then we con-
tinue the SC analysis but when considering that the interferences are independent
in Section 6.4. Afterwards, we introduce the principle and algorithms of MRC and
EGC in Section 6.5, and multi-BS by applying SIC in Section 6.6. We give the per-
formance evaluation of all the proposed technologies in Section 6.7. Finally, we
conclude the chapter in Section 6.8.
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6.2 Modeling and Hypothesis

6.2.1 Multi-BS topology

Different from the previous chapters, the topology has changed from mono BS
to multiple BSs. As illustrated in Fig. 6.1, the distribution of nodes (blue points)
follows a HPPP (Homogeneous Poisson Point Process). For the BSs, there are
globally two distributions. The traditional one (Fig. 6.1(a)) where the locations
of BSs form square lattice, and the distance between each BS is constant and pre-
defined. The other one is shown in Fig. 6.1(b), where the BSs distribution also
follows a HPPP. The latter is often used in the literary [124,128] to model the posi-
tions of multiple receivers, for the reason that it can reflects the actual BSs” global
deployment (from urban to rural areas). Also because the HPPP of base stations is
independent from the one of nodes, these two point process can help facilitating
theoretical analysis.

We don’t impose a cell range for BSs, since the range is defined automatically
by the distance limit where the SIR of nodes is below a predefined threshold.
Therefore, if one singleton transmission is not interfered, it can be literally de-
coded by BSs very far away. We note that the traditional BS distribution as shown
in Fig. 6.1(a) is used in Section 6.3, whereas the HPPP BS distribution as shown in
Fig. 6.1(b) is used in Sections 6.4-6.7.
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FIGURE 6.1: Topology of multiple BSs. The blue points are dis-

tributed nodes, the red points are BSs. (a) the locations of BSs form

square lattice, where the distance between each BS is the same; (b)
the locations of BSs follow Poisson point process.

6.2.2 Nodes and BSs behaviors assumptions

We consider the uplink case, where nodes transmit data to BSs by using the UNB
technology. The emission of data is not continuous in time. Nodes are distributed
randomly and uniformly in a wide area with a node density A;. Due to the very
small duty cycle of the considered nodes, we prefer to use the active nodes density
A (nodes/m?), which is considered stable at the observed moment. One may note
that A << A;. We focus on A in this chapter. All transmissions are performed
with the same emission power and antenna gain. BSs are assumed to be powered
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all the time. Each BS transmits its received messages to the back-haul via wired
networks, where the process of signal combining happens.

Nodes broadcast their small data packets to potential multiple BSs with UNB
technology. Since nodes select their carrier frequency randomly and indepen-
dently, a packet may be lost at one BS due to collisions when simultaneous trans-
missions happen. In this chapter, from one BS’s point of view:

1. We firstly consider in Section 6.3 the collisions due to a unique interfering
node at the observed moment, where we consider only the free space path
loss. Indeed, a unique interferer is the most frequent case due to the very
limited signal bandwidth of UNB [12], and this can facilitate the correlated
interference calculation.

2. Then we consider the AIP (aggregated interference power) in the rest of the
chapter, where we consider fading in addition to the path loss. As stated
in Section 4.3.2, the AIP aggregates the interference contribution of all the
active nodes (except the observed node itself). It reflects exactly what hap-
pen during realistic transmissions. Moreover, the outage probability can be
calculated by the Laplace transform of AIP, as used in Section 4.3.2 and will
be recalculated differently in Section 6.4.

Besides, we neglect the noise power as it is much lower compared to the inter-
ference power level. More importantly, the white noise’s power is related to the
individual signal bandwidth, thus identical to all the UNB transmissions. There-
fore, the noise power impacts the SINR homogeneously to all the transmissions.
As a consequence, its ignorance does not change the network’s behavior.

One may note that the interference level depends not only on the interferer’s
received power at the BS, but also on d f the frequency spacing between the desired
node and the interfering node. We use the Gaussian interference coefficient which
estimates perfectly the realistic filters used in SigFox’s network, as presented in
Section 4.2.2. We recall this spectral interference function here, for its use in the
next sections:

150 e
B(of) = o P (6.1)

with ¢ = 60 for a 100 bit/s transmission.

6.3 SC:Correlated interference, impact of path loss and multi-
BS

In this section, we consider the impact of path loss (of free space) and selection
combing (SC) among multiple BSs. The received power of each node viewed by
each BS is only related to its respective distance to each BS. Hence we considered
that, for one given packet, its spectral interference viewed by each BS is correlated.

We derive a closed-form OP (outage probability) expression for 2 base stations:
BS; and BS;, with selection combining and the spectral randomness of UNB. In-
deed, two BSs is the atomic pattern for any multiple BSs case, which can give us
an intuition of their behaviors. Then we extend the methodology to K BSs in the
next section.
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6.3.1 Theoretical analysis

Without loss of generality, we consider the topology of the BSs form square lattice
in this section, as shown in Fig. 6.1(a). We consider that the 2 BSs are vertically cen-
tered while their horizontal position depends on the relative distance d between
each other, as shown on Fig. 6.2.

We focus on the performance of one targeted desired node, which is at a known
position. The desired node is not necessarily aligned with the 2 BSs. All other
nodes are potential interfering nodes (i.e. the blue points), and their positions
are random. We define r,; (resp. r,;) (for i € {1,2}) as the distance between the
desired node x (resp. the interfering node y) and BS,;.

Due to different interference contributions, BS; and BS; perceive the desired
user’s signal with different SIR. Taking example of BSy, the SIR; can be expressed
as:

Py (%)2 r 1
o <m>2ﬁ(5f):(ri) pen -

Py o

with Py the power at the reference distance ry.

In the single BS case, OP represents the probability that the SIR (Signal to In-
terference Ratio) of the desired node is lower than a predefined threshold v*. As a
consequence, and as shown in Section 4.3.1, for the single BS case, a failure is ob-
served when an interferer, whose carrier frequency differs from the desired user

of §f, falls within a circle of radius rn/y*B (0 f).

Similarly, in the 2 BSs case, the transmitted data is lost when the SIRs perceived
by both BSs are lower than y*. Thus OP becomes:

OP = P(SIR; < 7* N SIR; < 7*) (6.3)

= IP(r%l < rxn/ VP (5f) M1y < Ty 7B (5f))

= ]P(ryll < Ry (0f) Nry2 < Ry2 (6f))

with Ry1 (0f) = ren/7*B (0f) and Ry (8f) = rxa/7v*B (6f). One may note that

Ry (6f) and Ry (0f) will be written as R, and Ry, in the rest of the chapter.
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FIGURE 6.2: Topology of the network of (a) 6 f = 0and (b) 6f = 150
Hz. S is the common interfering area, Si; is the interfering circle
of BS1, and Si, is the interfering circle of BS,

We can see that Ry and Ry, may depend on the same d f, thus these two events
are correlated. We cannot thus express them independently as the product of two
probabilities (i.e. OP = OP; - OP,). This also confirms our hypothesis of correlated
interference in Section 6.1. This correlation comes from the fact that there might be
one common interferer for both BSs. Thus according to the interferer’s location,
OP in eq.(6.3) can be divided into two cases:

Common interferer: The same interferer y = y; = y» leads to error in both
BSs. In this case, OP is obtained by computing the probability that y falls into the
intersection of two circles. The first circle is centered on BS;, with a R,; radius
(in blue on Fig. 6.2), while the second circle is centered on BS, with a Ry, radius
(in orange). We call this intersection area Sc as the common interfering area, whose
surface is s.. One may note that this area depends on the radius of two circles, thus
the value of f (7" is predefined). For example, the light blue area on Fig. 6.2(a) is
the non-null intersection Sc when Jf = 0, while this area is empty on Fig. 6.2(b)
when §f = 150Hz.

Distinct interferers: The interferers are different for the 2 BSs, which means that
there is one specific interferer for each BS. In this case, OP is the probability that
the interferer y; falls into the interfering area of BS1 but not inside the common
interfering area (i.e. y; is in the blue area Si; in Fig. 6.2(a) which interferes inside
BS1), while at the same time, another interferer y, falls into Si; (i.e. the orange
area).

Therefore, by combining these two disjoint cases, OP becomes:

OP = IP(node y € Sc) + P(node y, € Siy) - P(node y, € Siy) (6.4)

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2018LY SEI069/these.pdf
© [Y. Mo], [2018], INSA Lyon, tous droits réservés



94 Chapter 6. Multi-BS diversity

Common Interferer Calculation

Firstly, we focus on the case Common interferer. This is the probability that one
node in the the considered area falls into the common interfering area Sc. For the
2 users case:

]lj(nodeyGSc):sC~/\:A-/OBsc (6f) - P (6f) déf 6.5)

with A the node density in nodes/m?, and IP (6f) = % ( — ﬂ) as nodes select

their carrier frequency randomly within BW.

We then compute the common interfering area’s surface s.. We define d as the
distance between two BSs, and use it as an indicator to determine if there is an
overlap between the two circles [129]:

R%, — R%, + 42 R, —R%) +d°
R2, arccos (m + R2, arccos B~ Rptd

2dR 2dRyx
Ry + R)2 —d?) - (d2 — (Ry1 — Rpp)? .
Sc (5f) = _\/(( 2 XZ) )2 ( ( 2 Xz) ) if | Ry1 — Ryo ‘< d < Ry1 + Ry
0 lf d> Rx] + Ry
7min (Ryq, Ryp ) elsewhere
(6.6)

There are 3 cases for the intersection of two circles, depending on d and both
radius Ry,, Ry,, as reported in eq.(6.6). For the first case, there is a partial overlap
between the two circles; for the second case, the two circles are disjoint or too far
away, thus no overlap; for the third case, one circle is contained entirely within
the other.

Thus the expression of eq.(6.5) for 2 users in the 2 BS case, can be further writ-
ten as:

by
P(node y € Sc) = / (emin (Ry1, Reo)? - Al ) - P (6) dof 6.7)
2 p2 2
+/ ( <, arccos <W> -A|(5f> P (5f) déf
by 2 p2 2
+f <<R§2 arccos (W) Jf) -AW) ‘P (5f) dof

with the integral edges defined as following:

by = min <5—1 ( = m 27*> ,B> (6.8)

by = min <ﬁ‘1 ( TRy ,B>

We note that b; and b, only exist when both ( a2 and

d2
Tx1 77’,\‘2)2')’* (rxl +7’x2)27*
range of [0, 1], otherwise the intersection Sc is empty, e.g. the case in Fig. 6.2(b).

are in the
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Distinct Interferers Calculation

Secondly, we compute the case distinct interferers. In this case, BS; cannot decode
the desired packet because an interferer y; enters its interfering circle, but not in
the common area:

IP(node y1 € Siy) (6.9)
=S5 A= (7'[Rx12 — Sc) -A

= [C(eRa?AS) P (57) dof ~ [ (se- Alof) P (o) df

where the second term is already computed in eq.(6.7). The first term represents in
fact the OP when there is only one BS, whose calculation steps are demonstrated
in Section 4.3.1, and is given by:

[ Rl P (5f) df (6.10)
30077129 A (Vorn B o> —B?
= s <ﬁ erf(@)+B<GXP(M)_1)>>

Similarly, we can have the expression of IP(node y, € Si) by using the same
method:

IP(node y, € Sip) (6.11)
= [[(eR?ASP) P (55) dof — [ (se- Alof) P (o) dof

with the first term similar to eq.(6.10) where we only have to change 7,1 to ry2, and
the second term computed in eq.(6.7).

Final Expression

We now extend the OP to more users’ case. The number of active nodes N de-
pends on the node density A and the considered surface, and it is assumed stable
at the observed moment. We have thus N nodes (including the desired node)
transmitting simultaneously. With the hypothesis of only one interferer, OP be-
comes the probability that one out of the N — 1 nodes enters the common inter-
fering area s, in addition to the probability that two out of N — 1 nodes enter
separately into S; and S;,.
Therefore, the final expression of OP for 2 BSs, and N users is:

OP = IP(node y € Sc) <N1_ l) (6.12)

+ P(node y; € Siy) - P(node y, € Siy) <N2_ 1)

with the three issued probabilities presented in eq.(6.7), eq.(6.9) and eq.(6.11).
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This derivation of OP gives an intuition for K (K >2) BSs, where we transform
OP into the probability that one or several nodes fall into certain areas. And the
surface of these areas changes depending on the frequency spacing. The complete
derivation for K BSs with correlated interferences has not been carried out because
of its complexity, but should be deduced by using the same methodology shown
above.

6.3.2 Validation of OP expression for 2 BSs

In this section, we present the simulation results comparing with the theoretical
ones of eq.(6.12) for 2 BSs in order to validate the previous analysis.

In the expression of OP eq.(6.12), the considered parameters are: the relative
distance between the desired node and each BS r,; and r,;, the distance between
two BSs d, the node density A, the total bandwidth B, the number of active nodes
N and the SIR threshold 7*. We note that the Monte-Carlo simulations are per-
formed with Matlab, by varying these parameters. We recall the hypothesis of the
simulations in Table 6.1 below:

TABLE 6.1: Simulations hypothesis for multi-BS SC (*notation: db=
distribution)

BS number BS db nodes db desired node pathloss | fading

AIP

2; K square lattice | random | at given position | free space no

no

As illustrated in Fig. 6.3-6.4, we have the outage probability as a function of
the node density A and the total bandwidth B. We compare the OP obtained from
eq.(6.12) and the one from simulations.

We can note that the theory (in solid lines) coincide well with the the simula-
tions results (in points). The theoretical OP in eq.(6.12) is hence validated.

At the same time, we can observe on Fig. 6.3-6.4 the same variation of outage
probability than the case of one BS in previous chapters. When the node density A
rises, the number of interferers increases accordingly, the OP thus rises up. How-
ever, OP declines when the total bandwidth B increases. This is because when the
frequency resource becomes larger, the chance that the desired signal gets inter-
fered becomes lower.
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FIGURE 6.3: OP vs A, distance between 2 BS d = 5 km, distance
between desired node and both BSs (r,, 7x,) = (18,22) km, B = 96
kHz, 7* = 6.8 dB.
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FIGURE 6.4: OP vs B, the active node number N = 20, distance
between two BS d = 5 km, distance between desired node and both
BSs (rx,,7x,) = (18,22) km, A = 5 x 1071" nodes/m?, 7* = 6.8 dB.

6.3.3 Exploitation of the OP expression for 2 BSs

We now exploit the theoretical OP expression in eq.(6.12) to observe how specific
parameters of the 2 BSs case impact it, and the benefits of two BSs compared to
the single BS case.

We have firstly varied the distance between two BSs d, by maintaining the po-
sition of the desired node fixed, as shown in Fig. 6.5. Consequently, the distances
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between the desired node and both BSs are varying. We observe that when the two
BSs drift apart, OP first drops off and then rises. This is due to the fact that the
intersection’s surface changes, as illustrated on Fig. 6.6 which shows the variation
of Sc as d increases. Accordingly, the number of interferers included in the inter-
fering area differs, which makes the OP vary. When d is small the desired node
is close to the BSs. Thus R, and Ry, are small but the circles are almost perfectly
overlapping. Thus, any node interferes at BS; is also interfering at BS,. When d
increases, the circles are parted, so the overlap diminishes and Sc decreases. How-
ever, when d exceeds a certain value, the increase of d leads to the growth of circle
radius much sharper than the overlapping reduction. Thus Sc increases. There-
fore, we can identify the optimal point, such that for a fixed desired node, there
exists a distance d which delivers a lowest OP.

10"

Outage Probability

I I I I I I I
0 10 20 30 40 50 60 70 80 920 100

Distance between two BSs: d (km)

FIGURE 6.5: OP vs the distance between two BSs d, the active
node number N = 200, the desired node is fixed, A = 8 x 10~10
nodes/m?, B = 96 kHz, v* = 6.8 dB.
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FIGURE 6.6: The intersection Sc vs different distance between two
BSs d (km)

In a second step, we focus on the improvement brought by the use of a second
BS. To quantify such improvement, we define gg—;gi as the gain of two BSs. The
higher is the gain, the better is the improvement. One may note that we consider
in this chapter only nodes that are in the reception capabilities of the 2 BSs, as
the others will not benefit from the second BS. To evaluate this gain, we have
plotted OP of a single BS (6.10) on Fig. 6.3-6.4, in dotted lines. We can verify that
taking advantage of 2 BSs can improve the network performance, compared to
only one BS’s case. Indeed, as there is no cell planning among the BSs, and as the
nodes broadcast their messages, they can be received by any BS at reach. Thus,
the second BS does not affect the performance of the first BS, while bringing an
additional chance to receive the packet.

In Fig. 6.7, we have plotted the variation of the gain as a function of the desired
node’s position, which is defined by the distance between the desired node and
both BSs: 7y and ry,. We can observe that the gain is always higher when r; =
rx2, compared to other cases. And we note that the highest gain can be achieved
when the desired node is located in between the two BSs, where its distance to
both BSs is equal to %.

These results can give us an insight about the best gain we can achieve with
an additional BS.
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FIGURE 6.7: Gain of two BSs vs the position of desired node pre-

sented by ry1 and 7y, the active node number N = 200, distance

between 2 BSs d = 10 km, A = 8 x 1071° nodes/m?, B = 96 kHz,
7" = 6.8 dB.

6.3.4 Gain of K BSs

Last but not least, we present in Fig. 6.8 the numerical results for K BSs (where K is
not limited to 2). The locations of BSs form a square lattice, with equal distance 4
between adjacent BSs. Similarly, we define the gain of K BSs as %}1(35. We observe
that when the number of BSs increases, the gain enhances. Indeed, when the BSs
becomes denser, their spatial diversity becomes more advantageous. This can also
help in the BS deployment and densification.

25

3 @ 3
T T

Gain of K BSs compared to 1 BS

[ 2 4 8 10 12

6
K (number of BSs)

FIGURE 6.8: Gain of multiple BSs vs K the number of BSs, the active
node number N = 200, distance between each BSd = 10 km, A =
8 x 1071 nodes/m?, BW = 96 kHz, v* = 6.8 dB.

6.4 SC:independent interference, joint impact of path loss,
fading, and multi-BS

In most of the literature, the case of common inter ferer is rarely seen. Because
the interference viewed by each BS is mostly assumed to be independent with
the presence of fading [14,124,126]. The independence facilitates significantly the
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calculation. Meanwhile, in UNB systems, we are not sure if adding one more ran-
dom coefficient (i.e. the fading) can cancel the correlation of the specific spectral
interference.

Therefore, we analyze the selection combining with K BS in this section, with
the assumption that the spectral interferences viewed by each BS is independent.
We will verify this analysis with simulation results, in order to figure out if the
independence assumption holds in UNB networks.

6.4.1 Assumptions different from last section

We take into account the Rayleigh fading which allows the independence of in-
terferences to be possible. The Rayleigh fading follows exponential distribution
g ~ exp(1l). Indeed, the fading coefficient affects independently the received
power of each packet (including the desired node and all interfering nodes). This
reduces the probability of having one common interferer as demonstrated in the
previous section, thus the correlation is reduced.

Additionally, we consider the propagation for all cases (thus the path-loss co-
efficient & € [2,4]). And we include the aggregated interference in this section.
One may note that these assumptions are identical to those in the Section 4.3.2 for
mono-BS case.

The distribution of both nodes and base stations follow independent homoge-
neous PPP (Poisson Point Process), with the density as A, for active nodes, and
Ay for BSs. One can refer this topology to Fig. 6.1(b). Different from last section,
we do not predefine the location of the desired node in this section. Therefore, the
desired node x is randomly chosen, and can be anywhere in the considered area.

6.4.2 Theoretical analysis
The SIR of the desired node perceived by the ith base station can be expressed as:

. 7.0( . P/
SIR, = ¥ 1xi "70 (6.13)
Py

with the aggregated interference as P; = Y, c14—x) 8yi * ry_i‘" -B(6fi) - P,
In the case of selection combining, we have the OP for K BSs as the probability
that the SIR received by all the BSs are lower than the predefined value *:

OP = P(SIRy < 7* N SIRy < 7" N---SIRk < 7*) (6.14)

With the presence of fading, we suppose that the interferences Pj; for each BS
is mutually independent. Thus all the SIR,; are independent variables, and their
issued events can be treated independently as well. We can thus have eq.(6.14)
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rewritten as:

OP = [TIP(SIR, < 7*) (6.15)

= IErxi

HOPi(Txi)]
@ exp (—Zn/\b /O " (1= OP,(ry)) - rxidrxi> (6.16)

with A, the density of base stations whose distribution follows PPP; (a) comes
from the PGFL of PPP [113], for a function f(x), we can have E [[[,.cq f(x)] =
exp (—A [r.1— f(x)dx).

We note that OP;(r,;) here is the probability derived in Section 4.3.2. We recall
its expression as follows:

OPi(I’xi) =1- ﬁpl (S) (617)
T
r %P
xi 0
We can express thus OP of selection combining depending on the Laplace
transform of the interference Lp, (s):

with s =

OP = exp (—27mb / Lo (s) rai- drxi> 6.18)
0

The difference between the OP;(r,;) of mono-BS and the one here, is that the
distance between nodes and BSs are no more restraint into the base stations’ range,
but to [0, co]. Indeed, as nodes are distributed randomly in the whole considered
area, the packets that are not interfered can be perceived by very far away BSs.
This range of [0, o] has been considered in many studies [108,126,130], which has
a lot facilitated their analysis.

Laplace transform of Lp,

Therefore, we have to recalculate the expression of Lp, (s) as follows:
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‘CPI (S) - ]EPI [exp (_PI : S)] (6.19)
- Eg}/,r}/,éf |:eXp ( Z gyi’y_“’B((Sf)Pé 'S) ]
ye{A-x}

= Eg,rof [H xp (_“’wr;%ﬁ(éﬁp(S ' S)}

@ exp <—/\n /RZ (1 —Eg, 5 [exp (—gyry’“ﬁ(éf)P(’, s)} -ry> dry)

= exp <—27‘[/\n/0 rydry> - exp <27‘L’/\n1Egy/(5f [/o exp (—gyry_“ﬁ(éf)P{) : s) -@d@])

(b) °° -
=1-exp <27r)\n]EA {/0 exp (—ry aA) .rydry}>

© exp (27‘[/\”[1 “[Ex4 [/ exp (—tA) - el dt])
0

)

(a) comes from the PGFL of PPP [113]. In (b), we replace with A = g,B(df)P;s. In
(c), we do a simple variable change where t = ry *, (d) comes from the definition

of Gamma function [131] where we can have: fooo exp (—tA) - t"-dt = r%ﬂ ), (e)

comes from the property of Gamma function [131], whenn < 0: T'(n) = %T(n +1).

Then we express eq.(6.19) by giving back A = g,B(4f) Pys, with the knowledge
that g, ~ exp(1):

L (s) = exp (—mnr(l ) Eg 1 [(gyﬁ(éf)Pés)iD (6.20)

(a) 20,22 [® 2 _ 2
= exp (—nAnI‘(l — &)Pé"‘sﬂ ./0 gyre dvdgy, - Bsr {ﬁ(&f)a])

® exp (—mnr(l - %)m + ;)P{)%s% - By [ﬁ(éf)iD

(a) calculates the expectation by using the PDF of x ~ exp(1): f(x) = e *dx for
x > 0; (b) comes from the definition of Gamma function I'(a) = fooo t7-le~tdt for
Re(a) > 0.

We note that the form of eq.(6.20) confirms well with the expression in [126],
where the Lp,(s) is calculated for ALOHA and slotted-ALOHA case. But in our

case, we have the term containing the frequency interference in addition, i.e. [Es¢ {ﬁ (6f) %] .

2
«

Then we can derive the expression of [E;¢ {/3((5 f) } in the following steps:

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2018LY SEI069/these.pdf
© [Y. Mo], [2018], INSA Lyon, tous droits réservés



104 Chapter 6. Multi-BS diversity

Esr [B(6£)7 ] / B(6F) - P(5f)déf 6.21)
; 2 B2
() () 5 ()
with B (0f) = a\wﬁoexp o andP((Sf) =2 (1 - %),for 5f €0, B].

Final expression

Now we combine the expression of Lp, (s) with eq.(6.18), and we have the expres-
sion of OP with selection combining as:

OP = exp <—27‘c2\b/ Lp,(s) Ty drxi> (6.22)
0

b 2 2, .2
= exp <—27T)\b/0 exp <—nAnF(1 - ;)r(l + &)’Y*ilE(Sf [ (5f)%] : xi) Ty dei)

=exp | — Ao
AL(1 = 2)T(1+ 2)7" 2By [B(5f)? ]

with A, being the density of nodes, Aj, being the density of base stations, a being
the path loss exponent, v* being the threshold of SIR.

We can see that this OP expression, with the assumption that the interferences
viewed by each BS are independent, is directly related to the ratio between the BSs’
density and the active nodes’ density 4 5. Since we have two Gamma functions
containing «, the OP is easily impacted by the path loss exponent.

6.4.3 Validation

We compare the numerical results with the theoretical OP expression eq. (6.22) in
this part. The simulations are conducted with the same assumptions than in th
theory. The only difference is that, in the theoretical analysis, we have assumed
that the distance between each node and each BS is among [0, oo]. But the in sim-
ulations, we have to define an area with bounds. We have thus defined the con-
sidered area as a square of 200km x 200km. We recall the basis hypothesis in the
following table:

TABLE 6.2: Simulations hypothesis for multi-BS SC with fading
(*notation: db= distribution)

BS number BSdb | nodesdb | desired node | pathloss | fading | AIP

ApX area surface | random | random random b yes | yes

As plotted in Fig. 6.9, we have illustrated the variation of OP as a function
of fours parameters: the node density A,, the BS density A;, the total available
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frequency resource B and the predefined SIR threshold 7*. Unfortunately, the
numerical results do not always coincide with the theoretical ones.
The main reasons causing the inaccuracy can be the following;:

¢ the independent hypothesis does not hold in the UNB systems. Even though
the fading adds a new degree of freedom in the received power, the case
that one common interferer is perceived by multiple BSs still exists. Thus
the correlation of UNB interference cannot be totally canceled by the fading.

e we have assumed that the nodes (and BSs) distributed area can by extended
to infinity, thus the OP expression depends strongly on the path loss expo-
nent x. But in the simulations this area is bounded. As shown in Fig. 6.10,
the theoretical OP degrades very fast with the increase of #, meanwhile the
numerical one tends to be more smooth. This difference can cause the gap
between theoretical and numerical results.

However, we can still remark something useful, such as in Fig. 6.9(A), when
the node density is high enough, the simulations somehow coincide with the the-
ory. Similarly, in Fig. 6.9(B)-(C) the two curves cross at certain points. This obser-
vation confirms with the paper [126], where the authors have concluded that the
independence assumption only holds for certain traffic loads.

In the expression of eq.(6.22), the OP depends directly on the ratio i‘—: We have

thus defined the normalized load as %, which is the reciprocal of the ratio. We
have plotted the OP in Fig. 6.11 when maintaining the load constant, for different
scales of A,,. We can observe that the numerical OP remains constant (whatever
the scale of node density is), as predicted by the theory.

Therefore, the theory when considering independent interferers can give us
an insight of the variation of the OP, as well as the essential influencing parameter
(i.e. the ratio of nodes and BSs density %), whereas it is not accurate enough.
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FIGURE 6.9: Comparison of OP in simulations and theory. (A) the
normalized load /)\TZ =[0.5,1.5,2.5,3.5,45,5.5,6.5,7.5,12.5]; (B) the

load % =[15, 3, 1.5]; (C) the load % = 15; (D) the load % =15.
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FIGURE 6.11: OP vs constant % =5, for B = 12 kHz, 7* = 6.8,

a =235

To conclude, we have added Rayleigh fading in the selection combining of
multiple BSs. We have assumed that the correlated interference (presented in the
last section) disappears with the presence of fading. We have thus treated the OP
as a joint probability eq.(6.14) composed by independent events, and we have a
beautiful OP expression. However, this analytical OP does not provide enough
accuracy to predict the network performance. We conclude that the assumption
of independent interference does not hold in UNB systems.

6.5 MRC and EGC

In this section, we consider two other common signal combining technologies:
Max ratio combining (MRC) and Equal gain combining (EGC). They are more
complex than the simple selection combining, but can help us to take better ad-
vantage of the spatial diversity in UNB systems.
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6.5.1 Existing studies

Combining technologies such as MRC and EGC are originally used in multiple-
antennas system [132]. One BS combines the signals from all of its antennas (or
branches) to obtain an output signal. These signals experience the same propa-
gation path loss, but independent fading paths. The combining is mostly carried
out after the detection of signals, then the output will pass through a standard
demodulator.

However, the receiver complexity of MRC and EGC is directly proportional
to the number of branches, which makes them rarely used in real systems. The
suboptimal is SC, which is simple to implement but cannot take the maximum
advantages of the diversity. The authors in [133] have proposed to combine SC
and MRC together, where they select only the three branches with the highest
SINR and then combine them with MRC techniques, in Rayleigh fading channels.
This makes a compromise between the complexity and the performance.

More recently, these combing techniques are compared and hybrid for more
complicated channels, such as a highly faded two-wave with diffuse power envi-
ronment in [134].

Different from traditional multi-antennas systems, the BSs that we consider
in this thesis have only one antenna each. Since we want to combine the signals
(of the same packet) received by each BS, our system can be seen as distanced
multi-antennas, thus distributed SIMO (single input multiple output) system. The
only random parameter is the fading in traditional SIMO systems, whereas the
distributed ones have one more random parameter: the distance between one
given packet and each BS.

To the best of our knowledge, there exist rarely works about applying MRC
or EGC in distributed SIMO systems. What’s more, the specific UNB spectral
interference has never been considered in this kind of signal combining receivers.
Our contribution is thus to measure the efficiency of such combining technologies
in distributed SIMO systems where the nodes’ carrier frequencies are random (in
time also, but we don’t consider it in this section).

6.5.2 Principle of MRC/EGC

In both combining technologies, the combiner output is envelop of the weighted
sum of all branches’ signal amplitude. The purpose of MRC is maximize the out-
put signal’s SINR by choosing the weights. The intuition is that the branches hav-
ing good channel conditions should be weighted more than branches with bad
conditions. However, in EGC the weights for each branch are identical.

Normally, the linear combing requires co-phasing, which can be achieved by
an phase removal operation [135]. Without co-phasing, the branch signals would
not add up coherently in the combiner, so the resulting output could still exhibit
significant fading due to constructive and destructive addition of the signals in
all the branches. Therefore, we consider that all the signals are co-phasing in this
section.

We have illustrated the algorithm of MRC and EGC in Fig. 6.12. One symbol
x (whose amplitude can be +1) is transmitted, and perceived by all the BSs (i.e.
the branches). At the ith branch, its amplitude is affected by h; which represents
the channel condition (thus the channel gain) of BS;. During the transmission, the
noise and interference are added, which also change the symbol’s amplitude.
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FIGURE 6.12: Algorithm of MRC/EGC. x represents the transmit-

ted symbol, k; is the channel gain of BS;, N; and PI; are the AWGN

noise and the interference experienced by the expected signal in
the branch BS;, w; is the weight at the ith branch.

In most of the literature , the interference is not considered [132]. The noise
is AWGN noise whose amplitude follows zero-mean normal distribution/N; ~
IN(0, 03). Under these conditions, we can express the transmitted symbol’s ampli-
tude at each branch:

X; = x-h; +/N; (6.23)

Accordingly, after the process of MRC/EGC, the output signal’s amplitude
denotes:

Xi - Wi (624)

I
™~

Il
—_

1

Il
ng

K
x-hi-wi+ Y /N; - w
i=1

with K the number of the branches.

As the purpose of combining is to maximize the SNR (when the interference
is not considered) of the output y, the signal power P; and the noise power Py
denote respectively:

1 K K K
PSZE‘X'ZI/IZ"Z{)Z’F; PN:‘Z\/Ni~wi’2:0'g"z-wi‘2 (625)
i=1 i=1 i=1
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We can thus express the SNR of the output signal y as the following:

P,
SNRy, = P—; (6.26)
_ ﬁ ) ’25:1 hi 'wz‘\z

2 of | T wil

(2) ﬁ ) ‘Zzl(:lhifz | Zszl w;|*
x> |2k il
o5

I
I~

Il
—_

SNR;

(a) comes from the Swartz inequality [136] where the equality can be achieved
when w; = c - h;, with c being a constant.

We can see that the combiner output’s maximum SNR becomes the sum of the
SNR in each branch. And the best weight which maximizes the SINR of the output
signal is linearly proportional to the channel gain h;. This confirms our intuition
about MRC at the very beginning of this subsection.

6.5.3 MRC/EGC in UNB multiple BSs

However, in our systems where the medium access is random, the interference
cannot be ignored. Accordingly, when including the interference, the envelop of
the combiner output becomes:

K K K
y=Y x-hi-wi+ ) /Ni-wi+ )Y /Pl w (6.27)
i=1 i=1 i=1
We can express the SINR of the MRC combiner output as the following;:

K
SINR, = Y w; - SINR; (6.28)
i=1

For EGC combiner, the weight is identical for each branch, and it denotes:
w;(EGC) =1 (6.29)

For MRC combiner, the question comes: is the weight w;(MRC) to maximize
SINR, still proportional to the channel gain #;? Indeed, the channel gain ; re-
flects the quality of the channel conditions, but it cannot give us any information
about the level of the interference PI;. On the contrary, the signal to interference
and noise ratio SINR; can give us all the information. We thus propose to two
ways to compute the w;: the first one is proportional to /;, and the second one is
proportional to SINR;.
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When w; is proportional to channel gain #;

If we consider that the best-fitting branch weight w; is proportional to h;, for K
inputs at the MRC combiner, the best weight denotes:

I
w;(MRC) = — K (6.30)

’ i hi
with h; = \/5% composed by the Rayleigh fading variable g;, the distance between

the given node and each BS d;, and the path loss exponent «.

When w; is proportional to the SINR;

If we consider that the best-fitting branch weight w; is proportional to the SINR;
of each branch, for K inputs at the MRC combiner, this weight denotes:

SINR;

wj(MRC) = ———" .
il ) YK SINR;

(6.31)

Evaluation of two w; propositions for MRC

Now we evaluate these two propositions of best-fitting weight for MRC combiner.
We have a representative example of one packet (whose original amplitude x =
£1 ) perceived by 3 BSs in Table 6.3.

We have neglected noise here to make it simpler. We have assumed the thresh-
old of SIR to ¢* = 15 (which is a linear value, but not in dB). We can thus see that
the SIR; of all the 3 BSs are below this threshold, hence this packet cannot be de-
coded by any of these three base stations alone. We apply MRC to maximize the
output’s SIR, thus we consider these BSs as 3 branches. Each branch has its own
channel gain h;, interference level PI;, and the according SIR;.

If we compute w; given by the channel gain /;, as illustrated in eq.(6.30), we
have the fifth column. And if we compute it proportionally to the SIR; as illus-
trated in eq.(6.31), we have the sixth column.

We can observe the MRC output’s SIR, at the last line, which indicates that
the w;(MRC) given by SIR; gives better output. Indeed, BS; has the best channel
gain, but the signal envelop is strongly affected by the interference, which causes
a very low SIR;. If we insist in computing the weight according to &;, this branch
would have the highest weight regardless its low SIR;. However, if it is computed
proportionally to the SIR;, we can see that it is the second branch which weights
the most, and that it delivers a higher output SIR,,.

What's more, the tricky part in the first method is to estimate the channel gain
h;, as it depends not only on the respective distance (which we can obtain by
the localization of devices), but also the Rayleigh fading (which is not realistic to
predict). Thus the first method is very complex to be implemented in realistic
systems.

In conclusion, we opt the second method, which is proportional to the SIR; of
each branch as shown in eq.(6.31), to calculate the best-fitting MRC weight. One
may say that this example can be just a particular case, but we note that the case,
where both the channel gain and the interference are high (i.e. the first line in Table
6.3), happens frequently in the UNB systems. Since h; and PI; are independently
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random variables, they are nor correlated, so the chance that PI; is higher than #; is
identical to the inverse case. Therefore, the example in Table 6.3 is representative.

b | PI; | SIR; = ®23M” | 4, (MRC) given by h; | wi(MRC) given by SIR;
BS; | 5| 6 2.1 2x3 Ee %3
BS; | 102 125 %3 25 %3
BS; | 2| 1 2 Zx3 T2e X 3
SIR, 10.13 29.76

TABLE 6.3: Example of 3 inputs of MRC combiner, with k; as the

channel gain of each branch, PI; as the interference level of each

branch, x as the amplitude of the transmitted symbol which equals

to £1, SIR; the ratio of each branch and SIR, the ratio of the MRC
combiner output.

6.5.4 Process of MRC/EGC combiner
The process steps of a MRC/EGC combiner are the following;:

1. Firstly, we start with the process of selection combing. For each packet, we
compare the SINR; of each base station to the predefined threshold *:

e If any of these SINR; > 7*, we consider this packet successfully de-
coded. No MRC or EGC is needed.

e On the contrary, if none of these SINR; is above the threshold, we pro-
cess MRC or EGC. We consider all the BSs as the input branches of the
combiner.

2. The combiner applies the weight w; to each branch. The best-fitting weights
for MRC are determined by eq.(6.31), and EGC by eq.(6.29).

3. Now we have the combiner output’s SINR,, which is computed by eq.(6.28).
Then we check if SINR, has surpassed the threshold *. If yes, we consider
that the packet is successfully decoded, otherwise we consider it lost.

Intuitively, MRC is the ideal candidate as it takes into account the channel
quality and interference, and adapts them to the weights. A EGC combiner needs
not to estimate the SINR, which makes it easier to implement. But the equal
weight in EGC equalizes the signals (in good quality and bad quality) in each
branch, which does not maximize the output’s SINR.

We will demonstrate the performance of MRC and EGC in Section 6.7.

6.6 SIC for multiple BSs

We have analyzed the performance of SIC (Successive Interference Cancellation)
in single BS case in chapter 5, where the gain of SIC turns to be very limited. In
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this section, we propose to apply SIC in multiple BSs case, in order to mitigate the
interference by exploiting the spatial diversity.

6.6.1 Existing studies

As presented in chapter 5, the technology SIC is mostly used to mitigated inter-
ference due to random access systems, in single base station case. The very first
works, which proposed to do interference cancellation across multiple receivers,
are in the context of TDMA (time division multiple access) [137] or CDMA (code
divisionn multiple access) [138].

Then multi-BS systems applying SIC are mostly focused in the slotted ALOHA
scheme. The authors in [139] brought up in 2015 to apply the usage of SIC in mul-
tiple BSs case, in the slotted ALOHA (plus the replications) framework. They have
considered several cooperation modes among the BSs: non-cooperated (the same
as selection combining), temporal (BSs process SIC locally), spatial (SIC across co-
operated BSs) and spatio-temporal (where spatial and temporal cooperation are
alternated over several decoding iterations). They have shown fundamental re-
sults for all the modes of cooperation. Similarly, the authors in [122] have pro-
vided numerical results of SIC across multiple in slotted ALOHA scheme, where
they have found out that non co-located receivers provide higher gain in SIC. The
authors in [140] provided experimental results.

Multiple BSs combined with SIC in the context of M2M is evaluated in [141],
still in slotted Aloha scheme. Interestingly, they have considered the devices using
directional antennas where an additional degree of freedom, i.e. the randomly
chosen beam, has been added in the analysis.

Among the existing studies, none of them has considered a totally random
radio access scheme where the partial interference exists. Our contribution of this
section is to apply SIC across multiple BSs, when taking into account the specific
partial interference of UNB systems.

6.6.2 Advantages of SIC + multi-BS

The combination of SIC and multi-BS allows us to take advantage of the received
power diversity and the spatial diversity jointly. As the distance between one
node and each BS is random, thus not only its received power, but also the in-
terference power perceived by each BS vary. In single BS case, sometimes none
of the iterations of SIC is possible, because the desired node’s signal is strongly
influenced by the interference.

However in multiple BS systems, the undesired phenomenon (where SIC is
stopped by strong interference) can be largely reduced. A packet is considered
successfully received if it is decoded at any BSs. We kindly remind that the criteria
that one packet can be decoded is that its SINR should be above a predefined
threshold: SINR > «*. The decoded packet’s contribution can thus subtracted
from collisions at all the BSs (where it is found in collision with other packets).
Consequently, new singletons would be generated and be decoded by iterative
procedures at other BSs. We assume that all the BSs can reconstruct and subtract
the signals perfectly, without leaving residues.

There are two ways to perform SIC across multi-BS: a local way and a global
way, which will be introduced in the following parts.
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6.6.3 Local SIC

In the local SIC across multi-BS, the base stations do not communicate directly
with each other. They proceed SIC locally until the last iteration, then they all
send their decoded packets to the back-haul, as illustrated in Fig. 6.13. With the
presence of spatial diversity, the packets decoded in one BS may be undecodable
in another BS. But since the back-haul collects the decoded packets from all the
existing BSs, naturally the performance is better than only one BS. This procedure
can be seen as a combination of selection combing across multi-BS which perform
SIC locally. We note that the iteration number is normally predefined to avoid
spending too many calculation resources.

Decoded
pkts of BS2

@«A%))

SIC ite0

SIC ite0
SIC itet

SIC ite0

SIC ite1

SIC ite1

FIGURE 6.13: Algorithm of local SIC across multiple BSs. The

BSs perform SIC locally, then forward their decoded packets to the

back-haul. IteQ represents the procedure of a simple receiver; the
maximum SIC iteration is defined to 2.

6.6.4 Global SIC

In the global case, the base stations cooperate to carry out SIC. All the BS, af-
ter each SIC iteration, will send their decoded packets to all the neighboring BSs
directly via dedicated links. These links are assumed to be in-expensive and pro-
vides low-latency, high data rate communication. As demonstrated in Fig. 6.14,
the term ID(i, j) contains the packets decoded by BS;, after the jth SIC iteration.
We assume that ID(i,j) contains all the signal details which allow other BSs to
reconstruct them.

After each SIC iteration, ID(i, j) will be broadcast to all the neighboring BSs.
We assumed that the base stations have the propriety to relay packets for those
which are physically far away, i.e. the decoded packets” exchange between BS;
and BS3 can be carried out by BS; in Fig. 6.14. Afterward, the BSs can exploit
D(i, j) coming from other BSs, to reconstruct the packets they need and eliminate
the issued packets’ contributions. As a result, the strongly interfered packets be-
come decodable in some BSs thanks to ID(7, j). This procedure is performed by all
the BSs, after each iteration.
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At the end of the last SIC iteration, all the BSs group their decoded packets
through all the iterations sum(ID(i, j)), then forward them to the back-haul.

Decoded pkts
of BS2:

sum(D(2, j))

) D (1,0) 5 : D(1,0%: D(2,0) )

SICite0 | < b(Z.0): D(3.0) SICite0 | < 5G.0) SIC ite0 :
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FIGURE 6.14: Algorithm of global SIC across multiple BSs. ID(i, f)
contains the packets decoded by the ith BS, after the jth SIC iter-
ation. Firstly, each BS performs Oth iteration locally, then they ex-
change their own decoded packets ID(i,0) with other BSs. Then
each BS exploits (reconstruct and subtract) the decoded packets
they receive, and carried out a new iteration of SIC. The procedure
stops at the end of the 2nd iteration, and each BS forwards the sum
of their decoded packets from all the iterations sum(ID(, j)) to the
back-haul.

6.7 Performance evaluation

In this section, we demonstrate the performance evaluation of all the technologies
mentioned in the chapter: SC (selection combining), MRC (max ratio combining),
EGC (equal gain combining), local SIC of multi-BS and global SIC across multi-
BS. In order to perceived the gain of multiple BSs compared to single BS, we have
also shown the performance of single BS. Additionally, we have added the perfor-
mance of the nearest BS.

6.7.1 OP measurement

The term to measure the performance is still OP (outage probability). One packet
is considered decoded if its SIR turns out above the predefined threshold 7*. How-
ever, according to different technologies, the approach to calculate OP can vary:
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e For single BS: OP is simply the probability that one packet can’t be decoded
by this only BS: OP = P(SINR < 7*).

e For the nearest BS: for each transmission, we focus on the performance of
the nearest (with respect to the physical distance) BS. Thus for one packet,
OP is the probability not to be decoded by its nearest BS:

OP = ]P(SINR(nearestBS) < ’)’*)

e For SC: for one packet perceived by all the base stations (the ith BS perceives
the packet with SINR;), if any of the SINR; is higher than the threshold, we
consider that the given packet is successfully decoded. Hence OP is the
probability that one packet is decoded by none of the BSs:

OP = P (max(SINR;) < 4*).

e For MRC: one packet is perceived with SINR; by the ith BS, we combine all
the adequate SINR with a best fitting weight w;. Supposing that there are
K adequate branches (if the SINR of the branch is above the threshold), the
MRC combiner output will be a weighted sum of these K branches. There-
fore, OP is the probability that the combiner output’s SINR turns out lower

that the threshold: OP = P (z{;l w;(MRC) - SINR; < 7*)

e For EGC: similar to the MRC case. The difference is that the EGC combiner
output applies equal weight for each qualified branch:

OP = P (ZzK:l w;(EGC) - SINR; < 7*)

e Forlocal SIC + multi-BS: each BS carries out SIC locally, then forwards their
decoded packets to the back-haul. One packet is thus considered lost if it is
not decoded by any of the base stations, at the end of all the SIC iterations:

Oor =P (max(SINR(local sio)i) < ’Y*>-

¢ For global SIC + multi-BS: all the BSs cooperates to perform SIC, they ex-
change with each other their decoded packets after each iteration. Then
the all the decoded packets can be reconstructed and subtracted at each BS,
which helps to perform the next SIC. One packet is thus considered lost if it
is still not decoded after the global SIC procedure across all the BS:

Oor =P (max(SINR(globul si0)i) < ’Y*>-

6.7.2 Simulation hypothesis

We have carried out Monte-Carlo simulations based on Matlab. The distribution
of the nodes follows homogeneous Poisson point process (HPPP) with density A,
whereas the locations of BSs follows a HPPP (independent from the nodes” HPPP)
with density A,. This topology can be refereed to Fig. 6.1(b) at the beginning of

this chapter.
We consider the path loss exponent « whose value is normally between [2, 4].
The free space propagation corresponds to & = 2. We take into account the

Rayleigh fading, which follows an exponential distribution of the mean equal-
ing to 1. The fading adds a novel degree of freedom in the signal power diversity,
which aids the techniques of multi-BS. We assume that the spectral interference
is the aggregated interference power (AIP) caused by all the active nodes (except
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the randomly chosen observed node itself). One can refer to Section 4.3.1 where
the term AIP is characterized.

We assume that the links between each BS and the back-haul provide low-
latency and high data rate communication. We also suppose that all the SIC pro-
cessors are able to reconstruct and subtract signals perfectly. We note that the SIC
iteration starts with the Oth iteration which is the process of a simple receiver. The
maximum iteration number is predefined to avoid spending too many calculation
resources.

We list the basis hypothesis in the Table 6.4 for a clearer view:

TABLE 6.4: Simulations hypothesis for all multi-BS technologies
(*notation: db= distribution)

BS number BSdb | nodesdb | desired node | pathloss | fading | AIP

ApX area surface | random | random random b yes yes

6.7.3 Comparison of all technologies

We have carried out Monte-Carlo simulations based on matlab, with the following
parameters: the nodes and BSs are distributed in a 200km x 200km square area; the
Rayleigh fading which follows an exponential distribution with the mean equals
to1.

We have plotted in Fig. 6.15 the OP with respect to the normalized load %, in
Fig. 6.16 the OP with regards to the SIR threshold «*, for both 1 and 2 maximum
SIC iterations, and for all the technologies.

Firstly, we can observe that the technologies taking advantage of multi-BS
have always better performance than single BS. Then we remark that OP,¢4rst ps)
has worse performance than SC. This is because there are random factors such as
fading, and the UNB spectral interference. Thus the shortest distance (i.e. nearest
BS) delivers worse performance than the highest SIR (i.e. selection combining).

Secondly, we notice that MRC/EGC are always better performing than SC.
This is due to the fact that the process of MRC and EGC are based on the results
of selection combining. If one packet can be decoded by any one of the BSs, there
is no need to send it into the MRC/EGC combiner. We only combine the packets
whose SIR; is in poor quality in all branches. Therefore, it is relevant that MRC
and EGC outperform SC.

Furthermore, we remark that MRC outperforms EGC. Indeed, the weights of
MRC take into account the channel gain and interference, i.e. they are propor-
tional to the SIR of each branch. Hence the MRC weights are be able to maximize
the MRC combiner output’s SIR. However, the EGC weights are identical in all
the branches, which equalize the signals both in good and bad quality. In a conse-
quence, even though EGC is easier to implement, its performance still falls behind
MRC.

Thirdly, we can note that the global SIC across multi-BS has better performance
than local SIC at each BS. This is not surprising since the global SIC allows all the
BSs to share information with each other, and thus to reconstruct and subtract the
packets decoded by other BS. This results in decoding more packets than the SIC
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performed locally at each BS. It is also the reason why global SIC outperforms
MRC, as MRC adds up both the signals and the interferences, while global SIC
can retrieve interferences.

Fourthly, when we compare Fig. 6.15(A, B) or Fig. 6.16(A, B), we remark that
local and global SIC only have slight performance enhancement when the maxi-
mum iteration number increases. Moreover, the higher the SIC iteration becomes,
the higher the system complexity becomes, and the more computation resource
we need. Thus through this result, we know that we can gain almost the same
with 1 SIC iterations, without spending more computation resource to increase it
to 2.

Outage Probability
Outage Probability

—*—Single BS —*—Single BS
+ —o—Nearest BS —o—Nearest BS
10°F -=EGC El 10°F -o EGC
4= MRC ~++MRC
Local SIC Local SIC
Global SIC Global SIC
ot . . . . . . . 1ot . . . . . . .
0 2 4 6 8 10 12 14 18 18 20 0 2 4 6 3 10 12 14 16 18 20
Normalizaed node density A Normalizaed node density A
(A) Maximum 1 SIC (B) Maximum 2 SIC
iteration iteration

FIGURE 6.15: OP vs normalized load %‘, with B = 12kHz, v* =
6.8dB, and a« = 2.

Outage Probability
Outage Probability

—*—single BS —*—single BS
—o—Nearest BS —¢—Nearest BS
——SC —e—SC
100 -= EGC 1 00 -=-EGC
-+ MRC - MRC
Local SIC Local SIC
Global SIC { Global SIC
0 2 . s . I e 2 p . . 0 2
SIR threshold ~ SIR threshold 7~
(A) Maximum 1 SIC (B) Maximum 2 SIC
iteration iteration

FIGURE 6.16: OP vs SIR threshold v*, with %Z =10, B = 12kHz,
and a« = 2.

Interestingly, when we observe Fig. 6.15-6.17, the performance of different
technologies have the same tendency, i.e. the classical behaviors: when the traffic
load are denser, or when the frequency resource becomes more limited, or when
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the threshold to successfully decode a packet becomes more strict, the OP in-
creases. Meanwhile, when we observe Fig. 6.18 where we vary the path loss
exponent «, the variation of OP is not identical to all the technologies. The OP
increases slightly for single BS, which is not surprising as the increase of « makes
the packets become vulnerable to interference.

The OP fluctuates when « increases for most technologies, while it decreases
gradually in both local and global SIC cases. We can deduce that SC/MRC/EGC
are not sensible to the increase of a, which gives similar performance when « is
higher than free space. Meanwhile, the increase of « has positive impacts on the
performance of SIC across multi-BS. This is probably due to the fact the desired
node’s power is significantly reduced because of the increase of «, thus the circular
zone where potential interferers can fall into is narrowed down. Consequently,
the number of interferers which are common for all the BSs become very low.
Therefore, one decoded packet can help the maximum packets to be relieved from
its interference. So when we collect all the packets decoded from all the BSs, the
number of decoded packets increases, which results in less OP in the case of SIC
across multi-BS.

Outage Probability
Outage Probability

—*—single BS s | —*—single BS
——Ni t BS o
vk +Sgares | _tgl(e:arest BS
-=EGC -= EGC
- MRC ~+-MRC
Local SIC o]~ Local SIC
Global SIC " Global SIC
1o 0 0.2 0.4 0.6 08 1 1.2 1.4 1.6 18 r2 2 25 3 3‘5 “t 4‘5 ; 5‘5 6
Total frequency resource B (Hz) 10 Path loss exponent o
FIGURE 6.17: OP vs B, FIGURE 6.18: OP vs a,
with 42 = 10, 7* = 7dB, with 42 = 10, 9* = 7dB,
and « = 2, maximum 1 and B = 96kHz, maxi-
SIC iteration. mum 1 SIC iteration.

Finally, we report the multi-BS diversity gain when compared to single BS case:
0Py,
(singleBS)
OPuutips)
6.5. We can observe that when the normalized traffic load becomes denser, the

multi-BS gain of all the technologies degrades. Meanwhile, when the frequency
resources become larger, the gain rises up. Global SIC always brings the highest
benefits. Contrary to the cases where local SIC brings similar gain than MRC,
we can observe that when B = 192kHz or when the BSs are denser than nodes
(i.e. ;\‘—Z = 0.7), local SIC brings much more gain than MRC. This is due to the
fact that we limit the maximum SIC iteration to 1, so the case where aggregated
interference causes the packet loss is more rare when B is large or when the load
is sparse. Thus 1 iteration is sufficient for local SIC to decode most of the collided
packets. We can deduce that local SIC can be more advantageous than MRC when
the base stations are denser or when the frequency resources are larger.

As regards the implementation, we consider that interference cancellation is
in general more complex than signal combining. Because the former demands all

, as well as the implementation complexity of each technology in Table
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the details of all the signals (in the purpose of reconstructing them), high resolu-
tion of receivers (in order to distinguish signals having similar SINR), and high
computation resources (to proceed iteratively); whereas the latter only needs the
SINR estimation of each branch.

We note that these results give us a choice among these technologies, depend-
ing on the performance improvement we need, the budgets we have, and the
infrastructure complexity we expect. For example, if we intended to implement
local SIC at each BS with no more than 1 iteration (maybe due to the computation
limitations), now we know that MRC can also meet our needs as they deliver sim-
ilar performance (when the active nodes are denser than BSs). We can thus choose
MRC rather than local SIC, which is less complex to implement without loss of
performance.

TABLE 6.5: Multi-BS diversity gain compared to single BS (with
v* =7dB, « = 2, maximum 1 SIC iterations), and implementation

complexity.
Nearest BS | SC | EGC | MRC | local SIC | global SIC

Multi-BS gain

% — 0.7, B=12kHz 1.7 8 19 65 97 97
Multi-BS gain

% — 10, B=12kHz 1.5 4 6 12 11 28
Multi-BS gain

/ATZ — 20, B=12kHz 14 3 4 8 6 16
Multi-BS gain

% — 10, B=96kHz 1.9 7 20 67 68 101
Multi-BS gain

% — 10, B=192kHz 1.6 6 15 47 96 125
ComplEXIty * * 3% L 333 34K

6.8 Conclusion

In this chapter, we have exploited the spatial diversity of multiple bases stations
in the purpose of enhancing UNB systems’ performance. We have firstly analyzed
the simplest selection combining (SC) with 2 BSs case, when considering the spe-
cific spectral interference of UNB and only path loss. Thus the interferences are
considered correlated among BSs. The positions of BSs are assumed to be prede-
fined. We have transformed the OP calculation into the probability that one node
falls into certain areas. The theoretical OP is validated, but its derivation is very
complex to be extended to more than 2 BSs case. We highlight that SC is benefi-
cial to enhance the UNB systems performance, and that its gain is related to the
distance between each of the BSs.

Secondly, we stayed in SC, but we have considered Rayleigh fading in addition
where we have assumed that the interferences perceived by the BSs are indepen-
dent. We have assumed that the positions of BSs are random. We have derived
the OP with the density of BSs (thus the number of BSs can be more than 2) when
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modeling the the probability as marked PPP with the aid of stochastic geometry
as. However, this analytical OP is validated only for certain node/BS densities.
Therefore, we have deduced that the interference independence does not always
hold in UNB systems, which is contradictory to traditional systems.

Then we have proposed to apply more complex signal combining technolo-
gies such as MRC and EGC, and even local/global interference cancellation across
multi-BS. We have evaluated and the performance of all the proposed technolo-
gies, and compared them with single BS case. These technologies exploiting multi-
BS diversity are proved to be significantly beneficial in improving UNB networks’
scalability. We have shown that the global SIC has the best performance (we can
gain until 125 times better performance with 1 SIC iteration for high traffic load),
whereas it has also the highest complexity to implement. The suboptimal ones
are MRC and local SIC which deliver similar enhancement, but MRC is less com-
plex to local SIC. We have highlighted that the results provide a global view of the
mentioned technologies” diversity gain and implementation complexity.
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All the previous chapters give fundamental limits of UNB network’s capac-
ity, they are all proved by Monte-Carlo simulations. But sometimes the simu-
lations can not reflect all the details of what’s going on in realistic environment.
Therefore, we have initiated experiments where we emulate UNB signals by USRP
transceivers (Universal Software Radio Peripheral), and the signal receptions are
done by a real Sigfox base station. We will verify the interference coefficient and
the OP under idealized conditions with the experimental results, in this chapter.

7.1 Presentation of tools

7.1.1 FIT/Cortexlab

In the experiments, we use the radio platform FIT/Cortexlab (future internet of
things cognitive radio testbed) which allows us to evaluate different aspects of
cognitive radio in realistic scenarios [17]. CorteXlab uses the network architecture
developed in IoT-lab and integrates SDR (software defined radio) nodes to offer a
remotely accessible development platform for distributed Cognitive Radio (CR).
The testbed is installed in a shielded room (isolated from any external inter-
ference) and also partly covered with electromagnetic absorbing material. Thus
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the radio channel characteristics (path-loss, fading, shadowing, or paths etc.) can
totally be controlled by the users. More importantly, the experiments can be re-
peated many times as all are isolated from the outside-world and controllable.

The nodes are able to accept implementations from the PHY (physical) layer
on both hardware, i.e. Field Programmable Gate Array (FPGA), and software on
general purpose CPUs. The nodes that we use in the experiments are SDR nodes
which consist of 22 USRP (Universal Software Radio Peripheral) transceivers, whose
frequency can be set from 400 MHz to 4.4 GHz for both emission and reception.
These USRPs allow to achieve very precise carrier frequencies, which guarantees
a precision of up to 0,01 ppb (part per billion). Thus for a targeted frequency at
868 MHz, the precision can be until 0.00868 Hz. Meanwhile, they are also very
expensive such as several thousand of dollars per equipment. We recall that a
regular low-cost (several dollars) oscillators can only have a precision about 0.25
ppm (part per million). Therefore, the signals will be at the carrier frequencies
where we have indicated, thus there will not be frequency drift phenomenon with
these USRPs.

7.1.2 GNU Radio

The USRP transceivers are only programmable with GNU Radio for the moment.
GNU Radio is a free and open-source software development toolkit that provides
signal processing blocks to implement software radios [18]. A software radio is a
radio system which performs the required signal processing in software instead
of using dedicated integrated circuits in hardware [142].

GNU Radio perform signal processing thanks to its various blocks, such as
filters, channel codes, equalizers, modulators and demodulators, etc. One can
write his/her own blocks in programing languages such as C++ and Python.

We use GRC (GNU Radio companion), the graphical tool of GNU Radio to
create different chains of communications. We have to choose or create the blocks
which correspond to our expectational use, then change the necessary properties,
and then connect these blocks together to generate a flow-graph. As illustrated
in Fig. 7.1, we have a flow-graph which consists of a cosine signal source block,
a throttle block which prevents GRC to consume 100% of the CPU cycles, and a
time sink block which allows to observe the signal in real time.

Options
1D: tutorial_two_1
Generate Options: QT GUI

Variable Signal Source
T GUI Ti Sink
ID: samp _rate Sample Rate: 32k N“Q‘e p GLIIr|::eDt n
: 321 Waveform: Cosi Throttl E
Yolue: ¢ cneney I Number of Points: 1.024k

Freq y: 1k
Amplitude: 1
Offset: 0

Sample Rate: 32k Sample Rate: 32

Autoscale: No

FIGURE 7.1: An example of a flow-graph in GNU Radio compan-
ion.

Once the flow-graphs is executed, GRC will generate automatically the corre-
sponding python files. And we can use the python files to submit tasks on the
USRP transceivers via the CorteXlab platform.
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7.2 Experiments planning

7.2.1 Placements

As shown in Fig. 7.2, in our experiments, we use the USRP equipments (the green
and blue points) to transmit and emulate the ultra-narrow-band signals. The re-
ception is performed by a Sigfox base station installed at the corner. As the room
is covered with electromagnetic absorbing material, the walls and the floors don
not induce undesirable reflection. But the power attenuation of the paths from
USRPs to the Sigfox BS can be different because of the obstacles.
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- R ] === ]
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FIGURE 7.2: The placement of USRP nodes and Sigfox BS in the
isolated CorteXlab room.

7.2.2 UNB signal emulation

The UNB signals are first simulated on GRC, and then submit to USRPs to trans-
mit. We present in Fig.7.3 the main blocks that we use to generate UNB signals.

The vector source block contains Sigfox specific identifier code and the informa-
tion to transmit. These information sequences that we use in the experiments are
generated by Sigfox in order to make them decodable for the Sigfox BS. Unfortu-
nately, we can not show the original values in this block because of the confidential
issue. But we note that the vectors in this block are in decimal format.

The modulation is performed by a simple and efficient DBPSK modulator
where one bit represents one symbol. We recall that the UNB signals in Sigfox
networks have 100 bps (bit per second) as symbol rate. This value is unachievable
by the USRPs, because they has a minimum sampling clock which induces a min-
imum sample rate at 200k bps. In order to reach this minimum sample rate, we
have to do the interpolation. This is conducted by the block Interpolating FIR filter
which integrates automatically a finite impulse response filter, in the purpose of
eliminating the undesirable side lobs during the interpolation. Then we put a gain
where the signal amplitudes are multiplied by a constant value. The purpose is to
reduce the signal power to a normal level, otherwise they would be too strong to
saturate all the band and affect the decoding. At the end, the modulated signals
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are sent to the USRP sink block. Once we submit this flow-graph to a chosen USRP
which is inside CorteXlab room, the issued USRP will transmit the signal.

Parameter
1D: fc
Label: frequence centrale
Value: 868.17M

Type: Float
Short ID: F

Options
1D: Sigfox_TX
Generate Options: No GUI
Run Options: Prompt for Exit

UHD: USRP Sink
Clock Rate (Hz): 30.72 MHz

I Samp Rate (Sps): 200k

Ch0: Center Freqg (Hz): ..17TM

Ch0: Gain Value: 0

Ch0: Antenna: TX/RX

TSB tag name:

DPSK Mod
Type: DBPSK
Samples/Symbol: 10
Excess BW: 350m
Gray Code: No

Vector Source
Vector: 0

Interpolating FIR Filter
Interpolation: 200
Taps: |p taps

Multiply Const
Constant: 100u

Repeat: No

sigfox vector in bytes

FIGURE 7.3: The flow-graph of the UNB Sigfox signals transmis-
sion chain on GNU Radio companion.

7.2.3 Reception

The BS of Sigfox does its normal work: it scans the dedicated band whose band-
width is 192 kHz and centered at 868 MHz. As the experimental room is isolated
from out-side world, it can only receive the signals transmit in the room. Thus the
signals are free of unexpected external interferences in the band such as LoRa sig-
nals. The BS can identify Sigfox UNB signals by the specific signature (a sequence
predefined by Sigfox company). Once the BS finds Sigfox signals, it will decode
the whole sequence through the DBPSK demodulation only if the estimated SINR
(or SIR) of the signal surpasses 7 dB. Then it performs the cyclic redundancy check
(CRC). One packet is decoded if its CRC is OK. The information of decoded pack-
ets will be recorded by the Sigfox back-end.

We use an API (Application programming interface) of the Sigfox back-end to
access the informations (including the time stamp, the frequency, the estimated
RSSI and SNR, etc) of all the packets decoded by the BS in the shielded room.

7.3 Interference coefficient validation

We verify first of all the interference coefficient, as it is the basis of all the theoret-
ical analysis in this thesis.

7.3.1 Hypothesis and experimental process

We set one signal as the desired signal x whose carrier frequency f, is fixed. And
the other signal is defined as the interfering signal y, whose carrier frequency f,
is firstly at the same position as fy, then shifted manually away from the desired
one’s. This shift creates the frequency spacing éf = |fx — f,| we have mentioned
in all the previous chapters. These two signals are set to be at the same power
level so that we can focus only on the impact of frequency shift.

In order to make the experiment as accurate as possible, we have chosen to
transmit these two signals on the same USRP. Since each USRP could have differ-
ent gains due to their electronic component properties and due to the path-loss,
which can cause an unexpected power difference between two signals (if they
were sent by two USRPs). Besides, the USRPs are not totally synchronized in time
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(there can be 2 seconds of difference). More importantly, the USRPs have different
frequency drifts as the oscillators of each USRP is not exactly the same (still due to
the electronic components). In this experiment, the accuracy of frequency is very
essential. Therefore, we choose to transmit them on the same USRP so that the
frequency drift for both f; and f, are the same, and we can obtain the exact value
of the frequency spacing éf.

As we have mentioned before, from the Sigfox back-end, we can only have the
information of whether a signal is successfully received or not. Thus we do not
have the estimated SINR of non-decoded signals. This is a bit problematic, since
we can not measure the interference coefficient directly. Indeed, if we send two
signals of the same power and try to make them collide, we lose both of them
without knowing which one is interfered to which level. The interference coeffi-
cient represents the contribution of the interfering signal on the desired signal. At
one moment, it can be so high that we lose the desired node. We have thus found
a way to conduct the experiments, stated as the following;:

1. Firstly we set the 6f = 0, then we increase gradually the power of one the
signal (for example the desired signal x), until the moment we can perceive
that x is successfully received. Because if we don’t create a power difference,
we can never receive any signals when they are totally collided. The increase
of power Jp, to reach this moment can reflect interference coefficient when
0f = 0. As dp, indicates the amount of the power that x needs to overcome
the interference contribution of y when they are totally overlapped.

2. Secondly, we shift the frequency spacing to for example 6f = 5 Hz, and we
decrease gradually the Jp, of x until the moment we lose x. Because if we
keep dp, unchanged, the desired message x will always be received. Thus
when we relax the £, the interference normally decreases, consequently the
x does not need such higher dp, to survive the interference of y. Therefore,
we decrease manually dp, in order to find the limit.

3. Then we repeat the step 2, until the 6 f is large enough or when the interfer-
ence coefficient tends to be stable.

7.3.2 Experimental results

As illustrated in Fig. 7.4, we have plotted the experimental interference coefficient
(black line), when comparing it with the Gaussian model (blue line) and the AR
(approximated rectangular) model (red line) that we use in all the previous theo-
retical analysis. The values of the AR model is the same as used in Section 4.4, we
recall it here:

A =145Hz, Iygy = 0dB, I, = —75dB

We can firstly observe that the experimental coefficient is globally lower than
the Gaussian and AR models, except for the two high peaks around £50 Hz.
When f; and f, are totally covered (i.e. when 6f = 0), the Gaussian and AR
models has § (6f) = 0 dB, while the experimental one has less. This means that
when 6f = 0, the desired signal x needs 7 dB (i.e. the threshold predefined by
the Sigfox BS) more power to survive in Gaussian and AR coefficients, whereas
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it only needs 2.3 dB more in the realistic case (i.e. in experimental interference
coefficient).

Besides, if we check with more precision, we can note that the experimental
coefficient remains constant inside [—47,47] Hz, which resembles actually a rect-
angular model; it has two high peaks inside [—51,48|&[48,51] Hz, which may
be due to the DBPSK modulation at 100 bps; then it degrades gradually inside
[—63, —52]&[52,63] Hz; and it drops dramatically inside [—116, —64]|&[64,116]
Hz; finally it tends to be very low and stable.

10
—Experimental

——Gaussian model
—Rectangular AR model

0

& IS 4 % 4
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Interference coefficient 3(df) in dB

&
3

4
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FIGURE 7.4: The experimental Sigfox interference coefficient as a
function of the frequency spacing between two signals Jf.

In our experiments, all the packets have the same received power. And if one
packet’s SIR is lower than the predefined threshold 7v* = 7 dB, the BS will not
decode it. When we consider only one interferer at each collision, we can express
the OP as:

P, .
OP:P(W <”>
=P (P, — P, — B(5f) <7*) indB
=P (B(5f) > —7*) indB (7.1)

with P, the identical received power of all the signals, and 7* the predefined
threshold. It turns the OP into the probability that the interference coefficient is
higher than —7 dB.

We have thus plotted the line (gray dashed line in Fig. 7.4) when the interfer-
ence coefficient equals to —7 dB. We can have the value of 6f when  (Jf) reaches
—7dB, as the following:

Experimental : 5f € [—63,63]; A = 63Hz (7.2)
Gaussian : §f € [—110,110]; A = 110Hz (7.3)
RectangularAR : 6f € [—145,145]; A = 145Hz (7.4)

These values indicate that if one interferer falls into these frequency zone away
from the desired signal, it will cause the desired signal’s loss, under the assump-
tion that a unique interferer is sufficient to induce packet loss. We can see that
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the experimental one have a narrow zone (i.e. A = 63 Hz) where the B (6f) sur-
passes —7 dB, thus there is a low probability that the frequency spacing falls into
this zone. Whereas the Gaussian and rectangular model have larger interfering
frequency zone (i.e. A = 110 or 145 Hz), thus there is a higher probability that J f
falls into these zones.

In order to ensure that the experimental results are not the particular cases, we
have conducted the experiments at different carrier frequencies, by using differ-
ent USRP equipments, and by changing the message contents. The experimental
coefficient shape remains the same (i.e. the two peaks are still high, and the A is
still narrower then Gaussian or AR) in all the cases. This gap between the exper-
imental coefficient and the Gaussian (or rectangular) one will induce a difference
between the experimental OP and the theoretical ones.

To conclude, the Gaussian and the AR rectangular models that we used have
both over-estimated the experimental interference coefficient. However, we note
that the experimental coefficient can be appropriately approximated by a nar-
rower rectangular model, since its level remains constant inside 6f € [—47,47]
Hz.

7.4 Capacity validation in idealized channels

After checking the interference coefficient, we verify by the experiments the the-
oretical capacity derived with the Gaussian and rectangular interference coeffi-
cients, under idealized channel conditions. Thus the received power of each sig-
nal is assumed (and set in experiments) to be at the same level. We only focus
on the spectral interference, thus the signals are assumed to be transmitted at the
same moment. The noise is neglected in the theoretical analysis.

7.4.1 Theoretical OP

We still use the OP as the criteria to represent capacity. The OP with the above
hypothesis resembles the OP under idealized channels in chapter 3. The difference
is that we do not consider the temporal impact in this chapter.

In the experiments, we do not have enough information to verify whether the
packet loss is due to a unique interferer or the aggregated contribution of several
interferers (AIP). But we know at least that the more loaded the networks become
(more nodes or less frequency resources), the higher chance we have AIP.

If we consider that there are only two signals(i.e. a unique interferer and the
desired signal), the probability that this interferer can induce the desired packet
loss is expressed in eq.(7.1). This probability is transformed into the probability
the Jf falls into the frequency zones (i.e. the A) expressed in eq.(7.2)-(7.4). With the
presence of N simultaneous transmissions, the OP is the probability that at least
one of the N — 1 potential interfering signal chooses its carrier frequency inside
the indicated zones (i.e. the A). We can thus express theoretically the OP for each
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model:
Experimental : OPy, =1 — (1 — M”;W) Y (7.5)
Gaussian : OPy, =1 — (1 — 2AG§”SSW> Y (7.6)
RectangularAR : OPy, =1 — (1 _Z gAR> e (7.7)

With Ay perimental = 63 HZ, Aaussion = 116 Hz, and Aag = 145 Hz.

7.4.2 Experimental OP and comparison

A big limitation of the available USRPs in the Cortexlab room, is that they are not
synchronized in time, and that they don’t have the same frequency drift. Thus we
have to transmit all the signals from the same USRP, in order to have the same
characteristics (such as the frequency drift, the emission moment and the equip-
ment gain) and ensure the idealized channel condition set. In the experiments, we
have thus fixed the signal number at N = 10. Each of them selects their carrier fre-
quencies randomly and independently. This is realized by modifying the python
file generated by the GRC flow-graph.

We present in Fig. 7.5 the experimental OP (black dashed line) by comparing it
with the theoretical OPy, deduced with the experimental, Gaussian and the rect-
angular interference coefficients. We can observe that the OP obtained by exper-
iments and the OPy;, obtained by experimental coefficient are close to each other.
The OP achieved by experiments is slightly higher than its theory. This is due to
the unique interferer assumption in the OP;,, meanwhile in the realistic experi-
ments the aggregated interference’s case could happen. Another reason may be
the fact that we have neglected the noise in the OPy,. However, in the realistic
experiments, the noise exists. Therefore, we have the experimental OP close to its
theory, but slightly higher. This result can validate the experimental interference
coefficient’s obtained in Section 7.3.2 in a global point of view.

Moreover, we can observe that OP obtained by experiments and the OP;, ob-
tained by experimental coefficient (black solid and dash lines in Fig. 7.5) are both
lower than the OP;;, achieved by the Gaussian coefficient (blue lines), meanwhile
the AR model (red lines) brings the worst performance (i.e. the highest OP). This is
not surprising since the interfering frequency zone of the rectangular model A 4
is the largest. Thus it induces the highest chance to collide. The Aggyssian is a bit
narrower, thus less probability to be in collision. Then the experiment interference
frequency zone Acyperimentar is the narrowest, thus the least chance to be collided.
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FIGURE 7.5: OP vs total frequency resource B in Hz. The number
of simultaneous transmissions is N = 10, the Sigfox bast station’s
received sensibility is y* = 7 dB.

We note that these experimental results have not been verified by the signals
transmitted by realistic Sigfox devices. Thus the shape of the interference coeffi-
cient and the gaps of OP we observe may come from the signal emulation blocks
(e.x. the filter that we use to after the interpolation), or from the implementation
on the USRP equipments which cause unexpected and undetected phenomena.
The experiments by using real Sigfox devices is feasible but can be very tricky,
because we need to put many devices in the shielded room, and make them trans-
mit at the same moment (this means all the devices need to be synchronized in
the milliseconds). What’s more, all the manipulations have to be done at distance
because physical presence of human can destroy the ideal channel conditions in
the testbed room.

7.5 Conclusion

In this chapter, we have conducted experiments on the radio testbed FIT/Cortexlab.
We have presented the planning of the experiments as well as the flow-graph and
its issued blocks from which we have emulated the UNB signals on GNU Radio.

We have firstly verified the interference coefficient that we have used in all
the theoretical analyses in the previous chapters. We have drawn the experimen-
tal interference coefficient by comparing it with the Gaussian and the rectangu-
lar AR models. We have observed that the Gaussian and AR models have both
overs-estimated the experimental coefficient. In the experimental coefficient, the
frequency zone that will generate packet loss (i.e. when the interference level sur-
passes —7 dB) is only at A = 63 Hz, whereas this zone in Gaussian and AR models
are much larger. Moreover, we have found out that the interference coefficient re-
mains constant when the frequency spacing ¢f is inside [—47,47] Hz, it can thus
be approximated by a more adapted rectangular model.
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We have then verified the outage probability (OP) when maintaining the si-
multaneous transmission number constant and varying the total frequency re-
source B, under ideal channel conditions. We have derived 3 theoretical expres-
sions of OPy, by using respectively the experimental, the Gaussian and the AR
interference coefficients, under the assumption that there is only one interferer at
each collision and the negligence of noise. Then we have compared them with
the OP obtained by the experiments. We have observed that the OP obtained by
experiments is very close to the OPy, obtained by the experimental interference
coefficient. The former is slightly higher than the latter, which may be due to
the possible aggregated interference (which is not considered in the OPy;,) in the
experiments, or due to the existence of noise in the equipments and the environ-
ments (which is neglected the in OPy,). But globally, the OP;;, obtained by the
experimental coefficient can describe well the variation of the realistic OP, though
there is a slight lack of precision. This result can validate the general shape and
accuracy of the experimental interference coefficient.

Moreover, we have observed that both the experimental OP and its OPy, are
lower than the OP;;, obtained by the Gaussian and AR models. This is not sur-
prising since the Gaussian and AR models have over-estimated the interference
level.

The limitation of these experimental results are the fact that the UNB signals
are emulated by USRP equipments and not verified by real Sigfox devices. There
may be a lack of precision on the shape of the experimental interference coefficient,
especially the two peaks around §f = £50 Hz.

Despite the possibly inconsistency brought by the implementation on the US-
RPs, these experiments have provided us a global view of the gaps between our
theoretical analysis and what happens in the realistic environments, and how to
reduce these gaps (by using a more adapted interference coefficient). We note
that these experiments can be furthered by varying other parameters such as the
number of simultaneous transmission, or by including the temporal impact.
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Chapter 8

Conclusion and Perspectives
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81 Conclusion . .. ..... ...ttt ttueeneeennn 133
8.2 Perspectives and futureworks . . .. ... ... .. L0, 135

8.1 Conclusion

In the thesis, we have introduced the promising candidate: ultra narrow band
(UNB), out of other LPWAN technologies which are dedicated to long-distance
and low-power communications. In the presence of carrier frequency imprecision
(which is larger than UNB individual signal bandwidth) caused by oscillators, it
is not realistic to obtain orthogonal channels in UNB system. Thus the multiple
access dedicated to UNB is random in time and in frequency. The radio access of
UNB, which is uncontrolled, can cause specific partial interference when simulta-
neous transmissions happen. In the literature, the approach like UNB has never
been studied, and its network capacity remains unknown.

The objective of this thesis was to provide a scientific vision to the first tech-
nology commercially initiated for IoT purpose (i.e. ultra-narrow-band) about its
scalability and the possibilities to improve it, focusing on the uplink. My contri-
butions thus consist of evaluating UNB network capacity, and further proposing
solutions to enhance the system performance.

We have started the thesis by characterizing the outage probability which in-
dicates the network capacity, in single BS case, under idealistic channel condi-
tions. We have evaluated the extension of the ALOHA scheme to the case of
time-frequency random access, as experienced the UNB transmissions. We have
derived and validated the theoretical expression of the outage probability for all
the configurations (time slotted or unslotted, and frequency slotted or unslotted).
We have brought to light that frequency randomness and time randomness iden-
tically affect the throughput, and that they can be interchanged without loss of
performances. Then we have extended the expression of generalized ALOHA
with the involvement of replications. Besides, we have highlighted that, for each
traffic load density, there is an optimal number of replications, which allows to
achieve the best reliability.

Then we continue the scalability evaluation for single BS case, but under re-
alistic channel conditions this time. We have derived theoretically two outage
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probabilities: the first one has considered the frees space path-loss and the inter-
ference induced by a unique interferer; and the second one has taken into account
the Rayleigh fading, the path-loss for all propagations, and the aggregated inter-
ference (AIP). The specific UNB spectral interference coefficient has been approx-
imated by a Gaussian model and by a rectangular model. In the second analysis,
we have used stochastic geometry as a tool since the objects are distributed ran-
domly in one cell. Both the specific UNB interference coefficient and the fading
factor have been used as marks in a homogeneous Poisson point process, which
helps in deriving the closed-form Laplace transform of the AIP. We have compared
the OP obtained by both analysis, and we have observed the impact of fading
(which is only sensible for nodes close to the BS) and the impact of AIP (which has
almost the same performance of the contribution of a unique interferer). Besides,
we have evaluated the spectral efficiency as a function of the path-loss exponent,
for without and with guard bands. And we have highlighted that the bandwidth
which achieves the highest spectral efficiency depends on the propagation condi-
tion.

From the two previous performance evaluation, we have realized that the spe-
cific interference caused by the random radio access is a severe limitation of the
system. We have thus considered to optimize the performance by applying the
SIC (successive interference cancellation) methodology, in order to mitigate the in-
terference impact, from single base station’s side. We have derived the theoretical
OP expression, by considering the SIC receiver and the specific random spectrum
access of UNB. SIC is proved to be beneficial to improve the system performance.
We have brought to light that in the free space propagation, the diversity deliv-
ered by the fading is advantageous in enhancing the efficiency of SIC. But when
the environment becomes lossier, the fading brings no more benefits in improving
the SIC receiver’s performance.

After the studies in the case of mono-BS, we have started to exploit the spatial
diversity of multi-BS which may balance the spectral interference. Since the nodes
in UNB systems are not attached to one specific cell, one message can be perceived
by many surrounding BSs. We have thus applied signal combining and interfer-
ence cancellation technologies across multi-BS, in the purpose of improving the
UNB networks performance. We have conducted theoretical OP analysis for the
simplest selection combining (S5C), when considering path-loss and the correlation
(comes from the fact the interference may lean on the same frequency spacing) be-
tween the interference perceived by each BS. Nonetheless, the correlation renders
the analysis very complex when the number of BS increases. Thus we have added
Rayleigh fading, and we have assumed that the novel degree of freedom brought
by the fading can totally canceled the correlation. We have derived an OP when
considering the independent interference, and compared it with the simulations.
Meanwhile, this independence is proved to be not valid in UNB systems. There-
fore, we have concluded that the interference viewed by each BS is correlated even
with the presence of fading.

Afterwards, we have applied more complicated signal combining technologies
such as EGC (equal gain combining) and MRC (max ratio combining). Different
from most of the literature, we have defined the weight of MRC to be proportional
to the SINR of each branch. Then we have identified two methods to apply SIC: a
local way where SIC is performed at each BS, then the decoded packets of all the
BSs are grouped together; and a global way where the SIC is performed globally
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across the cooperated BS which exchange their decoded packets’ information with
each other to decode more additional packets. We have presented and compared
the numerical results of all the technologies, as well as their implementation com-
plexity. All the technologies which have taken advantage of multi-BS diversity
are proved to be better performing than mono-BS. We have observed that the the
global SIC offers the best performance, but it has also the highest complexity. The
suboptimal is the local SIC and MRC, both of which deliver similar performances
while MRC is less complicated to implement. We have highlighted that these re-
sults can provide us the choice among all the multi-BS technologies, according to
the performance enhancement needs, the available computation resources and the
acceptable implementation complexity.

Finally, we have conducted the experiments on the radio testbed FIT /Cortexlab,
in the purpose of verifying the interference coefficient that we have used in all the
theoretical analysis and the networks capacity. The testbed is installed in a to-
tally shelded and isolated room which provides an idealized channel condition.
We have used the programmable USRP equipments to emulate the UNB signals
and to transmit them, and a Sigfox base station to receive and decode the signals.
We have drawn the experimental interference coefficient when comparing it with
the Gaussian and the approximated rectangular (AR) models. We have observed
that the Gaussian and AR models have both over-estimated the experimental co-
efficient. Thus the realistic interference coefficient can in fact be approximated
by a more adapted rectangular model. We have then verified the network ca-
pacity (represented by OP) under idealized conditions. The OP obtained by the
experiments is compared with the theoretical OPy;, obtained by the experimen-
tal, the Gaussian and the AR interference coefficients. We have observed that the
OP}, obtained by the experimental coefficient can describe the variation of OP ob-
tained by the experiments, despite a slight lack of precision. We have emphasized
the pertinence of the experiments, which not only give us an insight about the
network’s behavior in realistic environments, but also provide an intuition to ad-
just our theoretical models (such as using a more adapted rectangular interference
coefficient).

8.2 Perspectives and future works

The future works related to each contribution is already stated in the conclusion
of each chapter. In this part, we will talk about perspectives in a more global way.

First of all, we can include the temporal impact into the capacity characteri-
zation under realistic channel conditions. Indeed, in all the analysis with power
attenuation (path-loss or fading), we have focused on the specific spectral interfer-
ence of UNB. We have considered only simultaneous transmissions. Nonetheless,
the diversity in the time domain can also bring a degree of freedom which can
help, for example, to improve the SIC performance.

Then we can consider to combine the methods to improve the network ca-
pacity together. For example, we can use the technology SIC when involving
the replication mechanism in mono-BS or multi-BS scenarios. The replications
of the same packet are collided with other packets. When one of the replication
is successfully decoded, we can reconstruct it and retrieve the contribution of all
the other replications. This results in decoding more additional packets. And in
multi-BS scenario, this process is even more efficient, because the BSs exchange
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the decoded replication’s information. Therefore, one replication decoded, the
packets collided with the replications of the same packet can be freed of their in-
terference contribution in all the BSs. We can certainly combine other technologies
such as the global SIC and MRC. This combination can be very powerful, but also
very expensive.

Besides, we should include studies about mobile devices. The scenarios that
we have considered have all assumed the stable channel conditions during the
observed interval. However, in the realistic scenarios, the nodes can be moving
at the speed of cars or even flights. In this cases, the channel can also be varying
during the transmission. Thus it is very important to measure the channel char-
acteristics when the objects are moving, by taking into account the Doppler shifts,
or the empirical fading factor, etc.

We can also further the studies by considering the downlink of the systems. In-
deed, we have only considered the uplink in this thesis because of its random and
unpredictable properties. But the downlink is normally scheduled. We can thus
work on the strategy of the downlink such as how to respond to the requirements
of nodes more efficiently in terms of energy efficiency and resource (frequency
and time) reuse efficiency.

Furthermore, we can change the uncontrolled radio access of UNB. Such as
adding channel coding schemes, or change it to a more scheduled access like
slotted-ALOHA. But it will be very important to evaluate whether the additional
cost brought by the new access can be compensated by it enhancement in the ca-
pacity. One last bold idea is to predict the channel conditions by machine learning,
so that the random radio access can be totally prevented from the collisions.
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Appendix A

Validation and Numerical results
of OP for average rx eq.(4.21)

In this appendix, we present the validation and numerical results of the OP for average
in Section 4.3.1, i.e. the N users’ extension of eq.(4.21).

A.1 Validation

The N users’ extension of eq.(4.21), when condiering only one interferer at each
collision, denotes:

OPpy =1-(1-0P)N"! (A.1)

with OP the expression in eq.(4.21) which represents the outage probability when
there are only two nodes.

We present simulation results (obtained on Matlab) based on realistic network
configurations (based on SigFox one). We compare them to our theoretical values,
to validate the expression of OPy) eq.(A.1), and thus validate indirectly eq.(4.21).
We consider the following key parameters: number of active nodes N, bandwidth
B, range of transmission area [r,, rp|, and the threshold of signal-interference-
ratio v*. For a better understanding, we provide here the unit of o* in dB. But in

the theoretical expression, the linear value of ¢* must be used (10%).
We recall the simulation hypothesis here:

TABLE A.1: Simulations hypothesis

BS number | nodes distribution | desired node | path loss | fading | AIP | replicas

1 random random =2 no no no

We present on Fig. A.1-A.3, the evolution of OPy) by varying B, and along
with another different parameter for each figure. From a global point of view, we
can observe that the simulation results match well with theoretical ones. There-
fore, we can deduce that the formula eq.(A.1) and eq.(4.21) are validated.
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A.2 Performances analysis

We now analyze these figures more precisely. In Fig. A.1, the area ranges are set
to [30,1000]. We can see that OP decreases when B increases. Indeed, as there
are more available transmission resources, there are less risks that nodes would
collide. In addition, OP increases with N. When numerous active nodes transmit
at the same time, the chance that their frequencies fall into the interfering zone
gets higher.

Furthermore, we verify that OP increases when the threshold 7* becomes
higher, as shown in Fig. A.2. When the success criteria becomes stricter, nodes
have less chances to attain v*, so the network performance becomes worse. Fig.
A.3 shows that when the maximum range 7 changes from 60 to 1000, we have
a little bit more errors. Meanwhile, when rys changes from 1000 to 10°, their OP
evolution totally overlap. It indicates that, when the area is already large, the cell
range has no more impact on network performance.

To sum up, the usual performance statements are verified: more network load
induces more errors, such as small bandwidth and too many nodes; a more strict
SIR threshold leads to a higher OP; while the influence of area range to network
performance depends on the scale.

A.3 Results Exploitation

In this section, we exploit the theoretical expression of OP to find out the maxi-
mum capacity. This parameter is defined by the maximum number of active nodes
N that the network can support simultaneously, while maintaining a targeted OP.
We have reported on Fig. A.4, the capacity when the OP is targeted to be lower
than 0.1. We can observe that with a larger bandwidth, the system can contain
more nodes. Nevertheless, with a stricter signal interference ratio threshold, less
active nodes can be served. More importantly, we can observe that the capacity
increases linearly with the available bandwidth. It is thus easy to scale the band-
width in accordance to the number of nodes to serve, when keeping the same

targeted SIR.
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FIGURE A.4: Maximum capacity N vs bandwidth B, with different
signal-interference-ratio threshold ¢* dB, and OP, r;;, = 30 m, rpy =
60 m.
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