M. E. Launey, M. J. Buehler, and R. O. Ritchie, On the Mechanistic Origins of Toughness in Bone, vol.40, 2010.

K. Koester, J. Ager, and R. Ritchie, The true toughness of human cortical bone measured with realistically short cracks, Nat Mater, vol.7, issue.8, pp.672-677, 2008.

M. E. Launey and R. O. Ritchie, On the Fracture Toughness of Advanced Materials, Advanced Materials, vol.21, issue.20, pp.2103-2110, 2009.

. Sylvain-deville, Habilitation a Diriger des Recherches, 2013.

F. Barthelat and H. D. Espinosa, An experimental investigation of deformation and fracture of nacre-mother of pearl, Experimental Mechanics, vol.47, issue.3, pp.311-324, 2007.

D. Horacio, A. L. Espinosa, . Juster, J. Felix, . Latourte et al., Tablet-level origin of toughening in abalone shells and translation to synthetic composite materials, Nature Communications, vol.2, issue.2, pp.173-179, 2011.

M. E. Launey, E. Munch, H. Daan, . Alsem, B. Holly et al., Designing highly toughened hybrid composites through natureinspired hierarchical complexity, Acta Materialia, vol.57, issue.10, pp.2919-2932, 2009.
DOI : 10.1016/j.actamat.2009.03.003

D. V. Wilbrink, M. Utz, R. O. Ritchie, and M. R. Begley, Scaling of strength and ductility in bioinspired brick and mortar composites, Applied Physics Letters, vol.97, issue.19, p.193701, 2010.

F. Bouville, E. Maire, S. Meille, B. Van-de-moortèle, and A. Stevenson, Strong, tough and stiff bioinspired ceramics from brittle constituents, Nature materials, vol.13, issue.5, pp.508-514, 2014.
DOI : 10.1038/nmat3915

URL : https://hal.archives-ouvertes.fr/hal-01761560

. Sylvain-deville, Ice templating , freeze casting : Beyond materials processing, pp.1-18, 2013.

F. Bouville, Self-assembly of anisotropic particles driven by ice growth: Mechanisms, applications and bioinspiration, 2013.
URL : https://hal.archives-ouvertes.fr/tel-01127621

Z. A. Munir, D. V. Quach, and M. Ohyanagi, Electric Current Activation of Sintering: A Review of the Pulsed Electric Current Sintering Process, Journal of the American Ceramic Society, vol.94, issue.1, pp.1-19, 2011.

M. D-s-perera, S. Tokita, and . Moricca, Comparative study of fabrication of Si3N4/SiC composites by spark plasma sintering and hot isostatic pressing. Comparative study of fabrication of Si 3 N 4/SiC composites by spark plasma sintering and hot isostatic pressing, vol.18, pp.401-404, 1998.

G. Lutjering and J. Williams, , 2003.

J. C. Williams, Titanium science and technology, 1973.

E. W. Collings, G. Welsch, and R. Boyer, Materials properties handbook: titanium alloys, 1994.

S. Meir, S. Kalabukhov, N. Frage, and S. Hayun, Mechanical properties of Al2O3/Ti composites fabricated by spark plasma sintering, Ceramics International, vol.41, issue.3, pp.4637-4643, 2015.

S. Shmuel-hayun, S. Meir, N. Kalabukhov, E. Frage, and . Zaretsky, Phase Constitution and Dynamic Properties of Spark PlasmaSintered Alumina-Titanium Composites, Journal of the American Ceramic Society, vol.99, issue.2, pp.573-580, 2016.

F. Bouville, E. Portuguez, Y. Chang, G. L. Messing, A. J. Stevenson et al., Templated Grain Growth in Macroporous Materials, Journal of the American Ceramic Society, vol.97, issue.6, pp.1736-1742, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01133200

M. Schehl, L. Torrecillas, and . Diaz, Alumina nanocomposites from powderalkoxide mixtures, Acta Materialia, vol.50, issue.5, pp.1125-1139, 2002.

H. Porwal, P. Tatarko, S. Grasso, and M. J. Reece, Graphene reinforced alumina nano-composites, Carbon, vol.4, pp.359-369, 2013.

J. Liu, H. Yan, and K. Jiang, Mechanical properties of graphene platelet-reinforced alumina ceramic composites, Ceramics International, vol.39, issue.6, pp.6215-6221, 2013.

A. Rincón, R. Moreno, A. S. Chinelatto, C. F. Gutierrez, E. Rayón et al., Al2O3-3YTZP-Graphene multilayers produced by tape casting and spark plasma sintering, Journal of the European Ceramic Society, vol.34, issue.10, pp.2427-2434, 2014.

J. Rathel, M. Herrmann, and W. Beckert, Temperature distribution for electrically conductive and non-conductive materials during Field Assisted Sintering (FAST), Journal of the European Ceramic Society, vol.29, issue.8, pp.1419-1425, 2009.

Q. Chen and N. M. Pugno, Bio-mimetic mechanisms of natural hierarchical materials: a review, Journal of the mechanical behavior of biomedical materials, vol.19, pp.3-33, 2013.

E. Sylvain-deville, R. K. Saiz, and . Nalla, Freezing as a Path to Build Complex Composites, vol.311, pp.515-518, 2006.

M. A. Meyers, P. Chen, A. Y. Lin, and Y. Seki, Biological materials: structure and mechanical properties, Progress in Materials Science, vol.53, issue.1, 2008.

, Etienne Munch. Tough, Bio-Inspired Hybrid Materials. Science, vol.322, issue.5907, pp.1516-1520, 2008.

M. R. Begley, N. R. Philips, B. G. Compton, D. V. Wilbrink, R. O. Ritchie et al., Micromechanical models to guide the development of synthetic brick and mortar composites, Journal of the Mechanics and Physics of Solids, vol.60, issue.8, pp.1545-1560, 2012.

J. Lorenz, A. R. Bonderer, L. J. Studart, and . Gauckler, Bioinspired Design and Assembly of Platelet Reinforced Polymer Films, Science, issue.5866, p.319, 2008.

S. Mann, Molecular Tectonics in Biomineralization and Biomimetic Materials Chemistry, Nature, vol.365, p.499, 1993.

H. Cölfen and S. Mann, Higher-order organization by mesoscale self-assembly and transformation of hybrid nanostructures, Angewandte Chemie -International Edition, vol.42, issue.21, pp.2350-2365, 2003.

, Marc André. Structural Biological Materials: Critical Mechanics-Materials Connections. Science, vol.339, issue.6121, 2013.

W. J. Clegg, K. Kendall, N. Mcn, W. Alford, J. D. Button et al., A simple way to make tough ceramics, Nature, vol.347, pp.455-457, 1990.

R. M. Erb, R. Libanori, N. Rothfuchs, and A. R. Studart, Composites Reinforced in Three Dimensions by Using Low Magnetic Fields, Science, vol.335, issue.6065, pp.199-204, 2012.

M. G. Worster and J. S. Wettlaufer, Natural Convection, Solute Trapping, and Channel Formation during Solidification of Saltwater, The Journal of Physical Chemistry C Letters, vol.101, issue.32, pp.6132-6136, 1997.

H. Ishiguro and B. Rubinsky, Mechanical Interactions between Ice Crystals and Red Blood Cells during Directional Solidification, Cryobiology, vol.31, pp.483-500, 1994.

G. Gay and M. Azouni, Forced Migration of Nonsoluble and Soluble Metallic Pollutants ahead of a Liquid-Solid Interface during Unidirectional Freezing of Dilute Clayey Suspensions, Crystal Growth & Design, vol.2, issue.2, pp.135-140, 2002.

J. Karlsson, Cryopreservation: freezing and vitrification, Science, vol.296, issue.5568, 2002.

S. Deville, Freeze-Casting of Porous Ceramics: A Review of Current Achievements and Issues, Advanced Engineering Materials, vol.10, issue.3, pp.155-169, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01785741

E. Maximilien-e-launey, . Munch, E. Daan-hein-alsem, A. P. Saiz, R. O. Tomsia et al., A novel biomimetic approach to the design of high-performance ceramic-metal composites, J. R. Soc. Interface, pp.741-753, 2009.

S. Roy and A. Wanner, Metal/ceramic composites from freeze-cast ceramic preforms: Domain structure and elastic properties, Science and Technology, vol.68, issue.5, pp.1136-1143, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00534152

S. Roy, B. Butz, and A. Wanner, Damage evolution and domain-level anisotropy in metal/ceramic composites exhibiting lamellar microstructures, Acta Materialia, vol.58, issue.7, pp.2300-2312, 2010.

M. Tokita, Development of Advanced Spark Plasma Sintering (SPS) Systems and its Industrial Applications, in Pulse Electric Current Synthesis and Processing of Materials, In Ceram. Trans, 2006.

M. Nanko, H. Maruyama, and . Tomino, Neck growth on initial stage of pulse current pressure sintering for coarse atomized powder made of cast-iron, vol.63, 1999.

M. Eriksson, H. Yan, M. Nygren, M. J. Reece, and Z. Shen, Low temperature consolidated lead-free ferroelectric niobate ceramics with improved electrical properties, Journal of Materials Research, vol.25, issue.2, 2010.

S. L. Gallet, L. Campayo, E. Courtois, S. Hoffmann, Y. Grin et al., Spark plasma sintering of iodine-bearing apatite, Journal of Nuclear Materials, vol.400, issue.3, 2010.

L. Campayo, S. L. Gallet, Y. Grin, E. Courtois, F. Bernard et al., Spark plasma sintering of lead phosphovanadate Pb-3(VO4)(1).(6)(PO4)(0.4), Journal of the European Ceramic Society, vol.29, issue.8, 2009.

Y. Zhao, K. Sun, W. Wang, and Y. Wang, Microstructure and anisotropic mechanical properties of graphene nanoplatelet toughened biphasic calcium phosphate composite, Ceramics International, vol.39, issue.7, pp.7627-7634, 2013.

. Ym-kan, . Wang, . Xu, . Zhang, . Yan et al., Spark plasma sintering of bismuth titanate ceramics, Journal of the American Ceramic Society, vol.88, issue.6, 2005.

C. Drouet, C. Largeot, G. Raimbeaux, C. Estournes, G. Dechambre et al., Bioceramics: Spark Plasma Sintering (SPS) of Calcium Phosphates, Adv. Sci. Technol, vol.49, pp.45-50, 2006.

. Sh-risbud, . Groza, and . Kim, Clean grain-boundaries in aluminium nitride ceramics densified without additives by a plasma-activated sintering process. Philosophical Magazine B-Physics of Condensed Matter Statistical Mechanics Eelectronic Optical and Magnetic Properties, vol.69, 1994.

X. J. Chen, K. A. Khor, S. H. Chan, and L. G. Yu, Overcoming the effect of contaminant in solid oxide fuel cell (SOFC) electrolyte: spark plasma sintering (SPS) of 0.5 weight per cent silica-doped yttria-stabilized zirconia (YSZ)

, Materials Science and Engineering, vol.374, issue.1-2, pp.64-71, 2004.

. Zj-shen, M. Peng, and . Nygren, Formidable increase in the superplasticity of ceramics in the presence of an electric field, Advanced Materials, vol.15, issue.12, 2003.

T. Takeuchi, E. Betourne, M. Tabuchi, H. Kageyama, Y. Kobayashi et al., Dielectric properties of sparkplasma-sintered BaTiO(3), Journal of Materials Science, vol.34, issue.5, 1999.

M. Yue, J. Zhang, Y. Xiao, G. Wang, and T. Li, New kind of NdFeB magnet prepared by spark plasma sintering, IEEE TRANSACTIONS ON MAGNETICS, vol.39, issue.6, 2003.

M. Yue, J. X. Zhang, W. Q. Liu, and G. P. Wang, Chemical Stability and Microstructure of Nd-Fe-B Magnet Prepared by Spark Plasma Sintering, Journal of Magnetism and Magnetic Materials, vol.271, issue.2-3, 2004.

P. Pei, X. P. Song, J. Liu, M. Zhao, and G. L. Chen, Improving hydrogen storage properties of Laves phase related BCC solid solution alloy by SPS preparation method, International Journal of Hydrogen Energy, vol.34, issue.20, pp.8597-8602, 2009.

X. B. Zhao, S. H. Yang, Y. Q. Cao, J. L. Mi, Q. Zhang et al., Synthesis of Nanocomposites with Improved Thermoelectric Properties, Journal of Electronic Materials, vol.38, issue.7, 2009.

J. G. Noudem, M. Prevel, A. Veres, D. Chateigner, and J. Galy, Thermoelectric Ca3Co4O9 ceramics consolidated by spark plasma sintering, Journal of Electroceramics, vol.22, issue.1-3, 2009.
URL : https://hal.archives-ouvertes.fr/hal-02149887

K. Amezawa and Y. Nishikawab, Yoichi Tomiic And, and Naoichi Yamamotod. Electrical and Mechanical Properties of Sr-Doped LaPO4 Prepared by Spark Plasma Sintering, Journal of The Electrochemical Society, vol.152, issue.6, 2005.

K. Morita, B. Kim, H. Yoshida-and, and K. Hiraga, Spark plasma sintering condition optimization for producing transparent MgAl2O4 spinel polycrystal, Journal of the American Ceramic Society, vol.92, issue.6, 2009.

T. Nagae, M. Yokota, M. Nose, S. Tomida, T. Kamiya et al., Effects of Pulse Current on an Aluminum Powder Oxide Layer During Pulse Current Pressure Sintering, MaterialsTransactions, vol.43, issue.6, pp.1390-1397, 2002.

A. Wang and O. Ohashi, Titanium Mesh/Rod Joined by Pulse Electric Current Sintering: Effect of Heating Rate, Materials Transactions, vol.47, issue.9, pp.2348-2352, 2006.

R. M. German, Sintering Theory and Practice. Solar-Terrestrial Physics, 1996.

E. A. Olevsky, S. Kandukuri, and L. Froyen, Consolidation Enhancement in Spark Plasma Sintering: Impact of High Heating Rates, Journal of Applied Physics, vol.102, 2007.

L. A. Stanciu, V. Y. Kodash, and J. R. Groza, Effects of heating rate on densification and grain growth during field-assisted sintering of alpha-Al2O3 and MoSi2 powders, Metallurgical and Materials Transactions A-Physical Metallurgy and Materials Science, vol.32, issue.10, 2001.

Z. Shen, M. Johnsson, Z. Zhao, and M. Nygren, Spark Plasma Sintering of Alumina, Journal of the American Ceramic Society, vol.85, issue.8, pp.1921-1927, 2002.

Y. Zhou, K. Hirao, Y. Yamauchi, and S. Kanzaki, Effects of heating rate and particle size on pulse electric current sintering of alumina, Scripta Materialia, vol.48, issue.12, pp.1631-1636, 2003.

U. Anselmi-tamburini, Z. A. Munir, and J. E. Garay, Preparation of Dense Nanostructured Oxide Ceramics with Fine Crystal Size by High-Pressure Spark Plasma Sintering, 2009.

A. Zarkades and F. R. Larson, The science, technology and application of titanium, 1970.

M. Niinomi, Mechanical properties of biomedical titanium alloys, Materials Science and Engineering: A, vol.243, issue.1-2, pp.231-236, 1998.

W. Ronald, D. E. Schutz, and . Thomas, Corrosion of titanium and titanium alloys. ASM Handbook, 1987.

E. Sylvain-deville, G. Maire, A. Bernard-granger, A. Lasalle, C. Bogner et al., Metastable and unstable cellular solidification of colloidal suspensions, Nature Materials, vol.8, issue.12, pp.966-972, 2009.

F. Bouville, E. Maire, . Sylvain-meille, S. Adam, and . Deville, Supplementary information, Nature materials, vol.13, issue.5, 2014.

T. Lube, M. Manner, and R. Danzer, The Miniaturisation of the 4-Point-Bend Test, Fatigue & Fracture of Engineering Materials & Structures, vol.20, issue.11, pp.1605-1616, 1997.

. Astm-c1421-10, Standard Test Methods for Determination of Fracture Toughness of Advanced Ceramics at Ambient Temperature, 2011.

, ASTM E 1820 -01. Standard Test Method for Measurement of Fracture Toughness, 2001.

B. Fegley, P. White, and H. K. Bowen, Preparation of ZirconiaAlumina Powders by Zirconium Alkoxide Hydrolysis, Journal of the American Ceramic Society, vol.68, issue.2, 1985.

N. Claussen and M. Ruhle, Design of transformation-toughened ceramics, Science and Technology of Zirconia, vol.3, p.137, 1980.

N. Claussen, Fracture toughness of Al203 with an unstabilized ZrO2 dispersed phase, Journal of the American Ceramic Society, vol.59, issue.1-2, pp.49-51, 1976.

N. M-ruhle, A. H. Claussen, and . Heuer, Transformation and Microcrack Toughening as Complementary Processes in ZrO2-Toughened Al2O3, Jounrnal of the american ceramic society, vol.69, issue.3, pp.195-197, 1986.

A. H. Deaza, J. Chevalier, G. Fantozzi, M. Schehl, and R. Torrecillas, Crack growth resistance of alumina, zirconia and zirconia toughened alumina ceramics for joint prostheses, Biomaterials, vol.23, issue.3, pp.937-945, 2002.

P. R. Wallace, The band theory of graphite, Physical Review, vol.71, issue.9, pp.622-634, 1947.

W. Choi and J. Lee, Graphene: Synthesis and Applications, 2011.

K. A-k-geim and . Novoselov, The rise of graphene, Nat Mater, vol.6, issue.3, pp.183-191, 2007.

C. Lee, X. Wei, W. Jeffrey, J. Kysar, and . Hone, Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene. Science, vol.321, issue.5887, pp.385-388, 2008.

S. Alexander-a-balandin, W. Ghosh, I. Bao, D. Calizo, F. Teweldebrhan et al., Superior Thermal Conductivity of Single-Layer Graphene, Nano Letters, vol.8, issue.3, pp.902-907, 2008.

M. Pumera, Electrochemistry of graphene: new horizons for sensing and energy storage, The Chemical Record, vol.9, issue.4, pp.211-223, 2009.

N. Mohanty and V. Berry, Graphene-Based Single-Bacterium Resolution Biodevice and DNA Transistor: Interfacing Graphene Derivatives with Nanoscale and Microscale Biocomponents, Nano Letters, vol.8, issue.12, pp.4469-4476, 2008.

J. Wu, M. Agrawal, A. Héctor, Z. Becerril, Z. Bao et al., Organic Light-Emitting Diodes on SolutionProcessed Graphene Transparent Electrodes, ACS Nano, vol.4, issue.1, pp.43-48, 2010.

D. Meryl, S. Stoller, Y. Park, J. Zhu, R. S. An et al., Graphene-Based Ultracapacitors, Nano Letters, vol.8, issue.10, pp.3498-3502, 2008.

A. Rincón, A. S. Chinelatto, and R. Moreno, Tape casting of alumina/zirconia suspensions containing graphene oxide, Journal of the European Ceramic Society, vol.34, issue.7, pp.1819-1827, 2014.

A. Centeno, V. G. Rocha, B. Alonso, A. Fernández, C. F. Gutierrez-gonzalez et al., Graphene for tough and electroconductive alumina ceramics, Journal of the European Ceramic Society, vol.33, pp.3201-3210, 2013.

H. Porwal, S. Grasso, M. K. Mani, and M. J. Reece, In situ reduction of graphene oxide nanoplatelet during spark plasma sintering of a silica matrix composite, Journal of the European Ceramic Society, vol.34, issue.14, pp.3357-3364, 2014.

F. Heinemann, M. Launspach, and K. Gries, Gastropod nacre: Structure, properties and growth -biological, chemical and physical basics, Biophysical Chemistry, vol.153, pp.126-153, 2011.
DOI : 10.1016/j.bpc.2010.11.003

T. Olivier, V. G. Picot, C. Rocha, N. Ferraro, . Ni et al., Using graphene networks to build bioinspired self-monitoring ceramics, Nature Communications, vol.8, p.14425, 2017.

C. G. Levi, G. J. Abbaschian, and R. Mehrabian, Interface interactions during fabrication of aluminum alloy-alumina fiber composites, Metallurgical Transactions A, vol.9, issue.5, pp.697-711, 1978.

A. Leger, N. R. Calderon, R. Charvet, W. Dufour, C. Bacciarini et al., Capillarity in pressure infiltration: Improvements in characterization of high-temperature systems, Journal of Materials Science, vol.47, issue.24, pp.8419-8430, 2012.

I. O. Ozer, E. Suvaci, B. Karademir, J. M. Missiaen, C. P. Carry et al., Anisotropic sintering shrinkage in alumina ceramics containing oriented platelets, Journal of the American Ceramic Society, vol.89, issue.6, pp.1972-1976, 2006.
DOI : 10.1111/j.1551-2916.2006.01039.x

W. G. Burgers, On the process of transition of the cubic-body-centered modification into the hexagonal-close-packed modification of zirconium, Physica, pp.561-586, 1934.

L. Germain, S. Dey, M. Humbert, and N. Gey, Determination of parent orientation maps in advanced titanium-based alloys, Journal of microscopy, vol.227, pp.284-291, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00181744

Y. Su, T. Liu, X. Li, R. Chen, H. Ding et al., Lamellar orientation control in directionally solidified TiAl intermetallics, China Foundry, vol.11, issue.4, pp.219-231, 2014.

, Aerospace Specification Metals Inc. consulted on, vol.15

H. Pierson, Handbook of Refractory Carbides and Nitrides: Properties, Characteristics, Processing and Apps, p.133, 1996.