, sources, cas d'usage et methodes Sommaire Introduction

.. .. Concept-de-la-récupération-d'´-energie,

.. .. Les,

, Rayonnements lumineux (solaires)

.. .. Rayonnements,

, Techniques de conversion des ressourcesénergétiquesressources´ressourcesénergétiques ambiantes enélectricitéen´enélectricité et leurs applications

, Amélioration de la récupération

, Les nanofluides et leur rapport avec l'augmentation du transfert convectif . . . 111 5.2 Choix des nanoparticules/fluide de base et méthode de

.. .. Etude-expérimentale, 117 5.4.1 Préparation d'un nanofluide à base de nanoparticules de cuivre et l'huile de colza 117 5.4.2 Propriétés thermophysiques du nanofluide préparé

.. .. Conclusion,

M. Lossec, Systèmes multisources de récupé ration d'énergie dans l'environnement humain : modélisation et optimisation du dimensionnement, 2011.

S. Roundy, P. K. Wright, and J. Rabaey, A study of low level vibrations as a power source for wireless sensor nodes, Computer communications, vol.26, issue.11, pp.1131-1144, 2003.

A. Eddiai, Caractérisation et modélisation des polymères électro-actifs : Application à la récupération d'éner-gie

F. Gallee, Micro-ondes et économie d'énergie, Proc. of Journée TIC et développement durable

A. Khaligh, P. Zeng, and C. Zheng, Kinetic energy harvesting using piezoelectric and electromagnetic technologies -state of the art, IEEE Transactions on Industrial Electronics, vol.57, issue.3, pp.850-860, 2010.

J. M. Donelan, Q. Li, V. Naing, J. Hoffer, D. Weber et al., Biomechanical energy harvesting : generating electricity during walking with minimal user effort, Science, vol.319, issue.5864, pp.807-810, 2008.

Y. Liu, K. Ren, H. F. Hofmann, and Q. Zhang, Electrostrictive polymers for mechanical energy harvesting, Smart Structures and Materials, International Society for Optics and Photonics, pp.17-28, 2004.

F. Belhora, A. Hajjaji, E. Fatnani, F. Zahra, A. Rjafallah et al., Energy harvesting using hybridization of dielectric nanocomposites and electrets, Polymers for Advanced Technologies, vol.26, issue.6, pp.569-573, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01769260

P. D. Mitcheson, E. M. Yeatman, G. K. Rao, A. S. Holmes, and T. C. Green, Energy harvesting from human and machine motion for wireless electronic devices, Proceedings of the IEEE, vol.96, issue.9, pp.1457-1486, 2008.

J. A. Paradiso and T. Starner, Energy scavenging for mobile and wireless electronics, IEEE Pervasive computing, vol.4, issue.1, pp.18-27, 2005.

F. Simjee and P. H. Chou, Everlast : long-life, supercapacitor-operated wireless sensor node, Low Power Electronics and Design, 2006. ISLPED'06. Proceedings of the 2006 International Symposium on, pp.197-202, 2006.

I. Stark, Invited talk : Thermal energy harvesting with thermo life, Wearable and Implantable Body Sensor Networks, pp.19-22, 2006.

D. Guyomar, G. Sebald, S. Pruvost, and M. Lallart, Ambient energy harvesting using ferroelectric materials, PROCEEDINGS-SPIE THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING, vol.6928, p.6928, 1999.

S. Lang, Ferroelectrics and related phenomena, vol.562, 1974.

S. B. Lang, Pyroelectricity : from ancient curiosity to modern imaging tool, Physics today, vol.58, issue.8, pp.31-36, 2005.

G. Gaussorgues, La thermographie infrarouge : principes-technologie-applications

J. Marshall and F. Schott, Open-ocean convection : Observations, theory, and models, Reviews of Geophysics, vol.37, issue.1, pp.1-64, 1999.

A. Cuadras, M. Gasulla, and V. Ferrari, Thermal energy harvesting through pyroelectricity, vol.158, pp.132-139, 2010.

G. Sebald, S. Pruvost, and D. Guyomar, Energy harvesting based on ericsson pyroelectric cycles in a relaxor ferroelectric ceramic, Smart Materials and Structures, vol.17, issue.1, p.15012, 2007.

F. Y. Lee, A. Navid, and L. Pilon, Pyroelectric waste heat energy harvesting using heat conduction, Applied thermal engineering, vol.37, pp.30-37, 2012.

M. Grätzel, Solar energy conversion by dye-sensitized photovoltaic cells, Inorganic chemistry, vol.44, issue.20, pp.6841-6851, 2005.

C. X. Guo, G. H. Guai, and C. M. Li, Graphene based materials : enhancing solar energy harvesting, Advanced Energy Materials, vol.1, issue.3, pp.448-452, 2011.

F. Belhora, P. Cottinet, D. Guyomar, L. Petit, L. Lebrun et al., Optimization of energy harvesting conversion using the hybridization of electrostrictive polymers and electrets, Sensors and Actuators A : Physical, vol.189, pp.390-398, 2013.

C. Graf, J. Maas, and D. Schapeler, Energy harvesting cycles based on electro active polymers, in : SPIE Smart Structures and Materials+ Nondestructive Evaluation and Health Monitoring, International Society for Optics and Photonics, pp.764217-764217, 2010.

C. Navau, J. Prat-camps, and A. Sanchez, Magnetic energy harvesting and concentration at a distance by transformation optics, Physical review letters, vol.109, issue.26, p.263903, 2012.

H. Reinisch, S. Gruber, H. Unterassinger, M. Wiessflecker, G. Hofer et al., An electromagnetic energy harvesting system with 190 nw idle mode power consumption for a baw based wireless sensor node, IEEE Journal of solid-state circuits, vol.46, issue.7, pp.1728-1741, 2011.

S. Priya, Advances in energy harvesting using low profile piezoelectric transducers, Journal of electroceramics, vol.19, issue.1, pp.167-184, 2007.

J. K. Ward and S. Behrens, Adaptive learning algorithms for vibration energy harvesting, Smart Materials and Structures, vol.17, issue.3, p.35025, 2008.

H. Zhu, Thermal energy harvesting from temperature fluctuations, 2011.
URL : https://hal.archives-ouvertes.fr/tel-00698421

J. A. Paradiso and T. E. Starner, Human-generated power for mobile electronics, Low-power electronics design, pp.45-46, 2004.

T. Markvart, Solar electricity, vol.6, 2000.

S. P. Beeby, M. J. Tudor, and N. M. White, Energy harvesting vibration sources for microsystems applications, Measurement Science and Technology, vol.17, issue.12, pp.175-195, 2006.

P. D. Mitcheson, E. M. Yeatman, G. K. Rao, A. S. Holmes, and T. C. Green, Energy harvesting from human and machine motion for wireless electronic devices, Proceedings of the IEEE, vol.96, issue.9, pp.1457-1486, 2008.

C. Jean-mistral and S. Basrour, Récupération de l'énergie des vibrations mécaniques pour générer de l'électricité, p.135, 2010.

L. Solymar and D. Walsh, Lectures on the electrical properties of materials

K. W. Kwok, H. L. Chan, and C. L. Choy, Evaluation of the material parameters of piezoelectric materials by various methods, IEEE transactions on ultrasonics, ferroelectrics, and frequency control, vol.44, issue.4, pp.733-742, 1997.

J. Kymissis, C. Kendall, J. Paradiso, and N. Gershenfeld, Parasitic power harvesting in shoes, Second International Symposium on, pp.132-139, 1998.

A. Badel, D. Guyomar, E. Lefeuvre, and C. Richard, Efficiency enhancement of a piezoelectric energy harvesting device in pulsed operation by synchronous charge inversion, Journal of Intelligent Material Systems and Structures, vol.16, issue.10, pp.889-901, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00404198

D. Guyomar, A. Badel, E. Lefeuvre, and C. Richard, Toward energy harvesting using active materials and conversion improvement by nonlinear processing, IEEE transactions on ultrasonics, ferroelectrics, and frequency control, vol.52, issue.4, pp.584-595, 2005.

C. Richard, D. Guyomar, D. Audigier, and H. Bassaler, Enhanced semi-passive damping using continuous switching of a piezoelectric device on an inductor, SPIE's 7th Annual International Symposium on Smart Structures and Materials, International Society for Optics and Photonics, pp.288-299, 2000.

Y. Liu, K. L. Ren, H. F. Hofmann, and Q. Zhang, Investigation of electrostrictive polymers for energy harvesting, ieee transactions on ultrasonics, ferroelectrics, and frequency control, vol.52, issue.12, pp.2411-2417, 2005.

S. Meninger, J. O. Mur-miranda, R. Amirtharajah, A. Chandrakasan, and J. H. Lang, Vibration-to-electric energy conversion, IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol.9, issue.1, pp.64-76, 2001.

S. Roundy, P. K. Wright, and J. M. Rabaey, Energy scavenging for wireless sensor networks, 2003.

N. Reich, M. Veefkind, E. Alsema, B. Elzen, and W. Van-sark, Industrial design of a pv powered consumer application : Case study of a solar powered wireless computer mouse, Power, vol.1, issue.2, p.3, 2005.

X. Jiang, J. Polastre, and D. Culler, Perpetual environmentally powered sensor networks, Proceedings of the 4th international symposium on Information processing in sensor networks, p.65, 2005.

V. Raghunathan, A. Kansal, J. Hsu, J. Friedman, and M. Srivastava, Design considerations for solar energy harvesting wireless embedded systems, Proceedings of the 4th international symposium on Information processing in sensor networks, p.64, 2005.

C. Park and P. H. Chou, Ambimax : Autonomous energy harvesting platform for multi-supply wireless sensor nodes, Sensor and Ad Hoc Communications and Networks, 2006. SECON'06, vol.1, pp.168-177, 2006.

C. B. Favarel, Optimisation de générateurs thermoélectriques pour la production d'électricité, 2014.

G. Min, D. M. Rowe, and K. Kontostavlakis, Thermoelectric figure-of-merit under large temperature differences, Journal of Physics D : Applied Physics, vol.37, issue.8, p.1301, 2004.

D. M. Rowe, T hermoelectric waste heat recovery as a renewable energy source, Int. J. Innov. Energy Syst. Power, vol.1, issue.1, pp.13-23, 2006.

S. B. Riffat and X. Ma, Thermoelectrics : a review of present and potential applications, Applied thermal engineering, vol.23, issue.8, pp.913-935, 2003.

J. Safioui, Nouvelle technique de photo-inscription dans linbo3 : autofocalisation contrôlée par effet pyroélec-trique, 2010.

B. Nogarede, C. Henaux, J. Rouchon, and E. Duhayon, Electroactive materials : from piezomotors to electroactive morphing, pp.4437-4441, 2006.

L. Nougaret, Elaboration et caracterisation de couches minces pyroelectriques de litao 3 par pulverisation cathodique rf magnetron pour des applications detecteurs ir, 2007.
URL : https://hal.archives-ouvertes.fr/tel-00327688

J. F. Nye, Physical properties of crystals : their representation by tensors and matrices, 1985.

K. C. Kao, Dielectric phenomena in solids, 2004.

G. Sebald, E. Lefeuvre, and D. Guyomar, Pyroelectric energy conversion : optimization principles, IEEE transactions on ultrasonics, ferroelectrics, and frequency control, vol.55, issue.3

G. Sebald, L. Seveyrat, D. Guyomar, L. Lebrun, B. Guiffard et al., Electrocaloric and pyroelectric properties of 0.75 pb (mg 1/ 3 nb 2/ 3) o 3-0.25 pb ti o 3 single crystals, Journal of applied physics, vol.100, issue.12, p.124112, 2006.

W. Clingman and R. Moore, Application of ferroelectricity to energy conversion processes, Journal of Applied Physics, vol.32, issue.4, pp.675-681, 1961.

J. Childress, Application of a ferroelectric material in an energy conversion device, Journal of Applied Physics, vol.33, issue.5, pp.1793-1798, 1962.

S. Hoh, Conversion of thermal to electrical energy with ferroelectric materials, Proceedings of the IEEE, vol.51, issue.5, pp.838-845, 1963.

E. Fatuzzo, H. Kiess, and R. Nitsche, Theoretical efficiency of pyroelectric power converters, Journal of Applied Physics, vol.37, issue.2, pp.510-516, 1966.

J. A. Gonzalo, Ferroelectric materials as energy converters, Ferroelectrics, vol.11, issue.1, pp.423-429, 1976.

R. B. Olsen and D. Evans, Pyroelectric energy conversion : hysteresis loss and temperature sensitivity of a ferroelectric material, Journal of applied physics, vol.54, issue.10, pp.5941-5944, 1983.

R. B. Olsen, D. A. Bruno, J. M. Briscoe, and E. W. Jacobs, Pyroelectric conversion cycle of vinylidene fluoridetrifluoroethylene copolymer, Journal of applied physics, vol.57, issue.11, pp.5036-5042, 1985.

R. B. Olsen, D. A. Bruno, J. M. Briscoe, and E. W. Jacobs, High electric field resistivity and pyroelectric properties of vinylidene fluoride-trifluoroethylene copolymer, Journal of applied physics, vol.58, issue.8, pp.2854-2860, 1985.

A. Navid and L. Pilon, Pyroelectric energy harvesting using olsen cycles in purified and porous poly (vinylidene fluoride-trifluoroethylene), Smart Materials and Structures, vol.20, issue.2, p.25012, 2011.

D. Guyomar, G. Sebald, E. Lefeuvre, and A. Khodayari, Toward heat energy harvesting using pyroelectric material, Journal of intelligent material systems and structures, vol.20, issue.3, pp.265-271, 2009.

G. Sebald, D. Guyomar, and A. Agbossou, On thermoelectric and pyroelectric energy harvesting, Smart Materials and Structures, vol.18, issue.12, p.125006, 2009.

G. Sebald, D. Guyomar, and A. Agbossou, On thermoelectric and pyroelectric energy harvesting, Smart Materials and Structures, vol.18, issue.12, p.125006, 2009.

H. S. Carslaw and J. C. Jaeger, Conduction of heat in solids, 1959.

A. Neville, Propriétés des bétons» editions eyrolles, 2000.

D. L. Hartmann, L. A. Moy, and Q. Fu, Tropical convection and the energy balance at the top of the atmosphere, Journal of Climate, vol.14, issue.24, pp.4495-4511, 2001.

P. Cardin and P. Olson, Chaotic thermal convection in a rapidly rotating spherical shell : consequences for flow in the outer core, Physics of the earth and planetary interiors, vol.82, issue.3-4, pp.235-259, 1994.

D. P. Mckenzie, J. M. Roberts, and N. O. Weiss, Convection in the earth's mantle : towards a numerical simulation, Journal of Fluid Mechanics, vol.62, issue.03, pp.465-538, 1974.

F. Cattaneo, T. Emonet, and N. Weiss, On the interaction between convection and magnetic fields, vol.588, p.1183, 2003.

A. Brent, V. Voller, and K. Reid, Enthalpy-porosity technique for modeling convection-diffusion phase change : application to the melting of a pure metal, Numerical Heat Transfer, Part A Applications, vol.13, issue.3, pp.297-318, 1988.

P. F. Linden, The fluid mechanics of natural ventilation, Annual review of fluid mechanics, vol.31, issue.1, pp.201-238, 1999.

O. Turan, N. Chakraborty, and R. J. Poole, Laminar rayleigh-bénard convection of yield stress fluids in a square enclosure, Journal of Non-Newtonian Fluid Mechanics, vol.171, pp.83-96, 2012.

A. Y. Gelfgat, Different modes of rayleigh-bénard instability in two-and three-dimensional rectangular enclosures, Journal of Computational Physics, vol.156, issue.2, pp.300-324, 1999.

G. De-vahl and . Davis, Natural convection of air in a square cavity : a bench mark numerical solution, International Journal for numerical methods in fluids, vol.3, issue.3, pp.249-264, 1983.

M. Gibert, H. Pabiou, J. Tisserand, B. Gertjerenken, B. Castaing et al., Heat convection in a vertical channel : Plumes versus turbulent diffusion, Physics of Fluids, vol.21, issue.3, p.35109, 2009.
URL : https://hal.archives-ouvertes.fr/ensl-00377244

J. Zhang, S. Childress, and A. Libchaber, Non-boussinesq effect : Thermal convection with broken symmetry, Physics of FLUIDS, vol.9, issue.4, pp.1034-1042, 1997.

J. A. Glazier, T. Segawa, A. Naert, and M. Sano, Evidence against "ultrahard" thermal turbulence at very high rayleigh numbers, Nature, vol.398, issue.6725, pp.307-310, 1999.

T. Segawa, A. Naert, and M. Sano, Matched boundary layers in turbulent rayleigh-benard convection of mercury, Physical Review E, vol.57, issue.1, p.557, 1998.

J. Maveety and J. Leith, Heat transfer in rayleigh-benard convection with air in moderate size containers, International journal of heat and mass transfer, vol.41, pp.785-796, 1998.

P. Muralt, Micromachined infrared detectors based on pyroelectric thin films, Reports on Progress in Physics, vol.64, issue.10, p.1339, 2001.

R. Whatmore, Pyroelectric devices and materials, Reports on progress in physics, vol.49, issue.12, p.1335, 1986.

M. Lee, R. Guo, and A. S. Bhalla, Pyroelectric sensors, Journal of electroceramics, vol.2, issue.4, pp.229-242, 1998.

J. Han, A. Jouanne, T. Le, K. Mayaram, and T. Fiez, Novel power conditioning circuits for piezoelectric micropower generators, Applied Power Electronics Conference and Exposition, vol.3, pp.1541-1546, 2004.

G. Sebald, L. Lebrun, B. Guiffard, and D. Guyomar, Morphotropic pmn-pt system investigated by comparison between ceramics and crystal, Journal of the european ceramic society, vol.25, issue.12, pp.2509-2513, 2005.

S. Xu, K. D. Ngo, T. Nishida, G. Chung, and A. Sharma, Converter and controller for micro-power energy harvesting, Applied Power Electronics Conference and Exposition, vol.1, pp.226-230, 2005.

M. Davis, D. Damjanovic, and N. Setter, Pyroelectric properties of (1-x) pbtio 3 and (1-x) pb (zn 1/ 3 nb 2/ 3) o 3-x pbtio 3 single crystals measured using a dynamic method, Journal of applied physics, vol.96, issue.5, pp.2811-2815, 2004.

W. Ng, B. Ploss, H. L. Chan, F. G. Shin, and C. Choy, Pyroelectric properties of pzt/p (vdf-trfe) 0-3 composites, Proceedings of the 2000 12th IEEE International Symposium on, vol.2, pp.767-770, 2000.

D. Kang, M. Han, S. Lee, and S. Song, Dielectric and pyroelectric properties of barium strontium calcium titanate ceramics, Journal of the European Ceramic Society, vol.23, issue.3, pp.515-518, 2003.

A. Barranco, F. Piñar, and O. P. Martínez, Plzt ferroelectric ceramics on the morphotropic boundary phase. study as possible pyroelectric sensors, Physica status solidi (a), vol.186, issue.3, pp.479-485, 2001.

A. Cuadras, M. Gasulla, and V. Ferrari, Thermal energy harvesting through pyroelectricity, vol.158, pp.132-139, 2010.

S. Dalola, V. Ferrari, and D. Marioli, Pyroelectric effect in pzt thick films for thermal energy harvesting in lowpower sensors, Procedia Engineering, vol.5, pp.685-688, 2010.

Y. Xu, Ferroelectric Materials and Their applications, 1991.

E. Minazara, D. Vasic, F. Costa, and G. Poulin, Piezoelectric diaphragm for vibration energy harvesting, Ultrasonics, vol.44, pp.699-703, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00843671

V. Borisyonok, T. Volk, A. Koshelev, E. Novitskii, S. Shramchenko et al., Measurement of the pyroelectric coefficient of some crystals by dynamic and static methods, 1988.

V. Ferrari, A. Ghisla, D. Marioli, and A. Taroni, Array of pzt pyroelectric thick-film sensors for contactless measurement of xy position, IEEE sensors journal, vol.3, issue.2, pp.212-217, 2003.

A. Cuadras, M. Gasulla, A. Ghisla, and V. Ferrari, Energy harvesting from pzt pyroelectric cells, Instrumentation and Measurement Technology Conference, pp.1668-1672, 2006.

A. Chynoweth, Dynamic method for measuring the pyroelectric effect with special reference to barium titanate, Journal of applied physics, vol.27, issue.1, pp.78-84, 1956.

D. Guyomar, Y. Jayet, L. Petit, E. Lefeuvre, T. Monnier et al., Synchronized switch harvesting applied to selfpowered smart systems : Piezoactive microgenerators for autonomous wireless transmitters, Sensors and Actuators A : Physical, vol.138, issue.1, pp.151-160, 2007.
URL : https://hal.archives-ouvertes.fr/hal-01954596

M. Lallart, D. Guyomar, Y. Jayet, L. Petit, E. Lefeuvre et al., Synchronized switch harvesting applied to self-powered smart systems : Piezoactive microgenerators for autonomous wireless receivers, Sensors and Actuators A : Physical, vol.147, issue.1, pp.263-272, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00434011

A. Khodayari, Harvesting energy from temperature variations, 2009.

H. A. Sodano, D. Guyomar, G. Sebald, S. Pruvost, M. Lallart et al., Energy harvesting from ambient vibrations and heat, Journal of Intelligent Material Systems and Structures, vol.20, issue.5, pp.609-624, 2009.

C. Richard, D. Guyomar, D. Audigier, and G. Ching, Semi-passive damping using continuous switching of a piezoelectric device, symposium on smart structures and materials, International Society for Optics and Photonics, pp.104-111, 1999.

M. Penella and M. Gasulla, A review of commercial energy harvesters for autonomous sensors, Instrumentation and Measurement Technology Conference Proceedings, pp.1-5, 2007.

A. Harb, Energy harvesting : State-of-the-art, Renewable Energy, vol.36, issue.10, pp.2641-2654, 2011.

P. Mane, J. Xie, K. K. Leang, and K. Mossi, Cyclic energy harvesting from pyroelectric materials, IEEE transactions on ultrasonics, ferroelectrics, and frequency control, vol.58, issue.1, pp.10-17, 2011.
DOI : 10.1109/tuffc.2011.1769

P. Cottinet, D. Guyomar, B. Guiffard, C. Putson, and L. Lebrun, Modeling and experimentation on an electrostrictive polymer composite for energy harvesting, IEEE Transactions on ultrasonics, ferroelectrics, and frequency control, vol.57, issue.4, pp.774-784, 2010.

M. Lallart and D. Guyomar, An optimized self-powered switching circuit for non-linear energy harvesting with low voltage output, Smart Materials and Structures, vol.17, issue.3, p.35030, 2008.
DOI : 10.1088/0964-1726/17/3/035030

A. Eddiai, M. Meddad, K. Sbiaai, Y. Boughaleb, A. Hajjaji et al., A new technique for maximizing the energy harvested using electrostrictive polymer composite, Optical Materials, vol.36, issue.1, pp.13-17, 2013.

M. Meddad, A. Eddiai, D. Guyomar, S. Belkhiat, A. Hajjaji et al., Evaluation by fast fourier transforms analysis of energy harvesting in electrostrictive polymers driven by an electric field and a mechanical excitation, Journal of Intelligent Material Systems and Structures, vol.24, issue.4, pp.411-420, 2013.

M. Meddad, A. Eddiai, A. Cherif, D. Guyomar, and A. Hajjaji, Enhancement of electrostrictive polymer power harvesting using new technique sshi-max, Optical and Quantum Electronics, vol.48, issue.2, p.94, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01769141

M. Amokrane, A. Baysse, B. Nogarede, and M. Rguiti, Pyroelectric power harvesting using a lead-lanthanumzirconate-titanate (7/60/40 plzt) pyroelectric cell, in : Electronics, Control, Measurement, Signals and their application to Mechatronics (ECMSM), IEEE 11th International Workshop of, pp.1-6, 2013.

J. Dewulf, H. Van-langenhove, B. Van-de, and . Velde, Exergy-based efficiency and renewability assessment of biofuel production, Environmental science & technology, vol.39, issue.10, pp.3878-3882, 2005.

J. A. Rice, K. Mechitov, S. Sim, T. Nagayama, S. Jang et al., Flexible smart sensor framework for autonomous structural health monitoring, Smart structures and Systems, vol.6, issue.5-6, pp.423-438, 2010.
DOI : 10.12989/sss.2010.6.5_6.423

S. Jang, H. Jo, S. Cho, K. Mechitov, J. A. Rice et al., Structural health monitoring of a cable-stayed bridge using smart sensor technology : deployment and evaluation, Smart Structures and Systems, vol.6, issue.5-6, pp.439-459, 2010.

Q. Chi, H. Yan, C. Zhang, Z. Pang, and L. D. Xu, A reconfigurable smart sensor interface for industrial wsn in iot environment, IEEE transactions on industrial informatics, vol.10, issue.2, pp.1417-1425, 2014.

G. J. Pottie and W. J. Kaiser, Wireless integrated network sensors, Communications of the ACM, vol.43, issue.5, pp.51-58, 2000.
DOI : 10.1145/332833.332838

J. M. Rabaey, M. J. Ammer, J. L. Silva, D. Patel, and S. Roundy, Picoradio supports ad hoc ultra-low power wireless networking, Computer, vol.33, issue.7, pp.42-48, 2000.
DOI : 10.1109/2.869369

E. H. Callaway, Wireless sensor networks : architectures and protocols, 2003.

N. Correal and N. Patwari, Wireless sensor networks : Challenges and opportunities, MPRG/Virgina Tech Wireless Symposium, 2001.

I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, Wireless sensor networks : a survey, Computer networks, vol.38, issue.4, pp.393-422, 2002.
DOI : 10.1002/9780470515181

URL : https://onlinelibrary.wiley.com/doi/pdf/10.1002/9780470515181.fmatter

W. K. Seah, Z. A. Eu, and H. Tan, Wireless sensor networks powered by ambient energy harvesting (wsn-heap)-survey and challenges, in : Wireless Communication, Vehicular Technology, Information Theory and Aerospace & Electronic Systems Technology, Wireless VITAE 2009. 1st International Conference on, pp.1-5, 2009.

L. Wang and F. Yuan, Vibration energy harvesting by magnetostrictive material, Smart Materials and Structures, vol.17, issue.4, p.45009, 2008.
DOI : 10.1088/0964-1726/17/4/045009

A. Jacobi and R. Shah, Heat transfer surface enhancement through the use of longitudinal vortices : a review of recent progress, Experimental Thermal and Fluid Science, vol.11, issue.3, pp.295-309, 1995.

J. A. Eastman, S. Phillpot, S. Choi, and P. Keblinski, Thermal transport in nanofluids 1, vol.34, pp.219-246, 2004.

K. Teng, P. Hsiao, S. Hung, C. Chieng, M. Liu et al., Enhanced thermal conductivity of nanofluids diagnosis by molecular dynamics simulations, Journal of nanoscience and nanotechnology, vol.8, issue.7, pp.3710-3718, 2008.

S. Li and J. Eastman, Measuring thermal conductivity of fluids containing oxide nanoparticles, J. Heat Transf, vol.121, issue.2, pp.280-289, 1999.

J. A. Eastman, S. Choi, S. Li, W. Yu, and L. Thompson, Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles, Applied physics letters, vol.78, issue.6, pp.718-720, 2001.

X. Wang and A. S. Mujumdar, Heat transfer characteristics of nanofluids : a review, International journal of thermal sciences, vol.46, issue.1, pp.1-19, 2007.

S. K. Das, N. Putra, and W. Roetzel, Pool boiling characteristics of nano-fluids, International journal of heat and mass transfer, vol.46, issue.5, pp.851-862, 2003.

S. Ozerinc, Heat transfer enhancement with nanofluids

E. V. Timofeeva, J. L. Routbort, and D. Singh, Particle shape effects on thermophysical properties of alumina nanofluids, Journal of Applied Physics, vol.106, issue.1, p.14304, 2009.

J. C. Maxwell, A treatise on electricity and magnetism, vol.1, p.1881

D. Bruggeman, Calculation of various physics constants in heterogenous substances i dielectricity constants and conductivity of mixed bodies from isotropic substances, Ann. Phys, vol.24, issue.7, pp.636-664, 1935.

R. Hamilton and O. Crosser, Thermal conductivity of heterogeneous two-component systems, Industrial & Engineering chemistry fundamentals, vol.1, issue.3, pp.187-191, 1962.

P. Estellé, S. Halelfadl, N. Doner, and T. Maré, Shear history effect on the viscosity of carbon nanotubes water-based nanofluid, Current Nanoscience, vol.9, issue.2, pp.225-230, 2013.

B. Aladag, S. Halelfadl, N. Doner, T. Maré, S. Duret et al., Experimental investigations of the viscosity of nanofluids at low temperatures, Applied energy, pp.876-880, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00707410

C. Nguyen, F. Desgranges, N. Galanis, G. Roy, T. Maré et al., Viscosity data for al2o3-water nanofluid-hysteresis : is heat transfer enhancement using nanofluids reliable, International Journal of Thermal Sciences, vol.47, issue.2, pp.103-111, 2008.

I. Mahbubul, R. Saidur, and M. Amalina, Latest developments on the viscosity of nanofluids, International Journal of Heat and Mass Transfer, vol.55, issue.4, pp.874-885, 2012.

Y. Li, S. Tung, E. Schneider, and S. Xi, A review on development of nanofluid preparation and characterization, Powder Technology, vol.196, issue.2, pp.89-101, 2009.

A. Einstein, A new determination of molecular dimensions, Ann. Phys, vol.19, issue.2, pp.289-306, 1906.

H. Brinkman, The viscosity of concentrated suspensions and solutions, The Journal of Chemical Physics, vol.20, issue.4, pp.571-571, 1952.

I. M. Krieger and T. J. Dougherty, A mechanism for non-newtonian flow in suspensions of rigid spheres, Transactions of the Society of Rheology, vol.3, issue.1, pp.137-152, 1959.

Y. Xuan and W. Roetzel, Conceptions for heat transfer correlation of nanofluids, International Journal of heat and Mass transfer, vol.43, issue.19, pp.3701-3707, 2000.

H. Hanley, J. Buongiorno, T. Mckrell, and L. Hu, Measurement and model validation of nanofluid specific heat capacity with differential scanning calorimetry, Advances in Mechanical Engineering

H. Hanley, J. Buongiorno, T. Mckrell, and L. Hu, Measurement and model validation of nanofluid specific heat capacity with differential scanning calorimetry, Advances in Mechanical Engineering

S. Ferrouillat, A. Bontemps, O. Poncelet, O. Soriano, and J. Gruss, Influence of nanoparticle shape factor on convective heat transfer of water-based zno nanofluids : performance evaluation criterion, Int J Mech Ind Eng, vol.1, issue.2, pp.7-13, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01664938

Q. Li, Y. Xuan, and J. Wang, Investigation on convective heat transfer and flow features of nanofluids, Journal of Heat transfer, vol.125, pp.151-155, 2003.

H. Salhi and M. Si-ameur, Convection naturelle dans les enceintes : nanofluide, Revue des Energies Renouvelables, vol.15, pp.121-130, 2012.

G. Bachir, R. Sawli, C. Fakih, and A. Mojtabi, Etude du transfert de chaleur en convection naturelle dans les nanofluides, pp.1-6, 2008.

A. Hadaoui, Effets de taille et de concentration sur les propriétés thermiques et rhéologiques des nanofluides, 2010.

W. Yu and H. Xie, A review on nanofluids : preparation, stability mechanisms, and applications, Journal of Nanomaterials, vol.2012, p.1, 2012.

A. K. Santra, S. Sen, and N. Chakraborty, Study of heat transfer due to laminar flow of copper-water nanofluid through two isothermally heated parallel plates, International Journal of Thermal Sciences, vol.48, issue.2, pp.391-400, 2009.

H. Jiang, H. Li, C. Zan, F. Wang, Q. Yang et al., Temperature dependence of the stability and thermal conductivity of an oil-based nanofluid, Thermochimica Acta, vol.579, pp.27-30, 2014.

S. Z. Heris, S. G. Etemad, and M. N. Esfahany, Experimental investigation of oxide nanofluids laminar flow convective heat transfer, International Communications in Heat and Mass Transfer, vol.33, issue.4, pp.529-535, 2006.

A. Behzadmehr, M. Saffar-avval, and N. Galanis, Prediction of turbulent forced convection of a nanofluid in a tube with uniform heat flux using a two phase approach, International Journal of Heat and Fluid Flow, vol.28, issue.2, pp.211-219, 2007.

F. Z. El-fatnani, D. Guyomar, F. Belhora, M. Mazroui, Y. Boughaleb et al., A new concept to harvest thermal energy using pyroelectric effect and Rayleigh Benard convections, The European Physical Journal -Plus, 2016.

F. Z. El-fatnani, D. Guyomar, F. Belhora, M. Mazroui, and Y. Boughaleb, Optimization and improvement of thermal energy harvesting by using pyroelectric matrials, Optical Materials, Janvier, 2016.

F. Belhora, A. Hajjaji, M. Mazroui, F. Z. El-fatnani, A. Rjafallah et al., Energy harvesting using hybridization of dielectric nanocomposites and electrets, Polymers Advanced Technologies, Février, 2015.

F. Z. El-fatnani, D. Guyomar, F. Belhora, M. Mazroui, Y. Boughaleb et al., Optimization of pyroelectric energy trough natural convection : Application in oil level sensor, Journal of Thermophysics ans Heat Transfer, 2017.

F. Z. El-fatnani, D. Guyomar, M. Mazroui, Y. Boughaleb, and F. Belhora, Infrared radiation for pyroelectric energy harvesting using PZT ceramic buzzer, Sensor Letters, Soumis le 02 Mai, Communications orales dans des congrès nationaux et internationaux, 2017.

F. Z. El-fatnani, F. Belhora, D. Guyomar, M. Mazroui, and Y. Boughaleb, Mechanical and thermal energy harvesting using smart materials, st International Conference on Solar Energy and Materials, 21-23 Mars, 2016.

F. Z. El-fatnani, M. Mazroui, D. Guyomar, F. Belhora, and Y. Boughaleb, Thermal Energy Harvesting Using Pyroelectric Effect, International meeting on Nano and smart materials for Renewable Energy, pp.28-29, 2016.

F. Z. El-fatnani, M. Mazroui, D. Guyomar, F. Belhora, and Y. Boughaleb, Thermal Energy Harvesting Through Natural Convection and Pyroelectric Material, 1 st International Conférence On Theoretical Physics and High Energy Physics, pp.22-24, 2016.

F. Z. El-fatnani, M. Mazroui, D. Guyomar, F. Belhora, and Y. Boughaleb, Récupération d'énergie thermique par effet pyroélectrique, Journée Thématique internationale sur les matériaux avancés pour les nouvelles technologies, 2014.

F. Z. El-fatnani, D. Guyomar, F. Belhora, M. Mazroui, and Y. Boughaleb, Optimization and Improvement of Energy Harvesting by Using Hybridization of Dielectric Nanocomposites and Electrets, Conférence Internationale sous le thème : Les Matériaux Fonctionnels et leurs Applications Technologiques, 24 Octobre, 2014.

F. Z. El-fatnani, M. Mazroui, D. Guyomar, F. Belhora, and Y. Boughaleb, Optimization and improvement of thermal energy harvesting by using pyroelectric materials and Infrared rays, Journée scientifique sur les Matériaux avancés : Applications et Devenir 02 Juin, 2016.

F. Z. El-fatnani, D. Guyomar, M. Mazroui, F. Belhora, and Y. Boughaleb, Thermal Energy Harvesting Through Pyroelectric effect and Heat transfer, intitulée : Maté-riaux actifs et phénomènes couplés, 2016.

F. Z. El-fatnani, D. Guyomar, M. Mazroui, F. Belhora, and Y. Boughaleb, Thermal Energy Harvesting Through Heat conduction and PZT Ceramic Buzzer. 5 ème Journée Nationale sur la Récupération et le Stockage d'Energie, 2015.

F. Z. El-fatnani, D. Guyomar, M. Mazroui, F. Belhora, and Y. Boughaleb, Improvement of Energy Harvesting Performance of Electrostrictive Polymers. 1 st International Workshop on Advanced Materials and Energy Application, pp.7-08, 2014.