, The Williams Dictionary of Biomaterials, 1999.

D. F. Williams, On the mechanisms of biocompatibility, Biomaterials, vol.29, pp.2941-2953, 2008.

F. Chai, G. Raoul, A. Wiss, J. Ferri, and H. F. Hildebrand, Bone substitutes: Classification and concerns, Rev. Stomatol. Chir. Maxillofac, vol.112, pp.212-221, 2011.

L. Hench, The Story of Bioglass®, J. Mater. Sci. Mater. Med, vol.17, pp.967-78, 2006.

L. L. Hench and I. Thompson, Twenty-first century challenges for biomaterials, J. R. Soc. Interface, vol.7, pp.379-391, 2010.

K. A. Mitchell, Use of outer d orbitals in bonding, Chem. Rev, vol.69, pp.157-178, 1969.

D. W. Cruickshank, The rôle of 3d-orbitals in ?-bonds between (a) silicon, phosphorus, sulphur, or chlorine and (b) oxygen or nitrogen, J. Chem. Soc. Resumed, vol.0, pp.5486-5504, 1961.

R. K. Brow, Review: the structure of simple phosphate glasses, J. Non-Cryst. Solids, vol.263, pp.1-28, 2000.

J. C. Knowles, Phosphate based glasses for biomedical applications, J. Mater. Chem, vol.13, pp.2395-2401, 2003.

D. D. Tommaso, R. I. Ainsworth, E. Tang, N. H. Leeuw, and . De, Modelling the structural evolution of ternary phosphate glasses from melts to solid amorphous materials, J. Mater. Chem. B, vol.1, pp.5054-5066, 2013.

A. Hasni and B. , Molecular dynamics modelling of sodium and calcium metaphosphate glasses for biomaterial applications, Phys. Chem. Glas. -Eur. J. Glass Sci. AndTechnology Part B, vol.57, pp.245-253, 2016.

R. Hernandez, S. E. Ainsworth, R. I. De-leeuw, and N. H. , Molecular dynamics simulations of bioactive phosphate-based glass surfaces, J. Non-Cryst. Solids, vol.451, pp.131-137, 2016.

Z. Saidak and P. J. Marie, Strontium signaling: molecular mechanisms and therapeutic implications in osteoporosis, Pharmacol. Ther, vol.136, pp.216-226, 2012.

S. Pors-nielsen, The biological role of strontium, Bone, vol.35, pp.583-588, 2004.

E. A. Neel, Structure and properties of strontium-doped phosphate-based glasses, J. R. Soc. Interface, 2009.

R. K. Sistla and M. Seshasayee, Structural study of lithium phosphate glasses by X-ray RDF and computer simulations, J. Non-Cryst. Solids, vol.349, pp.22-29, 2004.

W. Ahmina, M. E. Moudane, M. Zriouil, M. Taibi, and . Hamed, Glass-forming region, structure and some properties of potassium manganese phosphate glasses, Phase Transit, vol.89, pp.1051-1061, 2016.

K. Suzuya, D. Price, C. Loong, and S. Kohara, Structure of magnesium phosphate glasses, J. Phys. Chem. Solids -J PHYS CHEM SOLIDS, vol.60, pp.1457-1460, 1999.

P. Stoch, Structural properties of iron-phosphate glasses: spectroscopic studies and ab initio simulations, Phys. Chem. Chem. Phys. PCCP, vol.16, pp.19917-19927, 2014.

A. Mogus-milankovic, A. Gajovic, A. Santic, and D. E. Day, Structure of sodium phosphate glasses containing Al2O3 and/or Fe2O3. Part I, J. Non-Cryst. Solids, vol.289, pp.204-213, 2001.

A. Mogus-milankovic, A. Gajovic, A. Santic, and D. E. Day, Structure of sodium phosphate glasses containing Al2O3 and/or Fe2O3. Part I, J. Non-Cryst. Solids, vol.289, pp.204-213, 2001.

A. M. Silva, R. N. Correia, J. M. Oliveira, and M. H. Fernandes, Structural characterization of TiO2-P2O5-CaO glasses by spectroscopy, J. Eur. Ceram. Soc, vol.30, pp.1253-1258, 2010.

S. S. Sastry and B. R. Rao, Spectroscopic characterization of manganese-doped alkaline earth lead zinc phosphate glasses, Bull. Mater. Sci, vol.38, pp.475-482, 2015.

S. S. Sastry and B. R. Rao, Structural and optical properties of vanadium doped akaline earth lead zinc phosphate glasses, IJPAP, 2014.

C. Smith, The structure and properties of ternary zinc phosphate glasses for optical applications, Dr. Diss, 2014.

M. R. Ahsan, M. A. Uddin, and M. G. Mortuza, Infrared study of the effect of P 2 O 5 in the structure of lead silicate glasses, 2005.

C. Dayanand, G. Bhikshamaiah, V. J. Tyagaraju, M. Salagram, and A. S. Murthy, Structural investigations of phosphate glasses: a detailed infrared study of the x(PbO)-(1?x) P2O5 vitreous system, J. Mater. Sci, vol.31, pp.1945-1967, 1996.

B. Bae, Behavior, properties and structure of copper phosphate glasses, 1993.

T. Harada, H. In, H. Takebe, and K. Morinaga, Effect of B2O3 Addition on the Thermal Stability of Barium Phosphate Glasses for Optical Fiber Devices, J. Am. Ceram. Soc, vol.87, pp.408-411, 2004.

R. K. Brow, R. J. Kirkpatrick, and G. L. Turner, The short range structure of sodium phosphate glasses I. MAS NMR studies, J. Non-Cryst. Solids, vol.116, pp.39-45, 1990.

K. Franks, I. Abrahams, and J. C. Knowles, Development of soluble glasses for biomedical use Part I: In vitro solubility measurement, J. Mater. Sci. Mater. Med, vol.11, pp.609-614, 2000.

R. Hernandez, S. E. Ainsworth, R. I. De-leeuw, and N. H. , Molecular dynamics simulations of bioactive phosphate-based glass surfaces, J. Non-Cryst. Solids, vol.451, pp.131-137, 2016.

B. C. Bunker, G. W. Arnold, and J. A. Wilder, Phosphate glass dissolution in aqueous solutions, J. Non-Cryst. Solids, vol.64, pp.291-316, 1984.

J. C. Knowles, K. Franks, and I. Abrahams, Investigation of the solubility and ion release in the glass system K2O-Na2O-CaO-P2O5, Biomaterials, vol.22, pp.3091-3096, 2001.

K. Franks, V. Salih, J. C. Knowles, and I. Olsen, The effect of MgO on the solubility behavior and cell proliferation in a quaternary soluble phosphate based glass system, J. Mater. Sci. Mater. Med, vol.13, pp.549-556, 2002.

Y. C. Fredholm, Influence of strontium for calcium substitution in bioactive glasses on degradation, ion release and apatite formation, J. R. Soc. Interface, vol.9, pp.880-889, 2012.

X. Yu, D. E. Day, G. J. Long, and R. K. Brow, Properties and structure of sodium-iron phosphate glasses, J. Non-Cryst. Solids, vol.215, pp.21-31, 1997.

D. S. Brauer, N. Karpukhina, R. V. Law, and R. G. Hill, Effect of TiO2 addition on structure, solubility and crystallisation of phosphate invert glasses for biomedical applications, J. NonCryst. Solids, vol.356, pp.2626-2633, 2010.

H. Gao, T. Tan, and D. Wang, Effect of composition on the release kinetics of phosphate controlled release glasses in aqueous medium, J. Control. Release Off. J. Control. Release Soc, vol.96, pp.21-28, 2004.

Y. Shaharyar, Structure-solubility relationships in fluoride-containing phosphate based bioactive glasses, J. Mater. Chem. B, vol.3, pp.9360-9373, 2015.

F. Döhler, A. Mandlule, L. Van-wüllen, M. Friedrich, and D. S. Brauer, 31 P NMR characterisation of phosphate fragments during dissolution of calcium sodium phosphate glasses, J. Mater. Chem. B, vol.3, pp.1125-1134, 2015.

D. Pickup, New sol-gel synthesis of a (CaO)0.3(Na2O)0.2(P2O5)0.5 bioresorbable glass and its structural characterisation, vol.17, 2007.

C. J. Brinker and G. W. Scherer, Sol-gel Science: The Physics and Chemistry of Sol-gel Processing, 1990.

A. Durif and A. , Topics in Phosphate Chemistry, 1996.

J. Livage, P. Barboux, M. T. Vandenborre, C. Schmutz, and F. Taulelle, Sol-gel synthesis of phosphates, J. Non-Cryst. Solids, vol.147, pp.18-23, 1992.

D. Carta, Structural studies of bioactive sol-gel phosphate based glasses, Phys. Chem. Glas, vol.46, pp.365-371, 2005.

B. I. Lee, W. D. Samuels, L. Wang, and G. J. Exarhos, Sol-gel synthesis of phosphate ceramic composites I, J. Mater. Res, vol.11, pp.134-143, 1996.

J. Soulié, Development of a new family of monolithic calcium (pyro)phosphate glasses by soft chemistry, Acta Biomater, vol.41, pp.320-327, 2016.

D. M. Pickup, Characterisation of phosphate coacervates for potential biomedical applications, J. Biomater. Appl, vol.28, pp.1226-1234, 2014.

. Van-wazer, J. R. Phosphorus and its compounds, 1958.

W. Kopp, Calcium polyphosphate coacervates: effects of thermal treatment, J. Sol-Gel Sci. Technol, vol.63, pp.219-223, 2012.

W. Yu, Strontium-Doped Amorphous Calcium Phosphate Porous Microspheres Synthesized through a Microwave-Hydrothermal Method Using Fructose 1,6-Bisphosphate as an Organic Phosphorus Source: Application in Drug Delivery and Enhanced Bone Regeneration, ACS Appl

, Mater. Interfaces, vol.9, pp.3306-3317, 2017.

H. Gao, T. Tan, and D. Wang, Dissolution mechanism and release kinetics of phosphate controlled release glasses in aqueous medium, J. Controlled Release, vol.96, pp.29-36, 2004.

F. Delahaye, L. Montagne, G. Palavit, J. Claude-touray, and P. Baillif, Acid dissolution of sodiumcalcium metaphosphate glasses, J. Non-Cryst. Solids, vol.242, pp.25-32, 1998.

M. Cerruti, D. Greenspan, and K. Powers, Effect of pH and ionic strength on the reactivity of Bioglass 45S5, Biomaterials, vol.26, pp.1665-1674, 2005.

J. P. Icenhower and P. M. Dove, The dissolution kinetics of amorphous silica into sodium chloride solutions: effects of temperature and ionic strength, Geochim. Cosmochim. Acta, vol.64, pp.4193-4203, 2000.

N. Sharmin, F. Gu, I. Ahmed, and A. J. Parsons, Compositional dependency on dissolution rate and cytocompatibility of phosphate-based glasses: Effect of B2O3 and Fe2O3 addition, J. Tissue Eng, vol.8, 2017.

N. Sharmin and C. D. Rudd, Structure, thermal properties, dissolution behaviour and biomedical applications of phosphate glasses and fibres: a review, J. Mater. Sci, vol.52, pp.8733-8760, 2017.

I. Ahmed, M. P. Lewis, S. N. Nazhat, and J. C. Knowles, Quantification of Anion and Cation Release from a Range of Ternary Phosphate-based Glasses with Fixed 45 mol% P2O5
URL : https://hal.archives-ouvertes.fr/hal-00570759

, Biomater. Appl, vol.20, pp.65-80, 2005.

I. Ahmed, M. P. Lewis, and J. C. Knowles, Quantification of anions and cations from ternary phosphate based glasses with fixed 50 and 55 mol% P2O5 using ion chromatography, Phys. Chem. Glas, vol.46, pp.547-552, 2005.

A. Kesisoglou, J. C. Knowles, and I. Olsen, Effects of phosphate-based glasses on T lymphocytes in vitro, J. Mater. Sci. Mater. Med, vol.13, pp.1189-1192, 2002.

J. E. Gough, P. Christian, C. A. Scotchford, C. D. Rudd, and I. A. Jones, Synthesis, degradation, and in vitro cell responses of sodium phosphate glasses for craniofacial bone repair, J. Biomed. Mater. Res, vol.59, pp.481-489, 2002.

J. E. Gough, P. Christian, C. A. Scotchford, and I. A. Jones, Long-term craniofacial osteoblast culture on a sodium phosphate and a calcium/sodium phosphate glass, J. Biomed. Mater. Res. A, vol.66, pp.233-240, 2003.

V. Salih, Development of soluble glasses for biomedical use Part II: the biological response of human osteoblast cell lines to phosphate-based soluble glasses, J. Mater. Sci. Mater. Med, vol.11, pp.615-620, 2000.

M. Uo, M. Mizuno, Y. Kuboki, A. Makishima, and F. Watari, Properties and cytotoxicity of water soluble Na2O-CaO-P2O5 glasses, Biomaterials, vol.19, pp.2277-2284, 1998.

T. Fujita, Phosphate provides an extracellular signal that drives nuclear export of Runx2/Cbfa1 in bone cells, Biochem. Biophys. Res. Commun, vol.280, pp.348-352, 2001.

J. Massera, A. Kokkari, T. Närhi, and L. Hupa, The influence of SrO and CaO in silicate and phosphate bioactive glasses on human gingival fibroblasts, J. Mater. Sci. Mater. Med, vol.26, p.196, 2015.

V. Salih, A. Patel, and J. C. Knowles, Zinc-containing phosphate-based glasses for tissue engineering, Biomed. Mater. Bristol Engl, vol.2, pp.11-20, 2007.

A. Neel and E. A. , In vitro bioactivity and gene expression by cells cultured on titanium dioxide doped phosphate-based glasses, Biomaterials, vol.28, pp.2967-2977, 2007.

I. Ahmed, C. A. Collins, M. P. Lewis, I. Olsen, and J. C. Knowles, Processing, characterisation and biocompatibility of iron-phosphate glass fibres for tissue engineering, Biomaterials, vol.25, pp.3223-3232, 2004.

I. Ahmed, Cytocompatibility and effect of increasing MgO content in a range of quaternary invert phosphate-based glasses, J. Biomater. Appl, vol.24, pp.555-575, 2010.

M. Navarro, M. Ginebra, and J. A. Planell, Cellular response to calcium phosphate glasses with controlled solubility, J. Biomed. Mater. Res. A, vol.67, pp.1009-1015, 2003.

M. A. Qaysi, A. Petrie, R. Shah, and J. C. Knowles, Degradation of zinc containing phosphatebased glass as a material for orthopedic tissue engineering, J. Mater. Sci. Mater. Med, vol.27, 2016.

J. P. Pessan, N. S. Al-ibrahim, M. A. Buzalaf, and K. J. Toumba, Slow-release fluoride devices: a literature review, J. Appl. Oral Sci, vol.16, pp.238-244, 2008.

R. M. Shelton, A. C. Rasmussen, and J. E. Davies, Protein adsorption at the interface between charged polymer substrata and migrating osteoblasts, Biomaterials, vol.9, pp.24-29, 1988.

A. G. Gristina, Biomaterial-centered infection: microbial adhesion versus tissue integration, Science, vol.237, pp.1588-1595, 1987.

I. Ahmed, D. Ready, M. Wilson, and J. C. Knowles, Antimicrobial effect of silver-doped phosphatebased glasses, J. Biomed. Mater. Res. A, vol.79, pp.618-626, 2006.

A. M. Mulligan, M. Wilson, and J. C. Knowles, The effect of increasing copper content in phosphate-based glasses on biofilms of Streptococcus sanguis, Biomaterials, vol.24, pp.1797-1807, 2003.

S. P. Valappil, Controlled delivery of antimicrobial gallium ions from phosphate-based glasses, Acta Biomater, vol.5, pp.1198-1210, 2009.

L. Zhang and H. Eckert, Sol-Gel Synthesis of Al2O3-P2O5 Glasses: Mechanistic Studies by Solution and Solid State NMR, vol.14, 2004.

D. M. Pickup, Preparation, structural characterisation and antibacterial properties of Gadoped sol-gel phosphate-based glass, J. Mater. Sci, vol.44, pp.1858-1867, 2009.

J. C. Knowles, G. W. Hastings, H. Ohta, S. Niwa, and N. Boeree, Development of a degradable composite for orthopaedic use: in vivo biomechanical and histological evaluation of two bioactive degradable composites based on the polyhydroxybutyrate polymer, Biomaterials, vol.13, pp.491-496, 1992.

J. C. Knowles, Development of a natural degradable polymer for orthopaedic use, J. Med. Eng. Technol, vol.17, pp.129-137, 1993.

R. Shah, D. Ready, J. C. Knowles, N. P. Hunt, and M. P. Lewis, Sequential identification of a degradable phosphate glass scaffold for skeletal muscle regeneration, J. Tissue Eng. Regen. Med, vol.8, pp.801-810, 2014.

Y. Kim, Phosphate glass fibres promote neurite outgrowth and early regeneration in a peripheral nerve injury model, J. Tissue Eng. Regen. Med, vol.9, pp.236-246, 2015.

A. M. Ferreira, P. Gentile, V. Chiono, and G. Ciardelli, Collagen for bone tissue regeneration, Acta Biomater, vol.8, pp.3191-3200, 2012.

D. M. Pickup, New sol-gel synthesis of a (CaO) 0.3 (Na 2 O) 0.2 (P 2 O 5) 0.5 bioresorbable glass and its structural characterisation, J. Mater. Chem, vol.17, pp.4777-4784, 2007.

D. M. Pickup, Characterisation of phosphate coacervates for potential biomedical applications, J. Biomater. Appl, vol.28, pp.1226-1234, 2014.

T. Kokubo and H. Takadama, How useful is SBF in predicting in vivo bone bioactivity?, Biomaterials, vol.27, pp.2907-2915, 2006.

S. Cai, Microstructural characteristics and crystallization of CaO-P 2 O 5-Na 2 O-ZnO glass ceramics prepared by sol-gel method, J. Non-Cryst. Solids, vol.355, pp.273-279, 2009.

M. Thommes, Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report), Pure Appl. Chem, vol.87, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01416682

D. Carta, A structural study of sol-gel and melt-quenched phosphate-based glasses, J. NonCryst. Solids, vol.353, pp.1759-1765, 2007.

D. Carta, Structural studies of bioactive sol-gel phosphate based glasses, Phys. Chem. Glas, vol.46, pp.365-371, 2005.

M. Thommes, Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report), Pure Appl. Chem, vol.87, pp.1051-1069, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01416682

R. Hernandez, S. E. Ainsworth, R. I. De-leeuw, and N. H. , Molecular dynamics simulations of bioactive phosphate-based glass surfaces, J. Non-Cryst. Solids, vol.451, pp.131-137, 2016.

J. K. Christie, R. I. Ainsworth, S. E. Hernandez, N. H. Leeuw, and . De, Structures and properties of phosphate-based bioactive glasses from computer simulation: a review, J. Mater. Chem. B, vol.5, pp.5297-5306, 2017.

R. Hernandez, S. E. Ainsworth, R. I. De-leeuw, and N. H. , Molecular dynamics simulations of bioactive phosphate-based glass surfaces, J. Non-Cryst. Solids, vol.451, pp.131-137, 2016.

. Van-wazer, J. R. Phosphorus and its compounds, 1958.

W. Kopp, Calcium polyphosphate coacervates: effects of thermal treatment, J. Sol-Gel Sci. Technol, pp.219-223, 2012.
DOI : 10.1007/s10971-012-2749-z

M. T. Averbuch-pouchot and A. Durif, Topics in Phosphate Chemistry, 1996.
DOI : 10.1142/3076

S. Lin, C. Ionescu, K. J. Pike, M. E. Smith, and J. R. Jones, Nanostructure evolution and calcium distribution in sol-gel derived bioactive glass, J. Mater. Chem, vol.19, pp.1276-1282, 2009.
DOI : 10.1039/b814292k