T. J. Sanborn;-c, . N. Wu;-r, A. E. Zuckermann, and . Barron, Extreme Stability of Helices Formed by WaterSoluble Poly-N-Substituted Glycines (Polypeptoids) with ?-Chiral Side Chains, Biopolymers, vol.63, pp.12-20, 2002.

H. Shin, ;. Kang, ;. Yoon;, and J. Seo, Peptoid Helicity Modulation: Precise Control of Peptoid Secondary Structures via Position-Specific Placement of Chiral Monomers, Chem. Commun, vol.50, pp.4465-4473, 2014.

J. R. Stringer, ;. A. Crapster;-i, and H. E. Blackwell, Extraordinarily Robust Polyproline Type I Peptoid Helices Generated via the Incorporation of ?-Chiral Aromatic N -1-Naphthylethyl Side Chains, Journal of the American Chemical Society, vol.133, pp.15559-67, 2011.

B. B. Yoo;-s and . Shin,

M. L. Huang; and K. Kirshenbaum, Peptoid Macrocycles: Making the Rounds with Peptidomimetic Oligomers, Chemistry -A European Journal, vol.16, pp.5527-5564, 2010.

S. B. Shin, ;. J. Yoo;-l, K. Todaro;, and . Kirshenbaum, Cyclic Peptoids, Journal of the American Chemical Society, vol.129, pp.3218-3243, 2007.

J. Blankenstein and J. Zhu, Conformation-Directed Macrocyclization Reactions, European Journal of Organic Chemistry, pp.1949-64, 2005.

G. Scherer,

M. L. Kramer,

M. Schutkowski;-u.-reimer, ;. , and G. Fischer, Barriers to Rotation of Secondary Amide Peptide Bonds, Journal of the American Chemical Society, vol.120, pp.5568-74, 1998.

. Hrms-(tof-ms and . Es+,

, European Centre for Disease Prevention and Control. Antimicrobial resistance surveillance in Europe, European Centre for Disease Prevention and Control, vol.1, p.88, 2016.

C. D. Fjell, J. A. Hiss, R. E. Hancock, and G. Schneider, Designing antimicrobial peptides: Form follows function, Nature Reviews Drug Discovery, vol.11, pp.37-51, 2012.

R. E. Hancock and H. G. Sahl, Antimicrobial and host-defense peptides as new antiinfective therapeutic strategies, Nature Biotechnology, vol.24, pp.1551-1557, 2006.

K. V. Reddy, R. D. Yedery, and C. Aranha, Antimicrobial peptides: Premises and promises, International Journal of Antimicrobial Agents, vol.24, pp.536-547, 2004.

M. Brahmachary, ANTIMIC: a database of antimicrobial sequences, Nucleic Acids Res, vol.32, pp.586-595, 2004.

Z. Wang and G. Wang, The Antimicrobial Peptide Database, Nucleic Acids Res, vol.32, pp.590-592, 2004.

A. Tossi, L. Sandri, and A. Giangaspero, Amphipathic, alpha-helical antimicrobial peptides, Biopolymers, vol.55, pp.4-30, 2000.

M. Zasloff, Antimicrobial peptides of multicellular organisms, Nature, vol.415, pp.389-395, 2002.

B. M. Peters, M. E. Shirtliff, and M. A. Jabra-rizk, Antimicrobial peptides: Primeval molecules or future drugs?, PLoS Pathog, vol.6, p.1001067, 2010.

G. Wang and X. Li-&-michael-zasloff, Antimicrobial peptides: discovery, design and novel therapeutic strategies, 2010.

K. Matsuzaki, Control of cell selectivity of antimicrobial peptides, Biochim. Biophys. Acta -Biomembr, vol.1788, pp.1687-1692, 2009.

K. Matsuzaki, Why and how are peptide-lipid interactions utilized for self-defense? Magainins and tachyplesins as archetypes, Biochimica et Biophysica ActaBiomembranes, vol.1462, pp.1-10, 1999.

M. R. Yeaman and N. Y. Yount, Mechanisms of antimicrobial peptide action and resistance, Pharmacol. Rev, vol.55, pp.27-55, 2003.

R. E. Hancock and A. Rozek, Role of membranes in the activities of antimicrobial cationic peptides, FEMS Microbiol. Lett, vol.206, pp.143-149, 2002.

Y. Shai, Mechanism of the binding, insertion and destabilization of phospholipid bilayer membranes by ?-helical antimicrobial and cell non-selective membrane-lytic peptides, Biochimica et Biophysica Acta -Biomembranes, vol.1462, pp.55-70, 1999.

L. Yang, T. M. Weiss, R. I. Lehrer, and H. W. Huang, Crystallization of antimicrobial pores in membranes: Magainin and protegrin, Biophys. J, vol.79, 2000.

M. Mahlapuu, J. Håkansson, L. Ringstad, and C. Björn, Antimicrobial Peptides: An Emerging Category of Therapeutic Agents, Front. Cell. Infect. Microbiol, vol.6, p.194, 2016.

D. A. Phoenix, S. R. Dennison, and F. Harris, Cationic Antimicrobial Peptides, Antimicrobial Peptides, pp.39-81, 2013.

E. N. Marsh, B. C. Buer, and A. Ramamoorthy, Fluorine-a new element in the design of membrane-active peptides, Mol. Biosyst, vol.5, p.1143, 2009.

M. Hemshekhar, V. Anaparti, and N. Mookherjee, Functions of cationic host defense peptides in immunity, Pharmaceuticals, vol.9, p.40, 2016.

S. C. Mansour, O. M. Pena, and R. E. Hancock, Host defense peptides: Front-line immunomodulators, Trends in Immunology, vol.35, pp.443-450, 2014.

R. E. Hancock, Cationic peptides: effectors in innate immunity and novel antimicrobials, Lancet Infect. Dis, vol.1, pp.156-164, 2001.

A. Peschel and H. G. Sahl, The co-evolution of host cationic antimicrobial peptides and microbial resistance, Nature Reviews Microbiology, vol.4, pp.529-536, 2006.

J. O'neill, Tackling drug-resistant infections globally: final report and recommendations, Rev. Antimicrob. Resist, vol.84, 2016.

R. M. Dawson, M. A. Fox, H. S. Atkins, and C. Q. Liu, Potent antimicrobial peptides with selectivity for Bacillus anthracis over human erythrocytes, Int. J. Antimicrob. Agents, vol.38, pp.237-242, 2011.

A. Moore, Biotech versus pharma: Advantages and drawbacks in drug development, EMBO Rep, vol.4, pp.114-117, 2003.

K. Fosgerau and T. Hoffmann, Peptide therapeutics: Current status and future directions, Drug Discovery Today, vol.20, pp.122-128, 2015.

A. Breij and . De, The antimicrobial peptide SAAP-148 combats drug-resistant bacteria and biofilms, Sci. Transl. Med, vol.10, p.4044, 2018.

P. Kosikowska and A. Lesner, Antimicrobial peptides (AMPs) as drug candidates: a patent review, Expert Opinion on Therapeutic Patents, vol.26, pp.689-702, 2003.

S. Wang, X. Zeng, Q. Yang, and S. Qiao, Antimicrobial peptides as potential alternatives to antibiotics in food animal industry, International Journal of Molecular Sciences, vol.17, p.603, 2016.

R. M. Epand, Host Defense Peptides and Their Potential as Therapeutic Agents, 2016.

B. Mojsoska and H. Jenssen, Peptides and peptidomimetics for antimicrobial drug design, Pharmaceuticals, vol.8, pp.366-415, 2015.

N. Molchanova, P. R. Hansen, and H. Franzyk, Advances in development of antimicrobial peptidomimetics as potential drugs, Molecules, vol.22, p.1430, 2017.

S. H. Gellman, Foldamers: A Manifesto, Acc. Chem. Res, vol.31, pp.173-180, 1998.

G. J. Gabriel and G. N. Tew, Conformationally rigid proteomimetics: a case study in designing antimicrobial aryl oligomers, Org. Biomol. Chem, vol.6, pp.417-423, 2008.

G. Guichard and D. Seebach, Solid-Phase Synthesis of ?-Oligopeptides, Chim. Int. J. Chem, vol.51, pp.315-318, 1997.

D. Seebach, ?-Peptides: Synthesis by Arndt-Eistert homologation with concomitant peptide coupling. Structure determination by NMR and CD spectroscopy and by X-ray crystallography. Helical secondary structure of a ?-hexapeptide in solution and its stability towards pe, Helv. Chim. Acta, vol.79, pp.913-941, 1996.

D. H. Appella, L. A. Christianson, I. L. Karle, D. R. Powell, and S. H. Gellman, ?-Peptide foldamers: Robust helix formation in a new family of ?-amino acid oligomers, J. Am. Chem. Soc, vol.118, pp.13071-13072, 1996.

L. Grel, P. Guichard, and G. , Foldamers Based on Remote Intrastrand Interactions, Foldamers: Structure, Properties, and Applications, pp.35-74, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00369666

D. Seebach and J. L. Matthews, ?-Peptides: a surprise at every turn, Chem. Commun, pp.2015-2022, 1997.

Y. Hamuro, J. P. Schneider, W. F. Degrado, and . De, Novo Design of Antibacterial ?-Peptides, J. Am. Chem. Soc, vol.121, pp.12200-12201, 1999.

P. I. Arvidsson, On the antimicrobial and hemolytic activities of amphiphilic betapeptides, Chembiochem, vol.2, pp.771-773, 2001.

E. A. Porter, X. Wang, H. S. Lee, B. Weisblum, and S. H. Gellman, Non-haemolytic beta-amino-acid oligomers, Nature, vol.404, p.565, 2000.

E. A. Porter, B. Weisblum, and S. H. Gellman, Mimicry of host-defense peptides by unnatural oligomers: Antimicrobial ?-peptides, J. Am. Chem. Soc, vol.124, pp.7324-7330, 2002.

A. J. Karlsson, W. C. Pomerantz, B. Weisblum, S. H. Gellman, and S. P. Palecek, Antifungal activity from 14-helical ?-peptides, J. Am. Chem. Soc, vol.128, pp.12630-12631, 2006.

B. P. Mowery, A. H. Lindner, B. Weisblum, S. S. Stahl, and S. H. Gellman, Structureactivity relationships among random nylon-3 copolymers that mimic antibacterial hostdefense peptides, J. Am. Chem. Soc, vol.131, pp.9735-9745, 2009.

R. Liu, Tuning the biological activity profile of antibacterial polymers via subunit substitution pattern, J. Am. Chem. Soc, vol.136, pp.4410-4418, 2014.

V. Semetey, Stable Helical Secondary Structure in Short-Chain N,N?-Linked Oligoureas Bearing Proteinogenic Side Chains, Angew. Chemie Int. Ed, vol.41, pp.1893-1895, 2002.

A. Violette, Mimicking Helical Antibacterial Peptides with Nonpeptidic Folding Oligomers, Chem. Biol, vol.13, pp.531-538, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00130007

P. Claudon, Consequences of isostructural main-chain modifications for the design of antimicrobial foldamers: Helical mimics of host-defense peptides based on a heterogeneous amide/urea backbone, Angew. Chemie -Int. Ed, vol.49, pp.333-336, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00440427

S. Antunes, Effect of replacing main-chain ureas with thiourea and guanidinium surrogates on the bactericidal activity of membrane active oligourea foldamers, Bioorganic Med. Chem, vol.25, pp.4245-4252, 2017.

G. N. Tew, De novo design of biomimetic antimicrobial polymers, Proc. Natl. Acad. Sci. U. S. A, vol.99, pp.5110-5114, 2002.

D. Liu, Nontoxic membrane-active antimicrobial arylamide oligomers, Angew. Chemie -Int. Ed, vol.43, pp.1158-1162, 2004.

S. Choi, De novo design and in vivo activity of conformationally restrained antimicrobial arylamide foldamers, Proc. Natl. Acad. Sci, vol.106, pp.6968-6973, 2009.

H. Tang, R. J. Doerksen, and G. N. Tew, Synthesis of urea oligomers and their antibacterial activity, Chem. Commun. (Camb), vol.0, pp.1537-1546, 2005.

G. N. Tew, D. Clements, H. Tang, L. Arnt, and R. W. Scott, Antimicrobial activity of an abiotic host defense peptide mimic, Biochim. Biophys. Acta -Biomembr, vol.1758, pp.1387-1392, 2006.

R. J. Simon, Peptoids: a modular approach to drug discovery, Proc. Natl. Acad. Sci. U. S. A, vol.89, pp.9367-71, 1992.

R. J. Simon, P. A. Bartlett, and D. V. Santi, Modified peptide and peptide libraries with protease resistance, derivatives thereof and methods of producing and screening such, 1999.

B. C. Hamper, S. A. Kolodziej, A. M. Scates, R. G. Smith, and E. Cortez, Solid Phase Synthesis of beta-Peptoids: N-Substituted beta-Aminopropionic Acid Oligomers, J. Org. Chem, vol.63, pp.708-718, 1998.

T. Hjelmgaard, Convenient solution-phase synthesis and conformational studies of novel linear and cyclic alpha,beta-alternating peptoids, Org. Lett, vol.11, pp.4100-4103, 2009.

R. N. Zuckermann, Peptoid origins, Biopolymers, vol.96, pp.545-55, 2011.

R. N. Zuckermann, Efficient Method for the Preparation of Peptoids [Oligo(Nsubstituted glycines)] by submonomer solid-phase synthesis, J. Am. Chem. Soc, vol.114, pp.10646-10647, 1992.

Q. Sui, D. Borchardt, and D. L. Rabenstein, Kinetics and equilibria of cis/trans isomerization of backbone amide bonds in peptoids, J. Am. Chem. Soc, vol.129, pp.12042-12048, 2007.

S. M. Miller, Proteolytic studies of homologous peptide and N-substituted glycine peptoid oligomers, Bioorganic Med. Chem. Lett, vol.4, pp.2657-2662, 1994.

S. M. Miller, Comparison of the proteolytic susceptibilities of homologous Lamino acid, D-amino acid, and N-substituted glycine peptide and peptoid oligomers, Drug Dev. Res, vol.35, pp.20-32, 1995.

G. B. Fields and R. L. Noble, Solid phase peptide synthesis utilizing 9-fluorenylmethoxycarbonyl amino acids, Int. J. Pept. Protein Res, vol.35, pp.161-214, 1990.

R. N. Zuckermann, J. M. Kerr, M. A. Siani, and S. C. Banville, Design, construction and application of a fully automated equimolar peptide mixture synthesizer, Int. J. Pept. Protein Res, vol.40, pp.497-506, 1992.

A. Shin, Peptoid-Substituted Hybrid Antimicrobial Peptide Derived from Papiliocin and Magainin 2 with Enhanced Bacterial Selectivity and Anti-inflammatory Activity, Biochemistry, vol.54, pp.3921-3931, 2015.
DOI : 10.1021/acs.biochem.5b00392

X. Chen, Expanded polyglutamine-binding peptoid as a novel therapeutic agent for treatment of Huntington's disease, Chem. Biol, vol.18, pp.1113-1125, 2011.

Y. Luo, A?42-binding peptoids as amyloid aggregation inhibitors and detection ligands, ACS Chem. Neurosci, vol.4, pp.952-962, 2013.
DOI : 10.1021/cn400011f

URL : http://europepmc.org/articles/pmc3689191?pdf=render

J. P. Turner, Rationally designed peptoids modulate aggregation of amyloid-beta 40, ACS Chem. Neurosci, vol.5, pp.552-558, 2014.
DOI : 10.1021/cn400221u

URL : https://doi.org/10.1021/cn400221u

J. P. Turner, S. E. Chastain, D. Park, M. A. Moss, and S. L. Servoss, Modulating amyloid-? aggregation: The effects of peptoid side chain placement and chirality, Bioorganic Med. Chem, vol.25, pp.20-26, 2017.

K. Kamimura, T. Suda, G. Zhang, and D. Liu, Advances in Gene Delivery Systems, Pharmaceut. Med, vol.25, pp.293-306, 2012.

J. E. Murphy, A combinatorial approach to the discovery of efficient cationic peptoid reagents for gene delivery, Proc. Natl. Acad. Sci. U. S. A, vol.95, pp.1517-1539, 1998.

C. Y. Huang, Lipitoids--novel cationic lipids for cellular delivery of plasmid DNA in vitro, Chem. Biol, vol.5, pp.345-354, 1998.

P. Armand, Chiral N-substituted glycines can form stable helical conformations, Fold. Des, vol.2, pp.369-375, 1997.
DOI : 10.1016/s1359-0278(97)00051-5

URL : https://doi.org/10.1016/s1359-0278(97)00051-5

P. Armand, NMR determination of the major solution conformation of a peptoid pentamer with chiral side chains, Proc. Natl. Acad. Sci. U. S. A, vol.95, pp.4309-4314, 1998.

K. Kirshenbaum, Sequence-specific polypeptoids: a diverse family of heteropolymers with stable secondary structure, Proc. Natl. Acad. Sci. U. S. A, vol.95, pp.4303-4308, 1998.

C. W. Wu, T. J. Sanborn, K. Huang, R. N. Zuckermann, and A. E. Barron, Peptoid oligomers with ?-chiral, aromatic side chains: Sequence requirements for the formation of stable peptoid helices, J. Am. Chem. Soc, vol.123, pp.6778-6784, 2001.

C. W. Wu, T. J. Sanborn, R. N. Zuckermann, and A. E. Barron, Peptoid oligomers with ?-chiral, aromatic side chains: Effects of chain length on secondary structure, J. Am. Chem. Soc, vol.123, pp.2958-2963, 2001.

C. W. Wu, Structural and Spectroscopic Studies of Peptoid Oligomers with ?-Chiral Aliphatic Side Chains, J. Am. Chem. Soc, vol.125, pp.13525-13530, 2003.

T. J. Sanborn, C. W. Wu, R. N. Zuckermann, and A. E. Barron, Extreme stability of helices formed by water-soluble poly-N-substituted glycines (polypeptoids) with ?-chiral side chains, Biopolymers, vol.63, pp.12-20, 2002.

H. Shin, C. Kang, M. Yoon, and J. Seo, Peptoid helicity modulation: precise control of peptoid secondary structures via position-specific placement of chiral monomers, Chem. Commun, vol.50, pp.4465-4468, 2014.

J. R. Stringer, J. A. Crapster, I. A. Guzei, and H. E. Blackwell, Extraordinarily robust polyproline type i peptoid helices generated via the incorporation of ?-chiral aromatic N -1-naphthylethyl side chains, J. Am. Chem. Soc, vol.133, pp.15559-15567, 2011.

O. Roy, Homogeneous and Robust Polyproline Type i Helices from Peptoids with Nonaromatic ?-Chiral Side Chains, J. Am. Chem. Soc, vol.139, pp.13533-13540, 2017.
DOI : 10.1021/jacs.7b07475

URL : https://hal.archives-ouvertes.fr/hal-01656039

Y. Rosenfeld and Y. Shai, Lipopolysaccharide (Endotoxin)-host defense antibacterial peptides interactions: Role in bacterial resistance and prevention of sepsis, Biochimica et Biophysica Acta -Biomembranes, vol.1758, pp.1513-1522, 2006.

H. Jenssen, P. Hamill, and R. E. Hancock, Peptide antimicrobial agents, Clinical Microbiology Reviews, vol.19, pp.491-511, 2006.

J. A. Patch and A. E. Barron, Helical peptoid mimics of magainin-2 amide, J. Am. Chem. Soc, vol.125, pp.12092-12093, 2003.

N. P. Chongsiriwatana, Peptoids that mimic the structure, function, and mechanism of helical antimicrobial peptides, Proc. Natl. Acad. Sci. U. S. A, vol.105, pp.2794-2803, 2008.

A. R. Statz, J. P. Park, N. P. Chongsiriwatana, A. E. Barron, and P. B. Messersmith, Surface-immobilised antimicrobial peptoids, Biofouling, vol.24, pp.439-448, 2008.
DOI : 10.1080/08927010802331829

URL : http://europepmc.org/articles/pmc2654338?pdf=render

J. Lee, Effect of side chain hydrophobicity and cationic charge on antimicrobial activity and cytotoxicity of helical peptoids, Bioorganic Med. Chem. Lett, vol.28, pp.170-173, 2018.

B. Mojsoska, R. N. Zuckermann, and H. Jenssen, Structure-activity relationship study of novel peptoids that mimic the structure of antimicrobial peptides, Antimicrob. Agents Chemother, vol.59, pp.4112-4132, 2015.

B. Mojsoska, G. Carretero, S. Larsen, R. V. Mateiu, and H. Jenssen, Peptoids successfully inhibit the growth of gram negative E. coli causing substantial membrane damage, Sci. Rep, vol.7, pp.1-12, 2017.

A. M. Czyzewski, In vivo, in vitro, and in silico characterization of peptoids as antimicrobial agents, PLoS One, vol.11, pp.1-17, 2016.

Y. C. Tang and C. M. Deber, Hydrophobicity and helicity of membrane-interactive peptides containing peptoid residues, Biopolymers, vol.65, pp.254-262, 2002.

H. L. Bolt, Log D versus HPLC derived hydrophobicity: The development of predictive tools to aid in the rational design of bioactive peptoids, Biopolymers, vol.108, pp.1-7, 2017.

H. L. Bolt, Exploring the links between peptoid antibacterial activity and toxicity, Med. Chem. Commun, vol.8, pp.886-896, 2017.

E. M. Driggers, S. P. Hale, J. Lee, and N. K. Terrett, The exploration of macrocycles for drug discovery -An underexploited structural class, Nature Reviews Drug Discovery, vol.7, pp.608-624, 2008.

B. Yoo, S. B. Shin, M. L. Huang, and K. Kirshenbaum, Peptoid macrocycles: making the rounds with peptidomimetic oligomers. Chem. -A Eur, J, vol.16, pp.5527-5537, 2010.

S. B. Shin, B. Yoo, L. J. Todaro, and K. Kirshenbaum, Cyclic peptoids, J. Am. Chem. Soc, vol.129, pp.3218-3225, 2007.
DOI : 10.1021/ja066960o

J. Blankenstein and J. Zhu, Conformation-directed macrocyclization reactions, European J. Org. Chem, pp.1949-1964, 2005.
DOI : 10.1002/chin.200535260

G. Scherer, M. L. Kramer, M. Schutkowski, U. Reimer, and G. Fischer, Barriers to rotation of secondary amide peptide bonds, J. Am. Chem. Soc, vol.120, pp.5568-5574, 1998.

N. Maulucci, Synthesis, structures, and properties of nine-, twelve-, and eighteenmembered N-benzyloxyethyl cyclic ?-peptoids, Chem. Commun, vol.0, p.3927, 2008.

D. Comegna, M. Benincasa, R. Gennaro, I. Izzo, and F. De-riccardis, Design, synthesis and antimicrobial properties of non-hemolytic cationic ?-cyclopeptoids, Bioorg. Med. Chem, vol.18, pp.2010-2018, 2010.

M. L. Huang, S. B. Shin, M. A. Benson, V. J. Torres, and K. Kirshenbaum, A comparison of linear and cyclic peptoid oligomers as potent antimicrobial agents, ChemMedChem, vol.7, pp.114-122, 2012.

M. L. Huang, M. A. Benson, S. B. Shin, V. J. Torres, and K. Kirshenbaum, Amphiphilic cyclic peptoids that exhibit antimicrobial activity by disrupting Staphylococcus aureus membranes, European J. Org. Chem, pp.3560-3566, 2013.
DOI : 10.1002/ejoc.201300077

K. Andreev, Cyclization Improves Membrane Permeation by Antimicrobial Peptoids, Langmuir, vol.32, pp.12905-12913, 2016.

C. A. Olsen, Peptoid-peptide hybrid backbone architectures, ChemBioChem, vol.11, pp.152-160, 2010.

M. Goodman, G. Melacini, and Y. Feng, Collagen-like triple helices incorporating peptoid residues, J. Am. Chem. Soc, vol.118, pp.10928-10929, 1996.

T. S. Ryge and P. R. Hansen, Potent antibacterial lysine-peptoid hybrids identified from a positional scanning combinatorial library, Bioorganic Med. Chem, vol.14, pp.4444-4451, 2006.

C. A. Olsen, ?-Peptide/?-Peptoid Chimeras, Org. Lett, vol.9, pp.1549-1552, 2007.

C. A. Olsen, Antimicrobial, hemolytic, and cytotoxic activities of ?-peptoidpeptide hybrid oligomers: Improved properties compared to natural AMPs, ChemBioChem, vol.11, p.1630, 2010.

R. D. Jahnsen, N. Frimodt-møller, and H. Franzyk, Antimicrobial activity of peptidomimetics against multidrug-resistant Escherichia coli: A comparative study of different backbones, J. Med. Chem, vol.55, pp.7253-7261, 2012.

R. D. Jahnsen, Tailoring Cytotoxicity of Antimicrobial Peptidomimetics with High Activity against Multidrug-Resistant Escherichia coli, J. Med. Chem, vol.57, pp.2864-2873, 2014.

H. Lin, Statistical design, structural analysis, and in vitro susceptibility assay of antimicrobial peptoids to combat bacterial infections, J. Chemom, vol.30, pp.369-376, 2016.

B. Goodson, Characterization of novel antimicrobial peptoids, Antimicrob. Agents Chemother, vol.43, pp.1429-1463, 1999.

A. C. Schneider, Microwave-Facilitated SPOT-Synthesis of Antibacterial Dipeptoids, ACS Comb. Sci, vol.19, pp.715-737, 2017.

R. Gopalakrishnan, A. I. Frolov, L. Knerr, W. J. Drury, and E. Valeur, Therapeutic potential of foldamers: From chemical biology tools to drug candidates?, J. Med. Chem, vol.59, pp.9599-9621, 2016.

B. C. Gorske, J. R. Stringer, B. L. Bastian, S. A. Fowler, and H. E. Blackwell, New strategies for the design of folded peptoids revealed by a survey of noncovalent interactions in model systems, J. Am. Chem. Soc, vol.131, pp.16555-16567, 2009.

O. Roy, The tert-butyl side chain: A powerful means to lock peptoid amide bonds in the cis conformation, Org. Lett, vol.15, pp.2246-2249, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00847428

C. Caumes, O. Roy, S. Faure, and C. Taillefumier, The click triazolium peptoid side chain: A strong cis-amide inducer enabling chemical diversity, J. Am. Chem. Soc, vol.134, pp.9553-9556, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00709279

G. Angelici, Weak backbone CH ? O C and side chain tBu ? tBu London interactions help promote helix folding of achiral NtBu peptoids, Chem. Commun, vol.52, pp.4573-4576, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01968717

J. E. Murphy, A combinatorial approach to the discovery of efficient cationic peptoid reagents for gene delivery, Proc. Natl. Acad. Sci. U. S. A, vol.95, pp.1517-1539, 1998.

A. S. Culf and R. J. Ouellette, Solid-phase synthesis of N-substituted glycine oligomers (?-peptoids) and derivatives, Molecules, vol.15, pp.5282-5335, 2010.

C. Caumes, T. Hjelmgaard, R. Remuson, S. Faure, and C. Taillefumier, Highly convenient gram-scale solution-phase peptoid synthesis and orthogonal side-chain postmodification, Synthesis (Stuttg), vol.2, pp.257-264, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00561036

B. Calas, J. Mery, and J. Parello, SYNTHESIS OF THE FRAGMENT 14-21 OF THE AMINO ACID, Tetrahedron, vol.41, pp.5331-5339, 1985.

C. Schmuck and J. Dudaczek, Ion pairing between the chain ends induces folding of a flexible zwitterion in methanol, European J. Org. Chem, vol.3, pp.3326-3330, 2007.

L. A. Carpino and G. Y. Han, 9-Fluorenylmethoxycarbonyl amino-protecting group, J. Org. Chem, vol.37, pp.3404-3409, 1972.

D. M. Shendage, R. Fröhlich, and G. Haufe, Highly efficient stereoconservative amidation and deamidation of ?-amino acids, Org. Lett, vol.6, pp.3675-3678, 2004.

J. He, J. Bawiec, W. Liu, G. B. Liang, and L. Yang, , 2010.

E. De-santis, Effect of capping groups at the N-and C-termini on the conformational preference of ?,?-peptoids, Org. Biomol. Chem, vol.10, pp.1108-1122, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00663596

J. R. Hwu, M. L. Jain, S. C. Tsay, and G. H. Hakimelahi, Ceric ammonium nitrate in the deprotection of tert-butoxycarbonyl group, Tetrahedron Lett, vol.37, pp.2035-2038, 1996.

F. S. Gibson, S. C. Bergmeier, and H. Rapoport, Selective Removal of an N-BOC Protecting Group in the Presence of a tert-Butyl Ester and Other Acid-Sensitive Groups, J. Org. Chem, vol.59, pp.3216-3218, 1994.

G. L. Stahl, R. Walter, and C. W. Smith, General Procedure for the Synthesis of Mono-N-acylated 1,6-Diaminohexanes, J. Org. Chem, vol.43, pp.2285-2286, 1978.

B. A. Helms, High-affinity peptide-based collagen targeting using synthetic phage mimics: From phage display to dendrimer display, J. Am. Chem. Soc, vol.131, pp.11683-11685, 2009.

S. Nagarajan and B. Ganem, Chemistry of Naturally Occurring Polyamines, vol.10

, Nonmetabolizable Derivatives of Spermine and Spermidine, J. Org. Chem, vol.51, pp.4856-4861, 1986.

C. Liu, J. Lin, G. V. Delucca, D. G. Batt, and Q. Liu, Carboline carboxamide compounds useful as kinase inhibitors, 2011.

A. Maisonial, Click Chelators for Platinum-Based Anticancer Drugs, Eur. J. Inorg. Chem, pp.298-305, 2008.
DOI : 10.1002/ejic.200700849

URL : https://hal.archives-ouvertes.fr/hal-01677673

J. M. Holub and K. Kirshenbaum, Tricks with clicks: modification of peptidomimetic oligomers via copper-catalyzed azide-alkyne [3 + 2] cycloaddition, Chem. Soc. Rev, vol.39, pp.1325-1337, 2010.

H. Aliouat, 3-Triazolium-Based Peptoid Oligomers, J. Org. Chem, vol.1, pp.2386-2398, 2017.
DOI : 10.1021/acs.joc.6b02804

URL : https://hal.archives-ouvertes.fr/hal-01650369

M. S. Abdel-maksoud, Broad-spectrum antiproliferative activity of a series of 6-(4-fluorophenyl)-5-(2-substituted pyrimidin-4-yl)imidazo[2,1-b]thiazole derivatives, Med. Chem. Res, vol.25, pp.824-833, 2016.

D. C. Tully, Synthesis and SAR of arylaminoethyl amides as noncovalent inhibitors of cathepsin S: P3 cyclic ethers, Bioorganic Med. Chem. Lett, vol.16, pp.5112-5117, 2006.

C. A. Townsend and A. Basak, Experiments and speculations on the role of oxidative cyclization chemistry in natural product biosynthesis, Tetrahedron, vol.47, pp.2591-2602, 1991.

J. A. Kruijtzer, L. J. Hofmeyer, W. Heerma, C. Versluis, and R. M. Liskamp, Solid-Phase Syntheses of Peptoids using Fmoc-Protected N -Substituted Substance P. Chem. -A Eur, pp.1570-1580, 1998.

E. Atherton and R. Sheppard, Solid Phase Peptide Synthesis: A Practical Approach, 1989.

G. M. Figliozzi, R. Goldsmith, S. C. Ng, S. C. Banville, and R. N. Zuckermann, Synthesis of N-substituted glycine peptoid libraries, Methods in Enzymology, vol.267, pp.437-447, 1996.
DOI : 10.1016/s0076-6879(96)67027-x

T. S. Burkoth, A. T. Fafarman, D. H. Charych, M. D. Connolly, and R. N. Zuckermann, Incorporation of unprotected heterocyclic side chains into peptoid oligomers via solidphase submonomer synthesis, J. Am. Chem. Soc, vol.125, pp.8841-8845, 2003.
DOI : 10.1021/ja0352101

H. J. Olivos, Microwave-assisted solid-phase synthesis of peptoids, Org. Lett, vol.4, pp.4057-4058, 2002.
DOI : 10.1021/ol0267578

M. A. Fara, J. J. Díaz-mochón, and M. Bradley, Microwave-assisted coupling with DIC/HOBt for the synthesis of difficult peptoids and fluorescently labelled peptides -A gentle heat goes a long way, Tetrahedron Lett, vol.47, pp.1011-1014, 2006.

B. C. Gorske, S. A. Jewell, E. J. Guerard, and H. E. Blackwell, Expedient synthesis and design strategies for new peptoid construction, Org. Lett, vol.7, pp.1521-1524, 2005.
DOI : 10.1021/ol0502984

H. C. Kolb, M. G. Finn, and K. B. Sharpless, Click Chemistry: Diverse Chemical Function from a Few Good Reactions, Angewandte Chemie -International Edition, vol.40, 2001.
DOI : 10.1002/1521-3773(20010601)40:11<2004::aid-anie2004>3.3.co;2-x

P. Mathew, A. Neels, and M. Albrecht, 3-Triazolylidenes as versatile abnormal carbene ligands for late transition metals, J. Am. Chem. Soc, vol.1, pp.13534-13535, 2008.
DOI : 10.1021/ja805781s

S. Hanelt and J. Liebscher, A novel and versatile access to task-specific ionic liquids based on 1,2,3-triazolium salts, Synlett, vol.1058, p.1060, 2008.

H. Jang, A. Fafarman, J. M. Holub, and K. Kirshenbaum, Click to fit: Versatile polyvalent display on a peptidomimetic scaffold, Org. Lett, vol.7, pp.1951-1954, 2005.
DOI : 10.1021/ol050371q

T. Zabrodski, M. Baskin, P. J. Kaniraj, and G. Maayan, Click to bind: Microwaveassisted solid-phase synthesis of peptoids incorporating pyridine-triazole ligands and their copper(II) complexes, Synlett, vol.25, pp.461-466, 2014.

L. L. Vezenkov, Ribbon-like Foldamers for Cellular Uptake and Drug Delivery, ChemBioChem, 2017.
DOI : 10.1002/cbic.201700455

URL : https://hal.archives-ouvertes.fr/hal-01944639

E. J. Prodhomme, Synthesis of 4-[2-aminoethyl(nitrosamino)]-1-pyridin-3-ylbutan-1-one, a new NNK hapten for the induction of N-nitrosamine-specific antibodies, Bioconjug. Chem, vol.18, pp.2045-2053, 2007.

M. Van-dijk, C. F. Van-nostrum, W. E. Hennink, D. T. Rijkers, and R. M. Liskamp, Synthesis and characterization of enzymatically biodegradable peg and peptide-based hydrogels prepared by click chemistry, Biomacromolecules, vol.11, pp.1608-1614, 2010.

W. Shi, Antimicrobial peptide melittin against Xanthomonas oryzae pv. oryzae, the bacterial leaf blight pathogen in rice, Appl. Microbiol. Biotechnol, vol.100, pp.5059-5067, 2016.
DOI : 10.1007/s00253-016-7400-4

URL : https://link.springer.com/content/pdf/10.1007%2Fs00253-016-7400-4.pdf

H. W. Boucher, No Drugs: No ESKAPE! An Update from the Infectious Diseases Society of America, Clin. Infect. Dis, vol.48, pp.1-12, 2009.

Y. A. Chabbert and J. Fillet, Correlation between 'methicillin resistance' and serotype in staphylococcus, Nature, vol.213, p.1137, 1967.

H. Grundmann, The dynamic changes of dominant clones of Staphylococcus aureus causing bloodstream infections in the European region: Results of a second structured survey, Eurosurveillance, vol.19, pp.1-10, 2014.

K. James-ryan, C. G. Ray, and J. C. , Sherris medical microbiology: an introduction to infectious diseases, Journal of Chemical Information and Modeling, vol.53, 2004.

T. Brock, Milestones in microbiology 1546 to 1940, vol.53, pp.215-218, 1999.

J. Holt, Bergey's Manual of Determinative Bacteriology, 1994.

. Clsi-document, Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically ; Approved Standard -Ninth Edition. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically, Approved Standar-Ninth Edition, vol.32, 2012.

S. G. Amyes, Antimicrobial chemotherapy : Pocketbook, 1996.

T. L. Raguse, E. A. Porter, B. Weisblum, and S. H. Gellman, Structure -Activity studies of 14-helical antimicrobial ?-peptides: Probing the relationship between conformational stability and antimicrobial potency, J. Am. Chem. Soc, vol.124, pp.12774-12785, 2002.

J. A. Turkett and K. L. Bicker, Evaluating the Effect of Peptoid Lipophilicity on Antimicrobial Potency, Cytotoxicity, and Combinatorial Library Design, ACS Comb. Sci, vol.19, pp.229-233, 2017.

I. W. Sutherland, The biofilm matrix -An immobilized but dynamic microbial environment, Trends in Microbiology, vol.9, pp.222-227, 2001.

J. Wingender and H. C. Flemming, Biofilms in drinking water and their role as reservoir for pathogens, Int. J. Hyg. Environ. Health, vol.214, pp.417-423, 2011.

L. Hall-stoodley and P. Stoodley, Biofilm formation and dispersal and the transmission of human pathogens, Trends in Microbiology, vol.13, pp.7-10, 2005.

, Enquête nationale de prévalence des infections nosocomiales et des traitements antiinfectieux en établissements de santé, France, mai-juin 2012. Résultats, 2013.

S. Miquel, R. Lagrafeuille, B. Souweine, and C. Forestier, Anti-biofilm activity as a health issue, Front. Microbiol, vol.7, pp.1-14, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01394090

J. A. Mohamed and D. B. Huang, Biofilm formation by enterococci, Journal of Medical Microbiology, vol.56, pp.1581-1588, 2007.

X. Zhu, Z. Ma, J. Wang, S. Chou, and A. Shan, Importance of Tryptophan in Transforming an Amphipathic Peptide into a Pseudomonas aeruginosa-Targeted Antimicrobial Peptide, PLoS One, vol.9, pp.1-19, 2014.

T. Mosmann, Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays, J. Immunol. Methods, vol.65, pp.55-63, 1983.

X. Dou, X. Zhu, J. Wang, N. Dong, and A. Shan, Novel Design of Heptad Amphiphiles To Enhance Cell Selectivity, Salt Resistance, Antibiofilm Properties and Their Membrane-Disruptive Mechanism, J. Med. Chem, vol.60, pp.2257-2270, 2017.

N. P. Chongsiriwatana, Intracellular biomass flocculation as a key mechanism of rapid bacterial killing by cationic, amphipathic antimicrobial peptides and peptoids, Sci. Rep, vol.7, p.16718, 2017.

Y. Esvan, Préparation de peptoïdes présentant des amides cis : vers des hélices Polyprolines de type I (PPI), 2012.

G. J. Atwell and W. A. Denny, Monoprotection of ?,?-Alkanediamines with the NBenzyloxycarbonyl Group, Synthesis (Stuttg, pp.1032-1033, 1984.

C. Forestier, Anti-biofilm activity: a function of Klebsiella pneumoniae capsular polysaccharide, PLoS One, vol.9, p.99995, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01053796

P. Kosikowska and A. Lesner, Antimicrobial Peptides (AMPs) as Drug Candidates: A Patent Review, Expert Opinion on Therapeutic Patents, vol.26, pp.689-702, 2003.

S. H. Gellman, Foldamers: A Manifesto, Accounts of Chemical Research, vol.31, pp.173-80, 1998.

D. Seebach,

M. N. Overhand;-f, ;. Kühnle, ;. Martinoni, ;. Oberer, and H. Widmer, ?-Peptides: Synthesis by Arndt-Eistert Homologation with Concomitant Peptide Coupling. Structure Determination by NMR and CD Spectroscopy and by X-Ray Crystallography. Helical Secondary Structure of a ?-Hexapeptide in Solution and Its Stability towards Pe, Helvetica Chimica Acta, vol.79, pp.913-954, 1996.

D. H. Appella;-l, . L. Christianson;-i, S. R. Karle;-d, and . Gellman, ?-Peptide Foldamers: Robust Helix Formation in a New Family of ?-Amino Acid Oligomers, Journal of the American Chemical Society, vol.118, pp.13071-13073, 1996.

R. J. Simon;-r, . N. Kania;-r, . D. Zuckermann;-v, . A. Huebner;-d, ;. S. Jewell et al., Peptoids: A Modular Approach to Drug Discovery, vol.89, pp.9367-71, 1992.

B. C. Hamper;-s, . M. Kolodziej;-a, . G. Scates;-r, E. Smith;, and . Cortez, Solid Phase Synthesis of BetaPeptoids: N-Substituted Beta-Aminopropionic Acid Oligomers, The Journal of Organic Chemistry, vol.63, pp.708-726, 1998.

B. C. Hamper;-s, . M. Kolodziej;-a, . G. Scates;-r, E. Smith;, and . Cortez, Solid Phase Synthesis of BetaPeptoids: N-Substituted Beta-Aminopropionic Acid Oligomers, The Journal of Organic Chemistry, vol.63, pp.708-726, 1998.

, En outre, ils présentent une isomérie cis/trans des amides N,N-disubstitués. Mais cet inconvénient peut être rendu avantageux en utilisant des chaînes latérales spécifiques pour contrôler cette isomérie. En fonction des chaines latérales utilisées, les peptoïdes peuvent adopter des structures secondaires particulières comme des hélices. La structuration est basée principalement sur la conformation des amides N,N-disubstitués du squelette

I. Polyproline and . Ppi), Armand et Zuckermann ont démontrés par modélisation et RMN l'adoption d'une structure en hélice de type PPI d'un octamère portant des chaines volumineuses (S)-phényléthyle. 14 Plus tard

, De la même façon, lorsque les amides sont en trans, une structuration en hélice de type PolyProline 2 (PPII) est préférée. Par exemple, les oligomères de N-aryl glycines adoptent une structure hélicoïdale de type PPII homogène en solution, Cependant, la structure était hétérogène en solution avec la présence de conformères minoritaires

, Pour avoir une structure homogène de type PolyProline 1 (PPI), le groupe de Blackwell a développé des oligomères portant des chaines latérales naphtyléthyles. 16 Récemment, notre groupe a étudié des chaines latérales N-?-chirales mais en s'affranchissant de groupement aromatique présent dans les chaines actuellement utilisées

, Les études de RMN et dichroïsme circulaire ont montré une structuration en hélice de type

I. Polyproline and . Ppi)-d&apos;une-grande-stabilité, confirmé par la structure cristallographique d'un pentamère de Ns1tbe. De plus, la construction d'oligomères mixtes comportant les chaines tBu et s1tbe a permis d'obtenir la structure RX du plus long oligomère reporté à ce jour

P. Armand,

K. L. Kirshenbaum;-a.-falicov;-r and . Dunbrack,

K. Dill,

R. N. Zuckermann and F. E. Cohen, Chiral N-Substituted Glycines Can Form Stable Helical Conformations', Folding and Design, vol.2, pp.369-75, 1997.

C. W. Wu,

K. J. Kirshenbaum;-t, ;. A. Sanborn, and . Patch,

K. Huang,

K. A. Dill;-r, ;. Zuckermann, and A. E. ,

. Barron, Structural and Spectroscopic Studies of Peptoid Oligomers with ?-Chiral Aliphatic Side Chains, Journal of the American Chemical Society, vol.125, pp.13525-13555, 2003.

J. R. Stringer, ;. A. Crapster;-i, and H. E. Blackwell, Extraordinarily Robust Polyproline Type I Peptoid Helices Generated via the Incorporation of ?-Chiral Aromatic N -1-Naphthylethyl Side Chains, Journal of the American Chemical Society, vol.133, pp.15559-67, 2011.

O. Roy;-g.-dumonteil, ;. S. Faure, ;. Jouffret, ;. Kriznik, ;. et al., Homogeneous and Robust Polyproline Type I Helices from Peptoids with Nonaromatic ?-Chiral Side Chains, Journal of the American Chemical Society, vol.139, pp.13533-13573, 2017.

N. P. Chongsiriwatana, ;. A. Patch;-a, and . Czyzewski,

M. T. Dohm;-a.-ivankin, ;. N. Gidalevitz;-r, A. E. Zuckermann, and . Barron, Peptoids That Mimic the Structure, Function, and Mechanism of Helical Antimicrobial Peptides, Proceedings of the National Academy of Sciences of the United States of America, vol.105, pp.2794-2803, 2008.

A. M. Czyzewski;-h.-jenssen;-c and . Fjell,

M. P. Waldbrook;-n, ;. E. Chongsiriwatana, . E. Yuen;-r, A. E. Hancock;, and . Barron, In Vivo, in Vitro, and in Silico Characterization of Peptoids as Antimicrobial Agents, PLoS ONE, vol.11, pp.1-17, 2016.

B. N. Mojsoska;-r, ;. Zuckermann, and H. Jenssen, Structure-Activity Relationship Study of Novel Peptoids That Mimic the Structure of Antimicrobial Peptides, Antimicrobial Agents and Chemotherapy, vol.59, pp.4112-4132, 2015.

B. Mojsoska,

G. Carretero, ;. S. Larsen;-r, ;. Mateiu, and H. Jenssen, Peptoids Successfully Inhibit the Growth of Gram-Negative E. Coli Causing Substantial Membrane Damage, Scientific Reports, vol.7, pp.1-12, 2017.

E. M. Driggers;-s, ;. J. Hale, N. K. Lee, and . Terrett, The Exploration of Macrocycles for Drug DiscoveryAn Underexploited Structural Class', Nature Reviews Drug Discovery, vol.7, pp.608-632, 2008.

M. L. Huang;-s and . Shin,

M. A. Benson;-v, K. Torres;, and . Kirshenbaum, A Comparison of Linear and Cyclic Peptoid Oligomers as Potent Antimicrobial Agents, ChemMedChem, vol.7, pp.114-136, 2012.

M. L. Huang,

M. A. Benson;-s, . J. Shin;-v, K. Torres;, and . Kirshenbaum, Amphiphilic Cyclic Peptoids That Exhibit Antimicrobial Activity by Disrupting Staphylococcus Aureus Membranes, European Journal of Organic Chemistry, pp.3560-3566, 2013.

A. S. Culf and R. J. Ouellette, Solid-Phase Synthesis of N-Substituted Glycine Oligomers (?-Peptoids) and Derivatives, Molecules, pp.5282-335, 2010.

C. Caumes;-t.-hjelmgaard;-r.-remuson, ;. S. Faure, ;. , and C. Taillefumier, Highly Convenient Gram-Scale Solution-Phase Peptoid Synthesis and Orthogonal Side-Chain Post-Modification, Synthesis, vol.2, pp.257-64, 2011.

, Scheme 2Accès aux oligomères à base de 1,2,3-triazolium selon deux stratégies

, Enfin, la formation du triazolium a été étudiée sur support pour conduire aux oligomères amphiphiles cationiques. Sur la base de travaux antérieurs

, Nspe-Nspe)2-NH2 a été décroché du support et obtenu avec une bonne pureté évaluée par analyse LC-MS. En utilisant l'expérience acquise dans le groupe lors des travaux précédents sur la synthèse en solution d'oligomères à base de 1,2,3-triazolium et grâce à notre stratégie optimisée en phase solide développée ici

, Une étude préliminaire de dichroïsme circulaire de cette série d'oligomères a montré que les peptoïdes H-(Nchtm-Nspe-Nspe)2-NH2, H-(Nchtm + -Nspe-Nspe)2-NH2 et H

, Nspe)3-NH2 présentent la signature caractéristique de l'hélice de type PPI des peptoïdes portant des chaines spe avec deux minima à 203 et 220 nm. 33 L'intensité inférieure de l'hexapeptoïde H-(Nchtm-Nspe-Nspe)2-NH2 à base de triazole par rapport à l'hexapeptoïde à base de triazolium H-(Nchtm + -Nspe-Nspe)2-NH2 est révélatrice de la stabilisation de la structure hélicoïdale par les chaines de type triazolium. En outre, une signature CD similaire a été observée pour l'hexamère H-(Nchtm + -Nspe-Nspe)2-NH2

P. Armand,

K. A. Kirshenbaum;-r, ;. Goldsmith, and . Farr-jones,

A. E. Barron;-k and . Truong,

K. A. Dill;-d and . Mierke,

F. E. Cohen;-r, E. K. Zuckermann, and . Bradley, NMR Determination of the Major Solution Conformation of a Peptoid Pentamer with Chiral Side Chains, vol.95, pp.4309-4323, 1998.

. Nspe-nspe, 3-NH2, ce qui suggère que l'oligomère court a déjà une structure hélicoïdale bien définie et donc le caractère amphiphile nécessaire pour l'activité antibactérienne

, Chapitre IV Evaluation biologique

C. Dans-ce, L'évaluation biologique comprendra l'étude de l'activité antibactérienne, de l'activité hémolytique et de la viabilité cellulaire. Pour mieux comprendre le mode d'action de ces peptoïdes, nous décrirons l'évaluation biologique des différentes familles d'oligomères amphiphiles cationiques synthétisés précédemment