, Profils d'expression du gène MtRTL1b et de MtsymCRK (Données Affymetrix GeneChips collectées depuis MtGEA), Annexe, vol.3

, v3/). MtRTL1a et MtRTL1b sont détectés par la même sonde, Les profils d'expression ont été obtenus avec la base de données MtGEAv3 disponible sur le site Noble Foundation

. Le-gène-mtsymcrk-est-détecté-par-la-sonde-mtr, Les profils d'expressions de ces différents gènes sont associés à différentes conditions, des organes de la partie aérienne, Pétiole et Tige), des racines (des parties de la racine et/ou des racines avec mycorhization) et des nodosités à différents stades, vol.39654

, Diagramme de relation des différents GO terms associés aux gènes sous-exprimés dans les nodosités RNAi-MtRTL1-1, vol.8

, ) en utilisant la version 3.5.5 pour l'analyse générale. Un degré significatif est associé à chaque GO term via la carte de chaleur allant du niveau 1 à 9, Diagramme de relation des gènes sous-exprimés dans les nodosités RNAi-MtRTL1-1. Schématisation des relations entre les différents GO terms via l'outil en ligne AgriGO, p.5

B. Alunni, Genomic organization and evolutionary insights on GRP and NCR genes, two large nodule-specific gene families in Medicago truncatula.', Molecular plant-microbe interactions : MPMI, vol.20, pp.1138-1148, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00184651

A. Andriankaja, AP2-ERF Transcription Factors Mediate Nod Factor Dependent Mt ENOD11 Activation in Root Hairs via a Novel cis-Regulatory Motif', the Plant Cell Online, vol.19, pp.2866-2885, 2007.

J. M. Ané, Medicago truncatula DMI1 Required for Bacterial and Fungal Symbioses in Legumes, Science, issue.5662, pp.1364-1367, 2004.

F. Ariel, Two Direct Targets of Cytokinin Signaling Regulate Symbiotic Nodulation in Medicago truncatula, The Plant Cell, vol.24, issue.9, pp.3838-3852, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00856169

F. Ariel, Noncoding Transcription by Alternative RNA Polymerases Dynamically Regulates an AuxinDriven Chromatin Loop, pp.1-14, 2014.

F. Arigoni, Nucleotide sequence of the fixABC region of Azorhizobium caulinodans ORS571: similarity of the fixB product with eukaryotic flavoproteins, characterization of fixX, and identification of nifW, MGG Molecular & General Genetics, vol.225, issue.3, pp.514-520, 1991.

J. Arrighi, The Medicago truncatula Lysine Motif-Receptor-Like Kinase Gene Family Includes NFP and New Nodule-Expressed Genes, Plant Physiology, vol.142, issue.1, pp.265-279, 2006.

J. Arrighi, The RPG gene of Medicago truncatula controls Rhizobium-directed polar growth during infection, Proceedings of the National Academy of Sciences, vol.105, pp.9817-9822, 2008.

E. Asamizu, A Positive Regulatory Role for LjERF1 in the Nodulation Process Is Revealed by Systematic Analysis of Nodule-Associated Transcription Factors of Lotus japonicus, Plant Physiology, vol.147, issue.4, pp.2030-2040, 2008.

M. Auriac and A. C. Timmers, Nodulation studies in the model legume Medicago truncatula: advantages of using the constitutive EF1alpha promoter and limitations in detecting fluorescent reporter proteins in nodule tissues.', Molecular plant-microbe interactions : MPMI, vol.20, pp.1040-1047, 2007.

L. Bapaume and D. Reinhardt, How membranes shape plant symbioses: signaling and transport in nodulation and arbuscular mycorrhiza, Frontiers in Plant Science, vol.3, pp.1-29, 2012.

D. G. Barker, Growing M . truncatula : choice of substrates and growth conditions, pp.1-26, 2006.

M. Baudin, A phylogenetically conserved group of NF-Y transcription factors interact to control nodulation in legumes, Plant Physiology, vol.169, p.1144, 2015.

J. Bazin, MiR396 affects mycorrhization and root meristem activity in the legume Medicago truncatula, Plant Journal, vol.74, issue.6, pp.920-934, 2013.

V. A. Benedito, A gene expression atlas of the model legume Medicago truncatula, Plant Journal, vol.55, issue.3, pp.504-513, 2008.

R. Benlloch, Isolation of mtpim Proves Tnt1 a Useful Reverse Genetics Tool in Medicago truncatula and Uncovers New Aspects of AP1 -Like Functions in Legumes 1, vol.142, pp.972-983, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00118500

D. A. Bernstein, Candida albicans Dicer ( CaDcr1 ) is required for ef fi cient ribosomal and spliceosomal RNA maturation, vol.109, pp.523-528, 2012.

F. Berrabah, A nonRD receptor-like kinase prevents nodule early senescence and defense-like reactions during symbiosis, New Phytologist, vol.203, issue.4, pp.1305-1314, 2014.

J. Blaszczyk, Noncatalytic assembly of ribonuclease III with double-stranded RNA, Structure, vol.12, issue.3, pp.457-466, 2004.

C. Bobik, E. Meilhoc, and J. Batut, FixJ : a Major Regulator of the Oxygen Limitation Response and Late Symbiotic Functions of Sinorhizobium meliloti, vol.188, pp.4890-4902, 2006.

A. Boisson-dernier, Agrobacterium rhizogenes -based transformation of Medicago truncatula Protocol for A . rhizogenes transformation of M, 2001.

A. Boisson-dernier, MtENOD11 Gene Activation During Rhizobial Infection and Mycorrhizal Arbuscule Development Requires a Common AT-Rich-Containing Regulatory Sequence', Molecular PlantMicrobe Interactions, vol.18, pp.1269-1276, 2005.

S. Boivin, C. Fonouni-farde, F. Frugier, and K. Bonaldi, Nodulation of Aeschynomene afraspera and A. indica by photosynthetic Bradyrhizobium Sp. strain ORS285: the nod-dependent versus the nod-independent symbiotic interaction, Molecular plant-microbe interactions : MPMI, vol.7, issue.11, pp.1359-1371, 2011.

L. Bond, Origin and developmental morphology of root nodules of Pisum sativum, Botanical Gazette, vol.109, pp.411-434, 1948.

A. Y. Borisov, The Sym35 Gene Required for Root Nodule Development in Pea Is an Ortholog of Nin from Lotus japonicus, PLANT PHYSIOLOGY, vol.131, issue.3, pp.1009-1017, 2003.

N. Bouché, An antagonistic function for Arabidopsis DCL2 in development and a new function for DCL4 in generating viral siRNAs, EMBO Journal, vol.25, issue.14, pp.3347-3356, 2006.

M. Bourcy, Medicago truncatula DNF2 is a PI-PLC-XD-containing protein required for bacteroid persistence and prevention of nodule early senescence and defense-like reactions, New Phytologist, vol.197, issue.4, pp.1250-1261, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00856976

T. A. Bozorov, DICER-like Proteins and Their Role in Plant-herbivore Interactions in Nicotiana attenuata, Journal of Integrative Plant Biology, vol.54, issue.3, pp.95-125, 1991.

K. E. Brigle, Products of the iron-molybdenum cofactor-specific biosynthetic genes, nifE and nifN, are structurally homologous to the products of the nitrogenase molybdenum-iron protein genes, nifD and nifK, Journal of Bacteriology, vol.169, issue.4, pp.1547-1553, 1987.

P. Brodersen, Widespread translational inhibition by plant miRNAs and siRNAs, Science, vol.320, issue.5880, pp.1185-1190, 2008.

M. Bruschi and F. Guerlesquin, Structure, function and evolution of bacterial ferredoxins, FEMS microbiology reviews, vol.4, issue.2, pp.90175-90184, 1988.

M. Bühler and D. Moazed, Transcription and RNAi in heterochromatic gene silencing, Nature Structural and Molecular Biology, vol.14, issue.11, pp.1041-1048, 2007.

P. Bustos-sanmamed, A Medicago truncatula rdr6 allele impairs transgene silencing and endogenous phased siRNA production but not development, pp.1-11, 2014.

P. Bustos-sanmamed, Overexpression of miR160 affects root growth and nitrogen-fixing nodule number in Medicago truncatula, Annual Review of Microbiology, vol.40, issue.12, pp.345-382, 1991.

H. E. Calvert, Anatomical analysis of the development and distribution of Rhizobium infections in soybean roots, Canadian Journal of Botany, vol.62, issue.11, pp.2375-2384, 1984.

A. Campalans, A. Kondorosi, and M. Crespi, Enod40 , a Short Open Reading Frame -Containing mRNA , Induces Cytoplasmic Localization of a Nuclear RNA Binding Protein in Medicago truncatula, The Plant Cell, vol.16, pp.1047-1059, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00122324

W. Capoen, Nuclear membranes control symbiotic calcium signaling of legumes, Proceedings of the National Academy of Sciences, vol.108, issue.34, pp.14348-14353, 2011.

C. Carter, The Vegetative Vacuole Proteome of Arabidopsis thaliana Reveals Predicted and Unexpected Proteins', the Plant Cell Online, vol.16, pp.3285-3303, 2004.

R. Catoira, Four Genes of Medicago truncatula Controlling Components of a Nod Factor Transduction Pathway, Plant Cell Online, vol.12, issue.9, pp.1647-1666, 2000.

A. Cebolla, The mitotic inhibitor ccs52 is required for endoreduplication and ploidy-dependent cell enlargement in plants, EMBO Journal, vol.18, issue.16, pp.4476-4484, 1999.
URL : https://hal.archives-ouvertes.fr/hal-00191037

E. J. Chapman and J. C. Carrington, Specialization and evolution of endogenous small RNA pathways, Nature Reviews Genetics, vol.8, issue.11, pp.884-896, 2007.

C. Charbonnel, The siRNA suppressor RTL1 is redox-regulated through glutathionylation of a conserved cysteine in the double-stranded-RNA-binding domain, Nucleic acids research, vol.45, issue.20, pp.11891-11907, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02116017

C. Charon, Alteration of enod40 expression modifies medicago truncatula root nodule development induced by sinorhizobium meliloti, The Plant cell, vol.11, issue.10, pp.1953-1966, 1999.

T. Chen, Interplay of pathogen-induced defense responses and symbiotic establishment in Medicago truncatula, Frontiers in Microbiology, vol.8, pp.1-13, 2017.

M. Clavel, Evolutionary history of double-stranded RNA binding proteins in plants: identification of new cofactors involved in easiRNA biogenesis, Plant Molecular Biology, vol.91, issue.1-2, pp.131-147, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01306579

T. Coba-de-la-peña, A carbonic anhydrase gene is induced in the nodule primordium and its cellspecific expression is controlled by the presence of Rhizobium during development, Plant Journal, vol.11, issue.3, pp.407-420, 1997.

J. Combier, MtHAP2-1 is a key transcriptional regulator of symbiotic nodule development regulated by microRNA169 in Medicago truncatula service MtHAP2-1 is a key transcriptional regulator of symbiotic nodule development regulated by microRNA169 in Medicago truncatula, pp.3084-3088, 1990.

P. Comella, Characterization of a ribonuclease III-like protein required for cleavage of the prerRNA in the 3 ' ETS in Arabidopsis, vol.36, pp.1163-1175, 2008.
URL : https://hal.archives-ouvertes.fr/hal-02121738

A. Complainville, Nodule initiation involves the creation of a new symplasmic field in specific root cells of medicago species, The Plant cell, vol.15, issue.12, pp.2778-91, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00134893

C. Conrad, E. Evguenieva-hackenberg, G. Klug, and D. Cook, Both N-terminal catalytic and C-terminal RNA binding domain contribute to substrate speci ¢ city and cleavage site selection of RNase III, The Plant cell, vol.7, issue.1, pp.43-55, 1995.

D. Corbin, L. Barran, and G. Ditta, Organization and expression of Rhizobium meliloti nitrogen fixation genes, Proceedings of the National Academy of Sciences of the United States of America, vol.80, pp.3005-3014, 1983.

D. L. Court, RNase III : Genetics and Function ; Structure and Mechanism, 2013.

J. Couzigou, The legume NOOT-BOP-COCH-LIKE genes are conserved regulators of abscission , a major agronomical trait in cultivated crops, vol.1, pp.228-240, 2016.

J. Couzigou, NODULE ROOT and COCHLEATA Maintain Nodule Development and Are Legume Orthologs of Arabidopsis BLADE-ON-PETIOLE Genes, The Plant Cell, vol.24, issue.11, pp.4498-4510, 2012.

K. M. Creasey, miRNAs trigger widespread epigenetically-activated siRNAs from transposons in Arabidopsis, vol.508, pp.411-415, 2014.

M. D. Crespi, enod40, a gene expressed during nodule organogenesis, codes for a non-translatable RNA involved in plant growth, The EMBO journal, vol.13, issue.21, pp.5099-5112, 1994.

Q. Cronk, I. Ojeda, and R. T. Pennington, Legume comparative genomics: Progress in phylogenetics and phylogenomics, Current Opinion in Plant Biology, vol.9, issue.2, pp.99-103, 2006.

S. J. Curtin, MicroRNA Maturation and MicroRNA Target Gene Expression Regulation Are Severely Disrupted in Soybean dicer-like1 Double Mutants, vol.6, pp.423-433, 2016.

S. J. Curtin, CRISPR / Cas9 and TALENs generate heritable mutations for genes involved in small RNA processing of Glycine max and Medicago truncatula, pp.1125-1137, 2018.

P. Czernic, Convergent Evolution of Endosymbiont Differentiation in Dalbergioid and Inverted Repeat-Lacking Clade Legumes Mediated by Nodule-Specific Cysteine-Rich Peptides, Plant Physiology, vol.169, issue.2, pp.1254-1265, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01430710

I. Damiani, Nod Factor Effects on Root Hair-Specific Transcriptome of Medicago truncatula: Focus on Plasma Membrane Transport Systems and Reactive Oxygen Species Networks, Frontiers in Plant Science, vol.7, pp.1-22, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01354648

L. Daxinger, A stepwise pathway for biogenesis of 24-nt secondary siRNAs and spreading of DNA methylation, EMBO Journal, vol.28, issue.1, pp.48-57, 2009.

D. R. Dean, J. T. Bolin, and L. Zheng, Nitrogenase metalloclusters: Structures, organization, and synthesis, Journal of Bacteriology, vol.175, issue.21, pp.6737-6744, 1993.

A. Deleris, Hierarchical action and inhibition of plant dicer-like proteins in antiviral defense, Science, issue.5783, pp.68-71, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00092877

A. Deleris, T. Halter, and L. Navarro, DNA Methylation and Demethylation in Plant Immunity, 2016.

E. Deltcheva, CRISPR RNA maturation by trans -encoded small RNA and host factor RNase III, pp.602-607, 2011.

J. Dénarié, F. Debellé, and J. Promé, Rhizobium Lipo-Chitooligosaccharide Nodulation Factors: Signaling Molecules Mediating Recognition and Morphogenesis, Annual Review of Biochemistry, vol.65, issue.1, pp.503-535, 1996.

R. F. Denison and D. B. Layzell, Measurement of legume nodule respiration and o(2) permeability by noninvasive spectrophotometry of leghemoglobin, Plant physiology, vol.96, pp.137-143, 1991.

E. A. Devers, Stars and Symbiosis : MicroRNA-and MicroRNA * -Mediated Transcript Cleavage Involved in Arbuscular Mycorrhizal Symbiosis 1, vol.156, pp.1990-2010, 2011.

R. Dickstein, Nodules elicited by Rhizobium meliloti mutants are arrested at an early stage of development, Mol. Gen. Genet, vol.230, pp.423-432, 1991.

Y. Ding and G. E. Oldroyd, Positioning the nodule, the hormone dictum, Plant Signaling and Behavior, vol.4, issue.2, pp.89-93, 2009.

Á. Domonkos, NAD1 controls defense-like responses in Medicago truncatula symbiotic nitrogen fixing nodules following rhizobial colonization in a BacA-independent manner, Genes, vol.8, issue.12, pp.1-21, 2017.

C. D. Earl, C. W. Ronson, and F. M. Ausubel, Genetic and structural analysis of the Rhizobium meliloti fixA, fixB, fixC, and fixX genes, Journal of Bacteriology, vol.169, issue.3, pp.1127-1136, 1987.

S. Ebeling, J. D. Noti, and H. Hennecke, Identification of a new Bradyrhizobium japonicum gene (frxA) encoding a ferredoxinlike protein, Journal of bacteriology, vol.170, issue.4, pp.1999-2001, 1988.

E. Elvira-matelot, Arabidopsis RNASE 1 THREE LIKE2 modulates the expression of protein-coding genes via 24-nucleotide small interfering RNA-directed DNA methylation, The Plant Cell, vol.28, issue.9, pp.2276-2290, 2016.

D. W. Emerich and H. B. Krishnan, Symbiosomes: temporary moonlighting organelles, Biochemical Journal, vol.460, issue.1, pp.1-11, 2014.

G. Endre, A receptor kinase gene regulating, Nature, pp.962-966, 2002.

A. Farkas, Medicago truncatula symbiotic peptide NCR247 contributes to bacteroid differentiation through multiple mechanisms, Proceedings of the National Academy of Sciences, vol.111, pp.5183-5188, 2014.

M. Fedorova, Genome-Wide Identification of Nodule-Specific Transcripts in the Model Legume Medicago truncatula, Plant Physiology, vol.130, issue.2, pp.519-537, 2002.

Q. Fei, Secondary siRNAs from Medicago NB-LRRs modulated via miRNA -target interactions and their abundances, pp.451-465, 2015.

Q. Fei, R. Xia, and B. C. Meyers, Phased , Secondary , Small Interfering RNAs in Posttranscriptional Regulatory Networks, vol.25, pp.2400-2415, 2013.

H. H. Felle, Elevation of the Cytosolic Free Ca2+] Is Indispensable for the Transduction of the Nod Factor Signal in Alfalfa, Plant Physiology, vol.121, issue.121, pp.213-221, 1999.

D. Formey, The small RNA diversity from Medicago truncatula roots under biotic interactions evidences the environmental plasticity of the miRNAome, pp.1-21, 2014.

K. R. Fortin, R. H. Nicholson, and A. W. Nicholson, Mouse ribonuclease III. cDNA structure, expression analysis, and chromosomal location, vol.9, pp.1-9, 2002.

H. J. Franssen, Developmental aspects of the Rhizobium-legume symbiosis, Plant Molecular Biology, vol.19, issue.1, pp.89-107, 1992.

H. J. Franssen, Root developmental programs shape the Medicago truncatula nodule meristem, pp.2941-2950, 2015.

P. Gamas, Cytokinins in Symbiotic Nodulation: When, Where, What For?, Trends in Plant Science. Elsevier Ltd, vol.22, issue.9, pp.792-802, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01608674

P. Gamas, F. De-billy, and G. Truchet, Symbiosis-Specific Expression of Two Medicago truncatula Nodulin Genes, MtN1 and MtN13 , Encoding Products Homologous to Plant Defense Proteins, Molecular PlantMicrobe Interactions, vol.11, issue.5, pp.393-403, 1998.

J. Gan, Structural Insight into the Mechanism of Double-Stranded RNA Processing by Ribonuclease III, pp.355-366, 2006.

V. Gasciolli, Partially redundant functions of arabidopsis DICER-like enzymes and a role for DCL4 in producing trans-Acting siRNAs, Current Biology, vol.15, issue.16, pp.1494-1500, 2005.

C. Gaudin, Structure of an AAGU Tetraloop and its Contribution to Substrate Selection by yeast RNase III, pp.322-331, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00114068

D. Ge, B. Lamontagne, and S. A. Elela, RNase III-Mediated Silencing of a Glucose-Dependent Repressor in Yeast, vol.15, pp.140-145, 2005.

M. Gehring, K. L. Bubb, and S. Henikoff, Extensive Demethylation of Repetitive Elements During Seed Development Underlies Gene Imprinting, p.1447, 2009.

G. Ghazal, Genome-Wide Prediction and Analysis of Yeast RNase III-Dependent snoRNA Processing Signals ?, vol.25, pp.2981-2994, 2005.

M. Ghildiyal and P. D. Zamore, Small silencing RNAs: An expanding universe, Nature Reviews Genetics, vol.10, issue.2, pp.94-108, 2009.

K. E. Gibson, H. Kobayashi, and G. C. Walker, Molecular Determinants of a Symbiotic Chronic Infection, Annual Review of Genetics, vol.42, issue.1, pp.413-441, 2008.

J. Glazebrook, A. Ichige, and G. C. Walker, A Rhizobium meliloti homolog of the Eschenchla coh peptlde antibiotic transport protein SbmA is essential for bacteroid development', (zone III), pp.1485-1497, 1993.

C. Gleason, Nodulation independent of rhizobia induced by a calcium-activated kinase lacking autoinhibition, Nature, issue.7097, pp.1149-1152, 2006.

L. Godiard, Identification of New Potential Regulators of the Medicago truncatula-Sinorhizobium meliloti Symbiosis Using a Large-Scale Suppression Subtractive Hybridization Approach, Molecular PlantMicrobe Interactions, vol.20, issue.3, pp.321-332, 2007.
URL : https://hal.archives-ouvertes.fr/hal-01265975

M. Gonzalez-garcia, The Medicago truncatula CRE1 Cytokinin Receptor Regulates Lateral Root Development and Early Symbiotic Interaction with Sinorhizobium meliloti, Plant Cell Online, vol.138, issue.5, pp.2680-2693, 2006.

S. Goodman, Molecular cloning and expression of a cDNA encoding human electron transfer flavoprotein-ubiquinone oxidoreductase, European journal of ?, vol.286, pp.277-286, 1994.

A. J. Gordon, Sucrose Synthase in Legume Nodules Is Essential for Nitrogen Fixation, Plant Physiology, vol.120, issue.3, pp.867-878, 1999.

C. Gough, Rhizobium Symbiosis: Insight into Nod Factor Receptors, Current Biology, vol.13, issue.24, pp.973-975, 2003.

C. Gough and J. Cullimore, Lipo-chitooligosaccharide Signaling in Endosymbiotic Plant-Microbe Interactions, Molecular Plant-Microbe Interactions, vol.24, issue.8, pp.867-878, 2011.

M. Groth, NENA, a Lotus japonicus Homolog of Sec13, Is Required for Rhizodermal Infection by Arbuscular Mycorrhiza Fungi and Rhizobia but Dispensable for Cortical Endosymbiotic Development, Plant Cell Online, vol.22, issue.7, pp.2509-2526, 2010.

M. Gubler and H. Hennecke, fixA, B and C genes are essential for symbiotic and free-living, microaerobic nitrogen fixation, FEBS Letters, vol.200, issue.1, pp.186-192, 1986.

I. Guefrachi, Extreme specificity of NCR gene expression in Medicago truncatula, BMC Genomics, vol.15, issue.1, pp.1-16, 2014.

I. Guefrachi and O. Pierre, Bradyrhizobium BclA Is a Peptide Transporter Required for Bacterial Differentiation in Symbiosis with Aeschynomene Legumes, Molecular Plant-Microbe Interactions, vol.28, issue.11, pp.1155-1166, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01433036

I. Guefrachi and C. Verly, Role of the Bacterial BacA ABC-Transporter in Chronic Infection of Nodule Cells by Rhizobium Bacteria, Biological Nitrogen Fixation, vol.1, issue.2, pp.315-324, 2015.

A. F. Haag, Protection of sinorhizobium against host cysteine-rich antimicrobial peptides is critical for symbiosis, PLoS Biology, issue.10, p.9, 2011.

A. F. Haag, Role of cysteine residues and disulfide bonds in the activity of a legume root nodulespecific, cysteine-rich peptide, Journal of Biological Chemistry, vol.287, issue.14, pp.10791-10798, 2012.

A. F. Haag, Molecular insights into bacteroid development during Rhizobium-legume symbiosis, FEMS Microbiology Reviews, vol.37, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00856980

R. H. Hamilton and M. Z. Fall, The Loss of Tumor-Initiating Ability in Agrobacterium tumefaciens by Incubation at High Temperature, pp.12-13, 1971.

J. Han, Molecular Basis for the Recognition of Primary microRNAs by the Drosha-DGCR8 Complex, pp.887-901, 2006.

C. H. Haney and S. R. Long, Plant flotillins are required for infection by nitrogen-fixing bacteria, Proceedings of the National Academy of Sciences, vol.107, pp.478-483, 2010.

J. G. Haynes, Rapid analysis of legume root nodule development using confocal microscopy, pp.661-668, 2004.

J. Heard, Evolutionary Diversity of Symbiotically Induced Nodule MADS Box Genes : Characterization of nmhC5 , a Member of a Novel Subfamily, vol.10, pp.665-676, 1997.

J. Heard and K. Dunn, Symbiotic induction of a MADS-box gene during development of alfalfa root nodules, vol.92, pp.5273-5277, 1995.

M. Held, Lotus japonicus Cytokinin Receptors Work Partially Redundantly to Mediate Nodule Formation, The Plant Cell, vol.26, issue.2, pp.678-694, 2014.

A. M. Hirsch, Early nodulin genes are induced in alfalfa root outgrowths elicited by auxin transport inhibitors, Proceedings of the National Academy of Sciences, vol.86, pp.1244-1248, 1989.

C. D. Hirsch and N. M. Springer, Transposable element influences on gene expression in plants', BBAGene Regulatory Mechanisms, 2016.

S. Hirsch, GRAS Proteins Form a DNA Binding Complex to Induce Gene Expression during Nodulation Signaling in Medicago truncatula', the Plant Cell Online, vol.21, pp.545-557, 2009.

K. V. Hobecker, The MicroRNA390 / TAS3 Pathway Mediates Symbiotic Nodulation and Lateral Root Growth 1, vol.174, pp.2469-2486, 2017.

D. B. Holt, micro RNA 172 ( miR172 ) signals epidermal infection and is expressed in cells primed for bacterial invasion in Lotus japonicus roots and nodules, vol.172, pp.241-256, 2015.

B. Horváth, Medicago truncatula IPD3 Is a Member of the Common Symbiotic Signaling Pathway Required for Rhizobial and Mycorrhizal Symbioses, Molecular Plant-Microbe Interactions, vol.24, issue.11, pp.1345-1358, 2011.

B. Horváth, Loss of the nodule-specific cysteine rich peptide, NCR169, abolishes symbiotic nitrogen fixation in the Medicago truncatula dnf7 mutant, Proceedings of the National Academy of Sciences, vol.112, issue.49, pp.15232-15237, 2015.

M. Huse and J. Kuriyan, The conformational plasticity of protein kinases, Cell, vol.109, issue.3, pp.275-282, 2002.

L. P. Iniguez, B. Nova-franco, and G. Hernandez, Novel players in the AP2-miR172 regulatory network for common bean nodulation, pp.1-4, 2015.

S. Ivanov, Rhizobium-legume symbiosis shares an exocytotic pathway required for arbuscule formation, Proceedings of the National Academy of Sciences, vol.109, pp.8316-8321, 2012.

L. Jaskiewicz and W. Filipowicz, Role of Dicer in posttranscriptional RNA silencing, Current Topics in Microbiology and Immunology, vol.320, pp.77-97, 2008.

X. Ji, The Mechanism of RNase III Action : How Dicer Dices, 2008.

T. M. Johanson, A. M. Lew, and M. M. Chong, MicroRNA-independent roles of the RNase III enzymes Drosha and Dicer, Open biology, vol.3, p.130144, 2013.

E. Journet, Medicago truncatula ENOD11 : A Novel RPRP-Encoding Early Nodulin Gene Expressed During Mycorrhization in Arbuscule-Containing Cells, Molecular Plant-Microbe Interactions, vol.14, issue.6, pp.737-748, 2001.

E. P. Journet, Rhizobium meliloti Nod factors elicit cell-specific transcription of the ENOD12 gene in transgenic alfalfa, vol.6, pp.241-249, 1994.

P. Kalo, Nodulation Signaling in Legumes Requires NSP2, a Member of the GRAS Family of Transcriptional Regulators, Science, vol.308, issue.5729, pp.1786-1789, 2005.

N. Kanamori, From The Cover: A nucleoporin is required for induction of Ca2+ spiking in legume nodule development and essential for rhizobial and fungal symbiosis, Proceedings of the National Academy of Sciences, vol.103, issue.2, pp.359-364, 2006.

H. Kang, A MYB coiled-coil transcription factor interacts with NSP2 and is involved in nodulation in Lotus japonicus, pp.837-849, 2014.

Y. Kawaharada, Receptor-mediated exopolysaccharide perception controls bacterial infection, Nature, vol.523, issue.7560, pp.308-312, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02137607

T. Kazmierczak, Specific host-responsive associations between Medicago truncatula accessions and Sinorhizobium strains, pp.1-53, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01608196

Z. Kevei, Glycine-rich proteins encoded by a nodule-specific gene family are implicated in different stages of symbiotic nodule development in Medicago spp, Molecular Plant-Microbe Interactions : MPMI, vol.15, issue.9, pp.922-953, 2002.
URL : https://hal.archives-ouvertes.fr/hal-00140520

Z. Kevei, 3-Hydroxy-3-Methylglutaryl Coenzyme A Reductase1 Interacts with NORK and Is Crucial for Nodulation in Medicago truncatula', the Plant Cell Online, vol.19, pp.3974-3989, 2007.

A. Kharrat, Structure of the dsRNA binding domain of Ecoli RNase III, vol.14, pp.3572-3584, 1995.

M. Kim, An antimicrobial peptide essential for bacterial survival in the nitrogen-fixing symbiosis, Proceedings of the National Academy of Sciences, vol.112, pp.15238-15243, 2015.

M. Y. Kim, Whole-genome sequencing and intensive analysis of the undomesticated soybean ( Glycine soja Sieb . and Zucc .) genome, 2010.

,

E. Kiyota, An Arabidopsis RNase III-like protein, AtRTL2, cleaves double-stranded RNA in vitro, Journal of Plant Research, vol.124, issue.3, pp.405-414, 2011.

W. Klipp, The Rhizobium meliloti fdxN gene encoding a ferredoxin-like protein is necessary for nitrogen fixation and is cotranscribed with nifA and nifB, MGG Molecular & General Genetics, vol.216, issue.2-3, pp.293-302, 1989.

W. P. Kloosterman and R. H. Plasterk, The Diverse Functions of MicroRNAs in Animal Development and Disease, Developmental Cell, vol.11, issue.4, pp.441-450, 2006.

E. Kondorosi, P. Mergaert, and A. Kereszt, A Paradigm for Endosymbiotic Life: Cell Differentiation of Rhizobium Bacteria Provoked by Host Plant Factors, Annual Review of Microbiology, vol.67, issue.1, pp.611-628, 2013.

H. Kouchi, Rice ENOD40 : isolation and expression analysis in rice and transgenic soybean root nodules, vol.18, pp.121-129, 1999.

J. F. Kreuze, Viral Class 1 RNase III Involved in Suppression of RNA Silencing, vol.79, pp.7227-7238, 2005.

T. S. Kroeger, A plant-specific RNA-binding domain revealed through analysis of chloroplast group II intron splicing, Proceedings of the National Academy of Sciences, vol.106, issue.11, pp.4537-4542, 2009.

I. S. Kryvoruchko, MtSWEET11, a Nodule-Specific Sucrose Transporter of Medicago truncatula, Plant Physiology, vol.171, issue.1, pp.554-565, 2016.

Y. Kurihara and Y. Watanabe, From The Cover: Arabidopsis micro-RNA biogenesis through Dicer-like 1 protein functions, Proceedings of the National Academy of Sciences, vol.101, issue.34, pp.12753-12758, 2004.

J. Lai, Gene movement by Helitron transposons contributes to the haplotype variability of maize, 2005.

B. Lamontagne and S. A. Elela, Evaluation of the RNA Determinants for Bacterial and Yeast RNase III Binding and Cleavage * ?, vol.279, pp.2231-2241, 2004.

B. Lamontagne, A. Tremblay, and S. A. Elela, The N-Terminal Domain That Distinguishes Yeast from Bacterial RNase III Contains a Dimerization Signal Required for Efficient Double-Stranded RNA Cleavage, vol.20, pp.1104-1115, 2000.

Z. Lang and Z. Gong, Novel roles of an RNase III enzyme, vol.2, pp.25-26, 2016.

W. G. Langenberg, Transgenic tobacco plants expressing the bacterial mc gene resist virus infection, pp.391-399, 1997.

P. Laporte, A novel RNA-binding peptide regulates the establishment of the Medicago truncatulaSinorhizobium meliloti nitrogen-fixing symbiosis, pp.24-38, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00856230

P. Laporte, The CCAAT box-binding transcription factor NF-YA1 controls rhizobial infection, Journal of Experimental Botany, vol.65, issue.2, pp.481-494, 2014.

M. Laranjo, A. Alexandre, and S. Oliveira, Legume growth-promoting rhizobia: An overview on the Mesorhizobium genus', Microbiological Research, vol.169, pp.2-17, 2014.

S. Larose, Nodule carbohydrate catabolism is enhanced in the Medicago truncatula A17-Sinorhizobium medicaewsm419 symbiosis, Frontiers in Microbiology, vol.5, pp.1-7, 2007.

E. Larrainzar, Deep Sequencing of the Medicago truncatula Root Transcriptome Reveals a Massive and Early Interaction between Nodulation Factor and Ethylene Signals, 2015.

D. Lauressergues, The microRNA miR171h modulates arbuscular mycorrhizal colonization of Medicago truncatula by targeting NSP2, pp.1-11, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00757512

W. S. Layman and J. Zuo, Epigenetic regulation in the inner ear and its potential roles in development , protection , and regeneration, vol.8, pp.1-11, 2015.

B. Lefebvre, A remorin protein interacts with symbiotic receptors and regulates bacterial infection, Proceedings of the National Academy of Sciences, vol.107, pp.2343-2348, 2010.

J. A. Leigh, E. R. Signer, and G. C. Walker, Exopolysaccharide-deficient mutants of Rhizobium meliloti that form ineffective nodules, Proceedings of the National Academy of Sciences, vol.82, pp.6231-6235, 1985.

P. Lerouge, Symbiotic host-specificity of Rhizobium meliloti is determined by a sulphated and acylated glucosamine oligosaccharide signal, Nature, pp.781-784, 1990.

J. Lévy, A Putative Ca 2 and Calmodulin-Dependent Protein Kinase Required, Science, issue.5662, pp.1361-1365, 2004.

H. Li, Misexpression of miR482, miR1512, and miR1515 Increases Soybean Nodulation, vol.153, pp.1759-1770, 2010.

J. Li, Methylation Protects miRNAs and siRNAs from a 3?-End Uridylation Activity in Arabidopsis, vol.15, pp.1501-1507, 2005.

Y. Li, High-Resolution Transcriptomic Analyses of Sinorhizobium sp. NGR234 Bacteroids in Determinate Nodules of Vigna unguiculata and Indeterminate Nodules of Leucaena leucocephala, PLoS ONE, vol.8, issue.8, 2013.

M. Libault, Large-Scale Analysis of Putative Soybean Regulatory Gene Expression Identifies a Myb Gene, pp.1207-1220, 2009.

K. R. Libbenga and P. A. Harkes, Initial proliferation of cortical cells in the formation of root nodules in Pisum sativum L, Planta, vol.114, issue.1, pp.17-28, 1973.

E. Limpens, LysM Domain Receptor Kinases Regulating Rhizobial Nod Factor-Induced Infection, Science, vol.302, issue.5645, pp.630-633, 2003.

E. Limpens, Formation of organelle-like N2-fixing symbiosomes in legume root nodules is controlled by DMI2, Proceedings of the National Academy of Sciences, vol.102, pp.10375-10380, 2005.

Q. Liu, Y. Feng, and Z. Zhu, Dicer-like (DCL) proteins in plants, Functional and Integrative Genomics, vol.9, issue.3, pp.277-286, 2009.

W. Liu, A Novel Sucrose-Regulatory MADS-Box Transcription Factor GmNMHC5 Promotes Root Development and Nodulation in Soybean ( Glycine max, Merr .)', (Ld), pp.20657-20673, 2015.

K. J. Livak and T. D. Schmittgen, Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2 ? ?? C T Method, vol.408, pp.402-408, 2001.

D. P. Lohar, Transcript analysis of early nodulation events in Medicago truncatula, Plant physiology, vol.140, pp.221-234, 2006.

I. J. Macrae and J. A. Doudna, Ribonuclease revisited : structural insights into ribonuclease III family enzymes, pp.138-145, 2007.

K. Magne, Lotus japonicus NOOT-BOP-COCH-LIKE1 is essential for nodule, nectary, leaf and flower development, Plant Journal, vol.94, issue.5, pp.880-894, 2018.

A. Mallory, Form , Function , and Regulation of ARGONAUTE Proteins, vol.22, pp.3879-3889, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01203875

P. Marhavý, Cytokinin Modulates Endocytic Trafficking of PIN1 Auxin Efflux Carrier to Control Plant Organogenesis, Developmental Cell, vol.21, issue.4, pp.796-804, 2011.

E. Marin, miR390 , Arabidopsis TAS3 tasiRNAs , and Their AUXIN RESPONSE FACTOR Targets Define an Autoregulatory Network Quantitatively Regulating Lateral Root Growth, vol.22, pp.1104-1117, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00856226

G. Maróti and É. Kondorosi, Nitrogen-fixing Rhizobium-legume symbiosis: Are polyploidy and host peptide-governed symbiont differentiation general principles of endosymbiosis?, Frontiers in Microbiology, vol.5, pp.1-6, 2014.

J. F. Marsh, Medicago truncatula NIN Is Essential for Rhizobial-Independent Nodule Organogenesis Induced by Autoactive Calcium/Calmodulin-Dependent Protein Kinase, Plant Physiology, vol.144, issue.1, pp.324-335, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00159989

H. Marx, A proteomic atlas of the legume Medicago truncatula and its nitrogen-fixing endosymbiont Sinorhizobium meliloti', Nature Biotechnology, vol.34, pp.1198-1205, 2016.

B. Masepohl, Functional analysis of the cysteine motifs in the ferredoxin-like protein FdxN of Rhizobium meliloti involved in symbiotic nitrogen fixation, MGG Molecular & General Genetics, vol.233, issue.1-2, pp.33-41, 1992.

A. Mathews, B. Carroll, and P. Gresshoff, Development of Bradyrhizobium infections in supernodulating and non-nodulating mutants of soybean (Glycine max L. Merrill)', Protoplasma, pp.40-47, 1989.

N. Maunoury, Differentiation of symbiotic cells and endosymbionts in Medicago truncatula nodulation are coupled to two transcriptome-switches, PLoS ONE, vol.5, issue.3, 2010.

W. Meng and A. W. Nicholson, Heterodimer-based analysis of subunit and domain contributions to double-stranded RNA processing by Escherichia coli RNase III in vitro, vol.48, pp.39-48, 2008.

P. Mergaert, A Novel Family in Medicago truncatula Consisting of More Than 300 Nodule-Specific Genes Coding for Small, Secreted Polypeptides with Conserved Cysteine Motifs, Plant Physiology, vol.132, issue.1, pp.161-173, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00134878

P. Mergaert, Eukaryotic control on bacterial cell cycle and differentiation in the Rhizobium-legume symbiosis, Proceedings of the National Academy of Sciences, vol.103, pp.5230-5235, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00118557

E. Messinese, A novel nuclear protein interacts with the symbiotic DMI3 calcium-and calmodulindependent protein kinase of Medicago truncatula, Molecular Plant-Microbe Interactions, vol.20, issue.8, pp.912-921, 2007.

P. H. Middleton, An ERF Transcription Factor in Medicago truncatula That Is Essential for Nod Factor Signal Transduction', the Plant Cell Online, vol.19, pp.1221-1234, 2007.

R. M. Mitra, A Ca2+/calmodulin-dependent protein kinase required for symbiotic nodule development: Gene identification by transcript-based cloning, Proceedings of the National Academy of Sciences of the United States of America, vol.101, pp.4701-4705, 2004.

S. Moling, Nod Factor Receptors Form Heteromeric Complexes and Are Essential for Intracellular Infection in Medicago Nodules, The Plant Cell, vol.26, issue.10, pp.4188-4199, 2014.

K. M. Moll, Strategies for optimizing BioNano and Dovetail explored through a second reference quality assembly for the legume model, BMC Genomics, pp.1-16, 2017.

S. Moreau and D. Laporte, MtbHLH1 , a bHLH transcription factor involved in Medicago truncatula nodule vascular patterning and nodule to plant metabolic exchanges, pp.391-404, 2011.

S. Moreau and M. Verdenaud, Transcription reprogramming during root nodule development in Medicago truncatula, PLoS ONE, vol.6, issue.1, 2011.

M. Morell and L. Copeland, Sucrose synthase of soybean nodules, Plant physiology, vol.78, pp.149-154, 1985.

V. Mortier, Nodule numbers are governed by interaction between CLE peptides and cytokinin signaling, Plant Journal, vol.70, issue.3, pp.367-376, 2012.

J. D. Murray, A cytokinin perception mutant colonized by Rhizobium in the absence of nodule organogenesis, Science, issue.5808, pp.101-104, 2007.

J. D. Murray, Invasion by Invitation: Rhizobial Infection in Legumes, Molecular Plant-Microbe Interactions, vol.24, issue.6, pp.631-639, 2011.

M. Nagymihály, Ploidy-dependent changes in the epigenome of symbiotic cells correlate with specific patterns of gene expression, vol.114, pp.4543-4548, 2017.

C. Napoli, C. Lemieux, and R. Jorgensen, Introduction of a Chimeric Chalcone Synthase Gene into Petunia Results in Reversible Co-Suppression of Homologous Genes in trans, Plant Cell Online, vol.2, issue.4, pp.279-289, 1990.

W. Newcomb, A correlated light and electron microscopic study of symbiotic growth and differentiation in Pisum sativum root nodules, Canadian Journal of Botany, vol.54, issue.18, pp.2163-2186, 1976.

W. Newcomb, D. Sippell, and R. Peterson, The early morphogenesis of Glycine max and Pisum sativum root nodules, Canadian Journal of Botany, vol.57, pp.2603-2616, 1940.

A. W. Nicholson, Function , mechanism and regulation of bacterial ribonucleases, vol.23, 1998.

A. W. Nicholson, Ribonuclease III mechanisms of double-stranded RNA cleavage, vol.5, pp.31-48, 2014.

N. R. Nizampatnam, microRNA160 dictates stage-specific auxin and cytokinin sensitivities and directs soybean nodule development, pp.140-153, 2015.

B. Nova-franco, The Micro-RNA172c-APETALA2-1 Node as a Key Regulator of the Common BeanRhizobium etli Nitrogen Fixation Symbiosis 1, vol.168, pp.273-291, 2015.

T. Okubo, Genome analysis suggests that the soil oligotrophic bacterium agromonas oligotrophica (Bradyrhizobium oligotrophicum) is a nitrogen-fixing symbiont of aeschynomene indica, Applied and Environmental Microbiology, vol.79, issue.8, pp.2542-2551, 2013.

G. E. Oldroyd, Speak, friend, and enter: Signalling systems that promote beneficial symbiotic associations in plants, Nature Reviews Microbiology, vol.11, issue.4, pp.252-263, 2013.

G. E. Oldroyd and R. Dixon, Biotechnological solutions to the nitrogen problem, Current Opinion in Biotechnology, vol.26, pp.19-24, 2014.

G. E. Oldroyd and J. A. Downie, Calcium, kinases and nodulation signalling in legumes, Nature Reviews Molecular Cell Biology, vol.5, issue.7, pp.566-576, 2004.

G. E. Oldroyd and J. A. Downie, Coordinating Nodule Morphogenesis with Rhizobial Infection in Legumes, Annual Review of Plant Biology, vol.59, issue.1, pp.519-546, 2008.

G. E. Oldroyd and S. R. Long, Identification and Characterization of Nodulation-Signaling Pathway 2 , a Gene of Medicago truncatula Involved in Nod Factor Signaling, Plant Physiology, vol.131, pp.1027-1032, 2003.

G. Olmedo and P. Guzma, Plant Science Processing precursors with RNase III in plants, vol.175, pp.741-746, 2008.

R. Oono and R. F. Denison, Comparing Symbiotic Efficiency between Swollen versus Nonswollen Rhizobial Bacteroids, Plant Physiology, vol.154, issue.3, pp.1541-1548, 2010.

T. Ott, Symbiotic leghemoglobins are crucial for nitrogen fixation in legume root nodules but not for general plant growth and development, Current Biology, vol.15, issue.6, pp.531-535, 2005.

E. Ovchinnikova, IPD3 Controls the Formation of Nitrogen-Fixing Symbiosomes in Pea and Medicago Spp, Molecular Plant-Microbe Interactions, vol.24, issue.11, pp.1333-1344, 2011.

C. Pacios-bras, Carbodiimide-mediated cross-linking of RNA to nylon membranes improves the detection of siRNA , miRNA and piRNA by northern blot, CARPEL FACTORY, a Dicer Homolog, and HEN1, a Novel Protein, vol.52, pp.1484-1495, 2002.

E. J. Patriarca, Organogenesis of Legume Root Nodules, International Review of Cytology, vol.234, pp.34005-34007, 2004.

E. Peiter, The Medicago truncatula DMI1 Protein Modulates Cytosolic Calcium Signaling, Plant Physiology, vol.145, issue.1, pp.192-203, 2007.

S. Peleg-grossman, N. Melamed-book, and A. Levine, ROS production during symbiotic infection suppresses pathogenesis-related gene expression, Plant signaling & behavior, vol.7, issue.3, pp.409-415, 2012.

A. Pellizzaro, Identification and molecular characterization of Medicago truncatula NRT2 and NAR2 families, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01392642

J. Penterman, Host plant peptides elicit a transcriptional response to control the Sinorhizobium meliloti cell cycle during symbiosis, Proceedings of the National Academy of Sciences, vol.111, pp.3561-3566, 2014.

O. Pierre, Involvement of papain and legumain proteinase in the senescence process of Medicago truncatula nodules', (zone I), pp.849-863, 2014.

F. Pini, Cell Cycle Control by the Master Regulator CtrA in Sinorhizobium meliloti, PLoS Genetics, vol.11, issue.5, pp.1-24, 2015.

J. Plet, MtCRE1-dependent cytokinin signaling integrates bacterial and plant cues to coordinate symbiotic nodule organogenesis in Medicago truncatula, Plant Journal, vol.65, issue.4, pp.622-633, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00856206

M. F. Portereiko, NUCLEAR FUSION DEFECTIVE1 Encodes the Arabidopsis RPL21M Protein and Is Required for Karyogamy during Female Gametophyte Development and Fertilization, Plant Physiology, vol.141, issue.3, pp.957-965, 2006.

J. Prell and P. Poole, Metabolic changes of rhizobia in legume nodules, p.14, 2006.

S. G. Pueppke and W. J. Broughton, Rhizobium sp. Strain NGR234 and R. fredii USDA257 Share Exceptionally Broad, Nested Host Ranges, Molecular Plant-Microbe Interactions, vol.12, issue.4, pp.293-318, 1999.

A. Puppo, Legume nodule senescence: Roles for redox and hormone signalling in the orchestration of the natural aging process, Antioxidants & redox signaling, vol.165, issue.3, pp.2202-2219, 2005.
URL : https://hal.archives-ouvertes.fr/hal-01943161

H. Qin, Structure of the Arabidopsis thaliana DCL4 DUF283 domain reveals a noncanonical doublestranded RNA-binding fold for protein -Protein interaction, Rna, vol.16, issue.3, pp.474-481, 2010.

H. Quandt, A. Pühler, and I. Broer, Transgenic Root Nodules of Vicia hirsuta: A Fast and Efficient System for the Study of Gene Expression in Indeterminate-Type Nodules, 1993.

S. Radutoiu, LysM domains mediate lipochitin-oligosaccharide recognition and Nfr genes extend the symbiotic host range, EMBO Journal, vol.26, issue.17, pp.3923-3935, 2007.

Y. Redko, D. H. Bechhofer, and C. Condon, Mini-III , an unusual member of the RNase III family of enzymes , catalyses 23S ribosomal RNA maturation in B . subtilis, pp.1096-1106, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00348796

J. W. Redmond, Flavones induce expression of nodulation genes in Rhizobium, Nature, vol.323, issue.6089, pp.632-635, 1986.

B. J. Reinhart, MicroRNAs in plants, Genes and Development, vol.16, issue.13, pp.1616-1626, 2002.

B. K. Riely, The symbiotic ion channel homolog DMI1 is localized in the nuclear membrane of Medicago truncatula roots, Plant Journal, vol.49, issue.2, p.24, 2006.

H. D. Robertson, E. Webster, and D. Zinder, Purification and Properties from Escherichia coZi * of Ribonuclease, p.243, 1968.

H. Rohrig, Soybean ENOD40 encodes two peptides that bind to sucrose synthase, Proceedings of the National Academy of Sciences, vol.99, issue.4, pp.1915-1920, 2002.

B. G. Rolfe and P. M. Gresshoff, Nodule initiation, Gene Expression, vol.39, issue.78, pp.297-319, 1988.

G. Rotondo, J. Y. Huang, and D. Frendewey, Substrate structure requirements of the Pac1 ribonuclease from Schizosaccharomyces pombe, 1997.

B. Roux, An integrated analysis of plant and bacterial gene expression in symbiotic root nodules using laser-capture microdissection coupled to RNA sequencing, Plant Journal, vol.77, issue.6, pp.817-837, 2014.

G. B. Ruvkun, V. Sundaresan, and F. M. Ausubel, Directed transposon Tn5 mutagenesis and complementation analysis of rhizobium meliloti symbiotic nitrogen fixation genes, Cell, vol.29, issue.2, pp.551-559, 1982.

S. Saha, Intracellular Catalytic Domain of Symbiosis Receptor Kinase Hyperactivates Spontaneous Nodulation in Absence of Rhizobia, Plant Physiology, vol.166, issue.4, pp.155-166, 2014.

K. Saito, NUCLEOPORIN85 Is Required for Calcium Spiking, Fungal and Bacterial Symbioses, and Seed Production in Lotus japonicus', the Plant Cell Online, vol.19, pp.610-624, 2007.

M. Saleh, R. P. Rij, . Van, and R. Andino, RNA silencing in viral infections : insights from poliovirus, vol.102, pp.11-17, 2004.

I. Sangwan and M. R. O'brian, Evidence for an Inter-Organismic Heme Biosynthetic Pathway in Symbiotic Soybean Root Nodules, pp.3-5, 1991.

A. Sarazin and O. Voinnet, Exploring new models of easiRNA biogenesis, vol.46, pp.530-531, 2014.

C. Satgé, Reprogramming of DNA methylation is critical for nodule development in Medicago truncatula, vol.2, 2016.

S. Sato, Genome Structure of the Legume , Lotus japonicus, pp.227-239, 2008.

S. E. Schauer, DICER-LIKE1: Blind men and elephants in Arabidopsis development, Trends in Plant Science, vol.7, issue.11, pp.487-491, 2002.

L. Schauser, A plant regulator controlling development of symbiotic root nodules, Nature, vol.402, issue.6758, pp.191-195, 1999.

J. Schmutz, A reference genome for common bean and genome-wide analysis of dual domestications, vol.46, pp.707-713, 2014.

M. Shabab, Plants Encode a General siRNA Suppressor That Is Induced and Suppressed by Viruses, Proceedings of the National Academy of Sciences, vol.113, pp.1-28, 2015.

T. Shimaoka, The C2H2 Transcription Factor REGULATOR OF SYMBIOSOME DIFFERENTIATION Represses Transcription of the Secretory Pathway Gene VAMP721a and Promotes Symbiosome Development in Medicago truncatula, Plant and Cell Physiology, vol.45, issue.6, pp.3584-3601, 2004.

P. Smit, NSP1 of the GRAS protein family is essential for rhizobial nod factor-induced transcription, Science, vol.308, issue.5729, pp.1789-1791, 2005.

D. E. Soltis, Chloroplast gene sequence data suggest a single origin of the predisposition for symbiotic nitrogen fixation in angiosperms, Proceedings of the National Academy of Sciences of the United States of America, vol.92, pp.2647-2651, 1995.

X. Song, Roles of DCL4 and DCL3b in rice phased small RNA biogenesis, pp.462-474, 2012.

T. Soyano, NODULE INCEPTION Directly Targets NF-Y Subunit Genes to Regulate Essential Processes of Root Nodule Development in Lotus japonicus, PLoS Genetics, vol.9, issue.3, 2013.

H. P. Spaink, . ;-r-oot-n-odulation-and-i-nfection-f-actors-p-roduced, and . By-r-hizobial-b-acteria, , 2000.

M. Stam, Position-dependent methylation and transcriptional silencing of transgenes in inverted T-DNA repeats: implications for posttranscriptional silencing of homologous host genes in plants, Molecular and Cellular Biology, vol.18, issue.11, pp.6165-77, 1998.

A. Steen, Cell wall attachment of a widely distributed peptidoglycan binding domain is hindered by cell wall constituents, Journal of Biological Chemistry, vol.278, issue.26, pp.23874-23881, 2003.

J. Stougaard, Genetics and genomics of root symbiosis, Current Opinion in Plant Biology, vol.4, issue.4, pp.328-335, 2001.

T. Suzaki, Positive and negative regulation of cortical cell division during root nodule development in Lotus japonicus is accompanied by auxin response, pp.3997-4006, 2012.

T. Suzaki, E. Yoro, and M. Kawaguchi, Leguminous Plants: Inventors of Root Nodules to Accommodate Symbiotic Bacteria, International Review of Cell and Molecular Biology, 2015.

M. Tadege, Large-scale insertional mutagenesis using the Tnt1 retrotransposon in the model legume Medicago truncatula, pp.335-347, 2008.

N. Takahashi, Cytokinins Control Endocycle Onset by Promoting the Expression of an APC / C Activator in Arabidopsis Roots', Current Biology, pp.1-6, 2013.

N. Takeda, Expression of LjENOD40 Genes in Response to Symbiotic and Non-symbiotic Signals : LjENOD40 -1 and LjENOD40 -2 are Differentially Regulated in Lotus japonicus, vol.46, pp.1291-1298, 2005.

J. Tank and V. S. Thaker, Cyclin dependent kinases and their role in regulation of plant cell cycle, 2011.

J. J. Terpolilli, A17 is poorly matched for N 2 fixation with the sequenced microsymbiont Sinorhizobium meliloti 1021, vol.1021, pp.62-66, 2008.

R. N. Thorneley and D. J. Lowe, The mechanism of Klebsiella pneumoniae nitrogenase action. Presteady-state kinetics of an enzyme-bound intermediate in N2 reduction and of NH3 formation, The Biochemical journal, vol.224, issue.3, pp.887-94, 1984.

A. C. Timmers, M. C. Auriac, and G. Truchet, Refined analysis of early symbiotic steps of the RhizobiumMedicago interaction in relationship with microtubular cytoskeleton rearrangements, Development, issue.16, pp.3617-3628, 1999.

L. Tirichine and H. Imaizumi-anraku, Deregulation of a Ca2+/calmodulin-dependent kinase leads to spontaneous nodule development, Nature, issue.7097, pp.1153-1156, 2006.

L. Tirichine and E. K. James, Spontaneous Root-Nodule Formation in the Model Legume Lotus japonicus : A Novel Class of Mutants Nodulates in the Absence of Rhizobia, Molecular Plant-Microbe Interactions, vol.19, issue.4, pp.373-382, 2006.

L. Tirichine, A gain-of-function mutation in a cytokinin receptor triggers spontaneous root nodule organogenesis, Science, issue.5808, pp.104-107, 2007.

H. Tiricz, Antimicrobial nodule-specific cysteine-rich peptides induce membrane depolarizationassociated changes in the transcriptome of Sinorhizobium meliloti, Applied and Environmental Microbiology, vol.79, issue.21, pp.6737-6746, 2013.

G. Truchet, Alfalfa nodulation in the absence of Rhizobium, pp.65-68, 1989.

M. A. Tschopp, A complex of Arabidopsis DRB proteins can impair dsRNA processing, Rna, vol.23, issue.5, pp.782-797, 2017.

B. G. Turgeon and W. D. Bauer, Early events in the infection of soybean by Rhizobium japonicum. Time course and cytology of the initial infection process, Canadian Journal of Botany, vol.60, issue.2, pp.152-161, 1982.

A. Tworak, Six Medicago truncatula Dicer-like protein genes are expressed in plant cells and upregulated in nodules, Plant Cell Reports, vol.35, issue.5, pp.1043-1052, 2016.

M. Udvardi and P. S. Poole, Transport and Metabolism in Legume-Rhizobia Symbioses, Annual Review of Plant Biology, vol.64, issue.1, pp.781-805, 2013.

J. Vandesompele, Accurate normalization of real-time quantitative RT -PCR data by geometric averaging of multiple internal control genes, pp.1-12, 2002.

V. Veerappan, Keel petal incision : a simple and efficient method for genetic crossing in Medicago truncatula Keel petal incision : a simple and efficient method for genetic crossing in Medicago truncatula, 2014.

W. Van-de-velde, Aging in legume symbiosis. A molecular view on nodule senescence in Medicago truncatula, Plant physiology, vol.141, pp.711-731, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00118573

W. Van-de-velde, Plant Peptides Govern Terminal Differentiation of Bacteria in Symbiosis, pp.1543-1548, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00856104

M. Venkateshwaran, The Recent Evolution of a Symbiotic Ion Channel in the Legume Family Altered Ion Conductance and Improved Functionality in Calcium Signaling, The Plant Cell, vol.24, issue.6, pp.2528-2545, 2012.

T. Vernie, EFD Is an ERF Transcription Factor Involved in the Control of Nodule Number and Differentiation in Medicago truncatula', the Plant Cell Online, vol.20, pp.2696-2713, 2008.

T. Vernié, The NIN Transcription Factor Coordinates Diverse Nodulation Programs in Different Tissues of the Medicago truncatula Root, The Plant Cell, vol.27, issue.12, pp.3410-3424, 2015.

M. Virta, Determination of complement-mediated killing of bacteria by viability staining and bioluminescence, Applied and Environmental Microbiology, vol.64, issue.2, pp.515-519, 1998.

R. J. Wais, Genetic analysis of calcium spiking responses in nodulation mutants of Medicago truncatula, Proceedings of the National Academy of Sciences, vol.97, issue.24, pp.13407-13412, 2000.

R. J. Wais, D. H. Wells, and S. R. Long, Analysis of Differences Between Sinorhizobium meliloti 1021 and 2011 Strains Using the Host Calcium Spiking Response, vol.15, pp.1245-1252, 2002.

X. Wan, Medicago truncatula ENOD40-1 and ENOD40-2 are both involved in nodule initiation and bacteroid development, vol.58, pp.2033-2041, 2007.

C. Wang, NODULES WITH ACTIVATED DEFENSE 1 is required for maintenance of rhizobial endosymbiosis in Medicago truncatula, New Phytologist, vol.212, issue.1, pp.176-191, 2016.

D. Wang, A nodule-specific protein secretory pathway required for nitrogen-fixing symbiosis, Science, vol.327, issue.5969, pp.1126-1129, 2010.

D. Wang, Symbiosis specificity in the legume -rhizobial mutualism, Cellular Microbiology, vol.14, issue.3, pp.334-342, 2012.

H. Wang and N. Chua, Big effects of small RNAs on legume root biotic interactions, pp.1-3, 2014.

Y. Wang, Soybean miR172c Targets the Repressive AP2 Transcription Factor NNC1 to Activate ENOD40 Expression and Regulate Nodule Initiation, vol.26, pp.4782-4801, 2014.

Y. Wang, Ectopic expression of miR156 represses nodulation and causes morphological and developmental changes in Lotus japonicus, pp.471-484, 2015.

Y. Wang, MicroRNA167-Directed Regulation of the Auxin Response Factors GmARF8a and GmARF8b Is Required for Soybean Nodulation and Lateral Root Development 1, vol.168, pp.101-116, 2015.

K. P. Watkins, A Ribonuclease III Domain Protein Functions in Group II Intron Splicing in Maize Chloroplasts', the Plant Cell Online, vol.19, pp.2606-2623, 2007.

D. E. Weinberg, The Inside-Out Mechanism of Dicers from Budding Yeasts, vol.146, pp.262-276, 2011.

C. Werner-ribeiro, Regulation of Differentiation of Nitrogen-Fixing Bacteria by Microsymbiont Targeting of Plant Thioredoxin s1, Current Biology, vol.27, issue.2, pp.250-256, 2017.

J. Wong, Roles of small RNAs in soybean defense against Phytophthora sojae infection, pp.928-940, 2014.

H. Wu, Human RNase III Is a 160-kDa Protein Involved in Preribosomal RNA Processing, vol.275, pp.36957-36965, 2000.

H. Wu, Structural basis for recognition of the AGNN tetraloop RNA fold by the double-stranded RNA-binding domain of Rnt1p RNase III, vol.101, pp.8307-8312, 2004.

R. Xia, The Emergence , Evolution , and Diversification of the miR390-TAS3 -ARF Pathway in Land Plants, 2017.

T. T. Xiao, Fate map of Medicago truncatula root nodules, pp.3517-3528, 2014.

Z. Xie, DICER-LIKE 4 functions in trans-acting small interfering RNA biogenesis and vegetative phase change in Arabidopsis thaliana, Proceedings of the National Academy of Sciences, vol.102, pp.12984-12989, 2005.

F. El-yahyaoui, Expression Profiling in Medicago truncatula Identifies More Than 750 Genes Differentially Expressed during Nodulation, Including Many Potential Regulators of the Symbiotic Program, Plant Physiology, vol.136, issue.2, pp.3159-3176, 2004.

Z. Yan, Identification of microRNAs and their mRNA targets during soybean nodule development : functional analysis of the role of miR393j-3p in soybean nodulation, pp.748-759, 2015.

S. Yang, Microsymbiont discrimination mediated by a host-secreted peptide in Medicago truncatula, Proceedings of the National Academy of Sciences, p.201700460, 2017.

W. Yang, Characterization of GmENOD40, a gene showing novel patterns of cell-specific expression during soybean nodule development, 1993.

K. Yano, CERBERUS, a novel U-box protein containing WD-40 repeats, is required for formation of the infection thread and nodule development in the legume-Rhizobium symbiosis, Plant Journal, vol.60, issue.1, pp.168-180, 2009.

N. D. Young, The Medicago genome provides insight into the evolution of rhizobial symbioses, pp.5-9, 2011.

A. Yu, Dynamics and biological relevance of DNA demethylation in Arabidopsis antibacterial defense, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02318315

J. Zhai, MicroRNAs as master regulators of the plant NB-LRR defense gene family via the production of phased , trans -acting siRNAs, pp.2540-2553, 2011.

C. Zhang, Genome-Wide Survey of the Soybean GATA Transcription Factor Gene Family and Expression Analysis under Low Nitrogen Stress, pp.1-24, 2015.

H. Zhang, Single Processing Center Models for Human Dicer and Bacterial RNase III, vol.118, pp.57-68, 2004.

H. Zhu, A Novel ARID DNA-Binding Protein Interacts with SymRK and Is Expressed during Early Nodule Development in Lotus japonicus, Plant Physiology, vol.148, issue.1, pp.337-347, 2008.

J. C. Zucchero, ngl9 : A Third MADS Box Gene Expressed in Alfalfa Root Nodules, vol.14, pp.1463-1467, 2001.