. .. Filler-types, 2.4 Application of the GLE to entangled polymer dynamics . 41 2.2.5 System units

J. Mark, B. Erman, and M. Roland, The Science and Technology of Rubber, 2013.

R. Landel and L. Nielsen, Mechanical Properties of Polymers and Composites, Second Edition. Mechanical Engineering, issue.1, 1993.

T. A. Vilgis, G. Heinrich, and M. Kluepell, Reinforcement of Polymer NanoComposites: Theory, Experiments and Applications, vol.24, p.25, 2009.

J. Oberdisse, Aggregation of colloidal nanoparticles in polymer matrices, Soft Matter, vol.2, issue.1, pp.29-36, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00012293

S. A. Khan and N. J. Zoeller, Dynamic rheological behavior of flocculated fumed silica suspensions, Journal of Rheology, vol.37, issue.6, pp.1225-1235, 1993.

N. Jouault, P. Vallat, F. Dalmas, S. Said, J. Jestin et al., Well-dispersed fractal aggregates as filler in polymer-silica nanocomposites: Long-range effects in rheology, Macromolecules, vol.42, issue.6, pp.2031-2040, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00371544

G. P. Baeza, A. Genix, C. Degrandcourt, L. Petitjean, J. Gummel et al., Multiscale filler structure in simplified industrial nanocomposite silica/sbr systems studied by saxs and tem, Macromolecules, vol.46, issue.1, p.53, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00767771

Q. Chen, S. Gong, J. Moll, D. Zhao, S. K. Kumar et al., Mechanical reinforcement of polymer nanocomposites from percolation of a nanoparticle network, ACS Macro Letters, vol.4, issue.4, pp.398-402, 2015.

S. Merabia, P. Sotta, and D. R. Long, A microscopic model for the reinforcement and the nonlinear behavior of filled elastomers and thermoplastic elastomers (Payne and Mullins effects), Macromolecules, vol.41, issue.21, p.23, 2008.

A. Papon, H. Montes, M. Hanafi, F. Lequeux, L. Guy et al., Glasstransition temperature gradient in nanocomposites: Evidence from nuclear magnetic resonance and differential scanning calorimetry, Phys. Rev. Lett, vol.108, p.23, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01576572

M. M. Kummali, L. A. Miccio, G. A. Schwartz, A. Alegría, J. Colmenero et al., Local mechanical and dielectric behavior of the interacting polymer layer in silica nano-particles filled sbr by means of afm-based methods, Polymer, vol.54, issue.18, p.23, 2013.

T. Glomann, G. J. Schneider, J. Allgaier, A. Radulescu, W. Lohstroh et al., Microscopic dynamics of polyethylene glycol chains interacting with silica nanoparticles, Phys. Rev. Lett, vol.110, p.23, 2013.

M. Krutyeva, A. Wischnewski, M. Monkenbusch, L. Willner, J. Maiz et al., Effect of nanoconfinement on polymer dynamics: Surface layers and interphases, Phys. Rev. Lett, vol.110, p.23, 2013.

Y. N. Pandey, G. J. Papakonstantopoulos, and M. Doxastakis, Polymer/nanoparticle interactions: Bridging the gap, Macromolecules, vol.46, issue.13, pp.5097-5106, 2013.

G. Armstrong, An introduction to polymer nanocomposites, European Journal of Physics, vol.36, issue.6, p.63001, 2015.

K. Winey and R. Vaia, Polymer nanocomposites, MRS Bulletin, vol.32, p.5, 2007.

D. Y. Godovsky, Device Applications of Polymer-Nanocomposites, pp.163-205, 2000.

S. K. Kumar and R. Krishnamoorti, Nanocomposites: Structure, phase behavior, and properties, Annual Review of Chemical and Biomolecular Engineering, vol.1, issue.1, p.24, 2010.
DOI : 10.1146/annurev-chembioeng-073009-100856

URL : https://zenodo.org/record/894384/files/article.pdf

S. K. Kumar, B. C. Benicewicz, R. A. Vaia, and K. I. Winey, 50th anniversary perspective: Are polymer nanocomposites practical for applications?, Macromolecules, vol.50, issue.3, p.53, 2017.

S. Kimoto, W. D. Dick, B. Hunt, W. W. Szymanski, P. H. Mcmurry et al., Characterization of nanosized silica size standards, Aerosol Science and Technology, vol.51, issue.8, pp.936-945, 2017.

T. Koga, T. Hashimoto, M. Takenaka, K. Aizawa, N. Amino et al., New insight into hierarchical structures of carbon black dispersed in polymer matrices: A combined small-angle scattering study, Macromolecules, vol.41, issue.2, pp.453-464, 2008.

P. Tandon and D. E. Rosner, Translation brownian diffusion coefficient of large (multiparticle) suspended aggregates, Industrial & Engineering Chemistry Research, vol.34, issue.10, pp.3265-3277, 1995.

M. Couty, Structure multiéchelles et propriétés des matériaux du pneu, Reflets de la Physique, vol.12, issue.7, p.9, 2008.
DOI : 10.1051/refdp/2008029

URL : https://www.refletsdelaphysique.fr/articles/refdp/pdf/2008/05/refdp200912p12.pdf

H. D. Bale and P. W. Schmidt, Small-angle x-ray-scattering investigation of submicroscopic porosity with fractal properties, Phys. Rev. Lett, vol.53, issue.7, pp.596-599, 1984.

J. Jancar, J. Douglas, F. Starr, S. Kumar, P. Cassagnau et al., Current issues in research on structure-property relationships in polymer nanocomposites, vol.51, p.25, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00514098

A. Rungta, B. Natarajan, T. Neely, D. Dukes, L. S. Schadler et al., Grafting bimodal polymer brushes on nanoparticles using controlled radical polymerization, Macromolecules, vol.45, issue.23, pp.9303-9311, 2012.
DOI : 10.1021/ma3018876

S. K. Kumar, N. Jouault, B. Benicewicz, and T. Neely, Nanocomposites with polymer grafted nanoparticles, Macromolecules, vol.46, issue.9, pp.3199-3214, 2013.
DOI : 10.1021/ma4001385

P. Akcora, S. K. Kumar, J. Moll, S. Lewis, L. S. Schadler et al., Douglas, ""gel-like" mechanical reinforcement in polymer nanocomposite melts, Macromolecules, vol.43, issue.2, p.16, 2010.

G. Heinrich, M. Klüppel, and T. Vilgis, Reinforcement of elastomers, Curr. Opin. Solid State Mater. Sci, vol.6, issue.10, pp.195-203, 2002.

K. Hyun, M. Wilhelm, C. O. Klein, K. S. Cho, J. G. Nam et al., A review of nonlinear oscillatory shear tests: Analysis and application of large amplitude oscillatory shear (LAOS), Prog. Polym. Sci, vol.36, issue.12, p.13, 2011.

K. Hyun, S. H. Kim, K. H. Ahn, and S. J. Lee, Large amplitude oscillatory shear as a way to classify the complex fluids, Journal of Non-Newtonian Fluid Mechanics, vol.107, issue.1, p.13, 2002.

A. Payne, The dynamic properties of carbon black loaded natural rubber vulcanizates. Part I, J. Appl. Polym. Sci, vol.6, p.14, 1962.

J. F. Moll, P. Akcora, A. Rungta, S. Gong, R. H. Colby et al., Mechanical reinforcement in polymer melts filled with polymer grafted nanoparticles, Macromolecules, vol.44, issue.18, p.14, 2011.

A. A. Gusev, Micromechanical mechanism of reinforcement and losses in filled rubbers, Macromolecules, vol.39, issue.18, p.14, 2006.

P. Cassagnau, Payne effect and shear elasticity of silica-filled polymers in concentrated solutions and in molten state, Polymer, vol.44, issue.8, p.14, 2003.

L. Chazeau, J. D. Brown, L. C. Yanyo, and S. S. Sternstein, Modulus recovery kinetics and other insights into the Payne effect for filled elastomers, Polymer Composites, vol.21, issue.2, p.14, 2000.
URL : https://hal.archives-ouvertes.fr/hal-00475306

J. Ramier, C. Gauthier, L. Chazeau, L. Stelandre, and L. Guy, Payne effect in silicafilled styrene-butadiene rubber: Influence of surface treatment, Journal of Polymer Science Part B: Polymer Physics, vol.45, issue.3, p.14, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00434153

M. Wang, Effect of polymer-filler and filler-filler interactions on dynamic properties of filled vulcanizates, Rubber Chemistry and Technology, vol.71, issue.3, p.14, 1998.

J. Diani, B. Fayolle, and P. Gilormini, A review on the Mullins effect, European Polymer Journal, vol.45, issue.3, p.15, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00773015

T. Davris, M. R. Mermet-guyennet, D. Bonn, and A. V. Lyulin, Filler Size Effects on Reinforcement in Elastomer-Based Nanocomposites: Experimental and Simulational Insights into Physical Mechanisms, Macromolecules, vol.49, issue.18, p.64, 2016.

T. Desai, P. Keblinski, and S. K. Kumar, Molecular dynamics simulations of polymer transport in nanocomposites, The Journal of Chemical Physics, vol.122, issue.13, p.16, 2005.

Q. H. Zeng, A. B. Yu, G. Q. Lu, and R. K. Standish, Molecular dynamics simulation of organic-inorganic nanocomposites: Layering behavior and interlayer structure of organoclays, Chemistry of Materials, vol.15, issue.25, p.16, 2003.

G. D. Smith, D. Bedrov, L. Li, and O. Byutner, A molecular dynamics simulation study of the viscoelastic properties of polymer nanocomposites, The Journal of Chemical Physics, vol.117, issue.20, p.16, 2002.

J. Liu, Y. Gao, D. Cao, L. Zhang, and Z. Guo, Nanoparticle dispersion and aggregation in polymer nanocomposites: Insights from molecular dynamics simulation, Langmuir, vol.27, issue.12, pp.7926-7933, 2011.

K. S. Schweizer and J. G. Curro, Integral equation theories of the structure, thermodynamics, and phase transitions of polymer fluids, p.16, 2007.

L. M. Hall, A. Jayaraman, and K. S. Schweizer, Molecular theories of polymer nanocomposites, Curr. Opin. Solid State Mater. Sci, vol.14, issue.2, p.18, 2010.

D. W. Oxtoby, Density functional methods in the statistical mechanics of materials, Annual Review of Materials Research, vol.32, issue.1, p.17, 2002.

G. Fredrickson, The Equilibrium Theory of Inhomogeneous Polymers, International Series of Monogr, p.18, 2006.

D. D. Biondo, E. M. Masnada, S. Merabia, M. Couty, and J. Barrat, Numerical study of a slip-link model for polymer melts and nanocomposites, The Journal of Chemical Physics, vol.138, issue.19, p.49, 2013.

E. Masnada, S. Merabia, M. Couty, and J. Barrat, Entanglement-induced reinforcement in polymer nanocomposites, Soft Matter, vol.9, issue.18, p.20, 2013.

S. Edwards and T. Vilgis, The effect of entanglements in rubber elasticity, Polymer, vol.27, issue.4, p.18, 1986.

M. Rubinstein and S. Panyukov, Elasticity of polymer networks, Macromolecules, vol.35, issue.17, p.18, 2002.

Y. Masubuchi, J. Takimoto, K. Koyama, G. Ianniruberto, G. Marrucci et al., Brownian simulations of a network of reptating primitive chains, The Journal of Chemical Physics, vol.115, issue.9, p.18, 2001.

A. E. Likhtman, Single-chain slip-link model of entangled polymers: Simultaneous description of neutron spin-echo, rheology, and diffusion, Macromolecules, vol.38, issue.14, p.18, 2005.

P. J. Hoogerbrugge and J. M. Koelman, Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics, Europhysics Letters), vol.19, issue.3, p.19, 1992.
DOI : 10.1209/0295-5075/19/3/001

C. H. Park, E. Tocci, E. Fontananova, M. A. Bahattab, S. A. Aljlil et al., Mixed matrix membranes containing functionalized multiwalled carbon nanotubes: Mesoscale simulation and experimental approach for optimizing dispersion, Journal of Membrane Science, vol.514, p.20, 2016.

A. Karatrantos, N. Clarke, and M. Kröger, Modeling of polymer structure and conformations in polymer nanocomposites from atomistic to mesoscale: A review, Polymer Reviews, vol.56, issue.3, p.31, 1920.

G. Raos, M. Moreno, and S. Elli, Computational experiments on filled rubber viscoelasticity: What is the role of particle-particle interactions?, Macromolecules, vol.39, issue.19, pp.6744-6751, 1921.

H. M. Smallwood, Limiting law of the reinforcement of rubber, Journal of Applied Physics, vol.15, issue.11, p.21, 1944.

E. Guth, Theory of filler reinforcement, Journal of Applied Physics, vol.16, issue.1, p.21, 1945.

D. Moldovan, R. Fechete, D. Demco, E. Culea, B. Blümich et al., The heterogeneity of segmental dynamics of filled epdm by 1h transverse relaxation nmr, Journal of Magnetic Resonance, vol.208, issue.1, p.22, 2011.

M. A. Osman and A. Atallah, Effect of the particle size on the viscoelastic properties of filled polyethylene, Polymer, vol.47, issue.7, p.22, 2006.

S. S. Sternstein and A. Zhu, Reinforcement mechanism of nanofilled polymer melts as elucidated by nonlinear viscoelastic behavior, Macromolecules, vol.35, issue.19, p.22, 2002.

A. S. Sarvestani and E. Jabbari, Modeling the viscoelastic response of suspension of particles in polymer solution: The effect of polymer-particle interactions, Macromolecular Theory and Simulations, vol.16, p.22, 2007.

G. D. Smith, D. Bedrov, and O. Borodin, Structural relaxation and dynamic heterogeneity in a polymer melt at attractive surfaces, Phys. Rev. Lett, vol.90, p.226103, 1923.

Y. Song and Q. Zheng, Concepts and conflicts in nanoparticles reinforcement to polymers beyond hydrodynamics, Progress in Materials Science, vol.84, issue.23, pp.1-58, 2016.

Z. Zhu, T. Thompson, S. Wang, E. D. Von-meerwall, and A. Halasa, Investigating linear and nonlinear viscoelastic behavior using model silica-particle-filled polybutadiene, Macromolecules, vol.38, issue.21, p.64, 2005.
DOI : 10.1021/ma050922s

M. Vacatello, Predicting the molecular arrangements in polymer-based nanocomposites, Macromolecular Theory and Simulations, vol.12, issue.1, pp.86-91, 2003.

M. S. Ozmusul, C. R. Picu, S. S. Sternstein, and S. K. Kumar, Lattice monte carlo simulations of chain conformations in polymer nanocomposites, Macromolecules, vol.38, issue.10, pp.4495-4500, 2005.

V. Arrighi, J. Higgins, A. Burgess, and G. Floudas, Local dynamics of poly(dimethyl siloxane) in the presence of reinforcing filler particles, Polymer, vol.39, issue.25, pp.6369-6376, 1998.

Y. Song and Q. Zheng, Linear rheology of nanofilled polymers, J. Rheol, vol.59, issue.1, p.24, 2015.
DOI : 10.1122/1.4903312

F. Yatsuyanagi, N. Suzuki, M. Ito, and H. Kaidou, Effects of secondary structure of fillers on the mechanical properties of silica filled rubber systems, Polymer, vol.42, issue.23, p.24, 2001.

L. S. Schadler, S. K. Kumar, B. C. Benicewicz, S. L. Lewis, and S. E. Harton, Designed interfaces in polymer nanocomposites: A fundamental viewpoint, MRS Bulletin, vol.32, issue.4, p.24, 2007.
DOI : 10.1557/mrs2007.232

M. Bailly and M. Kontopoulou, Linear viscoelastic properties of ethylene-octene copolymer/nanosilica composites investigated over a broad range of frequencies, Journal of Rheology, vol.57, issue.2, p.24, 2013.

Q. Zhang and L. A. Archer, Poly(ethylene oxide)/silica nanocomposites: Structure and rheology, Langmuir, vol.18, issue.26, p.24, 2002.
DOI : 10.1021/la026338j

P. Akcora, S. K. Kumar, V. Sakai, Y. Li, B. C. Benicewicz et al., Segmental dynamics in pmma-grafted nanoparticle composites, Macromolecules, vol.43, issue.19, p.53, 2010.
DOI : 10.1021/ma102771k

M. Rubinstein and R. Colby, Polymer Physics, vol.26, p.28, 2003.

M. Doi, Introduction to Polymer Physics, Oxford science publications, vol.26, p.29, 1996.

Q. Zeng, A. Yu, and G. Lu, Multiscale modeling and simulation of polymer nanocomposites, Progress in Polymer Science, vol.33, issue.2, p.31, 2008.

A. D. Baczewski and S. D. Bond, Numerical integration of the extended variable generalized Langevin equation with a positive Prony representable memory kernel, J. Chem. Phys, vol.139, issue.4, p.43, 2013.

T. A. Witten and L. M. Sander, Diffusion-limited aggregation, a kinetic critical phenomenon, Phys. Rev. Lett, vol.47, p.33, 1981.

A. Khokhlov, Statistical Physics of Macromolecules. AIP series in polymers and complex materials, p.36, 1994.

B. Schnurr, F. Gittes, F. C. Mackintosh, and C. F. Schmidt, Determining microscopic viscoelasticity in flexible and semiflexible polymer networks from thermal fluctuations, Macromolecules, vol.30, issue.25, p.38, 1997.

F. Mackintosh, C. Schmidt, and . Microrheology, Current Opinion in Colloid & Interface Science, vol.4, issue.4, p.38, 1999.

D. Chandler, Introduction to Modern Statistical Mechanics, vol.47, p.49, 1987.

M. Doi and S. Edwards, The Theory of Polymer Dynamics. International series of monographs on physics, vol.48, p.60, 1988.

J. Ramírez, S. K. Sukumaran, and A. E. Likhtman, Significance of cross correlations in the stress relaxation of polymer melts, The Journal of Chemical Physics, vol.126, issue.24, p.50, 2007.

M. Allen and D. Tildesley, Computer Simulation of Liquids, vol.65, p.69, 1989.

A. W. Lees and S. F. Edwards, The computer study of transport processes under extreme conditions, Journal of Physics C: Solid State Physics, vol.5, issue.15, p.68, 1972.

D. Evans and G. Morriss, Statistical Mechanics of Nonequilibrium Liquids, vol.68, p.69, 2008.

D. J. Evans and O. Morriss, Non-newtonian molecular dynamics, Computer Physics Reports, vol.1, issue.6, p.69, 1984.

K. S. Cho, K. Hyun, K. H. Ahn, and S. J. Lee, A geometrical interpretation of large amplitude oscillatory shear response, Journal of Rheology, vol.49, issue.3, p.70, 2005.

M. R. Mermet-guyennet, J. G. De-castro, M. Habibi, N. Martzel, M. M. Denn et al., Laos: The strain softening/strain hardening paradox, Journal of Rheology, vol.59, issue.1, p.70, 2015.

R. H. Ewoldt, A. E. Hosoi, and G. H. Mckinley, New measures for characterizing nonlinear viscoelasticity in large amplitude oscillatory shear, Journal of Rheology, vol.52, issue.6, p.70, 2008.

S. Hadizadeh, A. Linhananta, and S. S. Plotkin, Improved measures for the shape of a disordered polymer to test a mean-field theory of collapse, Macromolecules, vol.44, issue.15, p.77, 2011.