R. Isermann, Mechatronic systems: fundamentals, 2007.

N. Kyura and H. Oho, Mechatronics-an industrial perspective, IEEE/ASME transactions on mechatronics, vol.1, issue.1, pp.10-15, 1996.

R. W. Daniel and J. R. Hewitt, Editorial". In: Mechatronics, vol.1, pp.i-ii, 1991.

R. Comerford, Mecha... what?[mechatronics, IEEE Spectrum, vol.31, pp.46-49, 1994.

R. Isermann, Mechatronic systems-innovative products with embedded control, Control Engineering Practice, vol.16, issue.1, pp.14-29, 2008.

K. Kitaura, New East Business Ltd, 1986.

D. A. Bradley, Mechatronics: electronics in products and processes, 1993.

, Mechatronics and robotics, 1991.

B. Heimann, W. Gerth, K. Popp, and . Mechatronik, Fachbuchverlag Leipzig. Leipzig, 2001.

R. H. Bishop, The mechatronics handbook, vol.1, 2002.

M. Hiller, Modelling, simulation and control design for large and heavy manipulators, Robotics and autonomous systems, vol.19, pp.167-177, 1996.

J. Lückel, Third Conference on Mechatronics and Robotics, 1995.

D. Shetty and R. A. Kolk, Mechatronics system design, SI version, 2010.

W. W. Royce, Managing the development of large software systems, proceedings of IEEE WESCON, vol.26, pp.1-9, 1970.

M. Rerych, Wasserfallmodell> Entstehungs context, Institut für Gestaltungs-und Wirkungsforschung, 2007.

H. D. Benington, Production of large computer programs, Annals of the History of Computing, vol.5, pp.350-361, 1983.

K. Petersen, C. Wohlin, and D. Baca, The waterfall model in large-scale development, International Conference on Product-Focused Software Process Improvement, pp.386-400, 2009.

P. Mcbreen, Software craftsmanship: The new imperative, 2002.

I. Sommerville, Software Engineering. 7th edn. London: Pearson Eductation Ltd, 2004.

B. W. Boehm, A spiral model of software development and enhancement, In: Computer, vol.21, pp.61-72, 1988.

A. Bröhl and W. Dröschel, Das V-Modell, 1995.

S. Balaji and M. S. Murugaiyan, Agile: A comparative study on SDLC, International Journal of Information Technology and Business Management, vol.2, issue.1, pp.26-30, 2012.

B. Boehm, A spiral model of software development and enhancement, ACM SIGSOFT Software Engineering Notes, vol.11, pp.14-24, 1986.

B. Boehm and W. J. Hansen, SPECIAL REPORT CMU, 2000.

, What is Spiral model-advantages, disadvantages and when to use, 2017.

D. , Defense (USA). Systems Engineering Fundamentals, 2001.

J. A. Estefan, Survey of model-based systems engineering (MBSE) methodologies, Incose MBSE Focus Group, vol.25, 2007.

S. Friedenthal, R. Griego, and M. Sampson, INCOSE model based systems engineering (MBSE) initiative, INCOSE 2007 Symposium, 2007.

S. M. Team, Systems modeling language (SysML) specification, 2006.

S. Friedenthal, A. Moore, and R. Steiner, A practical guide to SysML: the systems modeling language, 2014.

. Iso/iec, Preview Information technology-Open Distributed Processing-Unified Modeling Language (UML) Version 1.4.2, 2005.

O. M. Group, OMG Systems Modeling Language. s.l.:Version, 2006.

F. Mhenni, A SysML-based methodology for mechatronic systems architectural design, Advanced Engineering Informatics, vol.28, pp.218-231, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01903161

J. G. Michopoulos, C. Farhat, and J. Fish, Modeling and simulation of multiphysics systems, Journal of Computing and Information Science in Engineering, vol.5, pp.198-213, 2005.

D. E. Keyes, Multiphysics simulations: Challenges and opportunities, The International Journal of High Performance Computing Applications, vol.27, pp.4-83, 2013.
DOI : 10.2172/1034263

URL : https://digital.library.unt.edu/ark:/67531/metadc830759/m2/1/high_res_d/1034263.pdf

K. Sadek, J. Lueke, and W. Moussa, A coupled field multiphysics modeling approach to investigate RF MEMS switch failure modes under various operational conditions, Sensors 9, vol.10, pp.7988-8006, 2009.

A. Journeaux, Application au couplage magnéto-thermo-mécanique, 2013.

A. Fasquelle, Contribution à la modélisation multi-physique: électro-vibro-acoustique et aérothermique de machines de traction, 2007.

B. Taher, Analyse et modélisation de l'endommagement dû au couplage thermomécanique des multi-matériaux cylindriques, 2012.

F. Kadid, S. Drid, and R. Abdessemed, Simulation of Magnetohydrodynamic and Thermal Coupling in the Linear Induction MHD Pump, Journal of Applied Fluid Mechanics, vol.4, pp.51-57, 2011.

M. Feliachi and G. Develey, Finite element analysis for the electro-magneto-thermal phenomena in induction devices, Computation in Electromagnetics, pp.148-151, 1991.

F. Dughiero, M. Forzan, and S. Lupi, Solution of coupled electromagnetic and thermal problems in induction heating applications, Computation in Electromagnetics, Third International Conference on (Conf. Publ. No, vol.420, pp.301-305, 1996.

J. Bastos, A thermal analysis of induction motors using a weak coupled modeling, IEEE Transactions on magnetics, vol.33, pp.1714-1717, 1997.

T. Zhu, The establishment of coupled electromagnetic-thermal analytical model of induction heating system with magnetic flux concentrator and the study on the effect of magnetic permeability to the modeling, ASME 2013 International Manufacturing Science and Engineering Conference collocated with the 41st North American Manufacturing Research Conference, pp.1-01, 2013.

J. Xu, Z. Yao, and V. Rajagopalan, Modelling and simulation of magneto-thermal coupling of induction heating processes, Electrical and Computer Engineering, vol.2, pp.723-726, 1998.

P. Tixador, Thermal-electromagnetic modeling of superconductors, Cryogenics, vol.47, pp.539-545, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00203191

D. Carstea, I. Carstea, and A. Carstea, Numerical simulation of coupled electromagnetic and thermal fields in cable terminations, Telecommunications in Modern Satellite, Cable and Broadcasting Services, 2005. 7th International Conference on, vol.2, pp.475-478, 2005.

Y. Alpert and E. Jerby, Coupled thermal-electromagnetic model for microwave heating of temperature-dependent dielectric media, IEEE Transactions on Plasma Science, vol.27, pp.555-562, 1999.

K. Hsieh, A Lagrangian formulation for mechanically, thermally coupled electromagnetic diffusive processes with moving 132 BIBLIOGRAPHY conductors, IEEE Transactions on Magnetics, vol.31, pp.604-609, 1995.

D. J. Nelson and J. P. Jessee, A coupled thermal-magnetic model for high frequency transformers. I. Model formulation and material properties, Thermal Phenomena in Electronic Systems, 1992.

I. Iii, , pp.23-31, 1992.

J. P. Jessee and D. J. Nelson, A coupled thermal magnetic model for high frequency transformers. II. Finite element implementation and validation, IEEE transactions on components, hybrids, and manufacturing technology, vol.15, pp.740-747, 1992.

B. D. Cullity and C. D. Graham, Introduction to magnetic materials, 2011.

W. Gilbert, De magnete. Courier Corporation, 1958.

H. C. Oersted, On Electro-Magnetism, Annals of Philosophy, vol.2, pp.321-348, 1821.

J. F. Gieras and M. Wing, Permanent magnet motor technology, 2002.
DOI : 10.1201/9781420064414

S. Sjökvist, Demagnetization Studies on Permanent Magnets: Comparing FEM Simulations with Experiments, 2014.

G. and M. S. Skitek, Electromagnetic Concepts And Applications, 1987.

R. J. Parker, Advances in permanent magnetism, 1990.

R. Deeb, Thermal calculations of permanent magnet motors in high current technology. Vysoke uvceni technicke, 2013.

R. Deeb, Calculation of eddy current losses in permanent magnets of servo motor, 2011.

D. Woo, A 2-D finite-element analysis for a permanent magnet synchronous motor taking an overhang effect into consideration, IEEE Transactions on Magnetics, vol.49, pp.4894-4899, 2013.

P. Zhou, Temperature-dependent demagnetization model of permanent magnets for finite element analysis, IEEE Transactions on Magnetics, vol.48, pp.1031-1034, 2012.

G. Kang, Analysis of irreversible magnet demagnetization in line-start motors based on the finite-element method, IEEE Transactions on Magnetics, vol.39, pp.1488-1491, 2003.

M. Rosu, J. Saitz, and A. Arkkio, Hysteresis model for finite-element analysis of permanent-magnet demagnetization in a large synchronous motor under a fault condition, IEEE Transactions on Magnetics, vol.41, pp.2118-2123, 2005.

J. H. Lee and J. P. Hong, Permanent magnet demagnetization characteristic analysis of a variable flux memory motor using coupled Preisach modeling and FEM, IEEE Transactions on Magnetics, vol.44, pp.1550-1553, 2008.

J. Farooq, Use of permeance network method in the demagnetization phenomenon modeling in a permanent magnet motor, IEEE Transactions on Magnetics, vol.42, issue.4, pp.1295-1298, 2006.

K. Kim, The shape design of permanent magnet for permanent magnet synchronous motor considering partial demagnetization, IEEE Transactions on magnetics, vol.42, issue.10, pp.3485-3487, 2006.

S. Ruoho, E. Dlala, and A. Arkkio, Comparison of demagnetization models for finite-element analysis of permanent-magnet synchronous machines, IEEE Transactions on Magnetics, vol.43, pp.3964-3968, 2007.

W. Fu and S. Ho, Dynamic demagnetization computation of permanent magnet motors using finite element method with normal magnetization curves, IEEE Transactions on Applied Superconductivity, vol.20, pp.851-855, 2010.

S. Ruoho, Interdependence of demagnetization, loading, and temperature rise in a permanent-magnet synchronous motor, IEEE Transactions on magnetics, vol.46, pp.949-953, 2010.

D. Jiles, Introduction to magnetism and magnetic materials, 2015.

R. G. Harrison, Physical theory of ferromagnetic first-order return curves, IEEE Transactions on Magnetics, vol.45, pp.1922-1939, 2009.

R. Barbedienne, SAMOS for Spatial Architecture based on Multi-physics and Organisation of Systems in conceptual design, 2015 IEEE International Symposium on. IEEE. 2015, pp.135-141
URL : https://hal.archives-ouvertes.fr/hal-01589488

D. D. Walden, Systems engineering handbook: A guide for system life cycle processes and activities, 2015.

V. Richtlinie, 2221 : Methodik zum Entwickeln und Konstruieren technischer Systeme und Produkte, 1993.

A. Kossiakoff, Systems engineering principles and practice, vol.83, 2011.

G. Muller, Systems architecting: A business perspective, INCOSE International Symposium, vol.21, pp.1845-2142, 2011.

T. Kvan, Collaborative design: what is it?, In: Automation in construction, vol.9, pp.409-415, 2000.

J. Holt and S. Perry, SysML for systems engineering, IET, vol.7, 2008.

S. S. Alhir, Guide to Applying the UML, 2006.

M. M. Baysal, Product information exchange using open assembly model: Issues related to representation of geometric information, ASME 2005 International Mechanical Engineering Congress and Exposition, pp.601-612, 2005.

A. Albers and Z. Christian, Interdisciplinary Systems Modeling Using the Contact & Channel-model for SysML, Proceedings of the 18th International Conference on Engineering Design (ICED 11), vol.9, p.15, 2011.

A. Albers, Contact and Channel Modelling Using Part and Function Libraries in a Function-Based Design Approach, ASME 2010 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp.393-404, 2010.

A. Albert and Z. Christian, Extending SysML for Engineering Designers by Integration of the Contact & Channel-Approach (C&C2-A) for Function-Based Modeling of Technical Systems, Procedia Computer Science, vol.16, pp.353-362, 2013.

D. Bohnke, A. Reichwein, and S. Rudolph, Design language for airplane geometries using the unified modeling language, ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp.661-670, 2009.

A. Warniez, SysML geometrical profile for integration of mechatronic systems, Advanced Intelligent Mechatronics (AIM)
URL : https://hal.archives-ouvertes.fr/hal-01723803

, IEEE, pp.709-714, 2014.

C. J. Paredis, 5.5. 1 An Overview of the SysML-Modelica Transformation Specification, INCOSE International Symposium, vol.20, pp.709-722, 2010.

A. Reichwein, Maintaining consistency between system architecture and dynamic system models with SysML4Modelica, Proceedings of the 6th International Workshop on Multi-Paradigm Modeling, pp.43-48, 2012.

A. Pop, D. Akhvlediani, and P. Fritzson, Towards unified system modeling with the ModelicaML UML profile, Proceedings of the 1st International Workshop on Equation-Based Object-Oriented Languages and Tools, 2007.

W. Schamai, Towards unified system modeling and simulation with ModelicaML: modeling of executable behavior using graphical notations, Proceedings of the 7th International Modelica Conference

;. Como and . Italy, , vol.043, pp.612-621, 2009.

E. Y. and -. Do, Intentions in and relations among design drawings, Design studies, vol.21, pp.483-503, 2000.

A. Hahn, Vehicle sketch pad: a parametric geometry modeler for conceptual aircraft design, 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, p.657, 2010.

J. Mao, A tolerance representation model for conceptual design, Computer-Aided Industrial Design and Conceptual Design, pp.413-416, 2008.

S. C. Feng, Incorporating process planning into conceptual design". In: The ASME design engineering technical conferences, 1999.

R. Sodhi and J. U. Turner, Towards modelling of assemblies for product design, Computer-Aided Design, vol.26, pp.85-97, 1994.

T. W. Simpson, Implementation of DFA in conceptual and embodiment design using decision support problems, BIBLIOGRAPHY Proceedings of the 1995 ASME Design Engineering Technical Conferences, pp.119-126, 1995.

M. Moullec, Proposition of Combined Approach for Architecture Generation Integrating Component Placement Optimization, ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp.5-06, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01785222

S. F. Qin, A framework of web-based conceptual design, Computers in Industry, vol.50, pp.153-164, 2003.

H. Komoto and T. Tomiyama, A framework for computer-aided conceptual design and its application to system architecting of mechatronics products, Computer-Aided Design, vol.44, pp.931-946, 2012.

R. Plateaux, Introduction of the 3d geometrical constraints in Modelica, Proceedings of the 7th International Modelica Conference

;. Como and . Italy, , vol.043, pp.526-530, 2009.

G. , Model transformation by-example: a survey of the first wave, Conceptual Modelling and Its Theoretical Foundations, pp.197-215, 2012.

A. Clemént, The TTRSs: 13 constraints for dimensioning and tolerancing, Geometric design tolerancing: theories, standards and applications, pp.122-131, 1998.

D. Brück, Dymola for multi-engineering modeling and simulation, Proceedings of modelica, 2002.

M. Tiller, Detailed vehicle powertrain modeling in Modelica, 2000.

T. Kenj, Electric motors and their controls: an introduction, 1991.

G. Henneberger, S. Schustek, and R. Wirtz, Inverter-fed three phase drive for hybrid vehicle applications, Conf. Rec. ICEM'88, vol.2, pp.293-298

J. Gan, A new surface-inset, permanent-magnet, brushless DC motor drive for electric vehicles, IEEE Transactions on Magnetics, vol.36, pp.3810-3818, 2000.

C. Chan, Novel permanent magnet motor drives for electric vehicles, IEEE Transactions on Industrial Electronics, vol.43, pp.331-339, 1996.

R. Cremer, Current-Status of Rare Earth Permanent Magnets, Tenth International Conference on Magnetically Levitated Systems (MagLev), pp.391-399, 1988.

K. Kim, Demagnetization analysis of permanent magnets according to rotor types of interior permanent magnet synchronous motor, IEEE Transactions on Magnetics, vol.45, pp.2799-2802, 2009.

J. Rosero, Study on the permanent magnet demagnetization fault in permanent magnet synchronous machines, IEEE Industrial Electronics, IECon 2006-32nd Annual Conference on, pp.879-884, 2006.

S. Ruoho, Demagnetization testing for a mixed-grade dovetail permanent-magnet machine, IEEE Transactions on Magnetics, vol.45, pp.3284-3289, 2009.

T. Sebastian, Temperature effects on torque production and efficiency of PM motors using NdFeB magnets, IEEE Transactions on Industry Applications, vol.31, pp.353-357, 1995.

K. Yamazaki and Y. Kanou, Rotor loss analysis of interior permanent magnet motors using combination of 2-D and 3-D finite element method, IEEE Transactions on Magnetics, vol.45, pp.1772-1775, 2009.

J. Wang, Rotor eddy-current loss in permanent-magnet brushless AC machines, IEEE Transactions on Magnetics, vol.46, pp.2701-2707, 2010.

P. Handgruber, Three-dimensional eddy current loss modeling in steel laminations of skewed induction machines, IEEE Transactions on Magnetics, vol.49, pp.2033-2036, 2013.

S. Niu, Eddy current reduction in high-speed machines and eddy current loss analysis with multislice time-stepping finite-element method, IEEE Transactions on Magnetics, vol.48, pp.1007-1010, 2012.

W. Fu and Z. Liu, Estimation of eddy-current loss in permanent magnets of electric motors using network-field coupled multislice time-stepping finite-element method, IEEE transactions on magnetics, vol.38, pp.1225-1228, 2002.

Y. Amara, P. Reghem, and G. Barakat, Analytical prediction of eddy-current loss in armature windings of permanent magnet brushless AC machines, IEEE Transactions on Magnetics, vol.46, pp.3481-3484, 2010.

L. Wu, Analytical model for predicting magnet loss of surfacemounted permanent magnet machines accounting for slotting effect and load, IEEE transactions on magnetics, vol.48, pp.107-117, 2012.

J. Pyrhonen, Harmonic loss calculation in rotor surface permanent magnets-New analytic approach, IEEE Transactions on Magnetics, vol.48, pp.2358-2366, 2012.

M. Popescu, Study of the thermal aspects in brushless permanent magnet machines performance, Electrical Machines Design Control and Diagnosis (WEMDCD), pp.60-69, 2013.

C. Huynh, L. Zheng, and D. Acharya, Losses in high speed permanent magnet machines used in microturbine applications, Journal of Engineering for Gas Turbines and Power, vol.131, p.22301, 2009.

J. E. Vrancik, Prediction of windage power loss in alternators, 1968.

J. Lammeraner and M. ?tafl, , 1966.

D. M. Ionel, Computation of core losses in electrical machines using improved models for laminated steel, IEEE Transactions on Industry Applications, vol.43, pp.1554-1564, 2007.

G. Bertotti, General properties of power losses in soft ferromagnetic materials, IEEE Transactions on magnetics, vol.24, pp.621-630, 1988.

G. Bertotti, Hysteresis in magnetism: for physicists, materials scientists, and engineers, 1998.

D. M. Ionel, On the variation with flux and frequency of the core loss coefficients in electrical machines, IEEE Transactions on Industry Applications, vol.42, issue.3, pp.658-667, 2006.

M. Popescu and D. M. Ionel, A best-fit model of power losses in cold rolled-motor lamination steel operating in a wide range of frequency and magnetization, IEEE Transactions on Magnetics, vol.43, pp.1753-1756, 2007.

S. Ruoho, Temperature dependence of resistivity of sintered rare-earth permanent-magnet materials, IEEE Transactions on Magnetics, vol.46, pp.15-20, 2010.

F. Deng, An improved iron loss estimation for permanent magnet brushless machines, IEEE Transactions on Energy Conversion, vol.14, pp.1391-1395, 1999.

B. Zhang, Electromagnetic-Thermal Coupling Analysis of Permanent Magnet Synchronous Machines for Electric Vehicle Applications Based on Improved (µ + 1) Evolution Strategy, IEEE Transactions on Magnetics, vol.51, pp.1-10, 2015.

P. Vong and D. Rodger, Coupled electromagnetic-thermal modeling of electrical machines, IEEE transactions on Magnetics, vol.39, pp.1614-1617, 2003.

G. Li, Comparative studies between classical and mutually coupled switched reluctance motors using thermal-electromagnetic analysis for driving cycles, IEEE Transactions on magnetics, vol.47, pp.839-847, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00626706

J. Nerg, M. Rilla, and J. Pyrhonen, Thermal analysis of radial-flux electrical machines with a high power density, IEEE Transactions on industrial electronics, vol.55, pp.3543-3554, 2008.

D. Joo, Electromagnetic field and thermal linked analysis of interior permanent-magnet synchronous motor for agricultural electric vehicle, IEEE transactions on magnetics, vol.47, pp.4242-4245, 2011.

I. Vese, F. Marignetti, and M. M. Radulescu, Multiphysics approach to numerical modeling of a permanent-magnet tubular linear motor, IEEE Transactions on Industrial Electronics, vol.57, pp.320-326, 2010.

A. Wang, H. Li, and C. Liu, On the material and temperature impacts of interior permanent magnet machine for electric vehicle applications, IEEE Transactions on Magnetics, vol.44, pp.4329-4332, 2008.

P. Mellor, D. Roberts, and D. Turner, Lumped parameter thermal model for electrical machines of TEFC design, IEE Proceedings B-Electric Power Applications, vol.138, pp.205-218, 1991.

A. Parviainen, Design of axial-flux permanent-magnet low-speed machines and performance comparison between radial-flux and axial-flux machines, Acta Universitatis Lappeenrantaensis, 2005.

J. Azzouzi, Contribution à la modélisation et à l'optimisation des machines synchrones à aimants permanents à flux axial. Application au cas de l'aérogénérateur, 2007.

F. Sahin, Design and development of a high-speed axial-flux permanent-magnet machine, 2001.

G. Verez, Analytical thermal modelling of axial flux permanent magnet synchronous machines, Electrical Machines (ICEM, p.2012

, XXth International Conference on, pp.2799-2805, 2012.

Z. Huang, Loss calculation and thermal analysis of rotors supported by active magnetic bearings for high-speed permanent-magnet electrical machines, IEEE Transactions on Industrial Electronics, vol.63, pp.2027-2035, 2016.

C. Lungoci and D. Stoia, Temperature effects on torque production and efficiency of motors with NdFeB, vol.2, p.3, 2008.

C. Multiphysics, COMSOL AB, 2015.

, Understanding Permanent Magnets, 2015.

K. Magnetics, Temperature and Neodymium Magnets

U. Guide, Maxwell 3D, version 10.0, 2004.

A. M. Workbench,

, ANSYS". In: Inc, 2012.