. , 1.2.3. Étude structurale in silico de la PLD

. , 2.1. Le domaine catalytique minimal de la PLD d'Arabidopsis thaliana, Domaine catalytique minimal, maturation post-traductionnelle et inhibition de la PLD, vol.2

. .. Étude-de-la-partie-amino-terminale-de-la-pld-d'arabidopsis-thaliana, 2.2.2. Expression de l'AtPLD avec une étiquette 6xHis

. .. Criblage-;-plds, 228 3.2.3.1. Les inhibiteurs connus et leur effet sur la PLD végétale, et caractérisation d'un nouvel inhibiteurs des

. , 2.3.2.3. Effet de l'inhibiteur KBY7 sur l'activité enzymatique des PLDs humaines

P. La and . .. Dans-un-contexte-métabolique, 245 3.3.1. Clonage et caractérisation biochimique d'une PLD de microalgue verte, Chapitre, vol.3

. , 3.2.1. Activité des PLD recombinantes, caractérisation de l'impact sur le lipidome de levure

. .. Annexes,

S. Abad, K. Kitz, A. Hörmann, U. Schreiner, F. S. Hartner et al., Realtime PCR-based determination of gene copy numbers in Pichia pastoris, Biotechnol. J, vol.5, pp.413-420, 2010.

S. Abdelkafi, A. , and A. , The substrate specificities of sunflower and soybean phospholipases D using transphosphatidylation reaction, Lipids Health Dis, vol.10, pp.1-7, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00917338

R. E. Abdulnour, J. A. Howrylak, A. H. Tavares, D. N. Douda, K. M. Henkels et al., , 2018.

, Phospholipase D isoforms differentially regulate leukocyte responses to acute lung injury

, Leukoc. Biol, vol.103, pp.919-932

C. Abergel, A. Abousalham, S. Chenivesse, M. Rivière, A. Moustacas-gardies et al., Crystallization and preliminary crystallographic study of a recombinant phospholipase D from cowpea (Vigna unguiculata L. Walp), Acta Crystallogr. Sect. D-Struct, vol.57, pp.320-322, 2001.

A. Abousalham, M. Riviere, M. Teissere, and R. Verger, Improved purification and biochemical characterization of phospholipase D from cabbage, Biochim. Biophys. Acta-Gen, 1993.

. Subj, , vol.1158, pp.1-7

A. Abousalham, M. Teissere, A. Gardies, R. Verger, and G. Noat, Phospholipase D from Soybean (Glycine max L.) Suspension-Cultured Cells: Purification, Structural and Enzymatic Properties, Plant Cell Physiol, vol.36, pp.989-996, 1995.

A. Abousalham, J. Nari, M. Teissere, N. Ferte, G. Noat et al., Study of Fatty Acid Specificity of Sunflower Phospholipase D using Detergent/Phospholipid Micelles, 1997.

, Eur. J. Biochem, vol.248, pp.374-379

A. Abousalham, C. Liossis, L. O'brien, and D. N. Brindley, Cell-permeable ceramides prevent the activation of phospholipase D by ADP-ribosylation factor and RhoA, 1997.

, Biol. Chem, vol.272, pp.1069-1075

A. Abousalham, T. C. Hobman, J. Dewald, M. Garbutt, and D. N. Brindley, ADP-ribosylation factor, Biochem. J, vol.361, pp.653-661, 2002.

W. H. Ali, Q. Chen, K. E. Delgiorno, W. Su, J. C. Hall et al., Deficiencies of the Lipid-Signaling Enzymes, 2013.

, Phospholipase D1 and D2 Alter Cytoskeletal Organization, Macrophage Phagocytosis, and Cytokine-Stimulated Neutrophil Recruitment, PLoS One, vol.8, pp.1-11

J. W. Allen, C. C. Dirusso, and P. N. Black, Carbon and Acyl Chain Flux during Stressinduced Triglyceride Accumulation by Stable Isotopic Labeling of the Polar Microalga Coccomyxa subellipsoidea C169, J. Biochem, vol.292, pp.361-374, 2017.

A. Aloulou, R. Rahier, Y. Arhab, A. Noiriel, A. et al., Phospholipases: An Overview, Lipases and Phospholipases, pp.69-105, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02128730

S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman, Basic local alignment search tool, J. Mol. Biol, vol.215, pp.403-410, 1990.

G. F. Ames, Lipids of Salmonella typhimurium and Escherichia coli: Structure and Metabolism, J. Bacteriol, vol.95, pp.833-843, 1968.

B. Andrews, K. Bond, J. A. Lehman, J. M. Horn, A. Dugan et al., Direct inhibition of in vitro PLD activity by 4-(2-aminoethyl)-benzenesulfonyl fluoride, 2000.

, Biochem. Biophys. Res. Commun, vol.273, pp.302-311

C. B. Anfinsen, E. Haber, M. Sela, and F. H. White, The kinetics of formation of native ribonuclease during oxidation of the reduced polypeptide chain, Proc. Natl. Acad. Sci. U.S.A, vol.47, pp.1309-1314, 1961.

J. Aoki, A. Inoue, K. Makide, N. Saiki, and H. Arai, , 2007.

Y. Arhab, R. Rahier, A. Noiriel, M. V. Cherrier, A. et al., , 2018.

, Structural Studies, Lipases and Phospholipases, pp.191-201

J. D. Artiss, T. F. Draisey, R. J. Thibert, T. , and K. E. , , 1979.

, J, vol.24, pp.239-258

S. L. Austin-brown and K. D. Chapman, Inhibition of Phospholipase D alpha by NAcylethanolamines, Plant Physiol, vol.129, pp.1892-1898, 2002.

M. V. Beligni, C. Bagnato, M. B. Prados, H. Bondino, A. M. Laxalt et al., The diversity of algal phospholipase D homologs revealed by biocomputational analysis, J. Phycol, vol.51, pp.943-962, 2015.

Y. Ben-ali, F. Carrière, A. , and A. , High-level constitutive expression in Pichia pastoris and one-step purification of phospholipase D from cowpea (Vigna unguiculata L. Walp), Protein Expr. Purif, vol.51, pp.162-169, 2007.

G. Blanc, I. Agarkova, J. Grimwood, A. Kuo, A. Brueggeman et al., The genome of the polar eukaryotic microalga Coccomyxa subellipsoidea reveals traits of cold adaptation, Genome Biol, vol.13, pp.1-12, 2012.

E. G. Bligh and W. J. Dyer, A Rapid Method Of Total Lipid Extraction And Purification, Can. J. Biochem. Physiol, vol.37, pp.1-7, 1959.

E. Blöchliger, M. Blocher, P. Walde, and P. L. Luisi, Matrix Effect in the Size Distribution of Fatty Acid Vesicles, J. Phys. Chem, vol.102, pp.10383-10390, 1998.

L. F. Borkenhagen, K. , and E. P. , The enzymic equilibration of L-serine with Ophospho-L-serine, Biochim. Biophys. Acta, vol.28, pp.222-223, 1958.

M. M. Bradford, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Chem, vol.72, pp.248-254, 1976.

R. K. Bretthauer and F. J. Castellino, Glycosylation of Pichia pastoris derived proteins, 1999.

, Biotechnol. Appl. Biochem, vol.30, pp.193-200

H. A. Brown, S. Gutowski, R. A. Kahn, and P. C. Sternweis, Partial purification and characterization of Arf-sensitive phospholipase D from porcine brain, J. Biol. Chem, vol.270, pp.14935-14943, 1995.

H. A. Brown, L. G. Henage, A. M. Preininger, Y. Xiang, and J. H. Exton, Biochemical Analysis of Phospholipase D, In Methods in Enzymology, pp.49-87, 2007.

H. A. Brown, P. G. Thomas, and C. W. Lindsley, Targeting phospholipase D in cancer, infection and neurodegenerative disorders, Nat. Rev. Drug Discov, vol.16, pp.351-367, 2017.

R. C. Bruntz, C. W. Lindsley, and H. A. Brown, Phospholipase D Signaling Pathways and Phosphatidic Acid as Therapeutic Targets in Cancer, Pharmacol. Rev, vol.66, pp.1033-1079, 2014.
DOI : 10.1124/pr.114.009217

URL : http://pharmrev.aspetjournals.org/content/66/4/1033.full.pdf

R. C. Bruntz, H. E. Taylor, C. W. Lindsley, and H. A. Brown, , 2014.

, Mediates Survival Signaling through Direct Regulation of Akt in Glioblastoma Cells, Journal of Biological Chemistry, vol.289, pp.600-616

U. Burkhardt, D. Stegner, E. Hattingen, S. Beyer, B. Nieswandt et al., , 2014.

, Impaired brain development and reduced cognitive function in phospholipase D-deficient mice

, Neurosci. Lett, vol.572, pp.48-52

H. J. Channon and A. C. Chibnall, The ether-soluble substances of cabbage leaf cytoplasm: The isolation of n-nonacosane and di-n-tetradecyl ketone, Biochem. J, vol.23, pp.168-175, 1929.

Q. Chen, T. Hongu, T. Sato, Y. Zhang, W. Ali et al., Key Roles for the Lipid Signaling Enzyme Phospholipase D1 in the Tumor Microenvironment During Tumor Angiogenesis and Metastasis, Sci. Signal, vol.5, pp.1-21, 2012.

S. C. Chen, L. C. Wright, R. T. Santangelo, M. Muller, V. R. Moran et al.,

T. C. Sorell, Identification of Extracellular Phospholipase B, Lysophospholipase, and, 1997.

, Acyltransferase Produced by Cryptococcus neoformans, Infect. Immun, vol.65, pp.1-7

E. Y. Cho, C. Yun, H. Chae, H. Chae, A. et al., Lysophosphatidylserineinduced functional switch of human cytochrome P450 1A2 and 2E1 from monooxygenase to phospholipase D, Biochem. Biophys. Res. Commun, vol.376, pp.584-589, 2008.
DOI : 10.1016/j.bbrc.2008.09.023

T. Chouard, If dogma dictates that proteins need a structure to function, then why do so many of them live in a state of disorder?, Nature, vol.469, pp.151-153, 2011.

W. C. Colley, T. Sung, R. Roll, J. Jenco, S. M. Hammond et al.,

A. J. Morris and M. A. Frohman, Phospholipase D2, a distinct phospholipase D isoform with novel regulatory properties that provokes cytoskeletal reorganization, Curr. Biol, vol.7, pp.191-201, 1997.

M. A. Conde, N. P. Alza, P. A. Iglesias-gonzález, P. G. Scodelaro-bilbao, S. Sánchez-campos et al., Phospholipase D1 downregulation by ?synuclein: Implications for neurodegeneration in Parkinson's disease, Biochim. Biophys. Acta Mol. Cell Biol. Lipids, vol.1863, pp.639-650, 2018.
DOI : 10.1016/j.bbalip.2018.03.006

A. Contardi and A. Ercoli, The enzymic cleavage of lecithin and lysolecithin, 1933.

, Biochem. Z, vol.261, pp.275-302

M. A. Coronado, A. Ullah, L. S. Da-silva, D. Chaves-moreira, L. Vuitika et al.,

S. S. Veiga, J. Chahine, M. T. Murakami, and R. K. Arni, Structural Insights into, 2015.

, Substrate Binding of Brown Spider Venom Class II Phospholipases D, Curr. Protein Pept. Sci, vol.16, pp.768-774

J. Damnjanovi?, H. Nakano, and Y. Iwasaki, , 2014.

, Streptomyces phospholipase D: Loop Deletion Improves Stability of PLD, Biotechnol. Bioeng, vol.111, pp.674-682

F. Davidson, M. , L. , and C. , Action of cabbage leaf phospholipase D on ovolecithin and related substances, Biochem. J, vol.69, pp.458-466, 1958.

A. De-ghellinck, H. Schaller, V. Laux, M. Haertlein, M. Sferrazza et al., Production and Analysis of Perdeuterated Lipids from Pichia pastoris Cells, PLoS One, vol.9, p.92999, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01001953

P. O. De-giuseppe, A. Ullah, D. T. Silva, L. H. Gremski, A. C. Wille et al., , 2011.

, class II phospholipase D: catalytic cleft is modified by a disulphide bridge, Biochem. Biophys

, Res. Commun, vol.409, pp.622-627

L. Deng, R. Sugiura, M. Takeuchi, M. Suzuki, H. Ebina et al., Real-Time Monitoring of Calcineurin Activity in Living Cells: Evidence for Two Distinct Ca 2+-dependent Pathways in Fission Yeast, Mol. Biol. Cell, vol.17, pp.4790-4800, 2006.

G. C. Dismukes, D. Carrieri, N. Bennette, G. M. Ananyev, and M. C. Posewitz, , 2008.

, Aquatic phototrophs: efficient alternatives to land-based crops for biofuels, Curr. Opin

, Biotechnol, vol.19, pp.235-240

L. D. Do, R. Buchet, S. Pikula, A. Abousalham, and S. Mebarek, Direct determination of phospholipase D activity by infrared spectroscopy, Anal. Biochem, vol.430, pp.32-38, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00917259

D. Dong, M. Lei, P. Hua, Y. Pan, S. Mu et al., The Genomes of Two Bat Species with Long Constant Frequency Echolocation Calls, 2017.

, Mol. Biol. Evol, vol.34, pp.20-34

J. H. Dyer, L. Zheng, W. , and X. , Cloning and Nucleotide Sequence of a cDNA Encoding Phospholipase D from Arabidopsis (Accession No. U36381), Plant Physiol, vol.109, p.1497, 1995.

J. L. Edwards, D. D. Entz, and M. A. Apicella, Gonococcal Phospholipase D Modulates the Expression and Function of Complement Receptor 3 in Primary Cervical Epithelial Cells, 2003.

, Infect. Immun, vol.71, pp.6381-6391

M. M. Eftekharian, T. Azimi, S. Ghafouri-fard, A. Sayad, M. D. Omrani et al., Phospholipase D1 expression analysis in relapsing-remitting multiple sclerosis patients, Neurosci. Lett, vol.38, pp.865-872, 2017.

S. F. Eisen and H. A. Brown, Selective Estrogen Receptor (ER) Modulators Differentially Regulate Phospholipase D Catalytic Activity in ER-Negative Breast Cancer Cells, Mol. Pharmacol, vol.62, pp.911-920, 2002.

H. El-maarouf, Y. Zuily-fodil, M. Gareil, A. Arcy-lameta, and T. Pham-thi, , 1999.

H. El-maarouf, F. Carrière, M. Rivière, A. , and A. , Functional expression in insect cells, one-step purification and characterization of a recombinant phospholipase D from cowpea (Vigna unguiculata L. Walp), Protein Eng, vol.13, pp.811-817, 2000.

D. M. Engelman, Membranes are more mosaic than fluid, Nature, vol.438, pp.578-580, 2005.

E. Fahy, S. Subramaniam, H. A. Brown, C. K. Glass, A. H. Merrill et al., A comprehensive classification system for lipids, J. Lipid Res, vol.46, pp.839-862, 2005.

L. Fan, S. Zheng, W. , and X. , Antisense suppression of phospholipase D alpha retards abscisic acid-and ethylene-promoted senescence of postharvest Arabidopsis leaves, 1997.

, Plant Cell, vol.9, pp.2183-2196

M. A. Frohman, T. Sung, M. , and A. J. , Mammalian phospholipase D structure and regulation, Biochim. Biophys. Acta Mol. Cell Biol. Lipids, vol.1439, pp.175-186, 1999.

R. Ganesan, M. Mahankali, G. Alter, and J. Gomez-cambronero, Two sites of action for PLD2 inhibitors: The enzyme catalytic center and an allosteric, phosphoinositide biding pocket, Biochim. Biophys. Acta Mol. Cell Biol. Lipids, vol.1851, pp.261-272, 2015.

F. Ge, W. Huang, Z. Chen, C. Zhang, Q. Xiong et al., Methylcrotonyl-CoA Carboxylase Regulates Triacylglycerol Accumulation in the, 2014.

, Model Diatom Phaeodactylum tricornutum. Plant Cell, vol.26, pp.1681-1697

T. J. Gibson, M. Hyvönen, A. Musacchio, M. Saraste, and E. Birney, PH domain: the first anniversary, Trends in Biochemical Sciences, vol.19, pp.349-353, 1994.

K. Göbel, M. K. Schuhmann, S. Pankratz, D. Stegner, A. M. Herrmann et al., Phospholipase D1 mediates lymphocyte adhesion and migration in experimental autoimmune encephalomyelitis, Clinical immunology, 2014.

, Eur. J. Immunol, vol.44, pp.2295-2305

J. Gomez-cambronero, Phospholipase D in Cell Signaling: From a Myriad of Cell Functions to Cancer Growth and Metastasis, Références bibliographiques, vol.289, p.292, 2014.

D. M. Goodstein, S. Shu, R. Howson, R. Neupane, R. D. Hayes et al., Phytozome: a comparative platform for green plant genomics, Nucleic Acids Res, vol.40, pp.1178-1186, 2012.

S. M. Hammond, Y. Altshuller, T. Sung, S. A. Rudge, K. Rose et al., Human ADP-ribosylation Factor-activated Phosphatidylcholine-specific Phospholipase D Defines a New and Highly Conserved Gene Family, J. Biol. Chem, vol.270, pp.29640-29643, 1995.

D. J. Hanahan, The Lecithinases. Progress in the Chemistry of Fats and Other Lipids, vol.4, pp.141-176, 1947.

D. J. Hanahan and I. L. Chaikoff, The Phosphorus Containing Lipides Of The Carrot, 1947.

, J. Biol. Chem, vol.168, p.9

D. J. Hanahan and I. L. Chaikoff, , 1947.

D. J. Hanahan and I. L. Chaikoff, , 1948.

, J. Biol. Chem, vol.172, p.9

A. Haouas, N. B. Hamadi, and M. Msaddek, Synthesis of New Spirocyclopropane and Oxadiazole Products: Cycloaddition, J. Heterocycl. Chem, vol.52, pp.1765-1768, 2015.

A. L. Harkins, S. D. London, and J. W. Dolan, , 2008.

, FEMS Yeast Res, vol.8, pp.237-244

A. L. Harkins, G. Yuan, S. D. London, and J. W. Dolan, An oleate-stimulated, phosphatidylinositol 4,5-bisphosphate-independent phospholipase D in Schizosaccharomyces pombe: Characterizing phospholipase D1 in Schizosaccharomyces pombe, FEMS Yeast Res, 2010.

J. Hausmann, S. Kamtekar, E. Christodoulou, J. E. Day, T. Wu et al., Structural basis of substrate discrimination and integrin binding by autotaxin, Nat. Struct. Mol. Biol, vol.18, pp.198-204, 2011.

M. Heller, Phospholipase D, Adv. Lipid. Res, vol.16, pp.267-326, 1978.

K. M. Henkels, G. P. Boivin, E. S. Dudley, S. J. Berberich, and J. Gomez-cambronero, , 2013.

D. Phospholipase, PLD) drives cell invasion, tumor growth and metastasis in a human breast cancer xenograph model, Oncogene, vol.32, pp.5551-5562

B. J. Hinnebusch, Role of Yersinia Murine Toxin in Survival of Yersinia pestis in the Midgut of the Flea Vector, Science, vol.296, pp.733-735, 2002.

M. Hiraoka, A. Abe, Y. Lu, K. Yang, X. Han et al., , 2006.

, Lysosomal Phospholipase A2 and Phospholipidosis, Mol. Cell. Biol, vol.26, pp.6139-6148

T. Hirashima, M. Toyoshima, T. Moriyama, and N. Sato, Evolution of the, 2018.

, Phosphatidylcholine Biosynthesis Pathways in Green Algae: Combinatorial Diversity of

, Methyltransferases. J. Mol. Evol, vol.86, pp.68-76

O. Holm-hansen, Isolation and Culture of Terrestrial and Fresh-water Algae of Antarctica, Phycologia, vol.4, pp.43-51, 1964.

E. Hough, L. K. Hansen, B. Birknes, K. Jynge, S. Hansen et al., High-resolution (1.5 Å) crystal structure of phospholipase C from Bacillus cereus, Nature, vol.338, pp.357-360, 1989.

Q. Hu, M. Sommerfeld, E. Jarvis, M. Ghirardi, M. Posewitz et al., Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances, Plant J, vol.54, pp.621-639, 2008.

S. Imamura and Y. Horiuti, Enzymatic Determination Of PLD Activity With Choline Oxydase, J. Biochem, vol.83, pp.677-680, 1978.

Y. Iwasaki, H. Nakano, Y. , and T. , Phospholipase D from Streptomyces antibioticus: cloning, sequencing, expression, and relationship to other phospholipases, 1999.

. Microbiol and . Biotechnol, Références bibliographiques, vol.42, pp.290-299

Y. Iwasaki, S. Horiike, K. Matsushima, Y. , and T. , , 1999.

, European Journal of Biochemistry, vol.264, pp.577-581

Y. H. Jang, M. , and D. S. , Exp. Mol. Med, vol.44, p.571, 2012.

J. Jin, B. Ahn, Y. Na, J. Kim, Y. Kim et al., Phospholipase D1 is associated with amyloid precursor protein in Alzheimer's disease, Neurobiol. Aging, vol.28, pp.1015-1027, 2007.

D. T. Jones, Protein secondary structure prediction based on position-specific scoring matrices, J. Mol. Biol, vol.292, pp.195-202, 1999.

S. B. Jones, L. A. Pfeifer, T. J. Bleisch, T. J. Beauchamp, J. D. Durbin et al.,

N. E. Hughes, C. J. Rito, Y. Dao, and J. M. Gruber, Novel Autotaxin Inhibitors for the Treatment of Osteoarthritis Pain: Lead Optimization via Structure-Based Drug Design, 2016.

, Med. Chem. Lett, vol.7, pp.857-861

M. E. Kaighn, K. S. Narayan, Y. Ohnuki, J. F. Lechner, and L. W. Jones, Establishment and characterization of a human prostatic carcinoma cell line (PC-3), Invest. Urol, vol.17, pp.16-23, 1979.

J. N. Kanfer, G. Sorrentino, and D. S. Sitar, Phospholipases as mediators of amyloid beta peptide neurotoxicity: an early event contributing to neurodegeneration characteristic of, 1998.

, Alzheimer's disease, Neurosci. Lett, vol.257, pp.93-96

D. W. Kang, M. H. Park, Y. J. Lee, H. S. Kim, T. K. Kwon et al., , 2008.

, Phorbol Ester Up-regulates Phospholipase D1 but Not Phospholipase D2 Expression through a PKC/Ras/ERK/NF?B-dependent Pathway and Enhances Matrix Metalloproteinase-9 Secretion in Colon Cancer Cells, J. Biol. Chem, vol.283, pp.4094-4104

L. A. Kater, E. J. Goetzl, A. , and K. F. , Isolation of human eosinophil phospholipase D, J. Clin. Invest, vol.57, pp.1173-1180, 1976.

K. Kato, H. Ikeda, S. Miyakawa, S. Futakawa, Y. Nonaka et al., Structural basis for specific inhibition of Autotaxin by a DNA aptamer, Nat. Struct. Mol. Biol, vol.23, pp.395-401, 2016.

W. E. Kayal, G. Paliyath, J. A. Sullivan, and J. Subramanian, Phospholipase D inhibition by hexanal is associated with calcium signal transduction events in raspberry, 2017.

. Res, , vol.4, p.17042

L. A. Kelley, S. Mezulis, C. M. Yates, M. N. Wass, and M. J. Sternberg, The Phyre2 web portal for protein modeling, prediction and analysis, Nat Protoc, vol.10, pp.845-858, 2015.

M. A. Kennedy, N. Kabbani, J. Lambert, L. A. Swayne, F. Ahmed et al., Srf1 Is a Novel Regulator of Phospholipase D Activity and Is Essential to Buffer the Toxic Effects of C16:0 Platelet Activating Factor, PLoS Genet, vol.7, p.1001299, 2011.

A. Khatib, Y. Arhab, A. Bentebibel, A. Abousalham, and A. Noiriel, Reassessing the Potential Activities of Plant CGI-58 Protein, PLoS One, vol.11, pp.1-20, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01693107

H. Khatoon, J. Mansfeld, A. Schierhorn, and R. Ulbrich-hofmann, Purification, sequencing and characterization of phospholipase D from Indian mustard seeds, Phytochemistry, vol.117, pp.65-75, 2015.

P. C. Kienesberger, M. Oberer, A. Lass, and R. Zechner, Mammalian patatin domain containing proteins: a family with diverse lipolytic activities involved in multiple biological functions, J. Lipid Res, vol.50, pp.63-68, 2009.

D. Kim, T. Roh, J. Lee, J. Noh, Y. Jang et al., Molecular cloning and functional expression of a phospholipase D from cabbage (Brassica oleracea var. capitata), Biochim. Biophys. Acta, vol.1437, pp.409-414, 1999.

H. Knight, A. J. Trewavas, and M. R. Knight, Calcium signalling in Arabidopsis thaliana responding to drought and salinity, Plant J, vol.12, pp.1067-1078, 1997.

E. V. Koonin, A Duplicated Catalytic Motif In A New Superfamily Of Phosphohydrolases And Phospholipid Synthases That Includes Poxvirus Envelope Proteins, 1996.

, Références bibliographiques, vol.21, p.296

D. E. Koshland, The Key-Lock Theory and the Induced Fit Theory, Angew. Chem.-Int, 1994.

, Edit, vol.33, pp.2375-2378

A. Kulkarni, P. Quang, V. Curry, R. Keyes, W. Zhou et al., Pyrimidines, a New Class of Potent Inhibitors for Phospholipase D, vol.1, pp.270-281, 2014.

U. K. Laemmli, Cleavage Of Structural Proteines During the assembly Of The Head Of Bacteriophage T4, Nature, vol.227, pp.680-685, 1970.

F. Laibach, Arabidopsis thaliana (L.) Heynh. als Objekt für genetische und entwicklungsphysiologische Untersuchungen, Bot. Arch, vol.44, pp.439-455, 1943.

D. M. Lajoie, S. A. Roberts, P. A. Zobel-thropp, J. L. Delahaye, V. Bandarian et al., Variable Substrate Preference among Phospholipase D Toxins from Sicariid Spiders, J. Biol. Chem, vol.290, pp.10994-11007, 2015.

R. Lambrecht and R. Ulbrich-hofmann, A Facile Purification Procedure of, 1992.

, Phospholipase D from Cabbage and its Characterization, Biol. Chem. Hoppe-Seyler, vol.373, p.81

R. R. Lavieri, Synthesis, Development And Biochemical Characterization Of Small Molecule, Isoform-Selective PLD Inhibitor And Photoactive Probes, 2014.

W. Lein and G. Saalbach, Cloning and direct G-protein regulation of phospholipase D from tobacco, Biochim. Biophys. Acta Mol. Cell Biol. Lipids, vol.1530, pp.172-183, 2001.

I. Leiros, F. Secundo, C. Zambonelli, S. Servi, and E. Hough, The first crystal structure of a phospholipase D, Structure, vol.8, pp.655-667, 2000.

I. Leiros, S. Mcsweeney, and E. Hough, The Reaction Mechanism of Phospholipase D from Streptomyces sp. Strain PMF. Snapshots along the Reaction Pathway Reveal a, 2004.

, Pentacoordinate Reaction Intermediate and an Unexpected Final Product, J. Mol. Biol, vol.339, pp.805-820

A. Lerchner, J. Mansfeld, I. Schäffner, R. Schöps, H. K. Beer et al., Biochim. Biophys. Acta Mol. Cell Biol. Lipids, vol.1737, pp.94-101

A. Lerchner, J. Mansfeld, K. Kuppe, and R. Ulbrich-hofmann, Protein Eng. Des. Sel, vol.19, pp.443-452, 2006.

C. C. Leslie, Cytosolic phospholipase A2: physiological function and role in disease, 2015.

, Lipid Res, vol.56, pp.1386-1402

J. A. Lewis, S. A. Scott, R. Lavieri, J. R. Buck, P. E. Selvy et al., Design and synthesis of isoform-selective phospholipase D (PLD) inhibitors. Part I: Impact of alternative halogenated privileged structures for PLD1 specificity, Bioorg. Med. Chem. Lett, vol.19, pp.1916-1920, 2009.

X. Li, Z. Liu, G. Wang, D. Pan, L. Jiao et al., Overexpression of Candida rugosa lipase Lip1 via combined strategies in Pichia pastoris, Enzyme Microb. Technol, vol.82, pp.115-124, 2016.

K. J. Livak and T. D. Schmittgen, Analysis of relative gene expression data using realtime quantitative PCR and the 2(-Delta Delta C(T)) Method, Methods, vol.25, pp.402-408, 2001.

M. Lõoke, K. Kristjuhan, and A. Kristjuhan, Extraction of genomic DNA from yeasts for PCR-based applications, Biotechniques, vol.50, pp.325-328, 2011.

A. J. Loonen and W. Soudijn, Halopemide, a new psychotropic agent: Cerebral distribution and receptor interactions, Pharm. Weekbl. Sci, vol.7, pp.1-9, 1985.

M. Madesh and K. A. Balasubramanian, Cyclosporin A inhibits oxidant and calcium stimulated phospholipase D activity in the rat intestinal mitochondria, Biochim. Biophys. ActaLipids Lipid Metab, vol.1389, pp.206-212, 1998.

M. Madesh, S. .. Ibrahim, and K. Balasubramanian, Phospholipase D Activity in the Intestinal Mitochondria: Activation by Oxygen Free Radicals. Free Radic, Biol. Med, vol.23, p.271, 1997.

S. R. Mad'iarov, Isolation of phospholipase D from cotton seeds, Biokhimiia, vol.41, pp.255-259, 1976.

G. S. Magalhães, M. C. Caporrino, M. S. Della-casa, L. F. Kimura, J. P. Prezotto-neto et al., Cloning, expression and characterization of a phospholipase D from Loxosceles gaucho venom gland, Biochimie, vol.95, pp.1773-1783, 2013.

P. Magotti, I. Bauer, M. Igarashi, M. Babagoli, R. Marotta et al., Structure of Human N-Acylphosphatidylethanolamine-Hydrolyzing Phospholipase D: Regulation of Fatty Acid Ethanolamide Biosynthesis by Bile Acids, vol.23, pp.598-604, 2015.

S. F. Martin, R. L. Deblanc, and P. J. Hergenrother, Anal. Biochem, vol.278, pp.106-110, 2000.

Y. Matsumoto and D. Sugimori, Substrate recognition mechanism of Streptomyces phospholipase D and enzymatic measurement of plasmalogen, J. Biosci. Bioeng, vol.120, pp.372-379, 2015.

M. A. Mazorra-manzano, J. C. Ramírez-suarez, Y. , and R. Y. , Plant proteases for bioactive peptides release: A review, Crit. Rev. Food Sci. Nutr, pp.1-17, 2017.

N. Mclain and J. W. Dolan, Phospholipase D activity is required for dimorphic transition in Candida albicans, Microbiology, vol.143, pp.3521-3526, 1997.

E. M. Meyerowitz and R. E. Pruitt, Arabidopsis thaliana and Plant Molecular Genetics, Science, vol.229, pp.1214-1218, 1985.

K. Mikami, L. Li, M. Takahashi, and N. Saga, Photosynthesis-dependent Ca 2+ influx and functional diversity between phospholipases in the formation of cell polarity in migrating cells of red algae, Plant Signal. Behav, vol.4, pp.911-913, 2009.

L. Monovich, B. Mugrage, E. Quadros, K. Toscano, R. Tommasi et al., Optimization of Halopemide for Phospholipase D2 inhibition, Bioorg. Med. Chem. Lett, vol.17, pp.2310-2311, 2007.

W. H. Moolenaar, W. Kruijer, B. C. Tilly, I. Verlaan, A. J. Bierman et al., , 1986.

, Growth factor-like action of phosphatidic acid, Nature, vol.323, pp.171-173

A. J. Moreno-pérez, E. Martínez-force, R. Garcés, and J. J. Salas, Phospholipase D? from sunflower (Helianthus annuus): cloning and functional characterization, J. Plant Physiol, vol.167, pp.503-511, 2010.

K. L. Morrison and G. A. Weiss, Combinatorial alanine-scanning, Curr. Opin. Chem, 2001.

, Biol, vol.5, pp.302-307

A. S. Mukadam, S. Y. Breusegem, and M. N. Seaman, Analysis of novel endosometo-Golgi retrieval genes reveals a role for PLD3 in regulating endosomal protein sorting and amyloid precursor protein processing, Cell. Mol. Life Sci, vol.75, pp.2613-2625, 2018.

M. Murakami, H. Sato, Y. Miki, K. Yamamoto, and Y. Taketomi, A new era of secreted phospholipase A2, J. Lipid Res, vol.56, pp.1248-1261, 2015.

M. T. Murakami, M. F. Fernandes-pedrosa, S. A. De-andrade, A. Gabdoulkhakov, C. Betzel et al., , 2006.

, Biochem. Biophys. Res. Commun, vol.342, pp.323-329

H. Nakanishi, P. De-los-santos, and A. M. Neiman, Positive and Negative Regulation of a SNARE Protein by Control of Intracellular Localization, Mol. Biol. Cell, vol.15, pp.1802-1815, 2004.

Y. Nakazawa, H. Sato, M. Uchino, and K. Takano, Purification, Characterization and Cloning of Phospholipase D from Peanut Seeds, Protein J, vol.25, pp.212-223, 2006.

R. K. Nelson and M. A. Frohman, Physiological and pathophysiological roles for phospholipase D, J. Lipid Res, vol.56, pp.2229-2237, 2015.

F. C. Neuhaus and W. L. Byrne, O-Phosphoserine phosphatase, Biochim. Biophys. Acta, vol.28, pp.223-224, 1958.

Y. Nishizuka, The Moleclar Heterogeneity Of Protein Kinase C And Its Implications For Cellular Regulation, Nature, vol.334, pp.661-665, 1988.

Z. Novotna, J. Kg, J. Daussant, J. Sajdok, and O. Valentov, Purification and characterisation of rape seed phospholipase D, Plant Physiol. Biochem, vol.37, pp.531-537, 1999.

M. Oblozinsky, R. Schöps, R. Ulbrich-hofmann, and L. Bezakova, Two uncommon phospholipase D isoenzymes from poppy seedlings, 2003.

, Biophys. Acta Mol. Cell Biol. Lipids, vol.1631, pp.153-159

C. Ogino, H. Daido, Y. Ohmura, N. Takada, Y. Itou et al., Remarkable enhancement in PLD activity from Streptoverticillium cinnamoneum by substituting serine residue into the GG/GS motif, BBA-Proteins Proteomics, vol.1774, pp.671-678, 2007.

Y. Okamoto, K. Tsuboi, and N. Ueda, Enzymatic Formation of, 2009.

. Anandamide, Vitamins & Hormones, pp.1-24

Y. Okawa, Y. , and T. , Purification and Properties of Streptomyces hachijoensis Phospholipase D2, J. Biochem, vol.78, p.10, 1975.

T. G. Oliveira, R. B. Chan, H. Tian, M. Laredo, G. Shui et al., Phospholipase D2 Ablation Ameliorates Alzheimer's, 2010.

, Disease-Linked Synaptic Dysfunction and Cognitive Deficits, J. Neurosci, vol.30, pp.16419-16428

E. S. Orth, T. A. Brandão, B. S. Souza, J. R. Pliego, B. G. Vaz et al., Intramolecular Catalysis of Phosphodiester Hydrolysis by Two Imidazoles, J. Am. Chem. Soc, vol.132, pp.8513-8523, 2010.

G. Paliyath, R. G. Pinhero, R. Y. Yada, and D. P. Murr, Effect of Processing Conditions on Phospholipase D Activity of Corn Kernel Subcellular Fractions, J. Agric. Food Chem, vol.47, pp.2579-2588, 1999.

K. Pappan, S. Zheng, W. , and X. , Identification and Characterization of a Novel Plant Phospholipase D That Requires Polyphosphoinositides and Submicromolar Calcium for Activity in Arabidopsis, J. Biol. Chem, vol.272, pp.7048-7054, 1997.

K. Pappan, L. Zheng, R. Krishnamoorthi, W. , and X. , Evidence for and Characterization of Ca 2+ Binding to the Catalytic Region of Arabidopsis thaliana Phospholipase D?, J. Biol. Chem, vol.279, pp.47833-47839, 2004.

C. Peetla, S. Vijayaraghavalu, and V. Labhasetwar, Biophysics of cell membrane lipids in cancer drug resistance: Implications for drug transport and drug delivery with nanoparticles, Adv. Drug Deliv. Rev, vol.65, pp.1686-1698, 2013.

D. M. Peters, I. Vadasz, L. Wujak, M. Wygrecka, A. Olschewski et al.,

R. Papp, K. Mayer, and S. Rummel, , 2014.

, Proc. Natl. Acad. Sci. U.S.A, vol.111, pp.374-383

R. Pleskot, M. Potocký, P. Pejchar, J. Linek, R. Bezvoda et al., Mutual regulation of plant phospholipase D and the actin cytoskeleton: Reciprocal regulation of plant PLD and actin, Plant J, vol.62, pp.494-507, 2010.

C. P. Ponting and I. D. Kerr, A novel family of phospholipase D homologues that includes phospholipid synthases and putative endonucleases: Identification of duplicated repeats and potential active site residues, Protein Sci, vol.5, pp.914-922, 1996.

S. B. Prusiner, Novel proteinaceous infectious particles cause scrapie, Science, vol.216, pp.136-144, 1982.

R. Rahier, A. Noiriel, A. , and A. , Functional Characterization of the NTerminal C2 Domain from Arabidopsis thaliana Phospholipase D ? and D ?, Biomed Res. Int, vol.2016, pp.1-15, 2016.

R. Rahier, A. Noiriel, A. , and A. , Development of a Direct and Continuous Phospholipase D Assay Based on the Chelation-Enhanced Fluorescence Property of 8Hydroxyquinoline, Anal. Chem, vol.88, pp.666-674, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01340010

R. Rahier, H. Abla, Y. Arhab, A. Noiriel, A. et al., Direct and Continuous Measurement of Phospholipase D Activities Using the Chelation-Enhanced Fluorescence Property of 8-Hydroxyquinoline, pp.129-138, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02132568

R. W. Randall, R. W. Bonser, N. T. Thomson, and L. G. Garland, , 1990.

K. Rose, S. A. Rudge, M. A. Frohman, A. J. Morris, and J. Engebrecht, Phospholipase D signaling is essential for meiosis, Proc. Natl. Acad. Sci. U.S.A, vol.92, pp.12151-12155, 1995.

S. A. Rudge, C. Zhou, and J. Engebrecht, Differential Regulation of Saccharomyces cerevisiae Phospholipase D in Sporulation and Sec14-Independent Secretion, Genetics, vol.160, pp.1353-1361, 2002.

A. E. Rudolph, J. A. Stuckey, Y. Zhao, H. R. Matthews, W. A. Patton et al., Expression, Characterization, and Mutagenesis of the Yersinia pestis Murine Toxin, a Phospholipase D Superfamily Member, J. Biol. Chem, vol.274, pp.11824-11831, 1999.

N. Saidani, C. Y. Botte, M. Deligny, A. Bonneau, J. Reader et al., Discovery of Compounds Blocking the Proliferation of Toxoplasma gondii and Plasmodium falciparum in a Chemical Space Based on, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00966432

P. Analogs, Antimicrob. Agents Chemother, vol.58, pp.2586-2597

H. Sato, T. Watanabe, Y. Sagane, Y. Nakazawa, and K. Takano, Purification and Characterization of Phospholipase D from Cabbage Leaves, Food Sci. Technol. Res, vol.6, pp.29-33, 2000.

N. Sato, N. Mori, T. Hirashima, and T. Moriyama, , vol.87, pp.281-292, 2016.

I. Schäffner, K. Rücknagel, J. Mansfeld, and R. Ulbrich-hofmann, Genomic structure, cloning and expression of two phospholipase D isoenzymes from white cabbage, 2002.

, J. Lipid Sci. Technol, vol.104, pp.79-87

R. Schöps, A. Schierhorn, I. Schäffner, J. Mansfeld, and R. Ulbrich-hofmann, , 2002.

, Identification of Phospholipase D from Cabbage as N-Terminally Acetylated PLD2, J. Protein

, Chem, vol.21, pp.407-411

J. Schwarzhans, D. Wibberg, A. Winkler, T. Luttermann, J. Kalinowski et al.,

V. A. Sciorra, S. M. Hammond, M. , and A. J. , Potent direct inhibition of mammalian phospholipase D isoenzymes by calphostin-c, Biochemistry, vol.40, pp.2640-2646, 2001.

S. A. Scott, P. E. Selvy, J. R. Buck, H. P. Cho, T. L. Criswell et al.,

C. L. Arteaga, C. W. Lindsley, and H. A. Brown, Design of isoform-selective phospholipase D inhibitors that modulate cancer cell invasiveness, Nat. Chem. Biol, vol.5, pp.108-117, 2009.

P. E. Selvy, R. R. Lavieri, C. W. Lindsley, and H. A. Brown, , 2011.

F. Enzymology and C. Modulation, Chem. Rev, vol.111, pp.6064-6119

I. Simões, E. Mueller, A. Otto, D. Bur, A. Y. Cheung et al., , 2005.

, Molecular analysis of the interaction between cardosin A and phospholipase D?: Identification of RGD/KGE sequences as binding motifs for C2 domains, FEBS J, vol.272, pp.5786-5798

S. J. Singer and G. L. Nicolson, The fluid mosaic model of the structure of cell membranes, Science, vol.175, pp.720-731, 1972.

R. H. Smith, The phosphatides of the latex of Hevea brasiliensis. 1. Biochemical changes, Biochem. J, vol.56, pp.240-250, 1954.

D. Sorger and G. Daum, Triacylglycerol biosynthesis in yeast, Appl. Microbiol, 2003.

, Biotechnol, vol.61, pp.289-299

A. Souc?-ek, ?. Michalec, and A. Souc?-ková, Enzymic hydrolysis of sphingomyelins by a toxin of Corynebacterium ovis, Biochim. Biophys. Acta-Lipids Lipid Metab, vol.144, pp.180-182, 1967.

C. Spencer and H. A. Brown, Biochemical Characterization of a Pseudomonas aeruginosa Phospholipase D, Biochemistry, vol.54, pp.1208-1218, 2015.

J. A. Stuckey and J. E. Dixon, Crystal structure of a phospholipase D family member, 1999.

, Nat. Struct. Biol, vol.6, p.7

S. Stumpe, S. König, and R. Ulbrich-hofmann, Insights into the structure of plant ?type phospholipase D: Structure of plant phospholipase D, FEBS J, vol.274, pp.2630-2640, 2007.

W. Su, O. Yeku, S. Olepu, A. Genna, J. Park et al., 5-Fluoro-2-indolyl des-chlorohalopemide (FIPI), a Phospholipase D Pharmacological Inhibitor That Alters Cell Spreading and Inhibits Chemotaxis, 2009.

. Pharmacol, , vol.75, pp.437-446

J. M. Sugars, S. Cellek, M. Manifava, J. Coadwell, and N. T. Ktistakis, Fatty Acylation of Phospholipase D1 on Cysteine Residues 240 and 241 Determines Localization on Intracellular Membranes, J. Biol. Chem, vol.274, pp.30023-30027, 1999.

T. Sung, Mutagenesis of phospholipase D defines a superfamily including a transGolgi viral protein required for poxvirus pathogenicity, EMBO J, vol.16, pp.4519-4530, 1997.

T. Sung, Y. Zhang, A. J. Morris, and M. A. Frohman, Structural Analysis of Human Phospholipase D1, J. Biol. Chem, vol.274, pp.3659-3666, 1999.

T. Sung, Y. M. Altshuller, A. J. Morris, and M. A. Frohman, Molecular Analysis of Mammalian Phospholipase D2, J. Biol. Chem, vol.274, pp.494-502, 1999.

D. I. Svergun, Restoring low resolution structure of biological macromolecules from solution scattering using simulated annealing, Biophys. J, vol.76, pp.2879-2886, 1999.

D. I. Svergun and M. H. Koch, Small-angle scattering studies of biological macromolecules in solution, Rep. Prog. Phys, vol.66, p.1735, 2003.

D. I. Svergun, M. V. Petoukhov, and M. H. Koch, Determination of domain structure of proteins from X-ray solution scattering, Biophys. J, vol.80, pp.2946-2953, 2001.

J. W. Szostak, D. P. Bartel, and P. L. Luisi, Synthesizing life, Nature, vol.409, pp.387-390, 2001.
DOI : 10.1038/35053176

M. Takayama, S. Itoh, T. Nagasaki, and I. Tanimizu, A New Enzymatic Method For Determination Of Serum Choline-Containing Phospholipids, Clin. Chim. Acta, vol.79, pp.93-98, 1977.

D. V. Tambourgi, F. C. Magnoli, C. W. Van-den-berg, B. P. Morgan, P. S. De-araujo et al., , 1998.

, Biochem. Biophys. Res. Commun, vol.251, pp.366-373

K. E. Taylor, R. J. Thibert, A. , and J. D. , Enzymatic determination of phosphatidylcholine in human erythrocyte membranes, Microchem J, vol.27, pp.583-591, 1982.

K. Tiwari, P. , and G. , Microarray analysis of ripening-regulated gene expression and its modulation by 1-MCP and hexanal, Plant Physiol. Biochem, vol.49, pp.329-340, 2011.

H. L. Tookey and A. K. Balls, Plant phospholipase D, 1 studies on cottonseed and cabbage phospholipase D, J. Biol. Chem, vol.218, pp.213-224, 1956.

H. L. Tookey and A. K. Balls, Plant phospholipase D, 2 inhibition of succinic oxidase by cottonseed phospholipase D, J. Biol. Chem, vol.220, pp.15-23, 1956.

S. Tsuda, S. Okudaira, K. Moriya-ito, C. Shimamoto, M. Tanaka et al., Cyclic Phosphatidic Acid Is Produced by Autotaxin in Blood, J. Biol. Chem, vol.281, pp.26081-26088, 2006.

J. Ueki, S. Morioka, T. Komari, and T. Kumashiro, Purification and Characterization of Phospholipase D (PLD) from Rice (Oryza sativa L.) and Cloning of cDNA for PLD from Rice and Maize (Zea mays L.), Plant Cell Physiol, vol.36, pp.903-914, 1995.

Y. Uesugi, K. Mori, J. Arima, M. Iwabuchi, and T. Hatanaka, Recognition of Phospholipids in Streptomyces Phospholipase D, J. Biol. Chem, vol.280, pp.26143-26151, 2005.

A. Ullah, P. O. De-giuseppe, M. T. Murakami, D. Trevisan-silva, A. C. Wille et al., , 2011.

, Crystallization and preliminary X-ray diffraction analysis of a class II phospholipase D from Loxosceles intermedia venom, Acta Crystallogr. F-Struct. Biol. Commun, vol.67, pp.234-236

T. Uwajima, H. Akita, K. Ito, A. Mihara, K. Aisaka et al., Formation and Purification of a New Enzyme, 1980.

. Agric, Biol. Chem, vol.44, pp.399-406

G. Van-meer, D. R. Voelker, and G. W. Feigenson, Membrane lipids: where they are and how they behave, Nat. Rev. Mol. Cell Biol, vol.9, pp.112-124, 2008.

M. Waite, The PLD superfamily: insights into catalysis, Biochim. Biophys. Acta Mol, 1999.

, Cell Biol. Lipids, vol.1439, pp.187-197

M. Waksman, Y. Eli, M. Liscovitch, and J. E. Gerst, Identification and Characterization of a Gene Encoding Phospholipase D Activity in Yeast, J. Biol. Chem, vol.271, pp.2361-2364, 1996.

M. Waksman, X. Tang, Y. Eli, J. E. Gerst, and M. Liscovitch, Identification of a Novel Ca 2+-dependent, Phosphatidylethanolamine-hydrolyzing Phospholipase D in Yeast Bearing a Disruption in PLD1, J. Biol. Chem, vol.272, pp.36-39, 1997.

C. Wang, C. A. Zien, M. Afitlhile, R. Welti, D. F. Hildebrand et al., , 2000.

, Involvement of Phospholipase D in Wound-Induced Accumulation of Jasmonic Acid in Arabidopsis, Plant Cell, vol.12, pp.2237-2246

X. Wang, J. H. Dyer, and L. Zheng, Purification And Immunological Analysis Of Phospholipase D from Castor Bean Endosperm, Arch. Biochem. Biophys, vol.302, pp.486-494, 1993.

X. Wang, L. Xu, and L. Zheng, Cloning and Expression of Phosphatidylcholinehydrolyzing Phospholipase D from Ricinus communis L, J. Biol. Chem, vol.269, pp.20312-20317, 1994.

T. Watanabe, H. Sato, Y. Sagane, Y. Nakazawa, and K. Takano, Primary structure of phospholipase D purified from cabbage leaves, Jpn. J. Electroph, vol.43, pp.159-164, 1999.

K. Weatherby, C. , and D. , Chromera velia, Advances in Applied Microbiology, pp.119-144, 2013.

B. D. Whitaker, D. L. Smith, and K. C. Green, Cloning, characterization and functional expression of a phospholipase D alpha cDNA from tomato fruit, Physiol. Plant, vol.112, pp.87-94, 2001.

R. L. Wilensky, Y. Shi, E. R. Iii, D. Hamamdzic, M. E. Burgert et al., Inhibition of lipoprotein-associated phospholipase A2 reduces complex coronary atherosclerotic plaque development, Nat. Med, vol.14, pp.1059-1066, 2008.

G. Wolf, Adipose-specific phospholipase as regulator of adiposity, Nutr. Rev, vol.67, p.551, 2009.

Z. Xie, W. Ho, and J. H. Exton, Association of N-and C-terminal Domains of, 1998.

, Phospholipase D Is Required for Catalytic Activity, J. Biol. Chem, vol.273, pp.34679-34682

Y. Xu, L. F. Seet, B. Hanson, H. , and W. , The Phox homology (PX) domain, a new player in phosphoinositide signalling, Biochem J, vol.360, pp.513-530, 2001.

D. Yang, L. , and W. , Methanol-Promoted Lipid Remodelling during Cooling Sustains Cryopreservation Survival of Chlamydomonas reinhardtii, PLoS One, vol.11, 2016.

H. Yang and M. F. Roberts, Phosphohydrolase and transphosphatidylation reactions of two Streptomyces phospholipase D enzymes: Covalent versus noncovalent catalysis, Protein Sci, vol.12, pp.2087-2098, 2003.

S. F. Yang, S. Freer, and A. A. Benson, Transphosphatidylation by phospholipase D, 1967.

, Biol. Chem, vol.242, pp.477-484

C. Zambonelli, M. Casali, and M. F. Roberts, Mutagenesis of Putative Catalytic and Regulatory Residues of Streptomyces chromofuscus Phospholipase D Differentially Modifies Phosphatase and Phosphodiesterase Activities, J. Biol. Chem, vol.278, pp.52282-52289, 2003.

J. Zhang, T. D. Chung, and K. R. Oldenburg, A Simple Statistical Parameter For Use In Evaluation And Validation Of High Throughput Screening Assays, J. Biomol. Screen, vol.4, pp.67-73, 1999.

W. Zhang, C. Qin, J. Zhao, W. , and X. , Phospholipase D 1-derived phosphatidic acid interacts with ABI1 phosphatase 2C and regulates abscisic acid signaling, Proc. Natl. Acad, 2004.

. U. Sci, , vol.101, pp.9508-9513

Y. Zhang, H. Zhu, Q. Zhang, M. Li, M. Yan et al.,

X. Wang, Phospholipase D 1 and Phosphatidic Acid Regulate NADPH Oxidase Activity and Production of Reactive Oxygen Species in ABA-Mediated Stomatal Closure in Arabidopsis, Plant Cell, vol.21, pp.2357-2377, 2009.

J. Zhao, W. , and X. , Arabidopsis Phospholipase D?1 Interacts with the, 2004.

, Heterotrimeric G-protein ?-Subunit through a Motif Analogous to the DRY Motif in G-proteincoupled Receptors, J. Biol. Chem, vol.279, pp.1794-1800

Y. Zhao, J. Du, G. Zhao, J. , and L. , , 2013.

L. Zheng, R. Krishnamoorthi, M. Zolkiewski, W. , and X. , Distinct Ca 2+ Binding Properties of Novel C2 Domains of Plant Phospholipase D? and ?, J. Biol. Chem, vol.275, 2000.

L. Zheng, J. Shan, R. Krishnamoorthi, W. , and X. , Activation of Plant Phospholipase D? by Phosphatidylinositol 4,5-Bisphosphate: Characterization of Binding Site and Mode of Action, Biochemistry, vol.41, pp.4546-4553, 2002.

M. Zhou and N. Voloshina, Using these sequences, we implemented following criteria i, ii, and iii to screen all the remaining plant alpha-type PLD (Table S1, (f) then the second HKD motif HXKX4D, (g) finally a consensus sequence PX2(L/I)T(T/S). (iii) The sequences should have been correctly spliced. Consequently, twenty-five sequences have been manually corrected because some introns were identified and not correctly in silico spliced. Typically, for Aegilops sharonensis and A. speltoides, as for Triticum durum and T. monoccocum, Cannabis sativa, Dianthus caryophyllus, Oryza punctata and Pinus taeda the same introns have been manually spliced both in the N-terminus region and downstream of the second HKD motif. For Aquilegia coerulea, Citrullus lanatus and Ipomoea trifida, an intron has been manually spliced at the N-terminus extremity. Fragments of sequences have been assembled to build the Arabis alpina, Digitalis purpurea, Dioscorea villosa, Hevea brasiliensis, 25 mM Tris, 200 mM glycine, and 20% (v/v) ethanol, using a Trans-Blot apparatus (Bio-Rad)anti-rabbit IgG (Sigma) (diluted 1: 10,000 with TBS-T) for 1 h followed by four washes, vol.253, pp.169-174, 1997.

C. P. Ponting and I. D. Kerr, A novel family of phospholipase D homologues that includes phospholipid synthases and putative endonucleases: identification of duplicated repeats and potential active site residues, Protein Sci. Publ. Protein Soc, vol.5, pp.914-922, 1996.

P. E. Selvy, R. R. Lavieri, C. W. Lindsley, and H. A. Brown, Phospholipase D: enzymology, functionality, and chemical modulation, Chem. Rev, vol.111, pp.6064-6119, 2011.
DOI : 10.1021/cr200296t

URL : http://europepmc.org/articles/pmc3233269?pdf=render

D. J. Hanahan and I. L. Chaikoff, A new phospholipide-splitting enzyme specific for the ester linkage between the nitrogenous base and the phosphoric acid grouping, J. Biol. Chem, vol.169, pp.699-705, 1947.

R. K. Nelson and M. A. Frohman, Physiological and pathophysiological roles for phospholipase D, J. Lipid Res, vol.56, pp.2229-2237, 2015.

R. C. Bruntz, C. W. Lindsley, and H. A. Brown, Phospholipase D signaling pathways and phosphatidic acid as therapeutic targets in cancer, Pharmacol. Rev, vol.66, pp.1033-1079, 2014.

E. Roth and M. A. Frohman, Proliferative and metastatic roles for Phospholipase D in mouse models of cancer, Adv. Biol. Regul, vol.67, pp.134-140, 2018.

Y. Sun, C. , and J. , ) mTOR signaling: PLD takes center stage, Cell Cycle, vol.7, pp.3118-3141, 2008.

Y. Sun, Y. Fang, M. S. Yoon, C. Zhang, M. Roccio et al., Phospholipase D1 is an effector of Rheb in the mTOR pathway, Proc Natl Acad Sci U A, vol.105, pp.8286-91, 2008.

K. Stieglitz, Structural Insights for Drugs Developed for Phospholipase D Enzymes, Curr. Drug Discov. Technol, 2017.

S. A. Rudge and J. Engebrecht, Regulation and function of PLDs in yeast, Biochim. Biophys. Acta, vol.1439, pp.167-174, 1999.

I. Leiros, F. Secundo, C. Zambonelli, S. Servi, and E. Hough, The first crystal structure of a phospholipase D, Struct. Lond. Engl, vol.8, pp.655-667, 1993.

S. Imamura and Y. Horiuti, Purification of Streptomyces chromofuscus phospholipase D by hydrophobic affinity chromatography on palmitoyl cellulose, J. Biochem. (Tokyo), vol.85, pp.79-95, 1979.

G. S. Magalhães, M. C. Caporrino, M. S. Della-casa, L. F. Kimura, J. P. Prezotto-neto et al., Cloning, expression and characterization of a phospholipase D from Loxosceles gaucho venom gland, Biochimie, vol.95, pp.1773-1783, 2013.

A. Marchler-bauer, Y. Bo, L. Han, J. He, C. J. Lanczycki et al., CDD/SPARCLE: functional classification of proteins via subfamily domain architectures, Nucleic Acids Res, vol.45, pp.200-203, 2017.
DOI : 10.1093/nar/gkw1129

URL : https://academic.oup.com/nar/article-pdf/45/D1/D200/8846941/gkw1129.pdf

J. A. Stuckey and J. E. Dixon, Crystal structure of a phospholipase D family member, Nat. Struct. Biol, vol.6, pp.278-284, 1999.

M. Li, Y. Hong, W. , and X. , Phospholipase D-and phosphatidic acid-mediated signaling in plants, Biochim. Biophys. Acta, vol.1791, pp.927-935, 2009.

Q. Liu, C. Zhang, Y. Yang, and X. Hu, Genome-wide and molecular evolution analyses of the phospholipase D gene family in Poplar and Grape, BMC Plant Biol, vol.10, p.117, 2010.

C. Qin, W. , and X. , Characterization of a Calcium-Independent and Phosphatidylcholine-Selective PLD?1 with Distinct Regulatory Domains, Plant Physiol, vol.128, pp.1057-1068, 2002.

W. Qin, K. Pappan, W. , and X. , Cloning of PLDgamma and regulation of plant PLDgamma,-beta, and-alpha by polyphosphoinositides and calcium, J. Biol. Chem, vol.272, pp.28267-28273, 1997.

K. Pappan, W. , and X. , Plant phospholipase Dalpha is an acidic phospholipase active at near-physiological Ca(2+) concentrations, Arch. Biochem. Biophys, vol.368, pp.347-353, 1999.
DOI : 10.1006/abbi.1999.1325

R. Rahier, A. Noiriel, A. , and A. , Functional Characterization of the NTerminal C2 Domain from Arabidopsis thaliana Phospholipase D? and D?, BioMed Res. Int, p.2721719, 2016.

K. Tiwari, P. , and G. , Cloning, expression and functional characterization of the C2 domain from tomato phospholipase D?, Plant Physiol. Biochem. PPB, vol.49, pp.18-32, 2011.

A. Abousalham, M. Riviere, M. Teissere, and R. Verger, Improved purification and biochemical characterization of phospholipase D from cabbage, Biochim Biophys Acta, vol.1158, pp.1-7, 1993.

X. Wang, J. H. Dyer, and L. Zheng, Purification and immunological analysis of phospholipase D from castor bean endosperm, Arch. Biochem. Biophys, vol.306, pp.486-494, 1993.

J. Ueki, S. Morioka, T. Komari, and T. Kumashiro, Purification and characterization of phospholipase D (PLD) from rice (Oryza sativa L.) and cloning of cDNA for PLD from rice and maize (Zea mays L.), Plant Cell Physiol, vol.36, pp.903-914, 1995.

A. Abousalham, M. Teissere, A. M. Gardies, R. Verger, and G. Noat, Phospholipase D from soybean (Glycine max L.) suspension-cultured cells: purification, structural and enzymatic properties, Plant Cell Physiol, vol.36, pp.989-96, 1995.

H. El-maarouf, F. Carriere, M. Riviere, A. , and A. , Functional expression in insect cells, one-step purification and characterization of a recombinant phospholipase D from cowpea (Vigna unguiculata L. Walp), Protein Eng, vol.13, pp.811-818, 2000.

Y. Ben-ali, F. Carriere, A. , and A. , High-level constitutive expression in Pichia pastoris and one-step purification of phospholipase D from cowpea (Vigna unguiculata L. Walp), Protein Expr Purif, vol.51, pp.162-171, 2007.

I. Schäffner, K. Rücknagel, J. Mansfeld, and R. Ulbrich-hofmann, Genomic structure, cloning and expression of two phospholipase D isoenzymes from white cabbage, Eur. J. Lipid Sci. Technol, vol.104, pp.79-87, 2002.

R. Rahier, A. Noiriel, A. , and A. , Development of a Direct and Continuous Phospholipase D Assay Based on the Chelation-Enhanced Fluorescence Property of 8Hydroxyquinoline, Anal Chem, vol.88, pp.666-74, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01340010

S. M. Hammond, Y. M. Altshuller, T. C. Sung, S. A. Rudge, K. Rose et al., Human ADP-ribosylation factor-activated phosphatidylcholine-specific phospholipase D defines a new and highly conserved gene family, J. Biol. Chem, vol.270, pp.29640-29643, 1995.

Z. Xie, W. T. Ho, and J. H. Exton, Association of N-and C-terminal domains of phospholipase D is required for catalytic activity, J. Biol. Chem, vol.273, pp.34679-34682, 1998.

T. C. Sung, R. L. Roper, Y. Zhang, S. A. Rudge, R. Temel et al., Mutagenesis of phospholipase D defines a superfamily including a trans-Golgi viral protein required for poxvirus pathogenicity, EMBO J, vol.16, pp.4519-4530, 1997.

A. E. Rudolph, J. A. Stuckey, Y. Zhao, H. R. Matthews, W. A. Patton et al., Expression, characterization, and mutagenesis of the Yersinia pestis murine toxin, a phospholipase D superfamily member, J. Biol. Chem, vol.274, pp.11824-11831, 1999.

J. Zhao, W. , and X. , Arabidopsis phospholipase Dalpha1 interacts with the heterotrimeric G-protein alpha-subunit through a motif analogous to the DRY motif in Gprotein-coupled receptors, J. Biol. Chem, vol.279, pp.1794-1800, 2004.

T. E. Gookin and S. M. Assmann, Significant reduction of BiFC non-specific assembly facilitates in planta assessment of heterotrimeric G-protein interactors, Plant J. Cell Mol. Biol, vol.80, pp.553-567, 2014.

T. C. Sung, Y. Zhang, A. J. Morris, and M. A. Frohman, Structural analysis of human phospholipase D1, J. Biol. Chem, vol.274, pp.3659-3666, 1999.

T. C. Sung, Y. M. Altshuller, A. J. Morris, and M. A. Frohman, Molecular analysis of mammalian phospholipase D2, J. Biol. Chem, vol.274, pp.494-502, 1999.

M. Y. Liu, S. Gutowski, and P. C. Sternweis, The C terminus of mammalian phospholipase D is required for catalytic activity, J. Biol. Chem, vol.276, pp.5556-5562, 2001.

A. Lerchner, J. Mansfeld, K. Kuppe, and R. Ulbrich-hofmann, Probing conserved amino acids in phospholipase D (Brassica oleracea var. capitata) for their importance in hydrolysis and transphosphatidylation activity, Protein Eng. Des. Sel. PEDS, vol.19, pp.443-452, 2006.

M. A. Frohman, The phospholipase D superfamily as therapeutic targets, Trends Pharmacol. Sci, vol.36, pp.137-144, 2015.

J. Gomez-cambronero, Phospholipase D in cell signaling: from a myriad of cell functions to cancer growth and metastasis, J. Biol. Chem, vol.289, pp.22557-22566, 2014.

M. M. Bradford, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal Biochem, vol.72, pp.248-54, 1976.

Y. Arhab, R. Rahier, A. Noiriel, M. V. Cherrier, and A. Abousalham, Expression and Purification of Recombinant Vigna unguiculata Phospholipase D in Pichia pastoris for Structural Studies, Methods Mol. Biol, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01862139

U. K. Laemmli, Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature, vol.227, pp.680-685, 1970.

J. H. Dyer, L. Zheng, and W. X. , Cloning and nucleotide sequence of a cDNA encoding phospholipase D from Arabidopsis (Accession No. U36381) (PGR 95-096), Plant Physiol, 1995.

D. Dong, M. Lei, P. Hua, Y. Pan, S. Mu et al., The Genomes of Two Bat Species with Long Constant Frequency Echolocation Calls, 2017.

, Mol. Biol. Evol, vol.34, pp.20-34

G. Blanc, I. Agarkova, J. Grimwood, A. Kuo, A. Brueggeman et al., The genome of the polar eukaryotic microalga Coccomyxa subellipsoidea reveals traits of cold adaptation, Genome Biol, vol.13, p.39, 2012.

S. Abad, K. Kitz, A. Hörmann, U. Schreiner, F. S. Hartner et al., Realtime PCR-based determination of gene copy numbers in Pichia pastoris, Biotechnol. J, vol.5, pp.413-420, 2010.

K. J. Livak and T. D. Schmittgen, Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method, Methods, vol.25, pp.402-408, 2001.

M. V. Beligni, C. Bagnato, M. B. Prados, H. Bondino, A. M. Laxalt et al., The diversity of algal phospholipase D homologs revealed by biocomputational analysis, J. Phycol, vol.51, pp.943-962, 2015.

A. J. Morris, J. Engebrecht, and M. A. Frohman, Structure and regulation of phospholipase D, Trends Pharmacol. Sci, vol.17, pp.182-185, 1996.

M. A. Frohman, T. C. Sung, M. , and A. J. , Mammalian phospholipase D structure and regulation, Biochim. Biophys. Acta, vol.1439, pp.175-186, 1999.

X. Wang, L. Xu, and L. Zheng, Cloning and expression of phosphatidylcholinehydrolyzing phospholipase D from Ricinus communis L, J. Biol. Chem, vol.269, pp.20312-20317, 1994.

T. N. Petersen, S. Brunak, G. Von-heijne, and H. Nielsen, SignalP 4.0: discriminating signal peptides from transmembrane regions, Nat. Methods, vol.8, pp.785-786, 2011.

H. Sato, T. Watanabe, Y. Sagane, Y. Nakazawa, and K. Takano, Purification and Characterization of Phospholipase D from Cabbage Leaves, Food Sci. Technol. Res, vol.6, pp.29-33, 2000.

I. Simões, E. Mueller, A. Otto, D. Bur, A. Y. Cheung et al., Molecular analysis of the interaction between cardosin A and phospholipase D(alpha). Identification of RGD/KGE sequences as binding motifs for C2 domains, FEBS J, vol.272, pp.5786-5798, 2005.

M. A. Gleeson, C. E. White, D. P. Meininger, and E. A. Komives, Generation of protease-deficient strains and their use in heterologous protein expression, Methods Mol. Biol, vol.103, pp.81-94, 1998.

C. Ogino, H. Daido, Y. Ohmura, N. Takada, Y. Itou et al., Remarkable enhancement in PLD activity from Streptoverticillium cinnamoneum by substituting serine residue into the GG/GS motif, Biochim. Biophys. Acta, vol.1774, pp.671-678, 2007.

Y. Uesugi, K. Mori, J. Arima, M. Iwabuchi, and T. Hatanaka, Recognition of phospholipids in Streptomyces phospholipase D, J. Biol. Chem, vol.280, pp.26143-26151, 2005.

E. B. Gottlin, A. E. Rudolph, Y. Zhao, H. R. Matthews, and J. E. Dixon, Catalytic mechanism of the phospholipase D superfamily proceeds via a covalent phosphohistidine intermediate, Proc. Natl. Acad. Sci. U. S. A, vol.95, pp.9202-9207, 1998.

S. P. Devaiah, M. R. Roth, E. Baughman, M. Li, P. Tamura et al., Quantitative profiling of polar glycerolipid species from organs of wildtype Arabidopsis and a phospholipase Dalpha1 knockout mutant, Phytochemistry, vol.67, pp.1907-1924, 2006.

Y. Hong, S. Zheng, W. , and X. , Dual functions of phospholipase Dalpha1 in plant response to drought, Mol. Plant, vol.1, pp.262-269, 2008.

S. Stumpe, S. König, and R. Ulbrich-hofmann, Insights into the structure of plant ?type phospholipase D: Structure of plant phospholipase D, FEBS J, vol.274, pp.2630-2640, 2007.

I. Leiros, S. Mcsweeney, and E. Hough, The reaction mechanism of phospholipase D from Streptomyces sp. strain PMF. Snapshots along the reaction pathway reveal a pentacoordinate reaction intermediate and an unexpected final product, J. Mol. Biol, vol.339, pp.805-820, 2004.

Y. Uesugi and T. Hatanaka, Phospholipase D mechanism using Streptomyces PLD, Biochim. Biophys. Acta, vol.1791, pp.962-969, 2009.

O. Perisic, S. Fong, D. E. Lynch, M. Bycroft, W. et al., Crystal structure of a calcium-phospholipid binding domain from cytosolic phospholipase A2, J. Biol. Chem, vol.273, pp.1596-1604, 1998.

J. Zheng, R. H. Chen, S. Corblan-garcia, S. M. Cahill, D. Bar-sagi et al., The solution structure of the pleckstrin homology domain of human SOS1. A possible structural role for the sequential association of diffuse B cell lymphoma and pleckstrin homology domains, J. Biol. Chem, vol.272, pp.30340-30344, 1997.

R. V. Stahelin, D. Karathanassis, D. Murray, R. L. Williams, and W. Cho, Structural and membrane binding analysis of the Phox homology domain of Bem1p: basis of phosphatidylinositol 4-phosphate specificity, J. Biol. Chem, vol.282, pp.25737-25747, 2007.

G. Spedale, N. Mischerikow, A. J. Heck, H. T. Timmers, and W. W. Pijnappel, Identification of Pep4p as the protease responsible for formation of the SAGArelated SLIK protein complex, J. Biol. Chem, vol.285, pp.22793-22799, 2010.

R. K. Bretthauer and F. J. Castellino, Glycosylation of Pichia pastoris-derived proteins, Biotechnol. Appl. Biochem, vol.30, pp.193-200, 1999.

S. K. Lenka, N. Carbonaro, R. Park, S. M. Miller, I. Thorpe et al., Current advances in molecular, biochemical, and computational modeling analysis of microalgal triacylglycerol biosynthesis, Biotechnol. Adv, vol.34, pp.1046-1063, 2016.

A. Suzuki, K. Kakuno, Y. Iwasaki, T. Yamane, Y. et al., Crystallization and preliminary X-ray diffraction studies of phospholipase D from Streptomyces antibioticus, Acta Crystallogr. D Biol. Crystallogr, vol.55, pp.317-319, 1999.

D. Novák, P. Vadovi?, M. Ove?ka, O. ?amajová, G. Komis et al., Gene Expression Pattern and Protein Localization of Arabidopsis Phospholipase D Alpha 1 Revealed by Advanced Light-Sheet and Super-Resolution Microscopy, Front. Plant Sci, vol.9, p.371, 2018.

F. Voigt, M. Reuter, A. Kasaruho, E. C. Schulz, R. S. Pillai et al., Crystal structure of the primary piRNA biogenesis factor Zucchini reveals similarity to the bacterial PLD endonuclease Nuc, RNA N. Y. N, vol.18, pp.2128-2134, 2012.

M. Waite, The PLD superfamily: insights into catalysis, Biochim. Biophys. Acta, vol.1439, pp.187-197, 1999.

|. .. ,

|. .. ,

|. .. ,

|. .. ,

M. A. Atpld?, , p.20

|. .. ,

|. .. ,

|. .. ,

|. .. ,

|. .. ,

|. .. ,

|. .. ,

|. .. , , vol.294

. Atpld?,

|. .. ,

|. .. ,

|. .. ,

|. .. , , p.381

, AtPLD? RNPIQGGSKIHVKLQYFHVEEDRNWNMGIKSAKFPGVPYTFFSQRQGCKVSLYQDAHIPDNFVPRIPLAGGKNY-EPQRCWEDIFDTISNAKHLIYITGW, vol.231

|. .. ,

|. .. ,

|. .. ,

|. .. , , p.458

|. .. ,

|. .. ,

|. .. ,

|. .. , , vol.|, pp.1-542

S. Atpld?, , p.398

|. .. ,

|. .. ,

|. .. ,

|. .. ,

|. .. ,

|. .. ,

|. .. ,

|. .. ,

|. .. ,

|. .. ,

|. .. ,

|. .. , , pp.WSAG-IKYHEESIHAAYVHVIENSRHYIYIENQFFISCA

, AtPLD? NVQLFRSI-DGGAAAGFPESPEAAAEAGLVSGKDNITDRSIQDAYIHAIRRAKDFIYVENQYFLGSSFAWAADGITPEDINALHLIPKELSLKIVSKIEK, vol.561

|. .. ,

|. .. ,

|. .. ,

|. .. , , p.891

-. Atpld?,

Q. Hspld2, , p.751

|. .. ,

|. .. ,

|. .. ,

|. .. ,

. Atpld?,

|. .. ,

|. .. ,

|. .. ,

|. .. , , pp.1-1074

, Human mutation of CGI-58 is the cause of ChanarinDorfman syndrome, an orphan disease characterized by a systemic accumulation of TAG which engenders tissue disorders. The CGI-58 protein has also been shown to participate in neutral lipid metabolism in plants and, in this case, a mutation again provokes TAG accumulation. Although its roles as an ATGL coactivator and in lipid metabolism are quite clear, the catalytic activity of CGI-58 is still in question. The acyltransferase activities of CGI-58 have been speculated about, reported or even dismissed and experimental evidence that CGI-58 expressed in E. coli possesses an unambiguous catalytic activity is still lacking. To address this problem, we developed a new set of plasmids and site-directed mutants to elucidate the in vivo effects of CGI-58 expression on lipid metabolism in E. coli. By analyzing the lipid composition in selected E. coli strains expressing CGI-58 proteins, and by reinvestigating enzymatic tests with adequate controls, we show here that recombinant plant CGI58 has none of the proposed activities previously described. Recombinant plant and mouse CGI-58 both lack acyltransferase activity towards either lysophosphatidylglycerol or lysophosphatidic acid to form phosphatidylglycerol or phosphatidic acid and recombinant plant CGI-58 does not catalyze TAG or phospholipid hydrolysis. However, expression of recombinant plant CGI-58, but not mouse CGI-58, led to a decrease in phosphatidylglycerol in all strains of E. coli tested, and a mutation of the putative catalytic residues restored a wild-type phenotype. The potential activities of plant CGI-58 are subsequently discussed. Introduction The ?/? hydrolase-type protein Comparative Gene Identification-58 (CGI-58), also called ABDH5, is found in various organisms, LGSKEGMIPLEVWT 933 Reassessing the Potential Activities of Plant CGI-58 Protein Abdallah Khatib, Yani Arhab, Assia Bentebibel, Abdelkarim Abousalham, Alexandre Noiriel* Institut de Chimie et de Biochimie Moléculaires et Supramoléculaires UMR 5246 CNRS, Organisation et Dynamique des Membranes Biologiques, p.2, 20161-01-08.

A. Open-access-citation:-khatib, Y. Arhab, A. Bentebibel, A. Abousalham, and A. Noiriel, Reassessing the Potential Activities of Plant CGI-58 Protein, PLoS ONE, vol.11, issue.1, p.145806, 2016.

, Editor: Monika Oberer, 2015.

. Khatib, This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Data Availability Statement: All relevant data are within the paper and its Supporting Information files. Funding: AK was supported by grant #2012-11 from the Lebanese Association for Scientific Research, www.laser-lb.org. The funders had no role in study design, data collection and analysis, 2016.

, Competing Interests: The authors have declared that no competing interests exist. Abbreviations: ABTS, 2,2'-azino-bis(3ethylbenzothiazoline-6-sulphonic acid)

, Adipose triglyceride lipase; CGI-58, Comparative Gene Identification-58, ATGL

, In these two clades of evolution, CGI-58 mutations provoke various neutral lipid disorders characterized, predominantly, by TAG accumulation in non-fat storing cells, such as the mesophyll cells of plants and the non-adipose tissues of mammals (skin, DOPC, vol.1, issue.2

, ICTI is a yeast protein identified by functional screening as being involved in tolerance to copper toxicity [6] and shown, by microarray analysis, CGI-58 was described as being closely related to ICT1

, In plants, a mutation in the gene for CGI-58 leads to an accumulation of TAG, with levels more than 10 times higher than in wild-type Arabidopsis leaves, a non-fat storing organ, vol.4

, In addition to its role as a lipid turnover regulator, it has been shown that CGI-58 also has an effect on polyamines, which have been described to be important molecules in growth and stress responses. In plants, CGI-58 regulates polyamine metabolism [10] by interacting with spermidine synthase 1 (SPDS1). Structurally, plant CGI-58 possesses at least two characteristic motifs. The first is a GXSXG motif found in lipases, CGI-58 co-regulates lipid homeostasis, too, by interacting with Peroxisomal ABC Transporter (PXA1)

, In mammals, the mutation of CGI-58 is responsible for the Chanarin-Dorfman syndrome, a neutral lipid storage disease with ichthyosis (NLSDI), characterized by TAG accumulation within the epidermis

. Adipose-triglyceride-lipase, ATGL) activating, by a factor of 20, the lipolytic activity of ATGL

, In addition, the mammalian CGI-58 protein possesses an acyltransferase motif, HX 4 D, and harbors a mutated GXNXG lipase motif, whereby a suspected inactive asparagine replaces

, The contaminant was identified as plsC, the enzyme responsible for phosphatidic acid (PA) synthesis in E. coli through the transfer of the acyl group from acylCoA to LPA. It would be easy to imagine that the LPAAT activity, previously described in recombinant plant CGI-58 purified from E. coli, could originate from the same contaminant identified during the characterization of recombinant mouse CGI-58 purified from E. coli, raising reasonable doubts regarding the potential activity of recombinant plant CGI-58. More surprising results have emerged from a recent paper describing lysophosphatidylglycerol acylCoA acyltransferase (LPGAT) activity for human CGI-58, expressed in mammalian cells [19], questioning the putative activities and involvement of plant and mammalian CGI-58 in phospholipid synthesis. Although the role of CGI-58 as a regulator of lipid metabolism is quite clear, its catalytic activity is still elusive and questionable. In order to reassess the putative activities of plant CGI58, we tested the phenotype of several E. coli strains defective in lipid metabolism. We used new in vivo approaches to demonstrate that recombinant plant CGI-58 proteins are not able, 20162-01-08.

, DOPG, vol.1, issue.2

, DPPC, vol.1, issue.2

, DPPG, vol.1, issue.2

, Increased Copper Tolerance 1; IPTG, Isopropyl ?-D-1thiogalactopyranoside, ICT1

, Lysophosphatidic acid acylCoA acyltransferase; LPGAT, Lysophosphatidylglycerol acylCoA acyltransferase

L. , L. , ;. Lpg, ;. Lysophosphatidylglycerol, ;. Pa et al.,

P. G. and P. Synthase, PLA 2 , Phospholipase A 2 ; PLD, Phospholipase D; plsC, 1acyl-sn-glycerol-3-phosphate acyltransferase

T. , T. Rna-polymerase, and ;. Tag,

, Here, we report that the expression of plant CGI-58 in another E. coli strain deficient in phosphatidylglycerol (PG) synthesis could not restore the synthesis of PG in this genetic background, compared to an authentic PG synthase as prokaryotic pgsA. Also, more surprisingly, plant CGI-58 expression leads to a decrease in PG but not in phosphatidylethanolamine (PE) content, suggesting a role for CGI-58 in PG catabolism. Interestingly, a decrease in PG was also observed in all the tested E. coli strains expressing plant CGI-58 and we found that this effect was potentially due to the catalytic activity of CGI-58, via a mutation of the seryl residue within the GXSXG lipase motif at position 199. Using the decrease in PG as a phenotype, we tested the involvement of several residues, and we were able to show that only the histidyl, and not the aspartyl, residue belonging to the HX 4 D acyltransferase motif was implicated in the decrease of PG content. Materials and Methods Materials The lipids dioleoylphosphatidylcholine (DOPC), 1-palmitoyl, 2-oleoylphosphatidylglycerol (POPG), 1-palmitoyl, 2-oleoylphosphatidylethanolamine and 1-oleoyllysoPG were purchased from Avanti Polar, TLL, Thermomyces lanuginosus lipase. demonstrated has a toxic effect alleviated by moderate LPAAT activity. Likewise, these recombinant plant proteins did not show any detectable in vitro LPAAT activity, using purified protein obtained with an optimized protocol under native conditions, vol.18

, All strains were grown at 37°C except MN7 and SM2-1, which were kept at 30°C. When necessary, LB plates contained 250 ?M CuSO 4 , 1 mM ABTS and 1 ?M IPTG. Antibiotic concentrations were 0.1 ?g/?L for kanamycin, 0.02 ?g/?L for chloramphenicol, 0.05 ?g/?L for streptomycin, 0.1 ?g/ ?L for ampicillin and 0.01 ?g/?L for tetracycline. Pre-coated TLC-sheets ALUGRAM 1 Xtra SIL G/UV 254 (Macherey Nagel) were used for lipids analysis in E. coli, BL21(DE3) strain and plasmids pACYC184 and pACYC177 were obtained from New England Biolabs. Plasmid pAR1219 was from Sigma Aldrich Chimie. Mus musculus CGI-58 (MmCGI-58) was a gift of Dr Zechner (University of Graz, Austria), and pET28a-MmCGI-58-12His (referred to as MmCGI-58) was a gift from Prof. Brasaemle (Rutgers

, Basically, LPAAT activity was measured, in the presence of 50 ?M of lysoPA and 10 ?M oleoylCoA (13 000 dpm / test) in a 50 mM potassium phosphate buffer, at pH 7.0 for 10 minutes, and in a final volume of 100 ?L. Phospholipase activity was quantified for 40 minutes, in the presence of 100 ?M of dipalmitoylPC (20 000 dpm / test), in a 50 mM Tris HCl buffer, at pH 7.5, with 2 mM DTT and 1 ?g of Reassessing the Potential Activities of Plant, Enzymatic Activities LPAAT, phospholipase and triglyceride lipase activities were measured under the same conditions as described in [12], with some modifications, 2016.

N. Hcl, with the appropriate unlabeled substrates and expected unlabeled products as carriers using chloroform:methanol (2:1, v/v) and then separated by TLC on Silica Gel G & GF Preparative Uniplates with unlabeled, but identical products used as the reference

, Next, 7 ?g of purified AtCGI-58 Trc or 10 ?g of proteins from the cell extract were added and the reaction mixture was incubated, at 30°C, for 2 h for the purified fraction or 30 min for the cell extract. Reactions were terminated by adding 100 ?L of 0.1 N HCl. Lipids were extracted with chloroform:methanol (2:1, v/v) and separated, by TLC, using a chloroform:methanol:acetic acid (65:25:10, v/v/v) solution. The area containing free fatty acids was scraped and then quantified by scintillation counting. Cloning cDNAs coding for MmCGI-58 and for full-length (AtCGI-58 FL) or truncated AtCGI-58 (AtCGI-58 Trc) were amplified by PCR with primers 01 and 02, 03 and 04, 03 and 05, respectively. The primers are listed in Table 1. All constructs harbor an NdeI site and a sequence coding for a 6-Histidine tag at the 5' end, together with a NotI restriction site at the 3' end. PCR products were digested with NotI and NdeI, purified with the QIAquick PCR Purification Kit (QIagen, Courtaboeuf, France), and then ligated into the pET28b plasmid, dipalmitoylPC (DPPC) using phospholipase D (PLD) in the presence of glycerol. PC substrate, composed of 35.5 nmol of unlabeled DPPC and 4.5 nmol of [ 14 C]-DPPC, was sonicated for 10 min to form micelles in 150 ?L of buffer containing 0.83 mM SDS, 0.83 mM Triton X100, 20 mM CaCl 2 , 500 mM glycerol and 50 mM Tris-HCl, pH of chloroform:methanol, vol.65, 20164.

, allowing expression and purification of recombinant proteins in E. coli. A) Maps of vectors pYAT7 and pAKT7 containing T7 RNA polymerase cloned into plasmids harboring the p15A origin of replication. Left panel: pYAT7 plasmid with T7RP cloned into the BamHI site of the pACYC184 backbone, thus conferring resistance to chloramphenicol. Right panel: pAKT7 plasmid with T7RP cloned into the HindIII-SalI sites of the pACYC177 backbone, thus conferring resistance to ampicillin. Active and inactive antibiotic resistance genes are shown in green and in grey, respectively. Remarkable restriction sites Reassessing the Potential Activities of Plant, active LPAAT, such as plsC, can be detected in this expression system and that strains transformed with different CGI-58s behave as negative controls. CGI-58 was previously identified by its homology with yeast ICT1, 2016.

, Left panel: coloration due to ABTS oxidation in different E. coli genetic backgrounds necessitates both the presence of CotA and T7RP. MG1655 or BL21(DE3) strains were either transformed with void pET28b or with pET28b-CotA. Central and right panels: functional expression of CotA in MG1655 strain transformed with either pYAT7, pAKT7 plasmids or native pACYC184 or pACYC177 plasmids. LB plates contain 250 ?M CuSO 4 , 1 mM ABTS and 1 ?M IPTG. All pictures were taken 3 days after streaking. C) Functional expression of CotA cloned into pYAT7 and pAKT7 plasmids with analysis by SDS-PAGE of total proteins extracted from the recombinant strain. Extracts were analyzed before or after a 3 h induction with IPTG. Lane 1: strain BL21(DE3) transformed with pET28b-CotA. Lane 2 and 3: strain MG1655 transformed with pYAT7 and either void plasmid (lane 2) or pET28b-CotA (lane 3). Lane 4: strain MG1655 transformed with pAKT7 and pET28b-CotA. The expected size of CotA (58.5 kDa) is indicated. D) Analysis by SDS-PAGE of purified CGI-58, from plant or mouse, expressed either in BL21(DE3) strain or SM2-1 and transformed with pYAT7. 5 ?g of recombinant MmCGI-58 and 2 ?g of recombinant plant CGI-58 were loaded onto each lane. Lane 1: MmCGI-58 (42.0 kDa), Lane 2: truncated version of AtCGI-58 (44.5 kDa), Lane 3: full-length version of AtCGI-58 (47.8 kDa). The authenticity of purified recombinant MmCGI-58 was verified by mass spectrometry after tryptic digestion, and for recombinant plant CGI-58 a Western-blot with monoclonal Anti-polyHistidine antibody was performed, PA synthesis and copper sensitivity. are shown. B) Functional use of pYAT7 and pAKT7 plasmids for expressing the recombinant CotA protein in MG1655, a T7RP deficient E. coli strain, 201610-01-08.

, Our first attempts to measure the activity, as described previously [12], were unsuccessful. As detailed by Ghosh et al., recombinant plant CGI-58 was purified from inclusion bodies, under denaturing conditions with 6 M urea, and tested without any proper refolding step, but it is possible that the refolding was immediate when the protein was mixed in the reaction buffer. Consequently, we tried to measure LPAAT activity using recombinant plant CGI-58 purified under native conditions from BL21(DE3) [Fig 1D] and we were able to detect, by LC-MS, a weak PA synthesis over time. However, at the same time as we were performing this experiment, Since CGI-58 is described as being located in the cytosol [4] and plsC has been shown to be membrane-bound by the presence of a putative anchor in its N-terminal region, vol.36

, Phenotype of SM2-1 and SM105 strains, grown at 30 or 42°C in the presence or absence of 3 mM of copper sulfate after serial dilution. B) Serial dilutions of the SM2-1 strain containing the pYAT7 plasmid and transformed with CGI-58 constructs or controls: void pET28b vector, MmCG-58, AtCGI-58 Trc, plsC wt, or plsC*G39E. Liquid cultures were incubated for 4 hours with 100 ?M IPTG prior to dilution and plating. LB plates contained, in addition to antibiotics, 100 ?M IPTG. All pictures were taken 2 days after plating, Absence of lysphosphatidic acid acylCoA acyltransferase activity of plant CGI-58 protein shown by functional complementation. A), 201611-01-08.

, To test the hypothesis that PG could be a substrate for plant CGI-58, we synthesized labeled PG, from [ 14 C]-PC, using the phospholipase D-catalyzed transphosphatidylation reaction of [ 14 C]-PC and glycerol. However, under the conditions used, neither the incubation of crude extract from the BL21(DE3) strain expressing plant CGIfor CGI-58 showed that PG levels increased compared to the wild-type, whereas the amount of other major plant phospholipids (PC, PE, phosphatidylinositol and phosphatidylserine) was unchanged, by plant CGI-58 to form another undetected lipid or, alternatively, CGI-58 may have a regulatory role in phospholipid synthesis

, we designed primers to change these three residues by site-directed mutagenesis in plant CGI-58 and, hence, we created S199N, D384A and H379A versions of the truncated plant CGI-58. Mutated versions of plant CGI-58 were then expressed with the pYAT7 plasmids in MN7, SM2-1 and BL21(DE3) strains. Lipids were again extracted and separated by 2D-TLC

, demonstrating that S199 and H379 residues are involved in the decrease of PG seen in strains transformed with the wild-type construct. The amount of PG in mutant D384 is quite similar to that found in the corresponding wild-types, suggesting that this residue is not involved in the catalytic reaction. Consequently, we decided to quantify the amount of phospholipids, by LC/MS/MS, in SM2-1 transformants where we had previously observed the more dramatic effects, Mutations S199N and H379A led to a visual increase of the PG level in both strains

, Reassessing the Potential Activities of Plant CGI-58, Protein PLOS ONE, 201615-01-08.

, Alignment of plant CGI-58s. Sequences were retrieved from NCBI with the protein BLAST software, using AtCGI-58 as bait, from Mosses through to Eudicot proteins. Alignment was performed with BioEdit software and the shading threshold was set to 75% identity. Arabidopsis thaliana At4g24160 was retrieved from a sequenced RAFL19-16-I19 clone and the Physcomitrella patens sequence was reconstructed from a sequencing of ESTs BY990945

, Theobroma cacao XP_007017700.1, Nelumbo nucifera XP_010271460.1, Eucalyptus grandis XP_010061022.1, Musa acuminata subsp. malaccensis XP_009418733.1, Sesamum indicum XP_011083599.1, Solanum lycopersicum XP_004243145.1, Nicotiana sylvestris XP_009794253.1, Citrus sinensis XP_006473603.1, Ricinus communis XP_002510485.1, Phoenix dactylifera XP_008813831.1, Medicago truncatula XP_003603733.1, Glycine max XP_006577977.1, Fragaria vesca subsp. vesca XP_004291822.1, Malus domestica XP_008347352.1, Prunus persica XP_007222711.1, Picea glauca BT117776.1, Cucumis sativus XP_004152662.1, Amborella trichopoda XP_006854859.1, Beta vulgaris subsp. vulgaris XP_010670751.1, Zea mays ACF79200.1, Oryza sativa Japonica Group NP_001063697.2, Brachypodium distachyon XP_003578450, Accession numbers are as following: Camelina sativa XP_010439078.1, Brassica rapa XP_009137743.1, Populus trichocarpa XP_002307698, vol.2

C. Lefevre, F. Jobard, F. Caux, B. Bouadjar, and A. Karaduman, Mutations in CGI-58,the gene encoding a new protein of the esterase/lipase/thioesterase subfamily, in Chanarin-Dorfman syndrome, Am J Hum Genet, vol.69, p.11590543, 2001.

M. Xie and R. Roy, The Causative Gene in Chanarian Dorfman Syndrome Regulates Lipid Droplet Homeostasis in C. elegans, PLoS Genet, vol.11, 2015.

J. Serr, Y. Suh, and K. Lee, Cloning of comparative gene identification-58 gene in avian species and investigation of its developmental and nutritional regulation in chicken adipose tissue, J Anim Sci, vol.89, pp.3490-3500, 2011.

C. N. James, P. J. Horn, C. R. Case, S. K. Gidda, and D. Zhang, Disruption of the Arabidopsis CGI-58 homologue produces Chanarin-Dorfman-like lipid droplet accumulation in plants, Proc Natl Acad Sci U S A, vol.107, pp.17833-17838, 2010.

A. K. Ghosh, G. Ramakrishnan, and R. Rajasekharan, YLR099C (ICT1) encodes a soluble Acyl-CoAdependent lysophosphatidic acid acyltransferase responsible for enhanced phospholipid synthesis on organic solvent stress in Saccharomyces cerevisiae, J Biol Chem, vol.283, pp.9768-9775, 2008.

K. D. Entian, T. Schuster, J. H. Hegemann, D. Becher, and H. Feldmann, Functional analysis of 150 deletion mutants in Saccharomyces cerevisiae by a systematic approach, Mol Gen Genet, vol.262, p.10628851, 1999.

K. Matsui, T. Hirayama, K. Kuroda, K. Shirahige, and T. Ashikari, Screening for candidate genes involved in tolerance to organic solvents in yeast, Appl Microbiol Biotechnol, vol.71, p.16493551, 2006.

S. Park, S. K. Gidda, C. N. James, P. J. Horn, and N. Khuu, The alpha/beta hydrolase CGI-58 and peroxisomal transport protein PXA1 coregulate lipid homeostasis and signaling in Arabidopsis, Plant Cell, vol.25, p.23667126, 2013.

B. K. Zolman, I. D. Silva, and B. Bartel, The Arabidopsis pxa1 mutant is defective in an ATP-binding cassette transporter-like protein required for peroxisomal fatty acid beta-oxidation, Plant Physiol, vol.127, p.11706205, 2001.

S. Park, J. Keereetaweep, C. N. James, S. K. Gidda, and K. D. Chapman, CGI-58, a key regulator of lipid homeostasis and signaling in plants, also regulates polyamine metabolism, Plant Signal Behav, vol.9, p.24492485, 2014.

A. Bayer, X. Ma, and J. Stockigt, Acetyltransfer in natural product biosynthesis-functional cloning and molecular analysis of vinorine synthase, Bioorg Med Chem, vol.12, p.15110860, 2004.

A. K. Ghosh, N. Chauhan, S. Rajakumari, G. Daum, and R. Rajasekharan, At4g24160, a soluble acylcoenzyme A-dependent lysophosphatidic acid acyltransferase, Plant Physiol, vol.151, pp.869-881, 2009.

M. Schweiger, A. Lass, R. Zimmermann, T. O. Eichmann, and R. Zechner, Neutral lipid storage disease: genetic disorders caused by mutations in adipose triglyceride lipase/PNPLA2 or CGI-58/ABHD5, Am J Physiol Endocrinol Metab, vol.297, p.19401457, 2009.

T. Yamaguchi, N. Omatsu, S. Matsushita, and T. Osumi, CGI-58 interacts with perilipin and is localized to lipid droplets. Possible involvement of CGI-58 mislocalization in Chanarin-Dorfman syndrome, J Biol Chem, vol.279, p.15136565, 2004.

A. Lass, R. Zimmermann, G. Haemmerle, M. Riederer, and G. Schoiswohl, Adipose triglyceride lipase-mediated lipolysis of cellular fat stores is activated by CGI-58 and defective in Chanarin-Dorfman Syndrome, Cell Metab, vol.3, 2006.

K. A. Zierler, D. Jaeger, N. M. Pollak, S. Eder, and G. N. Rechberger, Functional cardiac lipolysis in mice critically depends on comparative gene identification-58, J Biol Chem, vol.288, pp.9892-9904, 2013.

G. Montero-moran, J. M. Caviglia, D. Mcmahon, A. Rothenberg, and V. Subramanian, CGI-58/ ABHD5 is a coenzyme A-dependent lysophosphatidic acid acyltransferase, J Lipid Res, vol.51, pp.709-719, 2010.

D. Mcmahon, A. Dinh, D. Kurz, D. Shah, and G. S. Han, Comparative gene identification 58/alpha/ beta hydrolase domain 5 lacks lysophosphatidic acid acyltransferase activity, J Lipid Res, vol.55, p.24879803, 2014.

J. Zhang, D. Xu, J. Nie, R. Han, and Y. Zhai, Comparative gene identification-58 (CGI-58) promotes autophagy as a putative lysophosphatidylglycerol acyltransferase, J Biol Chem, vol.289, pp.33044-33053, 2014.

M. Nishijima, C. E. Bulawa, and C. R. Raetz, Two interacting mutations causing temperature-sensitive phosphatidylglycerol synthesis in Escherichia coli membranes, J Bacteriol, vol.145, p.7007311, 1981.

J. Coleman, Characterization of Escherichia coli cells deficient in 1-acyl-sn-glycerol-3-phosphate acyltransferase activity, J Biol Chem, vol.265, p.2211622, 1990.

M. Seki, P. Carninci, Y. Nishiyama, Y. Hayashizaki, and K. Shinozaki, High-efficiency cloning of Arabidopsis full-length cDNA by biotinylated CAP trapper, Plant J, vol.15, p.9778851, 1998.

M. Seki, M. Narusaka, A. Kamiya, J. Ishida, and M. Satou, Functional annotation of a full-length Arabidopsis cDNA collection, Science, vol.296, p.11910074, 2002.

B. Ali, Y. Carriere, F. Abousalham, and A. , High-level constitutive expression in Pichia pastoris and one-step purification of phospholipase D from cowpea (Vigna unguiculata L. Walp), Protein Expr Purif, vol.51, p.16949301, 2007.

P. Davanloo, A. H. Rosenberg, J. J. Dunn, and F. W. Studier, Cloning and expression of the gene for bacteriophage T7 RNA polymerase, Proc Natl Acad Sci U S A, vol.81, p.6371808, 1984.

E. G. Bligh and W. J. Dyer, A rapid method of total lipid extraction and purification, Can J Biochem Physiol, vol.37, p.13671378, 1959.

G. F. Ames, Lipids of Salmonella typhimurium and Escherichia coli: structure and metabolism, J Bacteriol, vol.95, p.4868364, 1968.

T. Beneyton, F. Coldren, J. C. Baret, A. D. Griffiths, and V. Taly, CotA laccase: high-throughput manipulation and analysis of recombinant enzyme libraries expressed in E. coli using droplet-based microfluidics, Analyst, vol.139, pp.3314-3323, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01128349

O. Emanuelsson, S. Brunak, G. Von-heijne, and H. Nielsen, Locating proteins in the cell using TargetP, SignalP and related tools, Nat Protoc, vol.2, p.17446895, 2007.

J. West, C. K. Tompkins, N. Balantac, E. Nudelman, and B. Meengs, Cloning and expression of two human lysophosphatidic acid acyltransferase cDNAs that enhance cytokine-induced signaling responses in cells, DNA Cell Biol, vol.16, p.9212163, 1997.

A. P. Brown, S. Carnaby, C. Brough, M. Brazier, and A. R. Slabas, Limnanthes douglasii lysophosphatidic acid acyltransferases: immunological quantification, acyl selectivity and functional replacement of the Escherichia coli plsC gene, Biochem J, vol.364, p.12049644, 2002.

M. Cullinane, C. Baysse, J. P. Morrissey, O. Gara, and F. , Identification of two lysophosphatidic acid acyltransferase genes with overlapping function in Pseudomonas fluorescens, Microbiology, vol.151, p.16151217, 2005.

S. Aygun-sunar, R. Bilaloglu, H. Goldfine, and F. Daldal, Rhodobacter capsulatus OlsA is a bifunctional enzyme active in both ornithine lipid and phosphatidic acid biosynthesis, J Bacteriol, vol.189, p.17921310, 2007.

L. Z. Morand, S. Patil, M. Quasney, and J. B. German, Alteration of the fatty acid substrate specificity of lysophosphatidate acyltransferase by site-directed mutagenesis, Biochem Biophys Res Commun, vol.244, p.9514885, 1998.

H. A. Sutterlin, S. Zhang, and T. J. Silhavy, Accumulation of phosphatidic acid increases vancomycin resistance in Escherichia coli, J Bacteriol, vol.196, p.24957626, 2014.

J. Coleman, Characterization of the Escherichia coli gene for 1-acyl-sn-glycerol-3-phosphate acyltransferase (plsC), Mol Gen Genet, vol.232, p.1557036, 1992.

G. Nantel, G. Baraff, and P. Proulx, The lipase activity of a partially purified lipolytic enzyme of Escherichia coli, Can J Biochem, vol.56, pp.324-328, 1978.

C. R. Raetz, Enzymology, genetics, and regulation of membrane phospholipid synthesis in Escherichia coli, Microbiol Rev, vol.42, p.362151, 1978.

L. M. Willis and C. Whitfield, KpsC and KpsS are retaining 3-deoxy-D-manno-oct-2-ulosonic acid (Kdo) transferases involved in synthesis of bacterial capsules, Proc Natl Acad Sci U S A, vol.110, pp.20753-20758, 2013.

R. M. France and S. H. Grossman, Denaturation and urea gradient gel electrophoresis of arginine kinase: evidence for a collapsed-state conformation, Arch Biochem Biophys, vol.326, p.8579378, 1996.

B. K. Beattie and A. R. Merrill, In vitro enzyme activation and folded stability of Pseudomonas aeruginosa exotoxin A and its C-terminal peptide, Biochemistry, vol.35, p.8703907, 1996.

Y. Z. Ma and C. L. Tsou, Comparison of the activity and conformation changes of lactate dehydrogenase H4 during denaturation by guanidinium chloride, Biochem J, vol.277, p.1854334, 1991.

J. C. Pan, Z. Yu, X. Y. Su, Y. Q. Sun, and X. M. Rao, Unassisted refolding of urea-denatured arginine kinase from shrimp Feneropenaeus chinensis: evidence for two equilibrium intermediates in the refolding pathway, Protein Sci, vol.13, p.15215531, 2004.

S. C. Dryden and W. Dowhan, Isolation and expression of the Rhodobacter sphaeroides gene (pgsA) encoding phosphatidylglycerophosphate synthase, J Bacteriol, vol.178, p.8576035, 1996.

H. Homma and S. Nojima, Synthesis of various phospholipids from 2-acyl lysophospholipids by Escherichia coli extract, J Biochem, vol.91, 1982.

L. M. Willis, J. Stupak, M. R. Richards, T. L. Lowary, and J. Li, Conserved glycolipid termini in capsular polysaccharides synthesized by ATP-binding cassette transporter-dependent pathways in Gram-negative pathogens, Proc Natl Acad Sci U S A, vol.110, pp.7868-7873, 2013.
DOI : 10.1073/pnas.1222317110

URL : http://www.pnas.org/content/110/19/7868.full.pdf

M. Nishijima and C. R. Raetz, Membrane lipid biogenesis in Escherichia coli: identification of genetic loci for phosphatidylglycerophosphate synthetase and construction of mutants lacking phosphatidylglycerol, J Biol Chem, vol.254, p.381294, 1979.

Y. H. Lu, Z. Guan, J. Zhao, and C. R. Raetz, Three phosphatidylglycerol-phosphate phosphatases in the inner membrane of Escherichia coli, J Biol Chem, vol.286, p.21148555, 2011.

J. M. Brown, J. L. Betters, C. Lord, Y. Ma, and X. Han, CGI-58 knockdown in mice causes hepatic steatosis but prevents diet-induced obesity and glucose intolerance, J Lipid Res, vol.51, p.20802159, 2010.
DOI : 10.1194/jlr.m010256

URL : http://www.jlr.org/content/51/11/3306.full.pdf

M. Oberer, A. Boeszoermenyi, H. M. Nagy, and R. Zechner, Recent insights into the structure and function of comparative gene identification-58, Curr Opin Lipidol, vol.22, pp.149-158, 2011.

R. J. Heath and C. O. Rock, A conserved histidine is essential for glycerolipid acyltransferase catalysis, J Bacteriol, vol.180, 1998.