, A la fin du traitement, l'échantillon est retiré du four puis trempé rapidement à l'eau jusqu'à atteindre la température ambiante. Les échantillons ont été ensuite polis puis leur microstructure révélée par une attaque chimique au réactif de Kroll pendant 90 s. Les grains ? transformés, Modélisation de la croissance des grains ? températures (1025?C1025?C-1050?C1050?C-1075?C1075?C-1100?C1100?C) et à 4 temps de traitement (0s-60s300s-600s)

B. Ahmad, A. Galloway, and A. Toumpis, Advanced numerical modelling of friction stir welded low alloy steel, Journal of manufacturing processes, vol.34, pp.625-636, 2018.

M. Avettand-fènoël, A. Simar, R. Shabadi, R. Taillard, and B. Meester, Characterization of oxide dispersion strengthened copper based materials developed by friction stir processing, Materials & design, vol.60, pp.343-357, 2014.

H. Aydin, M. Tutar, A. Durmu?, A. Bayram, and T. Sayaca, Effect of Welding Parameters on Tensile Properties and Fatigue Behavior of Friction Stir Welded 2014-T6 Aluminum Alloy. Transactions of the indian institute of metals, vol.65, pp.21-30, 2012.

M. Barmouz, P. Shahi, and P. Asadi, Friction stir welding/processing of polymeric materials. Pages 601-670 of : Advances in Friction-Stir Welding and Processing, 2014.

A. S. Baskoro, A. A. Nugroho, D. Rahayu, . Suwarsono, . Kiswanto et al., Effects of Welding Parameters in Micro Friction Stir Lap Welding of Aluminum A1100, Advanced materials research, vol.789, pp.356-359, 2013.

F. Brisset, Microscopie électronique à balayage et microanalyses, 2012.

G. Buffa, L. Fratini, and R. Shivpuri, CDRX modelling in friction stir welding of AA7075-T6 aluminum alloy : Analytical approaches, Journal of materials processing technology, vol.191, issue.1, pp.356-359, 2007.

W. G. Burgers, On the process of transition of the cubic-body-centered modification into the hexagonal-close-packed modification of zirconium, Physica, pp.561-586, 1934.

J. E. Burke, Some factors affecting the rate of grain growth in metals. Transactions of the american institute of mining engineers, vol.180, pp.73-91, 1949.

P. Bussetta, N. Dialami, R. Boman, M. Chiumenti, C. Agelet-de-saracibar et al., Comparison of a Fluid and a Solid Approach for the Numerical Simulation of Friction Stir Welding with a Non-Cylindrical Pin, Steel research international, vol.85, issue.6, pp.968-979, 2014.

J. Cai, F. Li, T. Liu, B. Chen, and M. He, Constitutive equations for elevated temperature flow stress of Ti-6Al-4V alloy considering the effect of strain, Materials & design, vol.32, issue.3, pp.1144-1151, 2011.

M. Campagnac, Structures et propriétés mécaniques d'alliages de titane à bas transus : Ti-10v-2fe-3al et ti-10v-3cu-al, 1988.

P. Cavaliere, A. Squillace, and F. Panella, Effect of welding parameters on mechanical and microstructural properties of AA6082 joints produced by friction stir welding, Journal of materials processing technology, vol.200, issue.1-3, pp.364-372, 2008.

C. Chovet, S. Gourdet, and F. Montheillet, Modelling the transition from discontinuous to continuous dynamic recrystallization with decreasing purity in aluminium. Materials transactions, jim, vol.41, pp.109-112, 2000.

Y. Combres, Traitements thermiques des alliages de titane, p.364, 1335.

N. Come-dingremont, Déformation à chaud et évolutions microstructurales des alliages de titane TA6V et Béta-CEZ dans le domaine Béta, 1991.

J. Demonsant, Comprendre et mener des plans d'expériences. Association française de normalisation, 1996.

N. Dialami, M. Cervera, M. Chiumenti, and C. Agelet-de-saracibar, A fast and accurate two-stage strategy to evaluate the effect of the pin tool profile on metal flow, torque and forces in friction stir welding, International journal of mechanical sciences, vol.122, pp.215-227, 2017.

P. Edwards and M. Ramulu, Identification of Process Parameters for Friction Stir Welding Ti-6Al-4V, Journal of engineering materials and technology, vol.132, issue.3, p.31006, 2010.

P. Edwards and M. Ramulu, Peak temperatures during friction stir welding of Ti-6Al-4V. Science and technology of welding and joining, vol.15, pp.468-472, 2010.

P. Edwards and M. Ramulu, Fatigue performance of Friction Stir Welded Ti-6Al-4V subjected to various post weld heat treatment temperatures, International journal of fatigue, vol.75, pp.19-27, 2015.

P. Edwards and M. Ramulu, Material flow during friction stir welding of Ti-6Al-4V, Journal of materials processing technology, vol.218, pp.107-115, 2015.

P. Edwards, M. Petersen, M. Ramulu, and R. Boyer, Mechanical Performance of Heat Treated Ti-6Al-4V Friction Stir Welds, Key engineering materials, vol.436, pp.213-221, 2010.

K. Elangovan, V. Balasubramanian, and M. Valliappan, Influences of tool pin profile and axial force on the formation of friction stir processing zone in AA6061 aluminium alloy. The international journal of advanced manufacturing technology, vol.38, pp.285-295, 2008.

M. Esmaily, S. Nooshin-mortazavi, P. Todehfalah, and M. Rashidi, Microstructural characterization and formation of ?' martensite phase in Ti-6Al-4V alloy butt joints produced by friction stir and gas tungsten arc welding processes, Materials & design, vol.47, pp.143-150, 2013.

Y. Estrin and H. Mecking, A unified phenomenological description of work hardening and creep based on one-parameter models, Acta metallurgica, vol.32, issue.1, pp.57-70, 1984.

Y. Fan, P. Cheng, Y. L. Yao, Z. Yang, and K. Egland, Effect of phase transformations on laser forming of Ti-6Al-4V alloy, Journal of applied physics, vol.98, p.13518, 2005.

A. Farias, G. F. Batalha, E. F. Prados, R. Magnabosco, and S. Delijaicov, Tool wear evaluations in friction stir processing of commercial titanium Ti-6Al-4V, Wear, vol.302, issue.1-2, pp.1327-1333, 2013.

E. Feulvarch, Modélisation numérique du procédé de soudage par friction-malaxage, 2016.

D. S. Fields and W. A. Backofen, Determination of strain hardening characteristics by torsion testing, Proc. ASTM, vol.57, pp.1259-1272, 1957.

H. J. Frost and M. F. Ashby, Deformation-mechanism maps : the plasticity and creep of metals and ceramics, 1982.

N. D. Ghetiya, K. M. Patel, and S. J. Makvana, Determination of an optimum parametric combination using a tensile strength prediction model for friction stir welded AA8011 aluminium alloy, International journal of manufacturing research, vol.9, issue.3, p.258, 2014.

F. J. Gil, M. P. Ginebra, J. M. Manero, and J. A. Planell, Formation of ?-Widmanstätten structure : effects of grain size and cooling rate on the Widmanstätten morphologies and on the mechanical properties in Ti-6Al-4V alloy, Journal of alloys and compounds, vol.329, issue.1-2, pp.142-152, 2001.

F. J. Gil, C. Aparicio, and J. A. Planell, Effect of oxygen content on grain growth kinetics of titanium, Journal of materials synthesis and processing, vol.10, issue.5, pp.263-266, 2002.

J. Goupy and L. Creighton, Introduction aux plans d'expériences, 2006.

S. Gourdet and F. Montheillet, Effects of dynamic grain boundary migration during the hot compression of high stacking fault energy metals, Acta materialia, vol.50, issue.11, pp.2801-2812, 2002.

S. Gourdet and F. Montheillet, A model of continuous dynamic recrystallization, Acta materialia, vol.51, issue.9, pp.2685-2699, 2003.

H. Hallberg, M. Wallin, and M. Ristinmaa, Modeling of continuous dynamic recrystallization in commercial-purity aluminum, Materials science and engineering : A, vol.527, issue.4, pp.1126-1134, 2010.

P. C. Hansen, C. Pereyra, and G. Scherer, Least Squares Data Fitting with Applications, 2013.

P. Heurtier, M. J. Jones, C. Desrayaud, J. H. Driver, F. Montheillet et al., Mechanical and thermal modelling of friction stir welding, Journal of materials processing technology, vol.171, issue.3, pp.348-357, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00292979

S. Hirasawa, H. Badarinarayan, K. Okamoto, T. Tomimura, and T. Kawanami, Analysis of effect of tool geometry on plastic flow during friction stir spot welding using particle method, Journal of materials processing technology, vol.210, issue.11, pp.1455-1463, 2010.

B. Hocheid, A. Klima, C. Beauvais, M. Rapin, and C. Roux, Study of transformations of titanium alloy TA6V under isothermal conditions. Memoires scientifiques de la revue de metallurgie, vol.67, p.583, 1970.

K. Huang and R. E. Logé, A review of dynamic recrystallization phenomena in metallic materials, Materials & design, vol.111, pp.548-574, 2016.

V. Infante and C. Vidal, Tool and welding design. Pages 199-240 of : Advances in Friction-Stir Welding and Processing, 2014.

D. Jacquin, Modélisation de l'histoire thermomécanique des zones soudées en friction stir welding : application à la prévision des microstructures, 2009.

D. Jacquin, B. De-meester, A. Simar, D. Deloison, F. Montheillet et al., A simple Eulerian thermomechanical modeling of friction stir welding, Journal of materials processing technology, vol.211, pp.57-65, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00857931

N. Jemal, Contribution à la caractérisation thermique et mécanique de la zone soudée en FSW, École Nationale Supérieure d'Arts et Métiers, 2011.

M. J. Jweeg, A. M. Takhakh, and N. K. Kareem, Comparison between friction stir welding (FSW) and friction stir processing (FSP) of AA5086 aluminium alloy, International journal of technical research and applications, vol.3, issue.6, p.7, 2015.

S. Kasman, Multi-response optimization using the Taguchi-based grey relational analysis : a case study for dissimilar friction stir butt welding of AA6082-T6/AA5754-H111. The international journal of advanced manufacturing technology, vol.68, pp.795-804, 2013.

N. Khanna and J. P. Davim, Design-of-experiments application in machining titanium alloys for aerospace structural components, Measurement, vol.61, pp.280-290, 2015.

N. Kherrouba, Étude expérimentale et modélisation des cinétiques de transformation de phase dans un alliage de titane, 2017.

N. Kherrouba, M. Bouabdallah, R. Badji, D. Carron, and M. Amir, Beta to alpha transformation kinetics and microstructure of Ti-6Al-4V alloy during continuous cooling, Materials chemistry and physics, vol.181, pp.462-469, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02110742

L. I. Kiss, L. St-georges, and D. Beaulieu, Le soudage par friction malaxage : Principes et applications. Montréal : Les Presses de l'Aluminium, 2015.

U. F. Kocks, Laws for Work-Hardening and Low-Temperature Creep, Journal of engineering materials and technology, vol.98, issue.1, pp.76-85, 1976.

M. Koilraj, V. Sundareswaran, S. Vijayan, and S. R. Rao, Friction stir welding of dissimilar aluminum alloys AA2219 to AA5083-Optimization of process parameters using Taguchi technique, Materials & design, vol.42, pp.1-7, 2012.

G. Krishna, P. R. Reddy, and M. G. Hussain, Effect of tool tilt angle on aluminum 2014 friction stir welds, Global journal of researches in engineering, vol.14, issue.7, pp.61-70, 2015.

S. R. Kumar, V. S. Rao, and R. V. Pranesh, Effect of Welding Parameters on Macro and Microstructure of Friction Stir Welded Dissimilar Butt Joints between AA7075-T651 and AA6061-T651 Alloys, Procedia materials science, vol.5, pp.1726-1735, 2014.

F. Le-maitre, Etude des transformations en refroidissement continu de l'alliage de titane TA6V, vol.9, pp.563-574, 1970.

H. J. Liu, L. Zhou, and Q. W. Liu, Microstructural characteristics and mechanical properties of friction stir welded joints of Ti-6Al-4V titanium alloy, Materials and design, vol.31, issue.3, pp.1650-1655, 2010.

A. H. Lotfi and S. Nourouzi, Effect of Welding Parameters on Microstructure, Thermal, and Mechanical Properties of Friction-Stir Welded Joints of AA7075-T6 Aluminum Alloy. Metallurgical and materials transactions a, vol.45, pp.2792-2807, 2014.

M. K. Mcquillan, Phase transformations in titanium and its alloys, Metallurgical reviews, vol.8, issue.1, pp.41-104, 1963.

S. Mironov, Y. Zhang, Y. S. Sato, and H. Kokawa, Development of grain structure in beta-phase field during friction stir welding of Ti-6Al-4V alloy, Scripta materialia, vol.59, issue.1, pp.27-30, 2008.

R. S. Mishra and M. W. Mahoney, Friction Stir Welding and Processing, 2007.

A. Momeni and S. M. Abbasi, Effect of hot working on flow behavior of Ti-6Al-4V alloy in single phase and two phase regions, Materials & design, issue.8, pp.3599-3604, 2010.

F. Montheillet, Métallurgie en mise en forme à chaud. Technique de l'ingénieur m, p.3031, 2009.

F. Montheillet and C. Desrayaud, Essais rhéologiques à chaud, 2009.

F. Montheillet, L. Pallot, and D. Piot, Hot Deformation and Dynamic Recrystallization of the Beta Phase in Titanium Alloys, Materials science forum, pp.127-134, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00858815

L. E. Murr, A Review of FSW Research on Dissimilar Metal and Alloy Systems, Journal of materials engineering and performance, vol.19, issue.8, pp.1071-1089, 2010.

R. Nandan, T. J. Lienert, and T. Debroy, Toward reliable calculations of heat and plastic flow during friction stir welding of Ti-6Al-4V alloy, International journal of materials research, vol.99, issue.4, pp.434-444, 2008.

D. M. Neto and P. Neto, Numerical modeling of friction stir welding process : a literature review. The international journal of advanced manufacturing technology, vol.65, pp.115-126, 2013.

Q. L. Niu, X. H. Zheng, W. W. Ming, and M. Chen, Friction and Wear Performance of Titanium Alloys against Tungsten Carbide under Dry Sliding and Water Lubrication, Tribology transactions, vol.56, issue.1, pp.101-108, 2013.

M. Nourani, A. S. Milani, and S. Yannacopoulos, On experimental optimization of friction stir welding of aluminum 6061 : understanding processing-microstructure-property relations. The international journal of advanced manufacturing technology, vol.79, pp.1425-1441, 2015.

Y. Ohmori, K. Nakai, H. Ohtsubo, and M. Tsunofuri, Formation of Widmanstätten Alpha Structure in a Ti-6Al-4V Alloy. Materials transactions, jim, vol.35, pp.238-246, 1994.

L. Pallot, Traitements thermomecaniques de l'alliage de titane Ti-17. Etude expérimentale et modélisation de recristallisation de la phase Beta, 2012.
URL : https://hal.archives-ouvertes.fr/tel-00849211

M. R. Panda, S. S. Mahapatraand, and C. P. Mohanty, Parametric Investigation of Friction Stir Welding on AA6061 Using Taguchi technique. Materials today : Proceedings, vol.2, pp.2399-2406, 2015.

G. Papazafeiropoulos, M. Muñiz-calvente, and E. Martínez-pañeda, Abaqus2matlab : a suitable tool for finite element post-processing, Advances in engineering software, vol.105, pp.9-16, 2017.

S. Pasta and A. P. Reynolds, Residual stress effects on fatigue crack growth in a Ti-6Al-4V friction stir weld. Fatigue & fracture of engineering materials & structures, pp.569-580, 2008.

M. Pillet, Les plans d'expériences par la méthode Taguchi. es Editions d'Organisation, 1997.

G. Rambabu, D. Balaji-naik, C. H. Venkata-rao, K. Srinivasa-rao, and G. Reddy, Optimization of friction stir welding parameters for improved corrosion resistance of AA2219 aluminum alloy joints, Defence technology, vol.11, issue.4, pp.330-337, 2015.

M. Ramulu, P. D. Edwards, D. G. Sanders, A. P. Reynolds, and T. Trapp, Tensile properties of friction stir welded and friction stir welded-superplastically formed Ti-6Al-4V butt joints, Materials & design, issue.6, pp.3056-3061, 2010.

R. Seighalani, K. Besharati-givi, M. K. Nasiri, A. M. Bahemmat, and P. , Investigations on the Effects of the Tool Material, Geometry, and Tilt Angle on Friction Stir Welding of Pure Titanium, Journal of materials engineering and performance, vol.19, issue.7, pp.955-962, 2010.

P. K. Sahu and S. Pal, Multi-response optimization of process parameters in friction stir welded AM20 magnesium alloy by Taguchi grey relational analysis, Journal of magnesium and alloys, vol.3, issue.1, pp.36-46, 2015.

H. B. Schmidt and J. H. Hattel, Thermal modelling of friction stir welding, Scripta materialia, vol.58, issue.5, pp.332-337, 2008.

C. M. Sellars and W. J. Tegart, La relation entre la résitance et la structure dans la déformation à chaud. Mémoires scientifiques de la revue de métallurgie, vol.68, pp.731-746, 1966.

A. K. Singh, C. Ramachandra, M. Tavafoghi, and V. Singh, Structure of martensite in titanium alloy Ti-6Al-1.6Zr-3.3Mo-0.3Si, Journal of materials science letters, vol.12, issue.10, pp.697-699, 1993.

G. Taguchi and S. Konishi, Taguchi methods : Orthogonal arrays and linear graphs. tools for quality engineering, 1987.

G. J. Tchein, D. Jacquin, D. Coupard, E. Lacoste, and F. Mata, Genesis of Microstructures in Friction Stir Welding of Ti-6Al-4V. Metallurgical and materials transactions a, vol.49, pp.2113-2123, 2018.

G. J. Tchein, D. Jacquin, E. Aldanondo, D. Coupard, E. Gutierrez-orrantia et al., Analytical modeling of hot behavior of Ti-6al-4v alloy at large strain, Materials & design, pp.114-123, 2019.

M. Tehyo, P. Muangjunburee, A. Binraheem, S. Chuchom, and N. Utamarat, Influence of friction stir welding parameters on metallurgical and mechanical properties of dissimilar joint between semi-solid metal 356-T6 and aluminum alloys 6061-T651, Songklanakarin journal of science and technology, vol.34, issue.4, pp.415-421, 2012.

P. L. Threadgill, A. J. Leonard, H. R. Shercliff, and P. J. Withers, Friction stir welding of aluminium alloys, International materials reviews, vol.54, issue.2, pp.49-93, 2009.

R. S. Thube, Effect of Tool Pin Profile and Welding Parameters on Friction Stir Processing Zone , Tensile Properties and Micro-hardness of AA5083 Joints Produced by Friction Stir Welding, International journal of engineering and advanced technology (ijeat), vol.3, issue.5, pp.35-40, 2014.

S. Tiwari, H. Chelladurai, and A. K. Shukla, Parametric Analysis of Friction Stir Welding. Pages 1-6 of : 5th international & 26th all india manufacturing technology, design and research conference, IIT Guwahati, vol.528, 2014.

A. Tongne, Analyse microstructurale et modélisation thermomécanique des conditions de contact outil/matière transitoires, 2014.

A. Tongne, M. Jahazi, E. Feulvarch, and C. Desrayaud, Banded structures in friction stir welded Al alloys, Journal of materials processing technology, vol.221, pp.269-278, 2015.
URL : https://hal.archives-ouvertes.fr/emse-01501429

A. Tongne, C. Desrayaud, M. Jahazi, and E. Feulvarch, On material flow in Friction Stir Welded Al alloys, Journal of materials processing technology, vol.239, pp.284-296, 2017.
URL : https://hal.archives-ouvertes.fr/emse-01525251

R. Trivedi, Growth of dendritic needles from a supercooled melt, Acta metallurgica, vol.18, issue.3, pp.287-296, 1970.

S. Tutunchilar, M. Haghpanahi, M. K. Besharati-givi, P. Asadi, and P. Bahemmat, Simulation of material flow in friction stir processing of a cast Al-Si alloy, Materials & design, vol.40, pp.415-426, 2012.

P. Ulysse, Three-dimensional modeling of the friction stir-welding process. International journal of machine tools and manufacture, vol.42, pp.1549-1557, 2002.

G. Welsch, R. Boyer, and E. W. Collings, Materials Properties Handbook : Titanium Alloys, 1993.

J. C. Williams, A. W. Sommer, and P. P. Tung, The influence of oxygen concentration on the internal stress and dislocation arrangements in ? titanium, Metallurgical transactions, vol.3, issue.11, pp.2979-2984, 1972.

S. Yoon, R. Ueji, and H. Fujii, Effect of rotation rate on microstructure and texture evolution during friction stir welding of Ti-6Al-4V plates, Materials characterization, vol.106, pp.352-358, 2015.

Y. Zhang, Y. S. Sato, H. Kokawa, S. H. Park, and S. Hirano, Microstructural characteristics and mechanical properties of Ti-6Al-4V friction stir welds. Materials science and engineering a, vol.485, pp.448-455, 2008.

Y. N. Zhang, X. Cao, S. Larose, and P. Wanjara, Review of tools for friction stir welding and processing, Canadian metallurgical quarterly, vol.51, issue.3, pp.250-261, 2012.

L. Zhou, H. J. Liu, P. Liu, and Q. W. Liu, The stir zone microstructure and its formation mechanism in Ti-6Al-4V friction stir welds, Scripta materialia, issue.6, pp.596-599, 2009.

L. Zhou, H. J. Liu, and Q. W. Liu, Effect of rotation speed on microstructure and mechanical properties of Ti-6Al-4V friction stir welded joints, Materials & design, vol.31, issue.5, pp.2631-2636, 2010.