C. Berthon and F. Foucher, Efficient well-balanced hydrostatic upwind schemes for shallow-water equations, Journal of Computational Physics, vol.231, issue.15, pp.4993-5015, 2012.

G. Bispen, M. Koottungal-revi-arun, S. Luká?ová-medvid'ová, and . Noelle, IMEX large time step finite volume methods for low Froude number shallow water flows, Communications in Computational Physics, vol.16, issue.2, pp.307-347, 2014.

F. Bouchut, Nonlinear stability of finite volume methods for hyperbolic conservation laws and well-balanced schemes for sources, 2004.

F. Bouchut, A reduced stability condition for nonlinear relaxation to conservation laws, Journal of Hyperbolic Differential Equations, vol.1, issue.01, pp.149-170, 2004.

F. Bouchut and T. Luna, A subsonic-well-balanced reconstruction scheme for shallow water flows, SIAM Journal on Numerical Analysis, vol.48, issue.5, pp.1733-1758, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00693032

J. Manuel, A. P. Castro, C. Milanés, and . Parés, Well-balanced numerical schemes based on a generalized hydrostatic reconstruction technique, Mathematical Models and Methods in Applied Sciences, vol.17, issue.12, pp.2055-2113, 2007.

C. Chalons and F. Coquel, Navier-Stokes equations with several independent pressure laws and explicit predictor-corrector schemes, Numerische Mathematik, vol.101, issue.3, pp.451-478, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00112166

C. Chalons, F. Coquel, E. Godlewski, P. Raviart, and N. Seguin, Godunov-type schemes for hyperbolic systems with parameter-dependent source : the case of Euler system with friction, Mathematical Models and Methods in Applied Sciences, vol.20, issue.11, pp.2109-2166, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00401616

C. Chalons, F. Coquel, S. Kokh, and N. Spillane, Large time-step numerical scheme for the seven-equation model of compressible two-phase flows, Finite Volumes for Complex Applications VI Problems & Perspectives, pp.225-233, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01018835

C. Chalons and J. Coulombel, Relaxation approximation of the Euler equations, Journal of Mathematical Analysis and Applications, vol.348, issue.2, pp.872-893, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01838843

C. Chalons, S. Mathieu-girardin, and . Kokh, Large time step and asymptotic preserving numerical schemes for the gas dynamics equations with source terms, SIAM Journal on Scientific Computing, vol.35, issue.6, pp.2874-2902, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00718022

C. Chalons, S. Mathieu-girardin, and . Kokh, Operator-splitting based AP schemes for the 1D and 2D gas dynamics equations with stiff sources, AIMS Series on Applied Mathematics, vol.8, pp.607-614, 2014.

C. Chalons, S. Mathieu-girardin, and . Kokh, An all-regime Lagrangeprojection like scheme for the gas dynamics equations on unstructured meshes, Communications in Computational Physics, vol.20, issue.1, pp.188-233, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01007622

C. Chalons, S. Mathieu-girardin, and . Kokh, An all-regime Lagrangeprojection like scheme for 2D homogeneous models for two-phase flows on unstructured meshes, Journal of Computational Physics, vol.335, pp.885-904, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01495699

Y. Xing, C. Shu, and S. Noelle, On the advantage of well-balanced schemes for moving-water equilibria of the shallow water equations, Journal of scientific computing, vol.48, issue.1-3, pp.339-349, 2011.

Y. Xing, X. Zhang, and C. Shu, Positivity-preserving high order wellbalanced discontinuous Galerkin methods for the shallow water equations, Advances in Water Resources, vol.33, issue.12, pp.1476-1493, 2010.

H. Zakerzadeh, On the Mach-uniformity of the Lagrange-projection scheme, ESAIM : Mathematical Modelling and Numerical Analysis, vol.51, issue.4, pp.1343-1366, 2017.

F. Bouchut, Nonlinear stability of finite volume methods for hyperbolic conservation laws, and well-balanced schemes for sources, Frontiers in Mathematics series, 2004.

J. Manuel, A. P. Castro, C. Milanés, and . Parés, Well-balanced numerical schemes based on a generalized hydrostatic reconstruction technique, Mathematical Models and Methods in Applied Sciences, vol.17, issue.12, pp.2055-2113, 2007.

C. Chalons, S. Mathieu-girardin, and . Kokh, Large time step and asymptotic preserving numerical schemes for the gas dynamics equations with source terms, SIAM Journal on Scientific Computing, vol.35, issue.6, pp.2874-2902, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00718022

C. Chalons, S. Mathieu-girardin, and . Kokh, An all-regime Lagrangeprojection like scheme for the gas dynamics equations on unstructured meshes, Communications in Computational Physics, vol.20, issue.1, pp.188-233, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01007622

C. Chalons, S. Mathieu-girardin, and . Kokh, An all-regime Lagrangeprojection like scheme for 2D homogeneous models for two-phase flows on unstructured meshes, Journal of Computational Physics, vol.335, pp.885-904, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01495699

C. Chalons, P. Kestener, S. Kokh, and M. Stauffert, A large timestep and well-balanced Lagrange-projection type scheme for the shallow water equations, Communication in Mathematical Sciences, vol.15, issue.3, pp.765-788, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01297043

C. Chalons and M. Stauffert, A high-order discontinuous Galerkin Lagrangeprojection scheme for the barotropic Euler equations, pp.63-70, 2017.

B. Cockburn and C. Shu, Runge-Kutta discontinuous Galerkin methods for convection-dominated problems, Journal of scientific computing, vol.16, issue.3, pp.173-261, 2001.

F. Coquel, Q. Nguyen, M. Postel, and Q. Tran, Entropy-satisfying relaxation method with large time-steps for Euler IBVPs, Mathematics of Computation, vol.79, issue.271, pp.1493-1533, 2010.

L. Gosse, Computing qualitatively correct approximations of balance laws, vol.2, 2013.

S. Jin and Z. Xin, The relaxation schemes for systems of conservation laws in arbitrary space dimensions, Communications on pure and applied mathematics, vol.48, issue.3, pp.235-276, 1995.

F. Renac, A robust high-order Lagrange-projection like scheme with large time steps for the isentropic Euler equations, Numerische Mathematik, vol.135, issue.2, pp.493-519, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01851751

C. Shu and S. Osher, Efficient implementation of essentially non-oscillatory shock-capturing schemes, Journal of computational physics, vol.77, issue.2, pp.439-471, 1988.

I. Suliciu, On the thermodynamics of fluids with relaxation and phase transitions. Fluids with relaxation, Internat. J. Engrg. Sci, vol.36, pp.921-947, 1998.

Y. Xing, X. Zhang, and C. Shu, Positivity-preserving high order wellbalanced discontinuous Galerkin methods for the shallow water equations, Advances in Water Resources, vol.33, issue.12, pp.1476-1493, 2010.

E. Audusse, C. Chalons, and P. Ung, A very simple well-balanced positive and entropy-satisfying scheme for the shallow-water equations, Commun. Math. Sci, vol.13, issue.5, pp.1317-1332, 2015.

C. Berthon and V. Desveaux, An entropy preserving MOOD scheme for the Euler equations, International Journal on Finite, pp.1-39, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01115334

C. Chalons, P. Kestener, S. Kokh, and M. Stauffert, A large timestep and well-balanced Lagrange-Projection type scheme for the shallow-water equations, Communication in Mathematical Sciences, vol.15, issue.3, pp.765-788, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01297043

S. Clain, S. Diot, and R. Loubère, A high-order finite volume method for systems of conservation laws-Multi-dimensional Optimal Order Detection (MOOD), Journal of computational Physics, vol.230, issue.10, pp.4028-4050, 2011.

S. Clain and . Figueiredo, The MOOD method for the non-conservative shallowwater system, Computers & Fluids, vol.145, pp.99-128, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01077557

B. Cockburn and C. Shu, Runge-Kutta discontinuous Galerkin methods for convection-dominated problems, Journal of scientific computing, vol.16, issue.3, pp.173-261, 2001.

S. Diot, S. Clain, and R. Loubère, Improved detection criteria for the multi-dimensional optimal order detection (MOOD) on unstructured meshes with very high-order polynomials, Computers & Fluids, vol.64, pp.43-63, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00637123

M. Dumbser, O. Zanotti, R. Loubère, and S. Diot, A posteriori subcell limiting of the discontinuous Galerkin finite element method for hyperbolic conservation laws, Journal of Computational Physics, vol.278, pp.47-75, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01914588

R. Loubere, M. Dumbser, and S. Diot, A new family of high order unstructured MOOD and ADER finite volume schemes for multidimensional systems of hyperbolic conservation laws, Communications in Computational Physics, vol.16, issue.3, pp.718-763, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00949831

I. Suliciu, On the thermodynamics of fluids with relaxation and phase transitions. Fluids with relaxation, Internat. J. Engrg. Sci, vol.36, pp.921-947, 1998.

, Le choix de la méthode Runge-Kutta en temps se fait grâce aux classes filles de la classe mère RK, à savoir RK1, On veut résoudre numériquement les équations de Saint-Venant (0.5.1) avec terme source de topographie à une dimension d'espace. On implémente à l'aide du langage de programmation compilé orienté objet C++ les schémas Volumes Finis ordre 1 décrits dans le Chapitre 1 et les schémas Galerkin discontinus d'ordres élevés décrits dans les Chapitres 3 et 4. Le fichier principal est décrit dans le Listing 5.1.-L'objet pb de la classe PB contient tous les paramètres du cas test.-Les objets stateOld et stateNew sont deux jeux de valeurs des variables conservatives

, à savoir EXEXFV pour le schéma Volumes Finis explicite-explicite de la Section 5.1.1, IMEXFV pour la version implicite-explicite de la Section 5.1.2, et IMEXDG pour le schéma Galerkin discontinu implicite-explicite de la Section 5.1.3. Chaque classe fille de SOLVER contient les méthodes FillGhosts(), qui rempli les mailles fictives de l'état stateOld, et computeDt() qui calcule le plus grand pas de temps que l'on peut utiliser en accord avec la condition CFL du solveur considéré. Elle contient également la méthode SolverStep() qui rempli les états intermédiaires de chaque sous pas de la méthode RK utilisée

/. Imexfv, I. , and .. .. ,

/. Rk1,

S. Balay, S. Abhyankar, M. F. Adams, J. Brown, P. Brune et al., , 2018.

. Mathieu-girardin, Asymptotic preserving and all-regime Lagrange-Projection like numerical schemes : application to two-phase flows in low mach regime. Theses, 2014.

Y. Saad, H. Martin, and . Schultz, Gmres : A generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM Journal on scientific and statistical computing, vol.7, issue.3, pp.856-869, 1986.