M. Planck, On the law of distribution of energy in the normal spectrum, Annalen der Physik, vol.4, p.553, 1901.

A. Einstein, ¨ Uber einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt, Annalen der Physik, vol.322, pp.132-148, 1905.

A. Einstein, B. Podolsky, and N. Rosen, Can quantum-mechanical description of physical reality be considered complete ?, Phys. Rev, vol.47, pp.777-780, 1935.

J. Bell, On the einstein podolsky rosen paradox, Physics, vol.1, issue.3, pp.195-200, 1964.

A. Aspect, J. Dalibard, and G. Roger, Experimental test of bell's inequalities using time-varying analyzers, Phys. Rev. Lett, vol.49, pp.1804-1807, 1982.

A. Aspect, Du débat Bohr-EinsteinàEinsteinà l'information quantique : la seconde révolution quantique ?, Séances publiques, 2014.

G. E. Moore, Cramming more components onto integrated circuits, Electronics, vol.38, issue.8, 1965.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, Quantum cryptography, Rev. Mod. Phys, vol.74, pp.145-195, 2002.

. Steane, Quantum computing, Rep. Prog. Phys, vol.61, pp.117-173, 1998.

I. M. Georgescu, S. Ashhab, and F. Nori, Quantum simulation, Rev. Mod. Phys, vol.86, pp.153-185, 2014.

V. Giovannetti, S. Lloyd, and L. Maccone, Quantum metrology, Phys. Rev. Lett, vol.96, p.10401, 2006.

J. Yin, Y. Cao, Y. Li, S. Liao, L. Zhang et al., Satellite-based entanglement distribution over 1200 kilometers, Science, vol.356, issue.6343, pp.1140-1144, 2017.

L. Mandel and E. Wolf, Optical coherence and quantum Optics, 1995.

A. Steane, The ion trap quantum information processor, Applied Physics B, vol.64, issue.6, pp.623-643, 1997.

. Bibliographie,

J. Juan-p-dehollain-jarryd, . Pla, Y. Kuan, . Tan, H. Wee et al., High-fidelity readout and control of a nuclear spin qubit in silicon, Nature, vol.496, pp.334-338, 2013.

S. Thiele, F. Balestro, R. Ballou, S. Klyatskaya, M. Ruben et al., Electrically driven nuclear spin resonance in single-molecule magnets, Science, vol.344, issue.6188, pp.1135-1138, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01070125

J. Kuan-y-tan-jarryd, . Pla, . Juan-p-dehollain, H. Wee, J. L. Lim et al., A single-atom electron spin qubit in silicon, Nature, vol.489, pp.541-545, 2012.

C. A. Shannon, A mathematical theory of communication, Bell System Technical Journal, vol.27, issue.3, pp.379-423, 1948.

C. Shannon, Bell system technical journal, Bell System Technical Journal, 1948.

B. Schumacher, Quantum coding, Phys. Rev. A, vol.51, pp.2738-2747, 1995.

E. Schrödinger, Die gegenwärtige situation in der quantenmechanik, Naturwissenschaften, vol.23, issue.48, pp.807-812, 1935.

W. Heisenberg, ¨ Uber den anschaulichen inhalt der quantentheoretischen kinematik und mechanik, Zeitschrift für Physik, vol.43, issue.3, pp.172-198, 1927.

E. H. Kennard, Zur quantenmechanik einfacher bewegungstypen, Zeitschrift für Physik, vol.44, issue.4, pp.326-352, 1927.

H. Weyl, Gruppentheorie und quantenmechanik, hirzel, leipzig, 1928.

W. K. Wootters and W. H. Zurek, A single quantum cannot be cloned, Nature, vol.299, pp.802-803, 1982.

D. Dieks, Communication by epr devices, Physics Letters A, vol.92, issue.6, pp.271-272, 1982.

V. Bu?ek and M. Hillery, Quantum copying : Beyond the no-cloning theorem, Phys. Rev. A, vol.54, pp.1844-1852, 1996.

V. Scarani, S. Iblisdir, N. Gisin, and A. Acín, Quantum cloning, Rev. Mod. Phys, vol.77, pp.1225-1256, 2005.

R. Feynman, Simulating physics with computers, International Journal of Theoretical Physics, vol.21, issue.6, pp.467-488, 1982.

D. Deutsch, Quantum theory, the Church-Turing principle and the universal quantum computer, Proc. R. Soc. A, vol.400, issue.1818, pp.97-117, 1985.

P. Shor, Algorithms for quantum computation : Discrete logarithms and factoring, IEEE Symposium on Foundations of Computer Science, pp.124-134, 1994.

L. C. Isaac, A. Michael, and . Nielsen, Quantum Computation and Quantum Information, 2010.

F. Jelezko, T. D. Ladd, R. Laflamme, Y. Nakamura, C. Monroe et al., Quantum computers, Nature, vol.464, pp.45-53, 2010.

D. Aharonov and Q. Computation, , pp.259-346, 2012.

J. M. Chow-jay, M. Gambetta, and M. Steffen, Building logical qubits in a superconducting quantum computing system, npj Quantum Information, vol.3, 2017.

, Ibm makes quantum computing available on ibm cloud

M. Mohseni, P. Read, H. Neven, S. Boixo, V. Denchev et al., Commercialize quantum technologies in five years, Nature, vol.543, pp.171-174, 2017.

, Intel Corporation (USA)

D. Vion, A. Aassime, A. Cottet, P. Joyez, H. Pothier et al., Manipulating the quantum state of an electrical circuit, Science, vol.296, issue.5569, pp.886-889, 2002.
URL : https://hal.archives-ouvertes.fr/hal-00021251

J. M. Martinis, S. Nam, J. Aumentado, and C. Urbina, Rabi oscillations in a large josephsonjunction qubit, Phys. Rev. Lett, vol.89, p.117901, 2002.

A. J. Berkley, H. Xu, R. C. Ramos, M. A. Gubrud, F. W. Strauch et al., Entangled macroscopic quantum states in two superconducting qubits, Science, vol.300, issue.5625, pp.1548-1550, 2003.

J. Kelly, R. Barends, A. G. Fowler, A. Megrant, E. Jeffrey et al., State preservation by repetitive error detection in a superconducting quantum circuit, Nature, vol.519, issue.7541, pp.66-69, 2015.

J. I. Cirac and P. Zoller, Quantum computations with cold trapped ions, Phys. Rev. Lett, vol.74, pp.4091-4094, 1995.

J. I. Cirac and P. Zoller, A scalable quantum computer with ions in an array of microtraps, Nature, vol.404, p.579, 2000.

D. Kielpinski, C. Monroe, and D. J. Wineland, Architecture for a large-scale ion-trap quantum computer, Nature, vol.417, pp.709-711, 2002.

C. Monroe and J. Kim, Scaling the ion trap quantum processor, Science, vol.339, issue.6124, pp.1164-1169, 2013.

C. Monroe, D. M. Meekhof, B. E. King, W. M. Itano, and D. J. Wineland, Demonstration of a fundamental quantum logic gate, Phys. Rev. Lett, vol.75, pp.4714-4717, 1995.

A. Sorensen and K. Molmer, Quantum computation with ions in thermal motion, Phys. Rev. Lett, vol.82, pp.1971-1974, 1999.

S. Gulde, M. Riebe, G. P. Lancaster, C. Becher, J. Eschner et al., Implementation of the Deutsch-Jozsa algorithm on an ion-trap quantum computer, Nature, vol.421, pp.48-50, 2003.

J. Chiaverini, J. Britton, D. Leibfried, E. Knill, M. D. Barrett et al., Implementation of the semiclassical quantum fourier transform in a scalable system, Science, vol.308, issue.5724, pp.997-1000, 2005.

H. Häffner, W. Hänsel, C. F. Roos, J. Benhelm, D. et al., Scalable multiparticle entanglement of trapped ions, Nature, vol.438, pp.643-646, 2005.

C. Ospelkaus, U. Warring, Y. Colombe, K. R. Brown, J. M. Amini et al., Microwave quantum logic gates for trapped ions, Nature, vol.476, pp.181-184, 2011.

T. R. Tan, J. P. Gaebler, Y. Lin, R. Wan, D. Bowler et al., Multielement logic gates for trapped-ion qubits, Nature, vol.528, pp.380-383, 2015.

T. Monz, D. Nigg, E. A. Martinez, M. F. Brandl, P. Schindler et al., Realization of a scalable Shor algorithm, Science, vol.351, issue.6277, pp.1068-1070, 2016.

E. A. Martinez, C. A. Muschik, P. Schindler, D. Nigg, A. Erhard et al., Real-time dynamics of lattice gauge theories with a few-qubit quantum computer, Nature, vol.534, pp.516-519, 2016.

P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling et al., Linear optical quantum computing with photonic qubits, Rev. Mod. Phys, vol.79, pp.135-174, 2007.

S. Aaronson and A. Arkhipov, The computational complexity of linear optics, Theory of Computing, vol.9, pp.143-252, 2013.

M. A. Broome, A. Fedrizzi, S. Rahimi-keshari, J. Dove, S. Aaronson et al., Photonic boson sampling in a tunable circuit, Science, vol.339, issue.6121, pp.794-798, 2013.

J. Spring, B. Metcalf, P. Humphreys, S. Kolthammer, X. Jin et al., Boson sampling on a photonic chip, Science, vol.339, issue.6121, pp.798-801, 2013.

M. Tillmann, B. Dakic, R. Heilmann, S. Nolte, A. Szameit et al., Experimental boson sampling, Nat. Photonics, vol.7, pp.540-544, 2013.

A. ,

R. Crespi, R. Osellame, D. Ramponi, E. Brod, N. Galvao et al., Integrated multimode interferometers with arbitrary designs for photonic boson sampling, Nat. Photonics, vol.7, pp.545-549, 2013.

J. Carolan, C. Harrold, C. Sparrow, E. Martín-lópez, N. J. Russell et al., Universal linear optics, Science, vol.349, issue.6249, pp.711-716, 2015.

E. Knill, R. Laflamme, and G. J. Milburn, A scheme for efficient quantum computation with linear optics, Nature, vol.409, issue.6816, pp.46-52, 2001.

R. Raussendorf and H. J. Briegel, A one-way quantum computer, Phys. Rev. Lett, vol.86, pp.5188-5191, 2001.

P. Walther, K. J. Resch, T. Rudolph, E. Schenck, H. Weinfurter et al., Experimental one-way quantum computing, Nature, vol.434, issue.7030, pp.169-176, 2005.

D. E. Browne and T. Rudolph, Resource-efficient linear optical quantum computation, Phys. Rev. Lett, vol.95, p.10501, 2005.

N. C. Menicucci, P. Van-loock, M. Gu, C. Weedbrook, T. C. Ralph et al., Universal quantum computation with continuous-variable cluster states, Phys. Rev. Lett, vol.97, p.110501, 2006.

N. C. Menicucci, S. T. Flammia, and O. Pfister, One-way quantum computing in the optical frequency comb, Phys. Rev. Lett, vol.101, p.130501, 2008.

S. Yokoyama, R. Ukai, S. C. Armstrong, C. Sornphiphatphong, T. Kaji et al., Ultra-large-scale continuous-variable cluster states multiplexed in the time domain, Nat. Photonics, vol.7, pp.982-986, 2013.

M. V. Dutt, L. Childress, L. Jiang, E. Togan, J. Maze et al., Quantum register based on individual electronic and nuclear spin qubits in diamond, Science, vol.316, issue.5829, pp.1312-1316, 2007.

G. Burkard, G. D. Fuchs, P. V. Klimov, and D. D. Awschalom, A quantum memory intrinsic to single nitrogen-vacancy centres in diamond, nature physics, vol.7, pp.789-793, 2011.

P. C. Maurer, G. Kucsko, C. Latta, L. Jiang, N. Y. Yao et al., Room-temperature quantum bit memory exceeding one second, Science, vol.336, issue.6086, pp.1283-1286, 2012.

L. Childress, L. Robledo, H. Bernien, B. Hensen, F. A. Paul et al., High-fidelity projective read-out of a solid-state spin quantum register, Nature, vol.477, pp.574-578, 2011.

D. M. Toyli, C. D. Weis, G. D. Fuchs, T. Schenkel, and D. D. Awschalom, Chip-scale nanofabrication of single spins and spin arrays in diamond, Nano Letters, vol.10, issue.8, p.20698632, 2010.

L. Childress and R. Hanson, Diamond nv centers for quantum computing and quantum networks, MRS Bulletin, vol.38, issue.2, pp.134-138, 2013.

D. Loss and D. P. Divicenzo, Quantum computation with quantum dots, Phys. Rev. A, vol.57, pp.120-126, 1998.

H. Kamada, Quantum computing with QD excitons, NTT Tech. Rev, vol.1, issue.3, pp.31-40, 2003.

X. Li, Y. Wu, D. Steel, D. Gammon, T. H. Stievater et al., An all-optical quantum gate in a semiconductor quantum dot, Science, vol.301, issue.5634, pp.809-811, 2003.

T. Calarco, A. Datta, E. Pazy, and P. Zoller, Spin-based all-optical quantum computation with quantum dots : Understanding and suppressing decoherence, Phys. Rev. A, vol.68, p.12310, 2003.

D. Press, T. D. Ladd, B. Zhang, and Y. Yamamoto, Complete quantum control of a single quantum dot spin using ultrafast optical pulses, Nature, vol.456, pp.218-221, 2008.

P. Shor, Scheme for reducing decoherence in quantum computer memory, Phys. Rev. A, vol.52, pp.2493-2496, 1995.

A. M. Steane, Error correcting codes in quantum theory, Phys. Rev. Lett, vol.77, pp.793-797, 1996.

E. Knill and R. Laflamme, Theory of quantum error-correcting codes, Phys. Rev. A, vol.55, pp.900-911, 1997.

E. Knill, R. Laflamme, and W. H. Zurek, Resilient quantum computation, Science, vol.279, issue.5249, pp.342-345, 1998.

A. M. Steane, Efficient fault-tolerant quantum computing, Nature, vol.399, pp.124-126, 1999.

J. Chiaverini, D. Leibfried, T. Schaetz1, M. D. Barrett, R. B. Blakestad et al., Realization of quantum error correction, Nature, vol.432, pp.602-605, 2004.

E. , Quantum computing with realistically noisy devices, Nature, vol.434, pp.39-44, 2005.

P. Schindler, J. T. Barreiro, T. Monz, V. Nebendahl, D. Nigg et al., Experimental repetitive quantum error correction, Science, vol.332, issue.6033, pp.1059-1061, 2011.

N. Ofek, A. Petrenko, R. Heeres, P. Reinhold, Z. Leghtas et al., Extending the lifetime of a quantum bit with error correction in superconducting circuits, Nature, vol.536, issue.7617, pp.441-445, 2016.

D. P. Divicenzo, The physical implementation of quantum computation, Fortschritte der Physik, vol.48, pp.771-783, 2000.

. I. Yu and . Manin, Vychislimoe i nevychislimoe, Sov.Radio, pp.13-15, 1980.

A. M. Turing, On computable numbers, with an application to the Entscheidungs problem, Proceedings of the London Mathematical Society, vol.42, pp.230-265, 1937.

S. Lloyd, Universal quantum simulators, Science, vol.273, issue.5278, pp.1073-1078, 1996.

T. H. Johnson, S. R. Clark, and D. Jaksch, What is a quantum simulator ?, EPJ Quantum Technology, vol.1, issue.1, p.10, 2014.

B. C. Joseph-w-britton, A. C. Sawyer, C. Keith, J. K. Wang, H. Freericks et al., Engineered two-dimensional ising interactions in a trapped-ion quantum simulator with hundreds of spins, Nature, vol.484, pp.489-92, 2012.

J. Dalibard-&-sylvain-nascimbène and I. Bloch, Quantum simulations with ultracold quantum gases, Nature physics, vol.8, pp.267-276, 2012.

M. Chang, K. Kim, S. Korenblit, E. E. Edwards, R. Islam et al., Quantum simulation of frustrated ising spins with trapped ions, Nature, vol.465, pp.590-593, 2010.

J. T. Barreiro, M. Müller, P. Schindler, D. Nigg, T. Monz et al., An open-system quantum simulator with trapped ions, Nature, vol.470, pp.486-491, 2011.

B. P. Lanyon, C. Hempel, D. Nigg, M. Müller, R. Gerritsma et al., Universal digital quantum simulation with trapped ions, Science, 2011.

A. Aspuru and -. Walther, Photonic quantum simulators, Nature physics, vol.8, pp.285-291, 2012.

E. Hakan, &. Türeci, A. Andrew, and . Houck, On-chip quantum simulation with superconducting circuits, Nature physics, vol.8, pp.292-299, 2012.

A. Sylvain-schwartz-hannes-bernien, H. Keesling, A. Levine, H. Omran, S. Pichler et al., Probing many-body dynamics on a 51-atom quantum simulator, Nature, vol.551, pp.579-584, 2017.

E. Manousakis, A quantum-dot array as model for copper-oxide superconductors : a dedicated quantum simulator for the many-fermion problem, J. Low. Temp, vol.126, pp.1501-1513, 2002.

L. A. Wu, M. S. Byrd, and D. A. Lidar, Polynomial-time simulation of pairing models on a quantum computer, Phys. Rev. Lett, vol.89, p.57904, 2002.

C. A. Regal, M. Greiner, and D. S. Jin, Observation of resonance condensation of fermionic atom pairs, Phys. Rev. Lett, vol.92, p.40403, 2004.

M. W. Zwierlein, J. B. Abo-shaeer, A. Schirotzek, C. H. Schunck, and W. Ketterle, Vortices and superfluidity in a strongly interacting Fermi gas, Nature, vol.435, pp.1047-1051, 2005.

T. Hensgens, T. Fujita, L. Janssen, X. Li, C. J. Van-diepen et al., Quantum simulation of a fermi-hubbard model using a semiconductor quantum dot array, Nature, vol.548, pp.70-73, 2017.

J. Dalibard, F. Gerbier, G. Juzeliunas, and P. Ohberg, Colloquium : artificial gauge potentials for neutral atoms, Rev. Mod. Phys, vol.83, pp.1523-1543, 2011.

U. J. Wiese, Ultracold quantum gases and lattice systems : quantum simulation of lattice gauge theories, Annalen der Physik, vol.525, issue.10, pp.776-796, 2013.

S. Barrett, K. Hammerer, S. Harrison, T. E. Northup, and T. J. Osborne, Simulating quantum fields with cavity QED, Phys. Rev. Lett, vol.110, p.90501, 2013.

D. Marcos, P. Rabl, E. Rico, and P. Zoller, Superconducting circuits for quantum simulation of dynamical gauge fields, Phys. Rev. Lett, vol.111, p.110504, 2013.

J. Q. You and F. Nori, Atomic physics and quantum optics using superconducting circuits, Nature, vol.474, pp.589-597, 2011.

D. Banerjee, M. Bögli, M. Dalmonte, E. Rico, P. Stebler et al., Atomic quantum simulation of U(n) and SU(n) non-abelian lattice gauge theories, Phys. Rev. Lett, vol.110, p.125303, 2013.

I. M. Georgescu, S. Ashhab, T. Nakatsukasa, and F. Nori, Analog quantum simulation of the atomic nucleus with a fermionic condensat, 2011.

T. Xin, . Shi-jie, J. S. Wei, E. Pedernales, G. Solano et al., Quantum simulation of quantum channels in nuclear magnetic resonance, Phys. Rev. A, vol.96, p.62303, 2017.

J. D. Whitfield, B. P. Lanyon, G. G. Gillett, M. E. Goggin, M. P. Almeida et al., Towards quantum chemistry on a quantum computer, Nature chemistry, vol.2, pp.106-111, 2010.

D. Lu, . Xu, . Nanyang, . Xu, . Boruo et al., Experimental study of quantum simulation for quantum chemistry with a nuclear magnetic resonance simulator, Philosophical Transactions of the Royal Society of London A : Mathematical, Physical and Engineering Sciences, vol.370, pp.4734-4747, 1976.

A. Mezzacapo, A. Kandala, K. Temme, M. Takita, M. Brink et al., Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets, Nature, vol.549, pp.242-246, 2017.

U. L. Andersen, Quantum optics : Squeezing more out of ligo, Nat. Photonics, vol.7, pp.589-590, 2013.

Y. Ma, H. Miao, B. Heyun, H. Pang, P. Matthew et al., Proposal for gravitational-wave detection beyond the standard quantum limit through EPR entanglement, Nat. Phys, issue.4118, 2017.

P. Walther, J. Pan, M. Aspelmeyer, R. Ursin, S. Gasparoni et al., De Broglie wavelength of a non-local four-photon state, Nature, vol.429, pp.158-161, 2004.

M. W. Mitchell, J. S. Lundeen, and A. M. Steinberg, Super-resolving phase measurements with a multiphoton entangled state, Nature, vol.429, pp.161-164, 2004.

B. L. Higgins, D. W. Berry, S. D. Bartlett, H. M. Wiseman, and G. J. Pryde, Entanglement-free Heisenberg-limited phase estimation, Nature, vol.450, pp.393-396, 2007.

T. Nagata, R. Okamoto, J. L. O'brien, K. Sasaki, and S. Takeuchi, Beating the standard quantum limit with four-entangled photons, Science, vol.316, issue.5825, pp.726-729, 2007.

I. Afek, O. Ambar, and Y. Silberberg, High-N00N states by mixing quantum and classical light, Science, vol.328, issue.5980, pp.879-881, 2010.

Y. Israel, S. Rosen, and Y. Silberberg, Supersensitive polarization microscopy using N00N states of light, Phys. Rev. Lett, vol.112, p.103604, 2014.

R. C. Jaklevic, J. Lambe, A. H. Silver, and J. E. Mercereau, Quantum interference effects in josephson tunneling, Phys. Rev. Lett, vol.12, pp.159-160, 1964.

K. Sternickel and A. I. Braginski, Biomagnetism using squids : status and perspectives, Superconductor Science and Technology, vol.19, issue.3, 2006.

W. Wernsdorfer, J. Cleuziou, V. Bouchiat, T. Ondarçuhu, and &. Monthioux, Carbon nanotube superconducting quantum interference device, Nature nanotechnology, vol.1, pp.53-59, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00700071

C. D. Schmidt, P. Leslie, K. Bick, M. , T. D. Foley et al., Getmag ? a squid magnetic tensor gradiometer for mineral and oil exploration, Exploration Geophysics, vol.35, pp.297-305, 2004.

D. Drung, C. Abmann, J. Beyer, A. Kirste, M. Peters et al., Highly sensitive and easy-to-use squid sensors, IEEE Transactions on Applied Superconductivity, vol.17, issue.2, pp.699-704, 2007.

E. Flynn and H. Bryant, A biomagnetic system for in vivo cancer imaging, Physics in Medicine & Biology, vol.50, issue.6, p.1273, 2005.

H. J. Hathaway, K. S. Butler, N. L. Adolphi, D. M. Lovato, R. Belfon et al.,

R. S. Huber, E. R. Larson, and . Flynn, Detection of breast cancer cells using targeted magnetic nanoparticles and ultra-sensitive magnetic field sensors, Breast Cancer Research, vol.13, issue.5, p.108, 2011.

P. D. Leyma, T. Haro, E. C. Karaulanov, and . Vreeland, Magnetic relaxometry as applied to sensitive cancer detection and localization, Biomedical Engineering / Biomedizinische Technik, vol.60, issue.5, pp.445-455, 2015.

M. Hauth, C. Freier, . Schkolnik, . Leykauf, H. Schilling et al., Mobile quantum gravity sensor with unprecedented stability, J. Phys. : Conf. Ser, vol.723, 2016.

K. S. Hardman, P. J. Everitt, G. D. Mcdonald, P. Manju, P. B. Wigley et al., Simultaneous precision gravimetry and magnetic gradiometry with a bose-einstein condensate : A high precision, quantum sensor, Phys. Rev. Lett, vol.117, p.138501, 2016.

, Quantum gravity detector will use atom clouds to survey for oil, 2017.

R. S. Aspden-&-jessica, E. C. Bell-&-robert, W. Boyd-&-miles, J. P. Peter, and A. Morris, Imaging with a small number of photons, Nature communcations, vol.6, issue.5913, 2015.

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh et al., 3d computational imaging with single-pixel detectors, Science, vol.340, issue.6134, pp.844-847, 2013.

P. J. Martin, F. C. Lavery, S. M. Speirits, M. J. Barnett, and . Padgett, Detection of a spinning object using light's orbital angular momentum, Science, vol.341, issue.6145, pp.537-540, 2013.

C. Christoffer-wittmann, D. Gabriel, R. Sych, W. Dong, U. L. Mauerer et al., A generator for unique quantum random numbers based on vacuum states, nature photonics, vol.4, pp.711-715, 2010.

M. Ren, Y. Wu, Y. Liang, G. Jian, H. Wu et al., Quantum random-number generator based on a photon-number-resolving detector, Phys. Rev. A, vol.83, p.23820, 2011.

B. Sanguinetti, A. Martin, H. Zbinden, and N. Gisin, Quantum random number generation on a mobile phone, Phys. Rev. X, vol.4, p.31056, 2014.

T. Lunghi, J. B. Brask, C. Lim, Q. Lavigne, J. Bowles et al., Self-testing quantum random number generator, Phys. Rev. Lett, vol.114, p.150501, 2015.

A. Acín-&-lluis and . Masanes, Certified randomness in quantum physics, Nature, vol.540, pp.213-219, 2016.

X. Ma, Z. Cao, B. Qi-&-zhen, and . Zhang, Quantum random number generation, Nature pj Quantum information, vol.2, issue.16021, 2016.

M. Herrero, -. , and J. Garcia-escartin, Quantum random number generators, Rev. Mod. Phys, vol.89, p.15004, 2017.

. Bibliographie,

H. Lo, X. Ma, and K. Chen, Decoy state quantum key distribution, Phys. Rev. Lett, vol.94, p.230504, 2005.

W. Helwig, W. Mauerer, and C. Silberhorn, Multimode states in decoy-based quantum-key-distribution protocols, Phys. Rev. A, vol.80, p.52326, 2009.

X. Ma, B. Qi, Y. Zhao, and H. Lo, Practical decoy state for quantum key distribution, Phys. Rev. A, vol.72, p.12326, 2005.

W. Wei, Z. Zhang, M. Gao, and Z. Ma, Decoystate quantum key distribution with biased basis choice, Scientific Reports, vol.3, issue.2453, 2013.

S. Pironio-&-antonio-acín-lluís and . Masanes, Secure device-independent quantum key distribution with causally independent measurement devices, nature communications, vol.2, issue.238, 2011.

C. Branciard, E. G. Cavalcanti, S. P. Walborn, V. Scarani, and H. M. Wiseman, One-sided device-independent quantum key distribution : Security, feasibility, and the connection with steering, Phys. Rev. A, vol.85, p.10301, 2012.

U. Vazirani and T. Vidick, Fully device-independent quantum key distribution, Phys. Rev. Lett, vol.113, p.140501, 2014.

H. Lo, M. Curty, and B. Qi, Measurement-device-independent quantum key distribution, Phys. Rev. Lett, vol.108, p.130503, 2012.

C. Wang, S. Zhen-qiang-yin, W. Wang, G. Chen, Z. Guo et al., Measurement-device-independent quantum key distribution robust against environmental disturbances, Optica, vol.4, issue.9, pp.1016-1023, 2017.

R. Valivarthi, Q. Zhou, C. John, F. Marsili, B. Varun et al., A cost-effective measurement-deviceindependent quantum key distribution system for quantum networks, Quantum Science and Technology, vol.2, pp.4-5, 2017.

Z. Zhou, A. Li, X. Hu, and C. Wang, Measurement-device-independent quantum key distribution via quantum blockade, Scientific Reports, vol.8, issue.4115, 2018.

T. Hirano, T. Ichikawa, T. Matsubara, M. Ono, Y. Oguri et al., Implementation of continuousvariable quantum key distribution with discrete modulation, Quantum Science and Technology, vol.2, p.24010, 2017.

, Continuous-variable quantum key distribution with gaussian modulation-the theory of practical implementations, 2017.

M. Lucamarini, K. A. Patel, J. F. Dynes, B. Fröhlich, A. W. Sharpe et al., Efficient decoy-state quantum key distribution with quantified security, Opt. Express, vol.21, issue.21, pp.24550-24565, 2013.

D. Stucki, N. Gisin, O. Guinnard, G. Ribordy, and H. Zbinden, Quantum key distribution over 67 km with a plug and play system, New J. Phys, vol.4, pp.1-8, 2002.

B. Korzh, C. Lim, R. Houlmann, N. Gisin, M. J. Li et al., Provably secure and practical quantum key distribution over 307km of optical fibre, Nature Photonics, vol.9, pp.163-168, 2015.

T. Hua-lei-yin, Z. Chen, H. Yu, L. Liu, Y. You et al., Measurementdevice-independent quantum key distribution over a 404 km optical fiber, Phys. Rev. Lett, vol.117, p.190501, 2016.

V. Scarani, H. Bechmann-pasquinucci, and N. J. Cerf, Miloslav Du?ek, Norbert Lütkenhaus, and Momtchil Peev, Rev. Mod. Phys, vol.81, pp.1301-1350, 2009.

D. Aggarwal, G. K. Brennen, T. Lee, M. Santha, and M. Tomamichel, Quantum attacks on bitcoin, and how to protect against them, 2017.

E. Gibney, Europe plans giant billion-euro quantum technologies project, Nature, vol.532, issue.7600, 2016.

E. Conover, Google moves toward quantum supremacy with 72-qubit computer, sciencesnews.org, vol.193, issue.6, p.13, 2018.

F. Kaiser, T. Coudreau, P. Milman, D. B. Ostrowsky, and S. Tanzilli, Entanglement-enabled delayed-choice experiment, Science, vol.338, issue.6107, pp.637-640, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00755263

D. F. Walls-&-gerard and J. Milburn, Quantum Optics, 2010.

A. Aspect and &. Grynberg, Introduction to Quantum Optics : From the Semi-classical Approach to Quantized Light, 2010.

R. Loudon, The Quantum Theory of Light, 2000.

X. T. Zou and L. Mandel, Photon-antibunching and sub-poissonian photon statistics, Phys. Rev. A, vol.41, pp.475-476, 1990.

M. Fox, Quantum Optics : An introduction, 2006.

R. Hanbury-brown and &. R. Twiss, Correlation between photons in two coherent beams of light, Nature, vol.177, pp.27-29, 1956.

H. Barros, T. E. Stute, C. Northup, P. Russo, R. Schmidt et al., Deterministic singlephoton source from a single ion, New Journal of Physics, vol.11, issue.10, p.103004, 2009.

B. Casabone, A. Stute, P. Schindler, T. Monz, P. O. Schmidt et al., Tunable ion-photon entanglement in an optical cavity, Nature, vol.485, pp.482-485, 2012.

T. Wilk, S. C. Webster, A. Kuhn, and G. Rempe, Single-atom single-photon quantum interface, Science, vol.317, issue.5837, pp.488-490, 2007.

J. Volz, M. Weber, D. Schlenk, W. Rosenfeld, J. Vrana et al., Observation of entanglement of a single photon with a trapped atom, Phys. Rev. Lett, vol.96, p.30404, 2006.

C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, Stable solid-state source of single photons, Phys. Rev. Lett, vol.85, pp.290-293, 2000.

Y. , C. E. Togan, A. S. Trifonov, L. Jiang, J. Maze et al., Quantum entanglement between an optical photon and a solid-state spin qubit, Nature, vol.466, pp.730-734, 2010.

D. Englund and &. Aharonovich, Solid-state single-photon emitters, Nature photonics, vol.10, pp.631-641, 2016.

A. Imamoglu, P. Michler, M. D. Mason, P. J. Carson, G. F. Strouse et al., Quantum correlation among photons from a single quantum dot at room temperature, Nature, vol.406, pp.968-970, 2000.

B. Lounis, H. A. Bechtel, D. Gerion, P. Alivisatos, and W. E. Moerner, Photon antibunching in single cdse/zns quantum dot fluorescence, Chemical Physics Letters, vol.329, issue.5, pp.399-404, 2000.
URL : https://hal.archives-ouvertes.fr/hal-01550470

V. Zwiller, H. Blom, P. Jonsson, N. Panev, S. Jeppesen et al., Single quantum dots emit single photons at a time : Antibunching experiments, Applied Physics Letters, vol.78, issue.17, pp.2476-2478, 2001.

Z. Yuan, B. E. Kardynal, R. M. Stevenson, A. J. Shields, C. J. Lobo et al., Electrically driven single-photon source, Science, vol.295, issue.5552, pp.102-105, 2002.

A. E. Halawany and M. Leuenberger, Electrically driven single photon source at high temperature, Journal of Physics : Condensed Matter, vol.28, issue.8, p.85303, 2016.

C. Santori, M. Pelton, G. Solomon, Y. Dale, and Y. Yamamoto, Triggered single photons from a quantum dot, Phys. Rev. Lett, vol.86, pp.1502-1505, 2001.
DOI : 10.1109/qels.2001.962045

URL : http://arxiv.org/pdf/cond-mat/0012379

G. Cronenberg, S. Barz, and A. Walther, Heralded generation of entangled photon pairs, Nature photonics, vol.4, pp.553-556, 2010.

A. Ngah-lutfi-arif, L. Olivier, D. Laurent, T. Virginia, and . Sébastien, Ultra-fast heralded single photon source based on telecom technology, Laser and Photonics Reviews, vol.9, issue.2, pp.1-5, 2015.

W. Tittel and G. Weihs, Photonic entanglement for fundamental tests and quantum communication, Quantum Information and Computation, vol.1, pp.3-56, 2001.

S. Tanzilli, A. Martin, F. Kaiser, M. P. De-micheli, O. Alibart et al., On the genesis and evolution of integrated quantum optics, Laser and Photonics Reviews, vol.6, issue.1, pp.115-143
URL : https://hal.archives-ouvertes.fr/hal-00613987

N. G. Walker and G. R. Walker, Polarization control for coherent communications, Journal of Lightwave Technology, vol.8, issue.3, pp.438-458, 1990.
DOI : 10.1109/50.50740

C. Peng, J. Zhang, D. Yang, W. Gao, H. Ma et al., Experimental long-distance decoy-state quantum key distribution based on polarization encoding, Phys. Rev. Lett, vol.98, p.10505, 2007.
DOI : 10.1103/physrevlett.98.010505

URL : http://arxiv.org/pdf/quant-ph/0607129

J. Chen, G. Wu, Y. Li, E. Wu, and H. Zeng, Active polarization stabilization in optical fibers suitable for quantum key distribution, Opt. Express, vol.15, issue.26, pp.17928-17936, 2007.
DOI : 10.1364/oe.15.017928

G. Xavier, . Walenta, G. Vilela-de-faria, . Temporão, H. Gisin et al., Experimental polarization encoded quantum key distribution over optical fibres with realtime continuous birefringence compensation, New Journal of Physics, vol.11, issue.4, p.45015, 2009.
DOI : 10.1088/1367-2630/11/4/045015

URL : http://iopscience.iop.org/article/10.1088/1367-2630/11/4/045015/pdf

J. D. Franson, Bell inequality for position and time, Phys. Rev. Lett, vol.62, pp.2205-2208, 1989.
DOI : 10.1103/physrevlett.62.2205

J. Brendel, E. Mohler, and W. Martienssen, Experimental test of bell's inequality for energy and time, Europhysics Letters), vol.20, issue.7, p.575, 1992.
DOI : 10.1209/0295-5075/20/7/001

J. Brendel, N. Gisin, W. Tittel, and H. Zbinden, Pulsed energy-time entangled twin-photon source for quantum communication, Phys. Rev. Lett, vol.82, pp.2594-2597, 1999.
DOI : 10.1103/physrevlett.82.2594

URL : http://arxiv.org/pdf/quant-ph/9809034

W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, Quantum cryptography using entangled photons in energy-time bell states, Phys. Rev. Lett, vol.84, pp.4737-4740, 2000.
DOI : 10.1103/physrevlett.84.4737

S. Tanzilli, A. Martin, F. Kaiser, M. P. De-micheli, O. Alibart et al., On the genesis and evolution of integrated quantum optics, Laser & Photonics Reviews, vol.6, issue.1, pp.115-143, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00613987

J. Wang, A. Santamato, P. Jiang, D. Bonneau, E. Engin et al., Gallium arsenide (gaas) quantum photonic waveguide circuits, Optics Communications, vol.327, pp.49-55, 2014.
DOI : 10.1016/j.optcom.2014.02.040

URL : http://arxiv.org/pdf/1403.2635

C. P. Dietrich, A. Fiore, M. G. Thompson, M. Kamp, and S. Höfling, Gaas integrated quantum photonics : Towards compact and multi-functional quantum photonic integrated circuits, Laser & Photonics Reviews, vol.10, issue.6, pp.857-857, 2016.
DOI : 10.1002/lpor.201500321

URL : https://research-repository.st-andrews.ac.uk/bitstream/10023/11665/1/Hofling_2016_LPR_GaAS_AAM.pdf

C. Xiong, L. G. Helt, A. C. Judge, G. D. Marshall, M. J. Steel et al., Quantum-correlated photon pair generation in chalcogenide as2s3 waveguides, Opt. Express, vol.18, issue.15, pp.16206-16216, 2010.
DOI : 10.1364/oe.18.016206

A. Ródenas, G. Martin, B. Arezki, N. Psaila, G. Jose et al., Three-dimensional mid-infrared photonic circuits in chalcogenide glass, Opt. Lett, vol.37, issue.3, pp.392-394, 2012.

O. Lutfi-arif-ngah, L. Alibart, . Labonté, D. Virginia, S. Auria et al., Ultra-fast heralded single photon source based on telecom technology, Laser & Photonics Reviews, vol.9, issue.2, pp.1-5, 2014.

P. Vergyris, T. Meany, T. Lunghi, G. Sauder, J. Downes et al., On-chip generation of heralded photon-number states, Scientific Reports, vol.6, issue.35975, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01388643

O. Peter, M. Weigel, C. T. Savanier, A. T. Derose, A. L. Pomerene et al., Lightwave circuits in lithium niobate through hybrid waveguides with silicon photonics, Scientific Reports, vol.6, issue.22301, 2016.

L. Chang, Y. Li, N. Volet, L. Wang, J. Peters et al., Thin film wavelength converters for photonic integrated circuits, Optica, vol.3, issue.5, pp.531-535, 2016.

A. Boes, B. Corcoran, L. Chang, J. Bowers, and A. Mitchell, Status and potential of lithium niobate on insulator (lnoi) for photonic integrated circuits, Laser and Photonics Reviews, vol.12, issue.4, p.1700256, 2018.

M. Muhammad-rodlin-billah, T. Blaicher, P. Hoose, P. Dietrich, N. Marin-palomo et al., Hybrid integration of silicon photonics circuits and inp lasers by photonic wire bonding, Optica, vol.5, issue.7, pp.876-883, 2018.

C. H. Bennett and G. Brassard, Quantum cryptography : Public key distribution and coin tossing, Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, vol.175, p.8, 1984.

H. Charles, G. Bennett, and . Brassard, Theoretical Aspects of Quantum Cryptography-celebrating 30 years of BB84, Theoretical Computer Science, vol.560, pp.7-11, 2014.

A. K. Ekert, Quantum cryptography based on bell's theorem, Phys. Rev. Lett, vol.67, pp.661-663, 1991.

C. H. Bennett, G. Brassard, and N. David-mermin, Quantum cryptography without bell's theorem, Phys. Rev. Lett, vol.68, pp.557-559, 1992.

R. A. Soref and J. P. Lorenzo, All-silicon active and passive guided-wave components for lambda = 1.3 and 1.6 microns, IEEE Journal of Quantum Electronics, vol.22, pp.873-879, 1986.

. Bibliographie,

B. Jalali and S. Fathpour, Silicon photonics, Journal of Lightwave Technology, vol.24, pp.4600-4615, 2006.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, All-optical control of light on a silicon chip, Nature, vol.431, pp.1081-1084, 2004.

M. Lipson, Guiding, modulating, and emitting light on silicon-challenges and opportunities, Journal of Lightwave Technology, vol.23, p.4222, 2005.

S. Azzini, D. Grassani, M. Galli, L. C. Andreani, M. Sorel et al., From classical four-wave mixing to parametric fluorescence in silicon microring resonators, Opt. Lett, vol.37, issue.18, pp.3807-3809, 2012.

D. Bonneau, J. W. Silverstone, K. Ohira, N. Suzuki, H. Yoshida et al., On-chip quantum interference between silicon photon-pair sources, Nature Photonics, vol.8, pp.104-108, 2013.

C. Wei, X. Jiang, J. Lu, O. Zhang, Q. Painter et al., Silicon-chip source of bright photon pairs, Opt. Express, vol.23, issue.16, pp.20884-20904, 2015.

R. Wakabayashi, M. Fujiwara, K. Ichiro-yoshino, Y. Nambu, M. Sasaki et al., Time-bin entangled photon pair generation from si micro-ring resonator, Opt. Express, vol.23, issue.2, pp.1103-1113, 2015.

S. F. Preble, M. L. Fanto, J. A. Steidle, C. C. Tison, G. A. Howland et al., On-chip quantum interference from a single silicon ringresonator source, Phys. Rev. Applied, vol.4, p.21001, 2015.

R. Santagati, J. W. Silverstone, D. Bonneau, M. J. Strain, M. Sorel et al., Qubit entanglement between ring-resonator photon-pair sources on a silicon chip, Nature Communications, vol.6, issue.7948, 2015.

A. Simbula, D. Grassani, S. Pirotta, M. Galli, M. Menotti et al., Energy correlations of photon pairs generated by a silicon microring resonator probed by stimulated four wave mixing, Scientific Reports, vol.6, issue.23564, 2016.

Q. Lin, O. J. Painter, and G. P. Agrawal, Nonlinear optical phenomena in silicon waveguides : Modeling and applications, Opt. Express, vol.15, issue.25, pp.16604-16644, 2007.

H. Nicholas, C. , G. Davide, S. Angelica, M. Pant et al., Integrated source of spectrally filtered correlated photons for large-scale quantum photonic systems, Phys. Rev. X, vol.4, p.41047, 2014.

C. Reimer, L. Caspani, M. Clerici, M. Ferrera, M. Kues et al., Integrated frequency comb source of heralded single photons, Opt. Express, vol.22, issue.6, pp.6535-6546, 2014.

D. Grassani, S. Azzini, M. Liscidini, M. Galli, M. J. Strain et al., Micrometer-scale integrated silicon source of time-energy entangled photons, Optica, vol.2, issue.2, pp.88-94, 2015.

C. Xiong, X. Zhang, A. Mahendra, J. He, D. Choi et al., Compact and reconfigurable silicon nitride time-bin entanglement circuit, Optica, vol.2, issue.8, pp.724-727, 2015.

. Bibliographie,

R. Steven, M. Daniel, L. Xiyuan, . Jiang, C. Wei et al., High visibility timeenergy entangled photons from a silicon nanophotonic chip, ACS Photonics, vol.3, issue.10, pp.1754-1761, 2016.

R. Christian, K. Michael, R. Piotr, W. Benjamin, G. Fabio et al., Generation of multiphoton entangled quantum states by means of integrated frequency combs, Science, vol.351, issue.6278, pp.1176-1180, 2016.

S. Clemmen, K. Phan-huy, W. Bogaerts, R. G. Baets, . Ph et al., Continuous wave photon pair generation in silicon-on-insulator waveguides and ring resonators, Opt. Express, vol.17, issue.19, pp.16558-16570, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00445350

D. Marcelo, . Ong-jun-rong, A. Shehata, T. Bahgat, A. Alberto et al., Telecommunications-band heralded single photons from a silicon nanophotonic chip, Applied Physics Letters, vol.100, issue.26, p.261104, 2012.

Y. Guo, W. Zhang, N. Lv, Q. Zhou, Y. Huang et al., The impact of nonlinear losses in the silicon micro-ring cavities on cw pumping correlated photon pair generation, Opt. Express, vol.22, issue.3, pp.2620-2631, 2014.

M. Cale, J. M. Gentry, M. T. Shainline, M. J. Wade, S. D. Stevens et al., Quantum-correlated photon pairs generated in a commercial 45&#x2009 ;&#x2009 ;nm complementary metal-oxide semiconductor microelectronic chip, Optica, vol.2, issue.12, pp.1065-1071, 2015.

J. A. Steidle, M. L. Fanto, C. C. Tison, Z. Wang, S. F. Preble et al., High spectral purity silicon ring resonator photon-pair source, Proc. SPIE, vol.9500, 2015.

M. Savanier, R. Kumar, and S. Mookherjea, Photon pair generation from compact silicon microring resonators using microwatt-level pump powers, Opt. Express, vol.24, issue.4, pp.3313-3328, 2016.

E. Engin, D. Bonneau, C. M. Natarajan, A. S. Clark, M. G. Tanner et al., Photon pair generation in a silicon micro-ring resonator with reverse bias enhancement, Opt. Express, vol.21, issue.23, pp.27826-27834, 2013.

J. Suo, S. Dong, W. Zhang, Y. Huang, and J. Peng, Generation of hyperentanglement on polarization and energy-time based on a silicon micro-ring cavity, Opt. Express, vol.23, issue.4, pp.3985-3995, 2015.

M. Fujiwara, R. Wakabayashi, M. Sasaki, and M. Takeoka, Wavelength division multiplexed and double-port pumped time-bin entangled photon pair generation using si ring resonator, Opt. Express, vol.25, issue.4, pp.3445-3453, 2017.

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P. O. Hedekvist, Fiber-based optical parametric amplifiers and their applications, IEEE Journal of Selected Topics in Quantum Electronics, vol.8, issue.3, pp.506-520, 2002.

A. C. Turner-mark, A. Foster, J. E. Sharping, B. S. Schmidt, M. Lipson et al., Broad-band optical parametric gain on a silicon photonic chip, Nature, vol.441, pp.960-963, 2006.

D. Dimitropoulos, V. Raghunathan, R. Claps, and B. Jalali, Phase-matching and nonlinear optical processes in silicon waveguides, Opt. Express, vol.12, issue.1, pp.149-160, 2004.

. Bibliographie,

A. C. Turner, C. Manolatou, B. S. Schmidt, M. Lipson, M. A. Foster et al., Tailored anomalous group-velocity dispersion in silicon channel waveguides, Opt. Express, vol.14, issue.10, pp.4357-4362, 2006.

M. A. Foster, A. C. Turner, M. Lipson, and A. L. Gaeta, Nonlinear optics in photonic nanowires, Opt. Express, vol.16, issue.2, pp.1300-1320, 2008.

W. Peter-deheyn, T. Bogaerts, K. Van-vaerenbergh, . Devos, . Shankar-kumar et al., Dries VanThourhout, and Roel Baets, Laser Photonics Rev, vol.6, issue.1, pp.47-73, 2012.

A. Yariv, Critical coupling and its control in optical waveguide-ring resonator systems, IEEE Photonics Technology Letters, vol.14, issue.4, 2002.

J. Niehusmann, A. Vörckel, P. H. Bolivar, T. Wahlbrink, W. Henschel et al., Ultrahigh-quality-factor silicon-on-insulator microring resonator, Opt. Lett, vol.29, issue.24, pp.2861-2863, 2004.

L. Luo, G. S. Wiederhecker, J. Cardenas, C. Poitras, and M. Lipson, High quality factor etchless silicon photonic ring resonators, Opt. Express, vol.19, issue.7, pp.6284-6289, 2011.

M. J. Strain, C. Lacava, L. Meriggi, I. Cristiani, and M. Sorel, Tunable q-factor silicon microring resonators for ultra-low power parametric processes, Opt. Lett, vol.40, issue.7, pp.1274-1277, 2015.

D. Cai, J. Lu, C. Chen, C. Lee, C. Lin et al., High q-factor microring resonator wrapped by the curved waveguide, Scientific Reports, vol.5, issue.10078, 2015.

L. G. Helt, M. Liscidini, and J. E. Sipe, How does it scale ? comparing quantum and classical nonlinear optical processes in integrated devices, J. Opt. Soc. Am. B, vol.29, issue.8, pp.2199-2212, 2012.

G. Priem, P. Dumon, W. Bogaerts, D. Van-thourhout, G. Morthier et al., Optical bistability and pulsating behaviour in silicon-on-insulator ring resonator structures, Opt. Express, vol.13, issue.23, pp.9623-9628, 2005.

F. Mazeas, M. Traetta, M. Bentivegna, F. Kaiser, D. Aktas et al.,

L. Vivien, G. Sauder, L. Labonté, and S. Tanzilli, High-quality photonic entanglement for wavelength-multiplexed quantum communication based on a silicon chip, Opt. Express, vol.24, issue.25, pp.28731-28738, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01461974

M. Piekarek, D. Bonneau, S. Miki, T. Yamashita, M. Fujiwara et al., High-extinction ratio integrated photonic filters for silicon quantum photonics, Opt. Lett, vol.42, issue.4, pp.815-818, 2017.

D. Pérez-galacho, C. Alonso-ramos, F. Mazeas, X. L. Roux, D. Oser et al.,

L. Vivien, Optical pump-rejection filter based on silicon sub-wavelength engineered photonic structures, Opt. Lett, vol.42, issue.8, pp.1468-1471, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01527014

J. Wang, Y. Xuan, M. Qi, H. Huang, Y. Li et al., Broadband and fabricationtolerant on-chip scalable mode-division multiplexing based on mode-evolution counter-tapered couplers, Opt. Lett, vol.40, issue.9, pp.1956-1959, 2015.

O. Alibart, D. Virginia, M. D. Auria, F. Micheli, F. Doutre et al., Quantum photonics at telecom Bibliographie wavelengths based on lithium niobate waveguides, Journal of Optics, vol.18, issue.10, p.104001, 2016.

F. Kaiser, P. Vergyris, D. Aktas, C. Babin, L. Labonte et al., Quantum enhancement of accuracy and precision in optical interferometry, Light : Science & Applications, vol.7, issue.17163, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01813813

K. Sanaka, K. Kawahara, and T. Kuga, New high-efficiency source of photon pairs for engineering quantum entanglement, Phys. Rev. Lett, vol.86, pp.5620-5623, 2001.

S. Tanzilli, H. De-riedmatten, H. Tittel, H. Zbinden, P. Baldi et al., Highly efficient photon-pair source using periodically poled lithium niobate waveguide, Electronics Letters, vol.37, issue.1, pp.26-28, 2001.
DOI : 10.1049/el:20010009

URL : https://hal.archives-ouvertes.fr/hal-00432358

S. Tanzilli, W. Tittel, H. De-riedmatten, H. Zbinden, P. Baldi et al., Ppln waveguide for quantum communication, The European Physical Journal D-Atomic, Molecular, Optical and Plasma Physics, vol.18, pp.155-160, 2002.
DOI : 10.1140/epjd/e20020019

URL : https://hal.archives-ouvertes.fr/hal-00110805

R. T. Thew, S. Tanzilli, W. Tittel, H. Zbinden, and N. Gisin, Experimental investigation of the robustness of partially entangled qubits over 11 km, Phys. Rev. A, vol.66, p.62304, 2002.

S. Arahira, H. Murai, and H. Sasaki, Generation of highly stable wdm time-bin entanglement by cascaded sum-frequency generation and spontaneous parametric downconversion in a ppln waveguide device, Opt. Express, vol.24, issue.17, pp.19581-19591, 2016.

A. Han-chuen-lim, H. Yoshizawa, K. Tsuchida, and . Kikuchi, Stable source of high quality telecom-band polarization-entangled photon-pairs based on a single, pulse-pumped, short ppln waveguide, Opt. Express, vol.16, issue.17, pp.12460-12468, 2008.

A. Han-chuen-lim, H. Yoshizawa, K. Tsuchida, and . Kikuchi, Broadband source of telecom-band polarization-entangled photon-pairs for wavelength-multiplexed entanglement distribution, Opt. Express, vol.16, issue.20, pp.16052-16057, 2008.

A. Djeylan, F. Bruno, K. Florian, L. Tommaso, L. Laurent et al., Entanglement distribution over 150 km in wavelength division multiplexed channels for quantum cryptography, Laser & Photonics Reviews, vol.10, issue.3, pp.451-457, 2016.

T. Suhara, H. Okabe, and M. Fujimura, Generation of polarization-entangled photons by type-ii quasi-phase-matched waveguide nonlinear-optic device, IEEE Photonics Technology Letters, vol.19, issue.14, pp.1093-1095, 2007.

A. Martin, H. Issautier, . Herrmann, D. Sohler, . Ostrowsky et al., A polarization entangled photon-pair source based on a type-ii ppln waveguide emitting at a telecom wavelength, New Journal of Physics, vol.12, issue.10, p.103005, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00511969

F. Kaiser, L. Issautier, . Ngah, . Herrmann, . Sohler et al., High-quality polarization entanglement state preparation and manipulation in standard telecommunication channels, New Journal of Physics, vol.14, issue.8, p.85015, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00730932

A. Yoshizawa, R. Kaji, and H. Tsuchida, Generation of polarisation-entangled photon pairs at 1550 nm using two ppln waveguides, Electronics Letters, vol.39, issue.7, pp.621-622, 2003.

A. Yoshizawa and H. Tsuchida, Generation of polarization-entangled photon pairs in 1550nm band by a fiber-optic two-photon interferometer, Applied Physics Letters, vol.85, issue.13, pp.2457-2459, 2004.

I. Herbauts, B. Blauensteiner, A. Poppe, T. Jennewein, and H. Hübel, Demonstration of active routing of entanglement in a multi-user network, Opt. Express, vol.21, issue.23, pp.29013-29024, 2013.

H. Jin, F. M. Liu, P. Xu, J. L. Xia, M. L. Zhong et al., On-chip generation and manipulation of entangled photons based on reconfigurable lithium-niobate waveguide circuits, Phys. Rev. Lett, vol.113, p.103601, 2014.

. Bibliographie,

R. Kruse, L. Sansoni, S. Brauner, R. Ricken, C. S. Hamilton et al., Dual-path source engineering in integrated quantum optics, Phys. Rev. A, vol.92, p.53841, 2015.

S. Frank, S. Alexander, S. , T. James, C. Wu et al., Tunable generation of entangled photons in a nonlinear directional coupler, Laser & Photonics Reviews, vol.10, issue.1, pp.131-136, 2016.

S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi et al., A photonic quantum information interface, Nature, vol.437, pp.116-120, 2005.
DOI : 10.1038/nature04009

URL : https://hal.archives-ouvertes.fr/hal-00511973

N. Curtz, R. Thew, C. Simon, N. Gisin, and H. Zbinden, Coherent frequencydown-conversion interface for quantum repeaters, Opt. Express, vol.18, issue.21, pp.22099-22104, 2010.
DOI : 10.1364/oe.18.022099

URL : https://archive-ouverte.unige.ch/unige:12204/ATTACHMENT01

H. Takesue, Single-photon frequency down-conversion experiment, Phys. Rev. A, vol.82, p.13833, 2010.

R. Ikuta, Y. Kusaka, T. Kitano, H. Kato, T. Yamamoto et al., Wide-band quantum interface for visible-to-telecommunication wavelength conversion, Nature Communications, vol.2, issue.537, 2011.

M. Thomas, N. Lutfi, A. , C. Matthew, J. et al., Hybrid photonic circuit for multiplexed heralded single photons, Laser & Photonics Reviews, vol.8, issue.3, pp.42-46, 2014.

P. G. Kwiat, Hyper-entangled states, Journal of Modern Optics, vol.44, issue.11-12, pp.2173-2184, 1997.

T. Wei, J. T. Barreiro, and P. G. Kwiat, Hyperentangled bell-state analysis, Phys. Rev. A, vol.75, p.60305, 2007.

T. Wang, Complete hyperentangled-bell-state analysis for photonic qubits assisted by a three-level-type system, Scientific Reports, vol.6, 2016.

H. Xi, S. Li, and . Ghose, Complete hyperentangled bell state analysis for polarization and time-bin hyperentanglement, Opt. Express, vol.24, issue.16, pp.18388-18398, 2016.

T. Yang, Q. Zhang, J. Zhang, J. Yin, Z. Zhao et al., All-versus-nothing violation of local realism by two-photon, four-dimensional entanglement, Phys. Rev. Lett, vol.95, p.240406, 2005.

G. Vallone, R. Ceccarelli, F. D. Martini, and P. Mataloni, Hyperentanglement of two photons in three degrees of freedom, Phys. Rev. A, vol.79, p.30301, 2009.

R. Ceccarelli, G. Vallone, F. D. Martini, P. Mataloni, and A. Cabello, Experimental entanglement and nonlocality of a two-photon six-qubit cluster state, Phys. Rev. Lett, vol.103, p.160401, 2009.

G. Vallone, G. Donati, R. Ceccarelli, and P. Mataloni, Six-qubit two-photon hyperentangled cluster states : Characterization and application to quantum computation, Phys. Rev. A, vol.81, p.52301, 2010.

J. T. Barreiro, N. K. Langford, N. A. Peters, and P. G. Kwiat, Generation of hyperentangled photon pairs, Phys. Rev. Lett, vol.95, p.260501, 2005.

M. Barbieri, F. D. Martini, P. Mataloni, G. Vallone, and A. Cabello, Enhancing the violation of the einstein-podolsky-rosen local realism by quantum hyperentanglement, Phys. Rev. Lett, vol.97, p.140407, 2006.

. Bibliographie,

S. Dong, L. Yu, W. Zhang, J. Wu, W. Zhang et al., Generation of hyper-entanglement in polarization/energy-time and discrete-frequency/energytime in optical fibers, Scientific Reports, vol.5, issue.9195, 2015.

K. Paul, G. , M. Klaus, W. Harald, Z. Anton et al., New high-intensity source of polarization-entangled photon pairs, Phys. Rev. Lett, vol.75, pp.4337-4341, 1995.

J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, Proposed experiment to test local hidden-variable theories, Phys. Rev. Lett, vol.23, pp.880-884, 1969.

S. Odate, A. Yoshizawa, and H. Tsuchida, Polarisation-entangled photon-pair source at 1550nm using 1 mm-long ppln waveguide in fibre-loop configuration, Electronics Letters, vol.43, issue.24, pp.1376-1377, 2007.

F. Kaiser, L. A. Ngah, A. Issautier, T. Delord, D. Aktas et al., Polarization entangled photon-pair source based on quantum nonlinear photonics and interferometry, Optics Communications, vol.327, pp.7-16, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01054158

D. Aktas, B. Fedrici, F. Kaiser, T. Lunghi, L. Labonté et al., Entanglement distribution over 150 km in wavelength division multiplexed channels for quantum cryptography, Laser & Photonics Reviews, vol.10, issue.3, pp.451-457, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01323863

G. Yoo-seung-lee, W. Kim, S. Kim, W. Lee, W. H. Lee et al., Hybrid si-linbo3 microring electro-optically tunable resonators for active photonic devices, Opt. Lett, vol.36, issue.7, pp.1119-1121, 2011.

L. Chen, M. G. Wood, and R. M. Reano, 12.5 pm/v hybrid silicon and lithium niobate optical microring resonator with integrated electrodes, Opt. Express, vol.21, issue.22, pp.27003-27010, 2013.
URL : https://hal.archives-ouvertes.fr/in2p3-00016481

P. Rabiei, J. Ma, S. Khan, J. Chiles, and S. Fathpour, Heterogeneous lithium niobate photonics on silicon substrates, Opt. Express, vol.21, issue.21, pp.25573-25581, 2013.
DOI : 10.1364/oe.21.025573

URL : https://stars.library.ucf.edu/cgi/viewcontent.cgi?article=5565&context=facultybib2010

J. Limpert, C. Jauregui, and A. Tünnermann, High-power fibre lasers, Nature Photonics, vol.7, pp.861-867, 2013.

O. Michael, V. Connor, V. Gapontsev, M. Fomin, A. Abramov et al., Power scaling of sm fiber lasers toward 10kw, p.3, 2009.

J. Limpert, F. Stutzki, F. Jansen, H. Otto, T. Eidam et al., Yb-doped large-pitch fibres : effective single-mode operation based on higher-order mode delocalisation, Light : Science & Applications, vol.1, 2012.
DOI : 10.1038/lsa.2012.8

URL : https://www.nature.com/articles/lsa20128.pdf

K. W. Raine, J. G. Baines, and D. E. Putland, Refractive index profiling-state of the art, Journal of Lightwave Technology, vol.7, issue.8, pp.1162-1169, 1989.

F. El-diasty, Characterization of optical fibers by two-and multiple-beam interferometry, Optics and Lasers in Engineering, vol.46, issue.4, pp.291-305, 2008.
DOI : 10.1016/j.optlaseng.2007.10.004

H. Norman, M. Fontaine, and . Young, Two-dimensional index profiling of fibers and waveguides, Appl. Opt, vol.38, issue.33, pp.6836-6844, 1999.

N. M. Dragomir, E. Ampem-lassen, S. T. Huntington, G. W. Baxter, A. Roberts et al., Refractive index profiling of optical fibers using differential interference contrast microscopy, IEEE Photonics Technology Letters, vol.17, issue.10, pp.2149-2151, 2005.

B. Kouskousis, D. J. Kitcher, S. Collins, A. Roberts, and G. W. Baxter, Quantitative phase and refractive index analysis of optical fibers using differential interference contrast microscopy, Appl. Opt, vol.47, issue.28, pp.5182-5189, 2008.

. Bibliographie,

A. Barty, K. A. Nugent, A. Roberts, and D. Paganin, Quantitative phase tomography, Optics Communications, vol.175, issue.4, pp.329-336, 2000.

A. Roberts, E. Ampem-lassen, A. Barty, K. A. Nugent, G. W. Baxter et al., Refractive-index profiling of optical fibers with axial symmetry by use of quantitative phase microscopy, Opt. Lett, vol.27, issue.23, pp.2061-2063, 2002.

E. Ampem-lassen, S. T. Huntington, N. M. Dragomir, K. A. Nugent, and A. Roberts, Refractive index profiling of axially symmetric optical fibers : a new technique, Opt. Express, vol.13, issue.9, pp.3277-3282, 2005.

W. Gorski and W. Osten, Tomographic imaging of photonic crystal fibers, Opt. Lett, vol.32, issue.14, pp.1977-1979, 2007.
DOI : 10.1364/ol.32.001977

A. D. Yablon, Multi-wavelength optical fiber refractive index profiling by spatially resolved fourier transform spectroscopy, Journal of Lightwave Technology, vol.28, issue.4, pp.360-364, 2010.
DOI : 10.1364/nfoec.2009.pdpa2

A. D. Yablon, Recent progress in optical fiber refractive index profiling, Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, p.1, 2011.
DOI : 10.1364/ofc.2011.omf1

M. Halder, S. Tanzilli, H. De-riedmatten, A. Beveratos, H. Zbinden et al., Photonbunching measurement after two 25?km-long optical fibers, Phys. Rev. A, vol.71, p.42335, 2005.
DOI : 10.1103/physreva.71.042335

URL : https://archive-ouverte.unige.ch/unige:36752/ATTACHMENT01

D. Lopez, -. , and L. Novotny, Coherence measurements with the two-photon michelson interferometer, Phys. Rev. A, vol.86, p.23820, 2012.

C. K. Hong and Z. Y. Ou, Measurement of subpicosecond time intervals between two photons by interference, Phys. Rev. Lett, vol.59, pp.2044-2046, 1987.