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ABSTRACT

Berezin-Toeplitz operators allow to quantize functions, or symbols, on compact Kéh-
ler manifolds, and are defined using the Bergman (or Szegd) kernel. We study the
spectrum of Toeplitz operators in an asymptotic regime which corresponds to a semi-
classical limit. This study is motivated by the atypic magnetic behaviour observed
in certain crystals at low temperature.

We study the concentration of eigenfunctions of Toeplitz operators in cases where
subprincipal effects (of same order as the semiclassical parameter) discriminate be-
tween different classical configurations, an effect known in physics as quantum se-
lection. We show a general criterion for quantum selection and we give detailed
eigenfunction expansions in the Morse and Morse-Bott case, as well as in a degen-
erate case.

We also develop a new framework in order to treat Bergman kernels and Toeplitz
operators with real-analytic regularity. We prove that the Bergman kernel admits
an expansion with exponentially small error on real-analytic manifolds. We also
obtain exponential accuracy in compositions and spectra of operators with analytic
symbols, as well as exponential decay of eigenfunctions.

Les opérateurs de Berezin—Toeplitz permettent de quantifier des fonctions, ou des
symboles, sur des variétés kiahleriennes compactes, et sont définies & partir du noyau
de Bergman (ou de Szegd). Nous étudions le spectre des opérateurs de Toeplitz dans
un régime asymptotique qui correspond & une limite semiclassique. Cette étude est
motivée par le comportement magnétique atypique observé dans certains cristaux a
basse température.

Nous étudions la concentration des fonctions propres des opérateurs de Toeplitz,
dans des cas ou les effets sous-principaux (du méme ordre que le parameétre semi-
classique) permet de différencier entre plusieurs configurations classiques, un effet
connu en physique sous le nom de « sélection quantique ». Nous exhibons un critére
général pour la sélection quantique et nous donnons des développements asympto-
tiques précis de fonctions propres dans le cas Morse et Morse—Bott, ainsi que dans
un cas dégénéré.

Nous développons également un nouveau cadre pour le traitement du noyau de
Bergman et des opérateurs de Toeplitz en régularité analytique. Nous démontrons
que le noyau de Bergman admet un développement asymptotique, avec erreur expo-
nentiellement petite, sur des variétés analytiques réelles. Nous obtenons aussi une
précision exponentiellement fine dans les compositions et le spectre d’opérateurs a
symbole analytique, et la décroissance exponentielle des fonctions propres.
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INTRODUCTION

Semiclassical analysis studies the link between quantum and classical mechanics; it
is mostly performed in the context of Schrodinger operators and their generalisa-
tions, using pseudodifferential operators. Motivated by recent discoveries in mag-
netic materials, we studied a semiclassical limit for quantum spin systems, using
Berezin-Toeplitz operators!, which are self-adjoint operators on a Hilbert space, de-
pending on a parameter N € N. In this thesis, we study the smallest eigenvalues,
and their associated eigenvectors, of Toeplitz operators, with applications to the
low-temperature properties of materials.

1.1 THE LARGE SPIN LIMIT

In this work, we study the spectrum of Toeplitz operators, using tools from semi-
classical analysis and complex geometry. Our principal motivation is the study of
quantum spin systems in the large spin limit. Spin systems describe the magnetic
behaviour of solids; some crystals such as Jarosite layers or Holmium titanate ex-
hibit unusual and partly unknown behaviour at low temperature, including the
emergence of spin ices [Mat+02; Har+97; Lag+10] and, presumably, spin liquids
[DMS12; Igb+13; IPB14].

The quantum model of a single spin, which describes internal magnetic degrees of
freedom in a single particle, consists in a triplet of Hermitian matrices (S, Sy, S-)
acting on a finite-dimensional Hilbert space H, which follow the commutation rules

[Sa, Syl =S, [S,.S:] =Sy [S., S =iS,.

Such triplets are classified by the dimensions of their irreductible components; there
is exactly one triplet, up to conjugation, for each dimension. This dimension is
related to the total spin (or simply spin) of the model, which is the number S such
that the dimension of the Hilbert space H is 25 + 1. The most simple example, at
spin S = 1, consists in the three Pauli matrices [Gou25]:

1{0 1 1{0 i 1/-1 0
szf SZ* Szzi .
2(1 0) Y 2(—2’ 0) 2(0 1)

One models the magnetic interactions between several identical atoms by an oper-
ator on a tensor power of H. If there are d atoms, the corresponding Hilbert space
is H®?. For 1 < j < d the operator I®/~! ® S, ® I®¥J is the first component
of the spin at the atom j; we denote it by S2.. Spin operators are then defined as
polynomials in the operators S5 for 1 < j < d and a € {z,y,2}. As an example,

We will more simply say “Toeplitz operators” over the course of this manuscript; see the end of
Section 1.2 for disambiguation



INTRODUCTION

if the atoms form an undirected graph, so that some atoms are connected to each
other, for J € R one can form the Heisenberg operator

Hpeis = J | Y _ SISh + S8k + 518k
j~k

Here we write j ~ k to indicate that the atoms j and k are neighbours in the graph.
If J < 0 the model is called ferromagnetic. If J > 0 it is called antiferromagnetic.

Low-temperature properties of a material are related to the low-lying eigenvalues,
and the corresponding eigenvectors, of a spin operator. In real-life situations there
is no hope to diagonalize this matrix of size dim(H)? = (25 + 1)¢, where d is the
number of atoms in the material and is of order 10?3 (one mole).

In an effort to study the thermodynamics of such systems as well as the eigen-
vectors associated with the smallest eigenvalue, named ground states, a classical
model was proposed in [BK52| and corresponds, to some extent, to the large spin
limit S — 400, in the same way that classical mechanics is a limit case of quantum
mechanics when the Planck constant A is very small.

In the classical spin model, one spin is an element of the sphere S?, so that the
configuration space with d spins is (S?)?, and spin operators are polynomials in the
coordinates. For instance, the classical Heisenberg model is the following function
on (S%)4:

hieis = J Z Tjxk + Yk + 252k
i~k

Here x,vy, z are the three coordinates for the usual immersion of the sphere in R3.
It is much simpler to find the minimum of the smooth function hge;s than to find
eigenvalues and eigenvectors of a large matrix; if J > 0 for instance, and if the
graph is bipartite, minimal classical configurations are such that neighbour spins
are opposite to each other. However, there are no general explicit expression of the
lowest eigenvalue and the associated eigenvectors of the antiferromagnetic quantum
Heisenberg model.

A more intuiguing situation for the classical Antiferromagnetic Heisenberg model
is the frustrated case, that is, when the graph is non-bipartite. If three atoms in
the graph form a triangle, it is not possible that each spin is opposite to its two
neighbours. The crystals cited above exhibit this phenomenon; for instance, Jarosite
and Herbertsmithite contain two-dimensional layers of atoms forming a Kagome
lattice as in Figure 1. The minimal set of the classical antiferromagnetic Heisenberg
model on the Kagome lattice (or its finite subgraphs) is an algebraic manifold which
is not smooth. Various configurations have minimal energy but there is no global
symmetry mapping one to the other: indeed, a non-regular point cannot be mapped
to a regular point. The presence or absence of symmetries is crucial in the analysis
of the quantum case: if the model presents a symmetry, one expects the ground
state to be invariant under this symmetry, so that it will be evenly spread out near
classical minimal configurations. In the case of the Kagome lattice, since there is no
underlying symmetry, the behaviour of the ground state is unknown.

In the setting of semiclassical Schrodinger operators —h?A + V, where V is a
real-valued function acting as a multiplication operator, as A — 0, the properties
of low-energy states, and the link with the underlying classical problem, are well-
known. In the general case, the ground state concentrates on the set where V is
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Figure 1: The Kagome lattice

minimal. In some situations one can be more precise. Helffer and Sjostrand [HS86al
studied situations where V' is minimal along a submanifold, but where this manifold
does not correspond to a global symmetry for V. The classical degeneracy (there are
many configurations at minimal energy) is then lifted for the associated quantum
system: as i — 0 the ground state of this operator will only concentrate on some
parts of the minimal set of V. This phenomenon is called quantum selection.

Using the analogy between semiclassical analysis and the large spin limit, Doucot
and Simon [DS98| predicted quantum selection for the Heisenberg antiferromagnetic
model on the Kagome lattice, in the large spin limit: among the very complicated
subset of minimal classical energy, low-energy quantum eigenfunctions should con-
centrate (in some sense to be made precise) only on some particular configurations,
as the spin S goes to infinity. This result is not contained in [HS86a|, which only
studies Schrodinger operator, and in which the classical minimal set is a smooth
manifold.

Theoretical investigations for quantum selection were conducted by some physi-
cists in the large spin limit [Chu92; RB93; DS98] but they do not stem from rigorous
results, and some terms are missing in the computations, leading to an incorrect
semiclassical description for certain systems.

Part of the results in this thesis are concerned with quantum selection for spin
systems in the large spin limit, and their generalisations (Toeplitz operators). We
prove that quantum selection takes place in a general setting, following an explicit
criterion. We also study the rate of decay of the ground state outside the minimal
set in the large spin limit: in the general case it decays faster than any power of
S~1: in real-analytic regularity it decays faster than e~°° for some ¢ > 0. Our main
contributions are described in Section 1.3.

1.2 TOEPLITZ QUANTIZATION

The link between quantum and classical mechanics involves a quantization procedure,
which associates to a classical model a quantum model with some parameter h, and
then a semiclassical analysis of the quantum model in the limit & — 0.

A quantization procedure consists in associating to a symplectic manifold M a
Hilbert space H, and to a real-valued function f on M a self-adjoint operator Op(f)
on H, depending on A, such that the Poisson bracket of functions corresponds to
the commutator of operators as h — 0, that is,

[0p(f), Op(g)] = ihOp({f, g}) + O(R?).

3
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The most famous quantization procedure is Weyl quantization which associates
to a function on the cotangent space M = T X of a Riemannian manifold a pseudo-
differential operator on H = L?(X). Spin systems are not adapted to the Weyl frame-
work. Indeed, for spin operators, the Hilbert space H should be finite-dimensional
(of dimension (25 + 1)%) and the classical configuration space M (also named phase
space), a product of spheres, is compact.

On some complex manifolds, a convenient quantization procedure is Toeplitz quan-
tization, introduced by Berezin for spin systems [Ber75]. The geometric ingredients
are a symplectic manifold M with a complex structure?, and a complex line bundle
L over M, with a Hermitian metric on L. The sphere S? = CP! is a particular case
of symplectic manifold on which one can perform Toeplitz quantization.

The quantum Hilbert space H in Toeplitz quantization is the space of square-
integrable holomorphic sections of L, or more generally its tensor powers L&V for
N € N. If M is compact, the concept of holomorphic sections is much richer than
holomorphic functions since, in this case, holomorphic functions are constant. In the
flat case M = C" there are many holomorphic functions, but among them only the
zero function is square-integrable, while the Bargmann space (see Subsection 2.1.2)
of holomorphic functions that grow slower than z +— el*I” is infinite-dimensional. In
all cases there are much more holomorphic sections of L than holomorphic functions
on M.

The Hilbert space of holomorphic sections of L&V will be denoted H®(M, L&N)
(Definition 2.2.10). This space is naturally a closed subspace of L?(M, L®N), the
space of all (not necessarily holomorphic) square-integrable sections of L&V as
such, there is an orthogonal projector

Sy : LA(M, L®N) — HO(M, L®N).

The Bergman projector S is the main ingredient in the quantization of functions
on M. The Toeplitz operator (or, more precisely, contravariant Toeplitz operator)
associated with a function f € C*°(M, C) is defined as

Tn(f): HO(M,LEN) =  HO(M,L®N)
u — Sn(fu).
If f is real-valued and has moderate growth at infinity, then T (f) is essentially
self-adjoint on the domain {u € HO(M, L®N), |u|?|f| € L*(M)}. Toeplitz operators

do not form an algebra. However, there are asymptotic expansions of the products
of two Toeplitz operators [Sch00; Cha03] as

Tn(f)Tn(g) = Tn(fg) + N " Tn(Ci(f.9)) + N *Tn(Ca(f, 9)) + - - -,

where the C}’s are bidifferential operators.
In particular, if {-, -} denotes the Poisson bracket corresponding to the symplectic
structure on M, then it can be shown that

T (), T(o)] = 1 Tw({F,9) + Oparspa2(N ).

The parameter N corresponds to A~! in the semiclassical interpretation.

2 under some geometrical hypotheses: it should be a quantizable Kdhler manifold



1.3 CONTRIBUTIONS

One can also define covariant Toeplitz operators, which are kernel operators whose
associated symbol is the restriction of the kernel on the diagonal. Covariant and
contravariant Toeplitz quantization are equivalent up to a subprincipal modification
and a O(N ™) error.

If M is compact then H°(M, L®N) is finite-dimensional, therefore T (f) can be
seen as a matrix, whose size and elements depend on N. In the particular case
M = S? = CP!, the Toeplitz operators associated with the three coordinates x, v,
are, up to a multiplicative constant, the three spin operators S, .Sy, S, with total
spin S = % As the spin goes to infinity, the semiclassical parameter N~! goes to
ZEro.

Toeplitz and Weyl quantization are microlocally equivalent, with non-zero sub-
principal corrections (terms of order 7). The Fourier-Bros-lagolnitzer (FBI) trans-
form, which allows one to see in phase space the action of pseudodifferential opera-
tors, is one formulation of this equivalence between Toeplitz and Weyl calculus in
the case M = C" = T*R". Toeplitz operators are widely used as ancillary problems
for questions in semiclassical analysis. Indeed, Toeplitz operators enjoy the following
positivity property which make them especially helpful:

f>0=Tn(f)>0.

As already discussed, Toeplitz operators also include spin systems as important
examples. In particular, the study of Toeplitz quantization allows one to understand
the large spin limit as a semiclassical limit, a physical interpretation which is one
of the main motivations for the work exposed in this thesis.

Toeplitz quantization extends to more general situations than quantizable Kéhler
manifolds, such as almost Kéhler geometry [BG81|, spin®-Dirac quantization [Ver96;
BU96; MMO02] or Bochner Laplacians [GUSS|.

Before describing our contributions we make two remarks about terminology.

e There is an alternative definition of the objects in Toeplitz quantization, where
instead of sections of a power of L one considers equivariant functions on the
dual line bundle L* (see Subsection 2.2.3). The equivalent of the Bergman
projector is known as the Szegs projector. The two formulations are equivalent,
so that we will state results about Szeg6 projectors or Bergman projectors,
depending on the point of view used in the work we refer to.

e The name “Toeplitz operators” also refers to generalisations of Toeplitz ma-
trices (which have constant terms along diagonals). Such operators are not
related to spin systems.

1.3 CONTRIBUTIONS

In this section we explain our main contributions and relate them to previous results.
Our contributions are highlighted in the body of this section, by a line on the left,
in the following manner:

We prove that. ..

Let us first give a list of short descriptions for our main theorems and the pages
where their statements can be found.
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List of theorems

Theorem 4.1 (Ground state expansion at the bottom of a well) . . . . . . . .. 60
Theorem 4.2 (Descriptions of excited states at the bottom of a well) . . . . . . 61
Theorem 5.1 (Subprincipal effects on localisation) . . . . . . .. ... ... .. 86
Theorem 5.2 (Study of miniwells) . . . . . . . .. ... ... ... .. .. ... 86
Theorem 5.3 (Study of crossing points) . . . . . . . ... ... ... ... ... 87
Theorem 5.4 (Low-energy Weyl laws) . . . . . . . .. ... ... ... ... 88

Theorem 6.1 (Exponential control of Bergman kernel - constant curvature case) 133

Theorem 8.1 (Exponential control of Bergman kernel - analytic case) . . . . . 176
Theorem 8.2 (Calculus of analytic Toeplitz operators) . . . . . . . . .. . .. 177
Theorem 8.3 (Exponential decay in the forbidden region) . . . . . . .. . .. 177
Theorem 9.1 (WKB construction at the bottom of an analytic well) . . . . . . 201

1.3.1 Szegéb or Bergman kernel asymptotics

Estimates on Toeplitz operators rely on a careful study of the Szegd (or Bergman)
kernel. We developed the asymptotic analysis of the Szeg$ projectors, both in the
C™ setting on almost Kéhler manifolds, and in the analytic setting on Kéhler mani-
folds. In the C'*° setting we improved the known off-diagnal rate of decay: previously
known estimates [MMO07| were, for all = and y close, in a local chart:

Nn e LI
Sn(z,y) — W—ne’%m’y'z*”\f“(”y) 1+ Z N=/2p;(V Nz, VNy) ||| <
j=1

CNd_(K+1)/2<1+‘\/Nx‘ﬁ—’\/ﬁy‘)me_cl\/ﬁ‘x_yl _j’_O(N—OO)'

Here & stands for the imaginary part, n is the (complex) dimension of the manifold
and the b;’s are polynomials.

In the Kéhler setting [Cha03], one can replace e=C'VNle=ul with e=C'Nle=vl* which
decays faster outside the diagonal.

We proved the same improvement in the almost Kéhler setting (see [Dell6] and
Proposition 3.2.4 as well as Section 3.4 of this thesis), following the shrinking
scale expansions performed in [SZ02].

These estimates are useful as long as the O(N~°°) factor is smaller than the
exponential error; using the formula above, the controlled region is:

) B 1
{dlst(x, y) = 0<\/Nlog(N)> }7

—C'Nlz—y|?

. —_('\/ _ . oy .
whereas if one can replace e~ VNIZ=¥l with e , 1t is:

) B 1
{dlst(ac, y) = O<N log(N)> }
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The results above rely on an elaborate microlocal calculus, and in particular the
study of Fourier Integral Operators with complex-valued phase functions [MS75].

A particular case of great interest consists in Kéahler manifolds with constant
sectional curvature, such as CP!, or products of them, such as the phase space of
spin systems. For this constant curvautre case, an exponential control was hinted in
[Chr13] and fully proved in [HLX17]|, using advanced analytic microlocal calculus.

We obtained, in this case, an elementary proof for the exponential control of
the Bergman kernel (see Theorem 6.1). We obtain directly

Sn(z,y) = a(N)‘I’®N(%?)ﬂdist(z,y)<r + O(e’CN).

Here a is a polynomial of degree n and W is a section of L X L in a neighbour-
hood of the diagonal, whose norm reaches a non-degenerate maximum on the
diagonal.

In the general case of a Kéhler manifold with real-analytic regularity, we developed
a new, adapted symbolic calculus (see Section 7.2) in order to obtain exponential
control of the Bergman kernel. It was previously known [HLX17] that

Sn(z,y) = ¥V (2,7) ZN”’“ (z,9) + O0(e=VN),

where there exists C, R such that, for all £ > 0,

sup(az) < CRF(k!)2.

We improved these results by proving (Theorem 8.1) that the Bergman kernel
is known up to an exponentially small error on analytic Kéhler manifolds:

Sn(z,y) = xyZN"k (z,7) + O(e~“ M),

with
sup(|ax|) < CRFE!.

The proof uses our new classes of analytic symbols, which extend the usual ones
[Sjo82|. For some real parameters r > 0, m, we say that a function on a smooth
open set U of R? belongs to the space H(m,r, U) when there exists C' > 0 such
that, for every j7 > 0, one has

rJ 5!

iy < C——"—.

The minimal C such that the control above is true is a Banach norm for the
space H(m,r,U). Such functions are real-analytic. Reciprocally, for all V- CC U,
every real-analytic function on U belongs to H(m,r, V') for some m,r.
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Generalising this notion leads to the definition of analytic (formal) symbols
(see Definition 7.2.3): for some real parameters r» > 0, R > 0, m, a sequence of
functions (ux)r>0 on U belongs to the space SiE(U) when there exists C' > 0
such that, for every j > 0,k > 0, one has

s _ rIRF(j + k)!

HOO) =" G k+ m
Again, the smallest such C defines a norm on S (U).

These analytic classes, defined and studied in Chapter 7 are well-behaved
with respect to standard manipulations of functions (multiplication, change
of variables, ...) and, most importantly, with respect to the stationary phase
lemma. Another important property is the summation of such symbols: if & is
a small parameter (here h = N~1), then for ¢ > 0 small depending on R, the

sum
ch~1

Z hkuk
k=0

is uniformly bounded as A — 0; in this sum, terms of order kh~! are expo-
nentially small, so that the precise choice of ¢ has an exponentially small influ-
ence on the sum. This summation property, together with the stationary phase
lemma, allows us to study Toeplitz operators up to an exponentially small error.

Similar ideas appear in the literature, and have been successfully applied to
the theory of pseudodifferential operators with real-analytic or Gevrey symbols.
Early results [BK67] use a special case of our analytic classes, when m = 0; from
there, a more geometrical theory of analytic Fourier Integral Operators was
developed [Sj682], allowing one to gradually forget about the parameters r and
R. Tt is surprising that the introduction of the parameter m, which mimics the
definition of the Hardy spaces on the unit ball, was never considered, although it
simplifies the manipulation of analytic functions (the space H(m,r,U) is stable
by product if and only if m > 3). At several places in Part II of this manuscript,
it is crucial that we are able to choose m arbitrary large.

An exponential error is optimal in this context, up to the choice of the constant ¢'.
A recent and independent work [RSN18] establishes this result using the calculus
of analytic Fourier Integral Operators.

1.3.2 Concentration of eigenfunctions with low energy

Let us return to the smooth case. In Toeplitz quantization an easy lower bound on
Toeplitz operators is

Tn(f) = min(f).

Improving this bound in the spirit of Melin’s inequality [Mel71] allowed us to prove
quantum selection for Toeplitz operators.

We defined, for a smooth function f on a compact manifold M, a characteristic
function p defined on the minimal set of f, which is Holder-continuous and
takes non-negative values (see Definition 5.1.1). The value of this function p at
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a given point only depends on the Hessian of f at the considered point, and on
the Kéhler structure on M. We then proved (Proposition 5.2.4) that, if f > 0
is smooth, then

[minSp(Ty () — min(f) + N~ min()| = O(N ).

This global estimate, and its local versions, lead to a result of quantum se-
lection (Theorem 5.1): any small energy eigenfunction of a Toeplitz operators
localises, up to O(N~°°) precision, on

{z € M, h(x) is minimal, y(z) is minimal}.

Here we say that a sequence (uy)nyen of normalised sections of L®N Jocalises on
a closed set Z C M if, for any open set V' at positive distance from Z, one has

/ () faVel(m) = Oy (),

This notion corresponds to microlocalisation in pseudodifferential calculus.

In three particular cases, we obtained a complete expansion of the first eigen-
value and eigenvector in decreasing powers of IV, as well as asymptotics for the
number of small eigenvalues with multiplicity.

e The first of these cases is the bottom of a non-degenerate well (Theorems
4.1 and 4.2), extending part of the results of [LF'14a] in several dimensions,
without assuming integrability of the classical system.

e The second case (Theorem 5.2) is in the spirit of “miniwells” [HS86a],
where f is minimal along an isotropic submanifold along which p reaches
a non-degenerate minimum at only one point.

e The third case, a “crossing point” (Theorem 5.3), consists in a symbol
which is minimal on the union of two isotropic submanifolds with trans-
verse and isotropic intersection (see Definition 5.5.1 for details). To our
knowledge, this case was never treated for pseudodifferential operators
or even Schrodinger operators (but our results apply in particular to
pseudo-differential operators with reasonable symbols). Nevertheless, it
was known that the operator —A 4 2y? has compact resolvent on L?(R?),
a fact linked with quantum selection.

One can then compare the Weyl laws for the miniwell case and the crossing
point case (Theorem 5.4).
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1. If near a point where p is minimal the principal symbol reaches its min-
imum in a Morse-Bott way on an isotropic submanifold of dimension r,
the number of corresponding eigenvalues in

[mino(Tx(f)), mino(In(f)) + N~'Ax]
is of order (N%AN)T, in the range N2t <Ay <e

2. If near a point where p is minimal, the conditions of Theorem 5.3 apply,
the number of corresponding eigenvalues in

mino(Tn(f)), mino(Tn(f)) + NﬁlAN]

is of order (N%AN)% log(N%AN), in the range N-3T <Ay <e.
In particular, depending on the relative size of Ay and a negative power of
log(N), there are more eigenvalues associated with a miniwell or with a crossing
point in the considered spectral window.

The function p is hard to compute for actual problems as it depends on the
spectrum of a non-self-adjoint matrix whose dimension is the number of particles.
Quantum selection is of particular interest in frustrated antiferromagnetic spin sys-
tems, such as on the Kagome lattice, where the classical minimal set is a stratified
manifold and the characteristic value p varies along this manifold. Our general result
on quantum selection holds in this context; it remains to determine on which points
44 is minimal. A common conjecture in the physics literature states that p should
be minimal on a discrete subset of coplanar configurations, thus effectively mapping
the quantum antiferromagnetic problem, in the large spin limit, into a three-colour
Potts model, whose energy is unknown so far.

We also developed some numerical analysis, which we present in Appendix A.2.
Given a classical configuration in a finite spin system, we can compute the
numerical value of u.

The constrained minimisation procedure seems to indicate that planar configura-
tions are global minima, but is too numerically unstable to be considered as unchal-
lenged numerical evidence.

The results above establish quantum selection for spin systems as predicted in
[DS98|. However, the function p differs from the selection criterion on the Weyl
side.

In the specific case of spin systems on a product of spheres, we wrote down
explicitly the rules for the computation of the function u (Appendix A.1, see
also [Dell8al), in order to disseminate our results to the physics community.
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1.3.3 Calculus of Toeplitz operators with analytic regularity

Using the analytic techniques developed for the study of the Bergman kernel
in the case of a Kéhler manifold with real-analytic regularity, we proved a
composition and inversion law (Theorem 8.2) for covariant Toeplitz operators
associated with elements of our analytic symbol classes IS I fe SEE and
g € S then there exists fig € Sp>", with || ftgl eran < C||f | gr.rllgll gr2n,
such that " " "

TR (N)TR(9) = TR (f1g) + O(e™M).

One can also invert operators with non-vanishing principal symbols with a con-
trol in the analytic symbol spaces.

Contravariant and covariant operator classes are not equivalent, but one can
pass from one to the other up to a loss of regularity.

This result on composition and inversion of analytic Toeplitz operators yields
a general result of exponential localisation (Theorem 8.3): given a real-valued
analytic function f on an analytic compact quantizable Kéahler manifold, if
(un)N>0 Is a sequence of normalised eigenfunctions of T (f) with associated
eigenvalues Ay = E 4 O(1), then for any open set V' at positive distance from
{f = E} there exists ¢ > 0 such that

/ un|2dVol = O(e™N).
Vv

In the particular case of a symbol with a local non-degenerate minimum, we
performed a Wentzel-Kramers-Brillouin (WKB) expansion for an approximate
local ground state, up to an exponentially small error (Theorem 9.1).

Remark 1.3.1 (Gevrey case). The methods developed in Section 7.2 and used
in Chapter 8 in the real-analytic setting could be applied to the Gevrey case. s-
Gevrey symbol classes can be constructed by a modification of Definition 7.2.3 (more
precisely, by replacing the factorial term by itself power s). s-Gevrey functions have
almost holomorphic extensions with controlled error near the real locus, so that
all results of Part II should be valid in the Gevrey case under the two following
modifications:

e The summation of s-Gevrey symbols is performed up to k = ¢N :.

/ ATt
e All O(e=“%) controls are replaced with O(e=¢V*).

For instance, we conjecture that the Bergman kernel on a quantizable compact s-

oL
Gevrey Kihler manifold is determined up to O(e=¢V*) by a s-Gevrey symbol. Its

kernel decays at speed Ndim(M) o=(57)N dist(w,y)?

This would improve recent results [HX18|.

as long as dist(z,y) < eN~5 .

11
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1.4 DISCUSSION

The aim of this project was to examine the concentration properties of low-energy
states of spin systems, in the semiclassical limit. Introducing the Toeplitz framework
in this setting allowed us to give a precise and general meaning to this problem, to
relate it to “usual” semiclassical analysis and, eventually, to reach results in a variety
of cases which broadens the knowledge of pseudodifferential operators as well as spin
systems.

We preferred to deal directly with Toeplitz operators instead of relying on mi-
crolocal equivalences with pseudodifferential calculus, for the following reasons.

1. The various technical claims, and positivity estimates in particular, are usually
much easier to state and to prove via Toeplitz quantization than in the Weyl
case, at least if the underlying geometrical data (Szegs or Bergman kernel) if
known beforehand.

2. Toeplitz quantization is well-defined at the global level for any Kéhler mani-
fold, and the additional technicalities which appear when gluing local charts
are a hindrance (especially when considering sub-principal effects).

3. The computation of subprincipal terms while dealing with quantization equiva-
lences and quantum maps is tedious, and we preferred comparing subprincipal
estimates on both sides to recover it.

4. The asymptotic analysis of the Szegd or Bergman kernel, which must be per-
formed before-hand, is only a few steps away from functional properties of
Toeplitz operators, as illustrated by [Cha03] in the smooth case and by our
article [Dell8c¢| in the real-analytic case.

5. These kernel asymptotics, which we contributed to make more precise, have
crucial applications outside the scope of Toeplitz or pseudodifferential op-
erators, which further motivate their study: properties of projective embed-
dings of complex manifolds [Tia90; Cat99; Zel0O| and, more generally, al-
gebraic geometry of positive line bundles [RS16], Kéahler-Einstein metrics
[Wan-+06; Tsul0], random normal matrices |[Klel4], determinantal processes
[PV05; Hou+06; Ber08], sampling theory [BB08; BBN11; LO12; DMNI15],
nodal sets [SZ99; PV05; SZ08; ZZ10; Zel13|, and quantum gravity [FKZ12].

Using kernel asymptotics that were known beforehand as well as new ones, we
discussed the localisation of low-energy states of a Toeplitz operator on a fixed,
finite-dimensional manifold, in the semiclassical limit. In terms of spin systems, this
corresponds to fixed finite size spin systems in the large spin limit. We addressed
the specific situations of a classical energy which is minimal, either on a finite set
of points in a non-degenerate way, or on an (isotropic) submanifold, or on a union
of two submanifolds with transverse intersections, and we also gave more general
results, which apply for instance on frustrated antiferromagnetic spin systems, where
the classical minimal set is a stratified manifold of high complexity.

While our results give some insight into the case when the number of sites grows
along with the spin at each site, they do not extend directly to this case. More
importantly, in experimental realisations the spin cannot be reasonably thought as
very large, as it is rarely greater than %. In the limit of a large number of particles,
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this large spin limit can be physically justified, either by renormalisation processes
(grouping a set of spins and replacing them by a unique, larger spin), or by “phase
transition” arguments. In all cases, the interactions between semiclassical limit and
thermodynamics of spin systems need mathematical investigation and the Toeplitz
framework might allow one to treat these problems.

In Chapter 10 we give a few perspectives about Toeplitz quantization in the semi-
classical limit, and more specifically spin systems. Low-energy effective dynamics (a
generalisation of [RN15; Hel+16]), as well as the limit of a large number of spins (see
[HS92] for the Schrodinger case), are discussed. A less direct perspective is to gen-
eralise the tools which we developed to other settings where some quantum states
behave as coherent states under some limit, which allows one to define an abstract
coherent state quantization scheme, with applications to spin systems in the fixed
total spin, large number of sites limit, as well as Bose-Einstein condensates.

Our results in real-analyric regularity give hope towards proving exponential decay
in more subtle contexts, such as in the presence of subprincipal energy barriers (a
WKB analysis for Schrodinger operators was performed in the miniwell case in
[HS86a]). The various constants which appear in our setting are not sharp, and
optimal constants in a given context require a particular study of the underlying
geometry, as illustrated by our study of the Hamilton-Jacobi equation in the case
of a non-degenerate well.

1.5 HOW TO READ THIS THESIS

Chapter 2 contains a complete introduction to Toeplitz quantization, without re-
quiring prior knowledge on semiclassical analysis or advanced complex geometry.

The body of this thesis is then organised in two parts. Part I (Chapters 3, 4 and
5) contains our results in the setting of C'*° manifolds and functions. It corresponds
to our articles [Dell6; Dell7|.

The transition to Part I is Chapter 6, where we give an elementary proof of an
asymptotic formula with exponentially small remainder for the Bergman kernel on
manifolds with constant scalar curvature. This chapter is published in [Del18b].

We treat the real-analytic case in Part II (Chapters 7, 8 and 9); this part corre-
sponds to [Dell8c; Dell9].

In Chapter 10 we give a few perspectives about Toeplitz quantization in the
context of spin systems.

In the Appendix, we discuss specific applications to spin systems. We first present
Toeplitz quantization and our contrbutions in the vocabulary of modern condensed
matter physics, corresponding to the article [Dell8al, then we present some numer-
ical work concerning quantum selection on spin systems.
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TOEPLITZ OPERATORS

Toeplitz operators are a generalisation of the Bargmann-Fock point of view on the
quantum harmonic oscillator [Bar61]. They realise a quantization on some symplec-
tic manifolds, and are a particular case of geometric quantization [Kos70; Sou67].
Another particular case of geometric quantization is Weyl quantization which leads
to pseudodifferential operators. Toeplitz operators were first studied from a microlo-
cal point of view [BG81; BS75], and the study of the Szegd projector (through which
Toeplitz operators are defined) was further motivated by geometrical applications
[Dem91; Zel00]. Here we directly use the semiclassical point of view developed in
[SZ02; Cha03; MMO7].

In this chapter we recall the basic properties of Toeplitz operators, and we refer
to earlier work on the topic [BBS08; MMO07; Cha03; SZ02; Wo097; Bar61| for the
proofs of the exposed facts.

2.1 QUANTUM MECHANICS AND BARGMANN SPACES

2.1.1 Quantization and semiclassical analysis

Quantum mechanics as a physics theory emerged during the first half of the 20th
century, following more and more accurate observations which showed that classical
mechanics were not suited to the study of phenomena at atomic scale. Though
quantum theory is not self-sufficient as it does not provide an explanation for the
various constants which appear in the computations (such as the relative masses of
the different elementary particles), this model is still, at this date, unchallenged in
the description of the microscopic world.

As in classical mechanics, quantum objects are elements of a configuration space,
which move around following an exact and time-reversible evolution. This configu-
ration space can be probed using observables. The observation procedure is more
involved in quantum mechanics than in classical mechanics, but is characterised by
a real number: the expected value of the outcome (the outcome is a probabilistic
event in the simplest models). For closed systems, whether quantum or classical, an
observable of particular interest is the total energy, which is preserved by the time
evolution. Indeed, the time evolution itself is determined only by the energy and
the geometry of the configuration space.

To make the parallel between quantum and classical mechanics more apparent,
let us compare the Hamiltonian formulation of classical mechanics with the simplest
models of quantum mechanics (which involve neither quantum fields nor an infinite
number of particles), which is the framework of this thesis.

In Hamiltonian (finite-dimensional) mechanics, the configuration space is a sym-
plectic manifold (M, w). The symplectic structure w encodes relations between pa-
rameters on M and allows to define the symplectic gradient of a function, which is
orthogonal to the usual gradient (when the latter can be defined).

15
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The canonical example is the even-dimensional space M = R?" endowed with the
standard two-form

n
Wst = Z dpi A dg;.
i=1
It is the set of configurations for the movement of a point in flat space: the variables
q; represent the position in coordinates, and the variables p; represent the speed,
or more accurately the momentum, in coordinates. Locally, on every symplectic
manifold (M, w), there is a choice of local coordinates in which w takes the previous
form.

In quantum mechanics the configuration space is a Hilbert space H. At this point
we already stress that quantum mechanics, contrary to classical mechanics, are not
scale-invariant: indeed quantum effects are rarely observed at the length- and energy-
scales of everyday’s life, while they must be taken into account in the movement
of an electron or the low-temperature state of a material. Thus all quantum data
(including the configuration space) depend on a scale constant, which we call 4. We
thus write specifically Hj,.

The quantum configuration space which is perhaps the most known is L?(R"”, C).
It does not depend on A, and it is the simplest model for the motion of a quantum
particle in R™.

Observables in classical mechanics are usually real-valued functions on M. The
observation process is as follows: if the system is found at point x € M, then the
machine which measures the observable a will return a(z). The quantum situation
is more involved: observables are essentially self-adjoint operators on Hy. The mea-
surement of an observable Ay may return any element in the spectrum of Ay, and
will change the quantum state ¢ € Hj; under observation, following a probabilistic
event which depends on Aj and . However this process is characterised by the
expectations of the returned values of observables, which in this case is (¢, Ap1))y.

An observable of great interest is the total energy of the system. If the classical
system has energy h € C*°(M,R), then the time evolution is given by h and the
symplectic form w: it is the flow of the symplectic gradient of h. This flow preserves
both h and w. In the case (M,w) = (R?" wg), if h is the sum of a kinetic energy
and a potential energy, h(p,q) = %|p|2 + V(q), then the symplectic gradient of h is

(—=VV(q),p), so that the equation for the time evolution corresponds to Newton’s
second law:

dra(t) = p(t)
ap(t) = =V V(q(t)).

If a is another observable on M, the time evolution of the measure of a is given by
the Poisson bracket:

dra(x(t)) = {a, h}(x(t)).
In quantum mechanics, if the energy is a self-adjoint operator Hy, then the equa-
tion of the time evolution is

ihdp(t) = Hyp(t),
which can be solved in a more or less explicit way:

v(0) = exp( 7 Ju10)
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A study of the spectrum of Hjy then allows us to understand the quantum time
evolution. In particular, eigenfunctions of Hy are fixed points of this evolution up
to an oscillating phase.

The self-adjoint operator on L?(R™) which corresponds to the movement of a
particle subject to a potential V is

Hy=—-R*A+ V.

This is the famous Schrédinger operator, and the time evolution is called the Schro-
dinger equation in this case.
The time evolution of the expected value for another observable Ay is then:

d .
a@bv Ah¢> = <17Z]7 %[Aﬁ? H}L”]’ 1’[}>

In the classical case the time evolution of observables was given by the Poisson
bracket; in the quantum case it is given by the commutator of the two operators.
This remark is fundamental in the process of quantization: given a classical model,
how can one construct an associated quantum model? The answer lies in the corre-
spondence between the Poisson bracket of classical observables and the Lie bracket
of quantum observables, which should coincide up to a small (of order h) correc-
tion. In the case (M,w) = (R?",ws), a formal solution consists in replacing every
occurence of p by —ihAV, since

(A

7=th0s, @] = 65k = {pj, ai}-

In particular, the function p + |p|? is mapped into —h2A, which yields the Schro-
dinger operator.

Making the change p ~~ —ih? rigorous leads to Weyl quantization and A pseudo-
differential operators, which is a well-established theory, used in many different con-
texts where the link with quantum physics might not be obvious. Pseudodifferential
operators are an essential tool of the modern theory of PDEs.

Other quantization procedures are used; a general concept of geometric quanti-
zation emerged in the late 1960’s [Sou67; Kos70] with two applications in mind:
quantum physics and representation theory. This chapter is devoted to the intro-
duction of Berezin-Toeplitz quantization, which associates to a real function f on a
Kéhler manifold a self-adjoint operator T (f). The topic of this thesis is the study
of the spectrum of T (f).

2.1.2 The Bargmann space

In quantum as in classical physics, the harmonic oscillator (and its generalisations) is
a very important example. Fock observed that the traditional representation shown
above (with Hilbert space L?(R™)) was not the best suited to the deep understand-
ing of the quantum harmonic oscillator. Indeed, the classical harmonic oscillator
h(p,q) = p?+q? on R? is left invariant by a rotation around the origin, but its Weyl
quantization —h%2A + ¢? assigns a totally different role to p and ¢ and breaks this
symmetry. From the observation that h(p,q) = (p — iq)(p + iq), a representation of
quantum space by holomorphic functions was seen to be more adapted.

17
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Definition 2.1.1. Let N > 0. The Bargmann space is defined as follows:
By (C) = {u € L*(C),z — e%|2|2u(z) is holomorphic}.

It inherits a Hilbert space structure from L?(C).

The dependence on N of the Bargmann space might seem artificial at this stage:
the change of variables z — V/Nz sends B N to Bj.

Examples of functions in By (C), which in fact form a Hilbert base, consist in the
renormalised monomials, indexed by k € Ny:

k
N3 N2
*§\Z|

Rl

A natural unbounded operator on By (C) is u — zu, which has dense domain (since
it is well-defined for all elements of the Hilbert basis). It is not essentially self-adjoint;
its adjoint is u — N~10u + zu.

We are now in position to define the quantum harmonic oscillator: we first apply
z, then its adjoint. With the classical expression h(p,q) = (p — iq)(p + iq) in mind,
the holomorphic coordinate p 4+ ¢q = z has the same role in this quantization than
q in Weyl quantization: it is quantized into a multiplication operator, while the
remaining coordinate is quantized into a degree 1 differential operator.

The quantum harmonic oscillator has compact resolvent; its eigenfunctions are
the e;’s, and the corresponding eigenvalue is N~!(k + 1).

Would we have chosen the other order of composition in the definition of the
quantum harmonic oscillator, the eigenfunctions would have been the same but the
eigenvalues would be {N~1k,k € No}. Weyl quantization somehow consists in an
intermediate solution since the eigenvalues of its quantum harmonic oscillator are
Ak +3).

The reader familiar with the spectral study of the Weyl harmonic oscillator, whose
eigenfunctions are given by Hermite polynomials, will find that the eigenfunctions
in the Fock representations are much simpler since they are monomials. The corre-
spondence between the two versions of the quantum harmonic oscillator leads to a
unitary transform between By and L?*(R):

er .z 2.

Definition 2.1.2. The Bargmann transform By is the unitary transform from
Bn(C) to L*(R) with kernel

By (z,z) = exp (—];[(|z|2 + 22 —2V2z2 + x2)>

Then the equivalence reads

1
By (2" 2)By = —N72A + |q + 5
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2.1.3 Toeplitz quantization

The Toeplitz quantization on the Bargmann space consists in a generalisation of the
harmonic oscillator above.

Since By is a closed subspace of L?(C), there is an associated orthogonal projector
Iy : L?(C) ~ By. This projector has a kernel given by the Hilbert basis (ex)x>0
of B N-

My () = :z:em)ek(y) ~(2) ew(-Fle-sPriveen). @

Let us return to the quantum harmonic oscillator. Observe, that for any element ey
of the natural Hilbert basis, the function z — |z|?ex(2), as an element of L?(C), is
orthogonal to any e; for j # k, since

_ +oo ) L
/ ej(2)|2|%ex(2)dzdz = cjck/ e_errﬁ'kHdr/ e!h=9)049 = 0.
C 0 St
Thus, |z|?ej can be written A\ger 4+ v with v € B]%,. One can compute

2n—+k

Ap = / |2%|ex(2)2d2zdz = /€N|Z|2‘Z|2k+2dde:N1(]{;_;_1)7
C C

k!
which corresponds exactly to the eigenvalue associated with e, for the quantum
harmonic oscillator. In other terms, by linearity, the quantum harmonic oscillator
is

u— Oy (|2u).

We are now in position to make a more general definition:

Definition 2.1.3. Let f € C°°(C,C) be a function with polynomial growth near
infinity.

The Toeplitz operator associated to f is, for N > 0, the unbounded operator
Tn(f) =nf on By(C). The function f is called the symbol of Tx(f).

Definitions 2.1.1 and 2.1.3 readily adapt to the multi-dimensional case. Toeplitz
operators on C" whose symbols are semipositive definite quadratic forms generalise
the harmonic oscillator. They play a crucial role in Part I of this thesis, which is
devoted to subprincipal effects (that is, effects of order N—1) for Toeplitz operators.

If Q is a quadratic form on R?" identified with C", then T (Q) is essentially
self-adjoint. This operator is related to the Weyl quantization Op@v (Q) with semi-
classical parameter A = N~!. In fact, Ty(Q) is conjugated, via the Bargmann
transform By [Bar61], with the operator

-1

4

Ol (Q) + —— tr(Q). (2)

Here

ih
Oply(giar) = giax ~ Oply(pjp) = —h*0;0,  Oply (pijqr) = — = (90 + ax0;)-

The trace of the quadratic form @ is defined as the trace of the associated ma-
trix in an orthonormal basis for the standard Euclidian structure of C" (we used
explicitely this Euclidian structure in the definition of By).
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See Proposition 4.2.5 for a detailed statement and a proof of (2).
The formula (2) is a particular case of a more general equivalence of quantizations,
which is exact in one direction. An explicit computation yields, for any f € L>(C),

BNTn(f)Bly = Oply, [f * <z — %e";z'vz ﬂ . (3)

This formula can be inverted only up to an error O(N~°°), unless the Weyl symbol
is real-analytic.

If @ is semi-definite positive, then it takes non-negative values as a function on
R2" hence T (Q) > 0 for all N > 0 since, for u € By, one has

(u, IINQIINu) = (u, Qu) > 0.

The infimum of the spectrum of T (Q) is of utmost interest, since it leads to the no-
tion of Melin value. As @ is 2-homogeneous, and the Bargmann spaces are identified
with each other through a scaling, one has T (Q) ~ N~'T1(Q), and in particular
the infimum of the spectrum of T (Q) is given by

inf(Sp(Iw(Q))) = N~ inf(Sp(T1(Q))).

Definition 2.1.4. Let @ be a semi-definite positive quadratic form on R?", identi-
fied with C™.
We denote by u(Q) the Melin value of @, defined by

Q) = inf(Sp(T1(Q)))-

Given @ > 0, how can one compute u(Q)? By (2), it depends first on the trace
of @ (which is easy to compute), and second on the infimum of the spectrum of
Op%,V(Q) This second part is invariant through a symplectic change of variables,
and the problem reduces to a symplectic diagonalisation of @ (see Propositions
4.2.4 and 4.2.6). In particular,

Example 2.1.5. Let o, 5 > 0. Then

p((2,y) = az® + By?) = 2(2\/@+ a+f).

The function p itself is not invariant under symplectomorphisms (for example, in
the previous example it does not only depend on «3). However, it is invariant under
unitary changes of variables.

If @ is definite positive, then Ty (Q) has compact resolvent, and the first eigenvalue
is simple.
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2.2 KAHLER MANIFOLDS AND SZEGO KERNELS

The definition of Weyl quantization, which normally takes place in R?", can be
generalised (up to a choice of charts) to any cotangent space T* M. This fact allows
us to define a quantization on symplectic spaces which have a cotangent structure.

In a similar manner, the Bargmann spaces and the Toeplitz operators of Section
2.1 can be generalised to more general complex manifolds, by making use of the com-
plex structure. The most convenient geometrical data for this Toeplitz quantization
is a Kéhler structure, which we rapidly present in Subsection 2.2.1.

There are two equivalent point of views on Toeplitz quantization; one is the
“sections of line bundles” point of view, which we presented in Chapter 1. The other
point of view, using a principal circle bundle, is more suited to an association with
the microlocal setting [BS75; BG81]. We present the circle bundle approach in 2.2.3
and sections of line bundles in 2.2.4.

2.2.1 Kahler manifolds

A complex manifold M is endowed with a complex structure J which is informally
defined as the action of the complex number ¢ on the real tangent space. To be
precise, let U € M a small open set which we identify, through a holomorphic chart
p, to an open neighbourhood of zero in C". Any tangent fibre T, M for z € U is
identified, through this chart, with a copy of C™ through the linear isomorphism
dgzp. Let us define a linear operator J on T, M to be such that

dzp(J§) = idyp(§).

Then J does not depend on p, since the differential of any biholomorphism between
domains in C commutes with multiplication by ¢. This allows us to define a linear
automorphism of the fibres J : TM — T M, which enjoys the following property:

J? = —1Id.

Local holomorphic functions on M are naturally defined by the requirement of
being holomorphic in a chart; but holomorphicity can be expressed in terms of J.
Indeed, a function f is holomorphic on an open set U € M if and only if, for every
& € TU, one has

Ocf i=def —idjef =0.
We shall note, however, that not every linear isomorphism J : T'"M + T'M such that
J? = —Id comes from a complex structure; these so-called almost Kdhler structures
are discussed in Section 2.5.

The complex structure which allows to identify R?" with C™ played a crucial role
in Subsection 2.1.2, since the quantum space By in this case consists of holomor-
phic functions. We are interested in an extension of Toeplitz quantization to some
symplectic manifolds endowed with an additional complex structure.

Definition 2.2.1. A Kéahler manifold M is a complex manifold with a symplectic
form (M, w, J) under the following supplementary conditions:

e w is J-invariant, that is, for all £&,n € T'M with same base point,

w(‘]na Jf) = W(Ua ‘5)
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e The symmetric bilinear form w(J-,-) is definite positive.
Example 2.2.2. Below are some examples of Kdahler manifolds.

e The space C™ endowed with the canonical symplectic form ws and the complex
structure J corresponding to multiplication by 1, is a Kdhler manifold.

e Let A be a lattice in C™, then the quotient torus C™/A is a Kdhler manifold.

e The complex projective space CP™ has a natural Kdhler structure associated
with the Fubini-Study form. To be more precise, the symplectic form defined
i local charts by:

w 3T dR(z) A dS(z)
[Liz1tizn] = 1+ Z?:l |Zi’2

is invariant under the natural change of charts, and is compatible with the
complex structure.

A Kéhler manifold has a natural associated Riemannian structure defined by:

9(n,§) = w(n, JE).

Let us prove that the relations between J,w and g allow one to consider convenient
infinitesimal bases.

Let m € M be a point in a Kahler manifold of dimension n and let eq,...,e, be
a g-orthonormal family of 7T, M which spans a Lagrangian subspace of T,, M. For
1<k<n,let f = Jeg. Then

9(fi: fr) = w(=ej, fr) = w(=fj, —ex) = g(ej, ex)
so that f1,..., f, is g-orthonormal; moreover
g(€j7 fk‘) = W(—ej, Gk) = 07

so that (e1,...,en, f1,-.., fn) i a g-orthonormal basis of T, M. It also forms a
symplectic basis, since
w(ej, fi) = g(ej, ex).

In particular, in a Kéhler manifold, the Liouville measure coincides with the Rie-
mannian volume form. The set of all g-orthonormal and symplectic families at T,,, M
carries a natural U(n)-action.

Complex manifolds have C™ as universal local model, and in the same way,
symplectic manifolds have no local geometry. However Kéhler manifolds are not
all locally equivalent, since data from the associated Riemannian structure must
be preserved. For instance, the complex projective space CP!, endowed with the
Fubini-Study form, is a Kéhler manifold of real dimension 2, with constant posi-
tive curvature, hence is not locally equivalent to C as a Kéhler manifold: no local
diffeomorphism preserves both J and w.

A convenient way to describe the local geometry of a Kéhler manifold consists in
Kahler potentials.
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Definition 2.2.3. Let U be a contractible open set of C" and (w,J) a Kéahler
structure on U. Let 0 denote the Cauchy-Riemann operator associated with J.
A Kihler potential on U is a function ¢ € C?(U,R) such that

%a£5n¢ = w(f, 77)'

In the situation above a Kéahler potential always exists. Kéahler potentials are
strongly plurisubharmonic (p.s.h) functions (a real-valued function ¢ is p.s.h when
the Hermitian matrix (0;0,¢); is definite positive). There is no natural Kéhler
potential associated with a Kéhler structure, but the difference between two Kéhler
potentials is a harmonic function.

Reciprocally, any strongly p.s.h function defines a symplectic form, which is com-
patible with J in order to form a K&hler manifold. Thus, strongly p.s.h functions
completely characterise the local geometry of Kéhler manifolds.

Traditonal semiclassical analysis takes place on the cotangent bundle over a Rie-
mannian manifold X. In the case where X is real-analytic, a neighbourhood of the
zero section in 7% X admits a natural Kahler structure[GS91]|: the symplectic form
is the natural one, X is totally real and the metric restricted on it is the prescribed
Riemannian structure, and the metric is flat when restricted to every fibre.

2.2.2 Local construction of quantum states

If a symplectic manifold (phase space) M has a complex structure J, the idea behind
Toeplitz operators is to consider quantum states as holomorphic functions. Indeed,
from the usual (Weyl) picture, we know that we must drop half of the variables
of phase space. Holomorphic functions on a complex manifold of real dimension
2n depend only on n variables hence satisfy this requirement. If M is compact,
holomorphic functions on M are all constant, so that the quantum space will consist
of sections of a convenient line bundle over M or, by duality, holomorphic functions
on a dual line bundle.

With Definition 2.1.1 in mind, the introduction of a line bundle corresponds
informally to a weight, which is el” in the Bargmann case. Let us explain this in
greater detail.

Let M be a Kéhler manifold of dimension n, with symplectic form w. The essence
of Definition 2.2.3 is that it is not possible to find a holomorphic local chart on
M for which the symplectic form is pulled to the standard symplectic form on C.
In order to generalise Definition 2.1.1, while encoding the particular holomorphic
structure w by a Kéhler potential ¢, we wish to consider, on a contractible open set
U of M (identified with an open set of C"), complex-valued functions of the form

{s € L2(U),e%s is holomorphic}.
Here L2 (U) is the set L?(U) with scalar product (u,v) — [, u@‘%n. It is more
convenient to put the weight e? inside the definition of the L? norm: our first draft
of a quantum state space becomes

w/\n

{s holomorphic on U,/ |s[2e=2¢ < —l—oo}.
U n.
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Let us again reformulate, in a way which we will make global: we consider a total
space Ly which is U x C with a supplementary information: for each x € U, we
consider the Hermitian norm on C = {z} x C C Ly given by ||v||r = e~ ?|v|. We
then view a function s as above as a section of Ly, that is, a function from U to
U x C such that s(z) € {z} x C for every z € U. From ||v||, one can build an
L?-type norm on such sections, which is the one we already mentioned.

An An
_ 2 2,-26(2)¥
Islziany = [ Is@IESE = [ lstpe <

The introduction of the parameter N in Definition 2.1.1 consists in replacing ¢ by
N¢; this corresponds to multiplying the curvature w by N, and to consider the
tensor power LN of L.

Let us pass the discussion above to the global level. Given a covering of M by small
open sets Uy, Us, ..., one can then try to glue together different pieces Ly, , Ly,, . . .
of the total space above, in a way that the Hermitian norms coincide. This is not
always possible: a necessary and sufficient condition is that the integral of w over
every closed, compact surface on M is 2kw for some k € Z (see [Wo097|, pp. 158-
162). If this condition is satsfied, we will say that M is quantizable. Under this
condition, the resulting space L is not simply M x C with a convenient norm on C,
but a line bundle' (informally speaking, the copy of C moves with the point on M).
A local picture of L is presented in Figure 2.

Yet another reformulation is the following: we associate to the local section s a
complex-valued function, again on U x C (which we will not interpret as Ly but
rather as its dual), of the form

(a,m) = s(z)n™.
One can restrict this function to Xy = {(z,1) € U xC, |n| = e~*@®)}, a submanifold
which looks like U x S, but the sizes of the circles vary. Then the L? norm of this
function on Xy is, as before (up to the factor 27),

w/\n
2 / |s(a)Pe Vo@D Z__,
U n!

Since Xy has real dimension 2n + 1, the holomorphicity condition on s trans-
lates into the fact that the resulting function on Xy is the boundary value of a
holomorphic function on Dy = {(x,n) € U x C, || < e~®@)}. Observe that, with
9l = e?®n|, one has Xy = {(z,1) € U x C,||n||z- = 1}; that is, Xy naturally
sits in the dual space Ly;.

1 This is a complez line bundle so the “line” has real dimension two.
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Inllr <1 |n| < e @

L ~UxC

Figure 3: The domain D inside L*, in a chart

2.2.3 Hardy spaces and the Szegé projector: circle bundle approach

Let M be a compact quantizable Kédhler manifold. Let L* be the dual line bundle
of the prequantum line bundle L, with dual Hermitian norm. Let D be the unit ball
of L*, (see Figure 3) that is:

{D = (m,n) € L* |Inllz- <1}

The boundary of D is denoted by X. It is a circle bundle over M, with projection
7 and an S! action

Tg : X - X
(m,m) = (m, e“n).

X inherits a Riemannian structure from L* so that L?(X) is well-defined. We are
interested in the equivariant Hardy spaces on X, defined as follows:

Definition 2.2.4.
e The Hardy space H(X) is the closure in L?(X) of

{flx, f € C*(DUX), f holomorphic in D}.

e The Szegs projector S is the orthogonal projection from L?(X) onto H(X).

e Let N € N. The equivariant Hardy space Hy(X) is:

Hy(X)={f € H(X),¥(z,0) € X x S, f(roz) = N0 f(2)}.

e The equivariant Szegé projector Sy is the orthogonal projection from L?(X)
onto Hy(X).

Throughout this thesis, we will work with the sequence of spaces (Hy(X))nen-
If M is compact, then the spaces Hy(X) are finite-dimensional spaces of smooth
functions. (Note, however, that this dimension grows polynomially with N.) Hence,
the Szegd projector has a Schwartz kernel, that we will also denote by Sy .
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Example 2.2.5 (The sphere). The sphere S? has a canonical Kihler structure as
(CPY,wrs), which is quantizable. In this case D is the unit ball in C2, blown up at
zero, and X = S3. One recovers the usual S' free action on S with quotient S?.
Here, Hy(X) is the space of homogeneous polynomials of two complex variables,
of degree N, with Hilbert structure the scalar product of the restriction to X of these
polynomials. A natural Hilbert basis corresponds to the normalized monomials

N+1/N
(21, 22) + ( )zlfzév_k

7 k
In particular, the Szegd projector has kernel

N +1

Sy (zw) ).

(z-w
Example 2.2.6 (C"). Another important example (though non compact) is the case
M = C", with standard Kdahler form. As C" is contractile, the bundle L is trivial,
but the metric is not. The curvature condition yields:

(L,h) = ((C’ZZ X Cv,e‘zl2|v|2).
This leads to the following identification [Bar61]:
Hy(X) ~ By :== L*(C") N {z — e*%|z|2f(z), [ is an entire function}.

Hence we recover Definition 2.1.1.
As the case M = C™ is of particular interest, we will keep separate notations for
the Szegd kernel in this case, which will always be denoted by Il .

Definition 2.2.7. Let M be a Kéahler manifold, with equivariant Szeg$ projectors
(Sn)n>1. Let h € C°°(M) be a smooth function on M. For all N > 1, the Toeplitz
operator T (h) : Hy(X) — Hy(X) associated with the symbol h is defined as

Ty (h) = Syh.

In this work we investigate the spectral properties of the operators Tn(f), for
fixed f and N — +oc.

Example 2.2.8 (Spin operators). Let us continue from Example 2.2.5. The sphere
S? is naturally a submanifold of R3; as such, there are three coordinate functions
(7,,2) : S = R3. They are closed under Poisson brackets: one has {x,y} = z and
two similar identities by cyclic permutation.

In the Hilbert basis given by the normalized monomials, the associated Toeplitz
operators Tn(x), Tn(y), Tn(2) are, up to a factor NLH’ the usual spin matrices with
spin %

One can generalise the elementary bound of Bargmann quantization:

Proposition 2.2.9. Let M be a quantizable Kihler manifold and let h € C*°(M,R).
If h >0, then for all N € N one has Tx(h) > 0.

Proof. Let X denote the prequantum circle bundle over M constructed above and
h* the pull-back of h on X. Let uw € Hy(X). Then Syu = u so that

(u, Ty (h /|u|h >0

as soon as h > 0. O
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2.2.4 Sections of line bundles

We present here an alternative construction of Toeplitz quantization which is more
suited to direct approaches for the study of the associated projector [BBS08; HLX17].

Let (M,w,J) be a quantizable compact manifold. The Hermitian line bundle
(L, h) presented in Subsection 2.2.4 can be used to describe the Hardy spaces as
spaces of sections, instead of functions on a circle bundle.

Definition 2.2.10. Let N € N. The space of holomorphic sections of L&V is
denoted HO(M, L®N). It is finite-dimensional. The Bergman projector Sy is the
orthogonal projector from the space of square-integrable sections L?(M, LON ) to
HO(M, L&N).

If f € C%°(M,C), the Toeplitz operator Ty (f) : HO(M,L®N) — HO(M,L®N)
acts as follows:

In(f)u = Sn(fu).

Before establishing the link between Definition 2.2.10 on one hand, and Definitions
2.2.4,2.2.7 on the other hand, let us describe explicitly the L? structure on the space
of sections: from the Hermitian metric h on L, one deduces a Hermitian metric Ay
on LON_If u,v are sections of L&V, the scalar product is defined as

/ (u(m), v(m))n Vol (m).
M

Here dVol is the Liouville measure w”", which coincides with the volume measure
associated with the natural Riemannian metric on M.

Proposition 2.2.11. Let X be the circle bundle over M as defined in section 2.2.35.
There is an isometry of Hilbert spaces between L?(M,L®N) and

{ue L2(X),¥(0,z) € St x X, u(rg - z) = eNou(z)}.
This isometry sends HO(M, L®N) to the Hardy space Hy(X).

Proof. Let s € L*(M,L®N). We associate to s the following function on X:
§:(myv) — WOV, s(m)) Lo« [on.

Then
(8:t)2(x) = (8, ) r2(0m1, LN,
and moreover § is clearly N-equivariant.
This transformation has a natural inverse: let u € L?(X) be N-equivariant. For
m € M, we define @(m) € LEN as satisfying, for all v € L,,,
<ﬂ(m),v®N>L%N = u(m,v").
This defines % as a section of L&V,
If s € HO(M, L®YN), then the formula for 3, extended to D, defines a holomorphic
function, so that § € Hy(X). Reciprocally if Oyu = 0, then 9 = 0. This concludes
the proof. O
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The notion of kernel for the Bergman projector in this formalism needs some
explanation, since the considered objects are sections of M. The most natural con-
struction involves the product bundle L X L over M x M. (Here M is M with
reversed complex and symplectic structure and L is its prequantum bundle; the
fibres of L X L over a point (z,7) € M x M is L, ® L,)).

A section A of LN RT®Y defines an integral operator on L?(M, L®N) as follows:
(A9)@) = [ (A ) gon gV ol(w)
yeM vy

Then the Bergman kernel is, in this setting, a holomorphic section of L& L which
we can define using an orthonormal basis u1, ..., ug, of H°(M, L®N) through:

dn
Sn(@,9) =D ur(@)ur(y).
k=1

Example 2.2.12 (The sphere). Let us reformulate Example 2.2.5. The bundle L
over CP! is the dual of the tautological bundle, that is, L = O(1). In this case
L®N = O(N). In particular H°(M, L®N) consists in polynomials of one variable of
degree less than N .

To investigate the Hilbert structure on HO(M, L®N) it is convenient to consider
the stereographic projection from CPL\ {x} to C. In this chart, holomorphic sections
of LEN are holomorphic functions on C, square-integrable with respect to the scalar
product:

f(2)g(2)
(f.9) = / T LINTZ
c (1+]z[%)
Only polynomials of degree less than N have finite L? norm for this scalar prod-

uct, and now the Hilbert structure is explicit: an orthonormal basis consists in the
renormalized monomials

N+1 N
er = < >Xk.
7 k

In this chart the Bergman kernel is

N
B N+1 I+z-y
SN($7y) __ <\/(1 + |x’2)(1 + ’y|2)> .

These monomials can also be interpreted as spherical harmonics for even N: the
normalized monomial ), corresponds to the spherical harmonic Y*=N/2N .

Among other notable example of quantizable K&hler manifolds of interest are
integer tori; then the space Hy(X) consists of automorphic forms, and is spanned
by theta functions. Figure 4 summarises the differences between Weyl and Toeplitz
quantization on R?™ and present a few aspects of Toeplitz quantization on compact
manifolds.
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Quantization Weyl Toeplitz
Manifold R2" (o S? 2D torus compact Kéhler
Condition none integer periods | w € Hy(M,27Z)
Quantum spaces L*(R") entire functions CNX] modular forms
Symbol classes 05 L7s. with polynomial growth L
Hilbert basis Hermite functions Monomials Spherical harmonics | Theta functions ‘ is finite

Coherent states

Gaussian states

Zonal harmonics

Dual of evaluation map

Interesting operators

Schrédinger H

Spin systems

Scottish flag ‘

Explicit qz. formula

Yes

No

Figure 4: Weyl, Bargmann and various Toeplitz settings
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2.3 ASYMPTOTICS FOR TOEPLITZ QUANTIZATION

2.3.1 Ellipticity of the Hodge Laplacian

Before stating results on the asymptotic behaviour of the Szegé or Bergman kernel,
we clarify the functional estimates at the core of the study of the Hardy spaces. Esti-
mates in L? norms involving the operator d are crucial in the study of holomorphic
sections. A deep and useful application of these estimates is a family of vanishing the-
orems (Kodaira, Cartan-Oka-Serre) and, ultimately, the resolution of Cousin-type
problems. These estimates, originally developed by Kohn [Koh63; Koh64], then by
Hormander [Hor65], are also an essential technical ingredient when controlling the
Szegd or Bergman kernel. However, these estimates are used as a black box for these
applications [BS75; BBS08|, while the original articles are quite long and are not
formulated in the setting of holomorphic sections over complex manifolds. In this
section we show a version of this crucial result, make the hypotheses clear and hope
to familiarise our reader with the manipulation of sections of complex line bundles.

We let M be a quantizable Kihler manifold, of regularity at least C?; this means
that, in the holomorphic charts, the symplectic form w is of class C? (thus, Kihler
potentials are also C2). Let let L denote the prequantum bundle over M; then L
is itself of class C2. Letting 7>V M = ker(J + i) be the anti-holomorphic tangent
space over M, we consider the following family of sectional spaces, indexed by
g <d=dimc(M)and N € N:

LODN — 120, LN @ ATV ).

This is the space of square-integrable (0, q)-forms with values in L®V. For every
q, the operator 0 sends (a dense domain in) LN to £O4+).N with a closure
condition: dod = 0. Letting 8" denote the dual of 0, we define the Hodge Laplacian
as
0=00+00".
Then, for every ¢, N, the Hodge Laplacian restricts to an essentially self-adjoint
operator [, on L£0a):N
We will prove the following result.

Proposition 2.3.1. Let M be a quantizable Kdhler manifold without boundary and
suppose that metric w(J-,-) is temperate at infinity: there exists Cy > 0 such that, for
every x € M, in a chart near x for which the metric, infinitesimally, is the standard
one, one has |[VVg(x)|| < C4. Then, there exists ¢ > 0 such that the following is
true. Let u € L*(M, LEN) = LOON be orthogonal to HO(M, L) = ker(Cy).

[Coullz2 = (eN = 2C)|ul| 2.

Proof. The first step of the proof consists in adapting Theorem 2.1.4 in [H6r65].

Let U be a contractible open set in M, identified with an open set in C?, and
let ¢ denote a Kéhler potential on U. Then L?(U, L&Y ® AIT%1 M) is isometric to
L%(U, A%(C%)); the operator J is sent, via this isometry, to the following operator
from L?(U, A9(C%)) to L?(U, AT+ (CY)):

T :uws e VO I9(eNoH ),
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where, in the chart, w"? = efdLeb. We let ) = N + f € C*(U,R).

We will apply Stokes’ formula in order to study d and [J on M. Since M has no
boundary, there are no boundary terms in Stokes’ formula. In practice, we will read
information on M in a chart as above, and perform several integration by parts
while forgetting about boundary terms.

Let v € £LODN Let us show that

(v, 010) = [l + [970]I72 >

(eN = O)|lvllz,

for some ¢ > 0, C independent of N, v.
In the chart on U, let us examine

(T*v, T*v) + (Tv, Tv).

Since T' = e ¥0e? and 1 is real-valued, one has T* = e¥(0-)e~%. Here 0- denotes
the holomorphic divergence.
First of all, if v, after the isomorphism, reads qu:l v;dz;, there holds

(Ov,0v) = > /w‘a Yug) = Ol )\2

1<j<k<d
:Z/ *w‘a Yo Z/ e 2 (eVvr) On (V).
J#k j#k

We now compute <5*v 5*1)). After a first integration by parts, one has

(80,0 v) Z/ eV0;(e Y v;) e O (e VT)
= —Z/ v;0; wék( Uk)]
- _22/ u]—ak YTr) Z/e v; 030k (e vg).

On each of these terms, we perform a second integration by parts:

oY = - 0
7,k
- 0% . .
QZ/vkvjazjazk—i—QjZk/ ’“”Jazja p~ 22/ 8kvj.

— e%jﬁﬁ (6_1’[}’07) = 8]'(6_1!}”7)5 (ewvj)

—Z/ Uk YOk(e vj —22/6_¢vk8k v])
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The two last terms cancel out, so that

=% /% (92 _ _\=
(8 v,@ ’U> = 2/ E Uk’l)jazaka + E /e 2w8](eka)8k(ewvj)
3ok J ik

Hence,

(Bv, 0v) + (9" v,d"v) Z/ 72111‘3 Yog) ‘ +2/ kav]@

We now recall that v = N¢ + f. In particular, since the Kéahler potential ¢ is
plurisubharmonic, there exists ¢ > 0 such that the Hermitian matrix 2(0;010);

is larger than cI. Letting —C be the minimal eigenvalue of the Hermitian matrix
2(0j0kf);.k, we obtain

(Bv, 00 + (80,0 v) > 2(eN — C)||v||3.

We now conclude the proof. Let u € L?(M, L®N), be orthogonal to HO(M, L®N)
which is the kernel of Oy). Since Oy is essentially self-adjoint, u belongs to the
closure of its image. Let € > 0 and let a,b € L?(M, L®N) such that u = Oga + b
with [|b||z2 < e.

Letting v = Ju, we apply the previous estimate, with the supplementary simpli-
fication that dv = 0du = 0:

ID0ull? = [107]|* > (eN — C)|9u]>

In a similar manner, _
ICoall* > (eN = C)[|dal]*.
Now, for NV large enough such that ¢/N > C, one has

lull* = (u, Ooa + b) < [(u, Coa)| + efJuf
< ||ull|9a]l + €l[ull

1
< -
< 100wl [Toal] +ellul
1
cN —C

This inequality is valid for all € > 0, so that, finally,

IN

1B0ul[([[u]l + €) + effull

lull < |Dou][-

1

cN —-C |

It remains to prove that one can choose ¢ and C' globally. If M is compact or
(asymptotically) homogeneous, this poses no problem. In the general case, however,
one has to impose that the metric w”? does not change too fast, at its own scale.

As discussed in Subsection 2.2.1, near any point in M, one can choose a chart
in which the Kéhler potential reads 222 + O(|z|*). In particular, for any ¢ < 1,
one can cover M with charts on which the Hessian of a Kéhler potential is always
greater than c. In these charts, one has C' < ||[VVyg]|| < 2[[VVg(p(0))| = 2C,.

In a chart as above, at the point zero, the metric is the standard one; however its
second derivatives at zero might be impossible to bound globally. This behaviour is
excluded by our condition on the metric; this concludes the proof. ]
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Remark 2.3.2. One can remove the condition of mildness of the metric, and obtain
a much more elegant result
[Boull = eNul,

if we replace L2(M, L®N @ ATV M) with L2(M, L®N @ ATV M @ K) where
K is the half-form bundle over M; by this means, one can get rid of the factor f in
the definition of 7.

More generally, in a few contexts, it is more satisfying to replace the tensored
spaces L&Y with L®N ® K in the definition of Hardy spaces and Toeplitz operators.
The reader can check that, for any Hermitian line bundle K’ over M with curvature
globally bounded, a version of the spectral gap above holds for the family of spaces
L2(M,L®N @ MTODM @ K @ K').

From the ellipticity of [y above, one can deduce that O satisfies an elliptic estimate
on the orthgonal of its kernel:

Proposition 2.3.3. Under the conditions above, if u is orthogonal to HO(M, L®N),
one has _
[9u]]* > (eN — O)lul®.

Proof. Since the Hodge Laplacian [y is essentially self-adjoint, from the previous
proposition, its spectrum decomposes as

o(do) C {0} U [eN — C,+),

where the first component stems from H°(M, L®V), and the second component from
its orthogonal.
Hence, the constrained minimisation of the Rayleigh quotient yields

inf (Oou,u) > eN — C.
ul HO(M,L®N)
(u,u)=1

Since (Oou, u) = (Qu, du), the claim is proved. O

2.3.2 Asymptotics of the Szegd kernel and calculus of Toeplitz op-
erators

The analysis of Toeplitz operators depends on the degree of knowledge about the
Szeg6 or Bergman projector through which they are defined. In the limit N — +o0,
one can perform asymptotic expansions of these projectors. As they historically stem
from microlocal results on the full Szegd projector of Definition 2.2.4, and as the
formulation of results on the Szegg side is less intricate than in the Bergman case
(no sections of line bundles are involved, the Szegé projectors Sy acts on functions
on the same manifold X), we present these results in the circle bundle point of view.
Recall that in the Bargmann case the projector involved had an explicit kernel

My (o) = :z:em)ek(y) - (ﬂf)nexp(— 3o =1 iV 7).
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In the case where the base manifold M is compact, since Hy (X)) is finite-dimensional
and consists of smooth functions, the operator Sy admits an integral kernel: if
e1,...eq, denotes an orthonormal basis of Hy(X) then this kernel is

dy

Sn it (2,y) = Y ej(@)e;(y).

j=1

Remark 2.3.4. In this “circle bundle” formulation, the kernel of Sy is a function
on X x X which is (N, —N)-equivariant (with respect to the natural T? action on
X x X). The notion of integral kernel for Sy in the line bundle formulation requires
a geometric construction (in this case, the integral kernel is a section of a convenient
bundle over M x M). See Section 6.1.1 for a definition.

The kernel 1Ty then serves as a universal model for the Szegs kernel. In the large
N limit, one can write, for x,y € M close enough so that X can be trivialised,

Sn((z,v), (y,0")) = N My (2, ) ZN k(VNz,VNy) + Ex(N, z,y).

k=0

Various methods yield different versions of the control of coefficients ag, and the error
function Ex. This “near-diagonal expansion” is completed by off-diagonal controls, a
typical statement being as follows: if x and y are at fixed distance, then as N — 400
one has Sy(z,y) = O(N—°), that is, Sy(x,y) decays faster than any polynomial
in N~!. Thus, one is able to control the kernel Sy up to an O(N~>°) error.

Under additional regularity conditions (the Kéhler structure needs to be analytic),
one can control in a fine way the exponential terms in the Szeg§ kernels: there exists
a function p such that, for z,y € M close, one has

Sn((,v), (y, ') = &N pe) ZN (z,y) + Ex (N, ,y).

In this situation we are able to replace the fixed index K by a function of N, which
is typically ¢N for ¢ > 0 small, so that the error term Ef is O(e=¢N) for ¢ > 0
small.

Using the expansions of the Szeg6 kernel, one can prove that the composition of
two Toeplitz operators is a formal series of Toeplitz operators.

Proposition 2.3.5 ([Sch00]). Let M be a compact quantizable Kdihler manifold.
There exists a star-product on the space of formal expansions C*°(M)[[n]], written
as fxg = ;;08 njCj(f, g), that coincides with the Toeplitz operator composition:
as N — 400, one has, for every integer K, that

K

Tn()Tw(g) — S NITn(Cy(f.9) = O(NKD).

j=0

The functions C; are bilinear differential operators of degree less than 23, and

Co(f,9) = fg-
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An explicit derivation of Cj(f,g) is given by Proposition 6 of [Cha03]. In partic-
ular, it gives the correspondence principle

[Tw(£). T(o)] = - Iw({F.0) + OV ).

This composition law, in turn, allows one to study inverse of Toeplitz operators as
well as its spectrum.

Toeplitz quantization depends on the complex structure J on the Kéhler man-
ifold; indeed the space of quantum states itself depends on J. However, from the
correspondence principle, it is generally useful to translate symplectic properties
of symbols into properties of operators. To this end, one needs to investigate how
symplectomorphisms act on Toeplitz quantization.

To a (local) symplectomorphism between Kéahler manifolds, one can associate an
almost unitary (local) transformation on the Hardy spaces, such that, at first order,
the Toeplitz quantizations on both sides are related by the symplectic change of
variables in the symbols [Cha07]:

Proposition 2.3.6. Let o : (M,x) — (M',y) be a local symplectomorphism between
two quantizable compact Kdhler manifolds.

Let U be a small open set around x. Then there exists, for every N, a linear
map Sy : HO(M,L®N) s HO(M', K®N) and a sequence of differential operators
(Lj)j>1, such that, for any sequence (un)n>1 of sections which are O(N~>°) outside
of U, and for any symbol a € C*°(M'), one has:

16nun|lrz = [lunl|rz + O(NT)
6]_\71TN(CL)6NUN =TnN (a oo+ Z NﬁiLj(a o 0')) un + O(Nfoo)
k=1

Moreover, for every j > 1, the differential operator L; is of degree 2j.

2.4 APPLICATIONS OF TOEPLITZ OPERATORS

2.4.1 Link with Weyl quantization

Equation (2) relates harmonic oscillators in the Bargmann versus Weyl represen-
tation, using the Bargmann transform of Definition 2.1.2. This unitary transform
can be used to relate general Toeplitz operators with pseudodifferential operators,
which are defined by a singular integral kernel. The Weyl pseudodifferential operator
associated with a convenient function a on R?" has integral kernel

] 1 -y [T+
opgv(ay(x,ym(m)n/we h a( Qy,£>ds.

Equation (2) then generalises to the following property: if f € L* with polynomial
growth, then

ByTn(f)By = Opl, <e% f).

The formula above needs several comments.
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e Even if f is highly irregular, the function 3N f is real-analytic and can be
extended in a strip of imaginary part smaller than ﬁ Thus, the pseudodiffe-
rential operators yielded by this formula are quite regular.

e The infimum of e~ f is greater than the infimum of f. This sheds some light
on the positivity issues for pseudodifferential operators. It is not true in general
that f > 0 = Op}‘}v(f) > 0. In general one can prove a lower bound of —CA#,
which corresponds to the Toeplitz picture.

With this conjugation in mind, Bargmann quantization corresponds to pseudodiffe-
rential operators, using non-conventional symbol classes.

We have seen in Subsection 2.3.2 that the Bargmann situation is a universal local
model for all Toeplitz operators; this will be of crucial importance in Part I of this
manuscript. Using the Bargmann transform, it means that Toeplitz quantization (in
its general formulation) and Weyl quantization are microlocally equivalent, in the
C*° category (which corresponds to O(IN~°°) error). This point of view, however, is
not entirely satisfying, even concerning our results in the setting of smooth symbols
[Dell16; Dell7|. Various motivations for dealing with Toeplitz quantizations for our
initial problem (spin operators) are detailed in Section 1.4. We dare advocate for
the opposite trend: the Bargmann setting for Toeplitz quantization can be studied
and used without knowledge of delicate complex geometry and allows one to work
directly in phase space and to use positivity estimates. Toeplitz quantization can
also be performed on neighbourhoods of the zero section in cotangent line bundles
over compact real-analytic Riemannian manifolds. In particular, in this setting, the
Laplace-Beltrami operator can be written as a Toeplitz operator up to an error
O(e=ch™).

The different roles played by x and £ in Weyl quantization allow one to perform
specific manipulations. For instance, one can rapidly conjugate a Schrédinger oper-
ator —h2A +V with a multiplication operator of the form e?®)/", allowing to prove
specific estimates. Another example is the treatment of resonances of Schrédinger
operators. It is unknown how to pass these techniques to Toeplitz operators; however,
recent work [F'T17] study resonances of dynamical systems by introducing a specific,
weight-dependent quantization in the spirit of Berezin-Toeplitz quantization.

2.4.2 Representation theory and automorphic forms

A particular motivation for general geometric quantization is the study of represen-
tations of Lie groups. In fact, it allows to classify all finite-dimensional, unitary rep-
resentations of compact groups [Kos70|. Berezin-Toeplitz quantization, while more
specific, enjoys some applications to representation theory. Spin operators of Sec-
tion 1.1 correspond to the irreducible representations of SU(2), whose structure is
well-known.

A less trivial example is given by the family of tori C/A, where A is a discrete, co-
compact subgroup of C. Up to a linear change of variables, one can write A = Z+7Z,

SLa(R)

where 7 € Vg Ly(Z) is a complex number of positive imaginary part modulo

the operations 7 — 7 + 1 and 7 — —7~! which preserve A. Such a torus is always
quantizable up to a scaling of the symplectic structure. The Szegd kernel and Hardy
space are not as explicit as for the sphere (see Example 2.2.5), but a convenient
basis of H°(C/A, L®N) is given by Jacobi theta functions (see Section 4 in [Blo | 03]
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for a detailed construction in the square case 7 = ). Using an arithmetical lan-
guage, H°(C/A, L®N) consists of automorphic forms of weight 2N for A, that is,
holomorphic functions f on C satisfying the periodicity conditions

flz+1) = [(2)
f(Z + 7_) _ eNﬂ'(—7'2—2~rz)f<z)_

Studying the dependence in 7 of the quantization is then equivalent to considering
the theta functions as depending on two parameters (z,7) € C x H. This point of
view has numerous applications in number theory [Mum8&3].

The same strategy applies to constant negative curvature compact surfaces, of the
form H/T" where I is a discrete cocompact subgroup of SLa(R). Again, the Hardy

space consists of automorphic forms: for vy = “ Z € SLy(R) and z € C we let

c
j(v,2) = ¢z + d; then functions in the Hardy space are holomorphic functions on H
such that, for all v € T,

f2) =02 f(y - 2).
This definition of automorphic forms is reminiscent of the behaviour of the theta
functions with respect to 7: there holds (|[Mum8&3|, Proposition 11.1)

6° (o, <; f) -T> — 0%(2,7+2) = 6%(2,7) = (0 x 7 + 1)*6%(2, 7)

o8 (o, ( 01 ;) .T> = 080, —1/7) = (—i7)*03(0,7) = (—1 x 7 + 0)*63(0, 7).

Hence, 6% is an automorphic form of weight 4 for the group I' generated by the two
matrices above. In this case H/I" is the three-cusp sphere (which is not compact but
has finite volume).

Similarly, the dependence on I' of the quantization of H/I" may be related to the
Berezin-Toeplitz quantization on Teichmiiller space of hyperbolic surfaces. We are
not aware of developments in this direction, or towards an application of Berezin-
Toeplitz quantization to the representation theory of SLs(R). We hope that our
specific analysis of the Bergman kernel in this case (Chapter 6) will open perspec-
tives in this respect.

2.4.3 Some interesting Toeplitz operators

We have already presented a handful of connections and applications of Toeplitz
operators: physics of spin systems, analysis of pseudodifferential operators, group
representations... We present here a few puzzling Toeplitz operators, or families of
such.

SCOTTISH FLAG (Thanks to M. Zworski for drawing this example to our atten-
tion). The Scottish flag operator is the Toeplitz quantization, on the square
torus, of the complex-valued symbol

(x,&) > cos(z) + icos(§).

It is a classical, yet mysterious, non-selfadjoint operator. The analysis of non-
selfadjoint operators is much harder than the self-adjoint one since almost
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eigenvectors do not correspond to an approximation of the spectrum: in other
terms, for a general matrix A, the norm of the resolvent (A — zI)~! might be
very large even if z is far from the spectrum of A.

One can prove [BU03| that the O(N~°°) pseudospectra (set of approximate
eigenvalues) of the Scottish flag is {o +i7 € C,|o| < 1,|7| < 1}. It is conjec-
tured that the exact spectrum is located on the diagonals {o = +7}, forming
a Scottish flag. Our recent developments to the theory of Toeplitz operators
in real-analytic regularity (Part II) might allow one to make some progress
towards this conjecture.

HIGGS OPERATOR (Thanks to L. Charles for this example) The Higgs operator
(or, more precisely, the simplest case of a Higgs operator) is the Toeplitz
quantization of the following symbol on (S?)2:

(1,y1, 21, T2, Y2, 22) > (21 — 962)2 + (y1 — y2)2.

This symbol has minimum zero; the minimum is reached on a transverse union
Z, U Z_ of submanifolds of (S?)2, with

Zy = {(v1,v1, 21, 71,91, £21), (21,91, 21) € S?}.

Note that Z, is symplectic while Z_ is Lagrangean. Thus, one cannot apply
the results of Section 5.5, which requires the manifolds Z; and Z_ to be
isotropic. The ground state of the Higgs operator is conjectured to be non-
degenerate and supported only on Z_.

QUANTUM CAT MAP The Cat Map is the following transformation on the square
torus:
o:(z,8) = 2e+&x+¢).

It is an ergodic, mixing Anosov symplectomorphism, which does not however
preserve the standard complex structure. Hence, the induced change of vari-
ables ¥ : u + uoo does not preserve H%(T? L&N ). It can be however projected
into Ay = Sy2XSn, which is invertible. Then (ANA"]‘V)_%AN is a unitary map
on the Hardy space, which quantizes o (more general symplectic changes of
variables can be quantized in this fashion; this yields Proposition 2.3.6). A
convenient notion of quantum ergodicity holds for this operator |Zel97|. This
of course generalises to more general symplectic maps on manifolds, which are
linked to Toeplitz quantization as well as the study of automorphic forms, and
for which unique quantum ergodicity is conjectured.
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2.5 MORE GENERAL SETTINGS

2.5.1 Almost Kihler quantization

Toeplitz quantization on compact Kéahler manifolds as presented in Subsection 2.2
has many different generalisations, which are mostly concerned with the same geo-
metrical setting: the complex structure J is replaced with an almost complex struc-
ture, that is, a general linear operator J acting on the fibres of T'M, such that
J? = —Id. The Cauchy-Riemann operator 0 is still well-defined but does not have,
in general, any local solution. Under these assumptions, (M, w, J) is called an almost
Kahler manifold.

A quantization scheme (more precisely, its microlocal equivalent) for compact
almost Kéahler manifolds was proposed in [BG81], and proceeds along the following
lines: in the Ké&hler case, one can compute an off-diagonal expansion of the Szegs
kernel (see Section 3.2). The construction of this expansion can still be performed in
the almost Kéhler case. This yields an approximate Szeg6 projector Sy, such that
SnSn = Sy + O(N~°). In particular, eigenvalues of Sy are close to 1 or to 0. Let
X denote any smooth real function such that y =1 on an open neighbourhood of 1
and x = 0 on an open neighbourhood of 0, then x(Sx) is an orthogonal projector,
which is O(N~>°)-close to Sy . This artificial Szeg6 kernel, of finite range, shares the
same properties as in the Kéhler case, modulo O(N ™) errors. Using this projector,
one can prove for instance [SZ02| that almost Kéhler quantizable manifolds can
be embedded into CPV, with a deformation of the metric and the almost complex
structure controlled by O(N ™).

A variant on this method was proposed by Charles [Chal6; Cha07], and does
not involve advanced microlocal tools such as Fourier Integral Operators with com-
plex phase, contrary to [BG81]. Dealing directly with the space of square-integrable
sections of a high power tensor bundle L®N one can define in a direct way an
approximate Szegd kernel Sy.

Remark 2.5.1 (Symplectic, Kéhler and almost Kéhler manifolds). The following
question now arises: which symplectic manifolds are Kéhler, and which ones are
almost Kéhler?

The first example of a compact symplectic, not Kdhler manifold was provided
by Thurston [Thu76|, as a quotient of R* by a discrete group of linear symplecto-
morphisms. The obstruction is of cohomological nature: odd Betti numbers boj1 1 of
compact Kéahler manifolds must be even, so that any compact symplectic manifold
which fails to satisfy this condition cannot admit a Kéhler structure.

More involved examples of compact symmetric spaces with a symplectic struc-
ture but no Kéahler structure were gradually found (in particular, examples which
cannot be detected by the De Rham cohomology); see [TO06] for a panorama on
the question.

The case of almost complex structures is totally different. In fact, all symplectic
manifolds allow compatible almost Kéhler structures (see [MS98]|, Proposition 4.1).
Thus, constructing a generalisation of Kéhler quantization to the almost Kéhler
case allows one to cover all compact symplectic manifolds.
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2.5.2 Dirac operators and Bochner Laplacians

A completely different point of view treats a case which is still more general than
almost Ké&hler manifolds. Let us remove the condition between J,w, and the Rie-
mannian metric g. We are left with the following data:

e (M,w) is a compact symplectic manifold such that w has integral Chern class.
e (L,h) is a hermitian line bundle with a connection V, with curv(V) = 2inw.
e ¢ is any Riemannian metric on M.

In this situation, there exists an almost complex structure J which is both compat-
ible with w and g, in the sense that

w(JE, JIn) = w(&,n)
g(J&, JIn) = g(&n).

However J does not relate w and g.

In this setting, one can construct |Ver96; BU96| a spin®-Dirac operator, which is
a degree 1 elliptic differential operator D acting on Q¥®*(M, L), the sum of spaces of
(0, q)-sectional forms on L, quotiented by algebraic relations, thus forming a Clifford
algebra. Replacing L by L&Y yields a sequence of Dirac-type operators Dy .

The spectrum of Dy, in the large N limit, consists in two very different sets.
Indeed there exist constants C' > 0 and ¢ > 0 such that, for every N, one has

o(D3%) N[C,cN] = 0.

This spectral gap allows to define the equivalent of the Hardy spaces H°(M, L®Y)
as the low-energy space of Dy. The spin® Bergman projector is

Py = 1p,0)(D¥).

The asymptotic properties of Py are very similar to the Kéhler case [MMO02; MMO07;
MMO8|, although in this degree of generalisation the results are slightly weaker.

An easy version of the spin®-Dirac construction consists in the case where J is
an exact complex structure. This corresponds to the following manipulation: start
with a Kéahler manifold (M,w, J), then consider another symplectic form w; which
belongs to the same Chern class as wp. One can still construct a hermitian line
bundle L; with Levi-Civita curvature wy, and Hardy spaces H°(M, L?N ). However
we keep the L? structure from the initial Riemannian metric ¢, so that the Hilbert
structure on the quantum space, the Bergman projector, and eventually the Toeplitz
operators, hold information from both w and wy. These magnetic Toeplitz operators
can be defined and studied without the tools of Clifford algebras.

The last generalisation of Toeplitz quantization that we treat here replaces the
Spin®-Dirac operator with a Bochner Laplacian [GUS88|. Let again (X,w) be a sym-
plectic manifold of real dimension 2n and let J be a complex structure such that
w(JE, Jn) = w(&,n). Let g denote a Riemannian metric on M (which may or may
not coincide with w(J-,-)). Finally let (L, h) be a Hermitian line bundle with con-
nection V such that curv(V) = 2inw. (Again V may or may not be the Levi-Civita
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connection). Then the tensor power LY has a natural connection V. Letting V3
denote the adjoint (for the Hilbert structure given by g and h) of V, we let
An =VyVy —nN.
Then Ap enjoys a spectral gap property:
o(An)N[C,eN] = 0.

One can then, as before, study the associated Szegd kernel [Korl7], as well as Toe-
plitz operators.



Part |

SMOOTH METHODS

This part is devoted to the study of the low-energy spectrum of Toeplitz operators
with C*° symbols. In particular, we study subprincipal effects on eigenfunction
localisation, such as quantum selection, an effect by which the ground state, and
low-energy states, concentrate only on a part of the classical minimal set.

Our original goal was to extend results known in the Schrodinger case [HS84; HS864a]
about low-energy eigenfunction concentration in the semiclassical limit, to the con-
text of Toeplitz operators, with applications to spin systems such as the antiferro-
magnetic Heisenberg model on the Kagome lattice. The articles cited above respec-
tively treat the case of a potential with several non-degenerate minima, and the case
of a potential which is minimal along a submanifold, in a transverse non-degenerate
way (the Morse-Bott condition). This last case had already been extended to mag-
netic Schrodinger operators |[RN15; Hel416] but had not been studied for more
general pseudodifferential operators.

results

In this part, using the asymptotics of the Szegs kernel, we study quantum selection in
the case of non-degenerate wells (chapter 4), and then in a general context (Section
5.3).

This allows us to treat arbitrarily complicated minimal sets; in the case of the
Heisenberg Antiferromagnet on the Kagome lattice, the minimal set is an analytic
stratified manifold.

In the particular case of a symbol which is minimal in a non-degenerate way on
an isotropic manifold (a geometrical generalisation of [HS86al), we obtain a com-
plete expansion of the first eigenvector and eigenvalues in increasing powers of the
semiclassical parameter (Section 5.4).

We also treat one degenerate case, in which the minimal set of the symbol is a
transverse union of two isotropic submanifolds (section 5.5).
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To do so, we develop operator estimates on shrinking scales for the Szegd projector
(Proposition 3.3.1), using a kernel expansion which we improve in the almost Kéhler
case (Proposition 3.2.4).

Aside a general result on the concentration speed of eigenfunctions on the corre-
sponding classical energy level (Proposition 4.3.1), we study in detail (Theorems 4.1
and 4.2) the case of “nondegenerate wells”, using the expansion of the Szegs kernel
and standard perturbation arguments. These wells can resonate or not; we reach
O(N~—°) precision, which is sharp in the context of smooth symbols.

We then prove an analogue of Melin’s estimate (Proposition 5.2.4) for a broad
class of symbols, through the definition of the Melin value (Definition 5.1.1) which
captures the subprincipal contributions to the energy at a given point. We deduce a
general rule for subprincipal effects on localisation (Theorem 5.1): the ground state
(and other states with low energy) microlocalises only on the part of the minimal
set of the principal symbol on which the Melin value is minimal.

In the case of miniwells, where the principal symbol is minimal on an isotropic
submanifold, under a condition of non-degeneracy, one can compute a full expansion
of the ground state (Theorem 5.2). The same applies in a case where the minimal
set is a transverse union of isotropic submanifolds (Theorem 5.3). Weyl asymptotics
(Theorem 5.4) are also computed in the two situations above.

discussion

In order to obtain Theorems 5.2 and 5.3, we construct a symplectic normal form
in each case, in order to partially diagonalise the transverse Hessian. The problem
then reduces to a confining effective operator in the slow modes, in the spirit of the
Born-Oppenheimer approximation.

We formulate our results in the Kéhler or almost Kéhler setting. As we use few
specific properties of Kéhler quantization beside the Szegd kernel expansions, this
work extends to the various generalisations of Toeplitz operators, which were pre-
sented in Section 2.5. This only requires a small modification in the definition of
the function p, for which the new model Bargmann space must not be taken in
coordinates which preserve the infinitesimal metric, but which is compatible at the
considered point with the connection (in other terms, the quadratic weight e =12
becomes e VR where Q is a suitable quadratic form).

General results [Cha03| give a microlocal equivalence between Weyl and Toeplitz
quantization, at the price of a change of symbols which is already non-trivial at
the subprincipal level. This microlocal equivalence cannot be made global without
technicalities. Moreover, we state our results in a degree of generality which was
never performed for pseudo-differential operators, as for instance an extension of
the “miniwell” situation, which had only been studied for (magnetic) Schrodinger
operators. This, and the trivial positivity estimate for Toeplitz operators (Proposi-
tion 2.2.9), motivated a study which we write down in the Toeplitz formalism (we
only use Weyl quantization to treat the effective operators in sections 5.4 and 5.5),
with the additional benefit that microlocalisation is much simpler to define and to
study in the Toeplitz setting.

In the Schrodinger case [HS84; HS86a|, exponential decay of the eigenstates was
obtained, in space variables. For Toeplitz quantization, as well as general pseudo-
differential operators, such results require real-analytic regularity, which we treat in
Part II of this thesis.
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In this chapter we present some techniques which allow to give asymptotic expan-
sions of the Szegs kernel of Definition 2.2.4. The asymptotic regime here is N — +o0,
on a fixed quantizable and compact K&hler manifold, or more general cases devel-
oped in Section 2.5. To this end, in Section 3.1 we rapidly present the “usual” com-
plex stationary phase lemma, which we will use on a regular basis. In Section 3.2
we recall the principal results on the expansions of the Szezd kernel which appear
in the literature, and which we contributed to improve. Section 3.3 is devoted to an
operator version of the kernel estimates stated before. To conclude, in Section 3.4
we detail the proof of Proposition 3.2.4 in the almost Kéahler case, which appears
in previous work [Dell6]. The proof consists in making more precise the remainder
estimates of [SZ02].

The reader interested in applications to the spectral study of Toeplitz operators
can use Propositions 3.2.3 and 3.3.1 as a black box and proceed to Chapter 4.

3.1 THE COMPLEX STATIONARY PHASE LEMMA

Fourier Integral Operators were first developed by Hormander [Hor71] in the case of
a real phase. The case of a complex phase was then studied by Melin and Sjéstrand
[MS75] before a comprehensive theory of all cases emerged [H6r85]. The funda-
mental tool is, in each case, the stationary phase lemma, which allows to compute
expansions of integrals with an oscillating phase. One can then define a calculus of
Fourier Integral Operators. The point is that the microlocal Szegs projector S of
Definition 2.2.4 is a Fourier Integral Operator [BS75]; this structure can be copied
to the almost Kéhler case in order to build a Szegé projector [BG81].

The general theory of Fourier Integral Operators is outside the scope of this thesis;
we will only rely on various formulations of the complex stationary phase lemma,
which we develop here in the smooth setting.

3.1.1 Almost holomorphic extensions

Let U C R™ an open set and f € C°(U,R). If f is analytic, there is a natural
notion of holomorphic extension of f to a neighbourhood of U in C™. Reciprocally,
a holomorphic function on a neighbourhood of U, once restricted to U, is analytic.
How can one extend f into a function fon the complex space, while guaranteeing
that Jf is as small as possible?

Proposition 3.1.1 ([MS75]). Let U € R an open set and f € C*°(U,C). There
exists a neighbourhood V of U in C%, and f € C®(V,C) such that

45



46

PART I, CHAPTER 3: THE SZEGO KERNEL

The estimate on 5f~is uniform on compact sets.
Such a function f is called an almost holomorphic extension of f.

Proof. Let 0®f(x) denote the successive differentials of f at z € U, for o € N¢,
Recall from the Borel lemma that the Taylor expansion of a smooth function is
arbitrary; we will use this fact to construct the extension f

Let x € C®(R%,R) be a smooth function such that y = 1 near 0 and x = 0 near
infinity. We choose an extension ffor f of the form:
~ )¢
Fa) = Y 5@ L tal@y).

a€Nd

where t,(x) > 0 is chosen large enough so that this sum converges, in the spirit of
the Borel lemma.
We observe that f(z,0) = f(z), and moreover

of (x,y) = O(ly|™).

Indeed, for any m € N, if |y| is small enough so that x(t,(x)y) =1 for all |a| < m,

then 0f (z,y) = O (|y|™*).

To conclude, the partial derivatives 0“f are bounded uniformly on compact sets
of U, so that the coefficients t,(x) are bounded on compact sets; thus the estimate
on Of is uniform. O

There is no unique choice of almost holomorphic extension of f, but all almost

holomorphic extensions share the same Taylor expansion on U.

3.1.2 Complex stationary phase lemma

Using almost holomorphic extensions, one can give a complex-valued version of the
stationary phase lemma.

Proposition 3.1.2. Let U C R? x R? an open set and ¢ € C(U,C). We suppose
that ¢ is a positive phase function, that is:

e R(¢) <0 onU.

e Forall (x,)\) € U, there exists exactly one vo(\) € R such that (zo(\),\) € U
and Rp(xzo(N), ) = 0.

e One has (dzS¢)(xo(N),\) = 0.
e The Hessian of R¢ at (xg(N), A) is negative definite.

Under the conditions above, the function \ — xo(\) is smooth.

There exists a sequence of differential operators Dj, with continuous dependence
on A, such that Dj is of degree 2j, and such that, for any a € C*(U,R) and any
K € N one has

/ eN¢(x’)‘)a(x, )\)dx — N% Z NﬁJ(D]a)(.CEO()\), A) + O(NiK)
z€R4, (z,\)eU i

In particular, Doa =

\/det(27r Hess(¢)(zo(X),N))
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Proof. The proof relies on the Morse lemma applied to an almost holomorphic
extension of ¢ in the x variable.

Let (Z : V. — C denote an almost holomorphic extension of ¢, and a denote an
almost holomorphic extension of a. Then, for any A, the function z — g(z, A) has a
critical point at z¢(A). From the Morse lemma, there exists a C'*°-diffeomorphism
o near zo()), smoothly depending on A, such that z — ¢(o(2), \) is a quadratic
function @y of z — z¢(A). Moreover, without loss of generality, o) is tangent to
identity at xg.

Since R¢ is negative outside zo(\), one can restrict the integral to a sufficiently
small neighbourhood of z¢()), up to an O(N~°°) small error. Hence, without loss
of generality o) is defined on V. However o) may not preserve the real space U, so
that the integral

/ NG (o (y + z0(N), NI (y, ) dy
y,agl(y+x0(>\))€U

is not an integral on U. If qz and a were holomorphic, one could simply change the
integration contour. In this case, a change of contour induces an error related to da
and doy. This allows to conclude: since RQy < 0 on U \ {zg()\)}, and o, is tangent
to identity at xo(\), one has RQx(y) < 0 for y # xo(A) on the integration path.
In particular one can reduce the integration domain to {|y — zo| < N7} up to an
O(N~°°) error; on this domain (y, \) is at distance N~2¢ of U, so that da and doy

are O(N~>°).
We are then reduced to the case where ¢ is a quadratic form, which follows from
an explicit computation. ]

Remark 3.1.3. The critical point zo(\) satisfies Rp(zo(A), A) = 0, which ensures
that the quantity to integrate is not exponentially small at zg. Since R¢p > 0 every-
where it implies that z¢()) is a critical point for R¢. In Lemma 3.1.2 we also impose
the condition that ¢ is critical at xg(\) (otherwise a sequence of integration by
parts would yield a O(N~°°) contribution).

This situation is not stable by small perturbations of ¢, contrary to the real case:
there might be no common critical point for 3¢ and ¢ on U. In fact, under a small
perturbation, the critical point of an almost holomorphic extension will move to the
complex space, and is not well-defined any more since almost holomorphic extensions
are not unique. This is a severe technical point in the treatment of Fourier Integral
Operators with a complex phase, which can be addressed either by considering
jets of Lagrangians along real submanifolds [MS75| or ideals of complex functions
[Hor85], at an increased theoretical and practical cost. We will not need to build
a comprehensive theory of Fourier Integral Operators with a complex phase but
we will rather call “Fourier Integral Operators” some explicit parametrices (such as
the one for the microlocal Szegs kernel) and apply the stationary phase lemma to
conclude.
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3.2 STATE OF THE ART

Semiclassical expansions of Sy are derived in [Zel00; SZ02; MMO7; Cha03; BBS08],
in different settings, and using different tools. In [Zel00; SZ02], the Fourier Integral
Operator approach is used to prove an asymptotic expansion of Sy in a neighbour-
hood of size N=1/2 of a point. In [Cha03; MMO07; BBS08|, one derives asymptotic
expansions of Sy in a neighbourhood of fixed size of a point, using the calculus
of Fourier Integral Operators, heat kernel expansions, or simpler pseudodifferential
tools.

The Szeg6 kernel on Kdhler manifolds admits different generalisations, so we must
give the context corresponding to a citation. In all this section, we call K the Kéhler
Szegd kernel defined in Section 2.2, AK the almost Kéhler case [BS75; BG81; Zel00;
S702; Chr03], SC the spin®-Dirac case [BU96; MMO02; MMO07; MMO08; MM15] and
BL the Bochner Laplacians case |[GU88; Korl7].

The Szeg6 kernel is rapidly decreasing away from the diagonal as N — 4o00:

Proposition 3.2.1 (|[BBS08|(K), [SZ02; Cha03|(AK), [MMO07|(SC), [Korl17|(BL)).
For every k € N and € > 0, there exists C > 0 such that, for every N € N, for every
x,y e X, if

dist(w(2), 7(y)) > €.

then
|Sn (2, y)| < CN7F,

The analysis of the Szegd kernel near the diagonal requires a convenient choice of
coordinates. Let Py € M. The real tangent space Tp, M carries a Euclidian structure
and an almost complex structure coming from the Kéahler structure on M. We then
can (non-uniquely) identify C" with Tp M.

Definition 3.2.2. Let U be a neighbourhood of 0 in C™ and V' be a neighbourhood
of Py in M. Let 7 denote the projection from X to M. Let R cover S'. The group
action ry : S — X lifts to a periodic action from R to X, which we will also call 7.
A smooth diffeomorphism p: U x R — 771(V) is said to be a normal map or map
of normal coordinates under the following conditions:

e Vze U, VIR, p(z,0) =r9p(z,0);

o Identifying C" with Tp)M as previously, and denoting exp : T'p, M +— M the
geodesic flow starting at Py, one has:

V(z,0) € U xR, 7(p(z,0)) = exp(z).

We will often read the kernel of Sy in normal coordinates. Let Py € X and p a
normal map on X such that p(0,0) = Fy. For z,w € C" small enough and N € N,
let

SN (z,w) = e N Gn (p(z,6), p(w, 6)),

which does not depend on 6 and ¢ as Sy is N-equivariant.

The following proposition states that, as N — 400, in normal coordinates, the
Szegd kernel has an asymptotic expansion whose first term is the flat kernel of
equation (1) on page 19:
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Proposition 3.2.3 (|[BBS08|(K), [Cha03; Dell6](AK), [MMO07](SC), [Korl17|(BL)).

There exist C > 0, C' >0, m € N, € > 0 and a sequence of polynomials (bj);>1,
with bj of same parity as j, such that, for any N € N, K > 0 and |z|,|w| < €, one
has:

K
Sﬁo(z,w)—HN(z,w) 1+ZN‘j/2bj(\/Nz, VNw) || <
j=1

CN”*(KJrl)/Q(l VN2 + y\/ﬁw\)me*C’W ==ul L O(N=). (4)

In the Kéahler or almost Kéhler setting, the estimate is in fact better:

Proposition 3.2.4 ([BBS08; Cha03|(K), [Dell6](AK)). There exist C > 0, C' > 0,
m € N, € > 0 and a sequence of polynomials (bj);>1, with b; of same parity as j,
such that, for any N € N, K > 0 and |z|, |w| <€, one has:

K
S]]\D,O(z,w)—HN(z,w) 1+ZN*j/2bj(\/]vz,\/Nw) <

Jj=1

ON=*D/2(1 4 |V N | 1 VR ) "€Vl 4 o(v=%). (5)

Remark 3.2.5. Propositions 3.2.3 and 3.2.4 give asymptotics for the kernel of
Sy, read in local coordinates. However, the normal maps of Definition 3.2.2 do
not preserve the volume form, except infinitesimally on the fibre over Fy. For the
associated operators to be preserved, one has to pull-back Schwartz kernels as half-
forms. We claim that it does not change the structure of the asymptotics.

Indeed, if dVol is the volume form on X and dLeb is the Lebesgue form on C”,
one has, for any normal map p:

p*(dLeb® df) = adVol,

for some function a on the domain of p with a(0) = 1. We want to study the
asymptotics of (z,w) — S]]\D,O (z,w)+/a(z)a(w), which is the kernel of the pull-back
of S N-

The function (z,w) — y/a(z)a(w) is smooth on the domain of p. We write the
Taylor expansion of this function at 0 as:

K
a(z)a(w) =1+ aj(z,w) + O(|z[* T, [w]*F1)
j=1

where a; is homogeneous of degree j, so that a;(z,w) = N*j/Qaj(\/Nz, VNw).
We let now b; be such that

K K
1+ZN7j/2bj(\/NZ,\/Nw) 1+ZN’j/2aj(\/Nz,\/Nw)

j=1 j=1

K
=14 N77/%;(VNz VNw) + O(N~HK+/2)
j=1
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Then

K
SN (2, w)v/a(z)a(w) — Ty (z,w) [ 1+ ZN*J'/%(\/NZ, VNw) || <

j=1
CNn_(K+1)/2(1+|\/NZ|+|\/Nw|>me_01\/ﬁ|z_w|+O(N_OO).

Hence, the effects of the volume form can be absorbed in the error terms of equa-
tion (4), and Proposition 3.2.3 also holds when Sy is replaced by the corresponding
half-form.

Thus, we can use the asymptotics of Proposition 3.2.3 to study how the operator
SN acts. For instance, we are able to refine Proposition 3.2.1:

Corollary 3.2.6. For every k € N and ¢ € [0,1/2), there exists C > 0 such that,
for every N € N, for every x,y € X with dist(r(z),7(y)) > N~°, one has:

‘SN(iL’,y)’ < CN_k

In particular, if u € L*(X) is O(N~>) outside the pull-back of a ball of size N9,
then Sy (u) is O(N~>) outside the pull-back of a ball of size 2N °.

3.3 UNIVERSALITY OF THE BARGMANN MODEL FROM AN
OPERATOR POINT OF VIEW

In the previously given local expansions of the Szegé kernel (4), the dominant term
is the projector on the Bargmann spaces of equation (1) on page 19. Thus the
Bargmann spaces appear to be a universal model for Hardy spaces, at least locally.
To make this intuition more precise, we derive a useful proposition.

We can push forward by a normal map the kernel of the projector Il by the
following formula:

I (p(2,0), p(w, §)) := NIy (2, w).
By convention, p,Ily is zero outside m= (V)2

Proposition 3.3.1 (Universality). Let € > 0. There exists 6 € (0,1/2), a constant
C > 0 and an integer Ny such that, for any N > Ny, for any function u € L*(X)
whose support is contained in the fibres over a ball on M of radius N~°, one has:

1(pTIn)u = Snullr2ix) < CN V2 | 2 ).

Proof. Let again Sﬁo (2,0,w,0) — e NO=9) S\ (p(2,0), p(w, ) denote the kernel
Sy as read in local coordinates, which does not in fact depend on (6, ¢).
Equation (4), for K = 0, can be formulated as:

SN (z,w) = My(z,w) + R(z,w) + O(N~>), (6)

with
|R(z,w)| < CN"Y2(1 + |V/Nz| + |V Nuwl|)me ¢ VNIz-ul
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for every z and w such that (z,0) and (w,0) belong to the domain of p.
Let 6 € (0,1/2) and u a function contained in the pull-back of a ball of size N~°.
Let
v =Syu— (pIln)u.

Because of Corollary 3.2.6, v is O(N~>°) outside p(B(0,4N~%) x S!). Hence, up to
a O(N~°) error, it is sufficient to control the kernel of Sy — p. Il on

p(B(0,4N7%) x SY) x p(B(0,4N7%) x S1),

where equation (6) is valid.
It remains to estimate the norm of the operator with kernel R, using a standard
result of operator theory:

Lemma 3.3.2 (Schur test). Let k € C(V x V) be a smooth function of two
variables in an open subset V of R%. Let K be the associated unbounded operator on
L3(V).

Let

1El| oo 1 == max (Sup [E(z, )l L1 vy, sup ||k('7y)||L1(V)>-
zeV yev

If ||kl oot is finite, then K is a bounded operator. Moreover

I K Levymsr2vy < 1kl peerr

Thus, we want to estimate the quantity:

sup / N1 4 VN + [V Nw|)meClewl,
2| <4N—3 J jw|<aN -3

After a change of variables and up to a multiplicative constant, it remains to esti-
mate:

N / (1+ [2] + Jul)™e 1.
|Z|§4N1/2*5 |u|§4N1/2*5

This quantity is O(N(m_l)%_m‘s). Thus, for any € > 0, there exists § such that the
above quantity is O(N 2 7€),

By the Schur test, the L? norm of a symmetric kernel operator is controlled by the
L>®L' norm of the kernel. When restricted on B(0,4N~%)2, the kernel of Sﬁo — Iy

1 .
has a L>®L! norm of order N™27¢, from which we can conclude. O

3.4 IMPROVEMENT IN THE DECAY RATE

This last section contains a proof of Proposition 3.2.4. As we already explained, the
knowledge of the result is sufficient for the spectral study of Toeplitz operators.

In the setting of almost Kéhler manifolds, we propose to show a different version of
this estimate, with a somewhat stronger estimate on the remainder (see Proposition
3.4.8). We also replace the normal maps of Definition 3.2.2 with Heisenberg maps,
satisfying different assumptions. This version could be of use in situations where it
is crucial that the local map is a biholomorphism.

The proof relies on the theory of Fourier Integral Operators with complex-valued
phase functions, in the sense of Hérmander ([Hor03], Section 7.8). Indeed, we will

o1
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follow the lines of [SZ02], which gives asymptotics at a shrinking scale; we modify
the proof in order to estimate the remainder at a fixed scale, recovering results from
[Cha03; BBSO0S].

The starting point in [SZ02] is the study by Boutet de Monvel and Sjostrand
[BS75] of the general Szegd projector (Definition 2.2.4). The structure of the Szegd
projector, for the boundary of a relatively compact open set, has been subject to a
thorough study [Koh63; Koh64; KR65; Bou74; BS75; BG81|. Under the assumption
of strong pseudo-convexity, which is verified for the unit ball D of L*, the boundary
of D inherits a Riemannian metric from the Levi form (which is identical to the
one we use here). The projector S is then a Fourier Integral Operator with complex
phase, in the sense of Hérmander [Hor03]:

Proposition 3.4.1 (|[BS75]). LetY be the boundary of a strongly pseudo-convez, rel-
atively compact open set in a complexr manifold. Then there exists a skew-symmetric
almost holomorphic complex phase function ¢p € C>*(Y x Y) (in the sense of
[Hor03]), whose critical set is diag(Y'), and a classical symbol

s ~ Zt"‘is,- € 0®(Y xY x RY),
i
such that the Schwartz kernel of the Szegd projector on'Y is

+oco
S(z,y) = / @D 5(z,y, t)dt + B, y),
0

where the function E is smooth. Moreover the principal symbol sy satisfies 53 =hnt,
where hy(x,y) is the Hessian of the function

YV xR 3 (2,0) = ¢(,2) + oyp(z,y)
at the critical point (which is unique and lies in a complex extension of Y x RT ).

In this setting, “almost holomorphic” means that, near the diagonal z = w € Y,
one has 9,1 (z,w) = O(|z — w|*>).

The fact that the function (z,0) — ¥(z,2) + 09(z,y) has exactly one critical
point in the complex extension of Y x R*, with nondegenerate Hessian, is encoded
in the requirements on 1 to be a complex phase function in the sense of Hérmander.

If M is only almost complex, one can construct as in [BG81] a Szegs kernel on
X satisfying the same assumptions as Proposition 3.4.1.

In the specific case where X is a circle bundle over M, one can use the microlocal
information on S to deduce the asymptotics of its Fourier components Sy . Indeed,
the N-th Fourier component of a smooth function on a compact set has a sup norm
bounded by O(N~°). Thus, one has

Sn(z,y) = // exp(ity(x, ryy) +iNn)s(z, ryy, t)dtdn + En(z,y),

where ||En||ze = O(N~>°). Here, as in the introduction, r, denotes the circle action
on X.

As announced, we will deal with a less restrictive class of local maps than the
normal maps of Definition 3.2.2. Because we are dealing with exact Kdhler manifolds,
as opposed to the more general almost complex structure, we slightly modify the
definition of [SZ02]:
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Definition 3.4.2. Let Py € M. Let U be a neighbourhood of 0 in C™ and V be a
neighbourhood of Py in M.

A smooth diffeomorphism p: U x R — 7=1(V) is said to be an Heisenberg map
or map of Heisenberg coordinates under the following conditions:

o m(p(0,0)) = Po;

o p'w(Fy) = wo(0).

* 0:p(2,v) = O(|2]).
o p(m,0) =rep(m,0).

The crucial point is that, in these coordinates, the phase v from the Boutet-
Sjostrand theorem reads, for all (z,0) and (w,¢) in the domain of p (cf. [SZ02],
equation 61):

W(p(2,0), plw, 8)) = i[1 = A(z, w)e' @]
Here, the 2-jet of A is known at the origin ([SZ02], Lemma 2.4):

1
A(zw) =1- |z - w|* 4+ iS(z - @) + O(|2)?, |w?).
We will need to control the off-diagonal behaviour of A. Recall
1 1 )
Iy : (2,w) = —exp —§|z —w|* +i¥(z - w) |.
T
Up to a reduction of the definition set of p, the usual logarithm is well-defined, and
we can define R4 as the unique function such that A/IT; = 7"ef4.
Proposition 3.4.3. The two following estimates hold as z,w — 0:
R(Ra)(z,w) = O(|z = wl* (2] + [w]))
S(Ra)(z,w0) = O(|z — wl(|2* + [w]?)).

In particular, up to a restriction of the Heisenberg map p to a smaller neighbourhood
of Py, one has, for every z and w in the domain of p:

|A/IL | (2, w) < wheal—ul?, (7)
Proof. The functions A and 7"II; are equal up to order 2 at Py, so that
Ra(z,w) = O(|z, [w]).

The two functions A and 7"II; are both smooth and are equal to 1 on the diagonal.
Moreover the first derivatives of both R(A) and R(II;) vanish on the diagonal. For
II; this is a straightforward computation. For A it comes from the fact that 1 is
a complex phase function whose critical set is the diagonal. It is also a natural
consequence of the fact that 01A(z,2) = —10¢(z) and 91A(z, 2) = $0¢(z), where
¢ is a complex potential: i00¢ = w. Hence there is a constant C' such that, for every
z and w in the domain of p, there holds:

|S(A = 7"TI1) (2, w)| < Clz = wl(|2]* + |w]?)
R(A = 7" (2, w)| < Clz = wl?(|z] + |w]).
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From which we deduce that

[R((A - 7"11)%) (2, w)| < Clz = wl(|2] + wl)
S((A = 7"11)%) (2, w)| < Clz —wf’
|A — 7" 3 < |z — w]?.

Now

n A—w”Hl 1 A—7r”H1 2 A—?Tnﬂl °
Ra = log(A/m"Ih) = ™I 2 w1l o eIl

Taking the real and imaginary part of this equation, one deduces

R(Ra)(z,w) = O(|z — wl(|2] + |w])
S(Ra)(z,w) = O(|2 = wl(|z* + [w]*)).

In particular,
| A/ |(2, w) < m"eClewlP(eltlwh),

Reducing the domain of the Heisenberg map p to a smaller neighbourhood of Py,
one gets, for every z and w in the domain of p:

A/ |(2,w) < whedlwl,
]

In fact, the symbol s of the operator can also be chosen to be very simple in the
given coordinates:

Proposition 3.4.4. In Heisenberg coordinates, the symbol s of S in proposition
3.4.1 can be chosen to be factorized as:

s(p(z,0), p(w, @), t) = e*""(ef‘z’)ﬁ’(z, w,t),

where

+oo
E(za w, t) ~ Z tn_kgk(za U))
k=0

and where each & is a smooth function. Moreover the principal symbol &y does not
vanish in a neighbourhood of diag(M).

Proof. The expression of the phase 1 in local coordinates gives immediatly that
any derivative of order > 2 of the function (¢, z,0,w,¢) — ti(p(z,80), p(w, @)) is
of the form €'®=?) f(z,w,t) where f is constant or linear wrt t. It follows that
hy(p(z,0), p(w, d)) = e*™0=9)g(z,w) for some function g. Hence, we can write
s0(p(2,0), p(w, ¢)) = e~ "™MO0=9)¢ (2, w) for some smooth function &. Of course, any
partial derivative of s is also, in local coordinates, of the form e~ ™(0=¢) f (z,w) for
some function f.

Let us assume that for & < K, each function s, reads in local coordinates as
ei"(9_¢)§k(z,w) for some smooth function &. The coefficient sk 1 can be derived
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from (s;)i<k via a stationary phase lemma, in which the differential operators come
from the Taylor expansion of 1. Thus, sk 41 is a priori of the form

C
8K+1(IO(Z7 0)7 IO(UJ, ¢)) = e—in(@—d)) Z eik(9_¢)£K+Lj(’zv ’UJ) 5
j==C

where C' is finite (but depends on K) and the k1 ; are smooth functions.

We can get rid of all coefficients except 7 = 0 by adding a convenient multiple of .

Indeed, the operator with symbol (f 4 1g)t* is equal, after integration by parts, to
the operator with symbol ft* +ikgt*~!, modulo a smoothing operator. For instance,
replacing sx 1 with sgi1 + e "0~ €p 1 ja(z, w)y eliminates the j = 1 term.

We conclude by induction. O

The N-th Fourier component Sy of the Szegs projector at a point (z,y) reads

Sy(e.y) = / / explit(z, ry) + iND)s(z, ry, t)dtdn + O(N).

A change of variables leads to

Sn(z,y) = N// exp(tN (t(z, ryy) +n))s(x, ryy, Nt)dtdn + O(N ).

If = and y belong to different fibres, the phase ti)(z,7,y) + n has no critical point,
so Sn(z,y) = O(NT°); this estimation is uniform outside a neighbourhood of
71 (diag(M)).

Using the local expression of the phase, one can derive as in [SZ02] an expression
for Sy at a neighbourhood of size N~1/2 of the diagonal. Let Qy C C" x R be the
set of those (z,6) such that (z/v/N,8/N) belongs to the domain of p.

Proposition 3.4.5 ([SZ02|, Theorem 3.1). There ezists a sequence (bg)ren of poly-
nomials on R*™, such that each by is of same parity as k, and a smooth function
Ry on C? x N, bounded on the compact sets of C*" independently of the second
variable, such that for all N, for all (z,w,0,¢) € Q?V x R?, there holds

s (i ) (G 3)

K

=11 (z,w) (1 + Z N=F 2o (2,0, Py) + N~EHD2 R (2, w0, N)>
k=1

+O(N~>). (8)

Here, 11y is the kernel of the projector on the Bargmann space, as in equation (1)
on page 19.

Remark 3.4.6. The next step is Proposition 3.4.8, an estimate for Rx that is valid
in all of Q%. For this, we have to keep the O(N~>°) term outside.

In [SZ02], the O(N~°°) term is absorbed into Ry, without altering the property
that Rx is bounded on compact sets independently on N. However, if an estimate
such that the one in Proposition 3.4.8 did hold without the supplementary O (N ~>°)
term, then one could deduce exponential estimates for the off-diagonal of Sy, that
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is, |Sn(z,y)| < e Nle=vl* for some C. Such results are indeed known [BBS08]
but cannot be obtained via the Boutet-Sjostrand parametrix because the Boutet-
Guillemin construction |[BG81| adapts the Szegd kernel parametrix to the more
general case of almost Kéhler manifolds, where exponential estimates for the off-

diagonal of Sy fail to hold [Chrl13].

The method of proof for the last proposition can be in fact adapted to compute
Sy in a fixed neighbourhood of a point on the diagonal, giving a result close to the
Theorem 4.18 of [MMO07], which also appears in [Cha03; BBS08]. Recall

Sn(z,y) = N// exp(iN (tp(z, my) + n))s(x, ryy, Nt)dtdn + O(N ™).
Replacing 1 and s by their expressions we get, after a change of variables,

Sw(p(=,0), plw, 9))
= NeNO-0) [ [ NUAGRI) ) gz, Nedtdy + O(N ™).

We cannot use the stationary phase lemma, except if z = w, because the phase
has no critical points. But ¢ and s depend holomorphically on €. Thus, we can
replace this integral, which is a contour integral on the unit circle, with an integral
on the circle of radius |A(z,w)| in order to get a phase with a critical point. This
corresponds to formally changing n into n — ilog(]A(z,w)|) in the computations.
The integral now reads

Sn(p(z,0), p(w, ) =
i i s Wy Nt
NA(Z w zN 0—¢) // t(1—e™n) ’Ln)elnn%dtdn_’_O(Noo)‘
The last part of the product can now be computed using a stationary phase lemma,

and the fact that £ is a classical symbol. Hence, we recover a result similar to [MMO7;
Cha03; BBSO08]:

Proposition 3.4.7. There exists a neighbourhood V of (,7) ! diag(M) in X x X
such that one has, in local Heisenberg coordinates around a point Py € diag(X) with
values in V', and for each integer K :

SN(/)(Z, 0)7 p(w7 (ZS))

K
= N"eN0=9) A (2, w)N Z N7 Bj(z,w, Py) + N~ Dy (2w, N, Py)
§=0
+O(NT). (9)
FEach Bj is smooth and By 1s 7%” on the diagonal. Moreover, ri s bounded in a
compact subset of the domain of definition of p, independently of Py and N.

On the diagonal set, By(z, z, Py) = —- because Sy is a projector.

Since, in a neighbourhood small enough of the diagonal, one has
1
Az, w)| 1= |z —wl,

equation (8) can be deduced from equation (9). This way, we obtain an estimate on
the remainder:
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Proposition 3.4.8. In the equation (8), there exist C and m such that the remain-
der Ry satisfies, for every N, for every z and w in Qy, the inequality:

|Ric(2,w, N, Py)| < Ceil=1* (1 4 2™ + Juw|™).

Proof. Rescaling the formula (9) yields:

N[ K
z w , z z w
) (e ) e
< N N) 2 J( N m) “\VN' VN
+ O(N™™)
The functions Bj; are smooth, and rg is bounded independently of N. Thus,

applying a Taylor expansion at the origin, there exist polynomials b7, and a function
rf with polynomial growth independent of N, such that

ooy 3) G )

. w N [2K+1
_ A(, ) > NTIPb ez w) + NTE gz, w0, N)
VN'VN) \ &

+O(N~>). (10)

Let again R4 be such that A(z, w) = 7" (z, w)ef4(®) We wish to control, for
any integer N, the Taylor expansion at zero of

gN = (z,w) — eNRA(\/ZW’ﬁ).

For every multi-index «, the derivative of degree a of gn is a sum of terms of the

form
4n

(o) T g (2o )
e 3 A ) )
11 VN VN

where each index (; is nonzero and > f5; = .

Recall that A and n™1I; coincide up to order 2 at the origin. In particular, the
derivatives of order less than 2 of R4 vanish at the origin. It follows that a term
of the form above is nonzero at the origin only if, for each 1 < i < 4n, there holds
B; > 3. In particular, for each « there holds

8“gn(0,0) = O(N~lI/6),
Moreover, 3%gx/(0,0) is always a polynomial in N~/2.
As we want to write an expansion with a remainder in O(N~5~1) let us consider
the Taylor expansion of gn at order 6 K + 5. To control the remainder, we make use
again of the fact that R4 is smooth on a compact set and that

Ra(z,w) = O(|z], |wl)

o7
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at the origin. If 5; = 1, then there is a constant C' such that, for every (z,w) and
every N, one has

=, f)] < ONTY(? + Jwf?).

Similarly, if 8; = 2, there exists a constant C' such that, for every (z,w) and every
N, one has

PR, <\F f)’ < ON"Y2(|z] + Juwl).

If B; > 3 we simply use the fact that the function 8? ‘R4 is bounded on its set of
definition. It follows that for every « there exist m and C' such that, for every IV,
for every z,w € Qy, one has

10%gn (2, w)| < CNTIVO( 4 2™ + [w|™)|gn (2, w)].
Recall now from Proposition 3.4.3 that
91z, w)| < ealP,

From the definition of gx one deduces that

lgn (2, w)| < el
Thus the Taylor expansion of gn of order 6K + 5 at the origin takes the following

form:
2K+1

gn(z,w) = Z N_j/Qb?)(z,w) —I—N_K_lr}ﬁ((z,w,N).
5=0

Here, the b}p are polynomials, and there exist C' and m such that, for every z,w and
every N, one has

iz, N < (1 2™ 4 ™)

We now return to equation (10). Replacing A with 7"II;ef*4, using the previous
expression of gy and expanding, we find equation (8) with the desired control of
Rp. O



EXPANSIONS AT THE BOTTOM OF
WELLS

This chapter is devoted to a thorough study of the lowest eigenvalues and corre-
sponding eigenvectors for a Toeplitz operator associated with a Morse function on a
compact manifold. The methodology is standard in the Weyl framework: we proceed
by perturbation of a model operator which has compact resolvent and unique first
eigenvalue.

In Section 4.1 we write the basic definitions that we will use in this chapter, and
state the main results. The first step is the study of Toeplitz operators associated
with positive quadratic forms, which we discuss in Section 4.2. In the next chapter
we will need properties of semipositive quadratic forms, which we also included in
Section 4.2. A sequence of approximate ground states is constructed in Section 4.4,
and excited states are studied in Section 4.5.

During the whole discussion, we use the “circle bundle” point of view on Toeplitz
operators (see Subsection 2.2.3). The letter M will denote a quantizable compact
Kéhler manifold; X is the prequantum dual unit bundle over M (Definition 2.2.4).
We rely on estimates on the Szegd kernel as presented in Chapter 3, which require
local coordinates of a certain type: normal coordinates (Definition 3.2.2) or Heisen-
berg coordinates (Definition 3.4.2). During the different proofs, we only request from
local coordinates that they should be adapted to expansions of the Szegé kernel. As
such, the presented results adapt to different quantisation settings as presented in
Section 2.5.

Different quantization schemes yield different subprincipal behaviours. When the
Kahler structure or, more generally, the data needed for the studied quantization,
vary, the Melin value 4.2.7 will change (see for instance remark 4.2.8), so that the
selection rules will change.

This chapter roughly coincides with our article [Dell6], with some elements from
[Dell7].

4.1 MORSE FUNCTIONS ON COMPACT MANIFOLDS

In this chapter, we adapt the results from [HS84] to the setting of Kahler quantiza-
tion. In particular, we are only interested in the following situation:

Definition 4.1.1. A function h € C*°(M) on a compact Kéhler manifold M is said
to satisfy the wells condition when the following is true:

e min(h) =0;
e Every critical point at which h vanishes is non-degenerate.

Observe that, by definition, Morse functions whose minimum is zero satisfy the
wells condition, as does the square modulus of a generic holomorphic section of
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L®N for N large. Note that a function that satisfies the wells condition has a finite
cancellation set.
We need the following definition to state our main theorems:

Definition 4.1.2. Let Z be a closed subset of M, and let
Vs(N) = {(m,v) € X, dist(m, Z) > N°}.

A sequence (uy)nen of norm 1 functions in L?(X) is said to concentrate on Z
when, for every 0 € |0, %), one has

lun vy llzzx) = O(N ™).

Remark 4.1.3. Note that concentration, in the sense of the definition above, im-
plies microlocalisation in the sense of Charles [Cha03], that is, for any open set V'
at positive distance from Z, as N — 400, one has |[unyly| 2 = O(N~>).

Indeed, if a sequence u concentrates on Z then Z contains its microsupport;
reciprocally, if a sequence uw has Z as microsupport, then u concentrates in any
closed set Z' such that Z C Z'.

Note that, contrary to microsupporting, concentration does not behave well under
infinite intersection: if a sequence u concentrates on any element of a family (Z;);¢7,
then the microsupport of u is contained in (); Z; but the speed of convergence is
not known.

If a non-negative function h vanishes with positive Hessian at P € M, the 2-jet of
h at P reads in normal or Heisenberg coordinates (Definitions 3.2.2 and 3.4.2) as a
positive quadratic form Q(P) on C". The first eigenvalue p of the Toeplitz operator
T1(Q(P)) (which we call model quadratic operator) does not depend on the choice
of normal or Heisenberg coordinates (see Definition 4.2.7). We define this value to
be pu(P). A formula for p(P) will be derived in Proposition 4.2.6. It consists of
two contributions: the trace of the quadratic form (with respect to the Riemannian
structure), and the “symplectic trace” of the quadratic form. In Chapter 5, we will
adapt the definition of p(P) to account for a subprincipal symbol.

Let now h be a smooth function on M that satisfies the wells condition of Defini-
tion 4.1.1.

Theorem 4.1. For every N € N, let Ay be the first eigenvalue of the operator
Tn(h), and uy an associated normalized eigenfunction. Then the sequence (un)NeN
concentrates on the vanishing points of h on which u is minimal.

If there is only one such point Py, then there is a real sequence (ay)p>0 with
ap = p(Py) such that, for each K, one has

K
Av=N""Y NFa,+ON 52
k=0
Moreover, Ay is simple for N large, and there exists C' > 0 such that Ay is the only
eigenvalue of Ty (h) in the interval [0, N~ (u(Ppy) + C)].

Remark 4.1.4. Unlike Schrodinger operators [Hel88|, the first eigenvalue of a
Toeplitz operator can be degenerate for any value of N. Consider of instance the
case M = CP' ~ S? with coordinate functions z,y, z, and the Toeplitz operators
Tn(1 — 22). In this case the quantum space is Cy[X], and the two elements 1 and
XN (which are the coherent states at the North and South pole) are eigenfunctions
of this operator with minimal eigenvalue.



4.2 POSITIVE AND SEMI-POSITIVE QUADRATIC SYMBOLS

Theorem 4.2. Let C > 0. There is a bounded number of eigenvalues (counted with
multiplicity) of Ty (h) in the interval [0, CN~]. More precisely, for C' > C, let K
and (by)1<k<k be such that

(b k< Ky = |J Sp(Ti(a(P)))N[0,C"]

PeM
h(P)=0

with multiplicity. Then one can find ¢ > 0 and a list of real numbers (ci)1<k<rK such
that, for each k, one of the eigenvalues of Tn(h) lies in the interval

[N~ o, + N732¢;, — eN72, N7l + N73/2¢, + eN72).

Moreover, there are at most K eigenvalues of T (h) in [0, CN 1] and each of them
belongs to one of the intervals above.

Remark 4.1.5. In Theorem 4.1, only integer powers of N~! remain in the expan-
sion of the eigenvalue; this is due to parity properties, as the ground state of the
model quadratic operator is always an even function.

In the general case of Theorem 4.2, however, the principal term of almost eigen-
functions need not be even or odd, because the model quadratic operator, may have
eigenvalues of multiplicity more than one. This difficulty appears already when con-
sidering a single well (when {h = 0} is a single point). The fact that wells might
“resonate” (two model quadratic operators sharing an eigenvalue) does not obstruct
our construction of quasimodes, which is local.

If the associated model quadratic operators have only simple eigenvalues, one can
form a full expansion in integer powers of N~! (as in Section 4.4). Quadratic forms
satisfying this condition form a dense open subset of the space of positive quadratic
forms. Hence, among symbols vanishing at order 2 on prescribed points, there is
an open dense subset satisfying this non-resonance condition, for the topology of
smooth functions on M.

4.2 POSITIVE AND SEMI-POSITIVE QUADRATIC SYMBOLS

4.2.1 Symplectic classification of quadratic forms

Let us first give some details about the symplectic reduction of quadratic forms. In
this chapter we need to analyze fixed, positive definite quadratic forms, which are
an approximation of the behaviour of the symbol h near its minimal points under
the wells condition. In Chapter 5, we will consider degenerate situations, where the
quadratic form is semipositive definite and can depend on a parameter. We directly
present the parameter-dependent situation, however we will not use Proposition
4.2.4 before Chapter 5.

Definition 4.2.1. Let (F,w) be a linear symplectic space and @ be a semi-positive
quadratic form on E. We let @ : E — E* be such that [Q(e)](f) = Q(e, f) for any
(e, f) € E%2. We also let @ : E — E* be such that [@w(e)](f) = w(e, f). Then, since w
is non-degenerate, w admits an inverse. The symplectic eigenvalues of ) are defined
as the elements of N

o(im Q) NRT.
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The concept of symplectic eigenvalues, that is, eigenvalues of a positive definite
quadratic form relatively to a symplectic form, is akin to the notion of eigenvalues
of a quadratic form relatively to a euclidian metric (if g is a scalar product on F,
one can as above define the isomorphism g : E + E* and consider o(§~1Q)). In par-
ticular, the symplectic trace (sum of the symplectic eigenvalues with multiplicities)
will play a decisive role in this Chapter and the following one, along with the usual
trace (taken with respect to the standard Euclidian structure on R?"). The analogy
is, however, uncomplete: while the trace of a quadratic form is easily computed, the
symplectic trace admits no explicit formula.

We will need in Chapter 5 to reduce, as much as possible, quadratic forms which
depend on a parameter. If a symmetric matrices depends smoothly on several pa-
rameters, it is in general not possible to diagonalise this matrices with smooth
dependence in the parameters (this is only possible away from eigenvalue crossings).
In our context, however, one can find a smooth way to reduce quadratic forms with
respect to the symplectic form, so that the associated quantum ground state is fixed.

We begin with a statement of the result for families of positive quadratic forms.

Proposition 4.2.2. Let Q : R" — SN (R) be a smooth n-parameter family of
positive quadratic forms.

Then there is a smooth family S : R™ — Sp(2d) of symplectic matrices, a param-
eter family U : R™ — Sp(2d) N O(2d) ~ U(d) of unitary matrices, and a family
(A, s Aq) t RO (RY) of values such that, letting

(e1, f1, -+ s eq, fa) = S(U(canonical basis)),

one has
d d
Q) (Z giei(t) + pz'fi(t)> =Y @ + ).
i=1 i=1

The symplectic eigenvalues of Q(t) are the family (\i(t))1<i<d-
In particular, for every t € R™, the ground state of T1(Q(t) o S(t)) is the standard
. N|z|?

Gaussian z — 11—567 2
Proof. Let M be the matrix of @ in the (symplectic) canonical basis. Then M >
is a smooth family of symmetric matrices, so that M 2JM? is a smooth family of
antisymmetric matrices, where J is the matrix of the standard symplectic form in
the canonical basis. Hence, there is a family V' of orthogonal matrices, and a family
V of positive diagonal matrices, such that

viasaaiv = 0 P,
-D 0
Note that, in general, V' and D do not depend continuously on M.
_1
In particular, with A = D 0 . |, one has
0 D=2

D 0

(AVT Mz J)M(~JM3V A) = (o .

and

(AVTMz.J)J(—JM2V A) = J.
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Hence, the matrix —JM VA corresponds to a linear symplectic change of vari-
ables under which @ is diagonal. It remains to write this matrix as SV, where S
depends smoothly on the parameters and V' € U(n). Under such a decomposition,

T
one has ST — —JM%VA(—JM%VA) _and

-1
JM2VAAVT Mz JT = —JM5V<D0 D()l) vIMzJ.
From the definition of D, there holds
-3
—1 2 _1
D 0P 0 - (—VTM%JMJM%V) 2
0 D! 0 D?
- VT(—M%JMJM%)_ V.
)_ M

1
_1 3
S = [—JM%(—M%JMJMé) 2M5J} .

N

Hence,

N

1

JM3VAAVT M3 JT = —JM3 (—MEJMJM

N

[N
~

We set

Then S depends smoothly on M since the square root is a smooth function on the
set of positive quadratic matrices. It is symplectic (as the square root of a symmet-
ric symplectic matrix), and by construction (—JM%VA)_lS € Sp(2n) N O(2n) is
unitary.

To conclude the proof, we first observe that

o(M(0)2 JM(0)2) = o(JM(0)) = {£i);(0), 1 < j < d}

coincides with the construction of Definition 4.2.1.
. _NI=l”
Second, the standard Gaussian z — ]X—;e 2 is the ground state of T (QoSoU),

and unitary change of variables act in a simple way on Toeplitz quantization:
Tn(QoSoU)=U"Tn(Q o S)U.

Here U acts on elements in By by a change of variables.
Since the standard Gaussian is invariant under unitary change of variables, if
follows that it is the ground state of T (Qo.S), independently on the parameter. [

We recall that the rank of a quadratic form @ is the maximum dimension of a
subspace on which @) is non-degenerate; it coincides with the rank of the associated
linear map Q : £ — E*.

Definition 4.2.3. Let E be a real vector space and w a real antisymmetric form
on E. As in Definition 4.2.1, let @ : E — Ex be such that [w(e)](f) = w(e, f) for
(e, f) € E2.

The symplectic rank of (E,w) is the rank of @. In particular, if (E,w) is a sym-
plectic linear space, the symplectic rank of a linear subspace F' is the rank of the
restricted map w : F' — F™.
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Proposition 4.2.4. Let Q : R — S (R) be a smooth d-parameter family of semi-
positive quadratic forms. Suppose rank @ is constant and suppose that the space
ker @ has constant symplectic rank.
let 2ry be the symplectic rank of ker Q@ and 2r1 + r be the dimension of ker Q).
Then there is a smooth d-parameter family S : R? — S;n(]R) of symplectic ma-
trices, a d-parameter family U : RY s U(n —r —r1) of unitary matrices, and a
d-parameter family (Apysrs1, -+ > An) : RE = R0 such that, letting

, (1d o
U(n)aU-(O U)

(€1, f1, s en, fn) = S(U'(canonical basis)),

one has
n r1+7r n
Q(t) (Z giei(t) +p¢fi(t)> = > P+ D, MO+ ).
=1 i=r1+1 i=ri1+r+1

In the study of the Hamiltonian dynamics related to @), the vectors f; for ¢ ranging
from rq +1 to r1 +r are called slow modes. They correspond to the motion of a free
particle. The vectors (e;, f;), for ¢ ranging from 71 +7 4 1 to n, are called fast modes
and correspond to harmonic oscillations. Elements in the kernel of Q) are called zero
modes.

As before, the symplectic eigenvalues of ) are the \;’s, as well as 0 if @ is
degenerate.

Proof. Let us construct a symplectic basis (e1, ..., en, fi,. .., fn) of R?" depending
smoothly on the parameters, on which the quadratic form @ is diagonal up to an
action of U(n — r; — r) on the last variables. We first can reduce to the case where
ker () is isotropic. Indeed, let X denote a smooth family of symplectic subspaces such
that ¥ C ker @ and ker /3 is isotropic. The existence of such a smooth family is
guaranteed by the fact that ker @) has constant dimension and constant symplectic
rank.

In any symplectic basis adapted to X, the matrix of the quadratic form @ takes

the form
0 0
0 M)’

and it remains to study the quadratic form on R?" /3.

From now on we suppose that ker () isotropic, and we set » = dimker (). We
proceed by induction: if @ is degenerate, we construct the first pair (e, f1) with
e1 € ker @, hence the reduction to Q" on R2" 1 with dimker@Q’ = r — 1. If Q is
non-degenerate, we conclude using Proposition 4.2.2.

Suppose r > 0. Pick e; € ker @) smoothly depending on the parameters. The
quadratic form @) is degenerate, but it is a well-known fact that it has no co-isotropic
subspaces: if a subspace F' is such that

{e e R, Vf € F, Qe+ f) =Qe) + Q(f)} C F,

then F = R?",
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Hence, with F' = {z € R?",(z, Je;) = 0} denoting the symplectic orthogonal of
e1, there exists f1 such that:

<617Jf1> =1
Vze F,Q(z+ f1) = Q(z) + Q(f1).

The vector f; again depends smoothly on the parameters. As A = Q(f1) is far
from zero on compact sets (recall that ker @ is a continuous family of isotropic
subspaces), changing e; into Ve and fi into fi / VA yields two smooth vectors
with the supplementary condition that Q(f;) = 1.

If one can find a smooth symplectic basis (eg, ..., en, fa, ..., fn) of the symplectic
orthogonal of span(ej, f1), which diagonalises the restriction of @ with diagonal
values as above, then completing this basis with e; and f; concludes the proof.

If » = 0, we are reduced to Proposition 4.2.2. O

4.2.2 Spectral theory of (semi-)positive quadratic symbols

Let us make more precise the discussion on quadratic symbols in Subsection 2.1.3.
Recall that By is the N-th Bargmann transform.

Proposition 4.2.5. Let Q be a quadratic form in R?", identified with C". Then
Tn(Q) can be defined as an unbounded operator on the domain

{f € Bw,|2I*f € L*(C",C)}.

One has
tr(Q)

1

In particular, if Q > 0 is non-zero, then the infimum of the spectrum of Tn(Q) is
positive.

BNTn(Q)By' = OplY. (@) + N~!

Proof. The set
{f € BN7 |Z’2f € LQ(CnaC)}

is a dense subspace of By, since it contains all elements of the standard Hilbert
basis (given by monomials times the standard Gaussian). For elements f in this
space, one can indeed make sense of I (Qf) as elements of By. Note that this
might not correspond to the maximal domain of Tn(Q) if @ has zero eigenvalues.

The conjugation of polynomial symbols by the Bargmann transform belongs to
the folklore on the topic; we present them for the sake of completeness.

It is sufficient to consider the N = 1 case which is conjugated with the general
case through the usual scaling: indeed Op]v\{/_l (Q) is conjugated with N~1Op{, (Q).

Recall that the Bargmann transform sends the basis of eigenfunctions of the
harmonic oscillator in the Fock model, to the basis of eigenfunctions for the Weyl
harmonic oscillator. In particular, the Bargmann transform preserves the creation
and annihilation operators, so that

B]\]T]\[(2:]')81?[1 =Ty + 8]‘
BNTn(5)By' =z — 0;
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Here we shorten the notations for the momentum operators: on the Bargmann
side, we let 0; = 0,; + %27; on the R” side, we let D; = % %.

Let 7, k be two indices in [|1,n|].

IfQ: 2z zjz, = (zj+1iy;)(zk +iyk), then tr(Q) = 0, so the two operators should
coincide. T1(Q) is the operator of multiplication by z;z;. This operator is conjugated
via B to the operator (z;4+iD;)(xy+iDy) = xjor—D;Dy+ix; Dy+iDjxy. Moreover,
the Weyl quantization of @ is the operator

/)
Opll/V(Q) =x;TE — DjDk + §(Dkxj + ijk + Djl’k + :Eij).

These two operators coincide whether 7 = k or not.
The case Q : z — Zjz; = (x; — iy;) (v — iyx) is the adjoint of the previous one.
IfQ: 2z~ 2z = (zj+iy;) (zr—iyk), then tr(Q) = 25%. In that case, T1(Q) = 0x2;.
This operator is conjugated to (xy —iDy)(x; +4D;). The Weyl quantization of @ is

i
Oply (Q) = zjxy + DDy, + 5(—Dk:nj — 2jDy + Djxyp + 21 Dy).
The two operators coincide when k # j, and when k = j the difference is %
From the conjugation, it is clear that the first eigenvalue of T (Q) is positive,
because the Weyl quantization of the nonnegative quadratic form @ is nonnegative
and tr(Q) > 0. O

Using Propositions 4.2.5 and 4.2.4, one can characterise the infimum of the spec-
trum of the Toeplitz quantization of a quadratic symbol:

Proposition 4.2.6. Let Q > 0 be a semipositive quadratic form in R*™, identified

with C™. Let \1,..., Ay denote the symplectic eigenvalues of QQ with multiplicities.
Then

1 J
min Sp(Tn(Q)) = N1 3 ]; Aj+ %

Proof. We recall that the spectrum of a pseudodifferential operator associated with
a quadratic form is invariant by linear symplectic changes of coordinates. Indeed,
they are invariant by the following list of linear symplectic changes of coordinates,
which generate Sp(2n):

0 I

e The matrix J =
—I 0

) (by a Fourier transform).

0

e Matrices of the form A
0 A1

) . (by linear change of coordinates on L?(R™).

e Matrices of the form (I ?) with A symmetric (by multiplication by e*(*4%)).
0

In particular, the spectrum of Opll/V(Q) only depends on the symplectic normal form
of ). From Proposition 4.2.4, we reduce ourselves to the case:

r1+r n

Op%/V(Q) == Z Ay, + Z /\i(_AIi + xzz)

i=r1+1 i=r1+r+1
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In this setting the infimum of the spectrum is half the sum of the \;’s.
We conclude using Proposition 4.2.5. O

Definition 4.2.7. The Melin value associated with a semipositive quadratic form
Q is:
1(Q) := min Sp(T1(Q))-

Remark 4.2.8. In Proposition 4.2.5, it appears that the Melin value is not a sym-
plectic invariant. In particular, operators associated with the symbol

(¢,p) — Ap?

for A > 0, do not share the same spectrum. This contrasts with Weyl quantization,
where operators of the form —AA have spectrum [0, +00) for any A > 0.

Proposition 4.2.9. Let Q be a positive quadratic form. Then Ty (Q) has compact
resolvent, and its first eigenvalue is simple.

Proof. Using Propositions 4.2.2 and 4.2.5, we reduce ourselves to the spectral study
of the operator —A +V acting on L?(R"™), where V is a positive quadratic function.
This operator has compact resolvent, and the first eigenvalue is simple since V is
bounded from below (by zero). O

In the Weyl setting, the image of the resolvent of —A + V is a weighted Sobolev
space; it also preserves the Schwartz space. In the next subsection, we will analyze
the image of the Schwartz space by the Bargmann transform.

The regularity of the map g will be useful in the proof of Theorem 4.1:

Proposition 4.2.10 ([Mel71]). The function Q — u(Q) is Holder continuous with
exponent % on the set of semi-definite positive quadratic forms of dimension 2n.

4.2.3 Schwartz functions on the Bargmann space

In this subsection we give the key properties for a convenient space of test functions
within the Bargmann space B;.

Proposition 4.2.11. Let Q be a positive definite quadratic form on R*™, identi-
fied with C™. Let (¢)k>0 denote an Hilbert spectral basis for Ti(Q) with increasing
etgenvalues. Then all spaces below coincide:

e DI = S(C™") N By.
. DO = Bi(S(R")).
) D(3) = {ZZ_:C% Ozk¢k, o = O(kioo)}

Proof. Let us prove first that DM = D),
Let uw € S(C™) N By; let us prove that Biu € S(R™).
Let P € C[z,£] be a polynomial on R?”. Then, by (3), one has

+00 Ak
- - A
Biopl'(P)B; =Ty(P), P=) TP €Cl
k=0
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Since T} (P) is a finite sum of differential operators of the form 9*z°, one has
T1(P)u € By, so that OplV (P)Byu € L*(R").

Since for all P € Clxz,£] one has OplV (P)Biu € L*(R"), one can conclude that
Biu € S(R™).

The reciprocal D) ¢ D) proceeds along the same lines.

We now pass to the proof of D) = DB). The operator Tn(Q) is diagonal in the
Hilbert basis (¢x)r>0, with sequence of eigenvalues \g < A\ < Ay < ---. By the
Weyl law, there holds A, = O(k4).

If u = Z;:B apdr € DU then in particular Op(Q)Mu € By for every M € N, so

that
D AP < o0

for every M > 0. In particular, oy, = O(k™°).
If reciprocally u € D) then Op(Q)Mu € By for every M € N. In particular, for
every P € C[z,z], one has (u, Pu) < 4o0.
Let k € N™. The choice P = |21 |21|20]?%2 .. |2, |%*n =: |2|? yields
(0, 7*2u) = [1Full2s < +ox,

so that zFu € By.

Recall that @ = Ty (%) is the adjoint of z as acting on By, with [9, z] = Id. Let us
prove that, for all (k, £) € N>* one has 9’2*u € B;. We proceed by double induction
and assume that the result is true for all ¥’ < k and ¢/ < ¢, as well as for any (£, ¢)
such that k' + ¢ =k + ¢ and ¢ < . We now write

[0 2% ul|2, = (u, 0% 2% 2 u).

If £ = 0 we already know that the result holds, otherwise we let 1 < j < n be such
that £; > 0 and we let n; = (0,...,0,1,0,...,0) be the base polyindex with a 1 at
site j. Then z¢ = 2t~ z; and similarly of = Djbz_"j. Since [zj,0;] = —1, there holds

(u, 0820 2 u) = (u, R 250,208 2P u) — (u, 0 2 i Ry,
The second term of the right-hand side is finite by hypothesis. It remains to control
(u, 08257150 125003 2Py
to which end we use that [27,0;] = —(¢; — 1)2*~27. Hence,
(u, 0% 270,205 2Ry = (u, 08T 26 00 2Ry — (05— 1) (u, 0F 20T 2Ry,
Again the second term of the right-hand side is finite, and we can further swap

(u, R M3 275 M 2Ry = (u, ORI LAt SR )
— (£ — 1) (u, oM it SRy
where the second-term of the right-hand side is finite.

In particular, [[9¢zFul|2, is equal to [0~ zF*iu||2, plus a finite sum of finite
terms, so that, by induction, |[2°2"u||2, < +oo. This concludes the proof. O



4.3 GENERAL LOCALISATION RESULTS

We will call D the space described in the last Proposition. It is a limit of spaces
of the form
H* = {u € By, VP € C*[2], (u, Pu) < +00}.

The spaces HF are isomorphic to isotropic Sobolev spaces as presented in Chapter
4 of [Mel07].

The third description of D, and the uniqueness of the first eigenvalue (Proposition
4.2.9) together yield the following property.

Proposition 4.2.12. Let Q be a positive quadratic form on R?*™ identified with C".
Let u denote the ground state of T1(Q).
Then the space {v € D,v L u} is stable by (T1(Q) — u(Q))~ L.

4.3 GENERAL LOCALISATION RESULTS

Using the symbolic calculus of Toeplitz operators, one can prove two fairly general
localization results.

In this chapter we only study the spectral theory of operators of the form T (h)
where h € C*®(M,R) is independent of N. In Chapter 5, in order to consider
applications to spin systems, we will need to consider classical symbols, which admit
an expansion of the form

+oo
h:N =Y N ¥+ O0(N>),
k=0

where each hy is a smooth R-valued function on M. Given any sequence (hy)g>0
of smooth functions on M, on can build h as above by a Borel summation. In
particular, in this section, h will denote a classical symbol (whereas in the rest of
this chapter, h is a smooth function).

Proposition 4.3.1. Let h = Y0 N7Fhy + O(N~>) be a classical symbol on M
with hg > 0. Suppose that hy vanishes exactly at order 2 on Z = {ho = 0}, that is,
there exists ¢ > 0 such that hg > cdist(-, Z)2.

Let t > 0, and define

Vi = {(m,v) € X, dist(m, Z) < t}.

For every k € N, there exists C > 0 such that, for every N € N, for every t > 0,
and for every u € Hy(X) such that Tn(h)u = Au for some X\ € R, one has

k
max(\, N71)
lulx\vilize < C(ﬂ) lullZ2-

Remark 4.3.2. Here M is a Kéhler manifold, so dist is the Riemannian distance,
but since M is compact, the condition on h does not depend on the chosen Rieman-
nian structure.

Proof. Without loss of generality, we restrict ourselves to the case where A1 > 2 on
M. Indeed if the result holds for T (h), it clearly holds for Ty (h) — CN~1, for any
C>0.
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From Proposition 2.3.5 and by induction on k& € N, the k-th power of T (h) is of
the form

Tn(h)F = Tn(W**) = Ty (B* + N71Cy (R, -+ h) + N72Co 5 (hy -+ h) +...),

where C; ;, is a k-multilinear differential operator of order at most 2i.

We want to study C; i (h, - - - , h) for i < k. The function hg is smooth and nonneg-
ative, hence \/hy is a Lipschitz function; in other terms, there exists C' such that, for
every (z,§) € TM with €] < 1, one has |0¢ho(x)| < Cy/ho(z). (see Lemma 4.31
“Gradient estimate” in [Zwo12].) In local coordinates, the function C;(h,--- ,h) is
a sum of terms of the form aN~0"1hg0"2hy ... 0" hg, where Z?;f |vj| < 24 and
a is smooth.

o If v; =0, then 0"7hg = ho.
o If |Vj‘ =1, then |8th0| < Cvhyg.
o If |vj| > 2, then |0"7hy| < C.

k—0—1 S min(2,|v;
Hence, |[aN~0"1hgd"2hy ... 0" hg| < C’kN_ZhO 2 2, min( ly]‘), and moreover,

> min(2, |y;|) <> Jvy| < 24,
j J
hence:

|aN~t9" hgd"2hg . .. OVF~thgo| < N~pE—1=¢,

If k —i— ¢ <0, we apply instead the trivial estimate
|aN =t hod"2hg . .. 0V ho| < CN°.
To conclude,
Cige(hy ... 1) < Crho + N7 < Cpph

In the last inequality we have used the fact that h; > 2.
This means that, for every k > 0, the symbol 2** is of the form:

k—1
WP =hF 4> N+ NFg(N),
i=1
where ¢ is bounded independently on N and where, for each i and k there exists C
such that |f27k| < Ckhk_i.
Using this, we can prove by induction on k that there exists Cj such that, for
every N and for every eigenvector u of T (h) with eigenvalue A, one has

[, WP < Cpmax(A, N=1)F[Ju2

Indeed, this is clearly true for k = 1, because (u, hu) = A||ul|?.
Let us suppose that, for all 1 < i < k, there exists C such that

|{u, hk*"uﬂ < C'max(\, Nﬁl)k*iHqu.
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Because u is an eigenvector for T (h), it is an eigenvector for its powers, hence
Tn(B*Yu = Ty (R)Fu + O(N~®) = ey + O(N ™).

Replacing h** by its expansion, we find:
k—1 ‘
[y B < N [full2 + 57 N7, figu) + ON ™ ful2
i=1
Here we used the fact that the function g is bounded.
Now recall |f; x| < C,L-Jghk_i, and the induction hypothesis:

[{u, A*"u)| < Cymax(A, N7 |ul”

for every ¢ > 0. Hence,

k—1
|(u, hFu)| < Cmax(\, N~HE||u? + Z C; xCi N~ max (A, N™H)F |2,
i=1

so that there exists Cy such that |(u, h*u)| < Cp, max(\, N~1)F|jul2.
Now we can conclude: for every k, there exists C' such that, for every t > 0 one
has

Yz ¢ Vi, hF > Otk
Finally, for every k there exists C' such that, for every N € N, ¢t > 0 and u an
eigenvector of T (h) with eigenvalue A, there holds

k
max(\, N71) 9
T ) el

lulxvw; 72 < C(

O

Recalling Definition 4.1.2, let us specialize Proposition 4.3.1 to A = O(N~1) and
t=N"for0<d<1/2:

Corollary 4.3.3. Let u = (un)nen be a sequence of unit eigenvectors of Tn(h),
with sequence of eigenvalues Ay = O(N~1). If h vanishes exactly at order two on
its zero set, then u concentrates on this set.

Remark 4.3.4.

e An independent work by Charles and Polterovich, that appears partially in
[CP15], treats the case of an eigenvalue close to a regular value of the symbol,
with a result very similar to Proposition 4.3.1.

e The proof of Proposition 4.3.1 uses cancellation at order two only when dealing
with V;. Indeed, a more general result is

k
AN
2 max (A, 9
HU1X\V§5”L2 = C(max(h(:z),x c %) HUHLQ’

which holds for any smooth h and any eigenfunction u of T (h) with eigenvalue
A
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The following is a variation of the previous result.

Proposition 4.3.5. Let h be a classical symbol on M with hg > 0 and let (un)N>0
be a normalised sequence of eigenvectors of Ty (h) with associated sequence of eigen-
values O(N~1Y). Let 6 > 0.

Then
/ lun > = O(N~°).
{h>N-1+3}

Proof. As in the proof of Proposition 4.3.1, if h satisfies the claim, then so does
h — CN~! for all C € R. In particular, without loss of generality h; > 2, and we
can recover from the proof of Proposition 4.3.1 that, for every & > 0, there exists
C} such that

‘<UN, hkuNH < Ckak.
As 6 > 0, one has

{h > N—1+5} C {ho > ;]\f—l-‘ré}7

so that we obtain

/ un]? < / lun|? < 2ka—k5/ hE|ug? < 2FCL N R0,
{thN—IH—sz} {hSZQ_kN_k+k5} M

In particular,

/ fun |2 = O(N~).
{h>N-1+9}

O]

Remark 4.3.6. Another scheme of proof for Proposition 4.3.5 consists in composing

Ty (h) with a test function xy which is 0 on {h < N='*%/2} and 1 on {h > N~119}.
k(1—6)
2

Such a function can be chosen temperate, meaning that |[V¥yy| < CN . See

[Chal6] for details on the composition of temperate symbols.

4.4 ALMOST EIGENFUNCTIONS FOR THE GROUND STATE

This section is devoted to the proof of Theorem 4.1.

Let Py € M, one can find normal coordinates from a neighbourhood of Py to a
neighbourhood of 0 in C™. If at Py a non-negative function h vanishes with positive
Hessian, the 2-jet of h at Py maps to a positive quadratic form ¢ on C™, up to a
U(n) change of variables. Hence, the map associating to Py the first eigenvalue p of
the model quadratic operator T (q) is well-defined. From now on, we will also call
w4 this map.

The method of proof for Theorem 4.1 is then as follows: for each vanishing point
Py, we construct (Proposition 4.4.2) a sequence of functions which concentrates
on Py, consisting of almost eigenfunctions of T (h), and for which the associated
sequence of eigenvalues is equivalent to N~'u(Py) as N — 4o0o. We then show a
positivity estimate (Proposition 4.4.4) for eigenfunctions concentrating on a single
well. The uniqueness and spectral gap properties (Proposition 4.4.6) follow from a
similar argument. At every step, we compare T (h) with the operator on By whose
symbol is the Hessian of h at the point of interest.
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4.4.1 Construction of almost eigenfunctions

We let h denote a smooth function satisfying the wells condition of Definition 4.1.1.
At every cancellation point of h, we will find a candidate for the ground state of
Tn(h). Instead of finding exact eigenfunctions, we search for approximate eigenfunc-
tions. This is motivated by the following lemma:

Lemma 4.4.1. Let T be a self-adjoint operator on a Hilbert space, let A € R, and
u € D(T) with norm 1.
Then dist(\,Sp(T)) < ||T'(u) — Au|.

Let Py € M be a point where h vanishes. Let p be a local map of normal co-
ordinates in a neighbourhood of 77 1(Py). Let Qn be the set of z € C" such that
(2/V/N,0) belongs to the domain of p. Recall from equation (4) that, for every
N € N and every z,w € Qyp, there holds:

—ngh(_*_ W
st (e v)
K
=111 (z,w) <1 —i—ZN_k/Qbk(z,w))) + Ry (z,w,N)+O(N">). (11)
k=1

Here the b;’s are polynomials of the same parity as j, and there exist C > 0,m > 0
such that, for every (z,w, N) as above:

|Ric(z,w, N)| < ON-FFDRemClemel(q g zm 4 o).
The main proposition is

Proposition 4.4.2. There ezists a sequence (uj)j>o of elements of S(C"), with
(ug, u) = 69, and a sequence (\;)j>0 of real numbers, with Ao = u(Py) and \j =0
for j odd, such that, for each K and N, if u™ (N) € L*(X) and MX(N) € R are
defined as:

K

uf(N)(p(2,0)) = NNy~ N 2u;(VNz),
§=0

u™(N) is supported in the image of p,

K
NE(NYy =N NI,
j=0

there holds, as N — 400,
||SNhSNuK(N) — )\K(N)UK(N)HLQ(X) _ O(N_(K+3)/2).

Remark 4.4.3. The functions u® (N) do not lie inside Hx(X), because they are
identically zero on an open set. Nevertheless, the operator SyhSy on L?(X) de-
composes orthogonally into T (h) on Hy(X), and 0 on its orthogonal. Hence, a
nonzero eigenvalue of SyhSy must correspond to an eigenvalue of Ty (h) with same
eigenspace. The same holds for almost eigenvalues.

Introducing A as a polynomial in N~'/2 whose odd terms vanish may seem
surprising. However, in the proof, we construct AX as a polynomial in N~1/2, as we
do for . The fact that it is a polynomial in N~! is due to parity properties.
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Proof. Let us solve the successive orders of
(SNhSN — )\K(N))’U,K(N) ~ 0.

We write the Taylor expansion of h around Py at order K as

)+ Z () + Bk (x).
Because of equation (11), the kernel of SyhSy, read in the map p, is:

—n (- 9)SNhSN(p< N2, N~ 10) ( _1/2w,N_1¢))

=N"! <q +ZN Moy )+NEK(N_1/ZZJ))

x | Mi(z,y) 1+ZN_j/zbj(z,y) + Rk (z,y, N)
j=1

K
I (y, w) <1 + Z N2y, w)) + Rk (y,w, N)

=1

dy

+ON™). (12)

Let us precisely write down the K = 0 and K =1 case.
The dominant order (that is, N~!) of the right-hand side is simply:

(z,w) = N7 [ (= 9)a@)h(y, w)dy.

It is N~! times the kernel of the Toeplitz operator @ = T}(q) on B; associated
to the quadratic symbol ¢, which we studied in Subsections 4.2.2 and 4.2.3. Its
resolvant is compact, the first eigenvalue u(Py) is simple, and if ug is an associated
eigenvector, the operator @ — u(FPp) has a continuous inverse on ué- which sends
D(C™) into itself by Proposition 4.2.12. Moreover, ug is an even function.

This determines ug and A\g = u(F). Here ug € D(C"), so we can truncate the
function (z,0) — eN?N™uy(N'/22) to a function supported on the domain of p,
with only O(N~°) error. The push-forward by p of this truncation, extended by
zero outside the image of p, is denoted by u®(N).

Now ug € D so u® concentrates on Py. The error is thus:

[SnhSNu’(N) = N~ Aou® (N)|[[72(x)
< CN_Q/ Az, y,w, N)?|ug(w)Pdydwdz + O(N ™),
o
where
A(Za Yy, w, N) = N|E2(N_1/2y)ﬂl(2, y)Hl (yv w)|

T hiy) (1R0<z, y, N[y, ) + [ Ro(ys w, N)|IL (2, )

+ |R0(Z,y, N)RO(yawa N)‘) .
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Here, Fs is a Taylor remainder of order 3 on a compact set, so
INEy(N~'2y)| < ClyP N2,
Moreover, recall that, on Q?\,, one has
|[Ro(z,y, N)| < CN™M2em @14 2™ 4 [y ™).
Hence, on Q?’V, there holds:
|A(z, y,w, N)| < CN~Y2e=Cla=vl=C"ly=wl (] 4 2| 4 |y|™ + |w|™).

Because ug € D, one deduces:
N°® / |SnhSyu® — N~ Agul|?
X

<O | e PO g 2Py P ] ) ug (w) P dyd zdw
U

+O(N™™)

2
g(](/ |v\2mec’lvldv> / |w|?™ |ug (w)]?dw + O(N ™)
n (Cn
< C.

This method (estimating an error kernel using polynomial growth and off-diagonal
exponential decay) will be used repeatedly again.
From there we deduce that ug is an approximate eigenvector:

ISnhSnug(N) — N~ Xouo(N)||2(x) = O(N~3/2).

This proves the proposition for the case K = 0.
The construction of u; and A; is different, moreover there are supplementary error
terms. The term of order N~=3/2 in the right-hand side of equation (12) is:

() =5 N2 [ I )lraty) + )6 (22 9) + (5, 10) I 0 )y
Let J; denote the operator with kernel as above. We are trying to find u; and A;

such that
(Q — Xo)ur + Jiug = Arup, (13)

with the supplementary condition that (u;,ug) = 0: indeed if (uj, A1) is a solution
of equation (13), then so is (u; + cug, A1) for any ¢ € C. The orthogonality condition
makes the solution unique as we will see.

The functions r3, ¢ and by are polynomials, so J1(D) C S(C™). This ensures that
the problem is well-posed. Note that J; does not map D into holomorphic functions;
this is because the normal map p does not preserve the holomorphic structure.

Now 73 and by are odd functions, so Jjug is odd. In particular, (ug, Jiug) = 0,
and because @ is self-adjoint, (ug, (Q — Ao)ui) = 0. From this we deduce that
)\1||U()H2 = O, hence )\1 =0.

To find w1, we use again the fact that Jyug is orthogonal to ug. Since Ag is a
simple eigenvalue, () — A\ is invertible from u& to itself, and maps SN u& to itself

(0]
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by Proposition 4.2.12. Hence, there exists a unique u; € S orthogonal to ug, such
that (u1,0) solves (13). Moreover, u; is odd.
Now we investigate the error terms. With u' and A\' as in the statement, let

FHN) = (SnhSy — A{(N))u (V).

As ug and wu; belong to S, the function u' concentrates on Py, and so does f!.

Hence, it is sufficient to control f! near Py. After a change of variables, one has:

N~ O fH{NY(p(N~22, N710)) = N2 Jyu (2)

+ [ B+ 2 1y DO, ) 4 “ﬁ)dydw
8 R M)+ 2 )+ P2 ) + “\%dedw
#8722 R, ) al0) + ) )+ “j%)mydw

N Ry N R, M) () + %)(w(w) n “j?)dydw
+O(N"™),

As uy € §, the first line of the right-hand term is well-defined, and
IN“2Jiu || = O(N ).
There holds a uniform Taylor estimate on the domain of p:
Es(y) < Cly|*,

so E3(N~1/2y) is bounded by N~2 times a function with polynomial growth inde-
pendent of N. In particular, there exist C,C’,m > 0 such that, on Q:])’V:

| E3(N~Y2y)0 (2, )T (y, w)]
< ON72e=Cl=vl=Cly=wl(1 2™ 4 |y[™ + |w]™).

Of course the same type of estimate (with different C' and m) applies if we multiply
the left-hand side by bi(z,y), b1(y,w), or both. Hence, following the last part of the
K = 0 case, we can estimate the second line of the expansion of f! as Or2(x) (N~2).

The three following lines are treated the same way: because ug and u; belong to
S, it is sufficient to prove estimates for the error kernels, of the form

|A(z, y,w, N)| < N72CeClv=Clv=wl(q 2™ 4 |y ™ + |w]™),

which are easily checked.

We construct by induction on K the following terms of the expansion.

For j > 1, we let .J; : L?(C") — L?(C") the unbounded and symmetric operator
with kernel

Jj(%Z)—/nHl(x,y)Hl(y,Z) > bl y)ra i (¥)bm(y, 2) |dy.

k+l+m=j
k,m,1>0
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Here we use the convention by = 1, and ro = ¢. The dense subspace S(C") is
included in the domain of J;, moreover J;(S) C S because all the b;’s and r;’s are
polynomials. Moreover, J; has the same parity as j.

Let K € N, and suppose we found functions (uy)r<x € S, orthogonal to ug, and
of the same parity as k, and real numbers \; that vanish when k is odd, and such
that, for each k < K, there holds:

k k—1
(Q — No)uk + Z Jjug—j = Apuo + Z AjUg—j. (14)
j=1 j=1

Let us find ug1, orthogonal to ug, and Ag 41 so that equation (14) also holds
for k=K + 1.

Take the scalar product with ug. As @ is symmetric, the left-hand side vanishes,
and we get a linear equation in A\x 1, whose dominant coefficient is |jug||? = 1.
Hence, A 41 is uniquely determined. Moreover, if K +1 is odd, then Jjux 15 and
Ajug1—; are odd functions for every j, so their scalar products with wug are zero,
so that Ag4+1 = 0.

We now are able to find ugx 1 because we can invert () — Ag on the orthogonal
set, of ug. Finally, ug 41 is of the same parity as K + 1.

It remains to show that this sequence of functions u corresponds to an approxi-
mate eigenvector of SyhSy.

Let K > 0, fixed in what follows. For each N € N, we can build a function u’ (N)
on X, supported in the image of p and such that, for  in the image of p, one has
uK(N)(p(2,0)) = NONT Zf:o N—F/24;,(v/Nz). Note that u® (N) concentrates on
.

Let

K
ANy = N2 NTR2N
k=0

We evaluate (SyhSy — A (N))u (N) =: fX(N). Consider an open set Vi, contain-
ing Py, and compactly included in the image of p. One has

IFE (N[ oo erpy = O(N ™)

because u® (V) concentrates on Py.
To compute fX(N) in V4, we use the equation (11) at order K. A change of
variables leads to:

N~TemiNO pK () (p(N_1/2z, 0)>

. k k-1
Ny N2 [(Q — Xo)un(2) — D Jjuk—j(2) = Auo(2) = Y Njur—(2)
k=0 J=1 =
2K K
+ N1 Z N7z = Z (Jj = Aj)ur—;(2)
k=K+1 j=k—K

K K K
kg4l k+j k
+ Y N Avu(e) + Y NTE A vun(z) + ) N7 A ug(2).
k,j,1=0 k,j=0 k=0

7
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By construction, the first line of the right-hand term vanishes. The second line
is O(N~(E+43)/2) There are three error terms in the last line. Aj1 N is the operator
with kernel:

Ajin(z,w) :/Q I (2, )T (y, w)b; (2, )by (y, w) Ex (N ~Y2y)dy.
N

The function Ex is a Taylor remainder at order K + 3, so there exist constants
C > 0,C" > 0,m > 0 such that, on Q3

1111 (2, )11 (y, w)bs (2, y)ba(y, w)EK(Nfl/Qy)’
< CN_(K+3)/26—C/|z—y|+c’|y—w|(1 + ‘z‘m + ’y‘m + ’w’m)
Hence, for each function u € S, one has
| AN ()] 2 = O(N~—EF3/2),

In particular it is true of the functions wuy.
A’ 1s the operator with kernel:

A (2, w) = /Q I (2, 9)b; (2 )N ~2) R (y, w, Ny
N
+ / 1y (3, )b (y, w) Ric (2, y, N)R(N~Y/2y)dy.

One has h(N~12y) < CN~!|y|?, so there are constants C' > 0,C" > 0,m > 0
such that, on Q?V:

[T (2, )b (2, ) (N V2y) Ric (y, w, N)|
< CN*(KJFS)/Q@*C/lZ*y'*C/'y*w'(1 + 2™ + |y™ + [w|™).
As usual we get, for every k, that
145 x (ur) | 2 = O(N~HF/2),
A’ is the operator with kernel
AN (2, 2) = /QS Ric(z,y, NYA(N~Y?y) R (y, 2, N)dy.
IS4
Again there exist constants C' > 0,C’ > 0,m > 0 such that, on Q‘;’V:

|RK(Z’ Y, N)h(N_1/2y)RK(y7 w, N)|
< CN—K—36—C/|z—y|—C’|y—w|(1 + |Z|m + ’y|m + ’w|m)

To conclude, the L2-norm of all the error terms is O(N~(K+3)/2), O

From this proposition we conclude that, at every well P, there exists an eigenvalue
of Tv(h) which has an asymptotic expansion in inverse powers of N, the dominant
term being N ~!u(P). In particular, the first eigenvalue of Ty (h) is O(N~1).
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4.4.2 A positivity estimate

The following proposition implies that the first eigenfunctions only concentrate on
the wells that are minimal:

Proposition 4.4.4. Let (vy)nen a sequence of mnormalized functions in L*(X),
such that vy € Hy(X) for every N. Suppose v concentrates at a point Py, on which
h vanishes. Then for each € > 0 there exists Ny and C such that, if N > Ny,

(un, hun) > N~ u(Py) — ON—3/2F¢,

Proof. Let § < % be close to % Let p denote a normal map around Fy. Then the

sequence (Wn)N>0 = (p*UN)N>0 is such that [|wn| 2 pon-5)) = O(N™°). Then
one has as well:

IInwn| L2 Bo2n-s)) = O(N)

HSJI\DwaNHLQ(CB(O,2N—5)) = O(N™%).

Using Proposition 3.3.1, for § close enough to %, if p. Il is a push-forward of I
by p, one has ||(Sy — p«Ilx)vn]|| < CN~—z+e, Hence,

(SR — Ty)wn|| < CN3F,

If @ is the Hessian of h at Py read in the chosen coordinates, the spectrum of the
model quadratic operator IIyQIIy is known: one has

(wy, IyQUNwy) > N7 pu(Py) [ Tvwy ||,

Moreover, on B(0,2N %) the following holds: CN~2° > h > Q — CN 39,
Now, if § is close enough to %, one has:
<wN, Sﬁo hS]]\DlowN>
> (wy, SNQSNwy) — CN~%
= (wn, SN QlIywy) + (wy, SR Q(SK — Iy)wy) — CN ™
> <wN7 S]I\DIOQHNwN> _ CN7267min(5,%7e)
= (wn, TN QIywy) + (wy, (SR — Iy) QI ywy) — CN~2-min@:3=0
> <wN7HNQHN7UN> o CN—Z&—min(é,%—e)

> N—IM(PO) _ CN—Q&—min(é,%—d.
Choosing § such that § > % — € concludes the proof. O

Remark 4.4.5. In the proof, it appears that the condition of concentration on Py
can be slightly relaxed. We only used the fact that, for some fixed § determined by
the geometry of M and by €, one has

lonLr@y¢B(Ry,N-0) L2 = O(NT™).

Thus, this proposition could be used in a more general context.
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4.4.3 Uniqueness and spectral gap

Proposition 4.4.6. Suppose h satisfies the wells condition of Definition 4.1.1, and
that there is only one well with minimal p. Then the approzimate eigenvalues of
proposition 4.4.2 associated to this well correspond to the first eigenvalue Ay of
Tn(h), namely, for every K € N, there holds:

AE(N) = An| = O(N—UEF9/2),
This etgenvalue is simple; moreover there exists C' > 0 such that, for N large enough:
dist(An, Sp(Tw (h) \ {An}) > N1

Proof. By the min-max principle, the proposition is equivalent to the claim that
there exists K such that the following is true: let ux (N) denote the approximate
eigenvector of order K associated to the well with minimal p. Let Fy be the orthog-
onal complement of ux(N) in Hy(X), and py be the orthogonal projection from
Hy(X) to F. Then the operator Tjﬁv(h) : Fy — Fy, defined as T]ﬁv(h) =pnTn(h),
is bounded from below by Ay +CN ™1,

Let vy be a sequence of normalized eigenvectors of Tjﬁv(h), and pn the sequence of
associated eigenvalues. One has Ty (h)vy = pnyvny +Cnug (N). Because ug (N) is a
sequence of normalized functions and Sy is bounded, the sequence C) is bounded.

Assume py = O(N~1). In this slightly different setting, we can adapt the proof
of Proposition 4.3.1 using the fact that ux(N) is itself an almost eigenfunction of
Tn(h). There holds:

k
Tn(h*F)oy = phvow + Cn > iy Ay Tuc (V) + O(N~E+3)/2),
j=1

In particular, for 0 < k < %, there holds

+3

(on, Tn(B*)ow) = piy + O(N™727) = O(N ).

From there, one can proceed as in 4.3.1 but the induction process stops at k = £33

2
One concludes that, for every € > 0, the L? norm of vy is O(N~ K+4376) outside the

1 €
union of balls centred at the vanishing points of h, and of radius N~ 2T &+3.
In particular, if Py, Py, ..., P; denote the vanishing points of h, and P, is the only
one with minimal p, one can decompose

UN = V0N FUIN + -+ Vg + O(NTEF3=/)

where each sequence v; ny concentrates on F;. Proposition 4.4.4 gives estimates for
v;, N if © # 0. Indeed p(P;) > p(F) by construction, and

AN < N7'u(Py) + O(N3/2),

so one can find C' > 0 small enough such that NA\y + C' < p(F;) for all ¢ # 0 and
for N large enough. Then

(vi,n, SNhSNviN) > (An + CN 7Y log w3
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Recall that ux(N) has an asymptotic expansion whose first term ug is the pull-
backed ground state of the operator on the Bargmann space with quadratic symbol
Qo. In particular, (recall ux(N) concentrates on F),

(ur (N), Tn(Qo), ux (N)

) <
This operator T1(Qp) has a (fixed) nonzero specral gap. Moreover,
(o urc (N)) = O(N~FF379/)

“(min(Sp(T1(Qo))) + CN~2+°).

because vy is orthogonal to ux (N) and ug (N) concentrates only at Py. Then for C
strictly smaller than the spectral gap of T1(Qq), one has by the min-max principle,
for N large

(vo.ns T (Qo)vo.n) > (An + ON 1) max(||vg w2, N~ E—179/4),

The functions v; y have disjoint supports, so that (v; n, SNhSNvjN) = O(N™™)
whenever i # j, and |loy||3 = PP v N |3 + O(N~E+3=9/4) Thus the two inequal-
ities allow us to conclude when K > 2. O

4.4.4 End of the proof

It remains to show that, in the case where only one well Py has minimal u, then the
ground state is O(N~°°) in a fixed neighbourhood of the other wells. Let K € N.
We have constructed in Subsection 4.4.1 a sequence (ug(N))nyen which vanishes
outside a fixed neighbourhood of Fy, and which is a sequence of approximate unit
eigenvectors of T (h), with approximate eigenvalue A (N). One has

Ag(N) = N7 p(Ry) + O(NT3/2),
and
dist(Ax (N), Sp(Tiv (h)) = O(N~E+3/2),

Moreover, we proved in Subsection 4.4.3 that there can be only one eigenvalue of
Twn(h) in [0, N1 (u(Py) + C)] for some C, and that this eigenvalue is simple. Hence,
denoting Ao (V) this sequence of eigenvalues, one has

Aso(N) = minSp(Tn (h)),

and

Aoo(N) = A (V)| = O(N~HHI/2),

Let Usx(N) denote a sequence of unit eigenvectors associated to Aso(IN), and de-
compose ug (N) = ¢(N)Uso(N) + wg (N), where wi (N) L Uso(N). Then

(T (h) = Aoo(N))Jwic (N) = O(N~EHD/2),

The operator T (k) — Aso(N) is invertible on Us(N)* and its inverse has a norm
bounded by N, so wi(N) = O(N-E+1D/2) Since both ug(N) and Us(N) are
normalized, one has ¢(N) — 1.

Finally, if V' is a neighbourhood of another well, then ug (V) is zero on V', so that

|Uso (V)220 = lwic (N 2y = O(N~HEFD/2),

This concludes the proof.
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4.5 STUDY OF EXCITED STATES

This section is devoted to the proof of Theorem 4.2. We will make frequent references
to Section 4.4 as the methods of proof share many similarities.

4.5.1 Construction of approximate eigenvectors

In the proof of Proposition 4.4.2, the first guess for an approximate eigenvector
of Ty (h) was the first eigenvector of the model quadratic operator at one of the
wells. If, instead of the first eigenvector, we start from any eigenvector of the model
quadratic operator, we can proceed the same way; however the recursion stops after
one step, in general.

Proposition 4.5.1. Let P € M on which h cancels, and QQ be a model quadratic
operator in some normal map p around P. Let A be an eigenvalue of Q) and E)y the
corresponding eigenspace. Then one can find a suitable orthonormal basis (v, ...,vL)
of Ey, functions (w1, ...,wr) in S(C") and real numbers (by,...,br) such that, for
any integer 1 <1 < L, the function

a(N) : plz,0) = NN (u(N'/22) + N~y (NV/22))

18 such that
SnhSyT(N) = N"IX+ N732b + O(N72),

Moreover, if dim Ey = 1, then if ug is an eigenvector of Q), one can find a sequence
of Schwartz functions (ug)k>1, orthogonal to ug, and a sequence of real numbers
(Ak)k>1, such that, for every K > 0, the function

K
ug(N) : p(z,0) — N"eN? ZN‘kﬂuk(Nl/Qz)
k=0

1s such that

K/2
SnhSnug(N) = N"IA+ N7 N7Fy = O(N~(EH3)/2),
k=1

Proof. Recall from Proposition 4.4.2 that one can find an approximate eigenvector
at any order, starting from the ground state ug of Q.

Let now ug denote an arbitrary eigenfunction of ), which still belongs to D. Since
Tn(Q) preserves the two orthogonal subspaces of even and odd functions, without
loss of generality, ug is either even or odd. Let A be the associated eigenvalue. When
A is simple, the operator Q — A has a continuous inverse on ué, so one can solve
equation (14) at any order. Observe that wug is either even or odd, so that only
negative integer powers of N remain in the expansion of the eigenvalue.

If Q — X is not invertible on ué, the equation (14) can still be solved for K =1
if ug is one of the vectors of a convenient basis of Ey; but the construction fails
at higher orders. Consider an orthonormal basis (vi,...,vr) of the eigenspace F).
Suppose ug = v;. The equation (14) reads:

(Q — Nur + Jiup = Auo.
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Taking the scalar product with g yields A\ () = (v;, Jiv;). But we also need to
check that 0 = (v, Jiv;) for [ # j. Since J; is diagonal and F) is finite-dimensional,
one can choose an orthonormal basis (v1,...,vr) in which the corestriction of J; on
E) (that is, the operator II.J; from E) to itself, where II is the orthogonal projection
on E,) is diagonal. One can then find u;(l) in E5-. The proof of the error estimate
is the same. To conclude we let b; = A\ (1) and w; = u;(1).

Once the K = 1 step is done, the basis (v1,...,vr) is fixed. Let us try to solve
equation (14) with ug = vy, for K = 2. We write

(Q — Nug + Joug + Jiug = Agug + Arug.
Taking the scalar product with ug yields Ao as previously:
A2 = (ug, Jouo) + (uo, J1u1).

Now recall u; is orthogonal to E). If v denotes an element of E) orthogonal to uy,
then one must check
(v, Jaug) + (v, Jiuy) = 0.

This equation does not hold in general, hence the obstruction. O

4.5.2 Uniqueness

Let C" > 0, and N € N. Let (v;)i1<j<s be a maximal family of elements of By
satisfying the following conditions:

e Foreach 1 < j < J, thereexists 0 < i(j) < d such that v; is a normalised eigen-
vector of the model quadratic operator T (Q;) for h at P;, with eigenvalue
strictly smaller than C”.

o If i(j) = 4(j') then v; L vy
e For all 1 < j < J, the function v; is either odd or even.

e For every A € R and 0 < i < d, the family {v;,i(j) =4, Tn(Qj)v; = Av;} is
suitable in the sense of Proposition 4.5.1.

The existence of such a family is guaranteed by Proposition 4.5.1. It is finite, with

d

J = lim tr(1 ).
> lim (Lo, n (TN (Q:))
1=0
To this family (v;) is attached a family (u;) of approximate eigenvectors of Ty (h) in
Proposition 4.5.1. Then Ey = span((uj)1<j<y) is a subspace of L?(X), with small
energy: there exists C1 such that, for every N,

max{(u, Ty (R)u),u € En, |ul2 =1} < C'N~* + C{N 2.

We claim that, reciprocally, any function approximately orthogonal with Ex has
an energy bounded from below:
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Proposition 4.5.2. Let C' > 0 as before. There exists ¢g > 0 and a function
€ — No(e) such that, for 0 < € < €, the following is true. Let vn be a normalized
eigenfunction of Txn(h), with associated eigenvalue Ay, and suppose that the angle
between vy and Ey is greater than cos™!(e), that is, for every u € Ex normalized,
one has |(u,vn)| < e. Then for N > Ny(e), one has

AN > (Cl — E)N_l.

Proof. Let Py,. .., P; denote the points at which h cancels. If Ay = O(N~!), then
vy concentrates on the P;’s. We decompose vy = vo v +vi N +...+vgn +O(N™>),
where each v; y concentrates only on P; by Proposition 4.3.1 (here vy is exactly an
eigenfunction of T (h)).

Let p; be a normal map associated with P;, and ¢; the Hessian of h at P; read
in the map p;. Let E; y be the span of eigenfunctions of T (g;) whose eigenvalues
are less than C’N~!. Then for N large, for every normalized u € E; n, one has
[(prvin,u)| < 2. Indeed functions in Ey are N~'/2-close to sums of pull-backs of
functions in E; v.

Hence, for N large enough,

(pivi N, TN (g — C’N_l)Hprvi7N> > —C/N_1(462).
Since v; y concentrates on F;, one can deduce that, for IV large enough,
(vi.n, SNhSNviN) > C'N 7 vy v || — C'N 71 (56%),
hence

(v, SNhSNUN) > C'N~! - C/N_1(5(d + 2)62).

1
To conclude, we let €5 = W Then for every € < ¢y, for N large enough,

<’UN, SNhSN’UN> > (C/ — E)N_l.

O]

To conclude the proof of Theorem 4.2, if the rank of the spectral projector of T (h)
with interval [0, C N~!] was greater than K, then one could find an eigenfunction of
T (h) which forms an angle greater than cos™!(N~!) with E, and with eigenvalue
less than C' N~!. This is absurd since C' < C".



SUBPRINCIPAL EFFECTS ON
LOCALIZATION

The computation of ground states for quantum systems is an ubiquitous problem
of great difficulty in the non-integrable case, such as antiferromagnetic spin models
on lattices in several dimensions. On those systems, approaches in the large spin
limit are commonly used [SLI7; Lec97; RB93; Chu92|, in an effort to reduce the
problem to the study of the minimal set of the classical energy. A general procedure
of semiclassical order by disorder was proposed by Dougot and Simon [DS98], in
situations where this classical minimal set is not discrete.

In the mathematical setting of Schrédinger operators in the semiclassical limit, a
general study of ground state properties was done by Helffer and Sjostrand [HS84;
HS86al, including situations where the minimal set of the potential is a smooth
submanifold. The classical phase space of spin systems, a product of spheres, is
compact. In particular, spin systems are neither Schréodinger operators nor given
by Weyl quantization. However, spin operators are example of Toeplitz operators,
which allows to understand the large spin limit as a semiclassical limit. In Chapter
4 we studied the low-energy states of Toeplitz operators in the case where the
minimal set of the symbol consists in non-degenerate minimal points; to this end we
introduced the Melin value (see Definition 4.2.7) associated with a quadratic form
on R?" identified as C".

In frustrated antiferromagnetic spin systems, such as on the Kagome lattice, the
minimal set of the classical energy does not form a smooth submanifold. The goal
of this chapter is to not only to extend the degenerate case [HS86a| to Toeplitz
quantization, but also to generalise the geometrical conditions on the zero set of the
classical energy.

In this chapter we present several results of quantum selection: not all points
of classical phase space where the energy is minimal are equivalent for quantum
systems; and the semiclassical quantum ground state localises only on a subset of
the classical minimal set. To do so, on one hand we develop techniques which are
proper to Toeplitz quantization; on the other hand we prove new symplectic normal
forms which are also useful in the context of pseudodifferential calculus.

The work presented in this chapter are contained in the article [Dell7].

This chapter is organised as follows: Section 5.1 presents the main results on
quantum selection. In Section 5.2 we prove the Melin estimate, which is used to
complete the proof of a general result on quantum selection (Theorem 5.1) in Sec-
tion 5.3. Sections 5.4 and Section 5.5 respectively contain the proofs of Theorems
5.2 and 5.3, which give precise information on particular cases in which quantum
selection takes place. The common strategy consists in a symplectic reduction of the
classical problem, from which we simplify the quantum problem using the properties
of quantum maps in Proposition 2.3.6. We then solve the eigenvalue equation by a
delicate perturbation argument, then use the Melin estimate to conclude. In Section
5.6 we compare the asymptotic Weyl law in the situations of Theorems 5.2 and 5.3.
To conclude, in Section 5.7 we discuss applications to frustrated spin systems.
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5.1 QUANTUM SELECTION

5.1.1 Main results

In order to state the main theorems we need to introduce the criterion under which
localisation takes place.

Let h = ZZ’:O('S N~th; + O(N~°) be a classical symbol on a compact quantizable
manifold M and suppose min(hg) = 0. The selection criterion is a function p which
generalises Definition 4.2.7. This function is defined on {ho = 0}, and depends on
the Hessian of hg. It captures the effects of order N™! on the low-energy spectrum
of T (h). For each point z such that ho(x) = 0, we call p(z) the Melin value at x.

Definition 5.1.1. Let M be a Kéahler manifold and let h be a classical symbol on
M with hg > 0. Let Py € M be such that ho(Fy) = 0. Let p be a normal map around
Py; the function hg o p is well-defined and non-negative on a neighbourhood of 0 in
C™, and the image of 0 is 0. Hence, there exists a semi-definite positive quadratic
form @ such that

ho o p(z) = Q(z) + O(|a]*).
We define the Melin value u(Fp) as u(Q) + hi(Fo).

Remark 5.1.2. A different choice of normal coordinates corresponds to a U(n)
change of variables for @), under which u(Q) is invariant. Hence, pu(Pp) does not
depend on the choice of normal coordinates.

1

The function Py + u(FPp) is 5,-Hélder continuous on the metric space {hg = 0} as

a composition of the smooth function Py +— ) and the Holder continuous function
Q — .

Theorem 5.1. Let M be a compact Kihler quantizable manifold and let h be a
classical symbol on M. Suppose that min(hg) = 0. Let p be the function associating
to each point where hy vanishes the Melin value at this point. Let

Pmin = min(u(z),z € M, ho(z) = 0).
Then, as N — 400, one has
| min Sp(TN(h)) - N_1Mm1n| = O(N_l)'

Let (AN, un))n>1 be a sequence of eigenpairs of (In(h))n>1. If ||lun|lz2 =1 and
AN < N Y pimin + C) for some C > 0, for any open set U at positive distance from

{x € M, ho((l?) = O,M(x) < fmin + C}v

as N — 4o there holds
/ lun|[2dVol = O(N~°).
T H(U)

Theorem 5.2. Under the hypotheses of Theorem 5.1, suppose that the function p
reaches its minimum on a unique point Py. Suppose further that, in a neighbourhood
of Py, the set {hy = 0} is an isotropic submanifold of M, on which hy has non-
degenerate transverse Hessian matrix. Then u is a smooth function on this piece of
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isotropic submanifold. Finally, suppose that, near Py, along {hg = 0}, the function
w reaches its minimum in a non-degenerate way.

Then for any sequence (un)n>1 of unit eigenfunctions corresponding to the first
eigenvalue of Tn(h), for any € > 0, one has

lun (y)|?dVol = O(N—>).

/{dist(ﬂ(y),Po)>N7lf+€}

Moreover, the ﬁ?gst ergenvalue is simple and the gap between the two first eigenval-
ues is of order N~ 2. There is a full expansion of the first eigenvalue and eigenvector
in powers of N~ 1.

In all this chapter, we will informally call “piece of linear subspace” or “piece of
submanifold”, near a point, the intersection of a linear subspace or a manifold with
an open neighbourhood of the point.

If {ho = 0} is an isotropic submanifold on which hg vanishes exactly at order 2,
then p is a smooth function on {hy = 0} (see Proposition 4.2.4), so that it makes
sense to ask for p to reach its minimum in a non-degenerate way.

Following Helffer-Sjostrand [HS86a|, we will call a point Py satisfying the condi-
tions in Theorem 5.2 a miniwell for h.

In the situation of Theorem 5.2, the first eigenvector concentrates rapidly on
{hop = 0} (by Proposition 3.2.6, it is O(N~°) outside a neighbourhood of size
N 7%“), and the speed of concentration towards the point which minimises p is
much slower (only N 7%“). In particular this state is more and more squeezed as
N increases.

The expansion of the first eigenvector vy in powers of N ~1 is indirect. In Section
5.4 we prove that there exists a semiclassical Fourier Integral operator Uy with
classical symbol (in powers of N~1), which unitarily maps (up to O(N~°)) elements
of Hy(M) localised near Py to elements of LQ(]RZ x R77"), such that Uyvy takes
the form:

n_.r ‘I2 =
UNUN(«T7Q) = N?fiefNT‘ef\/N(b(@ZNﬁEbk<N%$,Niq) +O(N700)
k=0

Here ¢ is a positive definite quadratic form and the b;’s are polynomials; r is the
dimension of {hg = 0} near Fj.

Theorem 5.3. Under the hypotheses of Theorem 5.1, suppose that the function p
reaches its minimum on a unique point Py at which there is a simple crossing (see
Definition 5.5.1).

Then for any sequence (un)n>1 of unit eigenfunctions corresponding to the first
eigenvalue of Tn(h), for any € > 0, one has

lun (y)|?dVol = O(N—°).

/{dist(w(y),Po)>N_51§+e}

Moreover, the ﬁgst eigenvalue is simple and the gap between the two first eigenval-
ues is of order N:E. There is a full expansion of the first eigenvalue and eigenvector
in powers of N7 6.
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An example of symbol with a simple crossing, with dimensions (1, 1), is the fol-
lowing function on R*:

h: (q1,q2,p1,p2) — DT + D3 + 4163, (15)

which reaches its minimum on the transverse union of two manifolds, R x {0,0,0}
and {0} x R x {0,0}, intersecting at one point. More generally, simple crossing
implies that, near Py, the principal symbol hg reaches its minimum on a transverse
union of isotropic manifolds, such that the sum at Py of the two transverse tangent
spaces is still isotropic.

As in the case of Theorem 5.2, the first eigenvector is more and more squeezed
as N — 400. Note that the speed of convergence, and the powers of N involved in
the expansions, differ between the two cases.

Again, the expansion of the first eigenvector vy is indirect: there exists a semi-
classical Fourier Integral operator Uy from Hy (M) to L2(]R21+”2 x R"7M=T2) g0
that

_ritro

2 Fo0
Uyvy = N3N S N6y, (N3z, Nig) + O(N—).
k=0
Here, the functions u; have polynomial dependence in x and are square-integrable
(for fixed x) with respect to ¢; the dimensions of the pieces of isotropic submanifold
crossing at Py are r1 and 3.

The question now arises of the inverse spectral problem in our setting: given the
high N spectrum of a Toeplitz operator, is one able to distinguish the geometry of
the set on which the Melin value p is minimal?

In the situations of Theorems 5.2 and 5.3, u reaches a strict minimum at the
miniwell or the crossing point, respectively. Similarly as in Chapter 4, one can build
a symbol containing several miniwells or crossing points. From Theorem 5.1, only
those for which p reaches a global minimum will contribute to low-energy states
(of energy less than N ~!(pmin + €)). Since these miniwells or crossing points are
at positive distance from each other, the low-energy spectrum of the full operator
is (up to O(N~°°)) the collection of the low-energy spectra of operators restricted
to a neighbourhood of each of the minimal points for p. Indeed, one can build
O(N~°°) almost eigenfunctions for the full operator, that are supported on a small
neighbourhood of any of the minimal points for u. The next theorem studies the
number of such modes in a given spectral window.

Theorem 5.4. Under the hypotheses of Theorem 5.1, there exist 0 < c < C, € >0
and Ny > 0 such that the following is true. Let pmin be the infimum of the Melin
value, and N > Ny.

1. For each regular miniwell with Melin value pmin and dimension r, for each
sequence (An) with
N7%+6 < AN < €,

in the spectral window [0, N~ (pmin + AN)], the number of orthogonal almost
eigenfunctions of Ty (h) supported on a small neighbourhood of the miniwell
belongs to the interval

e(N2AN)",C(N2ZAN)"].
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2. For each simple crossing with Melin value piyin and dimensions (r,r), for each
sequence (An) with
N7%+6 < AN < €,

in the spectral window [0, N~ (tmin + An)], the number of orthogonal almost
eigenfunctions of Tn(h) supported on a small neighbourhood of the crossing
point belongs to the interval

c(NFAN)F log(NFAN), C(NTAN) ¥ log(NEAN) .

The notion of dimension of a miniwell and a simple crossing can be found in
Definition 5.6.1. In Theorem 5.4, cases 1 and 2 apply respectively in the settings of
Theorems 5.2 and 5.3.

Remark 5.1.3.

o If Ay < N7 then there are more eigenvalues near a miniwell than near a
crossing point (the ratio is of order N 5) If we look at eigenvalues in such
windows, then a miniwell of dimension r not only “hides” miniwells of smaller
dimensions, but also crossing points of dimensions up to and including (r, 7).

If Ay > 5, then there are more eigenvalues near a crossing point than near a
miniwell (the ratio is of order log(V)). In these windows, crossing points hide
miniwells of dimension smaller or equal.

In particular, this proves that the spectral inverse problem allows, not only to
recover the value of ppin, but also to determine the largest dimensions of the
miniwells or crossing points achieving iy, and to tell whether there are only
miniwells, only crossing points, or both.

e In both cases, the number of eigenvalues in the window [0, N ™! (ptmin + An)]
does not correspond at all to N™ times the volume of iy ([0, N ™! (tmin+AN)]),
which is always of order NV 3, independently on Ay. There are far less eigen-
values than volume considerations would suggest.

Theorem 5.4 also allows to study low-temperature quantum states for a model on
which there is a competition between a regular point and a crossing point with the
same p. It shows a transition from temperature ranges similar to N !, for which
the Gibbs measure concentrates on the crossing point, and temperature ranges of
order N~17¢, for which this measure concentrates on the regular point.

5.1.2 Pseudodifferential operators with degenerate minimal sets

While Theorems 5.1 to 5.4 are stated in the setting of concentration of eigenfunctions
in a semiclassical limit, the first mathematical manifestation of quantum selection
lies in the fact that some differential operators have compact resolvent because of
subprincipal effects. In our setting, the phase space is compact, so that the spectrum
always consist of eigenvalues with finite multiplicity, but the fact that the Weyl
quantization of the symbol given by (15) has compact resolvent [Rob82; Sim83]| for
fixed A is already a form of quantum selection. A simple proof for this fact is recalled
in Proposition 5.5.9.

A broad class of differential operators admitting a compact resolvent because of
lower-order effects was identified in [HN85]. For such operators, and in particular
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for Schrédinger or magnetic Schrodinger operators with polynomial coefficients, one
can then study Weyl laws [Rob82; Tru97; MTO00| (in particular, the number of
eigenvalues in a low-energy window is not given by the volume of its preimage by
the symbol), speed of decay of eigenfunctions [HN92; Bru91|, and the construction
of quasimodes [HS86a; Mar89; Mar94b; HM96; HMO01; MT06; Tru08; HK09; RN15;
Hel+16; BHR16].

Because of its higher degree of geometrical generality, the case of general Schro-
dinger or magnetic Schréodinger operators with a submanifold as classical minimal
set is of greater interest in our discussion; let us present here it in detail. The article
[HS86a] treats the case of an operator of the form —h2A + V', on L?(R™), under the
following hypotheses:

o Ve C®R*R); V >1 at infinity.
e {V =0} = Z is a compact submanifold of R".
e The transverse Hessian of V on Z is everywhere non-degenerate.

e The trace of the square root of the Hessian of V', as a function on Z, reaches
a unique, non-degenerate minimum (“miniwell” condition)

Under these conditions, the authors show that the ground state of the Schrodin-
ger operator is localised at the minimal point for this trace, and give asymptotic
expansions for the ground state and its energy, as well as an exponential decay rate
along Z.

The trace of the square root of a semidefinite form @ coincides with the ground
state energy of —A + @), giving a physical interpretation for the result of concentra-
tion: as in Chapter 4, the ground state only concentrates at the points near which
the energy contributions of order A are the lowest.

The geometry of the zero set of the symbol |¢|2 4+ V, under the hypotheses above,
is as follows: it is a smooth submanifold, isotropic for the symplectic form, on which
the symbol vanishes at order exactly 2.

Motivated by supraconductivity, a series of articles [HM96; HM01; HK09; RN15;
Hel +16; BHR16] consider the problem of “magnetic bottles”, that is, the analysis of
the ground state of a purely magnetic Schrodinger operator

(ihd + a)*(ihd + o)

acting on L2(R"), associated with a 1-form «. The 2-form da can be seen as an
(anti-symmetric) linear operator B : TM — T'M using the standard metric.

The low-lying eigenvalues of the operator above are then linked to the behaviour of
tr [(B*B)l/ 2] . The parallel with the “miniwell” case is obvious from a geometrical per-
spective. Here the zero set of the symbol is the smooth manifold {£ = o}, on which
the symbol vanishes at order exactly 2. Moreover, the quantity tr[(B*B)l/ 2] again
coincides with the ground state energy of the quadratic operator at the zero point.
A particularity of this model is that the symplectic rank of {§ = a} is arbitrary
and may vary with the base point; the most precise results (giving eigenfunction
expansions) assume that the symplectic rank is constant (or at least good-behaved)
at the points of interest. In Theorem 5.2, we focus on symbols that are minimal on
an isotropic submanifolds, but the classical normal form and the quasimode con-
struction of Section 5.4 can be adapted to the case of a submanifold with constant
symplectic rank.
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An essential feature of the work above is a family of Melin-type estimates, which
give a lower bound to the spectrum of an operator depending on the quantum ground
state energy of the Hessian (Melin value) along the zero set. The original result by
Melin [Mel71] is concerned with general pseudodifferential operators (without a
semiclassical parameter). In the magnetic case, a semiclassical version of the Melin
estimate was given in [HM96].

Most of the results that we just described use not only the geometric (that is,
microlocal) structure of the symbol near its minimal set, but also the specific form
of the operator, which allows one, for instance, to conjugate the operator with
multiplication operators of the form exp(¢/h®). The generalisation of these results
to arbitrary pseudodifferential operators verifying the same geometric hypotheses is
lacking. In this chapter, while restricting ourselves to compact geometries, we give
a version of these results for general symbols, which we present in the formalism of
Berezin-Toeplitz quantization but which applies in particular to pseudodifferential
operators (if the principal symbol is confining, for instance).

Moreover, a common characteristic of the “miniwell” and “magnetic well” frame-
work is the fact that the classical minimal set is a smooth submanifold, on which
the symbol vanishes in a non-degenerate way. Lifting this hypothesis is necessary
in order to understand quantum selection on the Kagome lattice (for which the
classical minimal set is an algebraic manifold). In Theorem 5.1 we prove that the
Melin value is, in general, a criterion for localisation of the ground state.

5.2 A MELIN ESTIMATE FOR TOEPLITZ QUANTIZATION

Before stating (and proving) the Melin estimate, let us give two lemmas.

Lemma 5.2.1. LetY be a compact Riemannian manifold. There exist two positive
constants C' and ag such that, for every positive integrable function f on Y, for
every 0 < a < ag and t € (0,1), there exists a finite family (U;)jes of open subsets
covering Y with the following properties:

Vj e J, diam(U;) < a

Vje J dist| Y\U, Y\ JU; | >ta
i#]
> / f<ct / .
i#] U;NU; Y
Proof. Let m € N be such that there exists a smooth embedding of differential

manifolds from Y to R™, and let ® be such an embedding. ® may not preserve the
Riemannian structure, so let ¢; be such that, for any £ € TY, one has

cr[|@7¢ll < €]l

We now let L > 0 be such that any hypercube H in R™ of side 2/L is such that
diam(®~!(H)) < a. Since ®~! is uniformly Lipschitz continuous, then if a is small
enough one has aL < (' for some C7 depending only on Y.

We then prove the claim with C' = %::Li

Let 1 < k < m, and let ®; denote the k-th component of ®. The function ®; is
continuous from Y onto a segment of R. Without loss of generality this segment is

91



92

PART I, CHAPTER 5: SUBPRINCIPAL EFFECTS ON LOCALIZATION

[0,1]. Let g denote the integral of f along the level sets of ®;. The function gy is
a positive integrable function on [0, 1]. Let ¢ > 0 be the inverse of an integer, and
0 < ¢ < L-1.In theinterval [¢/L,(£+1)/L], there exists a subinterval I, of length

t'/L, such that
£+1)/L
/gk <t / (16)
)4

Indeed, one can cut the interval [¢/L, (¢ 4+ 1)/L] into 1/t intervals of size ¢'/L. If
none of these intervals was verifying (16), then the total integral would be strictly
greater than itself.

Let xj ¢ denote the centre of such an interval. Then, let

t/
Vio [0 xk0+2L>

t t
= 1= — — Jfor1</¢<L
Vie <$k,e 1 2L’xk’£+2L) orl1</<

t,
Vi L+1 = <$k,L YA 1].

Each open set Vj; has a length smaller than 2/L. The overlap of two consecutive
sets has a length ¢'/L, and the sum over k of the integrals on the overlaps is less
1l /
than t' [ gv =1t [y f
Now let v denote a polyindex (Vk)i<k<m, With v, < L 41 for every k. Define

U, = <I>_1(V1’l,1 X Vo, X oo X Vi ).

Then the family (U, ), covers Y. For every polyindex v one has diam U, < a since
U, is the pull-back of an open set contained in a hypercube of side 2/L. Moreover,
one has

. cit!
dist | Y\ U, Y\ |J U | > 17
v'#v
To conclude, observe that
m L
=3 szt | 1
V;AZV /uﬂU , 212 Vi, eNVi 041

It only remains to choose ¢’ conveniently. The fraction t@ may not be the inverse

of an integer; however the inverse of some integer lies in [%, %—L] This allow us to

conclude. O

Remark 5.2.2. In the previous Lemma, the number of elements of J is bounded
by a polynomial in a that depends only on the geometry of Y.

Lemma 5.2.3. Let f € C3(R,R1) and suppose that |f®)| < K. Then

s (3K2[\3
I >—( g )
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Proof. Let xg € R. Without loss of generality f’(xg) < 0 (otherwise we compose f
with 2 — 229 — z). Since f” is uniformly Lipschitz-continuous, for all x > x( there
holds

f(z) < f"(@0) + K (2 — x0).

Integrating twice yields

f//(x(:l)
2

(x — 20)* + %(:p — x0)>.

f@) < fl@o) + f'(zo)( — @0) +

Since f’(zg) <0, one has

I/(xo) K

f(z) < f(zo) + 5 (z — m0)* + E(iﬂ — 2p)°.

If f”(zp) > 0 there is nothing to prove. Otherwise, the function

1
K
x = f(xg) — ! (;0) (x — :Co)2 + E(:c — x0)3

reaches a local minimum at

B B 2f”(l'0)

Il = X9 K )
and
2(f"(x0))®  4(f"(x0))? 21" (x0)?
In particular,
1
K? 3
Pran) = - (MR
2

hence the claim. ]

We are now in position to state, and prove, a Toeplitz version of the well-known
Melin estimate for pseudodifferential estimates. It requires a weak condition on the
speed of growth of the symbol near its zero set.

Proposition 5.2.4 (Melin estimate). Let h € C*°(M,R") with min(h) = 0. Let

Hmin = h{?;ﬂo(“m)‘

Then
min Sp(Tn (k) > pmin N~ — o(N71).

The remainder depends on M and h. In particular, if there exist C > 0 and o > 0
such that, for everyt > 0, one has

diStHausdorff({h < t}7 {h = 0}) < Ctaa
then there exist € > 0, Ng and C' > 0 such that, for every N > Ny, one has

min Sp(Tx (7)) > pmin N " = C'N 7172

93



94 PART I, CHAPTER 5: SUBPRINCIPAL EFFECTS ON LOCALIZATION

The more precise result is a generalisation of [HS86a| (where e = 1), [HM96] (in
which case € = 1), [HK09] (e = 1). The sharpest possible ¢ depends on the geometry
of the problem. We will actually see that, in the settings of Theorems 5.2 and 5.3,
there holds T (h) > fimin N . We don’t know whether or not T (h) > pimin N ! is
true for any h € C*°(M,R™).

Proof. We begin with a local result: for all dg, d; small enough and a real sequence
g(N) o 0 such that, for every z € M with h(z) < N~ for every u € L?(X)
—+00

supported on B(z, N_%‘HSO) x S', one has
(Snu, hSyu) > (pmin N~ = N7 g(N))[|Snull*.

To this end, we modify hg near x into a convex function % (so that, when comparing
71; to its Hessian at a critical point, the Hessian will be semipositive and we will be
able to consider its Melin value).

Indeed, by Lemma 5.2.3, one has

Hess(hg)(z) > —CN(-1+00)/3,
The following perturbation of hg is convex on B(x, N 7%+50):
ho iy ho(y) + C N™ax((=1401)/3,=1/2400) qist(y, )2

If now v € L?(X) is normalized and supported on B(x, Nféﬂso) x S, and if
Syu =u+ O(N~), one has

‘(SNu, (ho — ?LVO)SN@) < ON~1+200+max((—1461)/3,~1/2+60)
As v/hyg is Lipschitz-continuous (see Lemma 4.31 in [Zwo12]), one has

—1461

sup(x/ho(y),dist(y,w) < 2N_%+5°) <CON— 2+ 4+ CN~3+%,

Hence,
sup <h0(y), dist(z,y) < 2N_%+50> < CN~1Hmax(91,2%)

Recall from Proposition 3.3.1 that, for § small enough, for every x € M with
associated normal map p, for every u with support inside p(B(0, N_%""s) x S1), one
has )

I(Sx — pTxul 2 < CNE.

Hence, if §g < §, then, for N large enough, by Proposition 3.3.1,
’<(5N — Iy, ESSNU>‘ < CN— & N~ 1Hmax(d1,200)
‘<H7VU7/I{6(SN — H%)u)‘ < O N~ N~ 1+max(é1,280)

If the function izvg reaches its minimum on B(z, N _%+50) at an interior point z’
and if @) denotes half of the Hessian matrix of hy at 2, then

‘<HNU*»%* — Q,Iyu*)| < CN~3+3%,
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Here, the subscript * denotes the pull-back by the normal map. Similarly , will
denote the push-forward by the normal map.

If ho reaches its minimum at a boundary point ', then if L denotes the differential
of ho at 2’ one has, by convexity of the ball, for all y € B(x, N_%“"SO),

Ly —2') > 0.

In particular, . .
(s, hollvsu) > (HUsu, (ho — L) u).

Then y %(y) — L(y — 2’) has a critical point at 2. If @ denotes again half of
the Hessian matrix of hg at 2/, then

[y " = L — @ Tlyu")| < ON~ 345,

In any case, 2’ is at distance at most N —3+80 of x, and u is supported on a ball
around z of same radius, so that

[N S haSiva) — (@) Sul| < ON 35

+00
<SNU, Z NﬁkhkSNlO < CN~2.

k=2

Since

dist(2’, {h = 0}) < disty ({ho = 0}, {h < N"1H01}) 4 N=2+00 — g0(N) — 0,
N—+o00
the matrix @ is go(IV)-close to half of the Hessian matrix of hg at a zero point (recall
we only added CN~I to the Hessian matrix of h at z.)
The Melin value p is Hélder-continuous with exponent (2n)~! on the set of semi-
positive quadratic forms [Mel71], hence

(@) + ha(x) > fimmin + O((g0(N))'/*").
To conclude, with g(N) = C(go(N))'/?", one has
(Snu, hSnu) > N~ fin — Nflg(N).
Note that, if hy satisfies, for some «, for all £ > 0,

diStHausdorff({hO < t}, {hO = 0}) < Ctaa

then g(N) = N~¢ for some ¢ depending on «, dg, 1.

From this local estimate, we deduce a global estimate using Lemma 5.2.1 proved
previously, and the general localisation estimate of Proposition 4.3.5.

Indeed, let (un)n>1 be a sequence of normalised eigenfunctions for T (h) with
minimal eigenvalue. Either the associated sequence of eigenvalues is not O(N 1), in
which case the proposition holds, or it is, in which case, by Proposition 4.3.5, uy is
O(N~) outside {hg < N~1+%} for every &; > 0.

We now invoke Lemma 5.2.1 with the following data:

o Y =M.
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o f=lunl®.
e a=N"3t%

_%

et =N 2.

The Lemma yields a sequence of coverings (Uj n)jecsy,Nen. The proof also yields
a sequence of coverings by slightly smaller open sets ( j’ ~), with

!
[ ] UJ,N C U‘7N.

1-5g

o d(M\Ujn,Ujy)> 3N "2 .

Let (xj,N)jesn,NenN be a partition of unity associated with (U]’ N)jeJn,NeN-
Before we proceed to the proof, let us show that, for all ¢ € C®°(M,R"), as
N >0, one has

)
S [Gavun, Tn(g)xevun) < CNT2 lun|2: sup  (g) + O(N~™).
jAkedy {hSN_l'Hsl}

First, let UJ’.7N C Vjn C Ujn be such that

1-5

1
d(M\Uj,N,V}"N) > EN_ 2

, 1 _1-4
d(M\‘/J,N?U],N)>6N 2 .,

Then Sy xj nun is O(N~>) outside V; y. It is also O(N~>°) outside {h > N~1+91}
by Proposition 4.3.5.
In particular,

G NUN, TN (9) Xk NUN) = (SNXGNUN, 9SN Xk, NUN)

< ISvxjNnun L2, vovie ) ISNXENUN L2, vov ) SUP (9)-
{hzN-1+01)

Now

2
dx

IS ey - /
J L2(V; NOVi, N) Vi NOVin

—[ [ sv@pu
V‘yNﬁVk’N U;’NmUk,N

J
< IS xg N1, yun|” + O(N~>)
< MulP 2w, ynv ) + ON ).

/ Sn(x,y)xjnun(y)dy
Uy

2
dz + O(N™)

Then

> lGgvun, Tn(@xevun) < sup () D> ulPllio, ot
J#kETN {h<N=1NY ke

+O(N™™)

and one can conclude by Lemma 5.2.1. (The O(N~°°) can be summed over J%; since
the latter has a number of elements bounded by a polynomial in N by Remark 5.2.2.)
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In particular, with g = h, there holds
6
ST [Ggvuns Ta(h)xevuy)| < CNTHONF 4 O(N=2).
j#kedN
In particular, if §; < d9/2, then
> 10Gvun, Ty () xknun)| = O(N~179).
Jj#keIN

On the other hand,

> (Gavun, Tn () xnun) > (pmnN " = N7 g(N) D [1Svxgvunl[7z.

Je€JIN Je€JIN

With g = 1, one has in turn

_%
> lxGvuns Xk vun)| < N2
Jj#keIN

so that, since Zj XN =1,
2 _%
Z |Snxjnunl72 > (1—CN™2).
JEJIN
Then, choosing d; < %0 allows us to conclude:

<uN, TN(h)UN> > N_I(Mmin - g(N))
O

Note that, in the last proof, it is essential that we know beforehand that uy is
O(N~>) on {hg > N~1*9} for every § > 0. This was achieved by picking uy as the
unique minimizer of (u, T (h)u) under ||u|| = 1, in which case uy is an eigenfunction

of Ty (h).

Remark 5.2.5. Proposition 5.2.4 only relies on elementary properties of the Szegs
kernel and Toeplitz operators (that is, Propositions 3.2.1 and 3.3.1). As such, it ex-
tends readily to more general contexts of quantizations, such as Spin®-Dirac [MMO07]
(up to a modification in the definition of fimin)-

5.3 QUANTUM SELECTION IN THE GENERAL SETTING

5.3.1 Pseudo-locality of the resolvent

Proposition 5.3.1. Let h and pmin be as in Proposition 5.2.4. Then, for every
c > 0, the operator Ty (h — N7 (pimin — ¢)) is invertible (as a positive definite
operator on a finite-dimensional space). Its inverse R is pseudo-local: if a and b are
smooth functions with supp(a) Nsupp(b) = 0, then

Twn(a)RTy(b) = Oz, 12 (N~).
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Proof. The proposition may be reformulated this way: if U CC V are two open sets
in M and a sequence (uy)n>1 of normalised states in Hy (M) is such that

TN(h — Nfl/ubmin + CNfl)uN = OLQ(NioO)
on V', then we wish to prove that uy = Op2(N~>°) on U. Here
supp(a) CC U CC V CC (M \ supp(b)).

We first remark that, for every J, and for every U CC Vi CC V, the following

holds:
/ uTn(h)u > C’N1+5/ |ul?.
1% Vll"l{hozN_l_‘;}

Hence, u is O(N~°°) on Vi N {hg > N~} for every 4.
We are now able to repeat the global part of the proof of Proposition 5.2.4 by
cutting a neighbourhood of U into small pieces, hence the claim. 0

5.3.2 Upper estimate of the first eigenvalue

Proposition 5.3.2. Let h be a classical symbol on M with min(hg) = 0 and let
Umin e as in Proposition 5.2.4. Then there exists € > 0 such that

inf Sp(Ty(h)) < N~ piggin + N717°.

Proof. The spirit of the proof is to test Ty (h) against an eigenstate of a quadratic
operator T (Hess(ho)(FPp)), where p is minimal at Py. However, since Hess(hg)(z0)
is only semi-positive, its ground state may have no sense as an L? function or fail to
localise at xg. We slighlty modify hg in the neighbourhood of Py so that the Hessian
is non-degenerate.

Let Py € M achieve the minimal value pmin, let p be a normal map around Py
and, following Proposition 3.3.1, let § > 0 and C > 0 be such that, for every N,
for every u supported on B(PO,N_%M) x St one has [|(Sy — p*IIx)ul| < CN-1.
Without loss of generality § < %.

Pick o < 24, and let @ denote half of the Hessian of hy at Fy. Then, since the
function @ — w(Q) is Holder continuous with exponent % [Mel71], one has

@+ N ) < u(Q) + CN 2.

Let vy denote a normalised ground state of T (Q + N~ -|?), then vy is O(N =)
outside B(0, N_%M) by Proposition 4.3.5.
Then
(vn, IIn(ho o p)lInvn) + O(N‘gﬂ‘s)
(on, Iy QIIyuy) + O(N %) 4 O(N~2139)
(n, IIN(Q + N~ - P)IIyon) + O(N~1+20) 4 O(N—213)

(pxon, T (ho)psvn)

IN

Q+ N7 )+ O(N~1+2) + O(N—2+%)
Q) _i_O(Nflfa/Zn) +O(Nf%+25) +O(Nf%+35)
Q) + 0N~

IN

N~
N~
N7
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for some € > 0.
In particular, since for all y € B(P,, N_%Jr‘s) one has hi(y) < hi(z) — C’N_%‘Hs,
one has
(peon, T (h)pson) < N4 pinin + O(N 1),

5.3.3 End of the proof

We can now conclude the proof of Theorem 5.1. The estimate on the first eigenvalue
consists in Propositions 5.2.4 and 5.3.2.

Let C > 0, and let (uny)nen be a sequence of eigenfunctions of Tn(h), with
eigenvalues Ay smaller than N~ (pmi, + C).

Let a € C*°(M,R) be supported away from {z € M, ho(z) = 0, () < pimin+C}.
Let h be a classical symbol on M such that h=hona neighbourhood of the support
of a, and such that umin(ﬁ) > pmin(h) = C. Then TN(fL — N-1)\y) is invertible
because of the Melin estimate of Proposition 5.2.4. Its inverse R is pseudolocal,
with norm O(N), by Proposition 5.3.1. In particular,

Tn(a)RTn(h — N~ An)un
= Tn(a)RTN(h — h)uy
= O(N™).

Tn(a)uyn

This concludes the proof of Theorem 5.1.

5.4 INORMAL FORM FOR MINIWELLS

In this section we prove Theorem 5.2, and establish the necessary material for the
Weyl asymptotics of Section 5.6.

We first study a problem of symplectic geometry, which consists in finding a
normal form for a non-negative function Ay vanishing at order 2 on an isotropic
submanifold. Then, we apply a Quantum Map to find an expansion of the first
eigenvalue and eigenfunction.

We let M be a compact quantizable Kédhler manifold and h be a classical symbol
on M which satisfies the hypotheses of Theorem 5.2.

5.4.1 A convenient chart

Recall the following well-known application of Moser’s principle:

Proposition 5.4.1. Let S be a symplectic manifold and Z C S be a smooth d-
dimensional submanifold of constant symplectic rank. Then, in a neighbourhood (in
S) of any point in Z, there is a symplectomorphism p onto a neighbourhood 0 of R*",
such that p(Z) is the intersection of a linear subspace with an open neighbourhood
of zero in R*™.

Using Propositions 5.4.1 and 4.2.4, we will prove the normal form for miniwells
on isotropic submanifolds:
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Proposition 5.4.2. Let hg be a smooth non-negative function on M, which van-
ishes on an isotropic manifold Z of dimension r with everywhere non-degenerate
transverse Hessian.

Near any point of Z, there is a symplectomorphism p into ]Rgzn X Rif?_r), a smooth
function Qg from R" into the set of positive quadratic forms of dimension r, and
n —r smooth positive functions (\;)i1<i<n—r Such that:

hoop=QEq)(x,€) + Qs(a)(p) + Opae py—o(|zI* + 11> + [pI*),

where, for every q close to 0, the ground state of T ((z,&) — Q7¢%(q)(x,&)) is the
standard Gaussian.

In particular, Z is mapped into {(p,z, &) = 0}.

Proof. Let Py € Z, and let U be a small neighbourhood of Fy in M. Let us use
Proposition 4.2.4 with set of parameters Z NU and quadratic form Hess(hg), which
is semi-positive definite along Z N U, with kernel of constant symplectic rank.

This yields, at each point of Z in a neighbourhood of Py, a family of 2n vector
fields which form a symplectic basis:

B:(Ql?"'7QT7P17"'7P7‘7X17"'7X774—7‘7El7"'7En—7’)7

such that span(Qi,...,Q,) = TZ. In the general setting, this does not give a
symplectic change of variables under which the quadratic form is diagonal along the
whole zero set (indeed, Q1,...,Q, are prescribed by the 2n — r other vector fields,
and do not commute in general). However, one can separate the slow variables and
the fast variables (first step), then diagonalise the fast variables (second step).
First step: Let us define the distribution F on Z N U as follows: for z € ZNU,

Fr =span(Q1,...,Qr, P1,..., P)(x).

Then T(Z NU) C F. In particular, there is a piece S of symplectic submanifold of
M, containing Z NU, and tangent to F on ZNU.

Using Proposition 5.4.1, we let ¢y be a symplectomorphism from a neighbourhood
of Py in M into a neighbourhood of 0 in R?" x R2"=") guch that S is mapped into
R?" x {0}. Using Proposition 5.4.1 again, let ¢; be a symplectomorphism on a
neighbourhood of 0 in R?", that maps ¢o(Z) into R” x {0}. Then the map ¢; acting
on R?" x R2(»=7) by

¢1(p, q,T, 5) = (¢l(pa q)a T, f)

is a symplectomorphism. We claim that p = q;l o ¢g separates the fast variables from
the slow variables up to O((z, &, p)?).

Indeed, consider Dp at a point of Z. Since p sends Z into R” x {0}, and S into
R?" x {0}, the matrix of Dp, from the basis B to the canonical basis, is of the form:

Ag 0 ] 0

Dp = Apg App | O
Avg Azp | Aze Ase
Agq Agp | Aex Asge

Moreover, D, is symplectic, so that the bottom left part vanishes. Hence,

hoop™' = Qr(q)(z, ) + Qs(q)(p) + O(Ipf + [z * + [¢[*),
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for some quadratic forms Qr and Qg.

Since hg vanishes at order exactly 2 on Z, the quadratic forms Qr and Qg are
positive definite.

Second step: It only remains to diagonalise Qr with a symplectomorphism. In
fact, this is possible without modifying Qg. Indeed, let ¢ : (R",0) — Sp(2(n — 1))
be such that, for every g near zero, the matrix ¢(q) realises a symplectic reduction
of Qr(q), as in Proposition 4.2.4. With J the standard complex structure matrix
on R2(®=") and (-, -) its standard Euclidian norm, we define, for every 1 <i < r, the
real function

i @,8) = 5{(,6), (04,6(0) 76! (0)) (. 6).

We then define f : (R**77,0) — R” as the map with components f; in the
canonical basis. Then a straightforward computation shows that the map

®:(q,p,z,8) — (¢,p+ [, 9(q0)(z,8))

is a symplectomorphism. As f = O(x’g)_m((:c,f)Q), the 2-jet of hg o @ at (¢,0,0,0)
is the same as the 2-jet of hg o ((¢,p, z,§) — (q,p, ¢(q)(x,€))), i.e.

Qs(a)(p) + Q1 (q) (=, £),

where the ground state of T (Q%$?) is the standard Gaussian in x and ¢. This
concludes the proof. O

Remark 5.4.3. We corrected the map

(q7p7$7£) = (Qapa ¢q(5'3a§))

into a symplectomorphism by only changing the second coordinate. This does not
depend on the fact that ¢, acts linearly but relies only on ¢,4(0,0) = (0,0).

5.4.2 Approximate first eigenfunction

Let us quantize, using Proposition 2.3.6, the symplectic map of Proposition 5.4.2,
and conjugate with pseudodifferential operators:

Definition 5.4.4. For any choice &y of quantization of the map p of Proposition
5.4.2, the classical symbol gg ~ > N~ %g; on a neighbourhood U of 0 in R?" is
defined as follows: for any sequence (vy)n>1 with microsupport in a compact set of
U, the following holds:

BN16N1TN(h)6NBNUN = Op{/\{/_l(gg)v]v + O(N_Oo).

In what follows, we choose an arbitrary quantum map &y, and we write g instead
of gs. The reason we use Weyl quantization in this subsection is because we will
rely heavily on squeezing operators. The computations are much easier to follow for
this formalism.

The principal and subprincipal symbols of g are explicit at the points of interest:
go = hg o p by construction, and g; is prescibed on {go = 0} by the Melin estimates
for Weyl and Toeplitz quantizations:
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Proposition 5.4.5. For any q close to 0, one has

91(2,0,0,0) =  tx(Hess(ho) (5(a, 0.0, 0))) + 1 p(4,0,0,0)).

Proof. From the expression of hg o p in Proposition 5.4.2, one has

(p(a,0,0,0)) = 7 x(QF(a)) +  te(Hess(ho) (p(a, 0,0, 0) + P p(g,0,0,0)).

If ho(x) = 0 and 6 > 0 is small enough, the value p(x) has the following variational
characterisation:

= 1 N inf hlul®,u € H X,/ 21
p(z) Nggoo< i ( J e e, [

This variational problem can be read via the quantum map. If

ul? = O(N—°),
/B o e U= O)

then B;G&lu microlocalises at speed N ~3+% on p~1(x), and moreover,
/ pluf? = (By' 63w, O (g0 + N7 g1) By &5 u) + O(N72)ull.
M
Now, if z = p(q, 0,0, 0), the usual Melin estimate yields

_ 1

lim (N inf(<vOp]V\(/ 1(go)v>, GNByv as above)> =~ tr(QW(q)),
N—+o0 4

hence, ¢1(p(g,0,0,0)) contains all the defect between p(p(g,0,0,0)) and this esti-

mate. O

Remark 5.4.6. In general, the subprincipal symbol is not unique after application
of a quantum map. Indeed, if a is any smooth real-valued function on M then
exp(iTn(a)) is a unitary operator, and composing &y with this operator changes
the subprincipal term.

Proposition 5.4.5 shows that on the points where the principal symbol vanishes,
the subprincipal symbol is in fact rigid through any such transformations.

Let us find a candidate for an approximate first eigenfunction:

Proposition 5.4.7. Suppose that the function q — po p(q,0,0,0) reaches a non-
degenerate minimum at 0. Let ¢ be the positive quadratic form such that q — e~%(@
is the ground state of the operator

82

—(uop)(0,0,0,0),
aqiaqj(“ p)( )

Qs(0)(~i9) + 5 3 4t

1,j=1

with eigenvalue pa.
Then there exists a sequence of polynomials (b;)i>1, and a sequence of real numbers

(pi)i>1, with
po = o p(0,0,0,0)
p1 =0
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and pa as previously, such that, for every k,

n r 22 k .
I+ (g ) o N3N Vel (1 + 3 NTib(Nig, N%x)>

i=1

18 an approximate eigenvector to Op%ﬁl(g), with eigenvalue
k .
M= NS N
i=0

in the sense that, for every K there exists k such that

10PN () & — N £l 2 = O(N ).

This proposition provides an almost eigenfunction which we will show to be as-
sociated to the lowest eigenvalue (see Proposition 5.4.9). It is the main argument
in the proof 1of Theorem 5.2; the concentration speed of this eigenfunction on zero,
which is N™1, is the concentration speed of the lowest eigenvector of T (h) on the
miniwell Py, because of Proposition 5.4.10.

Proof. The proof proceeds by a squeezing of OpJVY,_l(g) by a factor NV T along the ¢
variable.
Let
. _1 _3 _1 _1
gn =g(N 3¢, N"ap, N"22, N"2§).
Then Op{;\{/_l(gjv) is conjugated with Opj;,(gn) through the unitary change of
variables u Ngfiu(Nfiq, Nféx).
Grouping terms in a Taylor expansion of gy yields

K
. _ _i _ K45
gn =N 1§ N 4ai(Q7p>xv‘5)+O(N ),
=0

with first terms

ag =91(0,0,0,0) + QF4(0)(x, £)
a1 =gV, (91(,0,0,0) + Q) () ) (0)

1
az =Qs(p) + 5 Hess, (91(-, 0,0,0) + QF*(-)(=, f)) (0)(a)
Here R3 is a homogeneous polynomial of degree 3 and L is a linear form.
We further write 4; = Op}y, (a;).
Recall from Proposition 5.4.5 that ¢1(g,0,0,0) + itr(Q’;ﬁd(q)) = po p(q,0,0,0),

and let ¢ be the positive quadratic form such that e~ is the ground state (up to a
positive factor) of

Opy (Qs(p) + % Hess(u o p)(O)(q)> :

Finally, let
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We will provide a sequence of almost eigenfunctions of Op‘l,[, (gn), of the form

+oo )
uo(q, ) <1 + Z N_ibi(q, :L')) ,

i=1
with approximate eigenvalue
—+o0 )
N'S N,
i=0
We proceed by perturbation of the dominant order Ay, which does not depend on
q. Our starting point is

2
||

ug =e" 2 9, 11y = min Sp(Ao)

uy =0, up =0.

Indeed, one has Agug = poug, and Ajug = 0 since
1
V((:0.0.0)+ (@5 ) 0) = .

so that ug is an approximate eigenvector for Opiy(g).

Let us proceed by induction. Let k£ > 1 and suppose that we have already built
uQ, . .., up and pq, ..., pur which solve the eigenvalue equation at order k; suppose
further that there exists Cx11 € R such that, for every ¢ € R",

k1 2
/ uo(z, q) <Z[Aiuk+1—i](% r) =Y pati1-i(q, 90)) dz = Cyyaluo(z, ).
" i=1 i=1

Then one can solve the equation

(Ao — po)ugy1 + -+ + (Ags1 — prr1)uo = 0,

up to a multiple of e™ 27 in ugyq. Indeed, if we write

||

upr1 = v(g)e” 2 +w(z,q),

-2 ,
where for every ¢ € R" one has w(q,-) L e” 2, the equation reduces to

(Ao — po)w + -+ + (Apg1 — por1)uo = 0.

2
||

Freezing ¢ and taking the scalar product with x +— e~ 2~ yields

Ait1 = Crga.

Then, with ¢ still frozen one has (A — pug)w = r.h.s where the r.h.s is orthogonal
to the ground state of Ag, which allow us to solve for w.

If the r.h.s is ug times a polynomial in (g,z), then the same holds for w (in
particular, for all 4 one has A;w € L? so that it makes sense to proceed with the
induction).
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It remains to choose v so that wugy1 satisfies the orthogonality constraint above,
in order to be able to build the next terms.

Since 1 = 0 and Ajug = 0, the terms ¢ = 1 vanish so that the first integral in
which w1 appears is not the next one but the one after it:

k43 2
/nr uo(z, ) <Z[Aiuk+3—i](% 2) =Y piukys—iq, 90)) dz.
=

i=2
Hence, one wants to solve

| |2

7|2 — T —
/ e 2 [(Ag — pg)ve™ 2 ](q,z) = F(q) + Crige ?9,

with
2 k+3
Fao=-[ % <[<A2 — o)l ) + Y [Arar-i)(2,0)
i=3

k2
- Z itk +3—i (T, Q)> d.

1=3

The symbol ay decomposes into a quadratic symbol in (¢, p), and an odd polyno-
mial in (x,€). The latter does not contribute to the integral in the left-hand-side,

. e _l=?
and the former commutes with multiplication by e~ 27, so that

2 2
=] Il

[ e it = e Faw)
—Co (quD) + 5 Hess(01(0,0,0) + 7 r(QF()))(a) - u)

The equation on v is then

(Qs(0D) + § Hess(uo pO)0) — 2} = 1 () + Crsge ).

With
Cri1 = — (e ?9, F(q)),

one has
F— Ck+1e_¢ 1e?,

so that one can solve for v.

Again, if ug, ..., u; and w are ug times a polynomial function in (z, q), then F' is
e~? times a polynomial function, so that the same is true for v. This concludes the
construction by induction.

The estimation of the error terms stems directly from the fact that the terms wug
are polynomials time a function with Gaussian decay. Hence, this formal construc-
tion yields approximate eigenfunctions. O

Before we show that the almost eigenfunction computed in Proposition 5.4.7 cor-
responds indeed to the lowest eigenvalue, let us use the quantum maps Gy to obtain
upper and lower bounds for T (h), which will be useful in Section 5.6.
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Proposition 5.4.8. Let A\ be the following operator on L?(R"):

—1 _
AN? = 0piy (I + N~ Yaf)
Under the conditions of Proposition 5.4.7, there exists ag > 0, and two constants
0 < ¢ < C such that, for any N, for any a < ag, for any normalised v € L?(X)
supported in B(Py,a) x S' such that Syu = u + O(N~%°), letting v = 8&16]}1%
one has:

re - qn—=r
clo, 300} + o (0,09 o + el - N5

— C(v,0p, (IN72,p,2,¢*)v) — O(N~)
< (u, hu) — N~ u(Py).

In addition, the following bound holds:
c{v, AP) + (v, 0ply (Q4(0) (. €))v) — Clo, Opl, (IN72,p2,€[°))

- ac(<v,0p%l(|x\2 1eP)) —N—l”"’”) _o(n)

-1
< () = NH(P) + - (QE(0)

< C o, AR + (v, 0plY  (Q(0) (2, €))v) + Clv,Op, (IN~2,p,a, [ )v)

) O,

n—r

n a0(<v, Ol (lal? + [€P)v) — N1

Here, the notation O(|N7%,p,x,§]3) stands for O(|p,z, €3 + Nfg).

Proof. Let us prove the first lower bound. As

90(a,p,%,€) = Q¥ (a)(z,€) + Qs(a)(p) + O(lp, =, £[*),

one has first, by a lower bound on Op]v\{,_1 Q74 (q)(x, €)),

(v,0pN" (90))

- N
> c{v, 0pf) " (Ip*)v) + =

-1

(0, tr(Q7%(q)), v) + (v, Opl (J, p, &, N2 P)o).

Let us make this bound more precise. Since all eigenvalues of Q}",?d(q) are positive,
there exists ¢ > 0 such that, for ¢ small enough, one has

—~1 -1
Op (@), €0) ~ (0, (QE@))w) > cOply (e +[€%) — “g—cln ).

Hence

-1

(v, 09y (90)0) = clv, OplY (p)o) + = (o, tr(@5(0)), v)

-1 1 1
(n - 71) - C<Ua Op%7 (|$,§7N7§‘3>’U>.

- N
+ e, 0pl (Je? + [€?) — ¢

Recall from Proposition 5.4.5 that g1 = u(p(q, 0,0, 0))—& tr(Q%%(q))+O(|z, p, &]).
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Hence,

N—l
2

(n—7r) — Clo,0p " (IN"2,p, 2, ).

(v,0p " (9)v) = (v, 0p, " (Ip*)v) + ~5— (v, u(p(g, 0,0,0)), v)

-1

-1 N
+ cfo, 0ply " (o + €)= e

As 11(p(q,0,0,0)) > u(Py) + c|q|?, this yields the lower bound.
We now turn to the second estimate. This first requires a bound on

(0,00} " (Qr(q)(x,€) — QE0)(z,6))v).

Since Qr(q) —Qr(0) = O(|q|) and since the expression above vanishes only when
v is a standard Gaussian in x, one has

(0, 0p " (Qr () (x,€) — QEH(0)(, £))v)

< Ca (0,09 (1 + lgPy0) - N 11T,

Moreover, since Qg(gq) > 0 and using the miniwell condition, one has

c(v, A%) — C’(U,Op{/VV_l(|N_%,p7$a§|3)v>
< (v,0p " (Qs(9)(p) + N 'g1(q,p, 2.€)))
< O, AT890) + Clu, Opl " (IN~%, p, 2, €P)v).

This concludes the proof. O

5.4.3 Spectral gap

It only remains to show that the sequence of almost eigenfunctions given by Propo-
sition 5.4.7 corresponds to the first eigenvalue of T (h).

Proposition 5.4.9. Let h be a classical symbol with hg > 0, such that the minimum
of the Melin value u is only reached at one point, which is a miniwell for h.

Let (u;) be the real sequence constructed in the previous proposition, and let Ayin
be the first eigenvalue of Tx(h).

Then

9
)\min ~ Nil ZNﬁiMz
=0

Moreover, there exists ¢ > 0 such that, for every N, one has
: _3
dist(Amin, SP(Tn(R)) \ {Amin}) > cN ™ 2.

Proof. Let us show that any function orthogonal to ’ghe one proposed in Proposition
5.4.7 has an energy which is larger by at least cN ™ 2.
Let (vy) be a sequence of unit vectors in L?(R"). If

_ _ 3
(un, Opiy (Gn)on) < N7 lpg + CN 2
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z|2
for some C, then vy = e~ 2wy (q) + O(N~32), with [Jwy|lz2 = 1 + O(N~3).
If C — o is strictly smaller than the spectral gap of the quadratic operator

Op‘l,v (QS(O)(p) + % Hess p1 0 p(+, 0,0, O)(q)) ,

then (wy,e ?@) > g for some a > 0 independent of N, which concludes the
proof. O

To conclude the proof of Theorem 5.2, let us show that quantum maps preserve
concentration speed:

Lemma 5.4.10. Let o : (M,z) — (M',y) a local symplectomorphism between two
quantizable Kdhler manifolds.

Let 0 < < % and let (un)nen @ sequence of unit elements in the Hardy spaces
HO(M, L®N) such that

2 —00
un(y)|” = O(N .
/{dist(ﬂ(y),$)§N%+6} ’ ( )| ( )

Then
[Sun(y)]* = O(N~).

A dist(w’(y)7a(x))SN_%+5}

Proof. Let us observe that the condition on (uy) is equivalent to the following: for
every k € N, there exists C > 0 such that

(un, T (dist(-, 2)2F)uy) < O N~F(1+20),
Let us prove, by induction on k, the estimate
(& nun, T (dist(-, o(2)) ) S yuy) < CpNF1+20),

The case k = 0 is clearly true since G is an almost unitary operator when acting
on functions localised near x.

Let us now apply Proposition 2.3.6 with a = dist(-, z)?*, stopping the expansion
at order k.

For 7 < k, the error terms are controlled:

IN“Lj(a00)| < N7IC;dist(-, o (x)) )
Hence, by induction,
<6NUN, TN(diSt(', a(:c))%)GNuN>
2k

< ZCj,k<UN, T (dist (-, 2)2F ) uy) + O(NF) = O(NF(1+20)),
7=0

This ends the proof. O
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5.5 NORMAL FORM FOR CROSSING POINTS

In this section we treat a case in which the zero set of the symbol is not a submanifold.
The local hypotheses on the symbol are as follows:

Definition 5.5.1. Let i be a classical symbol on M with hg > 0 and let Py € M.
The zero set of hg is said to have a simple crossing at Py if there is an open set U
containing Py such that:

o {hg=0}NU = Z; U Zy, where Z; and Zs are two pieces of smooth isotropic
submanifolds of M.

Z1 N4y = {PQ} and TpZ1 NTpZy = {0}

Tp,Z1 ® T'p,Z2 is isotropic.

For i = 1,2, on all of Z; \ {Py}, ho vanishes at order exactly 2 on Z;.

There is ¢ > 0 such that, for all x € Z; U Zs, one has:

pu(x) — pu(Py) > edist(Py, x).

The last condition may seem very strong. However, p is typically only Lipschitz-
continuous at the intersection. A typical example is

h(q1,q2,p1,p2) = PT + P3 + 415,

where along {q1,0,0,0} one has u(q1) = |q1| + 1. We exclude on purpose situations
like (q1) = 1+ |q1| — @1 + ¢, which grows like |q1| for g1 < 0 but grows like ¢? for
q1 > 0.

Under the hypotheses of Definition 5.5.1, we first give a symplectic normal form
of hg near Py, then a description of the first eigenvector and eigenvalue of T (h) in
the following Subsections.

The symplectic normal form for hg does not depend on the hypothesis on pu.
However, the pseudodifferential operator P associated to the first Taylor coefficients
in this normal form, which we study in Subsection 5.5.2, has compact resolvent under
this assumption, and its inverse is well-behaved (in particular, it preserves fast decay,
see Proposition 5.5.11).

5.5.1 Symplectic normal form

Let Q@ > 0 be a semidefinite positive quadratic form on (R** w), and (e;, fi) a
symplectic basis of R?" which diagonalises Q:

n r’ n
Q(z giei +pz’fi> = > P+ ). Nla+p)),
i=1 i=r+1 i=r'+1
Vi, A; # 0.
Let M denote the matrix of () in the canonical basis. Then

{£i\ i1, ... Eidn} = o(JM) \ {0},
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More precisely, if E) denotes the (complex) eigenspace of JM with eigenvalue A,
then
E'i>\j ©® E—i)\j = Spa'n(C((eka fk)7 k> Tlv )\k; = )\])

Moreover, Jordan blocks never occur for nonzero eigenvalues. Hence,

Proposition 5.5.2. If Q : R™ — S (R) is a smooth parameter-dependent semi-
positive quadratic form on (R*™,w), of constant symplectic rank 2d, then the span of
the non-zero symplectic eigenspaces of Q (whose dimension is 2d), depends smoothly

on Q.

Using the result above, one can build a symplectic normal form for functions with
crossing points. Let us first “flatten” the geometry near a crossing point.

Proposition 5.5.3. Let hg € C®°(M,R") be such that the zero set of hy has a
simple crossing at Py € M and let

T = dlm(Zl)
T = dlm(Zg)

Then there exists a symplectomorphism o from a neighbourhood of Py to a neigh-
bourhood V' of 0 in R2" = R2"1 x R22 x R2"—"1772) gych that

1. o({ho = 0}) = V N [R™ x {0,0,0,0,0} U {0,0} x R x {0,0,0}].

ker Hess(hg o 071)(0) = R"™ x {0} x R™ x {0,0,0}.

Vg1 € R, ker Hess(hg o 0~ 1)(¢1,0,0,0,0,0) = R™ x {0,0,0,0,0}.
Vgo € R"2, ker Hess(hg o 0=1)(0,0,¢2,0,0,0) = {0,0} x R™ x {0,0,0}.

S

Vz € o({hg = 0}), the space {0,0,0,0} xR2"="1-72) 45 symplectically invariant
under Hess(hg o 0~ 1)(2).

Proof. From Proposition 5.5.2 applied to the Hessian matrix of hg, the span F of
the “fast modes”, corresponding to the n—r; —ro largest symplectic eigenvalues, vary
smoothly along Z; and along Zs. Its symplectic ortogonal S then varies smoothly
along Z; and along Z,.

First part: let us prove that there exists a piece of symplectic manifold X, tangent
to § along Z; and along Z3 near 0. The existence of such a symplectic manifold,
as we will see, depends on an integrability condition at Py which is satisfied in our
setting.

We first push, using any smooth diffeomorphism, a neighbourhood of Py in M to
R2" in a way which sends Z; to R™ x {0,0,0,0,0} and Z to {0,0} x R" x {0,0,0}
(we will also call these subspaces Z; and Z5 to avoid cumbersome notation). Since
ToZy UTyZy C §(0), after another (linear) change of variables, one has

S(0) = R2"1+72) % {0,0}.
In this chart, we will construct > as the graph of a smooth function

f . RQ(T1+7’2) N RQ(’R—Tl—’I‘Q),

such that df is prescribed along Z; and along Zs, where f = 0. Since symplectic
manifolds are stable by deformation, and f is a smooth deformation of the zero
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function, this graph will be symplectic in a neighbourhood of 0 (for the pulled-back
symplectic structure).
Since T'Z; C S, the prescription of df on Z; is of the form

[df(qlv O’ O’ 07 07 O)] (d(h’ dpl’ dQZa dp2) = Ll(ql)(dplv dq27 dpQ)

Here L; is a linear form with smooth dependence in ¢;.
Let

f1:(q1,p1,92,02) — L1(q1)(p1, g2, p2).

Then the graph of f; is tangent to S at 0. Since df(0) = 0, one has L;(0) = 0 so
that fi vanishes on Zs.
Let us prove that df; = 0 on this set, that is, for all (q1,q2) € R™ "2,

Oy L1(0)(0, 42, 0) = 0.

The form L; is determined by the Hessian of hg along Z;. In a Taylor expansion of
ho near 0, there are no terms in (g1, g2) of degree less than 4. Indeed, when restricted
on R™ x {0} x R™ x {0,0,0}, the function hy and its differential vanishes along
R"™ x {0} , hence one can write

T2

ho= > 202195 k(a1 22)
k=1

where g, 1 is a smooth function: there are no terms of order less than 2 in g2 in the
Taylor expansion of hg near 0. Symmetrically, there are no terms of order less than
2 in ¢ in this expansion, so that there are no terms of total degree less than 4.

In particular, when hy is restricted on R™ x {0} x R" x {0,0,0}, its Hessian at
(q1,0) is O(g?). This means that the subspace {0,0} x R™ x {0,0, 0} is at distance
O(g?) from its projection on S(q1,0,0,0,0,0), so that d,, L1(0)(0, g2,0) = 0.

Symmetrically, we can construct a smooth function fo, tangent to & on Zs, such
that fo and dfs vanish on Zj.

The function f = f; + fo then satisfies all requirements.

Second part. From Proposition 5.4.1, one can flatten the symplectic submanifold
¥: after a symplectic change of variables, one has ¥ = R?"172r2 x {0, 0}. Inside X,
one can use Proposition 5.4.1 again to flatten Z; into R"™ x {0,0,0}. At this stage
of the proof, we obtain a symplectomorphism which satisfies conditions 3, and 5 in
Proposition 5.5.3.

It only remains to flatten Z inside Y. After a linear change of variables, condition
2 is satisfied, that is,

ToZy ={0,0} x R™ x {0,0,0}.

Inside 3, the manifold Z5 is then the graph of a smooth function
{91(g2), 92(a2), 42, 93(q2) }

with ¢;(0) = 0,dg;(0) = 0 for all ¢ = 1,2, 3. Since Z3 is isotropic, one has, for all
1 < /iv k < r2,

993 _ i(agl,j 992, 091, 992, )
02k st 0¢2.1 0925  O0q2; 0q2 1

In particular, the left-hand side in the equation above is an antisymmetric matrix.
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Let us first remove the two first components, that is, apply a symplectomorphism
of the form

(q1,p1,92,02) — (@1 — 91(q2), »1 — 92(q2), g2, 2 + G(q1. 1, 42))

where it remains to find G such that this is indeed a symplectomorphism and such
that G(g1,0,0) = 0 (so that Z; is left invariant).

The requirement of a symplectomorphism is equivalent to the following system of
differential equations on G, for all 1 < i,k <ro, 1 < j <ry:

0G;  0ga
Oqr  0gi
oG Ogik
Iprr  Oqoi

0q2k 0q2;  0qa,i Oqak

0G;  0Gy i(aglg 0g2,; 01 392,3‘) ~ Ogzi 1 <3gs,i 393,k>

dqo)  Oaqo; T 0y 2\0q2r  Oaz;

J=1

All equations are satisfied by letting:

T1
ng 1 891 ; 1
. : , , . 7.] _ . 7.7 . . .
Gi: (q1,p1,q2) — ]221 <Q1,j iy (g2) P1,j 8q2,i (q2) | + 293,z(<12)

Notice that one has indeed G(q1,0,0) = 0.
After this change of variables, Z is a Lagrangean subspace of {0,0} x R?"2. By
Proposition 5.4.1, it can be flattened into {0,0} x R" x {0}, which concludes the

proof. O

Once that the zero set near a crossing point is conveniently flattened, one can
perform a reduction of hg near this crossing point.

Proposition 5.5.4. Let h satisfy the simple crossing conditions of Definition 5.5.1,
and let

T = dim(Zl)
T9 = dim(ZQ).
Then there is an open set V. C U, containing Py, and a symplectic map
oV s R x R¥2 x RAM-T1-72)

such that hg, read in the map o, takes the form

hO Oail(q17p17q27p27x7€)
= Q¥ a1, ¢2)(2,€) + Qs(q1, ¢2)(p1,p2)

T1 T2
+ E ZaijleJ1,iQ1,jQ2,kQ2,l

i,7=1k,l=1
+O0(llz, &, p1,p201%) + O(llp1, p2, ., €llllar, a211*) + O(lan|*lla2l* (lla || + llg21))-

Here, for every (q1,q2) close to 0, the ground state of T ((,€) — Q5% (q1, q2)(x, &)
is the standard Gaussian. Qg is a quadratic form in (p1,p2) with smooth dependence
in (q1,q2). Moreover, for every (q1,q2) € (R™\ {0}) x (R™\ {0}) small enough, the

matrices given by [Zw k191,191, ol and Zk,l Qijkiq2,kq2, | are positive.
b ,L]

’
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Proof. The first step is Proposition 5.5.3. A symplectic change of variables o1 sends
Z1 to R™ x {0,0,0,0,0}, Z3 to {0,0} x R" x {0,0,0}, and such that, at each point
of Z, U Zs, the fast modes of Hess(hg) span {0,0,0,0} x R2?=m1=72) " At this stage,
one has

ho g1 = QF(QMQQ)(%O + QS(QMQQ)@LPQ) + O(le,pg,x,ng) + O(Hq17QQH4)

As in Proposition 5.4.2, the next step is to reduce Qg into a quadratic form which is
unitarily equivalent to a symplectically diagonal form, with smooth dependence on
(q1,g2). This change of variables can again be corrected into a symplectic change of
variables up to a negligible modification of (p1,p2). Thus there exists a symplectic
change of variables o9 such that

ho g1 = Q;’ed(qlu QZ)(%Q + QS(Qh QQ)(pDPZ) + O(thpQ?ngHg) + O(Hq1||2HqQH2)7

with Q}Ed as requested.
Continuing the expansion yields

hoor = Q¥ a1, ) (®,€) + Qs(q, 2) (P, p2) + Y Cijkiq1id1,j42,k02.
i7j7k7l

+O(llpy, p2, @, &llllav, @2l”) + OCllpy, p2, 2, €IP°) + O(laa [P llg2 Il v, a21))-

The positivity conditions on the tensor « are then directly given by the fact that
ho vanishes at order 2 on Z; \ {FPp} and Z \ {Fv}. O

One can easily adapt Definition 5.5.1 to the case of a crossing along a submanifold.

Definition 5.5.5 (Crossing along a submanifold). Let h be a classical symbol on
M with hg > 0. The zero set of hg is said to cross along a submanifold near Py if
there is an open set U containing Py such that:

e {hg=0}NU = Z; U Zy, where Z; and Z5 are two pieces of smooth isotropic
submanifolds of M.

e /1N Zy = Zs3 is a piece of smooth submanifold containing FPy. For each x € Z3,
one has T, 73 =T, Z1 N T, Z>.

e For each x € Z3, the space T, 721 + T, Z5 is isotropic.
e For i =1,2, on all of Z; \ Z3, hy vanishes at order exactly 2 on Z;.

e There is ¢ > 0 such that, for all x € Z1 U Z5, one has:

w(x) — p(Py) > cdist(Zs, ).

With this definition one can find a normal form as previously:
Proposition 5.5.6. Let h satisfy the conditions of Definition 5.5.5, and let
r = dlm(Zl) — dlm(Zg)

ro = dlm(Zg) — dlm(Zg)
r3 = dim(Zg).
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Then there is an open set V. C U, containing Py, and a symplectic map
oV s R¥ x R¥2 x R i RAM-T1-T2773)

such that

ho oo (q1,p1, 92, P2, G3, D3, T, €)
= Q%N aq1,q2,43) (x + €2) + Qs(q1, 42, 43) (P1, P2, P3)

T1 T2
+ Z Z ik1(93) 01,191,942,k 92,1

i,j=1k,l=1
+ O(||lz, &, p1, p2|1*) + O(llp1, p2, , €l a1, @2I”) + Ol lg2ll* - (g1, @2)I1)-

Here Q’”Fed and Qg are positive quadratic forms with smooth dependence on (q1, g2, q3),
and Q"l}ed has the standard Gaussian as a quantum ground state Moreover, for every
g3 € R™ small enough, for every (qi1,q2) € (R™ \ {0}) x (R™ \ {0}) small enough,
the matrices given by [ZM ai‘jqul’iql’j}kl and [Zk,l aijquQ’kqQ’lL _ are positive.

),

Proof. As in Proposition 5.5.3 the first step is to transform, with a symplecto-
morphism, Z; into {q1,0,0,0,q¢3,0,0,0,(q1,q3) € R™*"3} and, similarly, Z5 into
{0,0,¢2,0,q3,0,0,0, (g2,q3) € R™7"3} while respecting the decomposition between
fast and slow modes along Z; and Z5. The piece of symplectic submanifold ¥ con-
taining Z; U Z and tangent to the slow modes can be built as previously (in par-
ticular, the integrability condition is satisfied along Z3). Within this manifold, one
can flatten the isotropic submanifold Z; into {q1,0, 0,0, ¢3,0,0,0, (q1,q3) € R "3},
Without loss of generality, Zs is then of the form

{a1(q2,43),p1(q2,43), a2, P2(a2, 43), 43, P3(q2, 43) }-

One can flatten this manifold in three steps. For the first step, consider the following
map, with smooth dependence on ¢s:

0go : (q3,03) = (g3,03 — P3(q2,G3))-

Opsi _ Opsk
Ogqz .~ 0q3,;
change of variables, which maps 0 to 0. Then, as in the proof of Proposition 5.4.2,

there exists f such that

Since Zs is isotropic, for all ¢, j one has , so that o, is a symplectic

(g2, D2, q3,p3) — (g2, P2 + f(q2,43,P3), g5 (3, P3))

is a symplectic change of variables.
After this first step, Zs is of the form

{(q1(q2, 43), p1(q2, 43), 42, P5 (a2, 43), 43, 0), (g2, g3) € (R™>773,0)}.

Now, for fixed g3, following Proposition 5.5.3 there is a change of variables which
flattens Zs. The second step is to apply this change of variables (and add a correction
to p3 in order to have a symplectic change of variables in all coordinates). After this
step, Zs is of the form

{(07 07 q2, 07 q3, pal(CI% Q3))7 (QQa q3) S (Rr2+T37 0)}
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Since Zj is isotropic, p;’ does not, in fact, depend on g2, and one can simply flatten
this isotropic manifold into

{(07 07 q2, Oa UED) 0)7 ((J2, q3) € (Rr2+r37 0)}
One can then repeat the proof of Proposition 5.5.4. This yields the desired result. [

Remark 5.5.7 (More general degenerate crossings). Simple crossings (and crossings
along submanifolds) are not stable by Cartesian products, which leads to a slightly
more general situation (see Remark 5.5.8).

On the other hand, one could try to deal with symbols whose zero set form a
stratified manifold, which are defined recursively: a stratified manifold is a union of
smooth manifolds with clean intersections, such that the union of all intersections is
itself a stratified manifold. The boundary of a hypercube is an instance of a stratified
manifold.

In this respect, a model case for a stratified situation of degree three is

pi+p3 +p3 + a3,
with zero set {p1 = 0,p2 = 0,p3 = 0,¢; = 0} for every i = 1,2, 3.

For this operator, the ground state is rapidly decreasing at infinity [HN92| but this
is not due to subprincipal effects. Indeed, in this setting, u is constant along the three
axes. If we add a generic transverse quadratic operator Qq(z, ), the subprincipal
effect will dominate and has no reason to select the point {¢ = 0}, as opposed to

the simple crossing case where an open set of symbols sharing the same minimal set
have minimal Melin value at the crossing point.

5.5.2 Study of the model operator

As Proposition 5.5.4 suggests, the following operators play an important role in the
study of the crossing case:

r1 T2 T1 2
P=Q(iD)+ Y > ijuquiqijdendar + > Liigri+ Y Laigzi,
ij=1 k=1 i=1 i=1

acting on L?(R"7"2), where D is the differentiation operator and @ > 0 is a
quadratic form. The linear form L will appear as an effect of the subprincipal symbol,
as we will see later.

Let Q1 and Q2 denote the restrictions of the quadratic form @ on R™ x {0}
and {0} x R"2, respectively. Throughout this subsection we impose the following
conditions on P:

e For every (qi1,¢q2), one has

1 72
Z Z Qijkiq1,iq1,592,k920 = 0.

1,j=11,7=1

e For every ¢q; # 0, one has

T1
Q2(iD) + Z q1,i91,592,k92,0 > Z Lyaqui,
ijkl i=1
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e For every g2 # 0, one has

T1
Q1(D) + ) qriq1 j@2rd2s > Y Laidzi,
ijkl i=1

Remark 5.5.8. These conditions are weaker than what Definition 5.5.1 calls for.
There does not need to be a simple crossing in this case as the following example
illustrates:

P=-A+ Qilqg,l + Q%,zqg,?

There, the zero set of the symbol is a union of four isotropic surfaces in R®, i.e.
{p=0,q1;=0,q2; =0} for all (4,7) € {1,2}2

Proposition 5.5.9. Under the previous conditions, there exists ¢ > 0 such that
P > ¢(Q(iD) + |q)).

Proof. Let Q2 be the restriction of the quadratic form @ to {0} x R". One has
Q > Q2, hence Q(iD) > Q2(iD). By hypothesis,

T1
Q2(iD) + Z q1,i91,592,k92,1 > Z Lyiqui
ijkl i=1

and the infimum of the spectrum of the left hand side is 1-homogeneous in ¢i, so
that

T1
Q2(iD) + Z q1,i01,592,k92,4 > (1 — ¢) Z Lyiqu,i + 2¢|qi
gkl i=1

for some ¢ > 0. In particular,
P > cQ(iD) + 2¢|q].
The same reasoning applies to 2, hence
2P > 2cQ(iD) + 2¢|q1| + 2¢lqa,
which allows us to conclude. O

One deduces immediately:

Proposition 5.5.10. The operator P has compact resolvent. Its first eigenvalue is
positive.

We are now able to use Agmon estimates. In the particular case where @ is
diagonal, the following result is contained in the Helffer-Nourrigat theory [HN92],
see also the related results in [MT06].

Proposition 5.5.11. Let Ag be the first eigenvalue of P. There exists ¢ > 0 such
that, if u € L*(R™*72), and (Cg) geyri+r2 are such that |0%u(q)| < C’56_0|q‘3/2 for all
q € R"T72 3 € N'1*472 then for any f € L2(R™772) such that (P — X\o)f = u, there
exists (Cj)genri+ra Such that 10%f(q)| < C'e=la*? for every q € RH72 B € Nritre,

Proof. With ¢(¢) = ¢|q>/2, one has Q(V¢) < ¢|q|. Hence P—X\g—Q(V¢) is positive
far from zero, and one can use Agmon estimates as developed in [Agm14]. O
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We will also need the following two facts. Proposition 5.5.12 is an essential ingre-
dient of Subsection 5.5.3 and Proposition 5.5.13 is necessary to compare the Weyl
asymptotics with the regular case.

Proposition 5.5.12. The first eigenvalue Ay of P is simple.

Proof. This follows from an argument which is standard in the case @ = Id. Let
ug € L2(R™772) be such that Pug = Agug. Then ug is a minimizer of the Courant-
Hilbert problem
/ Q(Vu) + Vul*.
HUHLZ 1 uGHl

The set {up = 0} has zero Lebesgue measure from a standard Unique Continu-
ation argument. The function |ug| is then also a minimizer of this quantity, since
6|u0] = +Vup whenever ug £ 0.

Then |ug| itself belongs to the eigenspace of P with value A\, which is (a priori)
a finite-dimensional space of real analytic (complex-valued) functions. Hence, |ug|
is real analytic so that ug = |ug|e®, with 6y real analytic.

Now

/ T Pug = / ol (P — Q(V60)) o] = Ao — / Q(60) uol*

As {|ug| = 0} has zero Lebesgue measure and @ > 0, the function 6 is constant,
so that ug and |ug| are colinear.

To conclude, if ug and u; are two orthogonal eigenfunctions of P with eigenvalue
Ao, then |up| and |uj| are orthogonal with each other, and both have R™*"2 as
support, so that either ug = 0 or u; = 0. O

Proposition 5.5.13. Suppose P satisfies the following two supplementary condi-
tions:

e 1 =To.

e For every (q1,q2) € (R™ \ {0}) x (R"\ {0}), the matrices given by

[Zm Oéijkquz‘quhl and [Zk,l aijleQ,kQQ,l} g are positive.

2,

Let A > 0 and let Np denote the number of eigenvalues of P less than A (with
multiplicity).
Then there are C' > ¢ > 0 such that, as A — +00, one has

cA2" log(A) < N < CA3™ log(A).

Proof. Under the second supplementary condition, the quartic part of the potential
is greater than c|q1|?]gz|? for some ¢ > 0. Hence, for some C' > 0 one has Ny > Ny,
where Ny counts the eigenvalues less than A of

—A+ @1 |2 + |a1] + |gal.

On the other hand one clearly has P < C(—=A + |q1]?|g2|> + |q1] + |qa|) for some
C>0.
Thus, the problem boils down to Weyl asymptotics for the elliptic operator

—A+|q1Pg2l® + la1] + gzl
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It suffices to control the volume of the sub-levels of its symbol:

{(a1, a2, p1,p2) € R, i + [p2f* + [a1 [*[a2|” + a1 | + [a2| < A}

We first study
Ax = {(a1,a2) €R™, |a1?|go)? + |an| + |ga] < A}

Then, decomposing A, into Ay N B(0, A%) and its complement set yields

Vol(Ay) < CA% +2 / Vol{gs, g1 Plasl? + la1] + lga] < A}.
|q1|>A1/4

. AR

< CA71 +20 \/ lg1] + a1
g1 >A1/4 a1

Ty 0 (21

< CAZ +20A2 , —dz
ATT X
<CA? log(A).
On the other hand,
Vol(an) 22 [ VolfaslarPlaaf + ol + lao] < A).
lq1|>A1/4

S E A
> 20/ VA= lqu| + a1
lq1|>A1/4 ’(h\

Integrating yields

Vol({(q1, g2, p1,p2) € RY™, [p1]* + [p2|® + |@1]?[q2)® + |@1] + |g2] < A})
€ [eA2" log(A), CA2™ log(A))],

hence the claim. O

5.5.3 Approximate first eigenfunction

In this subsection we give an expansion for the first eigenfunction and eigenvalue
in a crossing case, following the same strategy as Subsection 5.4.2. We quantize
the symplectic map of Proposition 5.5.4 and we use the Bargmann transform to
reformulate the problem in the pseudodifferent}al algebra, in which we squeeze the
operator. This time, the squeezing is of order N along (¢, ¢2), with a concentration
speed of N —5te along the zero set, instead of N —1+€ as was seen in the regular case.
We then apply a perturbative argument to obtain the full expansion of the first
eigenvalue and eigenvector.

Definition 5.5.14. For any choice G of quantization of the map o of Proposition
5.5.4, the classical symbol gg ~ > N~ %g; on a neighbourhood U of 0 in R?" is
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defined as follows: for any sequence (uxn)n>1 with microsupport in a compact set
of U, the following holds:

By S T (h)SnByun = Oplyy (gs)un + O(N~).

In what follows, we choose an arbitrary quantum map &y, and we write g instead

of J5-
The subprincipal part g; is prescribed on Z; U Z5 by the local Melin estimates.

Proposition 5.5.15. Along 0(Z1), for 1 close to zero, one has
1 red 1
91(q1,0,0,0,0,0) = 1 tr Q%% (q1,0) + 1 tr(Hess(ho)) + h1 | (¢1,0,0,0,0,0).
Along 0(Z3), for qa close to zero, one has
1 red 1
91(0,0,¢2,0,0, 0)1 tr Q¥%(g2,0) + 1 tr(Hess(ho)) + h1 ) (0,0, ¢2,0,0,0).

The proof is exactly the same as for Proposition 5.4.5.
Let us define

P =Qs(0)(—iDyg,, =iDg,) + Y ijkiq,i1 ;21421
ikl

1 1
+V<4UQ%€d+4tTQS) (q1,92)-
q1=q2=0

Then P satisfies the hypotheses of Subsection 5.5.2 and Proposition 5.5.13.

Proposition 5.5.16. Under the conditions of Definition 5.5.1, there exists ¢ > 0,
a sequence (u;) € (L2(R™472)[ X1, ..., Xp_r—m)) of square-integrable functions of
q with polynomial dependence on x, and a family of real values (C; o,p) with

—clql?/?
b

Y(i,a, B,q) € N x NT772 5 Nritr2 5 RMF7=2 198y, (g)] < Ciape
and a sequence (p;) € RN with g = p(Py), u1 = 0 and po = min Sp(P), so that
1+ LS i 1
NI N2 § N (N, Nhg)
=0

is an O(N~°°)-eigenfunction of Opjv\(,_l(g), with eigenvalue
~+00 )
NS N,
i=0

This proposition provides an almost eigenfunction which we will show to be as-
sociated to the lowest eigenvalue (see Proposition 5.5.18 ). It is the main argument
in the proof 1of Theorem 5.3; the concentration speed of this eigenfunction on zero,
which is N 73, is the concentration speed of the lowest eigenvector of T (h) on the
miniwell, because of Proposition 5.4.10.
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Proof. As announced, let us squeeze g by computing
. _1 _2 _1 _2 _1 _1
g=9(N"3q1, N 3p1, N 3qa, N 3py, N 22, N"2§).

Grouping terms in the Taylor expansion yields, for any fixed K € N,

K .
Oply () = N7 3" N750ply (a;) + O(N~ 7).
i=0
The first terms are:
1
ag = Q}ed(O)(x, €) + 1 tr(Hess(ho)(0)) + h1(0)
a] = 0
ay = o(P).

Here P is as above.
With A4; = Op}y(a;) let us solve by induction on k the following equation, where
(ug)ken is as in the claim:

(Z N_é(Az' - Mz’)) (Z N_éui) =0.

If vg is the (unique) ground state of P then our starting point is

_le? .
up = e~ 2 v, o = min Sp Ay,

uy =0, up =0.

Indeed ug is an almost eigenvector for Opiy, (), with eigenvalue N~ yp + O(N _%).

Let us start an induction at kK = 1. Suppose we have constructed the first k& terms
of the expansion ug,...,u; and ug, ..., g, with u; L ug for every ¢, and suppose
that, for some C}, € R, one has, for every ¢ € R"1"2,

k+1 k
/Rn_r B Uo(q, x) (Z[Aiukﬂ—i](q, x) — Z[uiukﬂ_i](q, :c)) dz = Ck+1|vo(q)|2.
1 i=2 i=2

_ =2

Then the eigenvalue problem yields u11 up to a function of the form v(g)e™ 2.

Indeed, writing
_l=

upt1(q, ) = v(g)e” 2 +w(q, ),

|2

\
where for every ¢ one has w(q,-) L e” 2, the eigenvalue equation is

(Ao — po)ug+1 + (A2 — p2)ug—1 + ... + (Ags1 — p1)uo = 0
- 2
for ugi1 and pgyq. First (Ag — ,ug)v(q)e_% = 0 so that
(Ao — po)w + (A2 — p2)ug—1 + ... + (A1 — frs1)uo =0

By hypothesis, freezing the ¢ variable and taking the scalar product of this equa-
2

tion with z s e~ 3 yields (Cry1 — prs1)|vo(q)|*> = 0. Let pigy1 = Chy1. Then, for

every ¢ € R" 772 the function

k+1
fk+1 LT Z[(A’L - ,U'L')uk;—‘rl—i](qv$)
=2
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||
is orthogonal to z ++ e~ 2 . Hence w = (Ag— 10) "' fr41 is well-defined and satisfies

the eigenvalue equation.
|=|?

Moreover, from Proposition 5.5.11, if by induction fix1q is e” 2~ times a polyno-
mial in x, and if any derivative of any coefficient decays as fast as e*C|Q|3/2, then the
same is true for w.

At this point we need to check that, after the first step k& = 1, the value po is
indeed min Sp(P).

If kK =1 then we are interested in the integral

||

/Rnr”g e~ > wvo(q)[Azuq] (g, #)da = min Sp(P)|vo(q)|?,

since vg is a ground state of P. This is indeed a constant function times |vg(q)|?, so
that the induction hypothesis is satisfied at the first step, and pe = min Sp(P) as
required.

|| . L
Now recall ug(q,x) = v(g)e” 2~ +w(q, z). The eigenvalue equation in itself does
not state any condition on v; however, to compute the second next order, one needs
to satisfy an orthogonality condition, i.e.

k3 k2
/R Uo(q, ) (Z[Az'umgi](q, v) = Y [mitteys—il (g, iU)) dz = Cryslvo(q)]*.
nom =2 =2

This is equivalent to

2
_ =]

_le? l=1?
Lo e = e | @adte = Fl@) + Gl
Rn—Tl—”‘z
Now a9 has no terms in = or £ so the equation reduces to

(A2 — p2)v = F(q) + Ciy3v0(q).

Here,
e 3 k42
F(q) = /R e 2 <Z[Aiuk+3—i](q, 2) = > [pitkrs—i)(q, 96‘)) de,
S i=3 i=3

so that |93F (q)] < Cgecla™’?.

To solve this equation, one takes Ci13 = —(vg, F'), then the r.h.s is orthogonal to
v, so that one can solve for v (indeed, g is a simple eigenvalue of Ay by Proposition
5.5.12).

Then, by Proposition 5.5.11, one has, for all 3 € N2 for some Cjs, that
105%v(q)| < C’ge*C'q‘g/2 for all ¢ € R™*"2. This ends the induction.

The previous considerations were formal, but the decay properties of the functions
uy, imply that Aju; € L? for every j and k, which concludes the proof. O

Proposition 5.5.17. Let A$°%% be the following operator on L*(R™172):

-1
AG = Opyy (Ip? + a1 lg2]?)
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Under the conditions of Definition 5.5.1 and Proposition 5.5.13, there exists
ap > 0, and two constants 0 < ¢ < C such that, for any N, for any a < ag, for any
normalized u € L*(X) supported in B(Py,a) x S such that Syu = u + O(N~—>°),
with v = B]QlG]_\,lu, one has:

cross - —n-r
c(o, A0 + o (0, 0y (ol + eF)o) - N5 )

— Cv, 0 ' (IN2,2,6)) — CN3
< (u, hu) — N~ p(Py).

In addition, the following bound holds:

l\)\»—l

(v, AZ0) + (v, Opl (@ (0)(x, €))0) — Clo, OPW (IN-
- ac(<v, OBy (122 + le[2)v) ) N1

< (u, hu) — N~ u(Py) + NT tr Q7¥4(0)

< Clv, AZ20) + (v, 0pY  (Qr(0)(x,€))v) + C (v, 0pN, " (IN73,2,£[%)v)

—i—aC((v Op} (\x|2+]§\ Ju) — N~ 1n2 )+C’N

£1%)v)

Proof. The proof follows the exact same lines as for Proposition 5.4.8: the difficulty

lies in handling the (z, ) terms which take a similar form as above.
The supplementary N =3 terms are due to positivity estimates for the Weyl quan-
tization: from co(AF**) < go we can only deduce cAF*® < Opjv\(,_l(go) +O(N73).
O

5.5.4 Spectral gap

As before, we show that the almost eigenfunction found previously corresponds to
the first eigenvalue.

Proposition 5.5.18. Let h be a classical symbol with hg > 0, and such that the
mantmum of the Melin value p is only reached at one point, which is a simple crossing
point of h.
Let (u;) be the real sequence constructed in Proposition 5.5.16, and let \pn be
the first eigenvalue of Tn(h).
Then
0 .
Amin ~ N7 ZNﬁ%Mi-
=0
Moreover, there exists ¢ > 0 such that, for every N, one has

distOmin), SP(T () \ {Amin}) > N3,

Proof. Let us show that any function orthogonal to the one proposed in Proposition
5.5.16 has an energy which is larger by at least ¢/N73.
Let (vn)n>1 be a sequence of unit vectors in L?(R™). If

_ _ _a
(N, Oply (Gn)oN) < N7lyug + CN ™3
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for some C, then
oy = ¢ 2 wy(q) + O(N73)
with |[wy||zz = 1+ O(N"3).
If C'— pg is strictly smaller than the spectral gap of the operator P then, for some
a > 0, one has (wy,vg) > a, which concludes the proof. O

56 WEYL ASYMPTOTICS

Definition 5.6.1. We will say a miniwell has dimension r when the dimension of
the zero set of hg around the miniwell is . Similarly, we will say a crossing point
has dimensions (r1,72) when the dimensions of the two manifolds Z; and Zs around
the point are r; and 79, respectively.
Proof of Theorem 5./.
1. Let u be a sequence of O(N~°°)-quasimodes for T (h) in the spectral window
above, that localise at a miniwell Fy. Let Gy be the quantum map quantizing
the symplectic change of variables constructed in Proposition 5.4.2.

Let vy = BR#G]*VluN. The first lower bound on Proposition 5.4.8 yields

— n J—
(o, O (|2 + |€]2)ow) — N1

" < CANN"L.

From Proposition 5.3.1, for every 6 > 0, if ¢ > 0 is small enough then u
localises on B(Py,d). If ¢ is small enough then

3 (o, Oafy (a4 lgPyon) - N 1757 ) <

NﬁlAN
5 .

Let us prove an upper bound in the number of eigenvalues of T (h). The
second lower bound in Proposition 5.4.8 leads to

c(on, ANun) + (on, Oply (Qr(0)(,€))ow) — —— Z Ai(
N—IA
< <uN,huN>—N_1u(P0)+ 5 N.
For e smaller than the spectral gap of Qr(0)(z, D), the left-hand side has less

3N_1AN
2

The lower bound proceeds along the same lines. The upper bound in Proposi-
tion 5.4.8 yields

than C'A’y eigenvalues smaller than , hence the claim.

-1
Clow, Agun) + (o, 09 (@r (), o) = ~5— 37 M(0)

NﬁlAN
B .
N_IAN
2 I

> (uy, huy) = N~ p(Py) —

The left-hand side has always more than cA’y eigenvalues smaller than
hence the claim.

2. The proof for crossing points is the same except for the actual count of eigen-
values of the reference operator, which stems from Proposition 5.5.13.

O]
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5.7 APPLICATION TO SPIN SYSTEMS

One of the main physical motivations for this study is the mathematical foundation
of quantum selection in the context of spin systems. The search for materials with
a non-conventional magnetic behaviour led experimental and theoretical physicists
to consider frustrated antiferromagnetic spin systems, such as pyrochlore or the
Kagome lattice. Order by disorder approaches in the large spin limit are commonly
used in the physics literature, and the subprincipal effects presumably select a very
small subset of configurations [DS98; SLI7; Lec+97; RB93; Chu92].

Spin systems are particular cases of Toeplitz operators. In such systems the
base manifold is a product of 2-spheres. Let G = (V, E) be a finite graph and
M = (S*)*IVI. M is formed as follows: at each vertex i € V of the graph we asso-
ciate a unit vector e; = (z;,¥;, 2;) € S?, called spin at site 7. In particular, there are
3|V| coordinate functions (z;, y;, 2;)icy on M. The standard symplectic structure on
S? gives raise to a natural symplectic structure on M. For this symplectic structure,
one has {z;,y;} = d;j2;, and two similar equations given by cyclic permutation. We
introduce the antiferromagnetic Heisenberg symbol:

h: M — R
(ei)iev = > mixj+uyiyj + 2z
(i,5)eE

The minimum of this function corresponds to situations where the sum of the scalar
products between neighbouring spins is the smallest. If G is bipartite, this minimum
is reached in situations where neighbouring vectors are opposite. In frustrated sys-
tems, this is not possible. If for instance three vertices in the graph are linked with
each other, then not all of them can be opposite to the other ones. This is the case
of the Kagome lattice, and the Husimi tree, considered in [DS98| and depicted in
Figure 5.

We will consider a class of graphs made of triangles. A finite connected graph
G = (V, E) is made of triangles when there is a partition E = | |, ; E; where, for
every i, E; contains three edges that link together three vertices; in addition, we
ask that the degree at any vertex does not exceed 4 (and is hence equal to either 2
or 4). We will call the E;’s the triangles of the graph.

Pieces of the Kagome lattice and the Husimi tree, in Figure 5, are made of trian-
gles. In general, from a 3-regular finite graph G = (V, E'), one can build an associated
graph made of triangles G = (\N/,E) which is the edge graph of G: the set of ver-
tices is V' = E and two elements of V' are adjacent in G when they are adjacent
as edges of G (i.e. when they share a common vertex). In this case the triangles of
G correspond to the vertices of G. The Kagome lattice is thus associated with the
hexagonal lattice, and the infinite Husimi tree with the 3-regular tree.

The presence of the “frustration” by triangles leads to a large degeneracy of the
classical minimal set. Indeed, h is minimal if, on each triangle V;, the sum of the
three spins at the vertices of the triangle is zero (so that these elements of S? must
form a great equilateral triangle). This is not always possible as the example to the
right of Figure 5 shows. Those configurations exist on subsets of the Husimi tree
and the Kagome lattice, and are highly degenerate: on the Husimi tree, once the
spins on a triangle are chosen, there is an S' degeneracy for each of its children; the
set of minimal configurations is an isotropic torus whose dimension grows linearly
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Figure 5: Main examples: a piece of the Husimi tree (left), and the Kagome lattice (middle).
On the right, a graph made of 5 triangles on which the symbol cannot reach

~15/2.

with the number of triangles. On the Kagome lattice, the set of these configurations
does not form a smooth submanifold, hence the need for Theorems 5.1 and 5.3. It
is currently unknown which minimal points of h achieve pmin.

The main results of this section are:

Proposition 5.7.1. For a loop of 6 triangles (the basic element of the Kagome
lattice), the minimal set is not a smooth manifold.

For a loop of 4 triangles, the minimal set is the direct product of SO(3) and the
union of three circles, two of each having transverse intersection at exactly one point.

Planar configurations are local minima for p.

5.7.1 Description of the zero set

If a graph is made of triangles (V;);cs, and if we denote by {u;,v;, w;} the three
elements of S? at the vertices of V;, we write

h(e) :Zui‘vi—i-ui-wi—l—vi-wi.
icJ

Moreover, for all u,v,w € S? one has
1 5 3
u~v+u~w+v-w:§||u+v+wH —5

A way to minimize the symbol is thus to try to choose the vectors such that, for
each triangle in the graph, the vectors at the vertices form a great equilateral triangle
on S? (this is equivalent to the requirement that their sum is the zero vector). As
the example of the Husimi tree shows, this minimal set can be degenerate: once the
vector at a vertex is chosen, there is an S' degeneracy in the choice of the vectors
at its children.

In the general case this solution is not always possible as can be seen on the right
of Figure 5. Moreover, even if this solution is possible, the minimal set is not a
submanifold, as we will see in an example.

A subset of interest of these minimal configurations consists in the case where

all vectors are coplanar; this corresponds to colouring the graph with three colours.

For some graphs made of triangles, there is no 3-colouring. Conversely, if the size of
the graph grows the number of 3-colourings may grow exponentially fast.
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A common conjecture in the physics literature is that, when applicable, the Melin
value p is always minimal only on planar configurations, except for a leaf degeneracy
(see Proposition 5.7.4): in other terms, in the semiclassical limit, the quantum state
presumably selects only planar configurations. It is unclear whether a study of the
sub-subprincipal effects would discriminate further between planar configurations,
but numerical evidence suggests that the quantum ground state is not distributed
evenly on them at large spin.

Other selection effects tend to select the planar configurations: consider for in-
stance the classical Gibbs measure, at a very small temperature. This measure
concentrates on the points of the minimal set where the Hessian has a maximal
number of zero eigenvalues (thermal selection); in this case it always corresponds to
planar configurations, if any.

We conclude this subsection with a general statement about the isotropy of the
classical minimal set.

Proposition 5.7.2. Let G = (V, E) be a graph made of triangles, and let e € (S?)V
be such that h(e) = W1 where h is the classical antiferromagnetic energy. Let
F C TeM be the kernel of Hess(h)(e). Then F is isotropic.

Proof. Let (u,v,w) € V3 be a triangle in the graph, and let 7 : (S?)IVI — (§2)3
be the projection map which keeps only the spin coordinates corresponding to
(u,v,w). We will prove that w(F) is isotropic. Since Hess(h)(e) > 0, one has
m(F) C ker(Hess(hyvw)(m(e))) where

hu,v,w(€1u €v, ew) =€y eyt ey-eytey-ey.

The problem then reduces to the case of one triangle. With the choice of coordinates
on Figure 7, the Hessian of Ay, . at a minimal point reads

(1 — @2)* + (1 — @3)* + (02 — @3)* + 2(p1 + p2 + p3)*.
The kernel of this quadratic form is
Sp&ﬂ((l, 17 17 07 07 0)7 (07 07 07 17 _17 O)a (07 07 07 17 07 _1))7

which is isotropic. ]

5.7.2 Irregularity of the zero set

One of the key examples of frustrated spin systems is the Kagome lattice. We restrict
our study to the case of one loop of six triangles.

Proposition 5.7.3. For a loop of six triangles (as in Figure 6), the minimal set is
not smooth.

Proof. The choice of the two vectors drawn on the left in Figure 6 induces a global
SO(3) rotation, and without loss of generality we will keep them fixed. Moreover,
the position of the six inner vectors determines the position of the six outer vectors
in a unique and smooth way, so we will forget about the latter.

The space of configurations of the pair (a,a’) is a subset of a two-dimensional
torus; indeed the choice for a’ is made along a circle with center having its center
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Figure 6: On the left, a graph with 6 triangles and two prescribed vectors. On the right, a
particular (planar) configuration.

on the lower-left vector, and the choice for a is similarly made along a circle with
center a’. The above applies to the pair (b, ). Hence, the set of global configurations
is a subset of a four-dimensional torus: the subset on which the angle between a
and b is exactly %’T This cannot be an open set of the four-dimensional torus, as
every coordinate and function involved is real analytic. Hence, if this set is a smooth
manifold, its dimension does not exceed three.

On the other hand, consider the particular case of Figure 6 which represents a
particular configuration. From this configuration, one stays in the minimal set by
moving a’ along a circle with center a; one can also move along a only, or along
b only, or along b only. The set of possible smooth moves from this configuration

spans a set of dimension at least four, hence the contradiction.
O

5.7.3 Degeneracy for triangle leaves

The simplest example of a frustrated system is a triangle with three vertices, con-
nected with each other. In this setting the degeneracy of the minimal set (which
is exactly the set of configurations such that the sum of the three vectors is zero)
corresponds to a global SO(3) symmetry of the problem; in this case the function
[ is constant.

Consider the left part of Figure 7. The three elements eq, eo, e3 lie on the same
large circle. We choose the coordinate ¢; along this circle and the coordinate p;
orthogonal to it. In these coordinates, the half-Hessian of the classical symbol can
be written as:

20p1 +p2 +p3)2 + (1 — @2)* + (@1 — 3)° + (@2 — @3)%.

Since this quadratic form does not depend on the positions of e1, es, €3, the function
1 is constant.
In the following Proposition we consider a slightly more general situation.

Proposition 5.7.4. Consider a graph with a “triangle leaf” as in the inset on the
right of Figure 2. In order to find a classical minimum for such a graph, once all
vectors except for eq and es are chosen, then eq and es are fived except for a rotation
of centre es.

The Melin value v does not depend on this choice.
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Figure 7: General minimal configuration for one triangle (left) and an triangle leaf (right)
of spins, with choice of tangent coordinates. On the left, eq, ez, e3 form a great
equilateral triangle on the sphere; the associated great circle is drawn in dotted
lines. From this configuration, the coordinate ¢; corresponds to an infinitesimal
displacement of e; tangent to the circle, and p; corresponds to an infinitesimal
displacement orthogonal to the circle. On the right, ey, es, e3 and eg, eq, e5 form
two great equilateral triangles, and the angle between the associated great circles
is #. The coordinates are chosen in the same way as on the left.

Proof. Denoting ¢ = cos(f) and s = sin(f), and using local coordinates as in the
right part of Figure 7, the 2-jet of the Hamiltonian reads, in local coordinates:

Q(p1,p2,41, 42, ) + 2(pa + p3)* + (a1 — a5)* + 4 + @3 + 45 + 43
+4p3(p1 + p2) — 2g3(q1 + q2)
+ 4eps(pa + ps) — 48q3(pa + ps)
— 2cq3(qa + g5) — 25p3(qa + q5)-
The trace of this quadratic form does not depend on 6. Hence, in order to prove
that u does not depend on @ it is sufficient to find symplectic coordinates in which

this quadratic form does not depend on 6. A first symplectic change of variables
leads to:

Q(p1,p2, 41,42, ---) + 4P + 45 + 343 + 4q5 + 4p3
+4p3(p1 + p2) — 2q3(q1 + q2)
+ 4V 2ep3ps — 4V25q3ps — 2V2¢q3q4 — 2V 25p3qa.

Let us make the following change of variables:

q4
P4 = Cpg — 35

g4+ cqa + 25py

This change of variables is symplectic, and preserves 4p?1 + qz. The quadratic form
becomes:

Q(p1,p2,q1, q2.-.) + 4p3(p1 + p2) — 2¢3(q1 + q2)
+4p] + ¢i + 35 + 4p3 + 4¢3 + 8psps — 4qags.

Since this quadratic form does not depend on 6, the function p does not depend on
6. O
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a1

34 34

Figure 8: The two general configurations for a loop of 4 triangles. On the left, e3 = e;
SO ej2 = es3 and ey = ezyq. The great circle passing through eq, ez, €12 and the
great circle passing through ej,e4, e14 make an angle . On the right, one has
e1 # es, and the great circle through e; and ez is the smallest bisector of the
two others. e3 is at (spherical) distance ¢ from the circle {e - e; = —1}, where
tan(m/3 — ¢/2) = 2cos(0/2). We omitted to draw ey, €23, €34, €41 for simplicity.

5.7.4 A numerical example

The last example we treat is the case of a loop of 4 triangles. In this setting, the
minimal set is not a submanifold but a union of three submanifolds, with transverse
intersection. The general configuration is shown in Figure 8. We believe that the
intersections correspond in fact to the case of crossing along a submanifold (see
Definition 5.5.5). From Proposition 5.7.2, the three first conditions in Definition 5.5.5
are satisfied, and an explicit computation of the Hessian matrix yields condition 4.
We only have numerical proof for the behaviour of u near the crossing submanifold
(see Figure 10), since we cannot give an explicit expression for p in this setting.

In this example, the crossing submanifolds correspond to the coplanar configura-
tions, so that Figure 10 is a strong indication that u is, in this example, minimal
along coplanar configurations.
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INTERMEZZ0O: THE BERGMAN KERNEL
IN CONSTANT CURVATURE

In Part I of this thesis, we applied the techniques developed for the study of the Szegs
kernel in the C'°° Ké&hler or almost Kéahler setting, in order to study the spectrum
of Toeplitz operators with smooth symbols. Various error terms are systematically
capped at O(N~°°) under these assumptions; in order to study finer quantum effects
such as tunnelling, it is necessary to impose real-analytic regularity of the manifold
and symbol. In Part II we will develop specific tools to this end, but before we do so,
we devote a chapter to the much simpler case of manifolds with constant sectional
curvature. On these manifolds, one can provide an asymptotic expansion of the
Bergman kernel in a relatively elementary way. Such is the goal of this chapter; in
Section 6.1 we introduce the geometrical ingredients necessary to shift the discussion
from the circle bundle point of view (Subsection 2.2.3) to the line bundle setting
(Subsection 2.2.4) and state our main theorem, which we prove in the rest of this
chapter.
This chapter coincides with our article [Del18b].

6.1 INTRODUCTION

6.1.1 Nature of the Bergman kernel

The Bergman projector Sy is a linear operator mapping the space H(M, L®N) of
holomorphic functions, to itself. Here we describe what it means for such an operator
to have an integral kernel, and the nature of this kernel.

If £ and F' are finite-dimensional vector spaces, then it is well known that the
space L(F, E) of linear opeators from E to F' can be identified with F' ® E* where
E* is the dual of E. Using this, let us construct, for any two line bundles E; = M
and FEo EY My over Riemannian manifolds, a space of kernels E; X EJ for linear
operators which associate, to a section of s, a section of Fj.

The space E; X E5 will be constructed as a vector bundle over M; x Ms. An
informal definition is that the fiber (E; X E3) over a point (z,y) € My x My is
defined as the tensor product (E1); @ (E2);,.

One can formally build E; X E3 in two steps. The first step is to associate to

E; 5 M a bundle E} Y M x My as follows:

(=,y)

E} = E1 x My

mi(e,y) = (m(e),y).
Then (E}) (s, = (7)1 ((z,y)) = 7 () x {y} =~ (E1),. Similarly, from the dual
bundle E3 of Es, one can build E;l B, M7 x Ms. Then, the second step is to define

E\RE; =FE @FE} .
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Then the fibre over one point reads
(B1 ¥ E3) (2 = (B () @ (B3 )(ay) = (E1)z ® (E2)y,

as prescribed.

A smooth section of Ej X E3 gives a linear operator between compactly supported,
smooth sections of Fy and sections of Fi. Indeed, if K4 is a smooth section of
Ey X E3, then for any compactly supported, smooth section s of Ey one can define
the section As of Eq as

(As)(@) = [ Kalz,y)s(y)dVol(y).
Mo
Indeed, Ka(z,y) € (E1)z ® (E2); is a linear operator from (Ez), (to which s(y)
belongs) and (E1),. Then the integral makes sense as taking values in (Ej)s, so
that As is well-defined as a section of Ej.
In particular, in our setting the Bergman projector Sy admits a kernel as an
element of LNRIL®". Indeed, since H°(M, L®N) is finite-dimensional, it is spanned

by a Hilbert base s1,...,s4, of holomorphic sections of L®N_ Then the kernel of
Sy is
dn
Sn(@,y) = Z si(x) ® si(y).
i=1

6.1.2 Statement of the main result

Definition 6.1.1. A Kéhler manifold (M,w, J) has constant curvature under the
two following conditions:

e For every two points x,y € M, there exist an open set U € M containing x,
an open set V € M containing y, and a biholomorphism p : U +— V which
preserves w.

e For every point x € M, there exist an open set U € M containing x and an
action of U(d) by w-preserving biholomorphisms on U, with x as only common
fixed point, such that the induced linear action on T, M is conjugated to the
tautological action of U(d) on C¢.

There is a one-parameter family of local models for manifolds with constant curva-
ture of fixed dimension d [Haw53|: for positive curvature ¢ > 0, the rescaled complex
projective space CP?; for zero curvature ¢ = 0, the vector space C%; for negative cur-
vature ¢ > 0, the rescaled hyperbolic space H?¢. In particular, on a Kihler manifold
(M,w, J) with constant curvature, in the real-analytic structure given by (M, J),
the symplectic form w is real-analytic.

Using the standard notion of holomorphic extensions of real-analytic functions
on totally real submanifolds, let us define what will be the kernel of the Bergman
projector, up to a constant multiplicative factor and an exponentially small error.

Definition 6.1.2 (A particular section of L%V X Z®N). The bundle L X L, when
restricted to the diagonal Ma = {(z,y) € M x M,z = y}, is the trivial line bundle
M x C — M. Moreover, if the first component of M x M is endowed with the
complex structure on M, and the second component with the opposite complex
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structure (we informally call M x M this complex manifold), then M is a totally
real submanifold of M x M.

Over a small neighbourhood of Ma in M x M, one can then uniquely define ¥!
as the unique holomorphic section of L X L which is equal to 1 on Ma.

This section is locally described at follows: let s be a non-vanishing holomorphic
section of L over a small open set U C M. Let ¢ = —31log|s|,. Then ¢ is real-
analytic, so that it admits a holomorphic extension gg, defined on U x U (again, the
diagonal copy of U is totally real in U x U). Then

W (2, ) = PV 5(2) © 5.
We then define ¥V as (U1)®V which is a section of L¥N X Y,

Theorem 6.1. Let M be a quantizable Kdihler manifold of complex dimension d
and suppose M is a product of compact Kdhler manifolds with constant curvature.

Then the Bergman projector Sy on M has an approximate kernel: there is a
sequence of real coefficients (a;)o<i<d, and positive constants ¢,C such that, for all
(x,y) € M x M and for all N > 1, one has

d

SN(I', y) - \IJN(xa y) Z Nd_kak:
k=0

< Ce N,
h

If M has constant curvature k, then
d
Nt Fay = L (N~ )V -2 N-—d
> ar = — (N = k) k). ( k).
k=0

A proof of Theorem 6.1 using advanced microlocal analysis (local Bergman ker-
nels) was first hinted in [Ber12| and detailed in [HLX17], where the coefficients ay,
are explicitely computed through an explicit expression of the Kéhler potential ¢
in a chart. We propose to prove Theorem 6.1 without semiclassical tools, and to
recover the coefficients aj from an elementary observation of the case of positive
curvature.

Theorem 6.1 implies exponential approximation in the L? operator sense. Indeed,
if K is a section of L&V R T®Y with | K (z,y)||n < C for all (x,y) € M2, then for
u € L2(M,L®N) one has

J e o d < [ 1), uo)nlayas

< / / 1K (2, ) 2 [u(y) | 2dedy
M JM
< C2Vol(M)||ul|2..

Expressions for the Bergman kernel such as the one appearing in Theorem 6.1
were first obtained by Charles [Cha03] in the smooth setting; in this weaker case
the section UV is only defined at every order on the diagonal, which yields an
O(N~°°) remainder.

Our proof of Theorem 6.1, does not rely on microlocal analysis; the only partial dif-
ferential operator involved is the Cauchy-Riemann operator d acting on L?(M, L®V).
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We use the following estimate on this operator: if M is compact, there exists C' > 0
such that, for every N > 1 and u € L?>(M, L®"V), one has:

10u]| 2 > Cllu — Siul 2. (17)

This estimate follows from the work of Kohn [Koh63; Koh64], which relies only on
the basic theory of unbounded operators on Hilbert spaces; it is widely used in
the asymptotic study of the Bergman kernel, where it is sometimes named after
Hormander or Kodaira.

6.2 RADIAL HOLOMORPHIC CHARTS

Kéahler potentials on a Kéhler manifold (M, J,w) are characterised by the following
property. If p is a local holomorphic chart for M, the pulled-back symplectic form
p*w can be seen as a function of C¢ into anti-Hermitian matrices of size 2d. The
closure condition dw = 0 is then equivalent to the existence of a real-valued function
¢ on the chart such that i00¢ = p*w. Such a ¢ is a Kihler potential.

From now on, (M, J,w) denotes a compact quantizatble Kahler manifold of con-
stant curvature, of complex dimension d, and (L, h) is the prequantum bundle over
M.

Near every point Py € M, we will build a radial holomorphic chart using the
constant curvature property. This chart is the main ingredient in the construction
of the approximate coherent states.

Proposition 6.2.1. For every Py € M, there is an open set U C M with Py € U,
an open set V. C C? invariant under U(d), and a biholomorphism p : V + U, such
that p*w is invariant under U(n).

In particular, in this chart, there exists a Kdahler potential ¢ which depends only
on the distance to the origin, with real-analytic reqularity.

Proof. Let pg : Vo — Up be any local holomorphic chart to a neighbourhood of Py,
with po(O) = P().

Since M has constant curvature, there exists an open set Py € U; C Uy and an
action of U(n) on U; such that, for any g € U(d), one has

D(z — py'(g- po(2)))(0) =
(g)"J =
(9)'w=

£ we

2) is a biholomorphism from

In particular, for g € U(d), the map pg : x — g-po(g~
Vo =Nyev(a) 9° po L (U1) onto its image Us(g).

For z € (yey(q) U2(9), let us define

o(x) = /U(d) Py (@)dpHaar (9).

Then D(o o pp)(0) = I. Hence, o is a biholomorphism, from a small U(d) invariant
open set U 5 Py into a small U(d) invariant open set V' 3 0. By construction o is
g-equivariant, in the sense that o(gz) = g - o(z). Then o~ ! is the requested chart
since w is invariant under the action of U(d) on U.



6.2 RADIAL HOLOMORPHIC CHARTS

Let us proceed to the second part of the Proposition. We first let ¢; be any
real-analytic Kihler potential in the chart c—'. We then define

¢($) = /geU(n) ¢1(gx)dﬂHaar(g)'

Then ¢ is a radial function since U (d) acts transitively on the unit sphere. Moreover,
since o,w is U(d)-invariant then x — ¢1(gx) is a Kdhler potential, so that the mean
value ¢ is a Kéhler potential. O

Remark 6.2.2. There is exactly one degree of freedom in the choice of the chart p
in Proposition 6.2.1: the precomposition by a scaling z +— Az preserves all requested
properties. In general, the metric o,R(w), at zero, is a constant times the standard
metric. This constant can be modified by the scaling above. Hence, without loss of
generality, one can choose the chart so that the Kéhler potential has the following
Taylor expansion at zero:

so that the metric o*g, at zero, is the standard metric.

Definition 6.2.3. A chart satisfying the conditions of Proposition 6.2.1, such that
the radial Kéhler potential has the following Taylor expansion at zero:

-+ 0(z),
is called a radial holomorphic chart.

The radial Kahler potential ¢ admits in fact an explicit expression, which depends
on the curvature and the dimension. We will not use these expressions in this chapter
(including when computing a(/N) in Section 6.6).

The following elementary fact will be used extensively:

Proposition 6.2.4. The radial Kihler potential ¢ of a radial holomorphic chart is
strongly convez. In particular, for all x # 0 in the domain of ¢ one has ¢(x) > 0.

2
Proof. From the Taylor expansion ¢(x) = % + O(|]z]3), one deduces that the
real Hessian matrix of ¢ is positive definite at zero. Near any point z #% 0 which
belongs to the domain of ¢, in spherical coordinates the function ¢ depends only on

the distance r to the origin. The Levi form 8225’%@), which is Hermitian positive

definite (since ¢ is strongly pseudo-convex), is then equal to %(T)I d. In particular,

% > 0 everywhere, so that ¢ is strongly convex at x. O
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6.3 APPROXIMATE COHERENT STATES

We first recall the notion of coherent states in Berezin-Toeplitz quantization.

Definition 6.3.1. Let (FPp,v) € L. We define the associated coherent state, which
is a section of L®V as follows:

w}%m = (u — <U(P0),U>h)*HO(M,L®N>'

That is, the evaluation map u +— (u(Fp),v)y, is a linear operator on HO(M, L&N),
and by the Riesz representation theorem, there exists @ZJ% , such that linear map is
<wg071)7 '> .

Let us use the radial charts above to build an approximation for coherent states
on a Kéhler manifold with constant curvature.

Proposition 6.3.2. There exists r > 0 such that the following is true.
1. Let Py € M. There exists a radial holomorphic chart near Py, whose domain
contains B(0,r).

2. Let ¢ denote the radial Kdhler potential near Py. For all N > 1 the quantity
aV) = [ exp(-No(J2))dsdz
B(0,r)

is well-defined and does not depend on Py.

Proof.

1. Let P, € M. By Proposition 6.2.1 there exists a radial holomorphic chart near
P;. Since M has constant curvature, a small neighbourhood of any Py € M, of
size independent of Py since M is compact, can be mapped into a neighbour-
hood of P; € M. By restriction of the radial holomorphic chart of Proposition
6.2.1 to this neighbourhood, whose preimage contains a small ball around zero,
this defines a chart around FPy. Since M is compact, there is a radius r such

that, for every Py € M, the closed ball B(Py,r) is contained in the domain of
the chart around F.

2. By construction of the chart above, the Kéhler potential ¢ does not depend
on Py. Moreover, ¢ is a smooth function on B(0,), hence the claim..

O

Remark 6.3.3. We will see at the end of the proof of Theorem 6.1 that a(N)~! is
exponentially close to a polynomial in N.

From now on, r is as in the claim of Proposition 6.3.2.

Proposition 6.3.4. Let (Py,v) € L. The action of U(n) on a neighbourhood U of
Py in M can be lifted in an action on L.

Proof. By definition of L, if V' is the preimage of U by a radial holomorphic chart,
the bundle (Ly, h) is isomorphic to

(V x C,exp(—¢(2))|ul?).

Since ¢ is invariant under U(n), the linear action of U(n) on V can be trivially
extended to V' x C and preserves the metric. ]
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In order to treat local holomorphic sections of a prequantum bundle over a quanti-
zable compact Kéahler manifold with constant curvature, let us define the Ancillary
space and the approximate coherent states:

Definition 6.3.5. Let ¢ be the radial Kdhler potential on M and r be as in Propo-
sition 6.3.2. Let N € N. The ancillary space is defined as

Ay = {u holomorphic on B(O,r),/ e NoE) )2 < —i—oo}.
B

(0,r)

It is a Hilbert space with the scalar product
(u,0) 4y = / e Ny (2)v(z)dz.
B(0,r)

The set Ay consists of functions belonging to the usual Hardy space of the unit
ball, but the scalar product is twisted by the Kéahler potential ¢.

Since the function ¢ appearing in the definition of Ay is a universal local Kéh-
ler potential on M, for each (Py,v) € L* there is a natural isomorphism (up to
multiplication of all norms by ||v]|s) Ggo » between Ay and the space of L? local

holomorphic sections H%(U, L¥Y) where U = a;ol(B(O, r)). We define Jgo , as the
element of H°(U, L®N) associated with the constant function a(N)™ € Ay.
We set 1/1%011) to be zero outside o~1(B(0,7)) so that @Z)gw € L*(M,L®N). The

function 1’/;%) v 18 equivariant with respect to v: one has
U= 0/7) O,
This allows us to define the approximate normalized coherent state {bv P, @s an element
of LX(M,L®N) o T
Let us prove that the approximate coherent states are very close to Hy (M, L):
Proposition 6.3.6. There exists ¢ > 0 and C > 0 such that, for all Py € M,
1SN, — Ppylle < Ce.
Proof. Let x denote a test function on R which is smooth and such that x =1 on

[0, 5] and x = 0 on [r, +00).

The section (x o ]J\){/?ﬁo is smooth; since Jgo is holomorphic on o~ (B(0,r)) and
decays exponentially fast far from Py, one has
100k o lo )R ll2 < Ceme.
From Kohn’s estimate (17) we deduce that
ISn(x o o), — (x o lolvnlle < Ce™.
In addition, since ¢ > ¢ on B(0,r) \ B(0,7/2), one has
[(x o \U\){Ego - J%HLQ < Ce N,

Since Sy is an orthogonal projector, its operator norm is bounded by 1, so that
the previous estimates implies

1Sn (x o lo )R, — Snofy e < Ce™.

This ends the proof. O
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To show that our approximate coherent states are indeed exponentially close to
the actual coherent states we will use the following lemma.

Lemma 6.3.7. A continuous linear form on Ay invariant by linear unitary changes
of variables is proportional to the continuous linear form v — (v, 1).

In particular, the continuous linear form Ax > u — u(0) is equal to the scalar
product with the constant function a(N)~!

Proof. A Hilbert basis of Ay is given by the normalised monomials e,z — ¢, 2"
for v € N%, for some ¢, > 0. Special elements of U(n) are the diagonal matrices
diag(exp(ify),. .., exp(i;)) which send e, into exp(if - v)e,.

A linear form 7 invariant under U(d) must be such that n(e,) = exp(if - v)n(e,)
for every 6,v. In particular, v # 0 = n(e,) = 0. Since 7 is continuous we deduce
that 7 is proportional to the scalar product with ey = cg1.

For the second part of the Proposition we only need to prove that the multiplica-
tive factor between the two continuous U (d)-invariant linear forms of Ay, evaluation
at 0 on one side, scalar product with a(N)~! on the other side, is 1. By Definition
of a(N), the scalar product in Ay of a(N)~! with a(N)~! is a(N)~!, moreover the
evaluation at zero of a(N)~! is a(IN)~!, hence the claim. O

The functions Jgo , mimic the definition of coherent states.
Proposition 6.3.8. There exists ¢ > 0 such that, for any (Poy,vg), (P1,v1) € L*,

o If dist(Py, P1) < %, then

<QZ]]¥17U1’7’Z£;7U0> - @Pl,vl (PO)av(?N)h = O(e~N).

e In general, one has

|<1Z1]—'\’[1,v1 7 {[;}]%,UOH < Ce—cN dist(Po,P1)2.

Proof.

e The continuous linear functional on Ay which sends u to «(0) is invariant
under the action of U(n) (since 0 is a fixed point), so that, by Lemma 6.3.7,
it is proportional to the scalar product with a constant. This property, read
in the map Ggwo, means that, for every (Pp,v1) € L the scalar product

TN TN
<1/}P0,’U0 ) ¢P1 ,U1 >

is a constant (independent of Pj) times (S N{/;pwl (Py),v5" )n- The normaliz-
ing factor a(N) is such that both sides are equal to 1 if P, = Py. This ends
the proof since Sy is almost identity on the almost coherent states.

N
6

o If dist(Py, Py) > 2r then Jgo,vo and Jghvl have disjoint support so that the
scalar product is zero.
If /2 < dist(Pp, P1) < 2r then Jljymn is exponentially small on B(Py,r/4)
and Jgo v, 1s exponentially small outside this ball so that the scalar product

—cN (4r)

is smaller than Ce ® for some ¢ > 0.

If P € B(Py,7/2), one can apply the previous point; the claim follows from
the fact that ¢(|z|) > c|z|? on B(Py,r/2).

O]
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6.4 APPROXIMATE BERGMAN PROJECTOR

We can now define the approximate Bergman projector by its kernel: Sy is a function
on TV KLY which is linear in the fibres (or, equivalently, a section of L&Y ®f®N)
defined by the formula:

§N((:C”U)’ (y,v/)) = <Ji\,{w NZJ/\;}/>.

We wish to prove that this operator is very close to the actual Bergman projector,
defined by the actual coherent states 1/)}]% '

Proposition 6.4.1. Let (Py,v) € L. Then SN@}%,U = wgo?v.

Proof. Let U = B(Py,r). By construction, the scalar product of ng with any
element of Hy (U, L¥V) is the value at Py of this element, taken in scalar product
with v. As Hy (M, L®N) € Hy(U, L®Y) in a way which preserves the scalar product
with wgo’m from Definition 6.3.1 one has SN¢go,u = wsz\’gﬂ)' O

From Propositions 6.3.6 and 6.4.1 we deduce that approximate coherent states
are, indeed, close to coherent states. In particular,

Proposition 6.4.2. Uniformly on (x,y) € M x M, there holds
1S5 (2, y) = Sn(,9) [l = O(e™N).
Proof. The exact Bergman kernel is expressed in terms of the coherent states as:
SN ((,0), (4,0) = (Uglys Yyl
From this and the Definition of S| N, since
SnUny = by = Uiy + O(e™N),

the kernels of Sy and S n are exponentially close. O

6.5 APPROXIMATE PROJECTOR IN A NORMAL CHART

To conclude the proof of Theorem 6.1 in the constant curvature case, it only remains
to compute an approximate expression for Sy (z,y) = (YN wév ). At first sight, this
looks easy. Indeed, on the diagonal, Sy (z,z) = a(N)~!. Moreover, Sy is O(e~<N)-
close from the Bergman kernel Sy, which is holomorphic in the first variable and
anti-holomorphic in the second variable. However, one cannot conclude that Sy is
exponentially close to the holomorphic extension of a(N)~! (that is, a(N)~1¥).
Indeed, Sy(z,z) — a(N)~!, while exponentially small, might oscillate very fast, so
that its holomorphic extension is not uniformly controlled.

By studying change of charts between radial holomorphic charts, one can prove

the following Proposition.

Proposition 6.5.1. There ezists ¢ > 0 and C > 0 such that, for all (z,y) € M x M,
there holds B
| St ) = ¥ @ ypa() Y| < oo,
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Proof. It is sufficient to prove the claim for x,y close enough from each other.

We first need to understand how to change from the radial holomorphic chart
around x to the radial holomorphic chart around y. By hypothesis, if  and y are
two points in M at distance less than g, if p denotes a radial chart at z, there
is a map o : B(0,5) — B(0,7), which is biholomorphic on its image and which
preserves the metric p*g, and such that o(0) = p(y). The associated holomorphic

T

map on B(0,5) x C which preserves the Hermitian metric pulled back by p on the

fibre is of the form:
oo (e (500R) — olloP) + ik o). )

where f, is such that the function

m = ¢(|21%) = d(lo(2)?) +ifs(z)

is holomorphic. Such a f, exists and is unique up to an additive constant: indeed,
since o preserves the metric g, z — ¢(|o(z)|?) is a Kéhler potential on B(0,%).
Hence, the map

2= ¢(12*) = 6(lo(2)1?)

is harmonic, so that it is the real part of a holomorphic function.
_Then, by (18), in a radial holomorphic chart around x, the almost coherent state
wé\fv, is written as

b V) Ly exp g ollolIP) + ifo(2)).

By Proposition 6.3.8, the scalar product with 1;/;570\771), with y close to z, is

WY 0N,y = a(N) 7! (vv) exp<—];[¢>(!p(y)|2) + z’Nfg(o)> 4 0@ M),

In particular, in a radial holomorphic chart p around z, the approximate Bergman
kernel evaluated at x has the following form for z small:

Sn(p(2),p(0)) = a(N) " exp(Ng(2))4y (p(2))4Y (p(0)) + O(e™N),

where g is holomorphic. Using another change of charts given by (18), the form of
the approximate Bergman kernel, near the diagonal, is

Sn(p(z), p(w)) = a(N) " exp(NF(z,w)) 8, (p(2)) i (p(w)) + O(e™N),

where F' is holomorphic in the first variable and anti-holomorphic in the second
variable. B B _

Moreover, Sy(z,z) = Sy(0,0) = a(N)~!, hence F(z,w) = ¢(z - w).

The expression of the phase in coordinates coincides with the section UN of
Definition 6.1.2 (the non-vanishing section s here is ¢1). Thus, the Bergman kernel
can be written as

Sn(z,y) = ¥V (2, y)a(N)™t + O(e~M).
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We will compute explicitely a(N)~! in Section 6.6. Up to this computation, the
proof of Theorem 6.1 is complete in the case of a single manifold with constant
curvature.

It remains to prove how to pass from manifolds with constant curvature to direct
products of such. This relies on the following Proposition.

Proposition 6.5.2. Let My, Ms be compact quantizable Kdihler manifolds and L1,
Lo be the associated prequantum line bundles. Then L1 X Lo is the prequantum line
bundle over My x My, and

HO(M; x My, (L B Ly)®N) ~ HO(My, LYN) @ HO(Ma, LSY).
Proof. There is a tautological, isometric injection
v HO My, YY) @ HO (Mo, L§N) < HY (M x My, (L1 K Lo)®Y)

which is such that, for (s1,s9) € HO(My, L) x HO(My, LY™) and (z,y) € My x Mo,
one has
u(s1 @ s2)(2,y) = s1(2) @ s2(y).-

It remains to prove that any element of HO(M; x My, (L1 X Ly)®Y) belongs to the
image of the element above. To this end, let us prove that, for any (z1,v1) € L; and
(x2,v2) € Lo, the coherent state at ((x1,x2),v1 ® va) is given by

N N N
w(zl,z‘g),’ul(@’ug = [’(wxh’vl ® wxg,vg)'

Indeed, for any s € HO(M; x My, (L1 X Ly)®"), one has
(5,1(02) 00 ® Vi)

[ () ) g o)) o
M \J M, v2

(Ll)l?lN
— QN
B /M1 (s(y1, @2), wxl’vl © Uz>(L1)§1N®(L2)§2Ndx1
= <s(m1,x2),v1 ® U2>(L1)§1N®(L2)§2N - <S’ wé\;hxz),v1®v2>‘

The image of ¢ thus contains all coherent states on M; x Ms. Hence, the orthogonal
of the range of + in H?(Mj x My, (L1 Ly)®V) is zero, which concludes the proof. [

In particular, the Bergman kernel on a product M; x My is given by

SNV () o, y1,y9) = SN (21, 91) @ SN2 (29, Y2)-

This, along with Propositions 6.4.1 and 6.5.1, concludes the proof of Theorem 6.1
up to the study of a(N)~!, which we perform in the next section.



142

INTERMEZZO: BERGMAN KERNEL IN CONSTANT CURVATURE

6.6 THE COEFFICIENTS OF THE BERGMAN KERNEL

Since, for all z € M, one has ¥V (2, z) = 1, then the trace of the Bergman kernel is
given by

dn dn -
tr(Sy) = ; 1= /M Zz;.sl(a:)sl(fv)daz = /M Sn(z,z)dz

= a(N)"Wol(M) + O(e~M).

! is exponentially close to an integer divided by Vol(M). Let

P(N) = xii)%\%

In particular, a(N)~

In this section we compute P(N) in the case of a manifold of dimension d with
constant curvature. Since

P(N)! = /B , )exp(—N¢(|z]))dzd§+O(e_CN),

and there is a universal local model for M which depends only on its curvature
K, then P(N) depends only on k and the dimension d. Moreover, P(N)~! has
real-analytic dependence on x (indeed, in a radial holomorphic chart, the degree 2
differential equation satisfied by ¢ has real-analytic dependence on k, so that the
solution ¢ satisfies the same property by the analytic Picard-Lindelof theorem). We
will give an expression for P(N) which is valid on & € {3, k € N}. Since P(N) is
real-analytic in &, it will follow that this expression is valid for all curvatures. From
now on we write P(NV) to indicate that P(IN) depends on N and k, and only on
them.
Let us consider the case of the rescaled projective space:

(My,, wi, J) = (CP4 kwpg, Jst).
This space is quantizable; the prequantum bundle is simply
Ly, = (L1)®F,
so that

Sni(x,y) = Snii(x,y).

Moreover, the curvature of (Mj,wy) is 7. In other terms,

VOZ(Ml) —d
Pi(N)=———2P(kN)=k""P1(kEN).
It remains to compute P;. On CP?, the prequantum bundle L is explicit: it is O(1),
the dual of the tautological line bundle. In this setting,

HO(M, L®N) ~ Cy[X1, ..., X4].

P(N) = —— dim(Cy[X1,. .., X4]) = C“<N+d> _Lven. (N+a)

md d - oqd
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Hence, for any & of the form % with k£ € N there holds
1
P.(N) = F(N + K)(N +2k)...(N +dk).

Since P, has real-analytic dependence on &, the formula above is true for any k € R,
which concludes the proof.






Part 11

ANALYTIC METHODS

In this second part, we study Toeplitz operators and Bergman kernels under the
hypothesis of analytic regularity. Our principal motivation is exponential estimates
on eigenfunction concentration.

We provide asymptotic formulas for the Bergman projector and Berezin-Toeplitz
operators on a compact Ké&hler manifold. We show (Theorem 8.1) that the Bergman
kernel admits an asymptotic expansion in decreasing powers of [NV, up to an error
O(e=N) (with ¢ > 0), as soon as the Kihler manifold is real-analytic. We build new
semiclassical tools in real-analytic regularity (in particular, new analytic symbol
classes, see Definition 7.2.3), which can be of more general use.

This study of the calculus of Toeplitz operators allows us to state results concerning
sequences of eigenfunctions of Toeplitz operators (Tn(f))n>1 for a real-analytic
f. We prove the following (Theorem 8.3): if (un)n>1 is a sequence of normalised
eigenfunctions with eigenvalue near £ € R, that is,

Tn(f)un = ANun, AN = E, lunllz2ar,pomy =1,
N—+4o00

and if V' C M is an open set at positive distance from {z € M, f(z) = E}, then
lunllz2v,Leny < Ce™N

for some C' > 0, ¢ > 0 independent on N. We say that (uy)yen has an exponential
decay rate on V.

We then study, in the special case where f reaches a non-degenerate minimum, a con-
struction of almost eigenfunctions: we build (Theorem 9.1) a sequence of normalised
sections (u(IN))n>1 and a real sequence (A(N))n>1, with asymptotic expansions in
decreasing powers of IV, such that

In(f)u(N) = MN)u(N) + O(e™).
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The sequence u(N) takes the form of a Wentzel-Kramers-Brillouin (WKB) ansatz:
it is written as
w(N) : &+ CNN?@ (ug + N~ uy +..).

Since T (f) is self-adjoint, the existence of an almost eigenfunction automatically
implies that A\(V) is exponentially close to the spectrum of Tn(f), but not nec-
essarily that u(N) is exponentially close to an eigenfunction. In Theorem 9.1, we
also prove that, if f is Morse, the eigenvectors associated with the lowest eigen-
value of T (f) are exponentially close to a finite sum of almost eigenvectors u(N)
constructed above.

Exponential estimates in semiclassical analysis

Exact or approximate eigenstates of quantum Hamiltonians are often searched for
in the form of a WKB ansatz:

i (ap(z) + hay(x) + B2as(z) +...),

where £ is the semiclassical parameter. In the formula above, R(¢) < 0 so that
this expression is extremely small outside the set {%(¢) = 0} where the function
concentrates.

From this intuition, an interest developed towards decay rates for solutions of PDEs
with small parameters. The most used setting in the mathematical treatment of
quantum mechanics is the Weyl calculus of pseudodifferential operators [Zwol2|.
Typical decay rates in this setting are of order O(h*°). Indeed, the composition
of two pseudodifferential operators (or, more generally, Fourier Integral Operators)
associated with smooth symbols can only be expanded in powers of /& up to an error
O(h*>).

In the particular case of a Schrédinger operator P, = —h%2A + V where V is a

smooth function, one can obtain an Agmon estimate |[HS84|, which is an O(e )
pointwise control of eigenfunctions of P, with eigenvalues close to E. Here, ¢ < 0 on
{V > E}. In this setting one can easily conjugate Pj; with multiplication operators

of the form 6_%, which allows one to prove the control above. This conjugation
property is not true for more general pseudodifferential operators. Moreover, Agmon
estimates yield exponential decay in space variables, and give no information about
the concentration rate of the semiclassical Fourier transform, which is only known
to decay at O(h™) speed outside zero.

In the setting of pseudodifferential operators on R¢ with real-analytic symbols, fol-
lowing analytic microlocal techniques [Sj682|, exponential decay rates in phase space
(that is, exponential decay of the FBI or Bargmann transform) were obtained in
[Mar92; Sj683; Mar94a; Mar94b; MS99|. Exponential estimates in semiclassical anal-
ysis have important applications in physics [CG88| where they validate the WKB
ansatz which, in turn, yields precise results on spectral gaps or dynamics of quantum
states (quantum tunnelling). Moreover, on the mathematical level, these techniques
can be used to study non-self-adjoint perturbations [HS04; HS08| and resonances

[HS86b; Sj590; MS01; Sj503; Fau06|.



Since exponential decay in phase space for pseudodifferential operators is defined
by means of the FBI or Bargmann transform, it seems natural to formulate these
questions in terms of Bargmann quantization, which then generalises to Berezin-
Toeplitz quantization on Kéhler manifolds, where the semiclassical parameter is the
inverse of an integer: h = N~!. Yet, for instance, the validity of the WKB ansatz
for a Toeplitz operator, at the bottom of a non-degenerate real-analytic well, was
only performed when the underlying manifold is C (see [Vor89]), and some results
were recently obtained for non-self-adjoint perturbations of Toeplitz operators on
complex one-dimensional tori [Roul7|.

The analysis of Toeplitz operators depends on the knowledge of the Bergman projec-
tor. The original microlocal techniques for the study of this projector [BS75; Zel00;
Cha03] allow for a control of the Bergman kernel up to O(N~°°), from which one
can deduce O(N~°°) estimates for composition and eigenpairs of Toeplitz operators
with smooth symbols ([LF14b] and Part I of this thesis). Based on analytic pseudo-
differential techniques, the tools of Local Bergman kernels make it possible to show,
under real-analyticity hypothesis, exponential (that is, O(e=“")) decay of the coher-
ent states in Toeplitz quantization [BBS08|. Recently, this method was used to show
an O(e“:\/ﬁ) control of the Bergman kernel under the same hypothesis [HLX17].

Another recent article [Kor18| establishes an O(e‘c*/ﬁ) decay rate in the forbidden
region for eigenfunctions of Toeplitz operators with smooth symbols.

Outline

In this Part II we propose to show, using new tools of analytic microlocal calculus,
that the Bergman kernel admits an expansion with O(e~“") remainder, on analytic
Kéhler manifolds (Theorem 8.1). There is independent work [RSN18| establishing
this result, using local Bergman kernels.

We then prove that Toeplitz operators with real-analytic symbols can be composed
and inverted without loss of regularity, on any real-analytic compact quantizable
Kéhler manifold (Theorem 8.2). As an application, we prove exponential decay rate
in the forbidden region under the same hypotheses (Theorem 8.3), and we provide
an O(e~ ") almost eigenfunction at the bottom of a non-degenerate well (Theorem
9.1).

This part is divided in three chapters. In Chapter 7 we develop the technical frame-
work underlying the study of the Bergman kernel in real-analytic regularity: a precise
analytic microlocal calculus. Chapter 8 is devoted to the Bergman kernel and Toe-
plitz operators in the real-analytic case. In Chapter 9, we use the analytic techniques
again to provide a WKB ansatz at the bottom of a non-degenerate well.

In Chapters 8 and 9, we rely crucially on a “well-balanced” condition in the expan-
sions in the stationary phase, which corresponds, in the setting of Toeplitz operators,
to the (anti-)Wick quantization rules for contravariant or covariant symbols. This
particular information allows us to bound non-trivial quotients of factorials which
appear in the expansions.
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Pseudodifferential operators, on which exponential estimates were originally studied,
also satisfy a “well-balanced” condition: in the term of order k£ of the composition
of two symbols f and g (which is, a priori, a bidifferential operator on f and g of
total order 2k), both symbols are differentiated at most k times. We believe that the
techniques developped in this part can be extended to more general “well-balanced”
Fourier Integral Operators with real-analytic regularity. This method is somewhat
elementary, since the only technical part consists in estimating quotients of factorials
and powers by writing them as binomial or multinomial coefficients. Our method
sheds some light on the difficulty to formulate equivalence of quantizations in real-
analytic settings without a loss of regularity. This fact is of little importance if one
is concerned with spectral theory, but precise results (without loss of regularity)
about the composition and inversion properties in a given analytic class, such as
Theorem 8.2, cannot be passed from one quantization to another if there is a loss
of regularity inbetween.

This Part II coincides with our articles [Dell8c; Dell9]; the order of presentation
has been modified.

As for Part I, a particular motivation for this work is the quantization, on M = (S?),
of polynomials in the coordinates (in the standard immersion of S? into R?). The
operators obtained are spin operators, with total spin % Tunnelling effects in spin
systems, in the large spin limit, are widely studied in the physics literature (see
[OP15] for a review). This part also aims at giving a mathematical ground to this
study.



ANALYTIC MICROLOCAL CALCULUS

In this chapter we build the tools that we will use in Chapter 8 to study the Bergman
kernel and Toeplitz operators in real-analytic regularity. In Section 7.1 we recall
the basic properties of holomorphic extensions of analytic functions and define suit-
able spaces of holomorphic functions (Definition 7.1.10), which generalise the Hardy
spaces of holomorphic functions on the disk. Then, in Section 7.2, we define analytic
symbol classes for sequences of functions (f)r>0 (see Definition 7.2.3) and we give
a meaning to the sum Y N~ f. up to exponential precision. These symbol classes
are more precise than the ones appearing in the literature since [Sj682]. In Section
7.3 we adapt the stationary phase lemma in analytic regularity, originally devel-
oped in [Sj682], to our precise analytic symbol spaces (Proposition 7.3.3). Section
7.4 contains a few useful combinatorial lemmas.

7.1 HOLOMORPHIC EXTENSIONS

In this section we provide a general formalism for holomorphic extensions of various
real-analytic data, which we use throughout Part II. The constructions of holomor-
phic extensions of real-analytic functions and manifolds is somewhat standard. We
refer to [WB59] for details on these constructions. In particular, we study in Sub-
section 7.1.4 a specific class of analytic function spaces, which is a prerequisite to
the Definition 7.2.3 of analytic symbol classes.

7.1.1 Combinatorial notations

In this subsection we recall some basic combinatorial notation. Analytic functions
and analytic symbol spaces are defined using sequences which grow as fast as a
factorial (see Definitions 7.1.10 and 7.2.3) so that we will frequently need to bound
expressions involving binomial or multinomial coefficients.

Definition 7.1.1. Let 0 < i < j be integers. The associated binomial coefficient is

Let more generally (ix)i1<k<pn be a family of non-negative integers and let j € N
be such that j > > "7, ix. The associated multinomial coefficient! is

(6. ) =5
ila"'7i/€ (] - ZZ:l Zk)’HZ:l Zk'

An alternative definition of multinomial coefficient assumes j = i1 + ... + ip, in which case one

_ g
T . 21' S ’Ln' .

the notation for binomial coefficients.

. The definition we give contains this one, and is more consistent with
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Definition 7.1.2.

1. A polyindex (plural: polyindices) p is an ordered family (u1, ..., uq) of non-
negative integers. The cardinal d of the family is called the dimension of the
polyindex (we will only consider the case where d is finite).

2. The norm |u| of the polyindex u = (u1,. .., pq) is defined as Zle i

3. The partial order < on polyindices of same dimension is defined as follows:
v < p when, for every 1 < i < d, one has v; < ;.

4. The factorial p! is defined as H?:l 1i!. Together with the partial order, this
allows to extend the notation for binomial coefficients. If v < p, then we define
the associated binomial coefficient as

()=

A few useful inequalities about binomial coefficients are proved in Section 7.4. We
will use extensively the following inequality:

Lemma 7.1.3. Let (i1...,in) with Y ;1 ix < j. Then

j .
< 1)7.
<211n> <(n+1)

Proof. One has

< ~ j
(n+1y=0+1+...+17= ) (um)

n+1 (7:17-~~7in)
> i<
As each term in the sum is positive, the sum is greater than any of its terms. [

7.1.2 Extensions of real-analytic functions

The fundamental object that one is allowed to extend in a holomorphic way is a
real-analytic function.

Definition 7.1.4. Let f : U — V be a real-analytic function on an open set U € R",
which takes values into a real or complex Banach space E. A holomorphic extension
of f is a couple (f,U), where U is an open set of C" and f : U — E ® C, such that

ogf:O.
° Ucﬁ,
o flu="f

Naturally, two holomorphic extensions coincide on the connected components
of their intersections which intersect U since, on a connected open set of C%, a
holomorphic function which vanishes on a real set vanishes everywhere.

If F is a real Banach space then E®C is the complexification of F; if E is complex
to begin with then £ ® C = E.

The following Proposition gives a natural choice of holomorphic extension:
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Proposition 7.1.5. Let U be an open set of R?, E be a Banach space and f : U — E
be a real-analytic function.
Let x € U. There exists a radius r(x) such that the series

al/
> V!f(y — )

veNd

is absolutely convergent for all y € B(x,r(x)), with limit f(y): we choose r(x)
smaller than half of the suprema of all r such that the power series above converge
on B(x,r), and such that Bga(z,r(z)) C U.
Then, with
U= | Beal, (),

zelU

one can define f on U as the limit of the series above. Then (f, (7) s a holomorphic
extension of (f,U).

From now on, we will only use the term “holomorphic extension” for extensions
whose domains are contained in the set U constructed in Proposition 7.1.5. In par-
ticular, the function f is unique up to restriction of its domain.

Proposition 7.1.6. Let U and V' be open sets of R™ and let f : U — V be a real-
analytic (local) diffeomorphism, then f is a (local) biholomorphism up to restriction
of the domain.

Proof. On the extended domain U one has
(df) = 0.

so that, if det(df) does not vanish on U, then det(df) does not vanish on a neigh-
bourhood of U in ﬁ;Nif moreover [ is is a global diffeomorphism, that is, if f is
injective on U, then f is injective on a neighbourhood of U in U, which concludes
the proof. O

7.1.3 Extensions of manifolds

Proposition 7.1.6 allows us to extend real-analytic manifolds into complex manifolds.

Proposition 7.1.7. Let M be a real-analytic manifold. There is a complex manifold
(M, J.) with boundary, such that M is a totally real submanifold of M. Then M is
called a holomorphic extension of M.

In this setting, “totally real” means that
Ve e M, T,M N J.(T,,M) = {0}.

Proof. The proof consists in extending all charts of M in the complex space; the
standard complex structure Jg of every chart is preserved by the change of charts,
which are biholomorphic by construction. This gives the complex structure J, of M,
see [WB59], Proposition 1 for details.

By construction, in the local charts above, the submanifold M of M is mapped
to Rdim(M) which is totally real for the standard complex structure. Hence, M is
totally real in M. ]
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The extension of real-analytic manifolds is naturally associated with an extension
of their real-analytic functions.

Proposition 7.1.8. Let f be a real-analytic function on a real-analytic manifold
M. Then there exists a holomorphic function f on a holomorphic extension M of

M such that ]?\M =f.

Proof. Any real-analytic function on M can be extended on a holomorphic extension
M by extending the domain of its power series as in Proposition 7.1.5.
O

In this Part IT we will frequently extend real-analytic functions on holomorphic
manifolds. We introduce a convenient notation to this end. Locally, a real-analytic
function f on a complex manifold of dimension d can be written as

frz— E Cup2 2.

v,pENd

As the function f is not holomorphic, we specifically write f(z,Z). There is then a
natural notion of an extension

fi(zw) — Z Cup2’wP.

v,pENd

This function is holomorphic on a neighbourhood of 0 in C%. Tt coincides with
f, but the totally real manifold of interest is not {(z) = 0} anymore but rather
{(z,w),w =Z}.

Let M be a complex manifold; using the convention above let us treat local
charts for M and its holomorphic extension M. A change of charts in M is a
biholomorphism ¢ which, in the convention above, depends only on z as a function
on M. The extended biholomorphism ¢ constructed in the previous subsection can
be written as

(z,0) = (¢(2), 6(@)).

Gluing open sets along the charts ¢ (defined by ¢(z) = ¢(Z)) yields a manifold
M, and there is a natural identification M > z — Z € M, so that M is simply M
with reversed complex structure.

The expression of ¢ above yields

M =M x M,
and M sits in M as the totally real submanifold
{(z,w) € M x M,z = w}.

This copy of M is said to be the codiagonal of M x M.

Any real-analytic function on M can be extended as a holomorphic function in a
neighbourhood of the codiagonal of M. If the function was holomorphic (on a small
open set of M) to begin with, then its extension depends only on the first variable
(on a small open set of M x M).
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7.1.4 Analytic functional spaces

In this subsection we derive a few tools about the study of holomorphic functions
near a compact totally real set. We first fix a notion of convenient open sets on
which our analysis can take place.

Definition 7.1.9. A domain of R? is an open, relatively compact set U with piece-
wise smooth boundary.

Recall that a holomorphic function f near zero can be written as

Then, in particular f, = 0" f(0). Since f is holomorphic, the sum above congerges
for |z| sufficiently small. In other terms, there exists 7 > 0 and C' > 0 such that, for
every v € N, one has

£ < Cvirll,

Definition 7.1.10. For j € N and f a function on a domain of R? of class C7, we
. j+d—1

denote by V7 f the function (9%f())|q|=j, Which maps U to RCE). For n eN

and v € R™, we denote [[v[[p = >0 [v1| + ... + [vn].

Let m € Nand 7 > 0. Let U be a domain in R%. The space H(m,r,U) is defined as
the set of real-analytic functions on U such that there exists a constant C satisfying,
for every j € N,

. Crj!
sup [|V7 f(z)llp < =5
zelU (] + 1)m
The space H(m,7,U) is a Banach space for the norm || - || () defined as the
smallest constant C such that the inequality above is true for every j.

Such functions can be extended to a neighbourhood of U in C%, with imaginary
part bounded by 7~! (and by the distance to the boundary of U). The spaces
H(m,r,U) are compactly embedded in each other for the lexicographic order on
(r,—m): if either r < 7’/ or r =/, m > m’, then

H(m,r,U) C H(m',7',U).

Introducing a parameter m will allow us to control polynomial quantities which
appear when one manipulates these holomorphic function spaces, using Lemmas
7.1.12 and 7.2.7. They correspond to a regularity condition at the boundary of a
maximal holomorphic extension: for instance, the function = — z log(z) belongs to
H(1,1,(1/2,3/2)) but not to H(m,1,(1/2,3/2)) for m > 1.

It will be useful in the course of Part II to consider various analytic norms for
the same function while maintaining a fixed norm. The definition of the spaces
H(m,r,U) immediately imply the following fact.

Proposition 7.1.11. Let my € N and ,rg > 0. Let U be a domain in R, Let
f € H(mog,ro,U). Then, for all m > mqg and r > rg2™~"0 one has f € H(m,r,U)
with

||f||H(m,7‘,U) < ||f”H(mo,7’0,U)'
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The following lemma will be used several times in what follows.

Lemma 7.1.12. Let d € N. There exists C' > 0 such that, for any j € N, for any
m > max(d + 2,2(d + 1)), one has

J m

min(i + 1,7 —i+1 +1 m
Z in(i+1,j—i+1)%j +1) <20
= (i+1)m(G—i+1)m 4m

Proof. If j =1 then this sum is exactly 2. We now suppose j > 2.
let us first prove that, if 1 <¢ < j — 1 and m > d, then

min(i + 1,5 — i+ 1)4G +1)™ 3™
G+ 1)m(j—i+1)m =g

Since z +— —log(x) is convex on (0,+00), the function of i above is log-convex on
[1,7/2] as well as on [j/2,j — 1]. By symmetry, it is then sufficient to prove the
bound above for i =1 and i = j/2.

For ¢ =1, since j > 2 one can bound

24(j + 1) j+1\" 3m
I 2d27m ST S 2d

om jm j 4m’

For i = j/2 the expression becomes

_ aG+1) \ 3
2d<<j+2><j+2>) =27

We are now ready to prove the claim. Let us decompose the sum into

. . j/3]— . .
2423 T DG+ Wi LGt DiGym
= (i+1)m(j —i+1)m (7781 G+1D)m(G—i+1)m

1. If j—4 > 2 then
G+om _sm
G—i+Lym = 2m’

Hence, the sum

, “’f (i + )% + )™
— i+1)m(G—i+1)m
is smaller than
3m /3] 1 RUL

ZmZ: 1+1md—2 gm(C(m —d) = 1),

where ¢ denotes the Riemann zeta function. If m —d > 2 one has

((m—d)<143-27m=d),

3m
Hence, this sum is smaller than 6 - 2d4—m
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2. The sum ‘
mfjl (i + 1)4G + 1)
i+1)mG—i+1)m

i=[j/3]+1

is smaller than
(9/4)™(j + 1)1

G+pm
since for each index i between the bounds one has
4+ 1)™ i+ 1)™ 9/4)m
G+om G+1) _ 9/

(E+1)m(G—i+1)m™ = 20 +1)/3)™20G +1)/3)™ = (G +1)™
Suppose m > 2(d + 1), so that

o O™ + 1)d+t _o 94"
G+om TG+

Hence, if j > 10 then this sum is smaller than 2 - 3. In the other case we

m
have at most 4 terms, each of them smaller than 2d4—m.

The total sum is then controlled by

d 3"
2+ (10 2 )471’
hence the claim. O

Analytic function classes form an algebra and nonvanishing functions can be
inverted:

Proposition 7.1.13. There exists C' > 0 such that the following is true. Let m > 2.
Letr > 0 and let U be a domain in R™. Let f,g € H(m,r,U). Then fg € H(m,r,U),
and

||fg||H(m,7‘,U) < CHfHH(m,T,U)HgHH(m,T,U)'

The constant C' is universal.
If f is bounded away from zero on U, then f~' € H(m,r,U), with

()= Tingy (| £])2

Proof. Let f,g € H(m,r,U) and j € N. Then
o B+
Sruais > (7))ol
lo]=7 |B+~|=3

By Lemma 7.4.2, one has, for every 8 and 7 such that |8 + | = j,

5= (57 = ()
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Hence,
|1

> ot < 3 ()IV Al T gl

|a|=3 =0
so that, for any j7 > 0, one has

. J 1 J A —1 . '+ 1)m
95l < 1 lmser oo S (1) (1) e

i=0
Hence,
. 5! J G+1m
V] < m,r m,r . . . . .
I9lls < o e 3 13 2o Gy — 5 17

Let us use Lemma 7.1.12 with d = 0. If m > 2, this quantity is bounded indepen-
dently of j and m, so that

. I 4!
IV (fg)ller < CHfllH(m,r,U)||g||H(m,r,U)W.

This concludes the first part of the proof.

Let now f € H(m,r,U) which does is bounded away from zero on U. We introduce
the modified product f-g = f—g, for which H(m,r,U) is a Banach algebra.

First, |f|? is real-valued and strictly positive; moreover |f|?> = ff € H(m,r,U)
and, by the property above,

AP0 2 mrvy < CUEN )

g
Let 9 = qurpiyos, Then

infy (|.f]%)

- ey < L.
20112 et gy

Hl - gHH(m,r,U) <

In particular, g = 1 — (1 — g) so that, letting h be such that g-h =1, one has

+o0
h=Y (1-g*
k=0
Hence, one can control

Il s
H(m,r,U) = infy (| f[2)

h
Now |f|72 = so that
I = e Pl

1
-2 m,Tr. < NI
151 it < g7
We now turn to f~' = f|f|~2, which is controlled as follows:

o Ml
1~ e mro) < infy (| f]2)

This concludes the proof. ]
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The spaces H(r,m,U) contain all holomorphic functions.

Proposition 7.1.14. Let d € N. For every T > 0 we let P(0,T) be the polydisk of
center 0 and of radius T in CZ.
Let f be a holomorphic, bounded function on P(0,2T), continuous up to the bound-

ary. Then
I f1l o (=a,ar—1,P0,1)) < CP?S%)T) | f]-

Proof. The proof relies on the Cauchy formula. For all z € P(0,T) and v € N
there holds

|
b e
61 |=..=|¢a=27 (§1 — 21)"" (&2 — 22)"2 ... (§a — 2a)™e
As z € P(0,r) and |&] = ... = |&| = 2T, for every 1 < ¢ < d there holds

|& — zi| > T, so that

sup |0V(f)| < T Mt sup |f).
P(0,T) P(0,27)

In particular, since v! < |v|!d”l, by summing over v’s with same norm we obtain

sup ||V f(@)||n < O+ 1)NdT ™)),
z€P(0,T)

hence the claim. O

7.2 CALCULUS OF ANALYTIC SYMBOLS

In this section we define and study (formal) analytic symbols, which we will show to
be well suited to the study of stationary phases with complex, real-analytic phases.
We begin with an explicit definition of C7-norms on compact manifolds.

Definition 7.2.1. Let X be a compact manifold (with smooth boundary). We fix
a finite set (py)vey of local charts on open sets V' which cover X.

Let j > 0. The C7 norm of a function f : X — C which is continuously differen-
tiable j times is defined as

- P )
[ llos x) = mage sup Z'! (f o pv)(@)]
|ul=7
This definition is adapted to the multiplication of two functions:

Proposition 7.2.2. Let X be a compact manifold (with smooth boundary) with
fized local charts, and f,g € C7(X,R).
Then fg € CI(X,R) with

J .
J
Ifalorn = X () Islecollsles oo
=0
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Proof. One has, in local coordinates,

o (fg) =3 (5) & forg,

v<p

() =)

with, by Lemma 7.4.2,

Hence,
> @< X5 (] ) el
|ul=J lul=jv=np
-y () Zea| ¥ o
i=0 [v|=i lul=4,v<p
i .
=S ()] | Xl
i=0 v|=i lpl=5—i
hence the claim. ]

Using the convention above, let us generalise Definition 7.1.10, in order to define
analytic symbols.

Definition 7.2.3. Let X be a compact manifold (with boundary), with a fixed set
of covering local charts.

Let r, R, m be positive real numbers. The space of analytic symbols STT;LR(X ) con-
sists of sequences (ay)g>o of real-analytic functions on X, such that there exists
C > 0 such that, for every j > 0,k > 0, one has

sl I RF(j 4 k)!
klloix) = (G+E+1)m

The norm of an element a € SfﬁR(X ) is defined as the smallest C' as above; then
SfﬁR(X) is a Banach space.

We are interested in symbols which have an expansion in increasing powers of
the semiclassical parameter. We will use the term “symbols” while, in the usual
semiclassical vocabulary, we are dealing with formal symbols to which we associate
classical symbols by a summation process in Proposition 7.2.6.

As for the analytic function classes H(m,r,U) of Definition 7.1.10, the spaces
SZ;R(X ) are included in each other for a lexicographic order, and the constants of
injection are controlled as follows:

Proposition 7.2.4. Let X be a compact manifold (with boundary) with a fized
finite set of covering charts. Let ro, Ry, mg positive. Let f € S;%RO (X). For every
m > my, for every r > rg2™ "0 and R > Rg2™7 ™0 one has f € SZILR with

”f”SgR(x) < HfHSQ%RO(X)-
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The notion of sum of a formal series in N~! is well-defined up to O(N~>°), by a
process known as Borel summation. In a similar but more explicit way, formal series
corresponding to analytic symbols can be summed up to an exponentially small
error.

Definition 7.2.5. Let X be a compact Riemannian manifold (with boundary) and
let f € Spf(X). Let cg = 35~ The summation of f is defined as

crN
X xN3 (2,N)— f(N)(z) =Y _ NFf().
k=0
Proposition 7.2.6. Let X be a compact Riemannian manifold with boundary and
let f € Spl(X). Let cp = 3% Then
1. The function f(N) is bounded on X uniformly for N € N.

2. For every 0 < c1 < cg, there exists ca > 0 such that

crN
sup| D N7Efi()| = O(e=2).
reX [
Proof.
1. Since

su €T < T, Rkk'?
sup |fe (@)l < 157 x)

it remains to control
cprN

Z N FRFE!.
k=0

In this series, the first term is 1, and the ratio between two consecutive terms
is

N R —R—k<Rc —E<1
N-FIRI(k—1)1 N — %= 3°7
Hence,
crN 3
sup [ f(x, N)| < Hf”s:y;R(X) 2(6/3)k < Hst%R(X)E‘
zeX k=0
2. The claim reduces to a control on
cpN
> NFRFRL.
k=c1 N

In this series, on which each term is smaller than (e/3)¥, the first term is
controlled by

(e/3)Y = exp(c' log(e/3)N).

Hence the claim, with ca = ¢1 log(e/3).
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From the second point of Proposition 7.2.6, we see that the constant cgp = 33
is quite arbitrary (using the Stirling formula to control factorials, one could in fact
consider any constant smaller than ). We use it in Definition 7.2.5 to avoid dealing
with equivalence classes of sequences whose difference is O(e=¢) for some ¢, as in
[Sjo82].

Before studying further the space SZ;&R(X ), let us generalize Lemma 7.1.12.

Lemma 7.2.7. Let d € N and n > 2. There exists C(n,d) > 0 such that, for any
m > max(d+ 2,2(d +n — 1)), for any £ € N, one has

Z (in—l +1)d(£+1)m § 1+03m
i1 <ig<-<in (iy + 1)™ .. (in + 1)™ = e
i1+ Fin=~

This is indeed, up to a factor 2, a generalisation of Lemma 7.1.12 which corre-
sponds to the case n = 2.

Proof. As before, the case ¢ = 1 is trivial, so we assume £ > 2. The only term in the
sum such that i,—; = 0 is equal to 1; let us control the sum restricted on {i,,—1 > 1}.
Let us first show that, if i,,_1 > 1, then

in_1 4+ 1)L+ 1) 3m
G+ )™ (i +1)™ 4m
One has directly (i,—1 +1)% < (£ +1)%
We are left with
(L+1)m
(i1 + D)™ (i +1)™
which is a symmetric expression of (iy,...,,), log-convex as soon as m > 0, and

which we wish to bound on the symmetrised set

n
{(il, ceeyin) € Ng,Zik =/, at least two of them are > 1}.
k=1

By Lemma 7.4.4, it is sufficient to control the quantity above at the permutations
of (¢ —1,1,0,...,0). At each of those points, since £ > 2, one has

(t+1)" <£+1> 3

i+ D)™ (ip+)m \ 20 ) —am

We are now in position to prove the claim. Let us first restrict our attention to

{i1 > 3(2“'_11) }. There are less than (¢ + 1)"~! such terms (since there are less than

(¢ +1)"! terms in total), and each of these terms is smaller than

4+ D e+1™ 4+ 1)43Mm —1)™

(3@—11))% - (¢+1m-

Hence, this sum is controlled by

(£+1)" 1 (3(n — 1))™"
(£ + 1)m(n=1)
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We now consider the sum on {i; < % < is}. There are again less than (£+1)"~!
such terms, each of them smaller than

(C+1)3C+1)™  (£+1)43(n — 1)V

(ste) ™ T (e
3(n—1)

Thus, this sum is smaller than

(€ + 1)"+9=1(3(n — 1))
(€ + 1)m(n=2)

/+1
3(n-1)

Similarly, we are able to control the sum restricted on {i; < < igy1}, for

k<n-—2 by

(0 + 1)n+d=1(3(n — 1))m(n=k)
(£+ 1)m(n7k71)

If m > 2(d+n —1), then (£ 4 1)"+4=1H+m < (¢ +1)3m/2 50 that, for any k < n — 2,
if £+ 1> 3n, one has

1)ntd—1 1 m(n—k) N 1 m(n—k)
(M B =) e (30 )
(€ 4 1)mn—k=1) (+1

2m 2\ ™
- 9(n —1
<+ 1)3m/2<3(” U) _ (Y1)
+1 VE+1
Thus, for ¢ large enough (depending on n), this quantity is smaller than ?TZ; for
I small we have a number of terms bounded by a function of n, each term being
smaller than C(n,d)35 by (19).

It remains to control the sum restricted on {1 < 4,1 <

in+12> @, so that the sum is smaller than

I+1

3(n71)}' In this case,

3m 3 (in—1 + 1)¢
2m vy G+ 1)+ 1) (i1 + 1)
0Si1 < Sin—1 < gty
7;117121

< ) (C(m — )~ ).

The Riemann zeta function is decreasing, and if m > d + 2, then
((m—d)<1+43.27m=d)

so that the expression above is controlled by C(n, d):}TZ' This concludes the proof.
O

Analytic symbols behave well with respect to the Cauchy product, which corre-
sponds to the product of their summations.
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Proposition 7.2.8. There ezists Cy € R and a function C : R? — R such that the

following is true.
Let X be a compact Riemannian manifold (with boundary) and with a fized finite
set of covering charts. Let r, R > 0 and m > 4. For a,b € SZ;’ZR(X), let us define the

Cauchy product of a and b as

k
(CL * b)k = Z aibk,i.
1=0

1. The space S;’LR(X ) is an algebra for this Cauchy product, that is,
la*bllgrn < Collallgx b5

Moreover, there exists ¢ > 0 depending only on R such that as N — 400, one
has

(a*b)(N) = a(N)b(N) + O(e™N).

2. Let ro, Ry, mqg positive and a € S;%RO (X) with ap nonvanishing. Then, for
every m large enough depending on a, for everyr > rg2™~"0 R > Rg2™™ ™0 ¢
is invertible (for the Cauchy product) in S;';QR(X), and its inverse a* 1 satisfies:

la* g x) < Clllallgrgsmo ) min(al)).

Proof.
1. From Proposition 7.2.2, one has, for every 0 < i < k and j > 0,

7 .
J
[N D] oA [ e e
=0

In particular,

rIRF(j + k)!
(G+k+1)m

>3 (100) (et e

=0 (=0

l(a*b)gllci < HCLHS;&RW)HS;%R

By Lemma 7.4.1, one has
N (3T (It kY
l C4+i) = \L+i
This yields

[1(a*b)llcs

PIRF(G + k) dA ]—i—k—i-l)
< T b T
< llallggel ”SR j+k+1)m ZZ ((+e+1)m(G+k—i—L+1)m

T]Rk]—l—k"k+ min(i’ +1L,j+k—d+1)(G+k+1)™
+l<:—|—1m @+ +kE—d+1)m

< Nl gl g
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Here, we let i/ =i + /.

We are reduced to Lemma 7.1.12 with d = 1. If m > 4, this sum is smaller
than a universal constant C independently of j, k, so that

la bl gr.r < Cllall gr.zl[bll gr.5-

Let us control the product of the associated analytic series. By Proposition
7.2.6, for some ¢ > 0 depending only on R, one has

eN
12R

a(N) => NFa, +0(eN),
k=0

and similar controls for b(N) and (a % b)(N).

eN
The first —— terms of the expansion in decreasing powers of (a * b)(N) and
a(N)b(N) then coincide by definition of the Cauchy product. It remains to

control
Z Ni(iJrj)aibj.

eN - - eN
1R StHISER

From o o
sup(|a;b;|) < CR"™ilj! < C(2R)"™ (i + j5)!,

one has, as in Proposition 7.2.6,

Z N—(z‘+j)aibj < Z N—(i+j)(2R)i+j(i + N <e N,

hence the claim.

. The unit element of the Cauchy product is (1,0,0,...) which belongs to
SHE(X). Let a € S52:1(X) be such that ag does not vanish on X, and let us
try to find b such that (a*b)g = 1 and (a % b)r = 0 whenever k # 0.

The first condition yields by = ay ! which is a function with real-analytic
regularity and same radius as ag, by Proposition 7.1.13, so that

j.
797!

b < Cp—r——.
leoles < ot

In particular, by Lemma 7.1.11, for all m > mg,r > 1929, one has

I

bollci < Cop———.
” OHCJ = Co(j+1)m

The coefficients b, are then determined by induction:

k k
-1
bk = ay Z aibk,i = bo Z aibk,i.
i=1 =1
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Let us control |b]] SmE(x) by |lal| ShR(x by induction, for some r, R, m which
will be chosen later.

We now proceed by induction on k. Suppose that, for all f <k —1 and j > 0,

one has ,
rIRY(j + 0)!

(j+ell+1)™
We wish to prove the same control for ¢ = k. The constant Cj will be chosen
later.

bellci < Ch

By induction hypothesis,

Jj ok j—in . lejﬂ
belles < CoCollall o ( )
lnlles < CoClallgn 3233~ (7 ) o ym

Jj1=0 =1 j2=0
2 Ri(jy + i)lrd =2 RE=I (5 — ) — §o + k — )
(i+j2+1)m(j—j1—j2+k—i+1)m

FIRFG 4+ k) A SR [ j+k N\
< CyC T, i1, J )
S Oy OHGHS R J+k+1 mzzz <31732> <]1732+Z)

71=0 =1 j2=0
y (G+Ek+1)m
(i +D)m@e+i+1)™([G —j—jetk—i+1)™

Let us prove that, for every i, j, j1, j2, k in the range above, one has
()= ()
J1,J2 T J1,J2
Gae) = G552 ()
J1,J2 +1 Ju.d2) 3 — g1 —Jd2 — \Ju,g2/)’
<.‘7.+k.)z<.‘7.+z >2<J>
J1,J2 T J1,J2 T J1,J2

rIRF(j + k)!
G+Ek+1)m

There holds

so that

Hence,

IBklles < CiCollallgr,n

="

J k J—J ( m
j+k+1)
>< .
E;Z;E;JPF " +i+ )M ==tk —i+ 1)
TJRk(J+k‘). Z min(i; + 1,40+ 1)(j + k+1)™

GHE+™ = G+ D)™+ D)7+ )™
Jitirtia=j+k

< CyCollal| gr.r

From Lemma 7.2.7 with n = 3 and d = 1, the sum

D

Ji+i1+ic=j+k
11>

min(i; + 1,92+ 1)(j + £+ 1)™
(1 + )™+ 1)m (i + 1™
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is bounded independently of j and k for m > 6. However this control is not
rIR*(j +k)!

— which is a priori

enough since it yields a constant in front of Gkt

CC()C[,H(IHS;,LR > Cy.
However, the only term in this expansion which contributes as 1 is
J1=0,i1 =k+7,i12=0,
which corresponds to j; = 0,7 = k, jo = j. One can control this term indepen-
dently of Cj, since

IR*(j + k)!
1 o T J

ilbo| < Cf————.
’a’() ’HakHCJ’ 0’ = 0 (] k 1)m

The sum over all other terms is smaller than CCyCo|lal| 4r.r(3/4)™ for some
C, by Lemma 7.2.7.

We can conclude: if m is large with respect to | af| iRt (which can be done
using Proposition 7.2.4 by setting r > r92™~"0 and R > Rp2™ ™) and if
Cy > 2C3 (recall from Proposition 7.1.13 that C2 = min(|a])_4HaH§:ﬁR), one
has, by induction, ; k( e
™R !
[l ci < Cb(jJrk]—kl)m‘
This concludes the proof.

O]

Remark 7.2.9. The method of proof for Proposition 7.2.8 will be used again in
Chapters 8 and 9. This method consists in an induction, in which quotients of
factorials must be bounded; this reduces the control by induction to Lemma 7.2.7.
Constants which appear must be carefully chosen so that the induction can proceed.
In particular, given a fixed object in an analytic class, it will useful to change the
parameters (typically m,r, R) in its control, while maintaining a fixed norm.

The classes H(m,r, V) of real-analytic functions introduced in Section 7.1 contain
all holomorphic functions. In a similar manner, the symbol classes ShR contain all
classical analytic symbols in the sense of Sjostrand [Sjo82]:

Proposition 7.2.10. Let U be an open set of C" and let a = (ax)r>0 be a sequence
of bounded holomorphic functions on U such that there exists C > 0 and R > 0
satisfying, for all k >0,
sup |ag| < CRFEL.
U

Then for every V. CC U there exists r > 0 such that a € SS’R(V).
In particular, given an analytic symbol a and a biholomorphism k, then a o k s
an analytic symbol.

Proof. By Proposition 7.1.14, there exists C; > 0 and r > 0 such that, for every
k >0, one has a € H(r,0,V) with

lakl| zo,rvy < C1 sgp lag].
In other terms, for every & > 0,5 > 0, one has
lakllcsry < CLOT RNjIK! < CLCTI RE(j + k).
Hence a € SS’R(V)_ 0
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7.3 COMPLEX STATIONARY PHASE LEMMA

In this subsection we present the tools of stationary phase in the context of real-
analytic regularity, as developed by Sjostrand [Sjo82|. We wish to study integrals of
the form

/ V@ g (z)d,
Q

as N — 4o00. If ® is purely imaginary, then by integration by parts, this integral is
O(N~°°) away from the points where d® vanishes. At such points, if ® is Morse, a
change of variables leads to the usual case where ® is quadratic nondegenerate; then
there is a full expansion of the integral in decreasing powers of N. If ® is real-valued,
a similar analysis (Laplace method) yields a related expansion.

On one hand, we wish to study such an integral, in the more general case where i®
is complex-valued. On the other hand we want to improve the O(N~°°) estimates
into O(e~¢N). This is done via a complex change of variables; to this end we have
to impose real-analytic regularity on ¢ and a.

Let us introduce a notion of analytic phase, which generalises positive phase
functions as appearing in [Sj682].

Definition 7.3.1. Let d, k € N. Let Q be a domain of R%. Let ® be a real-analytic
function on Q x R*. For each A € R¥ we let ®) = ®(-,\). Then ® is said to be an
analytic phase on £ under the following conditions.

e There exists an open set Qccd such that, for every A € R the function @
extends to a holomorphic function ®, on 2.

e For every A € R¥, there exists exactly one point Ty € Q) such that d®, (Zy) =0;
this critical point is non-degenerate. There holds ®y(z)) = 0.

e One has 7p = 0 and moreover R®y < 0 on 2\ {0}.

Under the conditions of Definition 7.3.1, the function A\ — I, is real-analytic.
A first change of integration paths leads to the usual definition of positive phase
functions [Sjo82]. That is, one can assume, without loss of generality, that Z) = 0.

Proposition 7.3.2. Let ® be an analytic phase in the sense of Definition 7.5.1,
and ®y its extension on the domain 2. We let Q) = (]Rd —1—%\) N Q. There exists
d >0,C >0, and a small neighbourhood A C R* of zero, such that the following is
true.

Let ay be a family of real-analytic functions on § which extend to holomorphic
functions ay on Q. Then, for every A € A and every N € N,

/6N<I>,\a>\_/ NGy
Q Q

Moreover, for X € A, one has RO, < 0 on Qy \ {Z\}.

< Csup|ay]e V.
Q

Proof. The proof proceeds in two steps. In the first step, we apply the Morse lemma
and show that, for some analytic symbol by, one has

/Q M ay = /Q e NP by(y)dy + O(e=N).
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In the second step, we provide an expansion, up to an exponentially small error, for
the right-hand term above. We let V' be an open subset of 2 containing 0. Then,
for every A € RF, either ) € R?, in which case there is nothing to prove, or the set
V +[0, 1] has real dimension d+ 1. In the latter case, the boundary of V +[0, 1]z
can be decomposed as follows:

OV 4+ [0,1]z)) = VU (V 4+ 2)) U OV + [0,1]Z)).

By hypothesis, there exists ¢/ > 0 such that RPy < —2¢’ on V. By continuity (and
since T, has real-analytic dependence on A), for A in a small neighbourhood A of
zero, one has V + [0, 1]y C Q and R®) < —c’ on AV + [0, 1]Z).

Then, the contour integral of eN®xay on 9(V + [0,1]Z)) is zero, so that

/eNCDAG)\_/ NG
1% V4

Since 2\ V' € U, the first integral is exponentially close to the integral over €. In
the same way, one can replace the second integral by an integral over 2. This ends
the proof. O

< Csup |ayle V.
Q

We are now in position to prove an analytic stationary phase Lemma.

Proposition 7.3.3. Let ® be an analytic phase on a domain ). There exists ¢ > 0,
d >0, C" >0, a neighbourhood A C R* of zero, and a biholomorphism &y, with
real-analytic dependence® on X\ € A, such that the associated Laplace operator

A(N) =ryoAok,!

satisfies, for every function ay holomorphic on Q:

cA

/QGN(I)AG’\ _ Z(k!N%Jrk)_15()\)]“(&')\J>\_1)(§5>\) + RA(N),
k=0

where, uniformly in X € A,

[RA(N)] < Ce™N sup [ay],
Q

and Jy is the Jacobian determinant associated with the change of variables k.

Proof. For y = (y1,...,yq) € C? we denote y -y = Zle y2. If in particular y € R,
we denote

1
Yyl = vy y=lyle = (v +... +y7)2.
By Proposition 7.3.2, without loss of generality )y = 0 so that ER(@)\) < 0 on

The holomorphic Morse lemma [Stel6] states that there is a biholomorphism
of neighbourhoods of 0 in C?, with real-analytic dependence on A, such that, for
every x in the domain of k,

D\ (1x(2), £(2)) = —ra(z) - 52 (2).

By this we mean: a real-analytic function x on U x A, where U is a neighbourhood of 0 in (NZ,
holomorphic in the first variable, such that there exists o with the same properties, satisfying
o(k(z,\),\) = k(o(xz,N\),\) =z for all (z,\) € U x A.
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Let V be a small neighbourhood of 0 in C? such that k) is well-defined on V', and
let Vg = VN RZ Since R(Py(x)) < 0 for 0 # z € 2, uniformly in A close to 0, one
can restrict the domain of integration: for some small ¢/ > 0 and C' depending only

on ®, one has
/eNq)AaA _/ N g,y
Q Vk

Applying the change of variables k) yields

/ NGy :/ e—Ny-y(ngo,{;l)(y)JA(y)dy,
VR W)\

< C'sup(lax])e M.

where Wy = k)(Vg), and Jy is the appropriate Jacobian.

We let by = (ay o /{Xl)JA. Then, by Proposition 7.1.14, the function ay o /4;;1,
which is bounded and holomorphic on a small open neighbourhood of 0, belongs to
some analytic space H (2,71, k\(V)) for r1 large depending only on r and @, if V' is
chosen small enough. Without loss of generality, Jy € H(2,71,k)(V)) as well. Then,
by Proposition 7.1.13, by belongs to H(r1,k(V)), with r; depending only on r and
@, and the norm of by is controlled as follows: there exists C' which depends only
on ®, and ) such that

101 £ (ry mn(vy) < C'sup [ay|.
Q

The biholomorphism k) does not preserve RY (unless @, is real-valued). We now
wish to change contours so that

[ e iy = [ ey + 0 sl
Wi Vi

Consider the following homotopy of functions on C%:
ol(z) =R(z) + (1 —)(2).

Then o¢g = Id while o1 is the projection on the real locus. If y € W) is not zero,
then y -y > 0, so that oy(y) - 0¢(y) > y -y > 0. Hence, the set U Use(o 1] 0¢(W)), of
real dimension d + 1, is contained in {y -y > 0} U {0}. Then, since

oU = WyUao(Wy) U U’

with U’ far from zero, and since the contour integral over U is zero, one has, for
some ¢ > 0 and C > 0 depending only on ®,

/ e NVUby(y)dy — / e Vb, (y)dy
Wi o1(Wy)

Applying again a domain restriction, there holds

< Ce N sup |y .
o

/ e NV Uby(y)dy — / e Vb, (y)dy
a1(Wy)

< Ce N sup |by).
1% Q

Q

To conclude the first part of the proof, for some C' > 0 and ¢’ > 0, there holds

/ equ)*(y)a)\(y)dy —/ eNy'yb)\(y)dy‘ < Ce N sup |by].
Q W Q
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We now pass to the second step of the proof. Let us prove that, for some ¢ > 0
and ¢ > 0, there holds

—N|y\2b N—d/2 <C —c'N
e AY |b 7” .
[N ha }jN,%, Bl e

Let us first replace by by its Taylor series up to 2cNV:

|2CN+1

bar | _ Iballgzen+1ly
ba(y) — Z Ty s

CTQCN’y|20N
| — 1
[v|<2eN v (2CN )

sup [ay|.
Q

The integral of the remainder is then controlled as follows, by the Stirling formula:

CricNsup @] | e NPy Ndy
Q Vi

< CriN sup !%I/ e NP |y 2N+ qy
a Rd

< ON~5 12N N=¢ND(eN + d/2 + 1) sup [ay)
a
< CON7LP2NN=ND(eN 4 1) sup |ay|
G

< CN'exp(eNlog(r?) — eNlog(N) + c¢Nlog(cN) — e¢N) sup |ay|
Q
< CN ' exp(Nlog(ric/e))sup [ay].
Q

Thus, as long as ¢ < r%, for some ¢’ > 0 one has
1

_Nu2 bA, —c ~
/ e M bay) — D “y” | dy| = O(e™ N sup an)).
7 v 0
[v|<2eN

It remains to estimate, for every 0 < j < 2¢N, the integral
/ N 5 OAv vy
Vi . V! '
® |v|=j

Let us first show that one can replace the integral over Vg by an integral over RY,
up to an exponentially small error.
One has, as by € H(0,r;, V) with controlled norm,

Z by < Cr{j!sgp |ax|.
lv|=j @
Moreover,

ly|”

P = 3+ 42 > d (gl =d Y |yr”>a'd2ﬁa’§7
lv]=j
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Hence,

by S
Y —ry| < CWdr) |yl sup [ay].
=i @

Let 7" > 0 be such that B(0,7) C Vg. Then

b . +oo ,
/ e~ Nll® Z /\—"yy”dy < C(Vdr1) sup |5)\|/ e Nrpitd=lqy
Rd\VR V. Q T2

lvl=7
, , +oo .
< CN~4dr1) N7 sup |a,| e "ritd1dy
S NT?

The function 7 — e~ 7/2r7+4=1 reaches its maximum at r = 2(j +d — 1). If ¢ < T?,
then for N large enough 2NT? > 2¢N +d — 1> j+d — 1, so that

—+o00o —+o00o
/ e Tpitd—1q, < e—NT2/2(NT2)j+d—1/ e‘r/er < Ce—NTQ(NTQ)j—i-d—l'
NT?2 N NT?2 N

Hence, for every N € N,

by, .
e~ NV Z Ly”dy < C’N*1(7“1\/gT2)Je*NT2 sup |ay|
Rd\VR V! pad

lv|=j Q
< C’N_l(7“1\/gT2)ZCNe_NT2 sup [a|
Q
< CN~Lsup |ay| exp(N(=T? 4 2clog(r1VdT?))).
Q

In particular, if ¢ < then there exists ¢ > 0 such that

T2
21og(r1VdT?)
b / ~
/ e~ N’ Z )\—}Vy”dy < CN_le_CNsup\a,\L
d V! =
RAR V=i Q
Summing over 0 < j < 2¢N yields
—Ny? b)\,y v —'N ~
e Z —qy’dy| < Ce sup |ay].
R\ V4 V! S
\Vr [v|<2e¢N Q

We are left with

b N AFBy(0)
—Ny? vy N A
3L =S S
j<2eN wl=j k=0
This concludes the proof. ]

Remark 7.3.4. In what follows, we will apply the complex stationary phase lemma
in situations where, for A belonging to a compact Z, one has ), = 0 and £y < 0
on ©\ {0}. In this setting, Proposition 7.3.3 is true uniformly for A in a small,
N-independent neighbourhood of Z.
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7.4 COMBINATORIAL INEQUALITIES

In this section we prove several inequalities which appear throughout Part II.

We denote by I' the Gamma function, which is the only log-convex function on
(0, 400) such that I'(n 4+ 1) = n! for every integer n. We denote by ¢ the Digamma
function, defined as the log-derivative of I'. The letters ¢, j, k, [, n represent integers,
and the letters u, v represent polyindices.

Lemma 7.4.1. Let ¢ > 0. The function I'(x + ¢)/I'(z) is increasing on (0,+00).
In particular, if i < j <k then
(?) < <@>.
i i

Proof. The log-derivative of = +— I'(x 4 ¢)/T'(z) is ¥(z + ¢) — ¢(x). Since T is

log-convex, 1 is increasing so that ¢ (z + ¢) — ¥ (x) > 0, hence the claim.

For the second part of the claim, we consider the function z — (f) = %

This function is increasing as we have just shown, so that its value at j is smaller
than its value at k > j. O

()= ()

Proof. Let us prove the following inequality, from which one can deduce the original

IAYA! < Jj+1 .
i)\k) ~ \i+k
The well-known identity

JHDY _(FHI=TY (G- () (1Y D (G-
i+k) \i+k—1 i+k ) \1)\i+k—1 1 i+k

can be generalised by induction:

() -S0)(0)

All terms in the sum are positive so that the sum is greater than any of its terms.

()= ()

Lemma 7.4.2. If v < u then

claim by induction:

In particular,

O
Lemma 7.4.3. If0<i<jand1 <k <Il-—1, then
(+k-—DIG+l—i—-k-1)! (G+1-2)!
ik (G — )N — k)! - o=
In particular, if a1, ..., a, are nonnegative integers and by, ..., b, are positive inte-

gers, with Y ;" ya; = j and Y ;" b; =1, then

(a1+b171)!...(an+bn71)!< (G+1—n)
atbil . anlby] S —nsy
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Proof. For the first part, let & = k — 1, then
((+k—DIGHI—i—k—=1)! 1 (i+k\[(j+l-2—i—FkK
ilk!(7 — )\l — k)! Okl —k)\ i j—1 ’

Since 1 < k <[ —1 there holds m < ﬁ Moreover, from Lemma 7.4.2, one has

i+ kN [(j+l—-2—i—F < jHi=2\y (G+I-1)
i j—i - j o=

(i+k—1)! (]—l—l—z—k—l)!< (J+1-2)
ikl (g — )l — k)! VLR
The second part is deduced from the first part by induction. Indeed, we just
proved that, denoting a) _; = an—1 + an and b/, ; = b,—1 + b, — 1, one has

Hence,

(a1+b1—1)!...(an+bn—1)!
al'bl'an'bn'
<(a1—|—b1—1)!...(an,2—|—b 2_1)(n1+bn1 )'

a1!b1! e an_glbn_g. ;Lfl!bglfl'

Here, the sum of the a;’s has not changed but the sum of the b;’s has been reduced
by one. By induction,

(a1+b1—1)!...(an+bn—l)!< (j+1—n)!

ailby!...aplby,! “ Ml -n+1)!
O
Lemma 7.4.4. Let £ > 2 and n > 2 be integers. The set
n
{(il,...,in) IS Ng,Zik =/, at least two of them are > 1}.
k=1
is contained in the convex hull of all permutations of (¢ —1,1,0,...,0).
Proof. Let us call support of a tuple (i1,...,4,) the number of its elements which

are non-zero. We will prove by induction on 2 < k < min(n, ¢) that the convex hull
S of the permutations of (¢ —1,1,0,...,0) contain all tuples of support k such that
the sum of all elements is ¢.

For k = 2, we can indeed recover all elements of the form (/—x,z,0,...,0) for all
1 <x </¢—1 by a convex combination of (¢ —1,1,0,...,0) and (1,¢/—1,0,...,0).

We now proceed to the induction. Suppose that S contains all elements of the
form (41,...,i5-1,0,...,0) and their permutations. Then, in particular, it contains
ap = (0l —k+2/1,...,1,0,...,0). For every 1 < j < k — 2, S also contains the
image of ag by the transposition (k,k — j), which we denote by a;. Moreover, S

contains (ki ,fl 0,...,0) and its permutations. From the (a;)o<j<kr—2 and
( kfl, . ki ,0), one can form the convex combination
(—k+1 & z ¢
Z . ,0,...,0
(l—k+2)(k-2) E k +2 k k-1
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In particular, S contains all permutations of (I —k+1,1,...,1,0,...,0). Thus, S
contains all elements of support k, since the k-uple (I —k,0,...,0) and its permuta-

tions are the extremal points of the convex {25:1 ij = ¢ — k}). This concludes the
induction. O






EXPONENTIAL CONTROLS FOR
TOEPLITZ OPERATORS

In this chapter we obtain exponentially precise controls on the Bergman kernel and
Toeplitz operators in real-analytic regularity. These results are stated in Section 8.1.

We use the method of analytic stationary phase to study the composition prop-
erties of covariant Toeplitz operators, which allows us to prove Theorems 8.1, 8.2,
and 8.3.

8.1 STATEMENT OF THE MAIN RESULTS

We begin with the definition of what will be the phase of the Bergman kernel. We
use the standard notion of holomorphic extensions of real-analytic functions and
manifolds, under a notation convention which is recalled in detail in Section 7.1.3.

Definition 8.1.1 (A section of L®V X Z®N). Let M be a real-analytic Kéahler
manifold and let U C M be a contractible open set.

Let s denote a non-vanishing, bounded, holomorphic section of L on U. Then
¢ = —1log(]s|?) is called a Kdhler potential on U. The function ¢ is real-analytic
on U since h is real-analytic, so that there is a unique function q~5 on a neighbour-
hood of the diagonal of U x U, which is holomorphic in the first variable and
anti-holomorphic in the second variable, and such that d(z,x) = ¢(x). We call holo-
morphic extension such a ¢. (This coincides with the usual notion of holomorphic
extension, see Subsections 7.1.2 and 7.1.3 for details).

The function (z,7) — >V ¢() ig well-defined in a neighbourhood of the diagonal
in U x U, so that the following section of (L X L)®¥

N () - (s(2)2N ® (@)@91\7621\@(%?}!)_

is well-defined in a neighbourhood of the diagonal of U x U, holomorphic in the first
variable and anti-holomorphic in the second variable.

The section Y is independent of the holomorphic chart on U. It is also indepen-
dent of the choice of s. Indeed, if s’ is another non-vanishing holomorphic section
of L on U, one has s’ = efs where f is a holomorphic function on U. In particular,
the associated Kihler potential ¢/ = —1 log(|s'|?) satisfies

§ =0+ 5(F+ 7

so that

o' (z,y) = d(x,y) + (@) + f(y);

hence

S/
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As this section does not depend on s, we call it now \Ifg . In particular, given two
contractible open sets U NV, one has ¥ = \I/g near the diagonal of U N V. Hence,

there exists a section UV of L& R TN on a neighbourhood of the diagonal in
M x M, whose restriction to each open set U is \I/%N .

Note that the domain of definition of U is independent of N.

The section ¥ was first introduced by Charles [Cha00] to study the Bergman
kernel and covariant Toeplitz operators.

In the general setting of a Kéhler manifold with real-analytic data, it has been
conjectured [HLX17] that the Bergman kernel takes the following form: for some
c> 0, for all (z,y) € M?,

cN

Sn(x,y) = (2, 9) Y N Fay(z,y) + O(e™N),
k=0

where the ap are, in a neighbourhood of the diagonal in M x M, holomorphic in
the first variable and anti-holomorphic in the second variable, with

lagllco < CRFE!.

The well-behaviour of such sequences of functions when the sum > N~*q; is
computed up to the rank ¢N with ¢ < e/2R was first observed in [Sjo82| and
was the foundation for a theory of analytic pseudodifferential operators and Fourier
Integral Operators. Here, we rely on more specific function classes, where we control
successive derivatives of the ai’s. Without giving a precise definition at this stage let
us call “analytic symbols” such well-controlled sequences of real-analytic functions.
See Definition 7.2.3 about the analytic symbol spaces SZ}R(X ) and the associated
summation. This allows us to prove the conjecture above:

Theorem 8.1. Let M be a quantizable compact real-analytic Kdhler manifold of
complex dimension d. There exists positive constants v, R,m,c,c,C, a neighbour-
hood U of the diagonal in M x M, and an analytic symbol a € S,?’LR(U), holomorphic
in the first variable, anti-holomorphic in the second variable, such that the Bergman
kernel Sy on M satisfies, for each x,y € M x M and N > 1:

cN

SN($, y) - ‘I/N(xa y) Z Nd_kak(xa y)
k=0

< Ce—C/N

h®N

Equivalently, the operator with kernel given by ¥ (z, ) ZJXO N&Fap(z,y) is
exponentially close (in the L? + L? operator sense) to the Bergman projector.

Theorem 8.1 also appears in recent and independent work [RSN18|, where the
authors use Local Bergman kernels as developed in [BBS08| to study locally the
Bergman kernel as an analytic Fourier Integral Operator.

In order to study contravariant Toeplitz operators of Definition 8.2.1, as well as
the Bergman kernel itself, it is useful to consider covariant Toeplitz operators, first
introduced in [Cha03], which are the object of the next Theorem. Recalling the
section UV of Definition 8.1.1, for f an analytic symbol on M x M, which is, near
the diagonal, holomorphic in the first variable and anti-holomorphic in the second
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variable, the associated covariant Toeplitz operator is defined as the operator with
kernel:

cN
TR (f)(z,y) = ¥V (z,y) (Z N fi(a, y)) :

k=0
for some small ¢ > 0; see Definition 8.2.1.

Theorem 8.2. Let M be a quantizable compact real-analytic Kdhler manifold. Let
f and g be analytic symbols on a neighbourhood U of the diagonal in M x M, which
are holomorphic in the first variable and anti-holomorphic in the second variable.

Then there exists ¢ > 0 and an analytic symbol ffg on the same neighbourhood U,
holomorphic in the first variable and anti-holomorphic in the second variable, and
such that

TS ()TEE" (9) = TS (f19) + O(e=™).

For any r, R,m large enough, the product f is a continuous bilinear application from
SERU) x S22R(U) to S22R(U) (see Definition 7.2.3); the constant ¢’ depends only
onr,R,m.

If the principal symbol of f does not vanish on M then there is an analytic symbol
i1 such that, for some ¢ >0, one has

TR (NTF(f7) = Sy +0(e™M).

Given an analytic symbol f € SZ;?O’RO(U) with non-vanishing subprincipal symbol,

there exists C > 0 such that for every r, R, m large enough (depending on f, ro, Ry,
mg), one has

-1
HfTi HSZ",;R(U) < CHf”s;'%R(U)'

As an application of composition and inversion properties, one can study the
concentration rate of eigenfunctions, in the general case (exponential decay in the
forbidden region) as well as in the particular case where the principal symbol has a
non-degenerate minimum.

Theorem 8.3. Let M be a quantizable compact real-analytic Kdhler manifold. Let

f be a real-analytic, real-valued function on M and E € R. Let (uny)n>1 be a

normalized sequence of (An)n>1-€igenstates of Ty (f) with Ay v E. Then, for
= —+o00

every open set V' at positive distance from {f = E} there exist positive constants
¢, C such that, for every N > 1, one has

An

[ lan@IE (o) < cee.
s n:

We say informally that, in the forbidden region {f # E}, the sequence (un)nen
has an exponential decay rate.

In the rest of this Section we prove Theorems 8.1, 8.2, and 8.3.

We begin in Section 8.2 with the definition, and the first properties, of covariant
Toeplitz operators. Then, in Sections 8.3 to 8.5, we study them. We prove that
they can be composed (Proposition 8.4.3), and inverted (Propositions 8.5.1 and
8.5.2), with a precise control on the analytic classes involved. This allows us to
prove Theorem 8.1: see the beginning of Section 8.5 for a detailed proof strategy for
Theorems 8.1 and 8.2. To conclude, in Subsection 8.6 we prove Theorem 8.3.

Until the end of this chapter, M is a compact real-analytic quantizable K&hler
manifold of dimension d.

177



178

PT. II, CHAP. 8: EXPONENTIAL CONTROLS FOR TOEPLITZ OPERATORS

8.2 COVARIANT TOEPLITZ OPERATORS

Definition 8.2.1. Let U denote a small, smooth neighbourhood of the codiagonal
in M x M; for instance U = {(x,y) € M x M,dist(x,y) < e} with € small enough
so that the section ¥ of Definition 8.1.1 is defined on a neighbourhood of U. The
space T@’T’R(U ) of covariant analytic Toeplitz operators consists of operators with
kernel

TRO(f) : (2,y) = N pyer U (2.9) f(N) (2, y),

where f(N) is the summation of an analytic symbol f € Sf,lLR(U), with f holomor-
phic in the first variable and anti-holomorphic in the second variable.

Proposition 8.2.2. There exists ¢ > 0 such that, for all (x,y) € U, there holds
\\Ill(x,y)] < e—cdist(m,y)Q‘

Proof. If £ = y then ¥'(z,y) = |s(x)|?e~2%(®) = 1. In a holomorphic chart p for M
around z (which sends 0 to z), one can choose ¢ such that the Taylor expansion of
¢ o p at zero is ¢ o p(2) = |z|? + O(|2]3). Then dist(z, p(2)) = |z|> + O(|z|®) as well,
so that _

10 (2, p(2))] = e @ =92 +268(z:0(2)) — o=l +O(I21*)

is smaller than e—¢dist@r(2)* op 4 neighbourhood of 0. 0
Covariant Toeplitz operators are almost endomorphisms of HO(M, L®V).

Proposition 8.2.3. Let U denote a small, smooth neighbourhood of the diagonal
in M x M. There exists ¢ > 0 such that the following is true. Let f € S,T,’LR(U) be
holomorphic in the first variable and anti-holomorphic in the second variable, and
SN denote the Bergman kernel on M.

Then, as N — 400,

SNTR(f) = TRV (f) + Orzcsp2(e”).

Proof. We apply the Kohn estimate (17) to the kernel of T{?V(f). Let x be a smooth
function on M x M, which is equal to 1 on a neighbourhood of the diagonal and
is supported inside U. Then, since |¥| < 1 outside the diagonal there exists ¢ such
that

sup [l = NOUN (2, ) (1 = x(z,9) 2 = Oe=).

yeM
In particular, since f(N)(z,y) is bounded independently on x,y, N by Proposition
7.2.6, one has

sup [z = (1= x(2,9)) TR (f) (@, y)ll2 = O(e™).
yeM

Since Sy is an orthogonal projector, it reduces the L? norm, so that

sup 1S (@ = (1 = x(@, ) TR (F) (2, 9))ll 22 = Oe™™).

Moreover, z — x(z,y)Tx"(f)(z,y) is holomorphic except on

{r e M,0 < x(z,y) <1}
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where T5"(f)(z,y) is exponentially small. Then

sup 19(z — x(z, 9)TL () (@, 1) || 2 < [8x||zeO(e=N) = O(e=N).
Yy

Hence, by (17),

sup I(Z = Sn) (@ = x(2, ) TR (f) (@, y))ll2 = Oe™).

In particular,

sup I(7 = Sn) (@ = TR (F)(2,9)) 2 = O(e™).

Since M is compact, its volume is finite, so that one can conclude:

0 = SVTF Doy < [[ 10 = S0TR (D) )Py
MxM

< Vol(M) sup I(Z = Sn)(@ = TR (F) (@, ) | 2 = O(e™).

O]

8.3 STUDY OF AN ANALYTIC PHASE

In this work, covariant Toeplitz operators of Definition 8.2.1 have the following
integral kernels:

cN
Tﬁfm}(f) : ($,y) = ‘IIN(xvy) (Z Ndkfk(x7y)> :

k=0

The integral kernel of the composition of two covariant Toeplitz is of particular
interest, so let us study its phase.
If f and g are analytic symbols, then TRV (f)T57"(g) has the following kernel:

(z,2) — UV (z, 2)x

cN cN
e kT, Y g9i\Y, % Y.
/M ( > ( )) > i (Y 2)

k=0 Jj=0

Indeed, if s is a local holomorphic non-vanishing section of L, with (5,8), = e 2%,
and ¢ denotes the complex extension of ¢, then for every (z,y,z) € M? one has
N oo -
(N (2,5), UV (g, 2))n = s(2)N @ 5(2)" NOEDFNGWE) (54 ()N
— UV (z, Z)62N$(x7y)—2N¢(y)+2N$(y72)—2N$(I,Z)‘

We let ®; be the complex extension (with respect to the middle variable) of the
phase appearing in the last formula:

Dy : (z,y,W,%) — 20(z, W) — 20(y, W) + 20(y, Z) — 20(z, 7).

We write @ (z,y,w,Zz) to indicate anti-holomorphic dependence on the two last
variables. In particular, ®; is holomorphic on the open set U x U of

MXMXM:me(MyxM@)xME.
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Proposition 8.3.1. There exists a neighbourhood U of {(x,Z) € M x M,T = z}
such that function ®1, on the open set

{(2,9,7,2), (z,w) € U, (y,w) € U, (z,%) € U},

is an analytic phase of (y,w), with parameter A = (x,Z). The critical point is (x,Z).
In particular, after a trivialisation of a tubular neighbourhood of

{(,9,W,7) € M x M x M, (2,2) € U, (y, @) = (,%)}
m .
{(z,y,w,2) € M x M x M, (x,z) € U}
as a vector bundle over the former, the analytic phase ®1 satisfies the assumptions
of Remark 7.3./.

Proof. On the diagonal x = z, the Taylor expansion of ®; near (x,T) with respect
to the variables (y,w) is

(v, @) = —(z =)@~ ) + O(lz -y’ + |7 — @),

so that there is a critical point at (z,Z) in M , where the real part of ®; reaches
zero as nondegenerate maximum. Hence, for z close to x there is only one critical
point near (z,T).

This critical point is explicit: it solves the following two equations:

0= 5P = —Dodp(x, W) + D29 (y, W)
0=0,®1 = —019(y, %) + D16y, D).

These equations are satisfied if y = x,w = Z, which concludes the proof. O

8.4 COMPOSITION OF COVARIANT TOEPLITZ OPERATORS

In this subsection we study the composition rules for operators with kernels of the
form

cN
TR () (w,y) = N (2, y) (Z Nd_kfk(x,y)>'
k=0
Here, for a small, smooth neighbourhood U of the diagonal in M x M, one has
fe SZ&R(U ), and f is holomorphic in the first variable and anti-holomorphic in the
second variable.
It is well-known that such operators can be formally composed, that is,

TN (HTR"(9) = T)N®"(ftg) + O(N™=),

where ffig is a classical symbol. We first study this formal calculus by proving a
weak form of the Wick rule in Proposition 8.4.1. Then in Lemma 8.4.2 we control,
in an analytic norm, differential operators as the ones relating ffg to f and g. This
allows us, in Proposition 8.4.3, to prove that, if f and g are analytic symbols, then
ffg is also an analytic symbol, so that one can perform an analytic summation (as
in Proposition 7.2.6), and the error in the composition becomes O(e~“V).
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Proposition 8.4.1. (See also [Cha00], Lemme 2.33 and [Cha03], Lemma 9) The
composition of two covariant Toeplitz operators can be written as a formal series in
N~L. More precisely, if f and g are functions on a neighbourhood of the diagonal in
M x M, holomorphic in the first variable, anti-holomorphic in the second variable,
then

TS (F)TS"(9) = T (h) + O(N =),

where h is a formal series h ~ Y, N~Fhy, holomorphic in the first variable,
anti-holomorphic in the second variable. The composition law can be written as

hk = Bk(fa g)a

where By is a bidifferential operator of degree at most k in f and at most k in g.

Proof. 1t is well-known (see [Cha03|, Theorem 2) that there exists an invertible
formal series a of functions defined on a neighbourhood of the diagonal in M x M,
holomorphic in the first variable and anti-holomorphic in the second variable, which
correspond to the Bergman kernel, that is, such that

T (a) = Sy + O(N~>).

In Theorem 8.1, we will prove that a is in fact an analytic symbol; for the moment,
it is sufficient to know that a exists as a formal series.

Let us deform covariant Toeplitz operators by this formal symbol a, into nor-
malised covariant Toeplitz operators of the form T{(f * a). Here x denotes the
Cauchy product of symbols (Proposition 7.2.8). Since in this case f and g are sim-
ply holomorphic functions one has f *xa = fa and g * a = ga.

We will first prove our claim for this modified quantization: that is, there exists a
sequence of bidifferential operators (Cf)r>0 acting on functions on a neighbourhood
of the diagonal in M x M, such that, given two such functions f and g, if we let

+o00
h = ZN_ka(fmg) + O(N_Oo)a
k=0

then
TN (h*a) =TR"(fa)TN"(9a) + O(N™>).

Moreover, C, is of order at most k in each of its arguments. Then, we will relate
the coefficients C} with the coefficients By, in the initial claim.

The claim is easier to prove for the coefficients Cj because normalised covariant
Toeplitz quantization follows the Wick rule. Indeed, if the function f, near a point
xo, depends only on the first variable (that is, the restriction of f to the diagonal
is, near this point, a holomorphic function on M), then the kernel TV (af)(z,y),
for x close to xg, can be written as f(x)Tx"(a)(x,y) = f(z)Sn(z,y) +O(N~>°). In
particular, for x close to xg the Wick rule holds:

TN (af)TN" (ag)(z,y) = TN (afg)(x,y) + O(N™),

since by Proposition 8.2.3 the kernel of 77" (ag) is almost holomorphic in the first
variable, up to an O(N~°) error. Thus, locally where f depends only on the first
variable, there holds
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More generally, we wish to compute
N*W¥ (z,2) /M exp(N®1(z,y,7,2))(fa)(N)(z,7)(9a)(N)(y, Z)dy,

where we recall that
(I)l(:Ev Y, W, E) = —2;5(1',@) + 25(yaw) - 2$(y72) + 25(1'72)

Here, we write (fa)(N)(z,7) to indicate that fa is holomorphic in the first variable
and anti-holomorphic in the second variable. Similarly, we write ®1(z,y,w,z) to
indicate that ®; is a function on M, x My@ X M,, holomorphic in its two first
arguments and anti-holomorphic in the third argument; we integrate over M which
is the subset of M such that w = 7.

First of all, since for any (z,z) € U one has [V (z, z)| < e~V dist(.2)* then there
exists C' > 0 such that, for any analytic symbol b on U x U, there holds

Nsup [ ‘\PN(:c,z) [ N 52BN 0,72

M
<N sup [b(N)| sup / / 0N (2, )| [V (y, 2)|dydz
UxU x MJM

< sup ’b(N)’NQd sup/ e—Ncdist(x,y)Q—chist(y,z)2dydz
UxU T JMxM

<C sup [b(N)].
UxU

In particular, by the Schur test, the operator with kernel
(@2) =5 N2 [ exp(N®1 (2,95 2)b(e. 5.5, 2)
M

is bounded from L2(M, L®N) to itself, independently on N.
As 0y®1 vanishes in a non-degenerate way at W = Z, one can write
f(l',@) = f(a:,E) - 8yq)1 : Fl(x>27yaw)'
Thus,

NN (5 ) / New(@0T2)(f£0)(N) (2, 7)(ga) (N) (v, Z)dy

M

=N2d‘1’N(x,Z)f(ivaZ)/ NPT a(N) (2, 7)(9a)(N)(y, 2)dy
M

+ NN (g, 2) /M NP BT o(N) (2, 7) O [Fi (2, 7, y,9) (90) (N) (y, Z)]dy.

The first term in the right-hand side above is equal to
f(z,7) /M TR (a)(z, 9)TN" (9a)(y, Z)dy = [f(z,2)T§" (ga)(z,Z) + O(N™),

since T7Y(a) = Sy + O(N~>°).
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In the second line, which is of order N~! by a Schur test, derivatives of ¢ of order
at most 1 appear. This remainder can be written as

NN (o, 2) /M NI (N (2, 7) [0, Fi (2,7, 9, 7)) (90) (V) (3, )y

+N_1N2d‘I’N(w,Z)/ NPV o(N) (2, 9) Fi(2, %, y, )0y (9a) (N) (y, Z)dy.
M

We recover the initial expression, where f has been replaced with either Fy or 9, F1,
and ¢ has potentially been differentiated once. Thus, by induction, the coefficient
Ck(f,g) only differentiates at most k times on g. By duality, Ck(f, g) only differen-
tiates at most k times on f.

Let us now relate the coefficients C}, and Bj,. Let a*~! denote the inverse of a for
the Cauchy product. One has

TR (TR (9) = T ((fa* ") * a) TR ((ga* ") % a) + O(N ™)
=TN"((Cr(f,9))k>0 *a) + O(N™>),

so that the coefficients By, in the initial claim are recovered as

Bk(ny) = Z ajCkfjflfm(fagk_l?ga;kn_l)?
jH+m<k

thus By itself differentiates at most k times on f and at most k times on g. O

The covariant normalised version of the result above is shown in [Cha00|, using
a different computational method for the stationary phase.

The previous proposition predicts that, when applying a stationary phase lemma
to ®; in order to study TV(f)TK"(g), at order n, only derivatives of f and g
at order n will appear. However, in the stationary phase (Lemma 7.3.3), these
derivatives appear in the form of an usual Laplace operator, conjugated by a change
of variables. Let us then prove the following technical lemma.

Lemma 8.4.2. Let U,V, A be domains in C* containing 0. Let ky be a biholomor-
phism from V' to U ,with real-analytic dependence on X\ € A, and such that kx(0) =0
for all A € A. Let k(A v) — kx(v), and suppose that there exists Cy, 19, mgy Such
that, for all j € N, one has

j .
vl

: <0o—o
K llcivxay < G+

Then the following is true for all m > mg,r > 8rg2m~—m0,
Let f be a real-analytic function on U x A, and suppose that there exists Cy and
k > 0 such that

(5 + k)!
; <(Ciy—"r—"—.
Hf”CJ(UXA) > f(] +k+ 1)m

Let n < k and i < 2n; let V! denote the i-th gradient (as in Definition 7.1.10) over
the first set of variables, acting on V' x A; then

g = (A Vig(ka(v), Nv=o)
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s a differential operator of degree i, from functions on U x A to vector-valued func-
tions on A. Let (VL)I=" denote the truncation of this differential operator to a
differential operator of degree less than n.
Then, with
v =4C'r,

and
(i4+j+k)! ifi<n
max((n+ 7+ k)i —n)!, (j + k)li!)  otherwise.

A(i, j, kyn) =

one has, for every j > 0,

ritt

IV sy < i C

Al g kon).
it i pm@akn

Proof. Let us make explicit the operator (V2 )I=7

the Fad di Bruno formula states:

O(f(ra@) Moo= > fPH0,0) [T (07ka)(0),

PeI({1,....i}) EcP

. Given a polyindex p with |u| = 1,

where the sum runs among all partitions P = {F1,..., E|p} of {1,...,i}.

When considering the operator (V@[gn]’ we only need to consider partitions P
such that |P| < n. If the sizes |E1| = s1,...,|Ep|| = sp| of the elements of P are
fixed, the number of possible partitions is simply

i!
(|P)'si!. .. sp"

Then, since there are less than i polyindices p with |p| = i, one has, for all p € N¢
with |p| = j, by differentiation of the Faa di Bruno formula and Proposition 7.2.2,

10°((VE)E f)[[ 2 <

min(n,?) |P|

j! 7!
ey Y ’ A lrerren TT Ml
eoler!...eip)! (|P|)!s1!. .. sp|

|P|=1  eot-tep|=j =1
81+...+S|p‘:|P|

Here k denotes the real-analytic function (A, v) — k) (v).
In particular, since there are less than j¢ polyindices p such that |p| = j, one has

107 (V)= )l <

min(n,3) |P|

) ;
d -d Z Z VE ! H .
eotert. et (1P isat syt 10 o LRl e

|P|=1 eo+...+ep=J =1
51+...+S‘p‘=|P|

(20)
Since, for all j > 0, one has

j .
vl

: <o
[6llcivxay < C(j Dy
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by Lemma 7.1.11, for all m > mg,r > 8r¢2™ "0 one has

(r/8)’5!
[6llcs < CW-

In particular, if j > 1, there holds

Oygqj_lﬂj<jjl)m2j<:c“7®“j—1ﬂ

Inlles < ¢ = ( i

Y

since

j mo )
i —L—) 9277 < 9 < 1.
‘7<j+1> =Jm =

Let us suppose further that

IR (j + 1)

; <Cp—"T"—.
HfHCJ(UXA) > f(j—i—l—i—l)m

Then, the contribution of one term in the sum (20) is

|P|

J!
I fllerpie H Kl gsites <
P’ i1

60!61! .. .€|p|! (|P|)'81' .. .S|
(%CWWHWNQHFWRMPL+%+UM!ﬂ@1+q—lﬂ“(qm+qﬂ—1ﬂ‘
(|P‘ +eg+ 1+ 1)m(‘P’)'51' .. .Slpl! epl.. .6|p|!($1 + 61)m ... (S‘p| +€‘p‘)m

Aseg+...+ep =jand sy + ...+ sp = i, and since, as soon as x > 0, y > 0,
there holds
Ql+2)(14+y)=1l4+z4+y+ay>1+z+y,

one has

(1PFeo-+H+1) ™ (s1-e0)™ .. (sypr--ep)™ = ([Pl |PIF)™ = (D)™
so that one can simplify

TlP‘+eo(£)i+j_eORl(|P| “+ eq + l)'l' j!(Sl + e — 1)' ... (S|p| + ep| — 1)'
(‘P‘ +eo+1+ 1)m(‘P’)'81‘ ca $|p|! eg!l.. .€|p|!(81 + 61)m S (3|P| -+ e|p|)m

T‘P‘+eo(£)i+j_eORl(|P| “+eg + l)' Z'j'(sl +e1 — 1)‘ R <8|p| + ep| — 1)'
(G+i+l+1)m eo!(|P)!s1!...spler! . ..epp!

ofteld

< Cfclpl

By Lemma 7.4.3, one has

(81+61—1)!...(8|p|+€‘})‘—1)!< (t—|P|+j—ep)!
81!...8‘P‘!€1!...6|p|! - (Z—|P|+1)'(]—€0)'

Hence, the contribution of one term in the sum (20) is smaller than

i! rlPIteo (7 /4) =0 RI(|P| 4 eo + DY!(i — |P| +j — ep)!

C ClP\
=P — [P+ 1) G +i+ 1+ 1)megl(j — ep)!
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As (i — |P| +7 —eo)! < (j —e0)!(i — |P|)12¢F ¢ and 4! < 24(|P|)!(i — |P])!, we
control each term in the sum (20) with

IHPIRY (P 4 g + 1) 51(i — |P))!

C 20— IPl i
! (GH+i+l+1)m eo!
<C Qeo*j(c ) TJ+IRI(’P| +eo+1)!J 1@ — | P|)!
= Grititm ol
There are (|;,|) < 2° choices for positive $1,...,8|p| such that their sum is i;
similarly, there are (j _e“H'P') < 29=eo+P| chojces for non-negative ey, . . . ,€|p| such

that their sum is j — eg. Hence

1OV =" Fllr o)

min(n,i) j I

d -d Z Z 2]-HP| €09t C 9¢€0 ](CT) TJ—HR (|P| +eo + l) (Z - '|P|)
|P|=1 eo=0 (]+Z+l+1) €p:
mln nz 1

IR (|Pl 4 €0 + 1) jI(i — | P))!

dd
Cy(4Cr)
2 Z e i T e
|P|=1 eo=0

60!

By Lemma 7.4.1, the terms in the sum above are increasing with respect to e,
so that

. min(n1) JITR(PL+ G+
IVa(e,nle, 0 Dumolleon S EIT D CrAON = e i IPD:

Observe that the quantity in the sum above is log-convex with respect to |P| as it
is a product of factorials, so that

(VS fll i)

< Z»dJrlderl

ST T ym o) max((n 4 DI =)t (4Dl

if i >n, and

ritiR! p
4C l
e+ i D)

IV flla ey < id+1jd+1cf(

if ¢ < n. This concludes the proof, with v = 4C'r. O

We are in position to prove the first part of Theorem 8.2, which does not use the
structure of the Bergman kernel. Let us prove that the composition of two covariant
Toeplitz operators with analytic symbols also admits an analytic symbol, up to an
exponentially small error.

Proposition 8.4.3. There exists a small neighbourhood U of the diagonal in M x M ,
and constants C,mg, ro such that, for every m > mq,r > 19, R > Cr3, there exists
c > 0 such that, for every f € S:ﬁR(U) and g € SQT 2R(U), holomorphic in the first
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variable, anti-holomorphic in the second variable, there exists ffig € S2r 2R(U) with
the same properties, such that

1750 (£ (9) — TS (F29)l 122 < O Nlgllgaron ) | F g

Moreover

Remark 8.4.4. One would expect the x product to be continuous from SZ;ZLR X SI,QR
to SZQR; such a result would imply quite directly the existence of a unit element
in this algebra (the Bergman projector), while starting from Proposition 8.4.3 we
must give a more complicated proof (whose structure is described in the beginning
of Section 8.5). We don’t know whether such a result holds for r, R, m large enough.

Proof. The kernel of TRV(f)T5"(g) can be written as

(m,z)l—HIlN(x,z)/ NP1 (@y.5.2) (ZNd e y) ZNd 1gi(y,z) | dy.
eM

Y k=0

Here, and until the end of the proof, we write fi(z,7) to indicate that f} is holomor-
phic in the first variable and anti-holomorphic in the second variable. We similarly
write g;(y,Z).

Since @ is an analytic phase (Proposition 8.3.1), let us apply the stationary phase
lemma (Proposition 7.3.3). There exists a biholomorphism on a neighbourhood of
T in ]TJ/, of the form

K(z,z) : (yay) = U(SE, Y, Y, z)v
with holomorphic dependence on (z,%) (that is, holomorphic in z and antiholomor-
phic in z), in which the phase ®; can be written as —|v|?. In particular,

v(z,z,z,Z) = 0.

Let J denote the Jacobian of this change of variables. Then
T (NTR"(9)(=, 2)

=0V (z,2) ZZZNd kein — (@, Y(z,v,2))9;(y(w, v,2), 2) I (2,0, 7)),

k=0 j=0 n=0
+ ...
We will make sense of this sum later on; that is, prove that one can sum until k, j or

n is equal to ¢N, up to an exponentially small error. For the moment, let us treat
this formula in decreasing powers of N. Writing

TR (NTR(9)(w, 2) = TR (f19)(w,2) = WM (2, 2) Y - N“F(fig)e(z,2) + ...

k=0

the symbol ffg must be holomorphic in the first variable, anti-holomorphic in the
second variable, and such that

n=0 =0

k An k—n
(fﬁg)k(xvz) = Z nl (Z fl x y T, v Z))gk n— l(y(SU,U,Z),Z)J($,U,Z)> .
v=0
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Here the Laplace operator acts on v.

The proof proceeds now in three steps. In the first step, we write a control of
the formal symbol ffig using the analytic symbol structure of f and g and Lemma
8.4.2. This control involves a complicated quotient of factorials as well as a rational
expression similar to the one appearing in Lemma 7.2.7. The second step is a control
the quotients of factorials, thus reducing the proof that ffg € S22t 6 Lemma
7.2.7. In the third step we prove that, when identifying between T5(f)Tx"(g) and
T5"(fg), one can perform analytic sums, so that the remainder is exponentially
small.

First step.

We wish to control [|(ffg)k|lci (), which amounts to control, for

0<n<k0<I<k—n,
the CY-norm of

(x,2) = AV (filz, ¥(z,v,2)) gh—n—1(y(x, v, 2),2)J (z,v,Z)) ,_o-

This bidifferential operator acting on f; and gp_,_; coincides, up to a multiplicative
factor, with the operator B,, considered in Proposition 8.4.1. Indeed, if f = fy and
g = go, then

k

A
(fﬁg)k(xvg) = ?f(fo(xay(xvvvz))go(y(xv’072))‘](1‘7”72))@:0 = Bk(fo,go),

where (By)r>o is the sequence of bidifferential operators appearing in Proposition
8.4.1. In particular, when expanding
A:}L(fl(xa y(l’, v, E))gk,n,l(y(.’lf, v, 2)7 E)J(ma v, 2))v:(]v

using the Leibniz and Faa di Bruno formulas, no derivative of f; and gx_,_; of order
greater than n will appear. Let us write this expansion.

Until the end of the proof, C7 or analytic norms of functions are implicitly on the
domain U or U x U.

For every n € N, by the multinomial formula, there holds

2d 2\ "
N 0 n!

=1 J

Applying the generalised Leibniz rule twice, one has then

Ag(fl(x> @(:U, v, E))gk—n—l(y(xa v, E)v E)J(x, v, E))fu:O

n!(2u)!
= > 210 10 fi(@, (@, v, 2))o=0

ol (2u — vy — vg)!
|ul=n
v+ <2u

X 02 g—n—1(y(2,0,2), 2)u=005" 7" Jymp.

By Proposition 8.4.1, in the formula above one can replace 04! f(x,y(x, v, Z))y=0 by
its truncation into a differential operator of degree less than n, applied on f, which
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we denote (8%1)[=" f(x,%) (similarly as in Lemma 8.4.2). Similarly one can replace
072 g(y(x,v,%),Z)p=0 by (8%2)="g(z,%). Then

Aﬁ(fl(l‘, @(l‘, v, E))gk:—n—l(y(l‘a v, E)a Z)J(IL‘, v, Z))U:O =

n!(2p)!
gv[<n] 2) (07 [<n] (2. F
“;n el (2u — vp — 1/2)!( YOS (2, 2)(072) S M g (2, Z)

v1+12<2u

X 812,“_”1_”2 Jy=0(x,Z),

with, by Lemma 7.4.2,

nlp! ol (2u)! (2u —11)!
vl (2u — vy — ) ! (2u — v1)! 1! (2 — vy — 1)
- n! (2n)! (2n — |v1])!

p [ fi(2n — v )! re|i(2n — o | = [ve])!

|
:n.< 2n )g(m)”( 2n )
,U,' ‘V1|7|V2’ |V1|7’V2’

Moreover, applying Proposition 7.2.2 twice,
1) = £y (2, 2) (022) 5" g (1, )02 2 Ty 0
j 1% n = 1% n -
<) ( , )H(aﬁ)[< L, 2) )l e 1022 5" g 1(2,2) [ cia
. - . \J1,J2
Ji1+72<]

X |02V T o] imgi—ia -
In particular, using the notation (Vf;)[gn] as introduced in Lemma 8.4.2, one has

||n'Bn(flv gk—n—l)”Cj = ||A2(fl($,y($, ’U>E))gk—n—l(y($7 U72)72)‘]($7 ’072))11:0”0]'

<er X (T e Do)
J1t+j2<j J15.02 b
11+12<2n

(V2 S gh 1 (2, 2) |2 (o IV 2 T 1 112

By Lemma 8.4.2, for some =, depending linearly on r (but independent of R, m),
one has

rirtii Rl
(i +j+1+1)m

H(V?)[Sn]fl(:ﬂ,E)Hzl(cjl) S Z.(li—‘rljf—i_leHS%R’Y’f‘l A(ihjlal:n)v

and

(V)" gh 1, 2) [ 2 ey

) ) ) 2T)j2+i2(2R)k_n_l
< d+1 d+1 , ’LQ(
<y gy gl gzraryy e

A(i27j2a k—mn— la n)?
where

o o
Aligiamy =TI tre

max((n+ 7+ )i —n)!, (7 +1)l!) otherwise,
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The real-analytic function J belongs to some fixed analytic space, so that there
exists rg, mg such that.

rjj!

J <O _07,
H ”CJ = J(] + 1)mo
If r > 2r¢2™m~™0 by Proposition 7.1.11, one has

(r/2)’5!
Jes <C T
Iles < oo
hence

1(f89)kllcs <

r) k Ve
CJHfHSI,;R”g||SfrT’2R(2 gk(j—};)+(i)+ : Z( ) SR

1=0 91+12<2n j1+7j2<j

(2n)j1A(i1, g1, 1) A(iz, jo, k — 1,n) (2n + § — ji — j2 — i1 — i2)!
22n+j—j1—j2—i1—i2 201+t 1ol 4y 1 o) (2n — i1 —i2)!(j — j1 — jo)!nl(k + 7)!
33138 (k +j + )™
(Gi+u+l+1)m(Go+ia+k—n—1l+1)m(j+2n—d; —iz—j1 — jo +1)™

Second step.
Let us control the quotient of factorials above. There holds
. . . . 2n+
(2n 4] = j1i = jo — i1 —ip)! )
22n+j—n—ja—i1=i2(j — j — jo)!(2n — i1 — ig)! T o92ntj—ji—ja—i1—iz —

Thus, the middle line in the control on ||(f#g)k||cs is smaller than

(271)‘]'14(21, j17 la n)A(/iQij; k— l? TL)
2j1+i1+li1!i2!j1!j2!n!(k + ])'

Let us prove that, if i1 < 2n, 40 <2n, 0 <1<k —mn, j1 + j2 < j, then

(Qn)'J'A(Zlajlalan)A(Z27j2ak - la”)
23'1+i1+li1!i2!j1!j2!n!(k —|—j)' B

For the moment, let us focus on the i1 < n,is < n case. As i1 > 0 one has 271 <1

and it remains to control

(2n)1' (1 + i1 + D2 +i2 + & —n —1)!
20141 Vig) gy o In! (K + 7)!

This expression is increasing with respect to i; and 79, so that we only need to
control the i1 = i9 = n case, which is

20114+ n+D(j2 + k —1)!
201+ (n1)3 414! (k + )]

Moreover, the expression above is log-convex with respect to [, so that we only
need to control the [ =0 and I = k — n case.
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If I =0 we are left with

(2n)15!1(j1 + n)!(k + j2)! o <2n> (J1+n) (k+;‘2+j2) § (k+§2+j2)

N3 151 Y +n  (k+j+ = k+j+
21 (nh)3411521(k + 4)! 201+ ( JjJ2) ( JjJ2)
kE+j5+7J kti+iz
To conclude, j is closer from # than jo since j > j2, so that (’”22“2% <1,
J

hence the claim.
If l = kK — n, one has

(20 G+ R)G2 +)t _, <2n> (55 20
201k (nl)3 51152l (k + 5)! A

We now consider the case iy > n or is > n. We need to replace (i1 + j1 + {)! with
either (j1 4+ )!i1! or (j1 + 1+ n)!(éi1 — n)!. By Proposition 7.4.1, one has

i1+ 1)liq! i1+ 1+ n)!
(1 . )it R (1 n)
77! n!
Gt L+l =)t _ G+ L+ mtin! (G
ip! - i1!n! - n! '

The same inequalities apply with 41, j1 replaced with 3, j2. Hence, in all cases, we

are left with
2n)l31 (i1 +n+ D2 + k —1)!

2 ()31l (R + )0

which we just proved to be smaller than 4.
This yields

I(ft9)xllci

I (2R)F k)! v i

1=0 1,i2=0 j1+j2<j

(k+j+ 1)’"#%33?]5
(Ji+ir+1+1)m(Ge +ia+k—n—14+1)"(j +2n —i; —ip — j1 — jo + 1)™

We are almost in position to apply Lemma 7.2.7; since
(k+j+n+1)">(k+i+1)"

one has

1(f89)kllcs

r)J k r r? =L
ol g ();ﬁ)ﬁ; >Z<4fy ) )SDIEDS

1=0 1,i2=0 j1+j2<J

ifigjigs(k +5+n+1)"
(h+i+ 1+ )G +is+k—n—14+1)™(j +2n—iy —iz — j1 — jo + 1)™

Applying Lemma 7.2.7 yields, for m large enough depending on d,

| (2 2R)*(j + k) o (4"
I(F59)kllcs < Collfllgymllgllszron =7 ym Z%( B ) '
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As long as R > 4,72, which is possible if R is chosen large enough since ~, depends
only on 7, one can conclude:

(2r)Y (2R)*(j + k)!
(k+j+1)m

I(Ft)kllcs <27 Collllggnllgllgzran

At this stage, we are almost done with the proof: we obtained that the formal series
which corresponds, in the C* class, to the composition TV (f)TK"(g), belongs to
the same analytic symbol class than g.

Third step.

It remains to prove that computing symbol sums in decreasing powers of N, up
to an order ¢N for ¢ > 0 small, yields an exponentially small error.

Let ¢ > 0 be small enough depending on r, R,m. The analytic sums f(N) and
g(IN) appearing in TV (f) and TxV(g) can be replaced, by Proposition 7.2.6, by a
sum until ¢V, up to a small error O(e*C/N ) with ¢ > 0. Then, by construction,

cN cN N
TS0 (Z Ndkfk> TR (Z Ndk%) — TR (Z Ndk(fﬂQ)k)] (z,2)

k=0 k=0 k=0
cN cN '
:i/ W)WV (y,2) Y D NI gy 2)dy
M =0 k=cN—j

+ > NTMIR(jk N).
j+k<cN

Here, R(j,k, N) is the remainder at order ¢N — k — j in the stationary phase
Lemma applied to

N2d\IJN(a:, z) / e N®1(zy5:2) [i(x,9)gr(y, z)dy.

yeM
As
) , (dni
Nlew < Cr(ARY j!——-—~F—— < Ct(4RY j! ———
Ifiller < Cr(4RY 3 G ym < CrURY i ym
(4r)l1! (4r)l1!
lovllcr < Co4R) b "y < Col4R) K
one has, by Lemma 7.1.13,
e (An
: < AR jIRl .
1figrller < CCrCy(4R)"™5 G+

In other terms,

I f5 9kl o (maruxvy < CCyCy(8R)F(j + k),

so that, by Proposition 7.3.3, for some ¢’ > 0 depening on r, one has

N=*J|R(j, k, N)| < N24CC;C,N~F 77 (4R)7HE jijple =< (eN=i=k)
< N¥CC;CyNF=I(8R)YTTE(j 4 k)le ¢/ (eN=i=k),
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We must estimate this quantity in the range 0 < j + k < ¢N. Observe that, if
j+ k —1is replaced with j + k, then the right-hand term is multiplied by

S8R / /
—(j + k)e® < 8Rce®.
N (7 + k)e® < 8Rce
If ¢ > 0 is chosen small enough then this ratio is smaller than 1, so that it suffices
to estimate the k 4+ j = 0 case, for which it is O(exp(—(¢’ — €)cN)).
Since |[¥V| < 1 on U, it remains to estimate

cN cN )
> ) N Esup(| ) sup(|gkl),
7=0k=cN—j

which is smaller than (with [ =k + j):

2cN
CrCyN* 1N~ N7l (2R)'1!.
l=cN

Let [/N = ¢ € [c,2¢]. Then, by the Stirling formula, one has

N7 2R < CViexp|—llog(N) + llog(2R) + Llog(l) — ]
e 2RI 2RI

If ¢ > 0 is small enough then % < 1, so that _% log(ze—f,l) is bounded away from
zero independently of N for | € [¢N,2¢N]. In particular, there exists ¢ > 0 such
that

N7Y2R)I' < CVN exp(—¢ N).

Hence, if ¢ < ¢, then

cN cN

NS S N sup(fy]) sup(lgil) = O(e=N).

=0 k=cN—j

This concludes the proof. O

8.5 INVERSION OF COVARIANT TOEPLITZ OPERATORS AND
THE BERGMAN KERNEL

In this subsection we prove Theorem 8.1 as well as the second part of Theorem
8.2. To do so, we first show in Proposition 8.5.1, as a reciprocal to Proposition
8.4.3, that if f and h are analytic symbols of covariant Toeplitz operators with fy
non-vanishing, then there exists an analytic symbol g such that

T (TS (9) = TR () + O(e ™).

We then prove in Proposition 8.5.2 that, under the same hypotheses, T5V(f), whose
image is almost contained in H°(M,L®N) by Proposition 8.2.3, is invertible on
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this space up to an exponentially small error. Thus, one can conclude that, on
HO(M, L®N), there holds

TR (9) = TR (TR ()~ + O™ ).

This allows us to prove Theorem 8.1, since by setting h = f one recovers that the
Bergman kernel can be written as T (f)(T5(f))~! = T (a). Then, the second
part of Theorem 8.2 follows from Proposition 8.5.1 by setting h = a.

Following the lines of Proposition 8.4.3, let us try to construct inverses for analytic
symbols.

Proposition 8.5.1. Let U denote a small neighbourhood of the diagonal in M x M
and let f,h € S,Z%RO(U) be analytic sym