, Liste des publications de cette thèse -Fessant Françoise, Benkhelif Tarek, & Clérot Fabrice, EGC, 2017.

F. -benkhelif-tarek, C. Françoise, R. Fabrice, and . Guillaume, Co-clustering for differentially private synthetic data generation, International Conference on Database and Expert Systems Applications, pp.36-47, 2017.

G. Acs, C. Castelluccia, and R. Chen, Differentially private histogram publishing through lossy compression, 2012 IEEE 12th International Conference on Data Mining, pp.1-10, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00747821

C. Charu and . Aggarwal, On k-anonymity and the curse of dimensionality, Proceedings of the 31st International Conference on Very Large Data Bases, VLDB '05, pp.901-909, 2005.

L. Antal, Statistical Disclosure Control for Frequency Tables, 2016.

V. Ayala-rivera, O. Portillo-dominguez, L. Murphy, and C. Thorpe, Cocoa : A synthetic data generator for testing anonymization techniques, International Conference on Privacy in Statistical Databases, pp.163-177, 2016.

R. Agrawal and R. Srikant, Privacy-preserving data mining, vol.29, 2000.

R. Nabil, J. C. Adam, and . Worthmann, Security-control methods for statistical databases : A comparative study, ACM Comput. Surv, vol.21, issue.4, pp.515-556, 1989.

R. J. Bayardo and R. Agrawal, Data privacy through optimal kanonymization, 21st International Conference on Data Engineering (ICDE'05), pp.217-228, 2005.

A. Bouchareb, M. Boullé, and F. Rossi, Co-clustering de données mixtes à base des modèles de mélange, Conférence Internationale Francophone sur l'Extraction et gestion des connaissances (EGC 2017), pp.141-152, 2017.

A. Bouchareb, M. Boullé, F. Rossi, and F. Clérot,

, Un modèle bayésien de co-clustering de données mixtes, EGC, pp.275-280, 2018.

D. Vincent, M. Blondel, C. Esch, F. Chan, P. Clérot et al., Etienne Huens, Frédéric Morlot, Zbigniew Smoreda, and Cezary Ziemlicki. Data for development : the d4d challenge on mobile phone data, 2012.

M. Boullé, R. Guigourès, and F. Rossi, Clustering hiérar-chique non paramétrique de données fonctionnelles, Extraction et gestion des connaissances, pp.101-112, 2012.

A. Blum, K. Ligett, and A. Roth, A learning theory approach to non-interactive database privacy, Proceedings of the Fortieth Annual ACM Symposium on Theory of Computing, STOC '08, pp.609-618, 2008.

M. Boullé, Recherche d'une représentation des données efficace pour la fouille des grandes bases de données, Télécom ParisTech, 2007.

M. Boullé, Khiops : outil de préparation et modélisation des données pour la fouille des grandes bases de données, EGC, pp.229-230, 2008.

M. Boullé, Estimation de la densité d'arcs dans les graphes de grande taille : une alternative à la détection de clusters, EGC, pp.353-364, 2011.

M. Boullé, Sélection bayésienne de modèles avec prior dépendant des données, EGC, pp.29-34, 2012.

R. Brand, Microdata protection through noise addition, Inference control in statistical databases, pp.97-116, 2002.

G. Benedetto, M. Stinson, and J. M. Abowd, The creation and use of the sipp synthetic beta, 2013.

Y. Cheng, M. George, and . Church, Biclustering of expression data, Ismb, vol.8, pp.93-103, 2000.

S. Chawla, C. Dwork, and F. Mcsherry, Adam Smith, and Hoeteck Wee. Toward privacy in public databases, Proceedings of the Second International Conference on Theory of Cryptography, TCC'05, pp.363-385, 2005.

K. Wang, Privacy-preserving trajectory data publishing by local suppression, Information Sciences, vol.231, pp.83-97, 2013.

G. Caiola, P. Jerome, and . Reiter, Random forests for generating partially synthetic, categorical data, Trans. Data Privacy, vol.3, issue.1, pp.27-42, 2010.

J. Mary and . Culnan, how did they get my name ?" : An exploratory investigation of consumer attitudes toward secondary information use, MIS quarterly, pp.341-363, 1993.

T. Dalenius, Towards a methodology for statistical disclosure control

S. Tidskrift, , vol.15, pp.2-3, 1977.

J. Domingo, -. Ferrer, and Ú. González-nicolás, Hybrid microdata using microaggregation, Inf. Sci, vol.180, issue.15, pp.2834-2844, 2010.

J. Domingo-ferrer, A. Martínez-ballesté, J. M. Mateosanz, and F. Sebé, Efficient multivariate data-oriented microaggregation. The VLDB Journal-The International Journal on Very Large Data Bases, vol.15, pp.355-369, 2006.

J. Domingo, -. Ferrer, and J. , Practical dataoriented microaggregation for statistical disclosure control, IEEE Transactions on Knowledge and data Engineering, vol.14, issue.1, pp.189-201, 2002.

J. Domingo-ferrer, D. Sanchez, and J. Soria-comas, Database Anonymization :Privacy Models, Data Utility, and Microaggregationbased Inter-model Connections, 2016.

J. Domingo, -. Ferrer, and V. Torra, Ordinal, continuous and heterogeneous k-anonymity through microaggregation, Annual International Conference on the Theory and Applications of Cryptographic Techniques, vol.11, pp.486-503, 2005.

G. Duncan and D. Lambert, The risk of disclosure for microdata, Journal of Business & Economic Statistics, vol.7, issue.2, pp.207-217, 1989.

J. Domingo, -. Ferrer, and K. Muralidhar, New directions in anonymization : Permutation paradigm, verifiability by subjects and intruders, transparency to users, 2015.

C. Dwork, F. Mcsherry, K. Nissim, and A. Smith, Calibrating noise to sensitivity in private data analysis, Theory of Cryptography Conference, pp.265-284, 2006.

D. Defays and P. Nanopoulos, Panels of enterprises and confidentiality : the small aggregates method, Proceedings of the 1992 symposium on design and analysis of longitudinal surveys, pp.195-204, 1993.

J. Drechsler, Using support vector machines for generating synthetic datasets, International Conference on Privacy in Statistical Databases, pp.148-161, 2010.

J. Drechsler, My understanding of the differences between the cs and the statistical approach to data confidentiality, 4th IAB workshop on confidentiality and disclosure, 2011.

S. De-capitani-di-vimercati, S. Foresti, G. Livraga, and P. Samarati, Data privacy : Definitions and techniques. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, vol.20, pp.793-818, 2012.

C. Dwork, Differential privacy, Automata, Languages and Programming, vol.4052, pp.1-12, 2006.

C. Dwork, Differential Privacy, pp.1-12, 2006.

C. Dwork, Differential privacy in new settings, Proceedings of the Twenty-first Annual ACM-SIAM Symposium on Discrete Algorithms, SODA '10, pp.174-183, 2010.

F. Ben-fredj, Méthode et outil d'anonymisation des données sensibles, Conservatoire national des arts et metiers-CNAM, 2017.

P. Ivan, A. B. Fellegi, and . Sunter, A theory for record linkage, Journal of the American Statistical Association, vol.64, issue.328, pp.1183-1210, 1969.

C. M. Benjamin, K. Fung, R. Wang, P. S. Chen, and . Yu, Privacypreserving data publishing : A survey of recent developments, ACM Comput. Surv, vol.42, issue.4, 2010.

J. Gehrke, Models and methods for privacy-preserving data analysis and publishing, Data Engineering, 2006. ICDE '06. Proceedings of the 22nd International Conference on, pp.105-105, 2006.

G. Govaert and M. Nadif, Block clustering with bernoulli mixture models : Comparison of different approaches, Computational Statistics & Data Analysis, vol.52, issue.6, pp.3233-3245, 2008.

G. Govaert and M. Nadif, Co-Clustering : Models, Algorithms and Applications, 2013.

A. Ghosh, T. Roughgarden, and M. Sundararajan, Universally utility-maximizing privacy mechanisms, SIAM Journal on Computing, vol.41, issue.6, pp.1673-1693, 2012.

R. Guigourès, Utilisation des modèles de co-clustering pour l'analyse exploratoire des données, 2013.

. John-a-hartigan, Clustering algorithms, 1975.

Z. Huang, W. Du, and B. Chen, Deriving private information from randomized data, Proceedings of the 2005 ACM SIGMOD international conference on Management of data, pp.37-48, 2005.

A. Hundepool, J. Domingo-ferrer, L. Franconi, S. Giessing, E. S. Nordholt et al., , 2012.

S. Stephen-lee-hansen and . Mukherjee, A polynomial algorithm for optimal univariate microaggregation, IEEE Transactions on Knowledge and Data Engineering, vol.15, issue.4, pp.1043-1044, 2003.

A. Hvdwr-+-03]-anco-hundepool, R. Van-de-wetering, L. Ramaswamy, A. Franconi, P. Capobianchi et al., , 2003.

, The digital universe of opportunities, ID17] International Data Corporation (IDC), 2014.

, / 04/ SMART20130063 _Final-Report _030417 _2 .pdf, 2017.

S. Vijay and . Iyengar, Transforming data to satisfy privacy constraints, Proceedings of the eighth ACM SIGKDD international conference on Knowledge discovery and data mining, pp.279-288, 2002.

M. Jakobsson, A. Juels, and R. L. Rivest, Making mix nets robust for electronic voting by randomized partial checking, Proceedings of the 11th USENIX Security Symposium, pp.339-353, 2002.

D. Jeske, P. Lin, and C. Rendon, Rui Xiao, and Behrokh Samadi. Synthetic data generation capabilties for testing data mining tools

A. Kounine and M. Bezzi, Assessing disclosure risk in anonymized datasets, Proceedings of FloCon, 2008.

S. Kullback and R. A. Leibler, On information and sufficiency, Ann. Math. Statist, vol.22, issue.1, p.1951

F. Kohlmayer, F. Prasser, and C. Eckert,

A. Klaus and . Kuhn, Flash : efficient, stable and optimal k-anonymity, Privacy, Security, Risk and Trust (PASSAT), 2012 International Conference on and 2012 International Confernece on Social Computing (SocialCom), pp.708-717, 2012.

K. Satkartar, J. P. Kinney, A. P. Reiter, J. Reznek, R. S. Miranda et al., Towards unrestricted public use business microdata : The synthetic longitudinal business database, International Statistical Review, vol.79, issue.3, pp.362-384, 2011.

M. Kuneva, Keynote speech, roundtable on online data collection, targeting, and profiling. brussels, 2009.

J. Lee and C. Clifton, How much is enough ? choosing ? for differential privacy, International Conference on Information Security, pp.325-340, 2011.
DOI : 10.1007/978-3-642-24861-0_22

K. Lefevre, D. J. Dewitt, and R. Ramakrishnan, Incognito : Efficient full-domain k-anonymity, Proceedings of the 2005 ACM SIG-MOD International Conference on Management of Data, SIGMOD '05, pp.49-60, 2005.

K. Lefevre, J. David, R. Dewitt, and . Ramakrishnan, Mondrian multidimensional k-anonymity, 22nd International Conference on Data Engineering (ICDE'06), pp.25-25, 2006.

K. Lefevre, J. David, R. Dewitt, and . Ramakrishnan, Workloadaware anonymization, Proceedings of the 12th ACM SIGKDD international conference on Knowledge discovery and data mining, pp.277-286, 2006.

N. Li and T. Li, t-closeness : Privacy beyond k-anonymity and l-diversity, Proc. of IEEE 23rd Int'l Conf. on Data Engineering (ICDE'07), 2007.
DOI : 10.1109/icde.2007.367856

URL : http://www.cs.purdue.edu/homes/ninghui/papers/t_closeness_icde07.pdf

N. Li, T. Li, and S. Venkatasubramanian, Closeness : A new privacy measure for data publishing, IEEE Transactions on Knowledge and Data Engineering, vol.22, issue.7, pp.943-956, 2010.

M. Laszlo and S. Mukherjee, Minimum spanning tree partitioning algorithm for microaggregation, IEEE Transactions on Knowledge and Data Engineering, vol.17, 2005.
DOI : 10.1109/tkde.2005.112

Y. Lindell and B. Pinkas, Secure multiparty computation for privacy-preserving data mining, IACR Cryptology ePrint Archive, p.197, 2008.
DOI : 10.29012/jpc.v1i1.566

URL : https://journalprivacyconfidentiality.org/index.php/jpc/article/download/566/549

N. Li, H. Wahbeh, D. Qardaji, and . Su, Provably private data anonymization : Or, k-anonymity meets differential privacy
DOI : 10.1145/2414456.2414474

URL : http://arxiv.org/pdf/1101.2604.pdf

J. Li, Y. Tao, and X. Xiao, Preservation of proximity privacy in publishing numerical sensitive data, Proceedings of the, 2008.
DOI : 10.1145/1376616.1376666

, ACM SIGMOD International Conference on Management of Data, SIG-MOD '08, pp.473-486, 2008.

B. Loong, A. M. Zaslavsky, Y. He, and D. Harrington, Disclosure control using partially synthetic data for large-scale health surveys, with applications to cancors, Statistics in medicine, vol.32, issue.24, pp.4139-4161, 2013.
DOI : 10.1002/sim.5841

URL : http://europepmc.org/articles/pmc3869901?pdf=render

N. Mohammed, R. Chen, B. Fung, and P. Yu, Differentially private data release for data mining, Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining, pp.493-501, 2011.
DOI : 10.1145/2020408.2020487

D. Frank and . Mcsherry, Privacy integrated queries : an extensible platform for privacy-preserving data analysis, Proceedings of the 2009 ACM SIGMOD International Conference on Management of data, pp.19-30, 2009.

A. Machanavajjhala, D. Kifer, J. Gehrke, and M. Venkitasubramaniam, L-diversity : Privacy beyond kanonymity, ACM Trans. Knowl. Discov. Data, vol.1, issue.1, 2007.
DOI : 10.1109/icde.2006.1

URL : http://www.cs.cornell.edu/people/dkifer/ldiversityTKDDdraft.pdf

M. Maurizio-atzori, C. Nergiz, and . Clifton, Hiding the presence of individuals from shared databases, ACM SIGMOD International Conference on Management of Data, 2007.

V. S-muthukrishnan, T. Poosala, and . Suel, On rectangular partitionings in two dimensions : Algorithms, complexity and applications, International Conference on Database Theory, pp.236-256

. Springer, , 1999.

K. Muralidhar and R. Sarathy, Generating sufficiency-based non-synthetic perturbed data, Transactions on Data Privacy, vol.1, issue.1, pp.17-33, 2008.

S. Martínez, D. Sánchez, and A. Valls, Towards k-anonymous non-numerical data via semantic resampling, International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems, pp.519-528, 2012.

F. Mcsherry and K. Talwar, Mechanism design via differential privacy, Foundations of Computer Science, 2007. FOCS'07. 48th Annual IEEE Symposium on, pp.94-103, 2007.

A. Meyerson and R. Williams, On the complexity of optimal kanonymity, Proceedings of the twenty-third ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems, pp.223-228

C. Mehmet-ercan-nergiz, A. E. Clifton, and . Nergiz, Multirelational k-anonymity. Knowledge and Data Engineering, IEEE Transactions on, vol.21, issue.8, pp.1104-1117, 2009.

K. Nissim, Private data analysis via output perturbation, PrivacyPreserving Data Mining, pp.383-414, 2008.

K. Nissim, S. Raskhodnikova, and A. Smith, Smooth sensitivity and sampling in private data analysis, Proceedings of the Thirty-ninth Annual ACM Symposium on Theory of Computing, STOC '07, pp.75-84, 2007.

K. Nissim, S. Raskhodnikova, and A. Smith, Smooth sensitivity and sampling in private data analysis, Proceedings of the thirtyninth annual ACM symposium on Theory of computing, pp.75-84

A. Narayanan and V. Shmatikov, How to break anonymity of the netflix prize dataset, 2006.

A. Oganian and J. Domingo-ferrer, On the complexity of optimal microaggregation for statistical disclosure control, Statistical Journal of the United Nations Economic Comission for Europe, vol.18, pp.345-354, 2001.

P. Jerome, J. Reiter, and . Drechsler, Releasing multiply-imputed synthetic data generated in two stages to protect confidentiality, Statistica Sinica, pp.405-421, 2010.

P. Steven and . Reiss, Data-swapping-a technique for disclosure control, J. Statistical Planning and Inference, vol.6, issue.1, pp.73-85, 1982.

P. Jerome and . Reiter, Inference for partially synthetic, public use microdata sets, Survey Methodology, vol.29, issue.2, pp.181-188, 2003.

P. Jerome and . Reiter, Releasing multiply imputed, synthetic public use microdata : An illustration and empirical study, Journal of the Royal Statistical Society : Series A (Statistics in Society, vol.168, issue.1, pp.185-205, 2005.

H. Roy, M. Kantarcioglu, and L. Sweeney, Practical differentially private modeling of human movement data, IFIP Annual Conference on Data and Applications Security and Privacy, pp.170-178, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01633671

V. Rastogi, D. Suciu, and S. Hong, The boundary between privacy and utility in data publishing, Proceedings of the 33rd International Conference on Very Large Data Bases, VLDB '07, pp.531-542, 2007.

Y. Rubner, C. Tomasi, and L. J. Guibas, The earth mover's distance as a metric for image retrieval, International journal of computer vision, vol.40, issue.2, pp.99-121, 2000.

. Donald-b-rubin, Statistical disclosure limitation, Journal of official Statistics, vol.9, issue.2, pp.461-468, 1993.

P. Samarati, Protecting respondents' identities in microdata release

, IEEE Trans. on Knowl. and Data Eng, vol.13, issue.6, pp.1010-1027, 2001.

P. Samarati, Protecting respondents identities in microdata release, IEEE transactions on Knowledge and Data Engineering, vol.13, issue.6, pp.1010-1027, 2001.

J. Soria-comas, J. Domingo-ferrer, D. Sánchez, and S. Martínez, Enhancing data utility in differential privacy via microaggregation-based k-anonymity, The VLDB Journal, vol.23, issue.5, pp.771-794, 2014.

F. David-schoeman, Philosophical dimensions of privacy : An anthology, 1984.

N. Shlomo and T. De-waal, Protection of micro-data subject to edit constraints against statistical disclosure, 2006.

H. Smith, T. Dinev, and H. Xu, Information privacy research : an interdisciplinary review, MIS quarterly, vol.35, issue.4, pp.989-1016, 2011.
DOI : 10.2307/41409970

J. Chris, M. J. Skinner, and . Elliot, A measure of disclosure risk for microdata, Journal of the Royal Statistical Society : series B (statistical methodology), vol.64, issue.4, pp.855-867, 2002.

C. Skinner, Statistical disclosure control for survey data, 2009.

H. Surendra and . Mohan, A review of synthetic data generation methods for privacy preserving data publishing, International Journal of Scientific and Technology Research, vol.6, pp.95-101, 2017.

D. Solove, Understanding privacy, 2008.

J. Snoke, G. Raab, and B. Nowok, Chris Dibben, and Aleksandra Slavkovic. General and specific utility measures for synthetic data, 2016.

J. Snoke, G. M. Raab, and B. Nowok, Chris Dibben, and Aleksandra Slavkovic. General and specific utility measures for synthetic data, Journal of the Royal Statistical Society : Series A (Statistics in Society), vol.181, issue.3, pp.663-688, 2018.

A. Solanas, F. Sebé, and J. Domingo-ferrer, Microaggregation-based heuristics for p-sensitive k-anonymity : one step beyond, Proceedings of the 2008 international workshop on Privacy and anonymity in information society, pp.61-69, 2008.

L. Sweeney, Guaranteeing anonymity when sharing medical data, the datafly system, Proceedings of the AMIA Annual Fall Symposium, p.51, 1997.

L. Sweeney, Achieving k-anonymity privacy protection using generalization and suppression, International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, vol.10, issue.05, pp.571-588, 2002.

L. Sweeney, A model for protecting privacy, Int. J. Uncertain. Fuzziness Knowl.-Based Syst, vol.10, issue.5, pp.557-570, 2002.

M. Templ, Statistical disclosure control for microdata using the r-package sdcmicro, Transactions on Data Privacy, vol.1, issue.2, pp.67-85, 2008.

F. Traian-marius-truta, D. Fotouhi, and -. Barth, Assessing global disclosure risk in masked microdata, Proceedings of the 2004 ACM workshop on Privacy in the electronic society, pp.85-93

V. Torra, Microaggregation for categorical variables : a median based approach, Privacy in statistical databases, p.132, 2004.

J. K. Trotter, Public NYC Taxicab Database Lets You See How Celebrities Tip

T. M. Truta and B. Vinay, Privacy protection : p-sensitive k-anonymity property, Data Engineering Workshops, 2006. Proceedings. 22nd International Conference on, pp.94-94, 2006.
DOI : 10.1109/icdew.2006.116

URL : http://www.nku.edu/~trutat1/papers/PDM06_truta.pdf

M. Veale, R. Binns, and L. Edwards, Algorithms that remember : Model inversion attacks and data protection law, 2018.
DOI : 10.1098/rsta.2018.0083

URL : https://royalsocietypublishing.org/doi/pdf/10.1098/rsta.2018.0083

L. Stanley and . Warner, Randomized response : A survey technique for eliminating evasive answer bias, Journal of the American Statistical Association, vol.60, issue.309, pp.63-69, 1965.

D. Samuel, L. Warren, and . Brandeis, The right to privacy, Harvard law review, pp.193-220, 1890.

. Alan-f-westin, Privacy and freedom, Washington and Lee Law Review, vol.25, issue.1, p.166, 1968.

K. Wang, C. M. Benjamin, and . Fung, Anonymizing sequential releases, Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD '06, pp.414-423, 2006.

K. Wang, C. M. Benjamin, P. Fung, and . Yu, Template-based privacy preservation in classification problems, Fifth IEEE International Conference on, 2005.

K. Wang, .. M. Benjaminc, P. Fung, and . Yu, Handicapping attacker's confidence : an alternative to k-anonymization, Knowledge and Information Systems, vol.11, issue.3, pp.345-368, 2007.

E. William and . Winkler, Masking and re-identification methods for public-use microdata : Overview and research problems, International Workshop on Privacy in Statistical Databases, pp.231-246, 2004.

, (?, k)-anonymity : An enhanced k-anonymity model for privacy preserving data publishing, Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD '06, pp.754-759, 2006.

M. Woo, J. P. Reiter, A. Oganian, and A. F. Karr, Global measures of data utility for microdata masked for disclosure limitation, Journal of Privacy and Confidentiality, vol.1, issue.1, p.7, 2009.

H. Xu, T. Dinev, J. Smith, and P. Hart, Information privacy concerns : Linking individual perceptions with institutional privacy assurances, Journal of the Association for Information Systems, vol.12, issue.12, p.798, 2011.

X. Xiao and Y. Tao, Anatomy : Simple and effective privacy preservation, Proceedings of the 32Nd International Conference on Very Large Data Bases, VLDB '06, pp.139-150, 2006.

X. Xiao and Y. Tao, Personalized privacy preservation, Proceedings of the 2006 ACM SIGMOD International Conference on Management of Data, SIGMOD '06, pp.229-240, 2006.

X. Xiao, G. Wang, and J. Gehrke, Interactive anonymization of sensitive data, Proceedings of the 2009 ACM SIGMOD International Conference on Management of data, pp.1051-1054, 2009.

X. Xiao, G. Wang, and J. Gehrke, Differential privacy via wavelet transforms, IEEE Transactions on Knowledge and Data Engineering, vol.23, issue.8, pp.1200-1214, 2011.
DOI : 10.1109/icde.2010.5447831

URL : http://arxiv.org/pdf/0909.5530

Y. Xiao, L. Xiong, L. Fan, and S. Goryczka, Dpcube : differentially private histogram release through multidimensional partitioning, 2012.

J. Xu, Z. Zhang, X. Xiao, Y. Yang, G. Yu et al., Differentially private histogram publication, The VLDB Journal, vol.22, pp.797-822, 2013.
DOI : 10.1007/s00778-013-0309-y

Z. Yang, S. Zhong, and R. N. Wright, Anonymitypreserving data collection, Proceedings of the Eleventh ACM SIGKDD International Conference on Knowledge Discovery in Data Mining, KDD '05, pp.334-343, 2005.

J. Zhang, G. Cormode, C. M. Procopiuc, D. Srivastava, and X. Xiao, Privbayes : Private data release via bayesian networks, Proceedings of the 2014 ACM SIGMOD international conference on Management of data, pp.1423-1434, 2014.

Q. Zhang, N. Koudas, D. Srivastava, and T. Yu, Aggregate query answering on anonymized tables, IEEE 23rd International Conference on, pp.116-125, 2007.
DOI : 10.1109/icde.2007.367857

URL : http://repository.lib.ncsu.edu/bitstream/1840.4/924/1/TR-2006-16.pdf

N. Zhang and W. Zhao, Privacy-preserving data mining systems, Computer, issue.4, pp.52-58, 2007.