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Abstract

eing able to check whether an IC is fully functional or not after the manufacturing
process, is very difficult. Particularly for analog and Radio Frequency (RF) circuits,
test equipment and procedures required have a major impact on the circuits cost. An

interesting approach to reduce the impact of the test cost is to measure parameters requiring
low-cost test resources and correlate these measurements, called indirect measurements, with
the targeted specifications. This is known as alternate or indirect test technique because there
is no direct measurement for these specifications, which requires so expensive test equipment
and an important testing time, but these specifications are estimated w.r.t "low-cost measure-
ments". While this approach seems attractive, it is only viable if we are able to establish a
sufficient accuracy for the performance estimation and if this estimation remains stable and
independent from the circuits sets under test.

The main goal of this thesis is to implement a robust and effective indirect test strategy for
a given application and to improve test decisions based on data analysis.

To be able to build this strategy, we have brought various contributions. Initially, we have
defined new metric developed in this thesis to assess the reliability of the estimated perfor-
mances. Secondly, we have analyzed and defined a strategy for the construction of an optimal
model. This latter includes a data preprocessing followed by a comparative analysis of dif-
ferent methods of indirect measurement selection. Then, we have proposed a strategy for a
confident exploration of the indirect measurement space in order to build several best models
that can be used later to solve trust and optimization issues. Comparative studies were per-
formed on two experimental data sets by using both of the conventional and the developed
metrics to evaluate the robustness of each solution in an objective way.
Finally, we have developed a comprehensive strategy based on an efficient implementation of
the redundancy techniques w.r.t to the build models. This strategy has greatly improved the
robustness and the effectiveness of the decision plan based on the obtained measurements.
This strategy is adaptable to any context in terms of compromise between the test cost, the
confidence level and the expected precision.
More generally, this study constitutes an overview to guide the test engineer regarding prac-
tical aspects of alternate test implementation.

Key words: Alternate test, indirect test, analog/RF ICs, data mining, machine learning,
statistical techniques, correlation and modeling.
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Résumé

tre en mesure de vérifier si un circuit intégré est fonctionnel après fabrication peut
s´avérer très difficile. Dans le cas des circuits analogiques et Radio Fréquence (RF), les
procédures et les équipements de test nécessaires ont un impact majeur sur le prix de

revient des circuits. Une approche intéressante pour réduire l´impact du coût du test consiste
à mesurer des paramètres nécessitant des ressources de test faible coût et corréler ces mesures,
dites mesures indirectes, avec les spécifications à tester. On parle alors de technique de test
indirect (où test alternatif) car il n´y a pas de mesure directe des spécifications, qui nécessit-
erait des équipements et du temps de test importants, mais ces spécifications sont estimées
à partir des mesures "faibles coûts". Même si cette approche semble attractive elle n´est
fiable que si nous sommes en mesure d´établir une précision suffisante de l´estimation des
performances et que cette estimation reste stable et indépendante des lots de circuits à traiter.

L´objectif principal de cette thèse est de mettre en œuvre une stratégie générique permettant
de proposer un flot de test indirect efficace et robuste. Pour être en mesure de construire
cette stratégie nous avons apporté différentes contributions. Dans un premier temps, on a
développé une nouvelle métrique pour évaluer la robustesse des paramètres estimés. Dans
un deuxième temps, on a défini et analysé une stratégie pour la construction d´un modèle
optimal. Cette dernière contribution englobe un prétraitement de données puis une analyse
comparative entre différentes méthodes de sélections de mesures indirectes ainsi que l´étude
d´autres paramètres tels que la taille des combinaisons de mesures indirectes ainsi que la
taille du lot d´apprentissage. Nous avons également proposé une stratégie d´exploration de
l´espace des mesures indirectes afin de construire plusieurs modèles précis nécessaires pour
résoudre les problèmes de précision et de confiance dans les estimations. Les études com-
paratives réalisées ont été effectuées sur deux cas d´études expérimentaux, en utilisant des
métriques classiques ainsi qu´une nouvelle métrique permettant d´évaluer objectivement la
robustesse de chaque solution.
Enfin, nous avons développé une stratégie complète mettant en œuvre des techniques de re-
dondance de modèles de corrélation qui permettent d´améliorer clairement la robustesse et
l´efficacité de la prise de décision en fonction des mesures obtenues. Cette stratégie est adapt-
able à n´importe quel contexte en termes de compromis entre le coût du test et les niveaux
de confiance et de précision attendus.

Mots clés: Test alternatif, test indirect, circuits analogiques et Radio Fréquence, traitement
de données, algorithme d´apprentissage, analyse statistique, modélisation, corrélation.
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Introduction

T
he only viable solutions to test analog/RF integrated circuits are the specification-
oriented ones. In other words, the test procedures have to estimate the device spec-
ifications for the pass/fail decision during the production phase. For RF and high

performance analog devices, these procedures require expensive Automatic Test Equipment
(ATE) with high-speed and high-precision analog/RF test resources. In addition to the di-
rect ATE cost, the specific test environment increases the overall test cost as additional test
facilities, test equipment maintenance and test development engineering [1].
Furthermore, because signal integrity is mandatory for RF measurement we have to consider
RF probing issues, coaxial cable interfacing, matching functionality and board to device con-
tact [2]. This context is particularly critical during the wafer test. In order to encounter these
issues, manufacturers usually perform DC and low frequency measurements at the Wafer Test
Level and focus on RF performances at the Package Test Level [1]. However, such kind of test
increases also the test cost because the defective devices are identified in a backward level. In
other words, the cost of packaging phase of the failed device is added to the overall test cost.
Besides, the high cost of test is also due to the long time required to test analog/RF de-
vice. Indeed, the measurement of only one specification might be long and a large number
of performances have to be measured. This is particularly true for some complex RF devices
addressing RF multi-modes, which usually lead to an excessive test time. Moreover, as the
analog/RF test resources are limited on RF testers, the multi-site test solutions are usually
impossible for analog/RF devices [3].
Finally, because technologies scaling are following Moore´s laws, the latest manufacturing
technologies (i.e. System-On-a-Chip, System-In-Package, and Trough Silicon Via 3D Inte-
grated Circuits) offer very high density. In this context, it becomes impossible to access all
the inner component´s primary inputs and outputs in order to provide stimuli and monitor
test responses.

Several cost-reduced RF IC testing strategies have been proposed in the literature to over-
come the cost and inabilities of specification-based testing for analog and RF circuits. We can
cite techniques based on analog Built-In-Self-Test (BIST) and Design for Testability (DFT)
[4]. Other solutions rely on improving RF probing technologies and measurements accuracy
[5]. In this context, the "alternate test" strategy (also called "indirect test") has appeared as
a novel and promising strategy especially at Wafer Test Level [6] [7].
Alternate test offers several advantages compared to the conventional analog/RF test prac-
tices. The general goal of the alternate test strategy is to establish the correlation between
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two data spaces: the "low-cost measurement space" (Indirect Measurement IM) and the "ex-
pensive specification space". Based on machine learning and data mining tools, indirect test
principle assumes that we can use simple and low-cost analog/RF measurements to decide
what is considered as pass/fail devices during the production phase. This approach has been
applied to various types of analog and RF circuits.

The general purpose of this PhD report is to establish a framework for an efficient imple-
mentation of alternate test for analog/RF circuits. The target is not only the accuracy of
performance estimation, but above all to ensure a high level of confidence in the implemented
test flow. The PhD report is divided into four chapters.

The first chapter is an overview of the alternate test. After summarizing the main existing
data-mining tools and approaches, we remind the steps to implement the alternate test ap-
proach referring to the data-mining process. Then, we present different metrics to be used for
the evaluation of the alternate test efficiency. We also introduce a new metric called Failing
Prediction Rate (FPR) which was developed to assess the built model reliabilities. Finally,
we compare the performance of some learning algorithms on our datasets in order to choose
the appropriate algorithm for our framework.

In the second chapter, we present a complete study in order to build a robust single model. We
firstly introduce a basic filter to remove aberrant circuits. Then, we perform a comparative
analysis of various IM selection strategies, which is an essential step for efficient implementa-
tion of this technique. The objective behind is to perform a robust strategy to build the best
single correlation model.

In the third chapter, we develop two strategies for multi-model generation. The proposed
strategies are based on a reduction phase of the explored IM-space. Comparative analysis on
the proposed strategies and the techniques of the IM space reduction are then given.

In the fourth chapter, we present a generic framework for efficient implementation of alternate
test. The propose implementation uses model redundancy. This involves an exploration of the
tradeoff between cost and robustness. Furthermore in order to increase confidence, we have
investigated an original option which consists in building the meta-models using ensemble
learning.

Finally, the main contributions of this thesis are summarized in the conclusion and perspec-
tives for future work are presented.
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T
he conventional practice for testing analog and RF circuits is specification-oriented,
which relies on the comparison between the measured value and tolerance limits of
the circuit performances. While this approach offers good test quality, it often in-

volves extremely high testing costs. Indeed, the measurement of analog or RF performances
requires dedicated test equipment which has to follow the continuous improvement in the
performances of new ICs generation. It becomes difficult and very expensive to find the in-
struments to measure accurately the specifications. In addition to the high cost of Automated
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1.1. Some principles of data mining

Test Equipment (ATE), the nature of each individually measured performance may imply a
repeated test setup which further increases conventional test time. Moreover, as design trends
tend to integrate complex and heterogeneous systems in one package, new technical difficul-
ties are added to the heavy test costs. For instance, it becomes impossible to access all the
inner components primary inputs and outputs in order to provide stimuli and catch test re-
sponses. Finally, in the case of RF signals; a key challenge is to perform RF measurements
at wafer level due to probing issues, and applying wafer-level specification-based testing at
100% is rather impossible. In this context, numerous research works can be found over the
past twenty years on this topic. These usually try to overcome the cost and inabilities of
specification-based testing for analog and RF circuits.

Towards RF test cost reduction, some research is designed to compact the number and types
of specification tests that are operated within the production testing phase [8] [9]. Others
have proposed a substitute solution namely "alternate test" (also called "indirect test") which
has emerged as an attractive solution. The proposed solution relies on the power of machine
learning and data mining tools to establish a simple and low-cost analog/RF specification
test. The idea is to replace the conventional analog or RF performance measurements by
some simple and low-cost measurements. The fundamental principle is actually based on
exploiting the correlation between these two. This correlation is mapped through a nonlinear
and complex function that can be determined by the mean of machine-learning algorithms.
This correlation is then exploited during the mass production testing phase in order to deduce
the circuit performances using only those low-cost indirect measurements. This approach has
been applied to various types of analog circuits, including baseband analog [6] [7][10], RF
[11][12][13][14], data converters [15][16], and PLLs [17].

This indirect test approach requires data mining tools and additional treatments integrated
on a complete test board process in order to find the best ways for its implementation.
This chapter is organized as follows. Section 1.1 presents some principles of data mining.
Section 1.2 presents the indirect test. Section 1.3 describes the prediction-oriented indirect
test strategy. In section 1.4, we define the metrics that we will use with this work. Section 1.5
exposes a comparative study between 3 widely used regression algorithms in order to choose
the appropriate machine-learning algorithm for our study. Finally, section 1.6 concludes the
chapter.

1.1 Some principles of data mining

Data mining is the field that studies large data sets. The aim is to find models that can
summarize big data in order to convert them later into information and then into knowledge
[18]. More precisely, data mining algorithms aim to identify what is deemed knowledge
according to the disposed features and try to extract the relevant patterns from data. Data
mining is generally performed inside a multi-step process and it relies heavily on Machine
Learning Algorithms (MLA).
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1.1.1 KDD Process

The term Knowledge Discovery in Databases (KDD) refers to the board process of finding
knowledge in data with the application of particular data mining methods. It is of interest
to researchers in machine learning, pattern recognition, databases, statistics, artificial intel-
ligence, knowledge acquisition for expert systems, and data visualization [19]. The unifying
goal of the KDD process is to extract knowledge from data in the context of large databases.
It involves the evaluation and possibly interpretation of the patterns to make the decision as
to what qualifies as knowledge. It is a multi-step process that includes the choice of prepro-
cessing, sampling, projections and data mining tools.

Figure 1.1: KDD

The KDD process involves the following steps:

⋄ Selection: creating a target data set on which discovery will be performed after understand-
ing of the application domain.

⋄ Data cleaning and preprocessing: removal of noise or outliers, strategies for handling miss-
ing data fields, feature scaling...

⋄ Data reduction and projection: using dimensionality reduction or transformation methods
to reduce the dataset while keeping useful features to represent the data depending on the
goal of the task.

⋄ Data mining: deciding whether the goal of the KDD process is classification, regression,
clustering, etc. Searching for the appropriate machine-learning algorithms and patterns of
interest.

⋄ Analyze discovered knowledge: interpreting mined patterns

The KDD process coheres with the alternate test context. It corresponds actually to the
classical implementation of an indirect testing flow. In this manuscript, we will perform the
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various described steps above with some adaptation to the alternate test context. Also, we
will expose additional processing to achieve our objectives. More details on the indirect test-
ing implementation will be found in the next sections.

1.1.2 Machine-learning Algorithms

Overview of Machine-Learning Algorithms

Machine-learning algorithms are one of the most exciting recent technologies. They are om-
nipresent in our daily live and we are using them unconsciously. Website engines like Google
use MLA to search in internet. Facebook or Instagram applications use MLA to recognize
our friend photos. Spam filters save us from thousands of spam emails using MLA. Machine
learning then tries to mimic how human brain learns and investigated in different complex
fields.
MLA was developed as a new capability for computers and today it touches many statements
of industry and basic science [20][21]. Data mining is one of the fields based on MLA. For
example, biologists are performing MLAs on data collected from genes and ADN sequences to
understand the human geneses [22]. All fields of engineering as well are using MLAs, engineers
have big datasets to understand using learning algorithms. Also, MLAs are used to perform
applications that can´t be programmed by hand as autonomies helicopter,where a computer
learns by itself how to fly a helicopter based on MLAs [23].
Two kind of machine-learning algorithms exist: supervised and unsupervised machine-learning
algorithms.
Figure 1.2 represents the two main families of MLA. For both graphs, X1 and X2 represent
the features (also called attributes). We have considered in this example two features but
obviously we can have more then 2. The two MLA families are:

⋄ Supervised learning: is a learning problem where, for a given dataset, the features are
labeled and the output space(class)is known. Two kinds of problems can be solved with
supervised learning algorithms:

Regression problem: is one of the most popular statistical problems among the data mining
community. Regression algorithms try to look for a law which connects something that is
continuous in input with something that is continuous in output. As a regression problem
example, housing price prediction where we want to predict the price of houses according
to the house sizes.

Classification problem: consists in associating an individual X to a class C from K classes
based on their types, properties and behaviors. The input space is divided in two or more
classes. Example, classify patient as holder of a malignant tumor (class 1) or benign tumor
(class 0) regarding the tumor size.

⋄ Unsupervised learning: in this case, for a given data set, we don´t know either data labels
or to which group the data belongs and we want to find some structure in the data for
clustering issues. This can make it hard to reveal the information contained in those data
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sets. This problem is considered to be as an unsupervised problem and should be solved
by an approach called Clustering [24]. As example, Google news use clustering algorithms
every time we are searching for news on the Internet. It displays thousands of different
pages related to the same news topic that we are searching for and where it clusters auto-
matically the same topics.

(a)Regression (b)Classification

(A) Supervised learning algorithms

(B)Unsupervised learning algorithms

Figure 1.2: Machine-learning algorithms

In our study, we are in the supervised learning context as both input and output variables
are defined. The next section focuses on two kinds of potential algorithms: regression and
classification algorithms.

Regression Algorithms

There are several machine-learning algorithms used for regression mapping. In the same way,
in the field of indirect testing, people used various algorithms [25]. We define below briefly
three of the most commonly used learning algorithms:

⋄ Artificial Neural Network (ANN) is a mathematical model inspired from biological neural
networks, which involves a network of simple processing elements (neurons). ANN is a
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multi-layered system composed of an input, hidden and output layers. Through the mul-
tiple layers of the network, a back propagation algorithm is used to adjust the parameters
and threshold value of the network in order to minimize the error value for all inputs.
Neural networks can be used for modeling complex relationships between inputs and out-
puts and they have been successfully implemented for prediction tasks related to statistical
processes. Although ANN is very useful, it has some drawbacks. It is computationally
expensive. Also, it is a black box learning approach: we cannot interpret relationships
between inputs, layers and outputs. The difficulty in using ANN comes with the choice
of the number of neurons. On the one hand, too few neurons lead to high training and
generalization errors due to underfiting and high statistical bias. On the other hand, too
many neurons lead to low training errors but high generalization error due to overfiting and
high variance.

⋄ Regression trees can be defined as a set of rules. It starts with all the data in one node and
then splits it into two daughter nodes depending on the implemented rules. Each daughter
node is then split again. This process is repeated on each derived daughter in a recursive
manner. The recursion is completed when the subset at a node has all the same values
of the target variable, or when splitting no longer adds value to the predictions [26]. One
of the questions that arises in a regression trees algorithm is the optimal size of the final
tree. A tree that is too large risks overfitting the training data and poorly generalizing to
new samples. A small tree might not capture important structural information about the
sample space.

⋄ Multivariate Adaptive Regression Splines (MARS) is a series of local regressions stitched
together to form a single function presented for the first time by J. Friedman in [27]. It
can be considered as an adaptation of the regression tree. It is a multiply looped algorithm
that has a spline function in the innermost loop.
The MARS model can be viewed in the following form:

f̂(x) = c0 +
k∑

k=1

ciBi(x) +
k∑

k=2

ci,jBi,j(xi, xj) +
k∑

k=3

ci,j,kBi,j,k(xi, xj, xk) + ... (1.1)

where B corresponds to the basis function, c is the weighting coefficient, and c0 is the con-
stant intercept term. The model is a sum of a sum of all basis functions that involve one
variable, two variables, three variables and so on. During the construction of the predictive
model, there is a first forward phase in which a greedy algorithm is used to select basis
functions, i.e. the algorithm iteratively adds reflected pairs of basis functions. For each
pair of basis functions added, a model is built and its performance evaluated in terms of
training error. At each iteration, the algorithm selects the pair of basis functions that gives
the largest reduction of training error. There is then a backward phase in which the algo-
rithm removes terms one by one, deleting the least effective term at each step (according to
the GVC criterion), until a user-configurable limit of maximum allowed basis functions is
reached (NBFmax). MARS models are most useful in high dimensional spaces where there
is little substantive reason to assume linearity or a low level polynomial fit. They combine
very flexible fitting of the relationship between independent and dependent variables with
model selection methods that can sharply reduce the dimension of the model [28]. MARS
is quite recommended for continuous data processing. We will base our study on this al-
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gorithm. Reasons and detailed explanation will be found in the last section and the next
chapter.

Classification Algorithms

Several classification algorithms exist to deal with classification problems. There are some
algorithms that are assigned for classification problems as the K-NN, ZeroR, OneR...
Furthermore, other algorithms such as ANN and Support vector machine (SVM) can be used
for classification issues.

⋄ K-Nearest Neighbors (K-NN): the principle is to classify a new sample on its appropriate
class. According to the chosen K value, the algorithm computes the distance between the
K nearest neighbors (nearest individuals) and the new sample. The number of the nearest
neighbors determines the class to where the new individual belongs. KNNs are fast and
simple to implement. The big issue related to the use of K-NN is to find the optimal con-
figuration (the appropriate number of classes).

⋄ Support vector machine (SVM): is a supervised learning algorithm which can be used for
classification or regression. SVM constructs separating hyperplane for the classes, and tries
to find the hyperplane with the maximum margin between the classes. Samples on the
margin are called the support vectors [29].

As some MLA matters with feature scaling (MLA that depends on distances and uses gradi-
ent descent)[30], generally data analysts perform during the data preprocessing step a data
normalization. We have used the rescaling and standardization techniques for the "low-cost
indirect measurements" and performances respectively. The corresponding formulas for the
rescaling and standardization techniques are respectively:

x′ =
x − min(x)

max(x) − min(x)
(1.2)

x′ =
x − x̄

σ(x)
(1.3)

where x is the original feature vector, x’ is the normalized value, x̄ is the mean of that feature
vector, and σ is its standard deviation. Feature rescaling resizes the range of features to scale
the range in [0, 1] or [−1, 1]. Feature standardization makes the values of each feature have
zero-mean (when subtracting the mean in the enumerator) and unit-variance. Both methods
are widely used for normalization in many machine learning algorithms (e.g., support vector
machines, logistic regression, and neural networks).

1.2 Indirect test

1.2.1 Introduction

The underlying idea of alternate testing is that process variations that affect the conventional
performance parameters of the device (individual) also affect non-conventional low-cost indi-

9



1.2. Indirect test

rect parameters. If the correlation between the indirect parameter space (attributes) and the
performance parameter space (classes) can be established, then specifications may be verified
using only the low-cost indirect signatures. However the relation between these two sets of
parameters is complex and usually cannot be simply identified with an analytic function. Two
main directions have been explored for the implementation of the indirect test; the classifica-
tion and the prediction-oriented strategies.
Below, for the given 2D illustrations, we present the Indirect Measurement Space by IM =
[IM1, IM2, ..., IMm] , the Circuit Performance Space by P = [P1, P2, ..., Pl] and the Specifi-
cation Tolerance Limits by Limits = [Pp, min, Pp, max] .

1.2.2 Classification-oriented indirect test

The "classification-oriented strategy" was examined in many studies in the literature [9] [31]
[32] [33] [34]. The principle is to classify devices as good or faulty (PASS/FAIL) without pre-
dicting its individual performance parameters. In such kind of study we evoke a classification
problem where the specification tolerance limits are therefore part of the strategy. As figure
1.3 illustrates, the PASS/FAIL decision is fixed on the IM space. The specification tolerance
limits are used only on the learning step in order to build the decision boundaries on the IM
space. After that, the performance space is no more used and only the learned boundaries
will serve to classify any new device into the class it belongs to.
On one hand, this strategy seems to be as fast as the PASS/FAIL decision is made on the
IM space without turning back to the specification space and without verifying the RF per-
formances of the new devices. On the other hand, this approach cannot offer diagnosis
capability. The other drawback is the necessity to have the specification tolerance limits from
an early phase (learning phase). Indeed, in mass production testing the specification limits
may change.

Figure 1.3: Classification-oriented testing

1.2.3 Prediction-oriented indirect test

The second strategy, the "prediction-oriented strategy", was adopted in many studies [7]
[35] [36]. This strategy evokes a prediction problem where an estimation of the measured
performances is provided by the end. Figure 1.4 illustrates the principle.
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Figure 1.4: Prediction-oriented testing

The device performances are predicted instead of the decision boundaries by the regression
model. On the prediction-oriented testing, the specification tolerance limits are known only
on the production test phase unlike its counterpart "classification-oriented testing". The
PASS/FAIL decision is made once the specification tolerance limits are provided.
This strategy has several advantages compared to the classification-oriented strategy. The
main advantage is the potential use of the predicted specifications to adjust test production
limits. Moreover, information about the predicted performances helps to diagnose, interpret
and build confidence on the indirect test flow.
We have adopted the prediction-oriented strategy in our work due to these advantages. More
details on the prediction-oriented testing will be found in the next section.

1.3 Prediction-oriented indirect test strategy

Figure 1.5 summarizes the prediction-oriented indirect testing synopsis, which involves three
distinct phases: training, validation and mass production testing phases. Let P = P1, P2, ..., Pl

denote the l performances of the Device Under Test (DUT) that need to be evaluated with the
conventional specification prediction-oriented test approach, and IM = [IM1, IM2, ..., IMm]
a pattern of m low-cost indirect measurements. Note that the alternate test relies on the as-
sumption that the DUT is affected by process variations but does not contain a hard defect.
A defect filter such as the one proposed in [32] should therefore be included in the production
testing phase in order to screen out circuits affected by hard defect before they are sent to
the regression models.
One of the crucial issues associated with the indirect test approach consists in developing a
model that satisfies the following challenges:

⋄ High model accuracy: the regression model has to accurately represent the relationship
between selected indirect parameters and specifications to be predicted.

⋄ High prediction reliability: specifications have to be correctly predicted for all devices
evaluated during the production test phase, although the model is built on a limited number
of training instances.

⋄ Low-cost model: the built model has to discount the test cost. The indirect test technique
has to involve the minimal number of IMs as possible to ensure a low-cost test implemen-
tation.
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Figure 1.5: Prediction-oriented alternate testing synopsis
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1.3.1 Training phase

During this phase, a set of devices so-called "Training Set" (TS) is assigned to feed a learning
algorithm in order to build a regression model. The learning algorithm has two kinds of
information as input: the low-cost indirect measurement dataset (IMs) and the conventional
performance measurement (P) that were extracted from the TS. A regression model dedicated
to the targeted performance is obtained as output. That means that for each performance
parameter Pj, a machine-learning algorithm is trained over the two sets of measurements to
build the regression model fj : [IM1, ..., IMm] → Pj.
At this level, the model has to ensure a high accuracy; it has to accurately represent the
relationship between selected indirect parameters and specifications to be predicted. The
evaluation of the model accuracy is established by some specific metrics that we will intro-
duce later on. Different regression tools can be employed, including polynomial regression,
Multivariate Adaptive Regression Splines (MARS), Artificial Neural Networks (ANNs), sup-
port vector machines (SVMs), etc. Obviously, the quality of a regression model is strongly
related to the choice of the input information (IMs) used to build the regression model. These
indirect measurements have to be information-rich and correlate well with the device perfor-
mances. Also, the appropriate choice of the learning algorithm to use will boost for sure the
performance of the built model. Furthermore, the training devices and the training set size
to consider theoretically have an impact on the built model. All these parameters have to be
well fixed at this first phase of the indirect test synopsis. It is therefore also the objective of
our work to analyze this aspect and more details will be given later on in the manuscript.

1.3.2 Validation phase

Following the training phase, a validation phase is executed. This phase is required to assess
the built model efficiency. This evaluation is made on another set of devices so-called "Vali-
dation Set" (VS). The validation set disposes of the same kind of information as the training
set but extracted from a different set of devices (VS).
Some classical metrics have been widely used in the literature to evaluate the prediction accu-
racy on VS. We will expose them and discuss their efficiency in the next paragraph. Moreover,
we will introduce a new metric to assess the prediction reliability.
To achieve a viable efficiency assessment, the training and validation sets must have similar
statistical properties. In this respect, we have used the LHCS "Latin Hyper-cube Sampling"
process to divide the experimental dataset into two twin sets [37]. When the built regression
model is evaluated in terms of prediction accuracy and reliability, we will be able to launch
the production testing phase.

1.3.3 Production testing phase

In the production phase concerning a huge number of devices, we measure only one kind
of information: the low-cost indirect measurements for each production device. The built
regression model is then used to predict the corresponding RF performances based only on
that information. After predicting the new device performances, we resort to the specification
tolerance limits in order to classify the devices on PASS and FAIL classes.
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1.3.4 Problematic

By adopting the prediction-oriented testing, crucial challenges have to be faced in order to es-
tablish a confident and efficient alternate test implementation. In fact, during the production
testing phase, the high-priced performances are predicted by the mean of the "low-cost mea-
surements" for a huge number of instances. Those predicted RF values suffer from a lack of
confidence from industrials. The lack of confidence comes from different points. Dependency
of prediction model with the training phase settings (the used IMs and TS) affects the model
robustness and then the confidence in the strategy efficiency. Also, as the model is built on
a limited number of training instances, an expression of a durable robustness is difficult face
the set of production devices. Another point, many studies have shown that large prediction
errors can be observed once implementing the prediction-oriented testing, which is not toler-
ated from industrials.
Those challenges can be exposed in the form of the following questions:

How to improve confidence in indirect test?
How to build an accurate and robust model?
Should we rely on a single model to predict all devices?
How to select pertinent IM subset(s)?
How to safely clean-up dataset(s)?
Which learning devices and which training set size should we consider?
How to make an efficient test and which test metrics to use?
How to manage the trade-offs between test cost and test reliability?
How to implement a generic and robust indirect test flow suitable for a given application?

Actually some of those problems have already been the focus of previous studies. We will try
to answer all these questions in this manuscript along with proposing our contributions. Due
to the limited time, other points were not included in the objectives of this work. They will
be presented as further perspectives.

Two test vehicles fabricated by NXP Semiconductors will be used in this thesis to support
the investigations and evaluate our propositions. The first one is a Power Amplifier (PA) for
which we have production test data on a large set of devices, i.e. more than 10,000 devices.
These data include 37 low-cost indirect measurements and one conventional RF performance
measurement. The second test vehicle is a more complex device, i.e. an RF transceiver, for
which we have experimental test data from a more limited set of devices, i.e. around 1,300
devices. These data include one conventional RF performance measurement and a large
number of indirect measurements, i.e. 405 indirect measurements. Table 1.1 summarizes the
composition of the databases provided by NXP, for the two test vehicles.

1.4 Metrics for test efficiency evaluation

A key issue for the deployment of the indirect test strategy is test efficiency evaluation. This
latter is usually evaluated in terms of prediction accuracy and the most classical metric used
in the literature is the average or rms error; maximal error is also sometimes reported. How-
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Table 1.1: Test vehicle databases

Test vehicle Number of circuits Number of IMs Number of measured
Performances (Ps)

PA 11207 37 1

Transceiver 1299 405 1

ever these metrics do not give any information on prediction reliability, i.e. how many of the
circuits are evaluated during the mass production test with a satisfying accuracy.

In this section, we first define the classical accuracy metrics and then, we introduce a new
metric related to prediction reliability. These metrics will be used all along this manuscript
for test efficiency evaluation.

1.4.1 Accuracy metrics

In this work, we will use as accuracy metrics the rms error (computed as the Normalized Root
Mean Square Error NRMSE) and the maximal error, which are defined by:

εrms =
1

Pj | nom

√√√√ 1

Ndev

Ndev∑

i=1

(P(j, i) − P̂(j, i))2 (1.4)

εmax =
max(| P(j, i) − P̂(j, i) |)

Pj | nom
(1.5)

where Ndev is the number of evaluated devices, P(j, i) is the actual performance value of the

ith device, and P̂(j,i) is the predicted jth performance value of the ith device. These metrics
are expressed in percentages through normalization with the jth nominal performance value
Pj | nom. The lower these metrics, the better the accuracy is.

Note that we can distinguish model accuracy and prediction accuracy depending on whether
metrics are computed on the Training Set (TS) or on the Validation Set (VS)[38].

Model accuracy

Model accuracy is usually evaluated by computing εrms on training devices. In this case, the
metric reveals the intrinsic model accuracy, i.e. the global ability of the model to accurately
represent the correlation between the used indirect measurements and the device performance
under consideration. Figure 1.6 shows a scatter plot example of estimated versus actual per-
formance on the training set. This kind of graph gives a qualitative estimation of the model
accuracy: a model is considered accurate when the learning devices (plotted with blue dots)
follow the first bisector. The rms error gives a quantitative evaluation of how close the blue
dots are to the first bisector.
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Figure 1.6: Example of estimated vs. actual RF performance on the TS

Prediction accuracy

Prediction accuracy is usually evaluated by computing εrms on devices of the validation set.
In this case, the metric actually reveals the global ability of the model to accurately predict
performance values for new devices. Figure 1.7 shows a scatter graph example of estimated
versus actual performance on the training and validation sets (TS and VS). It can be observed
that the large majority of validation devices (plotted with red dots) are accurately predicted,
resulting in a low rms prediction error (in the same range as the rms error evaluated on TS).
However it can also be observed that some devices exhibit a high prediction error. This is not
expressed by the rms error since the number of these devices is extremely small compared to
the number of devices correctly predicted; in contrast this is clearly expressed by the maximal
prediction error. The maximal prediction error, which is not always reported in the literature,
permits us to pinpoint this situation.

In our work, we evaluate both rms and maximal prediction errors.

1.4.2 Prediction reliability: Failing Prediction Rate (FPR)

The rms and maximal prediction errors allow us to quantify prediction accuracy but they
are not sufficient to evaluate indirect test efficiency. Actually, many experiments reported
in the literature on various devices demonstrate that very low average prediction errors can
be achieved but this does not guarantee low maximal prediction error. This problem was
highlighted in several studies [38] and [39]. Also, as evaluation is usually performed on a
small set of validation devices (hundreds to some thousand instances) even if low maximal
prediction error can be observed on a small validation set, there is no guarantee that the
maximal prediction error will remain in the same order of magnitude when considering the
large set of devices under test (several millions of devices). Finally it should be highlighted
that the maximum prediction error is only an indicator of the worst case error, but gives no
indication of the number of devices affected by a large prediction error.
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Figure 1.7: Example of estimated vs. actual RF performance on the VS

In this context we define a new metric dedicated to prediction reliability, which is related
to the number of devices that are predicted with a satisfying accuracy for a given set of de-
vices. More precisely this metric, called Failing Prediction Rate (FPR) [40], is defined as the
ratio between the number of devices with a prediction error higher than a given εmeas and
the number of devices in the validation set, where εmeas corresponds to the measurement re-
peatability error achieved when performing conventional measurement of the targeted circuit
performance Pj.

The FPR, expressed in percentage, is given by:

FPR(εmeas) =
1

NV dev

NV dev∑

i=1

(| P(j, i) − P̂(j, i) |> εmeas) (1.6)

where:

|P(j, i) − P̂(j, i)| > εmeas =

{
1 if true,
0 otherwise.

This metric permits us to quantify the indirect test efficiency with respect to the conventional
test since it represents, for each circuit performance Pj to be evaluated, the percentage of
circuits with a prediction error that exceeds the conventional measurement uncertainty. It is
therefore a relevant metric to evaluate prediction reliability; it can also be used to compare
the different Indirect Measurement (IM) selection strategies that we will introduce in the
next chapter. As an illustration, figure 1.8 gives the FPR computed on the validation set
for two models built with different combinations of indirect measurements. We can notice
from this figure that the percentage of devices with a prediction error higher or equal to the
conventional measurement uncertainty εmeas resulting from Model 2 is less than the one given
by Model 1; we can thus conclude that Model 2 offers better prediction reliability than Model
1.
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1.5. Choice of the regression algorithm

Figure 1.8: An example of Failing Prediction Rate (FPR) achieved with two different models

1.5 Choice of the regression algorithm

Various regression algorithms can be employed to build the regression model, including poly-
nomial regression, Multivariate Adaptive Regression Splines (MARS), Artificial Neural Net-
works (ANNs), Support Vector Machines (SVMs), etc. To motivate the choice of the appro-
priate machine-learning algorithm for our indirect testing flow, we have made a preliminary
comparative study between 3 three widely used regression tools: the MARS, the ANN and the
Regression Tree algorithms (implemented in ENTOOL Matlab-toolbox for regression mod-
eling [41]). We can find brief first comparison studies on one of these algorithms efficiency
in [42], but only in terms of accuracy (evaluated through Mean Square Error, MSE) on one
case study. We extend here this study by comparing the performance achieved by the three
algorithms not only in terms of accuracy but also in terms of reliability by exploiting the new
FPR metric.

Practically for each test vehicle, we have selected a subset of 3 pertinent indirect measure-
ments. These indirect measurements were provided to the different algorithms and a regression
model was built for each MLA; Our analysis is based on two practical case studies: a Power
Amplifier (PA) and an RF transceiver from NXP semiconductors. The assessment relies on
the training and validation errors that were then computed on both test vehicles. Note that
to ensure a meaningful comparison, we have used the same training and validation sets that
were used for the 3 studied MLAs. Results are summarized in figures 1.9 and 1.10 for the
PA and transceiver test vehicles respectively. Intrinsic Model model accuracy is evaluated
by the rms error computed on the training set (εrms−T S), while prediction accuracy is eval-
uated by the rms and maximal prediction errors computed on the validation set (εrms−V S)
and εmax−V S), and prediction reliability is assessed by the new failing prediction rate metric
(FPR). Different remarks derive from those graphs.
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(a) Classical metrics

(b) FPR metric

Figure 1.9: PA test vehicle
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1.5. Choice of the regression algorithm

(a) Classical metrics

(b) FPR metric

Figure 1.10: RF transceiver test vehicle
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First regarding the classical metrics:

- the different MLAs lead to similar performance in terms of intrinsic model accuracy with
equivalent rms errors on the TS;

- a modest advantage can be observed for the MARS algorithm in terms of prediction ac-
curacy since it permits us to preserve the same rms error on the VS and exhibits the
lowest maximal error. These results are in accordance with the previous study reported
in [42].
Then regarding prediction reliability evaluated by the new metric, we can notice a clear
advantage of the MARS algorithm over the two other algorithms, since it permits us to
achieve the lowest FPR for both test vehicles. Based on these observations, we could
conclude that the MARS algorithm leads to more reliable models than the ANN and
the Regression Tree algorithms. From this study, we have decided to use the MARS
algorithm to build regression models for the rest of our work.
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1.6 Summary

Reducing the analog/RF IC test cost is a crucial issue in the semiconductors industry. There
is a significant need to develop alternate techniques to the classical test approaches. Indirect
test technique was proposed in order to lower the test cost. This approach is well known in
the field of analog/RF IC testing but it suffers from a lack of confidence from industrials.
Different steps to implement a robust indirect test flow are required. For this purpose, indi-
rect testing as many research fields relies on the data mining tools and takes into account the
KDD process in order to ensure the best exploration of the data space.

In the first part of this chapter, we have swiftly cited the different steps to implement the
indirect test approach. We have mentioned some difficulties related to the application of the
KDD process in our context. In fact, the effectiveness of a model is affected by several pa-
rameters. The case study and problem type are the key to identify the best data mining and
MLA tools to use. Also, the data preprocessing step (as data cleaning and feature scaling)
affect the prediction qualities. Another basic parameter is the right choice of training and
validation sets. Those sets have to be split in a proper manner to equally present knowledge in
data. Furthermore, other parameters can badly affect the model accuracy such as underfitting
and overfitting problems. For this purpose data scientists refer to some estimation procedure
(as cross-validation) in the case of very limited data sets or combine models to enhance the
predictions qualities.

In the second part, we have announced our choice to work with the prediction-oriented in-
direct test strategy and we have exposed the different challenges that we have to deal with
among this study. Also we have presented the different metrics used to evaluate the indi-
rect test efficiency. Besides, we have introduced a new metric called FPR to assess the built
model reliabilities. Finally, we have compared the performance of 3 commonly-used Machine-
Learning Algorithms on our datasets and we have chosen to exploit the MARS algorithm for
the implementation of the indirect test strategy.

In the next chapter we will come back to the different steps to build the prediction-oriented
indirect test strategy. We will explain: the different steps, the different comparison analysis
made and the additional processing to be integrated within the classical indirect test flow in
order to develop a robust and generic indirect test implementation.
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Single model approach: outlier filtering and

selection of indirect measurements
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B
ig data is used to describe a massive volume of data. It is used in many fields: finance,
marketing, biology, tourism... When dealing with such large amounts of data we face
difficulties in being able to manipulate, and manage them. Computation time, storage

difficulties volume, visualization and plotting big data represent serious issues for big data. In
the context of indirect testing, the database contains a set of measurements, composed of m
indirect measurements (IMi, i = 1, ..., m) and p performance measurements (Pj, j = 1, ..., p),
extracted from a population of n integrated circuits (ICk, k = 1, ...n). The typical structure
of the database is illustrated in figure 2.1: rows represent the individuals (integrated circuits,
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ICk) while the columns represent the attributes (indirect measurements, IMi) and the classes
(performance measurements, Pj) associated with the individuals. The objective is to explore
the possible correlation between the attributes and the classes in order to establish a regression
model for each class. These models will then be used to predict performance values of new
individuals.

Figure 2.1: Database form representation as a table of individuals (ICk), attributes (IMi) and
classes (Pj)

The regression model ensuring the correlation between the attributes and a given class is then
the cornerstone for accurate prediction. Two main issues have to be faced for the construction
of efficient regression models:

⋄ The presence of outliers in the database: An outlier can be defined as "an observation
that deviates so much from other observations as to arouse suspicion that it was generated
by a different mechanism" [43]. In the context of regression analysis, the problem with
the presence of outliers in the database is that, since they are not consistent with the
statistical nature of the remainder of data, they can affect the quality of the regression
model. Therefore, they should be excluded from the database prior to the construction of
the regression models.

⋄ The curse of dimensionality: The curse of dimensionality refers to various phenomena
that arise when analyzing and organizing data in high-dimensional spaces. In the context
of regression analysis, it may seem interesting to have as many attributes as possible to
maximize the opportunity to build a satisfactory model. However taking into account more
attributes does not necessarily lead to a better model. In fact with a fixed number of
training samples, the predictive power of a regression model reduces as the dimensionality
increases, and this is known as the Hughes effect or Hughes phenomenon [44]. To avoid such
an issue, regression models should involve an only limited number of attributes; selection
methods are therefore required to identify the most pertinent attributes.

In this chapter, we address these two aspects. First we present an adaptive k-filter that permits
us to remove outliers from the database. Then we investigate feature selection algorithms and
more precisely we explore four different strategies for the selection of indirect measurements
in order to avoid the curse of dimensionality issue. An experimental setup is developed to
perform a comparative analysis of these strategies and results are evaluated on the two test
vehicles for which we have production test data.
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2.1 Outlier filtering

Alternate testing relies on the construction of a regression model that maps one device perfor-
mance to some indirect measurements. It is well-established that such a regression function
can be fit for data that are described by a fixed probability density function [45]. Outliers
should therefore be excluded from the training phase since they are not consistent with the
statistical characteristics of the remainder of the data.

In this work, we admit that outlier circuits are those whose measurement appears to deviate
markedly from other circuits of the database. Generally outlier circuits correspond to circuits
affected by random manufacturing defects, leading their measurement value to lie outside of
the measurement statistical distribution. As an illustration, figure 2.2 shows the histogram
distribution of an indirect measurement for the transceiver test vehicle. The indirect mea-
surement of some circuits is so far from the mean of the IM distribution that they can be
considered as outliers; those circuits should be identified and eliminated from the training
dataset since they may adversely affect the quality of the learned regression model.

Figure 2.2: Histogram distribution for an indirect measurement over the IC population showing
outlier circuits

Outlier detection has been studied for decades in a number of application domains such as
fraud detection, activity monitoring, satellite image analysis or pharmaceutical research, but
there is no single universally applicable technique [46]. In the context of alternate testing, a
defect filter based on joint probability density estimation has been developed [32] to identify
outliers that do not fit the expected multi-dimensional distribution of the indirect measure-
ments. However this defect filter suffers from computational issue in the case of indirect
measurement space with high-dimensionality. Another method consists in allocating non-
linear guard-bands in the indirect measurement space [47]; however correct positioning of the
guard-bands requires information on defective devices which is not always available. In this
section, we develop a simple filter, so-called "adaptive k-filter" that can handle IM space of
high-dimensionality and does not require information on defective devices. An exploratory
analysis of the IC space is first presented in sub-section 2.1.1 for a better understanding of
our database elements and a better setting of the filter requirements. The filter proposed for
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screening out outlier circuits from the IC space is then exposed and tested in sub-section 2.1.2

2.1.1 Exploratory IC space analysis

First, we have performed an exploratory analysis of the IC space with the aim at getting
familiar with the type of data and studying their characteristics. Indeed we have no informa-
tion about the way that NXP has collected these data: what kind of indirect measurements,
on which equipment and with which uncertainty, etc.

This analysis has revealed the diversity of data. For illustration, figure 2.3 shows some
examples of IM distribution encountered in the database. For some IMs, the distribution
is contained in a very narrow range while for others the distribution covers a wider range.
The distribution can be either continuous or discrete, that latter probably related to the
finite resolution of the test equipment. And more important, there is not a single type
of distribution: most of the IMs actually exhibit a Gaussian-like distribution, but other
types can be encountered. This is an important observation because it means that methods
implemented for outlier detection cannot rely on a given distribution but have to be able to
handle various types of distribution.

Figure 2.3: Examples of IM distribution encountered in the database (transceiver test vehicle)

2.1.2 Adaptive k-filter

Our proposal for screening out outliers from the database is to implement an adaptive filter
that iteratively prunes the outliers. More specifically, the idea is to exploit the sensitivity of
descriptive statistics to outliers and adapt the filter limits at each iteration. Details on this
filter are given hereafter.

Let us consider the mean values µ = {µ1, ..., µm} and the standard deviations σ = {σ1, ..., σm}
of the m indirect measurements for a given dataset. As suggested in [48], a simple filter is a
static filter, called k-filter, which is we can defined a filter as a hyper-rectangle in the indirect
measurement space:

Hk = {µ1 ± k.σ1, ..., µm ± k.σm} (2.1)

where k is a positive real number. All devices whose indirect measurements fall outside the
k-filter are considered as outliers and excluded from the dataset.
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The main issue with this static k-filter is the choice of k. A strict k-filter (e.g. k = 3) will
indeed exclude outliers, but it also excludes a number of circuits that actually belong to the
tail of the distribution. However it is crucial to keep these tail devices during the learning
phase so that the learned regression model covers the entire range of the distribution. Indeed
during the testing phase, all devices whose indirect measurements fall outside the k-filter will
be discarded since the model can be trusted only for devices whose indirect measurements
fall inside the k-filter. Some of these devices actually correspond to failing devices affected
by gross defect but other can be passing devices with indirect measurements just outside the
k-filter. Simply rejecting all these devices therefore incurs unnecessary yield loss. Another
option is to retest these devices through conventional measurements, which obviously incurs
additional testing costs. With a strict k-filter, the learned model covers only a limited range
of the distribution; the number of discarded devices during the testing phase will be high,
therefore limiting the benefit alternate test. In contrast, with a lenient k-filter (e.g. k > 10),
only few outliers will be identified and many circuits that do not belong to the distribution
will remain in the dataset, affecting the accuracy of the model learned during the training
phase.

Our proposal to cope with this issue is to perform outlier detection based on iterative ap-
plication of a moderate k-filter (typically 6 ≤ k < 10), with an adjustment of the k-filter
limits at each iteration. In particular the idea is to recalculate, at each iteration, the mean
and standard deviation of the dataset after exclusion of the devices detected by the k-filter.
Since these statistics are sensitive to outliers, if the new values differ from the preceding ones,
we can consider that excluded devices actually correspond to outliers and we go to the next
iteration with updated k-filter limits. On the contrary if the mean and standard deviation
are not affected, we can consider that the dataset no longer contains outliers but only devices
that belong to the distribution; the procedure is then stopped. This procedure is summarized
in figure 2.4.

The adaptive k-filter has been applied on the database of the two test vehicles, considering
different values of k between 6 and 10. Results are summarized in Table 2.1 and 2.2 which
report the number of circuits eliminated at each iteration for the PA and transceiver test
vehicles respectively. For the PA test vehicle, the adaptive k-filter has almost no effect on

Table 2.1: Number of outliers eliminated from the PA database for different values of k

k Iter1 Iter2 Iter3 Iter Total

6 3 2 0 5(0.045%)

7 1 1 0 2(0.017%)

8 1 1 0 2(0.017%)

9 0 0

10 0 0

the database: only less than 0.1% of the circuits are detected as outlier for k equal to 6 or
7, and no circuit for k superior or equal to 8. This is actually consistent with the fact that
NXP has already applied an empirical filter on the database, considering "ad-hoc" defined test
limits on each indirect measurements. The interest of the proposed filter is that detection of
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Figure 2.4: Adaptive k-filter

Table 2.2: Number of outliers eliminated from the transceiver database for different values of k

k Iter1 Iter2 Iter3 Iter4 Iter5 Iter6 Iter7 Iter8 Iter9 Iter Total

6 116 33 14 4 1 1 0 169(13%)

7 76 30 11 2 2 1 0 122(9%)

8 51 20 3 2 1 1 1 0 78(6%)

9 46 9 3 2 1 1 1 1 0 64(5%)

10 43 7 1 1 1 1 1 1 0 56(4%)
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outliers is performed automatically without any "ad-hoc" settings.

For the transceiver test vehicle, NXP has provided us the raw database without any empirical
filtering. In this case, the adaptive k-filter permits to discard a number of circuits from the
database. As expected the smaller the value of k, the higher the number of circuits identified
as outliers: 4% of the circuits are identified as outliers with k = 10, and 13% for k = 6. The
choice of k = 6 seems an appropriate option that preserves the large majority of data but
effectively excludes circuits that do not belong to the global statistical distribution. Figure
2.5 illustrates the operation of the filter with k = 6 for some examples of IM distribution
encountered in the database. These examples show that the filter correctly identifies outliers
(when present) while maintaining the global IM statistical characteristics, whatever the type
of IM distribution. The benefit from the filter application is illustrated in figure 2.6, which

(a)

(b)

Figure 2.5: Examples of IM distribution before (a) and after (b) the filtering process (transceiver
test vehicle)

compares the correlation coefficient (R) and the estimation errors (εrms−T S and εmax−T S)
achieved for a model built on the initial database and for the same model built on the filtered
database. These results clearly show that the presence of outliers indeed affects the regression
model quality and demonstrate the effectiveness of the filter: by removing these outliers, there
is an increase of the correlation coefficient and a significant improvement of both the average
and maximal estimation errors.

To conclude this section, table 2.3 summarizes the database composition for both test
vehicles after application of the adaptive k-filter. All experiments and results presented in
the remaining of the manuscript will be conducted on these filtered databases.
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Figure 2.6: Correlation coefficient and estimation errors before and after the filtering process
(transceiver test vehicle)

Table 2.3: Test vehicle databases after outlier filtering

Test vehicle Number of circuits Number of IMs Number of measured
Performances (Ps)

PA 11202 37 1

Transceiver 1130 405 1

2.2 Methods for indirect measurement selection

An essential step for efficient implementation of the alternate test strategy is the choice of
adequate indirect measurements for each circuit performance to be predicted, which have to
be information-rich and correlate well with the device performances. However this is a circuit-
specific problem and there is no proven generic method to identify such indirect measurements.
Very often, indirect measurements are defined ad-hoc, based on the expertise of the designer
and the precise knowledge of the DUT. To illustrate how important is this choice, figure 2.7
shows an example of scatter plot that can be obtained for the transceiver test vehicle with a
random choice of three indirect measurements. Obviously in this case, the IMs used to build
the model are completely irrelevant since there is absolutely no correlation between predicted
and actual values of the device performance.

Note that the choice of adequate indirect measurements is not an easy task because there
are many possibilities for obtaining indirect measurements:

- standard external DC tests typically performed on any device can be used as indirect
measurements [9]

- the device may be equipped with DC probes and a DC test bus allowing measurements on
internal nodes [14],

- the device may also include built-in sensors such as envelope sensors, dummy circuits, PCM
which offer additional indirect measurements [49][50],

- finally all these measurements can be performed under different test conditions, for example
multi-vdd conditions [51], which allows to multiply the number of indirect measurements
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Figure 2.7: Correlation graph for a transceiver performance performed on training set (TS)

by the number of different settings.

Then the question is: why not building regression models that use all possible indirect mea-
surement candidates? There are actually several reasons for this. First the computational
effort for building a model depends on the number of input variables used in the model and
therefore by using only a limited number of indirect measurements, the computational burden
is reduced. Second by using only a limited number of indirect measurements, the number of
actual measurements that have to be performed during production test is limited, therefore
reducing the test cost. But the essential reason for using only a limited number of indirect
measurements is to avoid the curse of dimensionality, which is a critical issue for the accuracy
of test predictions. Indeed in the context of regression analysis, curse of dimensionality means
that the predictive power of a model built with a given number of training samples reduces as
the dimensionality increases. This is a well-identified phenomenon, as illustrated on the graph
of figure 2.8 coming from a tutorial on "Machine Learning and its Applications in Test" [52]:
the test error computed on training devices continuously decreases by adding new indirect
measurements to the model, while the test error computed for new devices first decreases
but then increases as the prediction model uses more and more indirect measurements. This
is therefore the fundamental reason for using only a limited number of indirect measurements.

To summarize, on the one hand it´s easy to identify a large set of indirect measurements
candidates, but on the other hand it´s mandatory to use only a limited number of indirect
measurement candidates. The problem is therefore how to select a pertinent subset of indirect
measurements from a large set of IM candidates. This is precisely the role of feature selection,
also known as variable selection, attribute selection or variable subset selection, which is the
process of selecting one subset of relevant features (variables, predictors) for use in model con-
struction. Note that feature selection algorithms are classically directed towards the selection
of a single subset; they can be used in the context of classical indirect test implementation,
where a single prediction model is required for each device performance.

Feature selection algorithms can actually be classified in two main categories: filter methods
and wrapper methods as illustrated in figure 2.9 [53]. Filter methods perform feature selection
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Figure 2.8: Curse of dimensionality issue in the context of indirect testing

based on ranking the variables according to a given statistical observations. It is therefore a
pre-processing step, independent of the machine-learning prediction model. In contrast, the
wrapper methodology consists in using the prediction performance of a given machine-learning
prediction model to assess the relative usefulness of subsets of variables. This information is
used within an optimization loop in order to guide the search for efficient subsets of variables.

Figure 2.9: The two main categories of feature selection algorithms

In this section, we present four different strategies of indirect measurement selection, per-
taining to both categories. These strategies will be applied to the two test vehicles and a
comparative analysis presented in the following sections.

2.2.1 IM selection based on Pearson correlation

A first simple strategy to perform IM selection is based on the computation of sample Pearson
correlation coefficient, which is a statistical measure of the linear dependence between two
variables. Pearson correlation coefficient is actually defined as the covariance of the two
variables divided by the product of their standard deviations:
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R(X, Y ) =
cov(X, Y )

σ(X)σ(Y )
(2.2)

where cov is the covariance and σ the standard deviation.
Considering (Xi, Yi), i = 1, 2, ..., n a statistical sample from a pair of random variables (X, Y ),
the Pearson correlation coefficient can be expressed as:

R(X, Y ) =

n∑

i=1

(Xi − X)(Yi − Y )

√√√√
n∑

i=1

(Xi − X)2

√√√√
n∑

i=1

(Yi − Y )2

(2.3)

where X and Y are the mean values of the variables X and Y respectively:

X = 1
n

n∑

i=1

Xi, and Y = 1
n

n∑

k=1

Yi

In the context of IM selection strategy, Pearson correlation coefficient can be used to per-
form variable ranking. More precisely for a given performance Pj to be evaluated, indirect
measurements IMk are sorted in decreasing order of their Pearson correlation coefficient to
the targeted performance R(IMk, Pj). IM selection is then performed by selecting only the
most relevant variables, i.e. the highest-ranked indirect measurements. This strategy clearly
belongs to the filter category, since it is a simple pre-processing step independent of the choice
of any machine-learning prediction model.

2.2.2 IM selection based on Brownian distance correlation

Another filter method for IM selection has been recently introduced based on the use of the
Brownian distance correlation instead of Pearson correlation coefficient [54]. In statistics
and in probability theory, distance correlation is a measure of statistical dependence between
two random variables or two random vectors of arbitrary, not necessarily equal dimension.
This measure is derived from a number of other quantities that are used in its specification,
specifically: distance variance, distance standard deviation and distance covariance. It has
been introduced by G.J. Szekely to palliate a limitation of Pearson correlation, which assumes
linear dependence conditions. Definitions are recalled here for completeness, more details can
be found in [55]. Let us consider (Xi, Yi),i = 1, 2, ..., n a statistical sample from a pair of real
valued or vector valued random variables (X, Y ). The squared sample distance covariance
dCov2

n(X, Y ) is defined as the arithmetic average of the products Aj,i and Bj,i:

dCov2
n(X, Y ) =

1

n2

n∑

j,i=1

Aj,iBj,i (2.4)

where the products Aj,i and Bj,i correspond to doubly centered distances computed from the
Euclidian distance matrices (aj,i) = (‖Xj − Xi ‖) and (bj,i) = (‖ Yj − Yi ‖):

Aj,i = aj,i − aj. − a.i + a.., Bj,i = bj,i − bj. − b.i + b..
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where

aj. = 1
n

n∑

i=1

aj,i, a.i = 1
n

n∑

j=1

aj,i, a.. = 1
n2

n∑

j,i=1

aj,i

bj. = 1
n

n∑

i=1

bj,i, b.i = 1
n

n∑

j=1

bj,i, b.. = 1
n2

n∑

j,i=1

bj,i

The sample distance variance dV arn(X) is a special case of distance covariance when the two
variables are identical and is given by the square root of:

dV ar2
n(X) = dCov2

n(X, X) =
1

n2

n∑

i=1

A2
j,i (2.5)

Finally, the distance correlation dCorn(X, Y ) of two random variables(X, Y ) is obtained by
dividing their distance covariance by the product of their distance standard deviations (square
root of distance variances):

dCorn(X, Y ) =
dCovn(X, Y )√

dV arn(X)dV arn(Y )
(2.6)

In the context of IM selection strategy, the idea is to use distance correlation between indirect
measurements and targeted performances in order to perform a priori selection, i.e. before
training any machine-learning model. In this strategy, for a given performance Pj to be eval-
uated, indirect measurements IMk are sorted in decreasing order of their distance correlation
to the targeted performance dCorn(IMk, Pj). Only the most relevant indirect measurements,
i.e. the highest-ranked indirect measurements, are then selected to build the regression model.

2.2.3 IM selection based on SFS algorithm

A different strategy is to include the machine-learning model in the selection algorithm in
order to score subsets of variables according to their prediction performance. In practice, the
following points have to be specified to define a wrapper method: (i) how to search the space
of all possible variable subsets; (ii) how to assess the prediction performance of a learning
machine to guide the search and halt it; and (iii) which learning-machine model to use.
An exhaustive search can conceivably be performed, if the number of variables is not too large.
However the problem is known to be NP-hard and the search becomes quickly computationally
intractable as dimensionality rises. Indeed for a given performance Pj to be evaluated, the
number of models M that needs to be evaluated in case of a full exploration of all possible
subsets composed of up to k IMs is given by:

M =
k∑

i=1

Ci
m (2.7)

where m is the number of IM candidates, k the maximum number of selected IMs, and Ci
m

refers to the binomial coefficient (number of combinations of i IMs over m).
As a numerical example, the exploration of all possible subsets composed of up to 10 IMs
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selected among 40 candidates necessitates the building of more than 1.22e9 models. Assum-
ing a processing time of 0.1s to build and evaluate one model, this would necessitate more
than 3.87 years which is clearly impractical. Other search strategies have therefore to be
implemented to handle this computational issue.

A wide range of search strategy can be used, including best-first, branch-and-bound, simu-
lated annealing, genetic algorithm. One of the simplest strategies is the best-first strategy, in
which the best candidate is added to the solution at each iteration. Figure 2.10 depicts the
simplified diagram of such an iterative search, also known as Sequential Forward Selection
(SFS), for a given performance Pj, as suggested in [50] [56].

In this case, MARS is chosen as the learning-machine prediction model and performance pre-
diction is evaluated using the rms prediction error εrms−T S expressed as percentage, computed
by the Normalized Root Mean Square Error (NRMSE) on training devices by equation (1.4).

The first iteration of the search algorithm consists in building a MARS model for each IMk and
selecting the one that generates the model with the minimum rms prediction error εrms−T S.
In the second iteration, a MARS model is built for each pair (IMk, IMl) including previously
selected one, and the pair that gives the model with minimum rms prediction error εrms−T S

is selected. Then, we work with triplets, always keeping the IMs selected in the previous
iterations and so on. The procedure stops when the obtained rms prediction error is below
a pre-defined target value εrms−T S ≤ εtarget or when the maximum number of selected IMs is
reached.
This procedure is very efficient in terms of processing time. Indeed the number of models to

Figure 2.10: SFS search of an IM subset for prediction of one specification Pj

be built with the SFS strategy in order to select a subset of up to p IMs among a set of m
candidates is given by:
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M_SFS =
p∑

i=1

C1
m−k+1 = p ∗ (m + 1) − (p ∗ (p + 1))/2 (2.8)

This corresponds to the construction of only 355 models for the case study already mentioned
above (selection of a subset of up to 10 IMs among 40 candidates).

2.2.4 IM selection using MARS built-in selection feature

Finally the last investigated strategy is to use the built-in selection feature of the Multivariate
Adaptive Regression Splines (MARS) algorithm as suggested in [57], which also belongs to the
wrapper category. A user-configurable limit of maximum allowed basis functions(NBFmax)
can be controlled to fix the number of IMs selected by this latter.

2.3 Experimental setup for the evaluation of IM selec-

tion methods

In order to perform a comparative analysis of the different strategies for indirect measurement
selection, the experimental setup described in Figure 2.11 was developed. The objective is to
evaluate the test efficiency achieved by the alternate test procedure when using the indirect
measurements selected by a given algorithm. The experimental setup therefore involves two
distinct steps, namely (i) IM selection and (ii) indirect test efficiency evaluation. Details on
each step are given in the following subsections. Note that to perform this evaluation, the
full dataset of devices that contains all available measurements (including both the regular
specification measurements and the low-cost indirect measurements) is separated into two
distinct sets, i.e. one dataset of training devices and one dataset of validation devices. For a
realistic evaluation, the validation set should be larger than the training set since the objec-
tive of the alternate test strategy is actually to predict the performances of a large number
of devices during mass production testing using only a limited number of devices measured
in the training phase. In this work, a Latin Hyper-Cube Sampling process (LHCS) is used to
implement this separation such that both datasets exhibit similar statistical characteristics.
The dataset of training devices is used both in the IM selection and evaluation steps, while
the dataset of validation devices is only used in the evaluation step.
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Figure 2.11: Experimental setup for test efficiency evaluation

2.3.1 IMs selection

The purpose of this step is to select an IM subset of a given size N_IMmax that will be
used to predict a given analog/RF performance Pj from a large set of indirect measurement
candidates {IM1, IM2, ..., IMm}. In this step, the four different strategies presented in the
previous section are implemented.
The influence of the training set is also investigated. Indeed some studies have been performed
regarding the influence of the training set (in particular the size of the training set) on the
prediction accuracy [58], but these studies rely on given pre-selected indirect measurements
to perform the prediction. We have found no study in the literature regarding the influence
of the training set on the selection of indirect measurements and the resulting impact on the
prediction accuracy. It is therefore also the objective of this chapter to analyze this aspect.
For this, we consider training sets of different size (composed of N1T dev devices) obtained
with a random sampling of the dataset of training devices. In addition for a given subset
size, the variability of the training set is also investigated by considering a number of different
random sampling runs (Nruns). The selected subset of IMs then corresponds to the most
frequently chosen subset (according to the used IM selection algorithm) over the different
random runs. Figure 2.12 below shows as an example for the transceiver test vehicle, the
histogram of subsets composed of 3 IMs selected by the MARS built-in selection feature over
100 random runs. The IM subset IM24, IM6, IM36 is the most frequently chosen subset and
will be selected for the evaluation step..
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Figure 2.12: Illustration of chosen IM subsets over 100 runs (transceiver test vehicle)

2.3.2 Indirect test efficiency evaluation

The purpose of this step is to evaluate the efficiency of indirect test implementations based
on the IM subsets selected in the previous step, in terms of accuracy and robustness of the
predictions achieved on the dataset of validation devices.
In this step, IM subsets selected in the previous step are used to build regression models
using MARS algorithm. Models are constructed for different test cases corresponding to a
given performance Pj to be predicted, a given strategy to perform IM selection, a given value
N_IMmax for the maximum number of IMs used to predict the performance, and a given
training set. Note that here again the influence of the training set size and composition is
investigated by selecting training sets of different sizes with a random sampling of the dataset
of training devices (N2T dev devices) and considering a number of different random sampling
runs (Nruns) for each training set size.
More precisely, for each test case, measurement data of the targeted performance together
with measurement data of the corresponding selected IMs are provided as inputs to the MARS
algorithm. The predictive model is then constructed as a linear combination of basis func-
tions, which involve only the selected IMs. Note that in this case, the built-in selection feature
of the algorithm is not used.

The model is then used to perform performance prediction over the dataset of validation
devices and test efficiency is evaluated in terms of both prediction accuracy and prediction
reliability. More particularly, we compute the classical accuracy metrics (rms and maximal
prediction errors defined in the first chapter by equations (1.4) and (1.5)), and the new
proposed reliability metric (Failing Prediction Rate, FPR, defined in the first chapter by
equation (1.6)).
Finally note that the same validation devices are always used over the different test cases in
order to allow consistent comparison.
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2.4 Results and discussion

Experiments were performed considering the Power Amplifier (PA) and the RF transceiver
test vehicles. The typical measurement repeatability error for those test vehicles performances
are εmeas = 3% and εmeas = 5% respectively.
For the two test vehicles, the full dataset of N devices is first separated in two sets of equivalent
size using a LHCS process, one dataset containing NT dev training devices and one dataset
containing NV dev validation devices. Then a campaign of experiments is conducted applying
the experimental setup of Figure 2.11 with the following parameters:
- Number of IMs to be selected: N_IMmax = {1, 2, 3, 4, 5}
- Random sampling of Training Set for IM selection:

⋄ 50 runs with N1T dev = 80% ∗ NT dev.
⋄ 100 runs with N1T dev = 40% ∗ NT dev.
⋄ 200 runs with N1T dev = 20% ∗ NT dev.

- Random sampling of Training Set for test efficiency evaluation:

⋄ 50 runs with N2T dev = 80% ∗ NT dev.
⋄ 100 runs with N2T dev = 40% ∗ NT dev.
⋄ 200 runs with N2T dev = 20% ∗ NT dev.

2.4.1 IM selection

Results of the IM selection procedure for the two test vehicles are summarized in tables 2.4
and 2.5 respectively.
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Table 2.4: Selected IM subsets for the PA test vehicle according to different selection strategies, different training set sizes, and different
values for the maximum number of IMs used to predict the performance

Filter Methods Wrapper Methods

N1T dev Pearson-Corr Ranking Distance-Corr Ranking SFS Search MARS Built-in Selection

N_IMmax = 1

1,000 {IM14} {IM24} {IM24} {IM24}

2,000 {IM14} {IM24} {IM24} {IM24}

4,000 {IM14} {IM24} {IM24} {IM24}

N_IMmax = 2

1,000 {IM14, IM15} {IM24, IM9} {IM24, IM6} {IM24, IM13}

2,000 {IM14, IM15} {IM24, IM9} {IM24, IM9} {IM24, IM9}

4,000 {IM14, IM15} {IM24, IM9} {IM24, IM21} {IM24, IM6}

N_IMmax = 3

1,000 {IM14, IM15, IM12} {IM24, IM9, IM13} {IM24, IM6, IM10} {IM24, IM13, IM6}

2,000 {IM14, IM15, IM12} {IM24, IM9, IM13} {IM24, IM9, IM10} {IM24, IM9, IM14}

4,000 {IM14, IM15, IM12} {IM24, IM9, IM13} {IM24, IM21, IM37} {IM24, IM6, IM36}

N_IMmax = 4

1,000 {IM14, IM15, IM12, IM11} {IM24, IM9, IM13, IM15} {IM24, IM6, IM10, IM37} {IM24, IM13, IM6, IM33}

2,000 {IM14, IM15, IM12, IM11} {IM24, IM9, IM13, IM15} {IM24, IM9, IM10, IM15} {IM24, IM6, IM25, IM8}

4,000 {IM14, IM15, IM12, IM11} {IM24, IM9, IM13, IM15} {IM24, IM21, IM37, IM6} {IM24, IM6, IM25, IM33}

N_IMmax = 5

1,000 {IM14, IM15, IM12, IM11, IM10} {IM24, IM9, IM13, IM15, IM11} {IM24, IM6, IM10, IM37, IM25} {IM24, IM13, IM6, IM33, IM37}

2,000 {IM14, IM15, IM12, IM11, IM10} {IM24, IM9, IM13, IM15, IM11} {IM24, IM9, IM10, IM15, IM16} {IM24, IM6, IM25, IM8, IM36}

4,000 {IM14, IM15, IM12, IM11, IM10} {IM24, IM9, IM13, IM15, IM11} {IM24, IM21, IM37, IM6, IM16} {IM24, IM6, IM25, IM33, IM36}
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Table 2.5: Selected IM subsets for the PA test vehicle according to different selection strategies, different training set sizes, and different
values for the maximum number of IMs used to predict the performance

Filter Methods Wrapper Methods

N1T dev Pearson-Corr Ranking Distance-Corr Ranking SFS Search MARS Built-in Selection

N_IMmax = 1

1,000 {IM219} {IM219} {IM219} {IM219}

2,000 {IM219} {IM219} {IM219} {IM219}

4,000 {IM219} {IM219} {IM219} {IM219}

N_IMmax = 2

1,000 {IM219, IM218} {IM219, IM218} {IM219, IM213} {IM219, IM213}

2,000 {IM219, IM218} {IM219, IM218} {IM219, IM206} {IM219, IM213}

4,000 {IM219, IM218} {IM219, IM218} {IM219, IM212} {IM219, IM213}

N_IMmax = 3

1,000 {IM219, IM218, IM217} {IM219, IM218, IM217} {IM219, IM213, IM331} {IM219, IM213, IM17}

2,000 {IM219, IM218, IM217} {IM219, IM218, IM217} {IM219, IM206, IM161} {IM213, IM219, IM196}

4,000 {IM219, IM218, IM217} {IM219, IM218, IM217} {IM219, IM212, IM232} {IM219, IM213, IM196}

N_IMmax = 4

1,000 {IM219, IM218, IM217, IM216} {IM219, IM218, IM217, IM216} {IM219, IM213, IM313, IM196} {IM219, IM213, IM212, IM215}

2,000 {IM219, IM218, IM217, IM216} {IM219, IM218, IM217, IM216} {IM219, IM206, IM161, IM196} {IM219, IM213, IM292, IM209}

4,000 {IM219, IM218, IM217, IM216} {IM219, IM218, IM217, IM216} {IM219, IM212, IM232, IM196} {IM212, IM213, IM196, IM169}

N_IMmax = 5

1,000 {IM219, IM218, IM217, IM216, IM215} {IM219, IM218, IM217, IM216, IM215} {IM219, IM213, IM331, IM196, IM204} {IM219, IM213, IM212, IM215, IM223}

2,000 {IM219, IM218, IM217, IM216, IM215} {IM219, IM218, IM217, IM216, IM215} {IM219, IM206, IM161, IM196, IM204} {IM219, IM292, IM209, IM314, IM323}

4,000 {IM219, IM218, IM217, IM216, IM215} {IM219, IM218, IM217, IM216, IM215} {IM219, IM212, IM232, IM196, IM204} {IM219, IM213, IM196, IM169, IM331}
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A first observation is that for both test vehicles, the selected subset does not depend on the
Training Set Size (TSS) when using filter methods while it is sensitive to this parameter when
using wrapper methods, in particular when increasing the number of selected IMs. A second
observation is that the two filter methods produce identical results in case of the transceiver
test vehicle while selected subsets differ in case of the PA test vehicle. Regarding wrapper
methods, they actually lead to different selected subsets, even if there are some common
points. For instance for the PA test vehicle, the indirect measurement IM24 is present in
every subset selected either by the SFS search or MARS built-in feature. In the same way
for the transceiver test vehicle, the indirect measurement IM219 is present in every selected
subset, whatever the selection strategy.

In terms of computational time, experiments have revealed that the computational time re-
quired for the selection of one subset (one random sampling run) increases with the size of the
training set. However it remains in the order of few seconds when using Pearson correlation
ranking or MARS built-in feature while it is in the order of several tens of minutes when
using the SFS search and several hours when using distance correlation ranking. Table 2.6
below illustrates the computational time for the transceiver test vehicle for different training
set sizes (TSS).

Table 2.6: Computational time for the transceiver test vehicle

SFS MARS Dist-Corr

TSS = 80%∗NT dev ∼ 16minutes ∼ 3seconds ∼ 5hours

TSS = 40%∗NT dev ∼ 32minutes ∼ 8seconds ∼ 30hours

TSS = 20%∗NT dev ∼ 50minutes ∼ 21seconds ∼ 3days

2.4.2 Test efficiency

Regarding test efficiency evaluation, the first step consists in building models for each one
of the selected IM subsets, considering training set of different sizes. The intrinsic accuracy
of the resulting models, i.e. their ability to accurately represent the devices used during the
learning, is evaluated in terms of Normalized Root Mean Square Error (NRMSE) computed
on the learning devices (mean value over the different sampling runs performed for each train-
ing set size). Figures 2.13 and 2.14 report this accuracy according to the number of selected
IMs with the different strategies, for the PA and transceiver test vehicles respectively. Note
that the same legend convention will be used for figures presented in the rest of chapter.
For both test vehicles, it can be observed that the size of the training set used to build the
model (N2T dev) has no significant influence on the model accuracy. Also it can be observed
that, although the selection procedure is sensitive to the training set size (N1T dev) when using
wrapper methods since selected IM subsets differs for training sets of different size, there is
no real impact in terms of model accuracy. For the PA test vehicle, the selection strategy
based on Pearson correlation ranking leads to inferior performances compared to the three
other strategies, especially when only few IMs are selected. More specifically, the NRMSE
decreases from 1.65% down to about 0.8% when increasing the number of selected IMs in case
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of selection based on Pearson correlation, and from 1% down to about 0.75% for the three
other strategies.
For the transceiver test vehicle, we observe a different behavior depending whether IM selec-
tion is performed by filter or wrapper methods, with better performances when using wrapper
methods. Indeed in this case we observe a constant NRMSE of about 2% for models built
with at least 2 IMs, while it is necessary to use 5 IMs to reach almost a similar performance
when using IM subsets selected by filter methods.

Figure 2.13: Model accuracy for the PA test vehicle considering different IM selection strategies
and different sizes of training set (mean value over Nruns)

The following step of the evaluation procedure consists in using the models to perform perfor-
mance prediction for all devices of the validation set. Results are summarized in figures 2.15
and figures 2.16 for the PA and transceiver test vehicles respectively, which report both the
rms prediction error (mean value over the different sampling runs performed for each training
set size) and maximal prediction error (worst case over the different sampling runs performed
for each training set size) according to the number of selected IMs.
For the PA test vehicle, it appears that prediction accuracy achieved by the different models

is influenced by many factors. In particular, it can be observed that the rms prediction error
varies between 0.8% up to 2% depending on the selection strategy, the number of selected
IMs, the size of the training set used during selection procedure and the size of the training
set used to build the model. There is no evident trend, but two interesting points can be out-
lined. First, the lowest rms prediction error is achieved only for the largest size of training set
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Figure 2.14: Model accuracy for the transceiver test vehicle considering different IM selection
strategies and different sizes of training set (mean value over Nruns)
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(a) rms prediction error εrms (mean value over Nruns)

(b) Maximal prediction error εmax (worst case value over Nruns)

Figure 2.15: Prediction accuracy for the PA test vehicle considering different IM selection
strategies and different sizes of training set
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used to build the model. Second, increasing the number of selected IMs does not necessarily
improve prediction accuracy, especially for models built using IM subsets selected by MARS
built-in feature with a rms prediction error higher for models built with 4 or 5 IMs than
for models built with fewer IMs. Regarding maximal prediction error, results exhibit a very
large dispersion with a maximal prediction error that can vary between 25% up to more than
400%. Yet similar observations than for rms prediction error can be made, i.e. best results
are obtained when models are built on a training set of 4,000 devices, and models built with
4 or 5 IMs can produce worse maximal error than models built with fewer IMs. However it
is worth noting that even in the best case, the maximal prediction error remains extremely
high for this test vehicle, i.e. higher than 20% which corresponds to about 25 times the rms
prediction error.

(a) rms prediction error εrms (mean value over Nruns)

(b) Maximal prediction error εmax (worst case value over Nruns)

Figure 2.16: Prediction accuracy for the transceiver test vehicle considering different IM selection
strategies and different sizes of training set

For the transceiver test vehicle, prediction accuracy achieved by the different models is less
dependent on the different investigated factors than for the PA test vehicle. Indeed regard-
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ing the rms prediction error, it varies only between 1.95% up to 2.25% and results are in
good agreement with the expected accuracy, as estimated from model NRMSE computed on
learning devices. Regarding maximal prediction error, dispersion is observed for models built
on a training set of 100 or 200 devices, but significantly reduces when models are built on a
training set of 400 devices. Similarly to the PA test vehicle, models built with 4 or 5 IMs can
produce worse maximal error than models built with fewer IMs and best results are obtained
when models are built on the largest training set. However contrarily to the PA test vehicle
for which there is a huge difference between the rms and maximal prediction errors observed
in the best case, the maximal prediction error observed here in the best case remains in a
normal range, i.e. about 3 times the rms prediction error.
More generally this evaluation reveals one important weakness of the indirect test strategy,
which offers good accuracy but limited reliability, i.e. even if most of the devices are predicted
with low prediction error, some devices might suffer a rather large prediction error. Taking
into account that the number of such devices is extremely small, the maximal prediction error
is not a relevant metric to quantify prediction reliability. Instead, the Failing Prediction Rate
FPR(εmeas) appears as a meaningful metric, since it quantifies the ratio of devices affected
with a prediction error that exceeds the conventional measurement uncertainty. Figures 2.17
and 2.18 summarize prediction reliability results for the PA and transceiver test vehicles,
respectively.
For the PA test vehicle, prediction reliability results clearly illustrate the inferior performances
of the selection strategy based on Pearson correlation ranking compared to the three other
selection strategies. The two wrapper methods lead to similar performances and the best
performance is actually attained by using the selection strategy based on distance correlation
ranking. In this case, a low FPR of about 0.35% is achieved for models built with 3 IMs,
while wrapper methods lead to a FPR around 0.5%. Finally note that, although prediction
accuracy is sensitive the size of the training set used during selection procedure and the size of
the training set used to build the model, these parameters have a minor impact on prediction
reliability for this test vehicle.

For the transceiver test vehicle, prediction reliability achieved by the different models is

Figure 2.17: Prediction reliability for the PA test vehicle considering different IM selection
strategies and different sizes of training set (mean value over Nruns)
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actually influenced by many factors, i.e. the selection strategy, the number of selected IMs,
the size of the training set used during selection procedure and the size of the training set
used to build the model. Best performances are attained when performing IM selection with
wrapper methods on a large training set, and building models with at least 3 IMs on a large
training set. In this case, a low FPR of about 0.5% can be achieved.

Figure 2.18: Prediction reliability for the transceiver test vehicle considering different IM
selection strategies and different sizes of training set (mean value over Nruns)

From this evaluation on two distinct test vehicles, we can derive some conclusions. First
regarding the size of the training set, results show that best performances are indeed achieved
when both IM selection and model construction are performed on a large training set. Then
regarding the number of IMs used to predict the device performance, results show that al-
though the intrinsic model accuracy is improved by adding more IMs to the model, this
does not necessarily improve prediction reliability. The adequate choice of the number of
IMs should therefore rely on the newly-introduced FPR metric rather than on the classical
MSE metric. For the two case studies evaluated in this chapter, NIM = 3 appears to be
an appropriate choice. Finally regarding IM selection strategies, there is no evidence of one
strategy being better than the others. Indeed, for the PA test vehicle the best performance
is achieved by using a filter method, i.e. selection based on distance correlation ranking,
while for the transceiver the best performance is achieved by using a wrapper method, i.e.
selection using MARS built-in feature. These results are summarized in figure 2.19 which
reports the FPR achieved for the two test vehicles using the different IM selection strategies,
with N1T dev = 80% ∗ NT dev, N2T dev = 80% ∗ NT dev and N_IM = 3. Note that in both
cases, by choosing the appropriate IM selection strategy, good test efficiency can be achieved
since more than 99.5% of the devices are accurately predicted with an error lower than the
measurement repeatability error. Such high test efficiency permits to positively consider the
implementation of the alternate testing, in particular for wafer-level testing where it offers
the possibility to perform effective screening of defective devices at very low-cost.
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Figure 2.19: Comparative analysis of the different IM selection strategies for the two test vehicles
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2.5 Summary

In this chapter we have focused on two aspects related to the classical implementation of
the alternate test strategy, i.e. outlier filtering and IM selection. We have first presented an
adaptive k-filter that permits to discard outlier circuits for the database. This filter iteratively
prunes outliers by exploiting the sensitivity of descriptive statistics to outliers. It can handle
IM space of high-dimensionality, it does not require information on defective devices and it
does not rely on any assumption regarding the type of IM distribution. Then in the second
part of the chapter, we have addressed the problem of IM selection, which is an essential
step for the construction of efficient prediction models. We have explored different feature
selection algorithms, with the objective to generate a single prediction model for each device
performance. More specifically, we have performed a comparative analysis of four IM selec-
tion methods, pertaining to both filter and wrapper categories. We have also investigated the
influence of several parameters such as the number of IMs used to perform prediction of a
device performance, the size of the training set used during the IM selection procedure, and
the size of the training set used for the model construction.

Efficiency has been evaluated in terms of model and prediction accuracy using classical met-
rics such as NRMSE, average and maximal prediction errors, but also in terms of prediction
reliability using the FPR metric introduced in the first chapter. The study has been con-
ducted using experimental data from two distinct RF test vehicles, i.e. a power amplifier and
a transceiver.

Results have clearly pointed out that selection of indirect measurements is not an easy task
that can be efficiently addressed by a single strategy. Indeed we have seen that selection based
on distance correlation ranking leads to the best performance in case of the PA test vehicle,
while it is the built-in feature of MARS algorithm in case of the transceiver test vehicle.
These results reveal that finding the set of most appropriate IMs is strongly dependent on
the case study and such analysis should be realized for every new case study. Results have
also shown that with the appropriate selection strategy, good prediction reliability can be
achieved using only a limited number of indirect measurements. In particular for both test
vehicles, we found out that 99.5% of the devices can be accurately predicted with an error
lower than the measurement repeatability error using only three indirect measurements.
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I
M selection strategies presented in the previous chapter aim at generating a single pre-
diction model for each device performance. In this chapter, we target the generation
of several models for each device performance. The goal behind this is to implement a

robust model redundancy strategy in view of reinforcing confidence in test predictions.
As for single model generation, the multi-model generation process relies on an exploration
of the possible IM combinations from the available IM space. However, in order to perform
efficient exploration, our idea is to implement a pre-processing step to preselect a limited
number of pertinent indirect measurements. Indeed, it is very likely that the initial indirect
measurement space contain non-relevant or noisy data that should not be used for the con-
struction of a model. The objective is to keep in the search space only IMs that contain
valuable information. By reducing the size of the search space in a preliminary phase, we can
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then perform a more thorough exploration in a reasonable processing time.
This chapter is organized as follows. In section 3.1, we investigate different options for the
reduction of the IM space. Then in section 3.2, we expose two different strategies for multi-
model generation, called Parental and Non-Parental search strategies. At first, we will evoke
the manner to construct the models by the mean of those two strategies. Finally in section
3.3, we perform evaluation of the generated models, in terms of both prediction accuracy and
prediction reliability.
It has to be mentioned that for the experiments presented in this chapter on the two test
vehicles, we will not investigate the influence of the size of the training set. Instead we choose
a fixed training set size corresponding to 20% of the whole dataset and evaluation will be
performed on the remaining 80%. This choice is motivated by the fact that the number of
devices evaluated by the indirect test methodology during the production testing phase is ev-
idently much higher than the number of devices used in the initial learning phase to establish
the prediction models. Choosing a Validation Set (VS) larger than the Training Set (TS)
therefore seems more representative of a practical situation.

3.1 IM space reduction

The objective of this section is to define an efficient procedure for the reduction of the IM
space. This procedure will be used as a pre-processing step in the multi-model generation
flow.
The motivation is to remove useless or misleading IMs in order to limit the size of the IM
combination search space. Indeed, in case of high-dimension IM space, we can reasonably
assume that the space includes IMs with minor relevance. By removing these IMs in a pre-
liminary phase, we can significantly reduce the size of the IM combination search space. As
an example, let us consider the transceiver test vehicle for which we have 405 IMs. Assuming
that prediction models should not use more than 10 IMs to avoid curse of dimensionality
issue, the size of the search space is

∑10
i=1 Ci

405 = 3 ∗ 1019. If we reduce the IM space to only
30 relevant IMs, the size of the search space decreases down to

∑10
i=1 Ci

30 = 5.3 ∗ 107, so a
reduction by a factor of more than 500 million. A more comprehensive exploration of this
space can then be realized in a tractable processing time.
Several options are investigated in this section for the reduction of the IM space. Note that
these options will be evaluated only on the transceiver test vehicle because it disposes of a
high-dimension IM space (405 IMs). In case of the PA test vehicle, we have considered that
the IM space (37 IMs) is small enough and then there is no need for the reduction process.

3.1.1 PCA-based reduction

The first option we have explored is based on Principal Component Analysis (PCA). PCA is a
statistical procedure that can be used for dimensionality reduction [59]. The principle behind
is a feature transformation. More precisely, it uses an orthogonal transformation to create a
new set of linearly uncorrelated variables, called Principal Components (PC), from the initial
set of possibly correlated variable. Each component is a linear combination of the original
variables. This transformation is defined in such a way that the first principal component has
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the largest variance and each succeeding component in turn has the highest variance under
the constraint that it is orthogonal to the preceding components. This transformation maps
a data vector from an original space of m variables to a new space of m variables which are
uncorrelated over the dataset. Dimensionality reduction is obtained by keeping only the first
L principal components.
As an illustration, figure 3.1 shows the Pareto scaling graph of the first ten principal com-
ponents for a PCA transformation applied on the training set of the transceiver test vehicle.
This figure shows that the first 9 components explain 92% of the total variance, which suggests
that only these 9 PCs can be kept instead of the total 405 in the context of dimensionality
reduction. However if this truncation indeed reduces the size of the new created space, it does
not reduce the IM space since each PC involves all indirect measurements.

Figure 3.1: Pareto scaling graph for the first ten principal components

In this context, our proposal to perform IM space reduction based on PCA consists of:

⋄ rank IMs in decreasing order of their weighting coefficient in each individual principal
component,

⋄ select only the highest-ranked IMs in the first PCs.

The first experiment we have performed involves the selection of IMs only in the first PC.
Practically, we have built MARS models using an increasing number of IMs selected according
to their weighting coefficient in the first PC and we have recorded the correlation coefficient
computed on the training set for each one of these models. Figure 3.2 reports the evolution
of this correlation coefficient as the number of IMs used in the model increases.
Note that we were not able to record till the 405 IMs because the simulation was time con-
suming; we have stopped it for 125 IMs (after 11 days).

As expected, the global tendency is that correlation improves by using more indirect mea-
surements. However it also appears that models built with a limited number of IMs have
a very poor correlation coefficient. For example if we consider the thirtieth model, i.e. the
model built using the 30 highest-ranked IMs in the first PC, the correlation coefficient on
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Figure 3.2: Correlation coefficient for MARS models built using an increasing number of IMs
selected in the first PC

training set is under 0.3. As illustrated on the associated scatter graph given in figure 3.3,
this model is not able to correctly present the correlation between the estimated and actual
performances. Satisfying correlation coefficient above 0.7 is achieved only for models that
use at least 90 IMs, which cannot be envisaged with respect to curse of dimensionality issue.
Reduction of the IM space through selection in the first PC is therefore not a viable option.

Figure 3.3: Scatter graph for model built using the 30 highest-ranked IMs in the first PC

Other experiments were performed considering more principal components, since the first PC
only explains roughly two-thirds of the total variance. The objective is to select a subset of
30 IMs among the 405 available candidates. In particular, we have considered:

- selection in the first 3 PCs (which explain about 74% of the total variance): the 10 best-
ranked IMs in PCA1, the 10 best-ranked IMs different from already selected ones in
PCA2, and the 10 best-ranked IMs different from already selected ones in PCA3,
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- selection in the first 9 PCs (which explain about 92% of the total variance): the 7 best-
ranked IMs in PCA1, the 6 best-ranked IMs different from already selected ones in
PCA1, the 5 best-ranked IMs different from already selected ones in PCA2 and so on
until selecting only one IM in PCA7, PCA8 and PCA9.

To evaluate the viability of these options, MARS models have been built for these two se-
lected IM subsets. Figure 3.4 reports the correlation coefficient computed on the training
set for those models (model built using the 30 best-ranked IMs selected only in PCA1 has
been included for the respect of comparison). These results show that even by increasing the
number of principal components considered in the selection procedure, models build on the
corresponding reduced IM space still exhibit poor correlation coefficient.

Figure 3.4: Correlation coefficient computed on training set for models built on reduced IM space
using PCA-based selection

As a conclusion, PCA is a transformation technique that permits to obtain a new space with
a reduced dimension able to represent the original space, but it does not permit to reduce
the number of original variables. Options explored to perform selection of a reduced num-
ber of variables were not conclusive. Similarly, we have tried to perform IM space reduction
based on Factor Analysis (FA), which is another transformation technique, but here again no
conclusive results were obtained. Such feature transformation techniques therefore have no
benefits in our context.

3.1.2 Pearson correlation-based reduction

The second option we have explored is based on the computation of sample Pearson corre-
lation coefficient. The Pearson correlation coefficient is a statistical measure of the linear
dependence between two variables [60]. More precisely, indirect measurements are sorted in
decreasing order of their Pearson correlation coefficient to the targeted performance. IM space
reduction is then simply performed by selecting the highest-ranked indirect measurements.
This procedure has been applied to the transceiver test vehicle with the objective to select a
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subset of 30 IMs among the 405 available candidates. A MARS model has been built using
all the 30 IMs of this subset, which exhibit a very satisfying training correlation coefficient
equal to 0.843. This result shows that Pearson correlation coefficient indeed permits to select
a subset of relevant IMs compared to selection based on PCA. The main drawback of the
approach is that IMs are considered independently, while combinations of IMs may provide
significant information, which is not available at individual IM level.

3.1.3 Iterative MARS-based reduction

The third option we have explored is based on the built-in selection feature of the MARS
algorithm. Indeed as introduced in the previous chapter, the number of IMs selected by
the algorithm can actually be controlled by means of a user-configurable parameter, i.e. the
maxFuncs parameter which specifies the maximal number of basis functions included in the
model. Simulations were run trying to force the MARS algorithm to select 30 IMs among the
405 candidates. However the processing time is strongly dependent on the number of basis
functions included in the model. For this case study, we still had no answer after several days
of process.
To optimize the computational time, we have developed an indirect procedure based on an
iterative use of the MARS built-in selection feature. Indeed since the limiting factor in terms
of processing time is the number of IMs to be selected, the idea is to use the MARS algorithm
in order to select only a reduced number q of IMs at each iteration; these selected IMs are
then removed from the set of available IMs for the next iteration. The procedure stops when
the size of the reduced IM space exceeds the target size of the reduced IM space. With q
much smaller than the target size of the reduced IM space, selection is achieved in reasonable
processing time. This procedure is illustrated in figure 3.5.

Figure 3.5: IM-space reduction based on MARS built-in selection feature
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This procedure has been applied to the transceiver test vehicle with the objective to select
a subset of 30 IMs among the 405 available candidates, considering three different values of
the number of IMs selected at each iteration: q = 3, 5 and 10. Note that the number of
iterations performed depends on the number of IMs selected at each iteration. Ten iterations
are necessary in case of 3-by-3 selection, six iterations in case of 5-by-5 selection and only
three iterations in case of 10-by-10 selection. Figure 3.6 summarizes the correlation coeffi-
cient computed on the training set for the models built at the various iterations, for the three
different values of q.
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(a)3-by-3 selection

(b)5-by-5 selection

(c)1-by-1 selection

Figure 3.6: Correlation coefficient for models built during iterative MARS-based selection

From figure 3.6, we can observe that whatever the value of q, models built in the first itera-
tions present good correlation coefficient. As expected, the correlation coefficient reduces as
the number of iteration increases. In particular, a very poor correlation coefficient is obtained
for models built in the last iterations in case of 3-by-3 and 5-by-5 selection. However the cor-
relation coefficient remains relatively high at the last iteration in case of 10-by-10 selection.
Figure 3.7 reports the correlation coefficient computed on the training set for MARS models
built using all the 30 IMs of the selected subsets. These results show that similar performance
is achieved whatever the number q of IMs selected at each iteration, with a correlation coef-
ficient in the same range than the one achieved using Pearson correlation-based selection.
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Figure 3.7: Correlation coefficient computed on training set for models built on reduced IM space
using iterative MARS-based selection

3.1.4 Preliminary evaluation of IM space reduction solutions

To assess the validity of the different IM space reduction solutions, the MARS built-in selection
feature has been used to select 5 IMs among the 30 available indirect measurements in the
reduced IM spaces and the performances of the corresponding models have been evaluated.
In addition, the algorithm has also been run the full original IM space on in order to obtain a
reference model. Results are summarized in table 3.1, which gives the correlation coefficient
computed on the training set together with the rms error.
As previously observed, these results show that preselection of pertinent IMs based on PCA

Table 3.1: Evaluation of IM space reduction solutions

Corr − Coef εrms

From PCA
RIMP CA1 0.257 4.112

RIMP CA1−to−3 0.216 4.179

RIMP CA1−to−9 0.152 4.204

From Pearson Correlation RIMMARS−by−3 0.834 1.817

From MARS built-in selection feature
RIMMARS−by−3 0.834 1.817

RIMMARS−by−5 0.841 1.780

RIMMARS−by−10 0.841 1.780

Full IM space (Reference) FIM 0.841 1.779

is not a viable option since the correlation coefficient is very low. In contrast, all other options
yield comparable results with a maximum degradation of the correlation coefficient compared
to the model built on the full IM space of about 0.01% and similar rms error. We will therefore
keep these options for the exploration of the IM combination space as detailed in the next
paragraph and we will discard the IM spaces reduced by the mean of the PCA.

61



3.2. Multi-model generation

3.2 Multi-model generation

The multi-model generation process relies on the exploration of the IM combination space,
taking into account a reduced IM space. As introduced in Chapter 2, the classical approach
to perform this exploration in case of single-model generation is the SFS (Sequential Forward
Selection) strategy , where IM combinations of increasing size are explored at each iteration,
always keeping the best combination for the following iteration. The fundamental of our
approach is based on a variation of the classical SFS strategy, in which several IM combinations
are kept at each iteration. Two different options are exposed in this section for the choice
of the IM combinations retained at each iteration; we have called those two approaches as
extended SFS-Parental and extended SFS-Non_Parental strategies.
Note that although the primary objective of the extended SFS strategy is the generation of
several accurate models for a given device performance, it can also be beneficial in the context
of single model generation. Indeed since this strategy allows a larger exploration of the space
than the classical SFS strategy, it may permit to identify a better IM combination.

3.2.1 Extended SFS-Parental strategy

Figure 3.8: Extended SFS-Parental strategy

Figure 3.8 describes the extended SFS-parental strategy. Let us denote k the maximum num-
ber of IMs to be used by a prediction model to avoid curse of dimensionality issue and l the
number of IM combinations retained at each iteration. The different steps performed are as
follows:

1. A regression model is built using each individual IM of the reduced IM space and the
rms error of each model is computed on the training set. IM are then sorted in increasing
order of the rms error of their associated model and the l-best IMs are retained.
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2. For each individual IM combination retained at the previous iteration, a regression
model is built for every possible child by adding a new IM not already used in the
IM combination and the rms error of each model is computed on the training set. l
individual lists are therefore obtained. Children ranking is then performed in each one
of the individual list according to the lowest model error and the best child of each list
is retained.

3. The preceding step is repeated until the size of the retained IM combinations reaches
the maximum number k of IMs to be used by a prediction model.

At the end of the procedure we have a total of k ∗ l lists of IM combinations, with l lists
for every IM combination size from 1 to k. This strategy is called "parental" one because
the link between parents and children is preserved between succeeding iterations. Indeed as
illustrated in figure 3.9, all children present in the list of retained IM combinations at a given
iteration have their parents present in the list of retained IM combinations at the preceding
iteration. The interest of this parental method is that it pushes towards a diverse exploration
of the space.

Figure 3.9: Extended SFS-Parental strategy: IM combination lists

3.2.2 Extended SFS-Non Parental strategy

The Non-Parental strategy has a similar process as the Parental strategy with some slight
differences. We will no more pay attention to preserving the link between parents and children
between succeeding iterations. For this reason we have called the strategy "Non-Parental".
Figure 3.10 describes the different steps of the Non-Parental strategy. They are as follows:

1. A regression model is built using each individual IM of the reduced IM space and the
rms error of each model is computed on the training set. IM are then sorted in increasing
order of the rms error of their associated model and the l-best IMs are retained.

2. For each individual IM combination retained at the previous iteration, a regression
model is built for every possible child by adding a new IM not already used in the IM
combination and the rms error of each model is computed on the training set. The l
individual lists are merged in a single list. Children ranking is then performed in this
global list according to the lowest model error and the l-best children are retained.

63



3.2. Multi-model generation

3. The preceding step is repeated until the size of the retained IM combinations reaches
the maximum number k of IMs to be used by a prediction model.

Figure 3.10: Extended SFS-non Parental strategy

Here again this procedure gives a total of k ∗ l lists of IM combinations, with l lists for
every IM combination size from 1 to k. The main difference with the previous strategy is
that the link between parents and children is not necessarily preserved between succeeding
iterations. Indeed as illustrated in figure 3.11, some IM combinations present in the list at a
given iteration may not have any child in the list of retained combinations at the following
iteration while others may have several children. We therefore expect that this strategy leads
to less diversity than the Parental strategy.

Figure 3.11: Extended SFS-Non Parental strategy: IM combination lists

3.2.3 Computational effort

The computational cost of the extended SFS strategy depends on the size r of the search
space (reduced IM space), on the number l of retained subsets at each iteration, and on the
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maximum size k of the retained subsets. The number of models to be built with this strategy
is given by:

Mextended−SF S = l ∗ (
k∑

i=1

C1
r−i+1 − r) + r = l ∗ (k ∗ (r + 1) −

k ∗ (k + 1)

2
− r) + r (3.1)

As an example, let us consider the transceiver test vehicle for which we have a reduced IM
space composed of r = 30 IMs (selected among the 405 IMs of the original space). Assuming
that prediction models should not use more than k = 10 IMs to avoid curse of dimensionality
issue and considering l = 10 subsets retained at each iteration, the extended SFS strategy
lead to the construction of Mextended−SF S = 2280 models, which is easily tractable in a small
processing time.

Note that the application of the extended SFS strategy on the original IM space of 405 IMs
would require the construction of more than 36 thousands models. The IM space reduction
performed as a pre-processing step therefore permits to gain a 15x speed-up in the processing
time.

3.3 Evaluation

In this section, we evaluate the proposed strategy for multi-model generation on the two test
vehicles. In case of the transceiver test vehicle, we have a large initial IM space composed of
405 candidates. We will therefore use the reduced IM spaces composed of 30 IMs obtained ei-
ther from Pearson correlation ranking (denoted RIMP earson) or iterative use of MARS built-in
selection feature (denoted RIMMARS−by−q) with q the number of IMs selected at each iter-
ation) for the exploration of the IM combination space. In case of the PA test vehicle, we
have an initial IM space composed of only 37 candidates. We will therefore omit IM space
reduction and directly perform the exploration of the IM combination space considering all
available 37 candidates.
Results are presented first in terms of model accuracy evaluated on the training set, and then
in terms of prediction accuracy and reliability evaluated on the validation set. Considered
metrics are the rms error εrms, the maximal error εmax and the failing prediction rate FPR,
as defined by equations (1.4) to (1.6) in chapter I. These results are then discussed in the last
part, analyzing the influence of the different solutions for IM space reduction and the two
various options for multi-model generation.

3.3.1 Model accuracy: evaluation on TS

The proposed methodology for multi-model generation has been applied considering l = 10
IM combinations retained at each iteration of the procedure. Practically, both versions of
the extended SFS strategy have been implemented, considering IM combinations composed
of up to k = 10 IMs. For each selected combination, model accuracy has been evaluated by
computing the rms error εrms on the training set. For the sake of comparison, we have also
generated regression models using the built-in selection feature of the MARS algorithm run
on the full IM space. These models are denoted "reference" models since they correspond to
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models obtained by the classical approach.
Results are illustrated in figures 3.12 and 3.13, which give the rms training error according to
the size of the selected IM combinations, for the transceiver and PA test vehicles respectively.
Dots correspond to models built using the 10 retained IM combinations, for each combina-
tion size. For the transceiver test vehicle, curves link the best generated models for each
combination size, considering a given reduced search space. These results are summarized in
tables 3.2 and 3.3, which give the mean, minimum and maximum values of the rms training
error of the generated models in comparison with the rms training error of the reference model.

Different remarks arise from those results: First as expected, one can observe the general trend
of accuracy improvement when increasing the number of IMs used to build the models, with
an rms error that reduces from about 1.95% down to about 1.65% by increasing the number
of IMs from 2 up to 10 for the transceiver test vehicle, and from about 0.90% down to about
0.55% for the PA test vehicle. Still, the interesting point is that the proposed methodology
actually permits to generate several models with a similar accuracy than the reference models
generated on the full IM space, and even better in some cases. As shown in table 2 for the
transceiver test vehicle, the difference between the mean value of the rms training error for
the generated models and the rms training error for the reference model is about 0.025% and
does not exceed 0.068%. Similarly as shown in table 3 for the PA test vehicle, this difference
is about 0.045% and does not exceed 0.124%.
Regarding the different solutions investigated for IM space reduction in case of the transceiver
test vehicle, the solution based on Pearson correlation appears less efficient than solutions
based on the use of MARS built-in selection feature. Best results are actually obtained when
the search is performed on the reduced IM space obtained from iterative use of MARS built-in
selection feature with 10 IMs selected at each iteration (RIMMARS−by−10). In this case, the
best generated model has a lower rms training error than the reference model, whatever the
IM combination size.

Table 3.2: Rms training error of generated models for the transceiver test vehicle

εrms (%) on training set

Size of selected IM comb 2 3 4 5 6 7 8 9 10

Generated models
mean 2,014 1,900 1,837 1,795 1,754 1,750 1,729 1,694 1,679

min 1,942 1,858 1,804 1,769 1,710 1,714 1,679 1,664 1,634

max 2,195 1,948 1,871 1,832 1,804 1,794 1,794 1,766 1,741

Reference model 1,946 1,860 1,819 1,779 1,754 1,733 1,709 1,678 1,652

Finally regarding the two different strategies for multi-model generation, it can be remarked
that the dispersion observed between the 10 models is lower when using the non-parental
method than the parental one. However, the diversity of IMs used in these models is lesser;
for instance for the transceiver test vehicle, considering IM combinations composed of 5 IMs
selected in RIMMARS−by−10, the 10 models generated by the non-parental method involve
only 9 IMs out of the 30 candidates while the 10 models generated by the parental method
involve 14 IMs out of the 30 candidates.
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(a) Extended SFS-Parental (b) Extended SFS-Non-Parental

Figure 3.12: Model accuracy for the transceiver test vehicle

(a) Extended SFS-Parental (b) Extended SFS-Non-Parental

Figure 3.13: Model accuracy for the PA test vehicle
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Table 3.3: Rms training error of generated models for the PA test vehicle

εrms (%) on training set

Size of selected IM comb 2 3 4 5 6 7 8 9 10

Generated models
mean 0,971 0,885 0,761 0,680 0,677 0,648 0,622 0,594 0,583

min 0,904 0,724 0,714 0,633 0,644 0,614 0,575 0,552 0,545

max 1,090 1,016 0,824 0,773 0,758 0,775 0,756 0,683 0,739

Reference model 0,906 0,761 0,746 0,713 0,623 0,586 0,581 0,556 0,542

3.3.2 Built models evaluation on VS

In order to evaluate prediction accuracy and reliability, generated models have been used to
perform performance prediction for all devices of the validation set. Prediction accuracy is
evaluated both in terms of rms and maximal errors, and prediction reliability is evaluated in
terms of failing prediction rate.

Prediction accuracy results for both test vehicles

Figures 3.14 and 3.15 illustrate prediction accuracy results for the transceiver and PA test
vehicles respectively. Tables 3.4 to 3.7 summarize the mean, minimum and maximum values
of prediction errors in comparison with reference model, for the different sizes of selected IM
subsets.

Analyzing these results, a first comment arises: contrarily to the monotonic trend observed
when evaluating accuracy on the training set, the rms error does not necessarily reduces when
increasing the number of IMs used to build the models. This is also expected from the fact
related to the curse of dimensionality. For the transceiver and PA test vehicle, the lowest
rms error is actually obtained for models built respectively with 3 and 4 IMs. Referring to
table 4 for the transceiver test vehicle, the difference between the mean value of the rms error
and the reference one remains below 0.1% whatever the size of selected IM subsets. Referring
to table 6 for the PA test vehicle, this difference remains below 0.3% for subsets up to 8
IMs, and then slightly increases but does not exceed 1%. Those results demonstrate that the
generated models are in the same range of prediction accuracy as the reference model. Also
the computed minimum rms errors show that we are able to build models with prediction
accuracy better than the reference one for both test vehicles, especially when increasing the
number of selected IMs: an rms error lower by 0.1% can be obtained for the transceiver in
case of a model built with 10 IMs, and an rms error lower by 0.2% for the PA in case of a
model built with 8 IMs.

Regarding the maximal prediction error, no significant trend can be drawn. For the transceiver
test vehicle, most of the generated models exhibit a maximal prediction error around 8%
whatever the size of selected IM subsets, in the same range than the reference model. For
the PA test vehicle, a large dispersion is observed: the maximal prediction error that can be
lower than the reference one by more than 3% for some models, but it can also be higher by
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(a) Extended SFS-Parental (b) Extended SFS-Non-Parental

Figure 3.14: Prediction accuracy for the transceiver test vehicle

Table 3.4: Rms prediction error of generated models for the transceiver test vehicle

εrms (%) on validation set

Size of selected IM comb 2 3 4 5 6 7 8 9 10

Generated models
mean 2,090 2,047 2,053 2,068 2,113 2,117 2,136 2,160 2,182

min 2,026 2,021 2,023 2,042 2,058 2,065 2,069 2,114 2,138

max 2,320 2,114 2,209 2,229 2,231 2,213 2,242 2,295 2,396

Reference model 2,029 2,016 2,077 2,092 2,094 2,127 2,152 2,188 2,240
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(a) Extended SFS-Parental (b) Extended SFS-Non-Parental

Figure 3.15: Prediction accuracy for the PA test vehicle

Table 3.5: Maximal prediction error of generated models for the transceiver test vehicle

εmax (%) on validation set

Size of selected IM comb 2 3 4 5 6 7 8 9 10

Generated models
mean 8,063 7,771 7,823 7,913 7,967 8,361 7,896 7,930 8,132

min 7,740 7,193 7,330 7,279 7,451 7,581 7,521 7,523 7,437

max 8,537 8,253 9,774 8,874 8,536 13,597 8,401 10,352 9,938

Reference model 7,786 7,654 7,858 7,568 7,644 7,543 7,364 7,681 7,963
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Table 3.6: Rms prediction error of generated models for the PA test vehicle

εrms (%) on validation set

Size of selected IM comb 2 3 4 5 6 7 8 9 10

Generated models
mean 0,972 0,913 0,994 0,900 0,949 1,119 0,955 1,702 1,389

min 0,922 0,743 0,753 0,697 0,715 0,624 0,599 0,655 0,599

max 1,035 1,045 2,279 1,642 1,819 2,143 2,118 3,822 4,564

Reference model 0,924 0,761 0,744 0,749 0,798 0,838 0,832 0,760 0,750

Table 3.7: Maximal prediction error of generated models for the PA test vehicle

εmax (%) on validation set

Size of selected IM comb 2 3 4 5 6 7 8 9 10

Generated models
mean 4,195 4,191 6,991 7,952 8,867 10,508 8,493 22,344 15,735

min 2,954 1,087 3,477 3,763 2,145 0,891 2,234 4,682 2,633

max 5,917 8,266 18,100 22,617 25,685 30,994 30,994 57,313 69,006

Reference model 4,246 3,607 3,673 3,332 4,561 5,607 5,564 5,113 5,145

more than 50% for some other models (especially for models built with a high number of IMs).

However here again, interesting points using the proposed methodology are: (i) we are able
to identify models with a better accuracy than the reference model generated on the full IM
space and (ii) we have at our disposal not only a single model but several models with an
accuracy at least equal to the reference one.

71



3.3. Evaluation

Prediction reliability results for both test vehicles

Figures 3.16 and 3.17 illustrate prediction reliability results for the transceiver and PA test
vehicles respectively. Tables 3.8 and 3.9 summarize the mean, minimum and maximum values
of failing prediction rates in comparison with reference model, for the different sizes of selected
IM subsets.

A first general comment is that, as for prediction accuracy, prediction reliability does not nec-
essarily improve when increasing the number of IMs used to build the models. This is clearly
illustrated for the transceiver test vehicle, for which the FPR achieved by the reference model
built with 10 IMs is more than twice higher than the FPR achieved by the reference model
built with only 3 IMs.

Then focusing more specifically on the comparison between the conventional approach and the
proposed methodology, these results clearly reveal the benefit of the proposed methodology
which permits to generate models with improved prediction reliability. Indeed referring to
table 8, the best FPR achieved by a reference model for the transceiver test vehicle is around
0.8%; it can be reduced down to 0.46% using the proposed methodology, which corresponds
to an improvement by about a factor 2. In the same way referring to table 9, the best FPR
achieved by a reference model for the PA test vehicle is around 0.21%; it can be reduced down
to 0.09%, which corresponds to an improvement by a factor of more than 2. Moreover, it is
worth noting that most of the generated models have an FPR that outperforms the one of
the reference model for a given size of selected IM subset, as illustrated in figures 8 and 9.
Those facts reveal the ability of the proposed methodology to generate several reliable models.

Table 3.8: Failing prediction rate of generated models for the transceiver test vehicle

FPR(εmeas) (%) on validation set

Size of selected IM comb 2 3 4 5 6 7 8 9 10

Generated models
mean 0,469 0,400 0,290 0,247 0,254 0,234 0,233 0,209 0,180

min 0,335 0,257 0,212 0,179 0,212 0,145 0,157 0,089 0,123

max 0,604 0,581 0,391 0,403 0,313 0,391 0,425 0,358 0,380

Reference model 0,425 0,526 0,503 0,335 0,246 0,313 0,335 0,268 0,212

Table 3.9: Failing prediction rate of generated models for the PA test vehicle

FPR(εmeas) (%) on validation set

Size of selected IM comb 2 3 4 5 6 7 8 9 10

Generated models
mean 0,469 0,400 0,290 0,247 0,254 0,234 0,233 0,209 0,180

min 0,458 0,572 0,686 0,572 0,458 0,458 0,458 0,801 0,915

max 2,517 1,487 2,174 2,288 2,288 2,288 2,403 2,403 2,746

Reference model 1,030 0,801 1,259 1,030 1,144 1,373 1,716 2,059 2,059
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(a) Extended SFS-Parental (b) Extended SFS-Non-Parental

Figure 3.16: Prediction reliability for the transceiver test vehicle

(a) Extended SFS-Parental (b) Extended SFS-Non-Parental

Figure 3.17: Prediction reliability for the PA test vehicle
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3.3.3 Further analysis and discussion

In order to perform a comparative study of the different options for IM space reduction and
multi-model generation, a detailed analysis has been conducted based on failing prediction
rate results.

Performances of IM space reduction options

First we have investigated the influence of the option used for IM space reduction. This
analysis is conducted only for the transceiver test vehicle since the initial IM space of the PA
test vehicle is small enough to directly apply the multi-model generation procedure on the
full IM space.
For the transceiver test vehicle, we have four different reduced IM spaces composed of 30
IMs obtained from either Pearson correlation ranking (RIMP earson) or iterative use of MARS
built-in selection feature (RIMMARS−by−3, RIMMARS−by−5, RIMMARS−by−10). For each one
of these reduced spaces, we have a total of 180 generated models corresponding to 20 different
models generated by parental and non-parental strategies for each IM combination size from
2 to 10.
Figures 3.18.a and 3.18.b report the mean FPR value over the 20 different models and the
mean of the 3 best models according to the IM combination size, for the different IM space
reduction options. The FPR value of models obtained using the built-in selection feature of
the MARS algorithm applied on the full IM space is also reported as reference.
From both figures, we can note:

- Whatever the option used for IM space reduction, we have an improved reliability with
respect to reference models generated on the full IM space. This confirms the validity
of investigated options that indeed permit to preselect a limited number of pertinent IMs
and allow the generation of efficient models, not only in terms of prediction accuracy
but also in terms of prediction reliability.

- The best option for this test vehicle is IM space reduction based on Pearson correlation
ranking. Note that this result should not be considered as a generic result since it just
concerns one case study. However it is interesting to note that for this case study, the
use of Pearson correlation ranking was not the more efficient method for IM selection
in the context of single model generation (cf. Chapter 2); however its appears very
efficient for preselection of pertinent IMs in the context of multiple model generation.
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(a) mean over all generated models (b) mean over the best 3 models

Figure 3.18: Influence of IM space reduction options on prediction reliability for the transceiver
test vehicle
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Performances of extended-SFS options

Then we have investigated the influence of the option used in the extended-SFS algorithm,
i.e. parental and non-parental strategies. Results are summarized in figures 3.19 and 3.20 for
the transceiver and PA test vehicles respectively. These figures report the mean FPR value
over the different generated models and the mean of the 3 best models according to the IM
combination size, for the two different strategies.

From these figures, we can note:

- There is no significant difference between parental and non-parental methods in terms of
prediction reliability results since similar FPR performances are achieved for a given
size of selected IM subsets, for both test vehicles.

- In case of the transceiver test vehicle, there is a substantial reduction of the mean FPR value
when computed over the best 3 models, compared to the mean FPR value computed
over all the generated models. This reveals that for a give size of selected IM subsets,
all generated models are not equivalent in terms of prediction reliability, i.e. some have
better performance than the over. It also reveals that it exists at least 3 models that
yield to significant FPR improvement compared to reference models.

- In case of the PA test vehicle, the same trend can be observed but in a lessened extent. In
this case, there is only a slight reduction between the mean FPR value computed over
the 3 best models and the mean FPR computed over all the generated models. Still,
there is a clear improvement compared to reference models, especially in case few IMs
are used to build the models.
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(a) mean over all generated models (b) mean over the best 3 models

Figure 3.19: Influence of extended-SFS options on prediction reliability for the transceiver test
vehicle

(a) mean over all generated models (b) mean over the best 3 models

Figure 3.20: Influence of extended-SFS options on prediction reliability for the PA test vehicle
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3.4 Summary

In this chapter, we have presented an original methodology for building efficient prediction
models from a large set of indirect measurement candidates. Compared to state-of-the-art,
the key idea is to perform a more thorough exploration of the IM combination space with the
objective to (i) allow the generation of several accurate prediction models and (ii) possibly
identify a better model than with the conventional method.

In order to permit a thorough exploration of the IM combination space in a tractable com-
puting time, the methodology involves as first pre-processing step in which a reduced number
of promising candidates are preselected from the full IM space. Thanks to this IM space
reduction, we can afford to perform an extended search and we have developed two extended
versions of the classical SFS algorithm, using either a parental or non-parental strategy. Both
versions allow the selection of multiple IM subsets, and therefore the generation of several
prediction models.

The methodology has been applied on the two test vehicles for which we have experimental
data (the pre-processing step of IM space reduction have been omitted for the PA test vehicle
because the initial IM space is small enough). Obtained results demonstrate that the pro-
posed methodology permits to generate models with enhanced performance compared to the
conventional solution. More specifically, we have seen that it permits to improve prediction
reliability results by a factor of about 2. It also permits to generate not only a single efficient
model, but several accurate and reliable models. The availability of several efficient models
for each device performance actually opens the way for further alternate test developments,
such as optimization over the different performances in order to reduce the global number of
required indirect measurements, or the implementation of alternate test with model redun-
dancy in order to improve test confidence. This latter aspect is developed in the next chapter.
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A
n essential point for the utilization of alternate testing deals with confidence in test
predictions. Developments presented so far in this manuscript have permitted to
propose a relevant metric allowing to quantify prediction reliability and an original

methodology for the generation of efficient prediction models. Based on this methodology, we
develop in this chapter a generic framework for efficient implementation of alternate test with
model redundancy. The objective is to reinforce confidence in test prediction by exploiting
model redundancy. Different options for the selection and construction of redundant models
are implemented. As a consequence, the proposed framework will contain a set of solutions
leading to different trade-offs between test cost and test reliability. This framework therefore
helps the test engineer to choose the more appropriate solution with respect to his specific
application context.

The chapter is organized as follows. Section 4.1 briefly reviews previous works related to con-
fidence improvement of alternate testing and introduces the principle of model redundancy.
Section 4.2 details the proposed framework for the implementation of alternate test with
model redundancy. This framework is then used on the PA test vehicle in section 4.3 which
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provides illustrative results.

Note that the proposed framework is evaluated only for the PA test vehicle as we have no-
ticed a difference in the model performances when computed on the Training Set (TS) and
on the Validation Set (VS), contrarily to the transceiver test vehicle. This is illustrated in
figure 4.1, which reports the FPR metric computed either on TS and VS for the best models
generated by the extended-SFS procedure, for the two test vehicles. In case of the PA test
vehicle, prediction reliability results evaluated on the validation set are not as good as the
ones evaluated on the training set. Indeed whatever the size of the selected IM combinations,
FPR computed on VS is higher than FPR computed on VS. This suggests that prediction
reliability improvement is possible for this test vehicle and the idea is to investigate whether
the implementation of model redundancy can enhance FPR computed on VS close FPR com-
puted on TS. In contrast for the transceiver test vehicle, FPR values computed on VS are
very close to the ones computed on TS whatever the size of selected IM combinations, and
even better in some cases. From this fact, we think that there is no improvement behind the
implementation of model redundancy on this test vehicle.

(a) Transceiver test vehicle (b) PA test vehicle

Figure 4.1: Comparison between prediction reliability results evaluated on training and
validation sets

4.1 Model redundancy principle

Lack of confidence in test predictions is one of the crucial issues that limit the deployment
of the alternate test strategy in the semiconductor industry. An interesting proposal to cope
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with this issue is to implement a two-tier test procedure in which confidence estimation is
established during the production testing phase: only devices for which confidence is sufficient
are predicted using the learned regression models, other devices are directed to another tier
where additional testing may be applied to characterize them. In this way, it is expected
that most of the devices are evaluated through the low-cost alternate test tier and only a
small fraction of devices are evaluated through a more expensive test procedure. As a result,
the overall test cost is reduced compared to standard specification testing while accuracy is
preserved.
This approach has been explored in [31] [47] in the context of classification-oriented strategy.
As illustrated in figure 4.2, it relies on guard-band allocation in the indirect measurement
space in order to identify devices for which the alternate test decision is prone to error. More
precisely two guard-bands (a "good" one and a "faulty" one) are defined during the training
phase that partition the indirect measurement space in three regions: a region that contains
only "good" devices, a region that contains only "faulty" devices, and a region interjected in
between that contains a mixed distribution. Then during the testing phase, the footprint
of the indirect measurement pattern is examined with respect to the learned guard-banded
zone: if it falls outside the zone, the device is assigned to the dominant class (either "good" or
"faulty"), otherwise if it falls within the zone, the device is deemed suspect to misclassification
and it is directed to the second tier when further testing may be applied. Note that this tech-
nique has been developed in the context of classification-oriented strategy and necessitates
information on passing and failing devices.

Figure 4.2: Two-tier alternate test synopsis with guard-band allocation

In the context of prediction-oriented strategy, guard-band allocation cannot be applied be-
cause test decisions are not taken in the indirect measurement space but in the performance
parameter space by comparing predicted values to specification tolerance limits. In this case,
another solution has been explored in [58][38][61] based on model redundancy. As illustrated
in figure 4.3, the idea is to build several regression models during the training phase and to ex-
ploit this redundancy in order establish prediction confidence during the testing phase. More
precisely for a given performance to be evaluated, 3 regression models that involve different
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combinations of indirect measurements are built during the training phase. Then during the
testing phase, confidence estimation is established by checking the consistency between the
values predicted by the 3 different models. A device whose performance predictions are sim-
ilar whatever the regression model used is likely to be properly predicted. In this case, the
device can be evaluated by the low-cost alternate test tier. On the contrary, when different
models lead to different performance predictions for the same device, we can suspect that at
least one of the models does not predict the performance correctly. In this case, prediction is
considered as suspect and the device is directed towards the second tier where further testing
may be applied.

Figure 4.3: Two-tier alternate test synopsis with model redundancy

Figure 4.4 details the procedure for confidence estimation during the testing phase. For every
new tested device, the difference between the predicted values is computed for each pair of
models and checked against a predefined divergence threshold. If one (or more) of these differ-
ences ∆P̂ k,l

j is superior to the divergence threshold εdiv, the prediction is considered suspicious
and the device is directed to the second tier. On the contrary, if all these differences are infe-
rior to the threshold, it means that there is no discrepancy between the values predicted by
the different models and the prediction is considered reliable. In this case, the alternate test
tier can be used to evaluate the device performance, which is computed as the mean of the
values predicted by the different models:

P̂j =
(P̂ 1

j + P̂ 2
j + P̂ 3

j )

3
(4.1)

This strategy based on model redundancy has shown promising results. In particular, it has
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Figure 4.4: Procedure for confidence estimation based on model redundancy

been demonstrated on a real case study that it permits to achieve low rms prediction error,
even if training is performed over a small number of instances. However only prediction
accuracy was evaluated in the experiments and the choice of the redundant models as well as
the choice of the divergence threshold for confidence estimation was done ad-hoc.

4.2 Generic framework

In this chapter, our objective is to develop a generic framework for efficient implementation of
the alternate test strategy with model redundancy. This framework should provide a struc-
tured methodology for the choice of the redundant models and the choice of an appropriate
value for the divergence threshold. It should also permit test efficiency evaluation, not only
in terms of prediction accuracy but also in terms of prediction reliability.

4.2.1 Overview

Implementation of model redundancy obviously requires the availability of several prediction
models for each device performance. The methodology developed in the previous chapter for
multiple model generation is therefore part of the proposed generic framework. As illustrated
in figure 4.5, the proposed framework is actually composed of two modules:

- the first one corresponds to the classical implementation of the indirect test strategy and
involves (i) outlier removal using the adaptive k-filter, (ii) IM space reduction (optional),
and (iii) IM space exploration through extended-SFS search.

- the second one is dedicated to the implementation of model redundancy and involves (i)
selection and construction of redundant models, and (ii) exploration of tradeoff between
test accuracy and test cost.

In case classical implementation is targeted, only the first module is required. In this case,
the IM subset that generates the best model in terms of rms prediction error is retained and
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Figure 4.5: Overview of the proposed generic framework

indirect test efficiency is evaluated by computing the FPR metric. In case implementation
with model redundancy is targeted, the different prediction models generated by the first
module are used as inputs of the second module. Several scenarios are actually implemented
for the selection and construction of redundant models and a quantitative evaluation of the
performance of different implementations is performed. Details on these steps are given in
the following subsections.

4.2.2 Selection and construction of redundant models

From the first module, we have at our disposal several IM subsets of different sizes that can
be used to generate prediction models for a given device performance. These subsets have
been selected according to the ability of the generated models to accurately represent the
relationship between the indirect measurements and the targeted performance for devices of
the training set.
Our proposal for the implementation of model redundancy is now to select IM subsets accord-
ing to the ability of the generated models to correctly predict the performance for devices of
the validation set, in particular regarding prediction reliability. More precisely, the learned
models are used to perform performance prediction for all devices of the validation set and
FPR metric is computed for each model; the 3 models with the best FPR value are then
selected, for each size of IM subsets and for the two options of the extended-SFS procedure
(parental and non-parental). These models can then be used as redundant models during the
production-testing phase in order to establish prediction confidence and estimate the device
performance in case of satisfying confidence.
Furthermore in order to reinforce confidence, we investigate an original option, which consists
in building the meta-models using ensemble learning [62]. Ensemble learning refers to a col-
lection of methods that learn a target function by training a number of individual learners and
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combining their predictions. The resulting model is called ensemble model or meta-model.
Numerous empirical and theoretical studies in various domains have demonstrated that en-
semble models very often attain higher accuracy than single models. Our objective here is to
investigate the use of meta-models in the context of the alternate test strategy.

Various methods exist in the literature for constructing ensembles, e.g. subsampling the train-
ing examples, manipulating the input/output features, injecting randomness... In this work
we investigate a method based on subsampling the training examples, and more specifically a
method based on "cross-validated committees". The principle of this method is illustrated in
figure 4.6. The original training set is randomly divided into k partitions and k overlapping
training subsets are constructed by dropping out one of these k partitions (typical value for
k is 10). Individual models are then learned on each one of these training subsets and the
meta-model is obtained by combining predictions of the individual learners with a uniform
weighted average.
Practically regarding the implementation of model redundancy with meta-models, our pro-

Figure 4.6: Meta-model construction with cross-validated committees (k=10)

posal is to consider, for each size of IM subsets, the 3 meta-models corresponding to the 3
standard models selected with respect to their FPR metric. To summarize, different scenar-
ios for selection and construction of redundant models are implemented. First IM subsets
are selected based on the individual prediction reliability performance of standard models,
considering either the parental or non-parental strategy. Then for each selected subset, two
versions of the prediction model are constructed, i.e. a standard model and a meta-model
based on cross-validated committees established on training set partitions. These scenarios
are summarized in Table 4.1.

Table 4.1: Implemented scenarios for redundant model generation

Model Selection from Extended-SFS Model Construction

Parental strategy
Standard Models

Meta-Models

Non-parental strategy
Standard Models

Meta-Models
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4.2.3 Tradeoff exploration: reliability vs. cost

The last phase of the test preparation is related to the choice of the divergence threshold
εdiv used for confidence estimation and its impact on the tradeoff between test reliability and
test cost. Indeed confidence estimation is established by comparing the difference between
the predicted values for each pair of redundant values to a pre-defined threshold. If all these
differences are inferior to the divergence threshold, the device is predicted using the alternate
test tier, otherwise it is directed towards the second tier.

Evidently, the choice of this threshold is crucial since it affects both the number of retested
devices and the reliability of test predictions. A strict threshold may exclude many devices
from the alternate test tier, resulting in higher test cost. On the contrary a relaxed thresh-
old will direct only few devices to the second test tier, but may allow unreliable predictions
for a number of devices. In other words, the choice of this divergence threshold enables the
exploration of the tradeoff between test cost and test reliability.

Practically our proposal is to vary the value of the divergence threshold and to evaluate
the FPR corresponding to validation devices predicted using the alternate test tier and the
percentage of validation devices directed towards the second tier, for each size of selected IM
subsets and for each scenario of redundant model generation. As illustrated on the conceptual
example of figure 4.7, we can then plot the FPR against the number of retested devices for
the different scenarios of redundant model generation. Then we can determine the minimum
front, where each point on the optimum curve corresponds to a given scenario and a given
divergence threshold. This evaluation is very important because it gives access to quantitative
information on the expected performance of alternate test implementation. Based on this
information, the test engineer can decide whether alternate test offers sufficient performance
for its specific application context and choose the more appropriate implementation.

Figure 4.7: Exploration of cost-reliability tradeoff, for a given IM subset size
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4.3 Results

The proposed generic framework has been used on our case study, with the objective to im-
plement redundancy using models composed of up to p = 10 IMs. The full dataset has been
separated in a training set of 2,264 devices and a validation set of 8,943 devices, based on
latin-hypercube sampling in order to ensure similar statistical characteristics between both
sets.

4.3.1 Selection and construction of redundant models

From the extended-SFS procedure, we have identified for each size of IM combination, 10
subsets using the parental strategy and 10 subsets using the non-parental strategy. The first
step for redundant model selection is to use the corresponding standard models to perform
performance prediction for all devices of the validation set and evaluate resulting prediction
reliability. For each size of IM combination, the 3 models with the best FPR are then retained.
As an illustration, figure 4.8 reports prediction reliability results for the 10 standard models
generated from the extended-SFS procedure, in case of models built with 3 IMs. From this
figure, we observe that the lowest FPR values are obtained for models 1, 9 and 10 with the
parental method, and models 5, 9 and 10 with the non-parental method. For the implemen-
tation of model redundancy, we will consider those 3 standard models out coming from each
strategy. Moreover, we will also consider the corresponding meta-models built using cross-
validated committees. For the sake of illustration, FPR values achieved with these meta
models are also reported in figure 4.8. Note that on this example, the use of meta-models
does not necessarily yield to better prediction reliability. For instance, the standard model 9
generated with the non-parental method exhibits a better FPR than its corresponding meta
model.
The same process is used to select redundant models with different IM subset sizes. Results

are summarized in figure 4.9, which reports intrinsic model accuracy (evaluated on training
set) together with prediction accuracy and reliability (evaluated on validation set) for redun-
dant models generated by the different scenarios.
Two main comments arise from these graphs. First, regarding the use of ensemble learning,
there is no evidence of the benefit of this option. Indeed whatever the considered metric, gen-
erated meta-models can have lower or higher performances than their corresponding standard
models depending on the size of selected IM subsets. Yet, performances remain in the same
range than the ones achieved with standard models. We will therefore consider this option
for the implementation of model redundancy. Then the second comment is more general and
concerns the impact of the number of IMs used to build the models. While the rms error
evaluated on the training set slightly decreases when increasing the number of IMs, this is not
manifest when looking at the rms error evaluated on the validation set. There is therefore no
particular interest in selecting a high number of indirect measurements in terms of prediction
accuracy. In contrast the decreasing trend is clearly visible when looking at the FPR metric,
which suggests that improved reliability might be attained by using redundant models built
with a high number of IMs.
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(a) Parental method (b) Non-Parental method

Figure 4.8: Prediction reliability for models built with 3 IMs (models generated from
extended-SFS)
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Figure 4.9: Accuracy and reliability metrics for redundant models vs. size of selected IM subsets
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4.3.2 Tradeoff between test cost and test reliability

The second phase of the procedure is to explore the tradeoff between test cost and test re-
liability for the different possible implementations of model redundancy. More precisely, the
two-tier test flow is applied for each size of selected IM subsets and each scenario of redundant
model generation, considering different values of the divergence threshold. The FPR corre-
sponding to devices directed to the alternate test tier and the percentage of devices directed
to the second test tier (Retest) are computed with respect to the value of the divergence
threshold. From this evaluation, we can then plot the FPR against Retest, which corresponds
to the reliability-cost tradeoff for each possible implementation.
This procedure is illustrated in figure 4.10 for three sizes of selected IM subsets, i.e. 3, 5 and
10. From these graphs, we can note:

- The lower the divergence threshold, the lower the FPR achieved for devices evaluated by
the alternate test tier (cf. figure 4.10.a). This clearly illustrates the pertinence of model
redundancy which permits to enhance prediction reliability.

- The counterpart of prediction reliability improvement resides in the number of devices
directed to the second tier for further testing: the lower the divergence threshold, the
higher the percentage of devices directed to the second tier (cf. figure 4.10.b), and
therefore the higher the global cost of the two-tier test flow.

- Finally regarding the reliability-cost tradeoff and more specifically the influence of the
different scenarios for redundant model generation, there is no evident trend of one
scenario being better than the other. This actually depends on both the acceptable
level for the percentage of devices directed to the second tier and the size of selected IM
subsets (cf. figure 4.10.c). For instance, considering models built with 3 IMs, the best
performance in terms of prediction reliability is achieved using meta-models generated
from the non-parental strategy in case of 5% acceptable Retest level, and meta-models
generated from the parental strategy in case of 10% acceptable Retest level.

To further illustrate this point, figure 4.11 presents the FPR achieved by the different im-
plementations of model redundancy, for every size of selected IM subsets and for 3 different
values of the percentage of devices directed to the second tier (Retest equal to 1%, 5% and
10%). These results confirm previous observation, i.e. there is not a single scenario of redun-
dant model generation that leads to superior performance but results depend on both the size
of selected IM subsets and acceptable Retest level. In order to optimize the performance of
model redundancy implementation, it is therefore important to include the different scenraio
in the generaic framework and to consider the minimum front for each size of selected IM
subsets.
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3 IMs 5 IMs 10 IMs

Figure 4.10: Evaluation of different model redundancy implementations: (a) FPR vs. divergence
threshold, (b) Retest vs. divergence threshold, (c) FPR vs. Retest
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Figure 4.11: Prediction reliability achieved by different implementations of model redundancy,
for 3 values of acceptable Restest level
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Global results of cost-reliability tradeoff exploration are summarized in figure 4.12 which
reports the minimum front of FPR obtained from the different selection scenarios with respect
to the percentage of devices directed to the second tier, for the different sizes of selected IM
subsets. Each point on the optimum curves corresponds to a given scenario and a given
divergence threshold.
This graph contains all the relevant information to help the test engineer choosing the more

Figure 4.12: Trade-off between test cost and test reliability for different sizes of selected IM
subsets (minimum front of FPR obtained from the different scenarios of redundant model

generation)

appropriate tradeoff for its specific application context. This graph also clearly illustrates the
influence of the number of IMs used to build the redundant models. The general trend is
that the higher this number, the lower the FPR that can be reached for a given percentage
of devices directed to the second tier. Note that for this case study, interesting performances
can be achieved. In particular it is possible to obtain an FPR below 0.05%, which means
that more than 99.95% of the devices evaluated by the alternate test tier can be predicted
with an error lower than the classical measurement repeatability error. This corresponds to
a significant improvement of test reliability compared to the conventional implementation of
alternate test with a single prediction model, which permits to reach only an FPR of about
0.2%. Moreover such a low FPR can be obtained with only a small fraction of devices directed
to the second tier, incurring very limited test overhead (e.g. less than 0.15% of devices using
redundant models built with selected subsets of 10 IMs).
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4.4 Summary

In this chapter, we have presented a generic framework for efficient implementation of al-
ternate test with model redundancy. This framework includes the procedures developed in
previous chapters, i.e. outlier removal, IM space reduction and multiple IM subset selection
through extended-SFS. It is then complemented by two additional procedures dedicated to
model redundancy implementation: (i) selection and construction of redundant models and
(iii) exploration of cost-reliability tradeoff depending on the choice of the divergence threshold
for confidence estimation. Different options have been investigated for IM space exploration
and construction of redundant models. The proposed framework permits to select the more
appropriate scenario and to have a quantitative evaluation of the alternate test performance
in terms of prediction reliability.

The use of the proposed framework has been illustrated on a practical case study for which we
have experimental test data. Results clearly demonstrate the benefit of implementing model
redundancy, which permits to achieve very low failing prediction rates with only few devices
directed to a second tier for further testing. More generally, this framework constitutes an
essential element to guide the test engineer regarding practical aspects of alternate test im-
plementation.
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Conclusion

I
ndirect test relies on low-cost indirect measurements to estimate RF performances. The
fundamental principle is to learn during a training phase regression models that map
indirect measurements to the RF performances; these models are then used during the

testing phase to predict the RF performances of new manufactured devices using only the
indirect measurements. Despite the substantial test cost reduction offered by this strategy
and a number of promising results reported in the literature on various case studies, its de-
ployment in industry is today limited. There are several reasons for this and among them,
the problem of how to evaluate the efficiency of alternate test and which confidence can be
granted to indirect test predictions are major challenges.

The work presented in this PhD manuscript introduces a generic methodology for indirect
test implementation, addressing these two challenges. This methodology is illustrated using
two test vehicles (a Power Amplifier and an RF Transceiver) for which we have experimental
test data provided by NXP Semiconductors.

Considering the first challenge "Evaluation of alternate test efficiency ", we have first per-
formed a comparative analysis of serval existing IM selection strategies, which has not been
reported before in the literature. We have investigated four different IM strategies, pertain-
ing to both filter (i.e. Pearson and Brownian distance correlations) and wrapper (i.e. MARS
and SFS methods) categories. Moreover, we have also investigated the influence of several
parameters such as the number of IMs used to perform prediction of a device performance,
the size of the training set used during the selection procedure and the size of the training
set used for the model construction. Efficiency has been evaluated using classical accuracy
metrics such rms and maximal prediction errors, but also in terms of prediction reliability.
For this purpose, we have defined a new metric "Failing Prediction Rate" which permits to
quantify the proportion of devices that are predicted with an error below the conventional
measurement uncertainty. Results have clearly revealed that finding the set of most appro-
priate IMs is strongly dependent on the case study. We have shown that with the appropriate
selection strategy, good prediction reliability can be achieved using only a limited number of
indirect measurements. In particular, for both test vehicles, we found out that 99.5% of the
devices can be accurately predicted with an error lower than the measurement repeatability
error using only three indirect measurements.

Following this first study, we have focused more specifically on test efficiency improvement
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and we have developed a novel solution for the selection of pertinent indirect measurements.
This solution relies on an extended-SFS algorithm that allows of more thorough exploration of
the IM space, with the objective to (i) possibly identify a better model than with the classical
SFS algorithm and (ii) generate several accurate prediction models. In case of IM space of
high dimensionality, a preliminary phase "IM-space reduction" is performed to deal with the
computational time issue in the context of an extended exploration. We have proposed differ-
ent IM space reduction solutions (i.e. reduced IM space from: PCA, Pearson correlation and
MARS built-in-self-selection) in order to reduce the number of promising candidates from the
full IM space. Then regarding IM space exploration, two options (i.e. Extended SFS-Parental
and Extended SFS-Non Parental) have been proposed. Obtained results have demonstrated
that both options permit to generate several models with performances better or equal than
the ones of the single model generated by the classical SFS strategy, in terms of both predic-
tion accuracy and reliability. In case of a conventional implementation of the indirect test,
this methodology offers an improved test efficiency by selecting the best model generated by
the extended SFS algorithm for each device performance. Moreover the availability of several
efficient models for each device performance is actually benefic to address the confidence issue.

In relation with this latter "Enhancement of alternate test confidence", we have presented a
generic framework for efficient implementation of indirect test with model redundancy. This
framework includes the previous methodology for multiple model generation and complements
it with (i) the selection and construction of redundant models through the extended-SFS
and (ii) the exploration of tradeoff between test accuracy and test cost. Different options
are implemented for the selection and construction of redundant models, and in particular
the construction of meta-models using ensemble learning. The exploration of cost-reliability
tradeoff is then realized for each scenario depending on the choice of the divergence threshold
for confidence estimation. The proposed framework permits to select the more appropriate
scenario with respect to a given application context. Results have demonstrated the benefit
of implementing model redundancy, which permits to significantly improve the indirect test
confidence with only few devices directed to a second tier for further testing. More generally,
this framework constitutes an essential element to guide the test engineer regarding practical
aspects of alternate test implementation.

This work opens interesting perspectives concerning alternate test for analog and RF inte-
grated circuits. Further investigations may be conducted to improve the proposed flow by
implementing others options in relation with feature selection, test metrics and data mining
tools in order to fix the appropriate scenario for each case study. Another direction is to study
the impact of manufacturing process shift during the production test phase on the predictive
models.
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