G. Aad, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Physics Letters B, vol.716, issue.1, p.17, 2012.
URL : https://hal.archives-ouvertes.fr/in2p3-00722246

J. Woithe, J. Gerfried, F. F. Wiener, and . Van-der-veken, Let's have a coffee with the Standard Model of particle physics, Physics Education, vol.52, p.18, 2017.

W. Buchmuller and C. Ludeling, Field Theory and Standard Model". In: Highenergy physics. Proceedings, European School, p.18, 2005.

J. Gluza and T. Riemann, Massive Feynman integrals and electroweak corrections, Nucl. Part. Phys. Proc, pp.140-154, 2015.

P. Langacker, The standard model and beyond, p.19, 2017.

, The High-Luminosity LHC, p.19, 2015.

H. Kim and J. , The Future Circular Collider, p.19, 2016.

Q. Qin, Overview of the CEPC Accelerator, p.19, 2015.

T. Abe, Belle II technical design report, p.19, 2010.

M. Reece, Physics at a Higgs factory, The Future of High Energy Physics: Some Aspects, p.21, 2017.

K. Fujii, Physics case for the international linear collider, pp.21-23, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01680382

G. Daniel, J. Figueroa, F. García-bellido, and . Torrentí, Decay of the standard model Higgs field after inflation, Physical Review D, vol.92, issue.8, p.22, 2015.

G. Aad, Search for dark matter produced in association with a Higgs boson decaying to two bottom quarks in p p collisions at s= 8 TeV with the ATLAS detector, Physical Review D, vol.93, issue.7, p.22, 2016.

A. Kusenko, L. Pearce, and L. Yang, Postinflationary Higgs relaxation and the origin of matter-antimatter asymmetry, Physical review letters, vol.114, p.22, 2015.

H. Baer, The International linear collider technical design report, vol.2, p.22, 2013.

B. Barish and J. E. Brau, The International Linear Collider, Int. J. Mod. Phys. A28, vol.27, p.24, 2013.
URL : https://hal.archives-ouvertes.fr/in2p3-00613176

T. Behnke, The international linear collider technical design report, vol.4

C. He-sheng, Tau-Charm Factory Project at Beijing". In: Nuclear Physics BProceedings Supplements, vol.59, p.26, 1997.

. Svende-annelies-braun, Analysis of the decay e ?+ e ? ?\to\gamma X(3872)\to J/\psi\,\gamma\gamma attheBESIIIexperiment, p.27, 2014.

M. Ablikim, Design and construction of the BESIII detector, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, vol.614, p.27, 2010.

A. Frederick and . Harris, Bepcii and Besiii". In: Nuclear Physics B-Proceedings Supplements, vol.162, pp.345-350, 2006.

. Zhao-chuan, Time calibration for the end cap TOF system of BESIII, Physics C, vol.35, p.29, 2011.

R. X. Yang, MRPC detector for the BESIII E-TOF upgrade, Journal of Instrumentation, vol.9, p.29, 2014.

A. E. Bondar, Project of a super charm-tau factory at the Budker Institute of Nuclear Physics in Novosibirsk, Physics of Atomic Nuclei, vol.76, p.30, 2013.

C. Yuan, Hadron spectroscopy and charmonium decays from BES and CLEOc, High Energy Physics and Nuclear Physics, vol.30, p.30, 2006.

. , The construction of the BESIII experiment, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, vol.598, p.30, 2009.

D. Attie, TPC review, Nucl. Instrum. Meth, vol.598, p.34, 2009.

C. Brezina, Gossipo-3: A prototype of a Front-End Pixel Chip for Read-Out of Micro-Pattern Gas Detectors, 2009.

F. Sauli, Bubble Chambers, Annu. Rev. Nucl. Sci (TODO edit, vol.97, p.36, 1977.

V. Palladino and B. Sadoulet, Application of classical theory of electrons in gases to drift proportional chambers, Nuclear Instruments and Methods, vol.128, p.36, 1975.

V. Palladino and B. Sadoulet, Application of the Classical Theory of Electrons in Gases to Multiwire Proportional and Drift Chambers, vol.38, p.37, 1974.

A. Philip-m-morse and E. S. Lamar, Velocity distributions for elastically colliding electrons, Physical Review, vol.48, p.37, 1935.

T. Holstein, Energy distribution of electrons in high frequency gas discharges, Physical Review, vol.70, p.37, 1946.

H. Margenau, Conduction and dispersion of ionized gases at high frequencies, Physical Review, vol.69, issue.10, p.37, 1946.

L. S. Frost and . Phelps, Rotational excitation and momentum transfer cross sections for electrons in H2 and N2 from transport coefficients, Physical Review, vol.127, p.37, 1962.

A. G. Engelhardt and A. V. Phelps, Transport coefficients and cross sections in argon and hydrogen-argon mixtures, Physical Review, vol.133, p.38, 1964.

A. V. Rd-hake and . Phelps, Momentum-Transfer and Inelastic-Collision Cross Sections for Electrons in O 2, CO, and C O 2, Physical Review, vol.158, p.38, 1967.

S. F. Biagi, Monte Carlo simulation of electron drift and diffusion in counting gases under the influence of electric and magnetic fields, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol.421, pp.234-240, 1999.

C. Patrignani, Review of Particle Physics". In: Chin. Phys. C40, vol.10, p.38, 2016.

M. E. Rose, An investigation of the properties of proportional counters. I, Physical Review, vol.59, p.38, 1941.

W. Blum, W. Riegler, and L. Rolandi, Particle detection with drift chambers, 2008.

P. Fonte, Single-electron pulse-height spectra in thin-gap parallel-plate chambers, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, vol.433, p.40, 1999.
DOI : 10.1016/s0168-9002(99)00309-5

URL : https://estudogeral.sib.uc.pt/bitstream/10316/4541/1/filefbadd097374942509a43ade3bfaeda9c.pdf

Y. Bilevych, Spark protection layers for CMOS pixel anode chips in MPGDs, Nucl. Instrum. Meth, vol.629, pp.66-73, 2011.
DOI : 10.1016/j.nima.2010.11.116

H. Raether, Electron avalanches and breakdown in gases, p.40, 1964.

E. Rutherford and H. Geiger, An Electrical Method of Counting the Number of ?-Particles from Radio-Active Substances, Proceedings of the Royal Society of London Series A, vol.81, p.40, 1908.

H. Geiger and W. Müller, Elektronenzählrohr zur Messung schwächster Aktivitäten, p.40, 1928.
DOI : 10.1007/bf01494093

G. Charpak, The use of multiwire proportional counters to select and localize charged particles, Nucl. Instrum. Meth, vol.62, p.42, 1968.

A. H. Walenta, J. Heintze, and B. Schuerlein, The multiwire drift chamber, a new type of proportional wire chamber, Nucl. Instrum. Meth, vol.92, p.43, 1971.

D. C. Cheng, Very large proportional drift chambers with high spatial and time resolutions, Nuclear Instruments and Methods, vol.117, p.43, 1974.
DOI : 10.1016/0029-554x(74)90394-2

C. Grupen and B. Schwartz, Particle detectors, p.43, 2008.
DOI : 10.1063/1.881813

N. A. Filatova, Study of Drift Chamber System for a K ? e Scattering Experiment at the Fermi National Accelerator Laboratory, Nucl. Instrum

. Meth, , vol.143, p.44, 1977.

C. Grupen and B. Shwartz, , vol.26, p.46, 2008.

A. Oed, Properties of micro-strip gas chambers (MSGC) and recent developments, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol.367, p.46, 1995.
DOI : 10.1016/0168-9002(95)00657-5

F. Sauli, GEM: A new concept for electron amplification in gas detectors, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol.386, p.46, 1997.

Y. Giomataris, MICROMEGAS: a high-granularity position-sensitive gaseous detector for high particle-flux environments, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol.376, pp.29-35, 1996.
DOI : 10.1016/0168-9002(96)00175-1

URL : http://cds.cern.ch/record/299159/files/SCAN-9603270.pdf

B. Mindur, Development of Micro-Pattern Gas Detectors Technologies, p.46, 2008.

F. Sauli, The gas electron multiplier (GEM): Operating principles and applications, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, vol.805, p.46, 2016.
DOI : 10.1016/j.nima.2015.07.060

URL : https://doi.org/10.1016/j.nima.2015.07.060

R. Nath-patra, Measurement of basic characteristics and gain uniformity of a triple GEM detector, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, vol.862, p.47, 2017.

E. Costa, An efficient photoelectric X-ray polarimeter for the study of black holes and neutron stars, Nature, vol.411, p.48, 2001.

R. Bellazzini, Reading a GEM with a VLSI pixel ASIC used as a direct charge collecting anode, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, vol.535, p.48, 2004.

W. Erdmann, The front-end for the CMS pixel detector, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol.549, p.48, 2005.

X. Llopart, Medipix2, a 64k pixel read out chip with 55/spl mu/m square elements working in single photon counting mode, Nuclear Science Symposium Conference Record, vol.3, p.48, 2001.

C. Xavier-llopart, Design and characterization of 64K pixels chips working in single photon processing mode, p.48, 2007.

T. Poikela, Timepix3: a 65K channel hybrid pixel readout chip with simultaneous ToA/ToT and sparse readout, Journal of instrumentation, vol.9, p.48, 2014.

J. Marc and . Madou, Fundamentals of microfabrication: the science of miniaturization, p.50, 2002.

R. Müller, Design and construction of precision tooling for the construction of resistive strip micromegas detectors for the ATLAS Small Wheel upgrade project, Nuclear Science Symposium and Medical Imaging Conference, p.2015

I. I. , , p.50, 2015.

H. Sako, Development of a GEM-based TPC for H-dibaryon Search at J-PARC, p.50, 2014.

T. Francke, Innovative applications and developments of micro-pattern gaseous detectors, p.50, 2014.

. Sp-george, Particle tracking with a Timepix based triple GEM detector, Journal of Instrumentation, vol.10, p.51, 2015.

U. Einhaus, J. Kaminksi, and M. Caselle, ROPPERI-A TPC readout with GEMs, pads and Timepix, p.51, 2018.

M. A. Chefdeville, Development of micromegas-like gaseous detectors using a pixel readout chip as collecting anode, p.51, 2009.

G. De and L. , A large TPC prototype for an ILC detector, Nuclear Science Symposium Conference Record, p.52, 2009.

M. Lupberger, The Pixel-TPC: first results from an 8-InGrid module, Journal of Instrumentation, vol.9, p.52, 2014.
DOI : 10.1088/1748-0221/9/01/c01033

URL : http://arxiv.org/pdf/1311.3125

P. Schade and J. Kaminski, A large TPC prototype for a linear collider detector, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol.628, p.52, 2011.
DOI : 10.1016/j.nima.2010.06.300

URL : http://bib-pubdb1.desy.de//record/90401/files/access.pdf

J. Kaminski, GridPix detectors-introduction and applications, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, vol.845, p.52, 2017.
DOI : 10.1016/j.nima.2016.05.134

M. Lupberger, The Pixel-TPC: A feasibility study, pp.2015-2023
DOI : 10.1109/nssmic.2015.7581777

URL : http://cds.cern.ch/record/2294537/files/fulltext.pdf

, Pixel TPC simulation, geometry and expected performance, LCTPC Collaboration Meeting, p.54, 2017.

M. Lupberger, Toward the Pixel-TPC: Construction and operation of a large area GridPix detector, IEEE Transactions on Nuclear Science, vol.64, p.53, 2017.

M. Alves, PHIL photoinjector test line, T01001 (cit, vol.8, p.56, 2013.
URL : https://hal.archives-ouvertes.fr/in2p3-00770183

T. Vinatier, Influence of laser parameters on the relativistic short electron bunches dynamics in linear accelerators based on RF-guns and development of associated diagnostics, pp.56-60, 2015.
URL : https://hal.archives-ouvertes.fr/tel-01230538

J. Arthur, Linac coherent light source (LCLS) conceptual design report, p.59, 2002.

M. Vogt, Status of the free electron laser user facility FLASH, Proc. 5th

. Int, Particle Accelerator Conf.(Dresden, vol.938, p.59, 2014.

J. Branlard, European XFEL RF Gun Commissioning and LLRF Linac Installation, Proceedings, 5th International Particle Accelerator Conference (IPAC, p.59, 2014.

B. Robert and . Palmer, A laser driven grating linac, In: Part. Accel, vol.11, p.60, 1980.

P. Forck, Lecture notes on beam instrumentation and diagnostics: Joint University Accelerator School, p.60, 2011.

. Hung-chi-lihn, Measurement of subpicosecond electron pulses, Physical Review E, vol.53, p.60, 1996.

H. Purwar, Estimation of Longitudinal Dimensions of Sub-Picosecond Electron Bunches with the 3-Phase Method, 8th Int. Particle Accelerator Conf.(IPAC'17), p.60, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01645362

E. Chiadroni, Bunch length characterization at the TTF VUV-FEL, p.60, 2006.

T. Vinatier, Length measurement of high-brightness electron beam thanks to the 3-phase method, 5th International Particle Accelerator Conference IPAC'14. Joint Accelerator Conferences Website, p.61, 2014.
URL : https://hal.archives-ouvertes.fr/in2p3-01006701

, Delta Elecktronika SM 800 series power supply datasheet (cit, p.65

, Opera FEA Simulation Software (cit, p.66

K. Spanner and B. Koc, Piezoelectric motors, an overview, Actuators, vol.5, p.69, 2016.

K. Sidhu, Understanding Linear Position Sensing Technologies (cit, p.70

, NSE-5310 Miniature Position Encoder with Zero Reference and I 2 C Output (cit, vol.71, p.70

, The I2C-bus specification, p.71, 2000.

T. , , p.72

, Lightweight TCP/IP stack, p.72

T. , Ethernet periphery configuration (cit, p.72

, LEETECH Master board MAC address configuraion (cit, p.72

, LEETECH Master board TCP/IP configuraion (cit, p.72

H. Wu, W. Su, and Z. Liu, PID controllers: Design and tuning methods, Industrial Electronics and Applications (ICIEA), p.76, 2014.

M. Pillon, A. V. Angelone, and . Krasilnikov, 14 MeV neutron spectra measurements with 4% energy resolution using a type IIa diamond detector, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol.101, p.84, 1995.

H. Frais-kolbl, A fast low-noise charged-particle CVD diamond detector, IEEE Transactions on nuclear science, vol.51, p.84, 2004.

S. Han, Temporally resolved response of a natural type IIA diamond detector to single-particle excitation, Diamond and Related Materials, vol.2, p.84, 1993.

M. Pomorski, Charge transport properties of single crystal CVD-diamond particle detectors, Diamond and Related materials, vol.16, p.84, 2007.

S. Liu, In vacuum diamond sensor scanner for beam halo measurements in the beam line at the KEK Accelerator Test Facility, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, vol.832, p.84, 2016.
URL : https://hal.archives-ouvertes.fr/in2p3-01289635

. El-khechen, First Tests of SuperKEKB Luminosity Monitors during 2016 Single Beam Commissioning, hist 16, vol.18, p.84, 2016.

, Accessed: 2018-03-30 (cit, p.84

C. Weiss, Ionization signals from diamond detectors in fast-neutron fields, The European Physical Journal A, vol.52, issue.9, p.85, 2016.

D. Breton, The WaveCatcher family of SCA-based 12-bit 3.2-GS/s fast digitizers, Real Time Conference (RT), pp.1-8, 2014.
URL : https://hal.archives-ouvertes.fr/in2p3-00995691

A. Kalweit and . Alice-collaboration, Particle identification in the ALICE experiment, Journal of Physics G: Nuclear and Particle Physics, vol.38, p.96, 2011.

R. Talman, On the statistics of particle identification using ionization, Nuclear Instruments and Methods, vol.159, p.97, 1979.

H. Bichsel, Comparison of Bethe-Bloch and Bichsel functions, STAR Note, vol.439, p.97, 2002.

A. Andryakov, dE/dx measurement in a He-based gas mixture, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, vol.409, p.97, 1998.

P. Valente, G. Finocchiaro, and M. Piccolo, dE/dx resolution in a 90GeV/c pions. KLOE note 161, 1997.

J. Caron, Improved particle identification using cluster counting in a full-length drift chamber prototype, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, vol.735, p.99, 2014.

V. V. Berdnikov, S. V. Somov, and L. Pentchev, Use of cluster counting technique for particle identification in a drift chamber with the cathode strip readout, In: Instrum. Exp. Tech, vol.58, issue.4, p.99, 2015.

L. Cerrito, Cluster counting in a large drift chamber in He 80%-CH-4 20% at normal conditions, p.99, 1998.

R. Perrino, Cluster counting drift chamber as high precision tracker for ILC experiments, Nucl. Instrum. Meth, vol.598, pp.99-101, 2009.
DOI : 10.1016/j.nima.2008.08.073

I. Smirnov, Heed: interactions of particles with gases, p.101

W. Allison and J. H. Cobb, Relativistic charged particle identification by energy loss, Annual Review of Nuclear and Particle Science, vol.30, p.101, 1980.

J. Apostolakis, An implementation of ionisation energy loss in very thin absorbers for the GEANT4 simulation package, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol.453, p.103, 2000.

. Geant-collaboration, Physics reference manual, vol.105, p.103, 2016.

V. Grichine, Recent validation and improvements of Geant4 standard EM package at low energies, 16th Geant4 Collaboration Meeting, p.103, 2011.

V. Ivanchenko, Geant4 electromagnetic physics: improving simulation performance and accuracy, SNA+ MC 2013-Joint International Conference on Supercomputing in Nuclear Applications+ Monte Carlo, vol.104, p.3101, 2014.
DOI : 10.1051/snamc/201403101

URL : https://hal.archives-ouvertes.fr/in2p3-00978306

V. Ivantchenko, Overview and new developments in Geant4 electromagnetic physics, 2005.
URL : https://hal.archives-ouvertes.fr/in2p3-00024885

, Geant4 Application Developer User Guide, p.105

C. Azevedo, Position resolution limits in pure noble gaseous detectors for X-ray energies from 1 to 60 keV, Physics Letters B, vol.741, p.110, 2015.

, Various gas mixtures transport coefficients storage (Magboltz calculation). (Cit, p.121

P. Billoir and . Qian, Simultaneous pattern recognition and track fitting by the Kalman filtering method, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol.294, p.118, 1990.
DOI : 10.1016/0168-9002(90)91835-y

URL : https://hal.archives-ouvertes.fr/in2p3-00017921

. Wouter-d-hulsbergen, Decay chain fitting with a Kalman filter, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, vol.552, p.118, 2005.

W. Adam, Reconstruction of electrons with the Gaussian-sum filter in the CMS tracker at the LHC, Journal of Physics G: Nuclear and Particle Physics, vol.31, p.118, 2005.
URL : https://hal.archives-ouvertes.fr/in2p3-00024961

A. Strandlie and R. Fruhwirth, Track and vertex reconstruction: From classical to adaptive methods, Rev. Mod. Phys, vol.82, p.120, 2010.
DOI : 10.1103/revmodphys.82.1419

G. Bradski and A. Kaehler, OpenCV". In: Dr. Dobb's journal of software tools, vol.3, p.120, 2000.

J. Illingworth and J. Kittler, A survey of the Hough transform, Computer vision, graphics, and image processing, vol.44, p.120, 1988.

H. Dana and . Ballard, Generalizing the Hough transform to detect arbitrary shapes, Readings in computer vision, p.120, 1987.

L. Burmistrov, A detector for charged particle identification in the forward region of SuperB, p.133, 2011.
URL : https://hal.archives-ouvertes.fr/tel-00673482

L. Bardelli, Time measurements by means of digital sampling techniques: a study case of 100 ps FWHM time resolution with a 100 MSample/s, 12 bit digitizer, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol.521, p.135, 2004.

O. Atanova, Measurement of the energy and time resolution of a undoped CsI+ MPPC array for the Mu2e experiment, Journal of Instrumentation, vol.12, p.135, 2017.

Y. Hai-bo, Application of the DRS4 chip for GHz waveform digitizing circuits, Chinese Physics C, vol.39, p.135, 2015.

N. Cartiglia, Beam test results of a 16 ps timing system based on ultrafast silicon detectors, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, vol.850, p.137, 2017.

F. Nolet, Digital SiPM channel integrated in CMOS 65 nm with 17.5 ps FWHM single photon timing resolution, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, p.137, 2017.
DOI : 10.1016/j.nima.2017.10.022