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Introduction

Phononic crystals and acoustic metamaterials are artibcialstructured composite
materials which have been proposed and developed at an in@®g pace over the
past two decades. They can manipulate and control the wave gragation in ways
that were not possible in conventional materials. Phononicrystals are identibed
by a periodically arranged structure made of scatterers witdimensions and periods
comparable to the wavelength. This type of designed matergapossesses a number of
important properties such as band gaps [1] (see Fig. 1), i.&vaves do not propagate
over specibc frequency ranges. Compared to the phononic tajg one can debne
acoustic metamaterials as structured on a scale that is sigptantly smaller than
the wavelength of the alected waves. Acoustic metamateriaksxhibit new features,
most of the time associated to local resonances, that can defor instance to zero or
negative values for the elective mass density as well as bulkodulus. Consequently,
the acoustic metamaterials o'er new opportunities for unusal wave control at sub-
wavelength scales due to their novel and unique properties agll as the modeling
and concepts developed in this framework [2, 3, 4, 5].
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Figure 1: (a) 1D, 2D and 3D phononic crystals made of two dilerentelastic materials
arranged periodically. Dilerent colors represent materials with dilerent elastic properties.
(b) An example of a phononic band diagram! kg for a two-dimensional phononic crystal.

[1].

The prst generation of sonic metamaterials, fabricated by Z.iu et al. [6] with
a lattice constant two orders of magnitude smaller than thencoming wavelength
(see Fig. 2), exhibits full spectral gaps, resulting from th local resonator-based
construction that enables negative elastic constants in eain frequency ranges.
Following on this seminal research, a plethora of novel acdusphenomena have
been demonstrated in appropriately designed metamatersamade of dilerent local
resonators. For instance, the phenomenon of acoustic trggaency and slow sound

1



2 INTRODUCTION

propagation can be realized by a wave guide periodically ided with Helmholtz
resonators [7, 8, 9], the perfect sound absorption in a brdaa@hd frequency range is
achievable via di'erent sub-wavelength devices or metamatals based on resonators
such as Helmholtz or membrane-type resonators [10, 11, 13, 14, 15, 16, 17, 18],
a properly designed meta-structure made of periodically @nged resonant units is
capable of guiding the acoustic wave propagation [19, 20,]2dnomalous refractions
such as negative refraction (wave refracted on the same siolethe surface normal
as the incoming wave) can be induced using a metamaterial dgsed to realize
a Odouble negativeO material (negative values for both thective mass density
and the elective bulk modulus) [22, 23, 24, 25, 26, 27, 28, 29%urthermore, the
artibcial metamaterials allow as well the design of cloakindevices that render a
sub-wavelength or macroscopic object invisible [30, 31,,33, 34].

Figure 2: Sonic metamaterials construction based on the idea of lolizaed resonant struc-
tures with a lattice constant two orders of magnitude smaller than he relevant wavelength
that exhibit spectral gaps [6].
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Figure 3: Acoustic metasurface-based perfect absorber with deep subvedength thickness
composed of a perforated plate with a hole and a coiled air chamber (yell region). Figures
at right show the absorption coe"cient (") of the presented metasurface (bPgure above) and
the normalized specibc acoustic reactance (red line) and resistance (blulotted line) of
the whole metasurface system (Pgure below) respectively. [14].



INTRODUCTION 3

Acoustic metasurfaces are metamaterials extending mostly two-dimensions,
with advantages of deep sub-wavelength spatial features asdmetimes easier fabri-
cation compared to the 3D structures. They have shown their diiy to manipulate
waves in a much smaller volume than bulk metamaterials, thrah the ref3ection,
transmission and refraction processes. This family of planenetamaterials possess-
ing average thickness drastically reduced, favors devetopnt of metamaterial-based
devices, applications and basic scientibc research. Fostence, a perfect absorp-
tion at a desired frequency range can be realized via dilerenitra-thin meta-pIlms
without yielding major obstacles in the real applications [3, 36, 37, 14, 38], as the
example illustrated in Fig. 3. Metamaterials owning a 2D struttire are also particu-
larly advantageous for the investigations of surface waveqpagation [39]. Another
prominent role of metasurfaces is to reveal abnormal waveasering phenomena by
taking advantage of their simple constructions, such as treforementioned negative
refraction [28, 40, 23, 26, 41], acoustic superlens (foaugsibeyond the di'raction
limit) or wave conversion (propagative to evanescent for ample) [28, 40, 27, 42].
Dilerent from all above anomalous wave manipulations perfoned by adjusting the
shape and the arrangement of the constituting linear resonaunits, O. R. Bilal et
al. have started recently to target the nonlinear phononic etasurface [43], which
opens up avenues for novel acoustic wave control.
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Figure 4: (a), An acoustic diode made of a 1D phononic crystal (éernating layers of glass
and water) coupled to a nonlinear acoustic medium [44]. (b), Nonrepirocal elastic wave
transmission in a single-mode elastic waveguide [19].

It is important to notice that the nonlinear metamaterials can o'er a rich and
diverse set of non-trivial acoustic phenomena. For instaag¢coupling a periodic or
superlattice structure (a wave Plter) with a nonlinear medim layer (or element)
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enables an asymmetric transmission of acoustic wave (transsion only allowed in
one direction, yielding total re3ection in the other direabn) [44, 19, 45, 46], as shown
in Fig. 4. Phononic crystals containing speciPc nonlineayito!er the opportunity to
support nonlinear pulse and soliton propagation [47, 48]. Meover, other nonlinear
phenomena such as higher harmonic generation / enhancemdga®, 50, 51] and
breathers [52, 53] are revealed as well via metamaterialsntaning dilerent types
of nonlinearities, although rarely reported for acoustic aves in air [54, 55, 56].
Acoustic metamaterials with tailored nonlinear responseggt providing unexplored
wave control opportunities, have received particular attetion in this PhD thesis
work.
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Figure 5: Two optical metasurfaces designed for giant nonlinear resnse for second har-
monic generation (SHG). (a) [57] (b) [58].

Nevertheless, regarding planar or two-dimensional acoistmetamaterials, the
nonlinear studies are quite scarce in comparison to the limeanalysis which is car-
ried out extensively. Indeed, the nonlinear metasurfacesate been brstly inves-
tigated and developed in optics since they can exhibit relaely strong nonlinear
optical responses [57, 59, 22, 60, 61]. Researchers in gphave devoted special
attention to the quest of an appropriate-structured metastface providing nonlin-
earity enhancement at moderate input intensities [58, 62,36 The main approach
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to achieve this issue focuses on judiciously engineeringtbeometry, the interaction
and the arrangement of meta-atom building blocks that detenine the nonlinear
properties of synthesized metamaterials, i.e., what can bealled the nonlinearity

management. Figure 5 illustrates two examples of second hawnic enhancement
via dilerent metasurface constructions. Therefore, followig the current progress
concerning nonlinear metasurfaces in optics, this PHD reseh is dedicated to initi-

ate the design of acoustic nonlinear metasurfaces that edalunusual wave control.
This requires to develop or use strategies for elastic or achig nonlinearity manage-
ment, for the design of planar metamaterial structures exhiting specibc nonlinear
scattering processes.

The key limitations in the development of nonlinear acousticnetamaterials and
of their 2D planar counterparts, nonlinear acoustic metastaces, are related to the
generally weak e"ciency of their nonlinear response, togeér with the lack of control
on this nonlinearity as mentioned above. Previous examplestailoring the acoustic
or elastic wave nonlinearity of a system are found in granularystals [45, 64, 65].
The nonlinear properties of granular chains rely on the intaction between the grains
or beads, exhibited as the Hertz-Mindlin contact behavior. igure 6 presents two
examples of such granular crystal chains composed of sphatibeads, that either
enable the achievement of acoustic switching and rectibaari of mechanical waves,
or ensure their suitability as nonlinear and tunable mechacal metamaterials for
use in controlling elastic wave propagation. However, theonlinearity tunability of
this type of granular structure is intrinsically limited due to the specibc nonlinear
contact behavior among the building units. Hence, being ablto manage the wave
nonlinearity of a system and enhance the associated wave pbeena, over a wider
parameter space, appears as the main challenge for the depehent of nonlinear
acoustic metamaterials. It constitutes as well the subjeatf the proposed research
on nonlinear acoustic metasurface designs.
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Figure 6. (a) Bifurcation-based acoustic switching and rectibcatin achieved with a granu-
lar crystal chain [45]. (b)Tunable magneto-granular phonon¢ crystals composed of a chain
of spherical steel beads inside a properly designed magnetic beld. [64]

Recently, it has been demonstrated that a novel type of artd#al materials, de-
noted as architected soft materials, favors the manipuladn and control of elastic
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and acoustic waves [66, 67, 68, 69, 70, 71, 43]. The intrinsicusture and property
of this class of architected materials are not only changelabby harnessing elastic
buckling resulting from dilerent statically produced pre-ceformations [68, 71, 70],
but are also conbgurable over a range of behaviors by takingvantage of geomet-
ric nonlinearities presented by the basic building blockt8, 67]. For instance, the
latest research by Deng et al. [72] shows that the soft metangatal composed of
periodically arranged rotating crosses possesses a robigstture of amplitude gaps
(ranges of pulse amplitudes where solitons are not stable) Wwigap width tunable
via both the structural property variation of the units and the symmetry breaking in
the underlying geometry. This enables the manipulation of ghly nonlinear elastic
pulses, e.g. soliton splitters and diodes, as illustrated iFig. 7. Hence, the archi-
tected soft materials provide the opportunity to expandingthe ability of existing
metamaterial, and make them capable of supporting a wide vaty of dispersive
and nonlinear wave propagation. They are debnitely a sourcéinspiration for the
present research work.
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Figure 7: Meta-structures with amplitude gaps for elastic solitms, providing new oppor-
tunities to manipulate highly nonlinear elastic pulses, as demosirated by the designed
soliton diodes (a) and splitters (b) [72].

Throughout this manuscript, as mentioned previously, we fas on the design
of 2D nonlinear metamaterials, i.e., the nonlinear metastace or meta-interface,
targeting the enhancement of a given nonlinear response. Maospecibcally we an-
alyze the e"cient energy conversion from a fundamental incoing wave towards
the second harmonic wave during the scattering process ofettacoustic wave by
the metasurface. This considered phenomenon could have piigl applications in
various Pelds, for instance, for the construction of the haronic images in medical
imaging [73, 74] and for improving the noise control with stitggies that are dilerent
from absorption alone [18]. However, these nonlinear metafaces are not limited
to this specibc elect and several other nonlinear elects coulde studied as well.
Nevertheless, the conversion to second harmonic wave is ttarting point of this
PhD and requires nonlinearity management of the metasurfacdesign of a realistic
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structure, development of analysis tools, as would requitbe study of other nonlin-
ear elects. As the usually brst manifesting feature of gendrelassical nonlinearity,
the quadratic nonlinearity has been given widespread atteisn and has been an-
alyzed recently only in optics and electromagnetics in theoatext of metasurfaces
[51, 75, 76, 77, 78]. The desired acoustic nonlinear metaswud focusing on the sec-
ond harmonic enhancement, has hardly been explored in actes, thus requiring
Prst and foremost a theoretical comprehension and investigpn.

Unusual elective properties leading to interesting wave elds or to wave control
capabilities are one of the Prst motivations for the study ofmetamaterials and in
particular acoustic metamaterials [4, 2, 79, 80, 34]. The aaspondence between the
architecture at the micro-scale and the desired elective pperties at macro-scale
should be constantly achieved. This can be achieved for inatze by taking the long-
wavelength limit of a periodic system with a known behavior oftte unit cell [81, 82,
83, 84, 85, 16]. Another way is to apply homogenization mettls, as proposed for
acoustic metasurfaces [86, 87, 88]. For the analysis of noghr resonant acoustic
metasurfaces, little has been done so far, and the questioms wanted to address at
the beginning of this PhD work can be formulated as follows: whabort of theoretical
and numerical tools can be used to analyZenodel” nonlinear metasurfaces? Are
nonlinear acoustic metasurfaces plausible and what kind obnlinear € ects can
be targeted? What are the conditions and limits to observe miinear € ects at
an acoustic metasurface? Can we manage the elastic nonlinaand propose a
realistic design for a nonlinear metasurface structure?

To this end, based on resonant nonlinear elastic elementse wtart in Chapter
1 by proposing a lumped-element theoretical model of a metatace. A classi-
cal quadratic nonlinearity is assumed to be carried directlby the elastic elements
(springs) composing the metasurface resonating units. Wiin this chapter, under
the hypothesis that the considered metasurface is connedtt a rigid wall at one
end, we try to investigate and characterize the nonlinear Bection process in order
to determine the operating conditions enabling the secondahmonic enhancement.
However, it is necessary to notice that the modeling is basexh lump elements,
requiring to be tuned Pnely to achieve the desired ects. Indeed, the realization
of the described metasurface model is relatively'dcult, since the way of designing
such elastic springs with kective quadratic nonlinearity remains to be explored.

Therefore, in the following Chapter 2, inspired by the recent search on archi-
tected soft materials [67, 72] illustrated in Fig. 7 and Fig8, we present a realistic
design of a nonlinear metasurface comprising rotating elemts. In this case, the
nonlinearity is of geometrical nature, and can be controlteby the rational concep-
tion of the structure. The specibc nonlinear phenomenon repped in Chapter 1,
i.e., complete conversion from fundamental incoming wave tthe ref3ected second
harmonic achieved through the refRection process, is furthanalyzed by considering
the here-proposed metasurface design. The characteristiarameters of excitation
that a! ect the nonlinearity implementation, such as the excitatio magnitude and
the excitation frequency detuning, are herein taken into @ount and evaluated in
realistic value ranges. At the end of this chapter, the paraster space of consid-
ered problem is explored in the aim of determining the favobde range that enables
the desired nonlinear wave manipulation. We then show thatlastic nonlinearity
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management can be bPnely achieved in a metasurface conbgorat
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Figure 8: Soft architected materials that support the propagaton of elastic vector solitons
[67].

Following the work of metasurface design of Chapter 2 in which tnthe re-
Rection process is considered, we continue in Chapter 3, byraducing a similar
rotating-element based meta-interface design, to invegtte several nonlinear fre-
guency conversion elects via both wave ref3ection and transssion processes. The
analysis is divided into two parts depending on the meta-ietface structures, i.e.,
symmetrical or asymmetrical. For both the discussed types meta-interface designs,
a single excitation conbguration at one side of meta-intexfe and a dual-excitation
performed at both sides are studied respectively. The paraiee space evaluation
adopted in Chapter 2 is re-implemented and completed by addihal considera-
tion of other parameters, such as the mass ratio between pégt contained in the
designed structure and the magnitude dilerence between sa@s in dual-excitation
conbguration, contributing to expand the optimal parameteconditions that provide
a considerable nonlinear elect.

The actually very range of possible nonlinear phenomena isthrerto restricted
to the frequency conversion of fundamental wave to the seabiarmonic through
scattering process, chosen since the second harmonic gaten is a classical elect
representative of nonlinear wave behaviors. Nevertheless variety of non-trivial
acoustic phenomena can be observed with the reported rotagielement architected
metamaterial. Thus in chapter 4, a meta-structure composedf @otating crosses
is constructed. The theoretical and numerical analysis of & proposed artibcial
material is carried out in parallel with experiments conductd by other members of
LAUM | collaborated with. One of the targeted elects among the omplex nonlinear
dynamics of the considered material, is the DC shrinking ohe chain when excited
harmonically. | have contributed to this preliminary work an the theoretical and
numerical aspects, to derive the dispersion properties dfd inPnitely-long structure,
and describe the shrinking phenomenon. These preliminarysidts are presented
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and discussed. The experimental and analysis tasks are stiigoing and should be
completed in the next months in a collaborative work.
Conclusions and prospects of this PhD work are Pnally presedtat the end of

the document.
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In this prst chapter, the modeling of a nonlinear elastic masurface based on
elastic resonators is developed. In the conventional thestical analysis of meta-
materials, the nonlinear behaviors are exhibited via eitlmeresonant units owning
particular shapes [76, 89, 90, 91], or a nonlinear type of st contact between
building blocks [92, 90, 93, 56, 65, 45]. Accordingly, for ¢hmetasurface modelling
performed in this chapter, we adopt a direct introduction otlastic elements that act
nonlinearly. More specibcally, we propose an architected tasurface model com-
posed of a two degree-of-freedom mass-spring system with dpadic elastic nonlin-
earity carried by the springs. The possibility of converting during the ref3ection
process, most of the fundamental incoming wave energy intbe second harmonic
wave is shown, both theoretically and numerically, by meand the proposed proper
design of metasurface. The theoretical results from the haomic balance method
for a monochromatic source are compared with time domain simations for a wave
packet source. The following presentation corresponds to tipaiblished article [94].
Furthermore, the executed protocol allows analyzing the dymics of the nonlinear
ref3ection process in the metasurface as well as exploring timits of the operating
frequency bandwidth. The reported methodology can be appligd a wide variety
of nonlinear metasurfaces, thus possibly extending in thattire the family of exotic
nonlinear ref3ection processes.

1.1 Introduction

The ability of locally-resonant architected materials to akieve wave control at wave-
lengths much longer than the dimensions of the resonant elents has been demon-
strated and utilized extensively over the past several year[2, 34, 3, 95, 36, 37].
Slow sound [7, 8, 9], negative refraction [22, 23, 24, 25, 2@], sub-wavelength wave
guiding and multiplexing [19, 21], are all among the recentlreported elects of sig-
nibcant interest. This sub-wavelength range of operations especially pertinent for
layers made of locally-resonant elements [40, 35], denotsimetasurfaces. As such,
the average thickness can be drastically reduced, which isvadtageous e.g. for
sound absorption [10, 11, 12, 13, 14, 15, 16, 17], carpet &iog [30, 31, 32] or other
purposes. The key challenges ahead in improving and applyittie proposed wave
control designs, based on metamaterials, are mainly: i) theperating bandwidth,
which is often limited to the resonance frequency range; iihé tunability of the
metamaterial response; and iii) the nonlinear (amplitudelependent) response, as
found to be particularly relevant for intense sound waves. &ent research has pri-
marily sought to overcome the prst two of these listed chafiges [80, 96, 43], whereas
this paper focuses on the third challenge, i.e. the nonlineamplitude-dependent
response of metamaterials.

Compared to the linear dispersive properties of acoustic nahaterials, the non-
linear wave interaction processes in metamaterials havedrestudied less extensively.
Nevertheless, granular crystals and granular metamatefgare structures whose con-
tact interaction nonlinearity may be e"ciently mobilized t o produce nonlinear wave
processes, such as asymmetric transmission [45, 19, 97,298, nonlinear pulse and
soliton propagation [47, 48, 67], harmonic generation [490] and breathers [52, 53]
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. While these granular structures are among the most widelgtudied nonlinear
elastic engineered materials for waves and despite theichibehavior, the nonlinear
parameter space of granular systems is highly constraineg the intrinsic Hertz-
Mindlin contact nonlinearity. Moreover, the metasurfaces ag~guration, in the form
of a sub-wavelength layer, does not favor a priori the accurdation of nonlinear ef-
fects along distances, as classically observed in homogrreemedia [60, 99]. Recent
results on architected soft solids [67, 68, 69, 70, 71, 65ever have demonstrated
some ways of managing the dynamic elastic nonlinearity andeved other ways
of designing nonlinear resonating elements for elastic amagoustic wave control in
propagation or in metasurface conbgurations.

This part of work sets out to show that unusual ref3ection electby a nonlinear
metasurface can indeed be modeled and predicted. More speally, it demonstrates
the ability to avoid rel3ection at the fundamental incident fequency and to convert
most of the energy in the ref3ection process into the secondrimonic wave. The
metasurface conbgurations explored are found to be realistor subsequent imple-
mentation in experimental testing. The theoretical analys methodology developed
can be applied to other nonlinear metasurface designs anchet nonlinear elects.
The brst part of this paper studies the case of a re3ected mohoamatic incident
stress wave, while the second part numerically analyzes theniinear ref3ection of a
wave packet, in addition to studying the frequency bandwidticharacter (or time-
domain elects) of the nonlinear ref3ection process.

1.2 The problem under consideration and the cor-
responding metasurface design

We consider herein the problem of wave ref3ection by a sub-wedength thickness
metasurface, in a one-dimensional conbguration, i.e. witlormal incidence on the
Bat surface. The incoming wave is a longitudinal scalar waveuch as an acoustic
wave in a Buid or a pure longitudinal stress wave in a homogemnes solid. The prop-
agation medium is assumed to be semi-inPnite. The unit cell ife metasurface is
composed of two elementary masses{ and m,) connected to two nonlinear springs
(KNt and KX and viscous dampers#), as shown in Fig. 1.1. The metasurface
thickness is assumed to be much less than the wavelength irethropagation medium
(1). Springs and dampers are regularly positioned over theatasurface, with each
occupying a lateral surfaces.

A quadratic nonlinearity is considered for both springs: tis nonlinearity follows
a force-displacement law expressed & O K;p' )iq ™ *iKip' )i (i=1,2) with " ),
being the elongation of spring and *; the quadratic nonlinear parameter.

The metasurface is inserted between a semi-inPnite propaigat medium plgand
a rigid wall 2q LetOs consider a plane stress-wafg. of amplitude & incoming
from «8 and propagating along the positivex direction. The problem is therefore
one-dimensional, and the incident and ref3ected waves can\wetten as a function
of X« ctand ofx ~ ct, respectively (using the time convention"t ), with c the wave
velocity in the propagation medium. The total stress& can be decomposed into
an incoming stress-wave and a ref3ected stress-Wa/® &nc ~ & ; the following
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can now be written: & O « 18 ~ 18 - The gne-dimensional wave equation,

+B;“2X o) %, with + the mass density of the propagation medium, must be satisbed
on the metasurface atx O 0, which leads to the following useful relation:&e O

NEA:Y
&nc = oG

Figure 1.1: Design of the nonlinear elastic metasurface by: (a) aevtically periodic struc-
ture at the sub-wavelength scale; in order to simplify the analyss, (b) a dual-resonance
model with two mass-spring elements is implemented. A semi-inPnite edium (1) and a
rigid wall (2) are separated by the designed metasurface. It is assued herein that all model
elements of the model are capable of only moving along the x-directip while the nonlin-
earities are only presented in the two springs; (c) presents the frequeyp response in the
linear case of the brst mass, with the proposed model featuring twasonance frequencies,
i.e.,,!;1and! 5.

The system of metasurface motion equations can thus be writtém the following
form:
$ B?ui A& ) N Bl.lll:I Bpi«uzq *
& M5zt O« 28+t S« Kppup « Up( « #=—5— « *1Kpu; « U,
% R
0 mz% O Kypui « Uxq" #Bm+<uzq YK pUp « U « Kouyp « #% « *2K2U%1

(1.2)

with S being the characteristic lateral surface area of each metatace element, and
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u; (i=1,2) the displacement of masan;.

The analysis is carried out here for metasurface parameterskehed using ratios
between the two masses, i.e.m,{m; O 2, and the two linear spring constants,
i.e. Ko{K;1 O 2, while the dashpots are characterized by a damping coe"cient
identical for both. Consequently, the proposed interface dign, in the linear case,
leads to a dual-resonance system charac‘terized\by dhe faling relation between
the two angular resonance frequencies, O 2'; O 2 K{2m;. An example of
such a metasurface response function in the case without cting in present of a
propagation medium (vacuum) is shown in Fig. 1.1(c). In usinghe brst resonance
frequency” 1, letOs debne the dimensionless impedance param®tepresenting the
ratio of the impedance of the propagation medium to the meché&al impedance of
the metasurface as follows:

. +CcS
O——. 1.2
$0 5 (12)
The metasurface absorption parameter is debned as,
. #
%0 . 1.3
2m1" 1 ( )

?_
Using this expression, letOs now debne the quality fac@r O 1{ 2%which

quantibes the elect of viscous damping in the metasurface ks on the expression
for a single damped mass-spring system. Moreover, letOs dethe dimensionless
nonlinear parameters (or amplitude parameters of our prodin): B; O *;ug, with
Uo O &S{K.. The motion equation system Eq. (1.1) can then be rewritten with
dimensionless parameters as follows:

$ .

& %! Z%O«Zﬂjq«ﬁ %«pul« Uoq « % BFU%M« B1pU; « Us(f,

% .
° ! 2% Opli« Uq % %M‘ BipU; « Uzq2 « 2Up « % % « ZBZUZZ,

(1.4)
where! O "t is the dimensionless time! O "{", is the normalized excitation
frequency,f p g O &nc P 9{& is the normalized incident stress wave at the interface
x 00, and U, O ui{uo (i=1,2) is the normalized displacement of each mass;.

In the weakly nonlinear regime of the metasurface operatipfetOs assume that
the rel3ected wave spectrum from a monochromatic incident wea will contain, at
the prst order, combination frequencies df, i.e. harmonics of the incident wave.
Consequently, at the boundaryx O 0, the complex amplitude of the reRected stress
wave is written as€z O & |, Ram! gg"' %, with & being the complex amplitude
of the incident wave. HereR,m! gd " n" Nqgactually corresponds to the complex
amplitudes of each ref3ected harmonic relative to the incidewave amplitude. In
the following, for the sake of simplicity,R,m! qwill denote the complex reRection
coe"cient of the n-th harmonic.
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1.3 Theoretical results and parametric analysis: case
of a monochromatic source

In the case of a monochromatic source, i.€.p q O cogd g the considered motion
equation system Eq. (1.4) can be solved by using the HarmoniaBnce Method
(HBM) [100] (see Appendix A.1). According to this method, thesolution U; is
developed in the form of a sum of all harmonics generated:

]
Up qOUjo"  rCycognl g’ Sp sinm! gs (1.5)

nO1
with U;o indicates the constant termsCi, and S;, the magnitudes of the sinusoidal
terms cosand sin, respectively, andN the Pnite number of harmonics being consid-
ered. In the present study, which deals with weak quadratic ndinearity, we veriped
that N O 10is always su'cient since it yields results with relative erro of less than
10¢1% as compared toN O 9. By means of this explicit expression of the solution,
the system Eq. (1.4) is simplibPed and capable of being solvednmerically by ap-
plying the classical Newton-Raphson method. The complex refien coe"cients of
each harmonic componenh are then deduced as follows:

Rn O 1 1$N! PCin « iS1nG (1.6)

where, »; is the Delta function, which is always zero except whem O 1. The results
obtained are considered to be the theoretical. The Sectiondlwill compare these
results to the case of a wave packet source in order to studyettelects of pnite
bandwidth.

In the present study, the excitation frequency' is always set equal to the prst
resonance frequency ; of the linearized metasurface, i.e. the normalized excita-
tion frequency is! O 1. According to the theoretical results produced by the
HBM method (Fig. 1.2), in order to obtain an optimal generaton of the second or
third harmonic component, the nonlinear parameter8; need to be carefully chosen.
When the two springs of the model have the same nonlinearitB{ O B,), higher
harmonics are not necessarily generated during the rel3ectiprocess, see for exam-
ple the value of |R,| along the diagonalB; O B, in Fig. 1.2(b). To enhance the
nonlinear process of second harmonic generation, the dileee between nonlinear
parametersB; and B, must be as large as possible. In the following study therefore
we have setB, O 0, moreover, the maximum value oB; is debned such that the
ratio of the nonlinear part of the elastic force to its lineampart is approx. 0.1, which
means that the nonlinearity remains weak. For the illustraéd case in Fig. 1.2 with
an impedance paramete O 0.0162and an absorption paramete6O 0.008§ the
debned maximum value oB; equal roughly0.002

Furthermore, for the proposed linear properties of the mesarface, the second
resonance lies at a frequency corresponding to twice that dfe brst resonance, i.e.
", O 2";. Consequently, when the system is excited at the Prst resonanire-
quency” O "4, the second harmonic, which is generated &' (and thus electively
"reRected") due to the quadratic nonlinearity, coincides wh the second resonance
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Figure 1.2: Theoretical magnitudes of the ref3ection coe"cients for, (a) he ref3ected fun-
damental wave, (b) the reRRected second harmonic, and (d) the re3ected thirdarmonic,
derived by HBM, as a function of the nonlinear parameter value€8, and B,. (c) shows an
example of a special case witlB; O 0.002and B, O 0. The graphs have been produced
with an impedance parameter# O 0.0162and an absorption parameter$ O 0.0088

frequency of the metasurface. Thanks to this selected resoica frequency matching
and with appropriate nonlinear parameters (e.g.B, ! B; ! 0.02 see Fig. 1.2(c),
the rel3ected second harmonic can thus be well ampliped. Sltaneously, we have
found that the other higher harmonics are nearly all missingeven more interestingly,
the fundamental wave has almost been entirely eliminated dag the ref3ection, i.e.
[R.| ! 1.

LetOs now examine the role of the impedance parameteand the absorption
parameter%on this nonlinear process of rel3ection, which converts a l@gmount of
the energy from the incoming fundamental wave into the secdrharmonic ref3ected
wave. By studying the linear caseB; O 0 with i O 1, 2) for the designed interface,
it is possible to determine the characteristic times of eactesonance: at the brst
resonance frequency, the dimensionless characteristic times of absorption @ees
due to the dashpots) and impedance (losses due to radiation the propagation
medium) are! £ O ?A)and 1™ 0 %‘, respectively, At the second resonance frequency

3

", they become! 3 O 2 and ;" O 2. These characteristic times lead to the
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Figure 1.3: Magnitude of the theoretical rel3ection coe"cient (a) at theincoming fundamen-
tal frequency, and (b) for the reRected second harmonic wavgR;| and |R;| are obtained
via the HBM with a monochromatic source and are evaluated as a funabin of both the
impedance parameter# and the absorption parameter$. The nonlinear parameters are
pxed at B; O 0.002 and B, O 0. The dashed lines show the characteristic parameter
equalities. The cross-hatched regions in both (a) and (b) highlighthe parameter space
characterized by%'- ! %, where nonlinear elects develop e"ciently..

dePnition of the dimensionless lifetimé; (i O 1, 2) for each resonance:
1. 1. 1

|
In the linear case, the reRRection coe"cient of the fundamead wave can be ob-
tained analytically in the following form:

B o pl{2gp %« 1gp 2« 49" i% p«2! 2" 3q«i$! p«! 2° 3g« Y 28d 2
! PL{2gp 2« 1gp 2« 4q " i% p«2!2° 3q° i$! p«! 27 g« %Yo 2%d 2
(1.8)

Hence, without nonlinearity, when the excitation occurs at tke Prst resonance fre-
quency ( O 1), the reRection can be eliminated if the characteristic imgdance
time is equal to the characteristic absorption time! ;™ O ! 2% j.e. equivalent to
%O 2$. This condition is highlighted in Fig. 1.3(a) with a dashed lie, and the
corresponding computed values gR,| are observed to be very low. For the studied
quadratic nonlinear case (withB; & 0 and B, O 0, the dimgnsionless character-
istic time of nonlinearity has also been debned agN" O 1{ B, which conveys
an analogous physical meaning to the shock formation chatadstic distance for
a nonlinear propagating wave [99]: the nonlinear elects carf@ently develop for
characteristic times of metasurface vibration longer thahN' . One consequence of
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this approach is that!y, ! !; g O 1,2qis required for a nonlinear elect to e"-
ciently develop, i.e. before the resonance vanishes. Thisiddion for the signibcant
nonlinear elect development can be veribped with the resultsdm Fig. 1.3(a),(b). In
the cross-hatched region of Fig. 1.3(a), whetg, ! !4, |R4] is no longer zero along
the dashed line! ;™ O !2%, thus deviating from the linear case. In Fig. 1.3(b),
the greatest magnitudes foflR,| occur in the lower left part of the graph, in the
cross-hatched region where the inequalityy, ! !, is satisbed.

~ More precisely, whenB; is set atB; O 0.002 !Nt O ! #s (respectively! Nt O
1™) when % C 0.134 (respectively $ C 0.067, and !Nt O 12 (respectively
INL O 1)™) for %(; 0.027 (respectively$ C 0.134. Hence, in order to satisfy
the condition!y. ! 1, g O 1,2 $ O ==~ 2m , and %O should be much less than
1. Physically, this condition means that the propagatlon me&ium should actually
be much softer than the metasurface. It also means that the masurface should be
weakly dissipative, i.e. the quality factorQ should not be too low, and typically
much greater than unity.

In the results presented in Fig. 1.2, the valu&s O 0.0162 has been chosen.
Considering air as the propagation medium, this value & leads to a resonance
frequencyf, O 2 kHz for a metasurface with a mass per unit area equal to one, whic
can be achieved with a solid like balsa wood (density @Btkg{m?), and a thickness
of 7.7mm. Similarly, the choice %O 0.0088 used for Fig. 1.2 corresponds to a
quality factor Q=80. This conbguration example, based on shaealistic parameter
values, shows the potential for applying the presented cormpteto the nonlinear
manipulation of airborne sound. Note that in the linear casé.e. B; O B, O 0), the
assigned values of parametei® and %lead to a fundamental ref3ection coe"cient
|R1| C 0.57. However, when the nonlinear parameteB; is nonzero and limited such
that the ratio of the nonlinear part of the elastic force to is linear part is at most0.1,
e.g. B; O 0.002 the fundamental reRection can nearly vanish (witjR,| C 0.07),
while the second harmonic can be e"ciently generated and re@ed with a ref3ection
coe"cient greater than 0.45. As such, the ratio between|R,| and |R;| exceedss.
Therefore, even with very limited nonlinearity (e.g. a nonliear elastic force ten times
smaller than the linear elastic force), a nearly full converon from the fundamental
incoming energy to the second harmonic rel3ection can be amhed by the proposed
metasurface design. The conversion result presented herean be further improved
if the impedance parameter is changed 1% O 0.0176 thus providing a fundamental
relRection coe"cient of |R;| C 0.005and a second harmonic reRection coe"cient of
|R,| C 0.46.

This theoretical study based on the HBM demonstrates a valuébdenergy trans-
fer, from a fundamental wave to its second harmonic in the re@tion process by
means of a nonlinear metasurface. The preconditions for e'®mt conversion are
now in place and provide the design rules for metasurface rlent characterization.
These results remain valid for a monochromatic incident wavé'he Section 1.4 will
focus on analyzing the case of a Pnite-length wave packet irder to extend the
operating conditions of such a nonlinear metasurface andrifging the robustness
of the highlighted e'ects.
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1.4 Numerical results and parametric analysis with
a wave packet source

The following discussion will consider a Gaussian modulated vea packet of the
form, ,

&ncP {& O fp qOsinpd g 77,
as the incident wave, with! O "t , T the characteristic temporal width of the wave
packet, and!y the dimensionless time center of the packet. A classical folrorder
Runge-Kutta integration method (RK4) [101] is used to solve th system of tempo-
ral equations, in Eq. (1.1), for all cases presented in this &®n. Other numerical
integration methods have been implemented to verify theseK® results, i.e. 6th
order Runge-Kutta, Matlab functions ODE45 and ODE133, and Adamsnethods.
By introducing the relation &gt O &nc +c%, the reRected wave signal is obtained
once the temporal displacements; have been determined. The time-frequency anal-
ysis of the rel3ected signals can then be performed using thgestrogram method,
yielding in particular a re3ected time- and frequency-depelent magnitude |R].

When the metasurface is excited by a wave packet with a carritlequency equal
to the Prst resonance frequency of the metasurfacé © " 1), the two masses of
the metasurface start vibrating with the same phase and at amaplitude ratio of 2
(corresponding to the eigenmodeuy, u,u] O t2,1u" of the Prst resonance). During
the increase in metasurface vibration amplitude, i.e. as ¢éhdisplacement magni-
tudes of both masses are rising, higher harmonics are gratlysbeing generated,
to an increasing extent, and the mass displacement wavefasnare being distorted
(see Fig. 1.4). More specibcally, as observed in the Sectio®, Bmong all the higher
harmonics generated, energy is mainly converted to the sacdoharmonic component
due to frequency matching with the second metasurface resmea, i.e. 2' O " .
At 2" the displacement relationship between the two masses foll® the eigenmode
tug, UpU O t« 1,1U" of the second metasurface resonance, i.e. the same displace
ment magnitude for both masses yet with out-of-phase motionln Fig. 1.4, the
spectrograms and zooms of the waveforms of both the incidesnhd ref3ected stress
waves are plotted, along with the displacements of the two mses.

If the incident wave packet lasts long enough, the theorett results derived via
the HBM in the Section 1.3 should be replicated. This outcomean be veribed by
monitoring the maximum of [Rp g|and of |R@2! g|from the spectrogram contained
in Fig. 1.4 for various temporal widthsT of the incident wave packet. A good level of
agreement has been obtained between the theoretical HBM wuéts and the temporal
simulation for a wave packet when the dimensionless charaggtic width "T of
the wave packet is much larger than the characteristic lifene of the metasurface
resonances, i.e."T " I, with i O 1,2. With the chosen values of impedance
parameter $ O 0.0162and absorption parameter%O 0.008§ the lifetimes of the
prst and second resonances ate C 7282 and-, C 4983 With B; O 0.002
the characteristic time of nonlinearity ! Nt O 1{ B; C 2236, which satisbes the
condition ! Nt 1 1, for high nonlinear elect e"ciency. In turn the inequality "T "
INL with i O 1,2 needs to be satisbed in order to retrieve the HBM results for
continuous excitation with a wave packet of temporal widthr .
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In Fig. 1.4(b), it is observed that the steady state regime iseached at! O 600Q
where the amplitude of the fundamental re3ected wave is at a mimum and the
amplitude of the ref3ected second harmonic wave is at a maximu The local values
of |R,] & 0.5 and |[R1] & O closely correspond to the HBM results values (see
Fig. 1.2(c)). To study the robustness of this elect for variog signal characteristic

Figure 1.4: Spectrogram and waveform of (a) normalized incident wa &nc{&o, of (b)
relRected wave normalized by incident amplitude&.s {&y, of (c) and (d) displacements
of the two masses, respectively; and uz, normalized by the maximum displacement of
the brst massmaxpJ;q These results have been obtained numerically by means of the
fourth-order Runge-Kutta method (RK4) with a wave packet source ofdimensionless width
IT O 2000 The illustrated waveforms have been extracted around the time centetg of
the source @O !t ¢ O 6000. System parameters are bxed at O 0.0162 $ O 0.0088
(corresponding toQ O 80), B; O 0.002and B, O 0.

widths "T , we performed a number of numerical simulations fat5" "T " 566
l.e. equivalentto4" Nt " 150 where Nt is the number of fundamental carrier
wave periods within the packet width at half its maximum ampliude. For anNt
typically less than 10 however, the frequency width of each miwibution (whether
fundamental or second harmonic) cannot be easily separatedthe time frequency
analysis. Consequently, we opted to monitor the values &t O 1 and at! O 2 of the
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Fourier spectrum for the entire rel3ected wave signals. Thesesults are displayed
in Fig. 1.5 for the reRection at the fundamental frequencjRp O 1g| O K;| and in

Fig. 1.6 for the reRection at the second harmonic frequen¢ikp@ O 2q| O |, for

various metasurface parameters.

Figure 1.5: Magnitude of the reRRection coe"cient at the fundamental frequency (three
left-hand Pgures) and the second harmonic frequency (three rightand Pgures) obtained
from the Fourier spectrum for the entire reRected wave taken at O 2, with various wave

packet source widths Nt denotes the number of carrier wave periods within the width at
half height of the wave packet source). In all graphs, the default prameters are impedance
parameter #, O 0.0162 quality factor Q O 80 (™ $, O 0.0089, and nonlinear parameters
B1 O B O 0.002 B, O 0. Otherwise, all parameter values are indicated in the graph
legend.

In Fig. 1.5(a), the relRection coe"cient magnitude at the furdamental frequency
|Ry| is plotted for various values of the nonlinear parameteB; from 0 to B; O
BY O 0.002 For this metasurface conbguration, the linear case8( O B, O 0)
shows that|R;| is close to 0.6 for any wave packet source width. With nonlinety
(i.e. B1 & 0), |R,| decreases as wave packet widtN; increases, thus revealing
the existence of a nonlinear elect that depends oNt (and obviously onB;). For
B; O BY O 0.002 |R,| decreases aNlt rises tod 25and then stabilizes, reaching the
asymptotical value ofa 0.1. This value is greater than what had been obtained for
the same metasurface parameters with the HBM because the Faurspectrum over
the entire rel3ected signal necessarily comprises trangietects, e.g. the increasing
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front of the wave packet amplitude, where nonlinear elects camot fully develop due
to insu"cient amplitude. On all the curves in Fig. 5, the ref3ection coe"cients are
nearly constant for a wave packet widthNt # N& E 25.

In Fig. 1.5(b), for adequately long source signalsNG # 50), the asymptotic val-
ues of|R;| depend on$. For $ O $, and Nt # NS, |Ry| E 0.1, while for $ O 2%, and
Nt # N&, |Ry| E 0.6. Also, as$ increases, the inRuence & on |Ry| tends to van-
ish. We found this behavior to be caused by the fact that incesing$ moves further
from the e"cient nonlinear elect region of the metasurface peameters, as denoted
by the cross-hatched zone in Fig. 1.3 and debned b{- ! !;. Increasing$ cor-
responds to leaving this cross-hatched region verticallypward. As a consequence,
the nonlinear elects on|R;| vanish and we Pnd once again a near constaft;| as
a function of N+, i.e. similar to the linear caseB; O 0 exhibited in Fig. 1.5(a).

The inBuence of the resonance quality factor diff,| is shown in Fig. 1.5(c). For
large Nt values, the inBuence of) is noticeable yet weak. In this case, the nonlinear
elects fully develop, and the paramete®(or Q) no longer plays an important role
anymore (cross-hatched regiohNt ! !, in Fig. 1.3(a) where the blue zone of small
|R1| extends almost horizontally). For smallN; values however, the metasurface
conbgurations basically reveal dilerent behaviors: aN decreases|R;| drops for
Q O 20 while rises forQ O 40,60 and 80. In the linear case, the conbguration
with Q O 20 actually corresponds almost perfectly to the total absorfon case (or
zero reRection caseO 2$, and |R1| C 0 is expected. As discussed above, &k
decreases, the nonlinear elects cannot fully develop and tihesults converge on the
linear elects (see Fig. 1.5(a). ForQ O 20, the linear case corresponds to a nearly
perfect absorption by the metasurface, and this perfect abgption becomes degraded
by the nonlinear elects occurring at higher value oN+. Such is not the case for
the other conbgurations with di'lerent Q values, where the nonlinear elects tend to
decreasgR;,| and improve the absorption at! O 1 through the energy transfer to
I O2asN+ increases.

Figure 1.6: The Fast Fourier Transform (FFT) of normalized re3ected wae & { & present
around the fundamental harmonic! for various source widths, with Nt denoting the
number of periods at half height of theincident stress wave and usingarameters of the
system are bxed as above# O 0.0162 $ O 0.0088 (corresponding to a Q factor equal to
80), B; 0 0.002and B, O 0.
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Figure 1.7: The FFT of normalized relRected wave&.es {& present around the second
harmonic 2! for various source widths, with Nt denoting the number of periods at half
height of the incident stress wave.and using parameters of the sysin are bxed as above:
# 0 0.0162 $ O 0.0088(corresponding to a Q factor equal to 80),8; O 0.002and B, O 0.

The rel3ection coe"cient magnitude at the second harmonic fopiency is analyzed
for the same metasurface conbgurations as that of the fundanal frequency. In all
cases, the reRection coe"cient magnitudgR,| starts at a value close to zero for small
Nt values and increases to reach a plateau aftblr & 25. The values attained for
large Nt depend on the conbguration and among the presented set of amirface
parameters, the largest|R,| is obtained for the default parametersy, O 0.0162
Q O 80and B? © 0.002

In the aim of illustrating the spectral and temporal characeristics of the wave
packet rel3ection process, the total signal spectra have Ineglotted in Fig. 1.6 for
frequenciesa ! and in Fig. 1.7 for frequencied 2! . Four characteristic wave packet
widths are considered, namelyN: O 4, 20, 10Q and 150 In Fig. 1.6, the energy
absorption and nonlinear energy transfer by the nonlinear etasurface toward the
harmonics in the reRection process is displayed by a dip &t O 1 in the initial
Gaussian spectrum. The nonlinear energy transfer toward theecond harmonic is
observed in Fig. 1.7 with the spectra displayed fo¥ & 2, i.e. over a frequency
range in which no energy is present in the incident wave packefThe temporal
signals associated with these spectra are shown in Figs. 1.8 dh9, respectively.
It can be observed that for the default set of metasurface pameters, delays occur
when establishing the resonances in displacemehtsand U, relative to the incident
wave packet, as would be expected for the transient excitatiasf a resonant system.
Consequently, the local minimum in the rel3ected wave amplitle is also delayed
with the respect to the central time of the incident stress waw packet. Lastly, the
maximum of the temporal wave packet bltered at the second hapnic frequency is
even more heavily delayed, thus demonstrating the additiah time required for the
nonlinear energy transfer (or nonlinear accumulation timéNt) in the metasurface.
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Figure 1.8: Temporal signals of the wave packet sourc&,. with the number of periods
at half height equal to Nt O 4, of the corresponding normalized reRected wavées {&oa
and of the normalized displacements of two massed; and U, (with normalization U; O
ui{uo,p O 1,29). The second harmonic component (in red lines) for the reRected wave
and for the displacements&2; and U? are obtained by applying around2! (from 1.5! to
2.5!') a bandpass blter to each original temporal signals respectivelyJsing the parameters
of the system are bxed as abovet O 0.0162 $ O 0.0088(corresponding to Q factor equal

to 80), B; O 0.002and B, O 0.

1.5 Conclusion

In conclusion, through modeling a nonlinear metasurface wiita dual-resonance
mass-spring system, we have proven both theoretically andmerically the possibil-
ity of achieving a near perfect absorption of the incoming hidamental wave together
with its e"cient conversion into the second harmonic frequeay. If the metasurface
lies between a relatively soft propagation medium (air fomstance) and a rigid wall
and moreover if the metasurface exhibits weak intrinsic digpation (Q O 80), our
results indicate that even with a small quadratic nonlineaty (B, O 0.002, a re-
Rection amplitude at the fundamental incoming wave frequey of |[Rp q| C 0.05
is obtained and a reRected second harmonic of amplitudRp2! g| C 0.46 can be
reached. In order to study the characteristic frequency bahvidth character of this
elect, the nonlinear rel3ection of a wave packet has also beexaenined via the nu-
merical integration of the metasurface system of nonlineanotion equations. When
the characteristic temporal width of the wave packet signalsilarge in comparison
to the lifetimes of the metasurface two resonance&T( " !; with i O 1,2), a good
level of agreement between the theoretical results obtaimhédy HBM and the im-
plemented numerical results is found, in accordance with egptations. For smaller
width however, deviations from the HBM results are observedhdicating that they
tend toward the linear ref3ection results. This funding is eXpined by the fact that
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Figure 1.9: Temporal signals of the wave packet sourc&;,. along with the number of
periods at the half height equal toNt O 20, of the corresponding normalized reRected wave
&t { &0, and of the normalized displacements of two massdd; and U, (with normalization

Ui O ui{ug, p O 1,2q). The second harmonic component (shown in red lines) for both the
reRected wave and for the displacement&2; and U? is obtained by applying around 2!
(from 1.5! to 2.5! ) a bandpass blter to each original temporal signal, respectivelyniusing
the system parameters bxed as abovet O 0.0162 $ O 0.0088(corresponding to a Q factor
equal to 80),B1 O 0.002and B, O 0.

the excitation time is shorter than the time necessary to acenulate nonlinear ef-
fects, i.e. the characteristic time! N-.

The potentially very wide metasurface design space is limitdaere to the con-
Pguration of a relative abstract lumped-element model, cken such that its prst
resonance frequency equals to the excitation frequency ahdlf the second reso-
nance frequency. Consequently, a number of interesting cajupations still need to
be studied with detuning, for example between the interfaceesonances or between
the excitation frequency and the brst resonance frequendiiso, as recently demon-
strated in [67], it is possible to design architected mateais in order to achieve the
desired type (quadratic, cubic) and amount of elastic waveamlinearity, in addition
to designing the linear dispersive properties. This approacmpens up avenues for
enhancing the possible wave phenomena induced during th&eetion process by a
nonlinear metasurface, including but not limited to the wae manipulation of intense
sounds, energy mitigation, and the linearization of interessound resonators.
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In the previous Chapter 1, via a lumped-element modeling bas®n nonlinear
local resonators, the ability of an appropriately structued metasurface to achieve
unusual wave manipulation, in particular to enable the engy conversion from the
fundamental wave to the second harmonic through the rel3eati process, has been
demonstrated. Yet the realization of the given metasurfaceodel is relatively dif-
pcult, since the way of introducing the debnite type of nomlearity into elastic
elements remains to be explored. Furthermore, as mentioned the end of Chap-
ter 1, the parameter space of the nonlinear metasurface refien problem has been
limited to a few aspects. The excitation properties that alechonlinearity manifesta-
tion, such as excitation frequency detuning (compared to thmetasurface resonance
frequency) and the excitation magnitude, need to be takentim account for instance.

Inspired by recent research on soft architected rotatinggsiare structures [94],
we propose in the present Chapter 2 a realistic design of nordar elastic metasur-
face composed of a single layer of rotating squares connectea thin and highly
deformable ligaments placed between them and also to a rigplate and a wall.
During the process of ref3ection at normal incidence, the dgsed metasurface is
evaluated to achieve the same nonlinear acoustic wave refk@t control as previ-
ously, i.e., convert most of the incoming fundamental wavenergy into the second
harmonic wave. We expect herein to extend the reported derigf nonlinear acoustic
metasurface to a large family of architected structures, bgonsidering an improved
parameter space that includes the just-emphasized excitah parameters, with in-
tention to open new ways for realistic metasurface designkat provide nonlinear
or amplitude-dependent wave tailoring. The following contds are given in form of
the article submitted in Physical Review E.

2.1 Introduction

Acoustic metamaterials composed of local resonators haveoyen to be of great
interest, due to their ability to perform a variety of wave catrol functionalities at
wavelengths much longer than the dimensions of the resonaalements. A wide
array of novel acoustic phenomena such as slow sound [7, 8,n@gative refraction
[22, 23, 24, 25, 26, 27, 28], subwavelength wave guiding [20], sound absorption
[10, 11, 12, 13, 14, 15, 16, 17] and cloaking [30, 31, 32, 33Haeen demonstrated in
appropriately designed metamaterials. Compared to the metaaterials composed
of linear resonators, nonlinear metamaterials oler a rich ah diverse set of non-
trivial acoustic phenomena, including asymmetric transnssion [45, 19, 97, 98, 29],
nonlinear pulse and soliton propagation [47, 48, 67], harmic generation [49, 50]
and breathers [52, 53]. Nevertheless, the design of noninenetamaterials, which
was initially investigated in optics for the purpose of enharing the higher harmonic
generation [58, 57, 59], has been studied much less extealsivn the acoustic beld.
The key limitations in developing nonlinear acoustic metantarials pertain to the
typically weak e"ciency of their nonlinear response, comipied with a lack of control
over this nonlinearity. Examples of tailoring the acoustic pelastic wave nonlinearity
of a system are found in granular crystals, yet the tunabilit is intrinsically limited
due to the Hertz-Mindlin contact behavior [64, 65]. Being alel to manage the wave
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nonlinearity of a system, over a wider parameter space, thuppears as the main
challenge to developing nonlinear acoustic metamaterials

In studying a lumped-element model of a nonlinear metasua [94], we recently
demonstrated that nonlinear acoustic elects can be enhanced a subwavelength
metasurface comprising nonlinear oscillators, thanks tdé resonance process. This
process intrinsically increases the characteristic intaction times as well as local
wave amplitudes. We have reported a nonlinear frequency a@msion elect from
the incoming fundamental wave to the ref3ected second harmonHowever, the key
link between the lumped-element model of this nonlinear masurface and a realistic
structure is missing. More specibcally, the method of desigg elastic springs with
an elective quadratic nonlinearity still needs to be determrmed.

Recent research has demonstrated that soft architected neatals enable ma-
nipulating and controlling elastic and acoustic waves [667, 68, 69, 70, 71, 43].
The intrinsic structure and property of this class of architeted materials are not
only modibable by harnessing the elastic buckling resulgnfrom dilerent statically-
produced pre-deformations [68, 71, 70], but also dynamityatunable over a broad
range of frequencies by taking advantage of geometric now@arities in the basic
building blocks [43, 67]. As such, these nonlinearities pide the opportunity to
expand the ability of existing metamaterials and enable thma to support a wide
variety of dispersive and nonlinear wave propagation.

Inspired by the latest research on the dynamics of soft ar¢bcted materials com-
prising rotating units [67, 72], our attention has been drawto the fact that the local
rotational degree of freedom necessarily leads to the prese of sinusoidal functions
of the angle of rotation in the motion equations. These nonlear functions of wave
variables constitute geometric type sources of wave norgiarity and are found to
depend on the building blocks (elasticity, geometry, inerd) of the architected struc-
ture. Consequently, in the aim of proposing a realistic desigof a nonlinear elastic
metasurface that accomplishes the same nonlinear conversias in [94] but with a
higher e"ciency and over a much larger parameter space, thergsent paper ana-
lyzes a metasurface composed of a single layer of rotatinguages connected with
thin and highly deformable ligaments and placed between agid plate and a wall.
Special focus is placed on the nonlinear rel3ection procdssis leading to an optimal
conversion from an incident sinusoidal wave towards its re8ted second harmonic.
By adjusting the physical properties of the metasurface, thdesired nonlinear con-
version is demonstrated to be feasible over a wide parametgase, hence enabling
the extension of the proposed single design to a family of dymic rotating-element
metastructures. The predictive theoretical framework deveped is also expected
to help manage the wave nonlinearity by metamaterials and meover guide future
experiments in this peld.

2.2 Nonlinear elastic metasurface design and the re-
Rection problem at normal incidence

From the previous studies on wave propagation in soft arclitted materials made
of rotating square units [67, 72], we propose herein a redlisdesign of a nonlinear
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Figure 2.1: Nonlinear metasurface design: (a) Single layer of pedically arranged rigid
squares sandwiched between a moving rigid plate and a bxed wall, withasltic springs
running between all the elements. The propagation medium (1) in frontof the designed
metasurface is assumed to be semi-inPnite. (b) The metasurface unit t&d composed of
two identical squares with elementary masam. The front rigid plate has an elementary
mass2mg. (c) Due to symmetry, taking into account the motion of just one square of mass
m and the face plate with a mass per unit length ofmg is demonstrated to be su“cient
for the considered relRection problem at normal incidence.

metasurface. As shown in Fig. 2.1, this design comprises mefically arranged rigid
squares, connected via ligaments at their corners to a mouygirrigid plate (at the
front end of the single square layer) and a bxed wall (at the bl end of this square
layer). The ligaments are considered to be thin, massless ahajhly deformable,
thus playing the role of elastic springs. The metasurface untell is composed of
two identical squares with elementary masses sandwiched between the solid plate
with a surface mass density o2m, and the rigid wall. The two unit cell squares,
featuring the same initial angle of rotation' 3 as debned in Fig. 2.1, are placed in
symmetrical positions at rest. Since a horizontal force apipd to the plate produces
simultaneous square translation and rotation, three dilerst springs are taken into
account at each square vertex, i.e. a longitudinal (compr&gsn or tension) spring
with stilness k|, a shear spring with sti'nessks, and a bending spring with stilness
K-
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The proposed metasurface structure is assumed to be inPnjtébng along the
vertical direction y, while the plate thickness along« is assumed to be signibcantly
less than that of the single square layer. The considered dgsithen is a 2D metas-
tructure in the x,yq plane; moreover, the elementary lateral surface area of the
metasurface unit cell is denotedb.

Throughout this paper, focus is placed on the refRection at nmal incidence by
the designed metasurface, with the propagation medium (1) iftont of the meta-
surface assumed to be semi-inPnite. The metasurface widtralong the x direction
is assumed to be much smaller than the acoustic wavelength medium plq i.e.,
h! -. LetOs now consider a plane stress wadygg of amplitude Aj,. incident from
«8 and propagating along the positivex direction. The problem therefore is one-
dimensional, and the incident and ref3ected waves can be waett as a function of
X« ctandx " ct, respectively (using the time convention"t ), with ¢ denoting wave
velocity in the propagation medium. The total stress& can be decomposed into an
incoming stress wave and a ref3ected stress W&O & &er . The one-dimensional
wave equation,

+BzuX 3 B&

= (2.1)

with +as the mass density of the propagation medium ang the displacement along
the x direction, must be satisped everywhere and especially on thmetasurface at
x O 0, which leads to the following relationship between the inciae and reRected
waves for the considered problem:

. . Bu
&ref O &inc +CE:L (2.2)

whereu; denotes the displacement of the plate with a surface mass diyn®f m,.

Since the single square layer is periodically arranged angsamed to be inPnitely
long, with homogenous excitation along, the two squares of each unit cell translate
with the same displacement and moreover rotate with the same dgmic angle yet
in opposite directions. Consequently, the motions of just @square and of its face
plate are su“cient to describe the full dynamics.

For a systematic analysis, we introduce the following dimeimless parameters:
normalized displacementdJ; O u;{2l, (i=1,2) of the plate and squares, respectively,
with 2| denoting the diagonal length of the squares, pulsatioh O"{"owith "¢ O

k{m, time ! O "t, inertial moment of squares# O J{ml?, normalized shear,
bending stilnessesK s O ks{k; and K- O k-{k;1? respectively, and lastly mass ratio
#m O me{m.

Based on previous results and validations [67, 72], the spgs are assumed to
behave linearly and dissipation is accounted for via lineariscous damping asso-
ciated with the respective translation and rotation motionsof each square. The
characteristic dissipation parameters, and #- are normalized a4 O #.,{m" ; and
% O #.{m" o for the translation and rotation, respectively. In the presnt work, it is
considered that the dissipation remains relatively weak wita dimensionless value
of % O % O 0.001 Thus, for each square and the front plate occupying a lateral
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surface aredS in the py, zqplane, the governing motion equations are written as:
o) <<2finc|d,!q«$%« U Uy« %% %%

T cogoq«cogo’ 'q %sin'oF;
O U «?2U," %% « 20/9%,
. . (2.3)
s -‘oB"u‘ Y 0pBY1ggj S
O «b6K- Yogs 2U1 %Sasindo ' Q

) U
T 6sindo” g cogPo ' g«coyof«%sin' og;

X U
«2Kscogo" "qsingo” 'q«singoq’ %cos og;

wherefic@ ,!q O&ncp ,! d5{2k | denotes the normalized force applied to the plate
due to the incident stress wave$ O +cS{m", the dimensionless impedance pa-
rameter representing the ratio of the propagation mediunplg impedance to the
mechanical impedance of the metasurface.

When a normal incident stress wave interacts with the metastace, and under
the condition that the squares are initially rotated at nonero angles o, the transla-
tion of the front plate induces both translation and rotatian of the squares, along the
x direction and around thez direction, respectively. Under a linear assumption for
all springs, the elastic forces applied to each metasurfaeement are proportional
to the spring elongations. However, since the square unitstate, the geometric
nonlinearity of the structure is activated due to the sinusmlal dependence of spring
deformations on the angle of rotation of the squares, as shownEq. (2.3). Inter-
estingly, as a consequence of this geometric nonlinearitggendent on structural
design, it can be tuned along with the linear elastic prope®s in order to produce
specibc nonlinear wave elects.

In the presence of nonlinearity, the rel3ected wave spectruirom a monochro-
matic incident wave at frequency" may contain harmonics of the incident wave.
Consequently, it is assumed that at the boundarx O 0, the reRected wave is
composed of harmonics with the complex amplitud®&, (1" n " N) relative to
the incident wave amplitude, denoted byA;,.. In the following discussion and for
the sake of simplicity, R, and R,, will be used to represent the complex rel3ection
coe"cient of the n-th harmonic and its magnitude, respectiely.

2.3 Analysis of the linearized metasurface: Param-
eter debnitions and frequency response

In the linear and weakly dissipative conbguration, i.e. withPxed dissipation pa-

rameters% O % O 0.001and a linear approximation of trigonometric functions as

cogo 'qCcosg« sindod andsindy 'q Csin'g  cog o, the resonance

frequencies'; (i O 1,2, 3) of the considered metasurface depend on all the intrin-
sic parameters, i.e. the initial angle of rotation o, the mass ratio#,, the inertial
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moment #, the normalized shear stilnesK and the bending stilnessK-. Using
realistic materials studied earlier in [72], it is assumeddne that the normalized
shear and bending stilnesses are both less than 0.1 and lie &etsame value, i.e.
Ks O K- " 0.1. Additionally, the initial angle of rotation ', is set smaller than3CP.
In Sections 2.3 and 2.4a the focus is placed on the case of hgeneous squares, i.e.
# O 1{3, though other types of rotating elements with dilerent inertial moments
are considered in Section 2.5.

In a previous theoretical study of a lumped-element, duaksonance elastic meta-
surface model [94], it was demonstrated that to conduct theptimal frequency con-
version from fundamental wave to second harmonic through theef3ection process, a
ratio of 2 between the two linear resonance frequencies oetmetasurface is needed.
The targeted conversion takes place with an excitation at therbt resonance fre-
quency. Regarding the current metasurface design with thredegrees of freedom
(rotation and translation of the squares, plus translationof the front plate), three
resonance frequencies are involvéd (i O 1,2,3) with ", ! ", ! "3 Since the
(geometric) nonlinearity is primarily excited by the rotation of squares, the excita-
tion frequency"” should coincide with the resonance frequency, denoted"as which
corresponds to a rotation-dominated mode. Moreover, one diig other resonance
frequencies, denoted here ds,, should match 2", in order to approximate the
optimal conversion e"ciency.

To satisfy the condition ", O 2"., the mass ratio#, can be determined in
the linear and weakly dissipative case (see Fig. 2.2(b)). Byimultaneously varying
stilnesses K, K-g and initial angle of rotation ' in their considered intervals,
the eigenmodes can be characterized by the magnitude of thatio ' {U; taken at
the dilerent resonance frequencies. A ratid {U; with a magnitude greater than
unity indicates a rotation-dominated mode, whereas a transtion-dominated mode
occurs with a ratio less than unity. Fig. 2.2(c) and Fig. 2.2(Hillustrate this ratio at
resonance frequenci€s- and ", respectively. It has been veribed that within the
considered range of metasurface parameters, the absolué¢io ' {U; is maintained
above3dat". and belowO0.5at" , i.e.," - (resp. " ,) corresponds to a rotation (resp.
translation)-dominated mode.

However, once the displacement ratio{U; deviates from unity (with an abso-
lute value becoming much smaller or much larger than unity)the rotation motion
and translation motion turn out to be weakly coupled; consegently, the energy
transfer from fundamental harmonic to higher harmonics betnes ine"cient during
the rel3ection process. In order to excite the rotation modef the metasurface as
much as possible while enhancing the intended nonlinear cension, the ranges of
stilness and initial angle of rotation are limited, thus alloning for an absolute ratio
"{U, less thanl10 at frequency" - and greater than0.1 at frequency" ,. Among the
chosen displacement ratio threshold values, the optimalmge of stilness and initial
angle of rotation values can be obtained, i.e. debned Kg O K. P ®, 0.04q and
"o P 8° 15°g as enclosed by the white dotted line in Fig. 2.2(c) and Fig. 2(d).
The discussion in Section 2.5 veribes that the above choicepaframeter space is
indeed realistic and yields a high e"ciency for the desiredanlinear conversion.

For the study of the nonlinear case in the following Section £, both the sti'ness
and initial angle of rotation of the metasurface are set a€; O K- O 0.02and', O
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Figure 2.2: Eigenfrequencies and eigenvectors of the considered metdage. In the linear
dissipative regime, three resonance frequenciés (i O 1,2, 3) are presented (a), related to
either a translation-dominated movement, denoted! ,, or a rotation-dominated movement
denoted! -, or a combination of both. When the resonance frequency conditioh, O 2! -

is satisbed, the mass ratid , is determined for dilerent values of initial angles of rotation
"o and stilnessesKs and K- (b). The ratio of ' to Uy is examined as a function of g
and Ks O K+ as well, at resonance frequencigs: and !  in (c) and (d), respectively. The
optimal value range of stilness and initial angle of rotation is indicated by the white dotted

line in both (c) and (d).
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1@, which corresponds approximately to the center of the optinigparameter space
region. The corresponding resonance frequencies in the éineegime, as normalized
by " o, are respectivelyl ; O 0.7145! , O 1.0858 and ! 3 O 2.1716

Furthermore, we found that as the incident amplitude increses, resulting in the
activation of nonlinear elects, the metasurface resonanceefjuencies start shifting
relative to the linear frequencies. Hence, one possible wiy improve the second
harmonic conversion elect, combined with absorption of the fudamental reR3ected
wave, would be to detune the excitation frequency with respeto the linear res-
onance frequency, thus yielding better coincidence with th€hifted nonlinear reso-
nance frequencies. This applied detuning will also be discadsin Section2.4. To
complete the analysis, the stilness and initial angle of rot#on, along with the in-
ertial moment of the rotating masses, which remain set until &tion 2.4, will then
be varied and analyzed in 2.5.

2.4 Nonlinear rel3ection by the designed metasur-
face: Optimal frequency conversion

LetOs now consider a monochromatic sourgg.p ,! q O A cogd ! gin order to
solve semi-analytically the considered problem Eq. (2.3) mgrising nonlinear terms
in the form of sin and cos functions. An expansion up to the fourth order of all
sinusoidal terms is then applied:

@ coPo’ 'g C cos g« sin'g « Zcos o' ?
“isin'g'3Y Lcoso'4

a singo” 'q C sin'g" cos'o' « Zsin'y' 2
«zcC0S o' 3" Zsin'g 4.

In the present study, which deals with the case of dynamic angl€eomparable to
the initial angle of rotation, the considered expansion isedermined to be su"cient
since it yields ref3ection coe"cient results with an accuracyo within 0.01 when
compared to the numerical integration of the full problem decribed further below.
The system of equations approximated by a polynomial form canow be solved
using the Harmonic Balance Method (HBM) [100] (more details i\ppendix A.2).

According to HBM, the solution tqu O tU;,U,," U is developed as the sum of
all generated harmonics:

R 3]
tqu O tqou” rtC,ucogn! 'q "t Syusinm! ' gs (2.4)
nO1

with tgou O tC}, Cé, CguT indicating the constant terms of variabledJ;, U, and ',
andtC,u(resp. t Spu) grouping the magnitudes ofcos(resp. sin) terms of the three
variables. N denotes the Pnite number of harmonics under consideratiowhich is
set at N O 10, thus corresponding to a relative error of less thaf0<!®, compared
to the solution for N O 9. According to the vectorial form of the solution, the
approximated polynomial form governing the system of equiains can be rewritten in
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a matrix form that is numerically solvable by applying the cassical Newton-Raphson
method. Once displacement; is determined, the complex ref3ection coe"cient of
the n-th harmonic frequency component can be deduced as:

R, O,n1 i$n! pCL« iSlq (2.5)

where, ,; is the Delta function, which always equals zero except whenO 1. C} and
St denote the magnitudes of sinusoidal termsosn! ! and sinn! ! of displacement
U;. The re3ection coe"cients obtained by HBM are considered af¢oretical results
and will be compared with the time domain simulation results athe end of the
current section.

When the incident amplitude is relatively weak, the rel3ectin coe"cients ob-
tained by HBM are close to the linear analytical solution. Foinstance, an excita-
tion of dimensionless magnitudeé\;,. O 10<7 leads to an absolute dilerence in the
relRection coe"cient of less than0.01% compared to the linear analytical solution.
Therefore, for the following discussion of nonlinear phenome, the excitation mag-
nitude range considered extends from,c O 10¢7 to A, O 10¢4, i.e. from the
linear case to amplitudes 3 orders of magnitude greater.

As mentioned at the end of Section 2.3, once the excitationvi is signibcant,
the nonlinear resonance frequencies of the metasurfaceftskelative to the linear
frequencies. Consequently, taking into account excitatiofrequency detuning be-
comes necessary for the considered input amplitude rangen dddition to the in-
trinsic parameters of the metasurface that have already beedebned in Section
2.3, the nonlinear refRection also depends on the propagatimedium. By choosing
herein two dilerent excitation amplitudes, i.e. a relatively weak one with magnitude
Ainc O 5-10¢ and a stronger one withAj,. O 5-10¢5, the nonlinear reRection is
thus being investigated simultaneously as a function of blatthe excitation frequency
detuning"! (normalized by" o) and the medium impedance paramete$, as shown
in Fig. 2.3.

Through the re3ection process and depending on input intetgithe frequency
conversion can be achieved for a specibc impedance value fordappropriate fre-
quency detuning (see Fig. 2.3). In the case @&, O 5-10¢, by setting the
impedance parameter a$ O 0.008and considering a very small frequency detuning
of "l O «10, a second harmonic reRection coe"cient oR, O 0.418 along with
a near-zero fundamental coe"cientR,; O 0.0024 are obtained. In comparison, as
the source amplitude increases tA,. O 5-10°, the frequency detuning necessary
to reduce reRection at the fundamental frequency becoméls O « 1.7 =103, thus
yielding a second harmonic reRection coe"cient oR, O 0.786 accompanied by a
fundamental coe"cient R; O 0.006at $ O 0.0195 Furthermore, for the parameter
ranges presented in Fig. 2.3, the rel3ection coe"cients of traonics higher than the
second order are all found to be negligible compared to thecead harmonic coe"-
cient, with absolute values consistently less thaf.001; hence, these values will not
be discussed any further in the present work.

The magnitude of excitation frequency detuning needed to mimize incident
fundamental wave ref3ection corresponds to the resonanceduency shift of the
metasurface with respect to the linear resonance frequenayder the considered
level of excitation. More specibcally, in order to analyze ¢hresonance frequency
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Figure 2.3: Absolute refRection coe"cients of the fundamental and secahharmonic compo-
nents, denotedR; and R, respectively, as a function of both the dimensionless impedance
parameter # and the normalized excitation frequency detuning”! . The latter is dePned
as the dilerence between the excitation frequency! and the linear resonance frequency
I+, subsequently normalized by! ¢, i.e., " O p « !.q{l o. When the input intensity

is relatively weak, with a magnitude Aj,c O 5-10¢8, the required excitation detuning is
less (1 O «1-10%), as the maximum value of R, exceeds0.4 (a) and (b). Whereas
with a stronger source of magnitudeAij,c O 5-10%, a frequency detuning of around
"l O «1.7-10¢3 is needed to totally absorbR1, which does not alter the amplitude of
the second harmonicR to reach a maximum value of nearly 0.8 (c) and (d).
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shifts for the various source amplitudes indicated hereing. weak levelA;,. O 10<7
corresponding to the linear conbguration and nonlinear leis Aj,c O 5-10¢ and
Ainc O 5-10¢®, the metasurface kinetic energy at frequencies close to tlirear
resonance frequencies- and ", has been introduced. For excitation around the
rotation-dominated resonance frequency-, it has been veribed that the maximum
kinetic energy, which indicates the frequency position of #hnonlinear resonance,
actually shifts with increasing excitation amplitude, as iustrated in Fig. 2.4. The
frequency shift between the nonlinear and linear resonanéeequencies coincides
exactly with the optimal excitation detuning, as introducedpreviously in Fig. 2.3,
in order to minimize refRection of the fundamental wave.

Nevertheless, for excitation around , corresponding to a translation-dominated
motion (Fig. 2.4(b)), as opposed to excitation around -, the excitation level does
not inBuence the kinetic energy curve. Hence, when the exditan frequency is de-
tuned to compensate for the frequency shift of resonante, the rel3ection of the
fundamental wave can become minimized, whereas the secondnmanic (which is
detuned twice as fast as the fundamental harmonic) will barelghange its rel3ec-
tion coe"cient R,. This result is due to the fact that the corresponding frequesy
detuning around resonancé , does not introduce as much of a variation in kinetic
energy as the detuning around -. Accordingly, the excitation detuning simultane-
ously enables minimizing the ref3ection of the fundamentalave while maintaining
the nonlinear conversion e"ciency into the rel3ected secorfthrmonic wave.
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Figure 2.4: Kinetic energy of the metasurface at various excitationlevels, from a linear
conbguration with Aj,c O 107 to a weakly nonlinear conbguration with Ajpc O 5-10¢6
and a highly nonlinear conbgurationAj,c O 5-10¢°, respectively, for the cases of: (a)
excitation frequencies close to the linear rotation-dominated resomace frequency! -, and
(b) excitation frequencies close to the linear translation-dominagéd resonance frequency
Iy verifying !, O 2!-. During the kinetic energy test, the metasurface is excited, at
each excitation frequency, by 1,000 periods of a sine signal. The det black line in (a)
indicates the resonance shift under excitatiorAj,c O 5-10¢°, which corresponds exactly
to the optimal excitation detuning introduced in Fig. 2.3.

In Fig. 2.5, the evolution of both the fundamental and secondarmonic ref3ection
coe'cients are examined over the gradual increase in excttan amplitude, from
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