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structure, the magnitude of the Fourier spectrum of the displacement
U along x and of the rotation ' around z are presented in the case
of N Ò 6 and N Ò 16 respectively, under sweep frequency excitation
of magnitude1 ¬10« 5 and within the whole available frequency band
shown in dispersion curve (from1Hz to 1300 Hz). The obtained
spectrum results are illustrated in the range ofp0, 300qHz in (b) and
(d). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
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Introduction

Phononic crystals and acoustic metamaterials are artiÞcially structured composite
materials which have been proposed and developed at an increasing pace over the
past two decades. They can manipulate and control the wave propagation in ways
that were not possible in conventional materials. Phononic crystals are identiÞed
by a periodically arranged structure made of scatterers withdimensions and periods
comparable to the wavelength. This type of designed materials possesses a number of
important properties such as band gaps [1] (see Fig. 1), i.e., waves do not propagate
over speciÞc frequency ranges. Compared to the phononic crystals, one can deÞne
acoustic metamaterials as structured on a scale that is signiÞcantly smaller than
the wavelength of the a!ected waves. Acoustic metamaterialsexhibit new features,
most of the time associated to local resonances, that can lead for instance to zero or
negative values for the e!ective mass density as well as bulk modulus. Consequently,
the acoustic metamaterials o!er new opportunities for unusual wave control at sub-
wavelength scales due to their novel and unique properties aswell as the modeling
and concepts developed in this framework [2, 3, 4, 5].
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Figure 1: (a) 1D, 2D and 3D phononic crystals made of two di!erent elastic materials
arranged periodically. Di!erent colors represent materials with di!erent elastic properties.
(b) An example of a phononic band diagram! pkq for a two-dimensional phononic crystal.
[1].

The Þrst generation of sonic metamaterials, fabricated by Z.Liu et al. [6] with
a lattice constant two orders of magnitude smaller than the incoming wavelength
(see Fig. 2), exhibits full spectral gaps, resulting from the local resonator-based
construction that enables negative elastic constants in certain frequency ranges.
Following on this seminal research, a plethora of novel acoustic phenomena have
been demonstrated in appropriately designed metamaterials made of di!erent local
resonators. For instance, the phenomenon of acoustic transparency and slow sound
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2 INTRODUCTION

propagation can be realized by a wave guide periodically loaded with Helmholtz
resonators [7, 8, 9], the perfect sound absorption in a broadband frequency range is
achievable via di!erent sub-wavelength devices or metamaterials based on resonators
such as Helmholtz or membrane-type resonators [10, 11, 12, 13, 14, 15, 16, 17, 18],
a properly designed meta-structure made of periodically arranged resonant units is
capable of guiding the acoustic wave propagation [19, 20, 21], anomalous refractions
such as negative refraction (wave refracted on the same sideof the surface normal
as the incoming wave) can be induced using a metamaterial designed to realize
a Õdouble negativeÕ material (negative values for both the e!ective mass density
and the e!ective bulk modulus) [22, 23, 24, 25, 26, 27, 28, 29].Furthermore, the
artiÞcial metamaterials allow as well the design of cloaking devices that render a
sub-wavelength or macroscopic object invisible [30, 31, 32, 33, 34].

Figure 2: Sonic metamaterials construction based on the idea of localized resonant struc-
tures with a lattice constant two orders of magnitude smaller than the relevant wavelength
that exhibit spectral gaps [6].

Figure 3: Acoustic metasurface-based perfect absorber with deep subwavelength thickness
composed of a perforated plate with a hole and a coiled air chamber (yellow region). Figures
at right show the absorption coe"cient ( " ) of the presented metasurface (Þgure above) and
the normalized speciÞc acoustic reactance (red line) and resistance (blue dotted line) of
the whole metasurface system (Þgure below) respectively. [14].
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Acoustic metasurfaces are metamaterials extending mostlyin two-dimensions,
with advantages of deep sub-wavelength spatial features andsometimes easier fabri-
cation compared to the 3D structures. They have shown their ability to manipulate
waves in a much smaller volume than bulk metamaterials, through the reßection,
transmission and refraction processes. This family of planar metamaterials possess-
ing average thickness drastically reduced, favors development of metamaterial-based
devices, applications and basic scientiÞc research. For instance, a perfect absorp-
tion at a desired frequency range can be realized via di!erentultra-thin meta-Þlms
without yielding major obstacles in the real applications [35, 36, 37, 14, 38], as the
example illustrated in Fig. 3. Metamaterials owning a 2D structure are also particu-
larly advantageous for the investigations of surface wave propagation [39]. Another
prominent role of metasurfaces is to reveal abnormal wave scattering phenomena by
taking advantage of their simple constructions, such as theaforementioned negative
refraction [28, 40, 23, 26, 41], acoustic superlens (focusing beyond the di!raction
limit) or wave conversion (propagative to evanescent for example) [28, 40, 27, 42].
Di!erent from all above anomalous wave manipulations performed by adjusting the
shape and the arrangement of the constituting linear resonant units, O. R. Bilal et
al. have started recently to target the nonlinear phononic metasurface [43], which
opens up avenues for novel acoustic wave control.
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Figure 4: (a), An acoustic diode made of a 1D phononic crystal (alternating layers of glass
and water) coupled to a nonlinear acoustic medium [44]. (b), Nonreciprocal elastic wave
transmission in a single-mode elastic waveguide [19].

It is important to notice that the nonlinear metamaterials can o!er a rich and
diverse set of non-trivial acoustic phenomena. For instance, coupling a periodic or
superlattice structure (a wave Þlter) with a nonlinear medium layer (or element)



4 INTRODUCTION

enables an asymmetric transmission of acoustic wave (transmission only allowed in
one direction, yielding total reßection in the other direction) [44, 19, 45, 46], as shown
in Fig. 4. Phononic crystals containing speciÞc nonlinearity o!er the opportunity to
support nonlinear pulse and soliton propagation [47, 48]. Moreover, other nonlinear
phenomena such as higher harmonic generation / enhancement[49, 50, 51] and
breathers [52, 53] are revealed as well via metamaterials containing di!erent types
of nonlinearities, although rarely reported for acoustic waves in air [54, 55, 56].
Acoustic metamaterials with tailored nonlinear responses,yet providing unexplored
wave control opportunities, have received particular attention in this PhD thesis
work.
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Figure 5: Two optical metasurfaces designed for giant nonlinear response for second har-
monic generation (SHG). (a) [57] (b) [58].

Nevertheless, regarding planar or two-dimensional acoustic metamaterials, the
nonlinear studies are quite scarce in comparison to the linear analysis which is car-
ried out extensively. Indeed, the nonlinear metasurfaces have been Þrstly inves-
tigated and developed in optics since they can exhibit relatively strong nonlinear
optical responses [57, 59, 22, 60, 61]. Researchers in optics have devoted special
attention to the quest of an appropriate-structured metasurface providing nonlin-
earity enhancement at moderate input intensities [58, 62, 63]. The main approach
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to achieve this issue focuses on judiciously engineering the geometry, the interaction
and the arrangement of meta-atom building blocks that determine the nonlinear
properties of synthesized metamaterials, i.e., what can be called the nonlinearity
management. Figure 5 illustrates two examples of second harmonic enhancement
via di!erent metasurface constructions. Therefore, following the current progress
concerning nonlinear metasurfaces in optics, this PHD research is dedicated to initi-
ate the design of acoustic nonlinear metasurfaces that enable unusual wave control.
This requires to develop or use strategies for elastic or acoustic nonlinearity manage-
ment, for the design of planar metamaterial structures exhibiting speciÞc nonlinear
scattering processes.

The key limitations in the development of nonlinear acousticmetamaterials and
of their 2D planar counterparts, nonlinear acoustic metasurfaces, are related to the
generally weak e"ciency of their nonlinear response, together with the lack of control
on this nonlinearity as mentioned above. Previous examples of tailoring the acoustic
or elastic wave nonlinearity of a system are found in granular crystals [45, 64, 65].
The nonlinear properties of granular chains rely on the interaction between the grains
or beads, exhibited as the Hertz-Mindlin contact behavior. Figure 6 presents two
examples of such granular crystal chains composed of spherical beads, that either
enable the achievement of acoustic switching and rectiÞcation of mechanical waves,
or ensure their suitability as nonlinear and tunable mechanical metamaterials for
use in controlling elastic wave propagation. However, the nonlinearity tunability of
this type of granular structure is intrinsically limited due to the speciÞc nonlinear
contact behavior among the building units. Hence, being able to manage the wave
nonlinearity of a system and enhance the associated wave phenomena, over a wider
parameter space, appears as the main challenge for the development of nonlinear
acoustic metamaterials. It constitutes as well the subjectof the proposed research
on nonlinear acoustic metasurface designs.
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Figure 6: (a) Bifurcation-based acoustic switching and rectiÞcation achieved with a granu-
lar crystal chain [45]. (b)Tunable magneto-granular phononic crystals composed of a chain
of spherical steel beads inside a properly designed magnetic Þeld. [64].

Recently, it has been demonstrated that a novel type of artiÞcial materials, de-
noted as architected soft materials, favors the manipulation and control of elastic
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and acoustic waves [66, 67, 68, 69, 70, 71, 43]. The intrinsic structure and property
of this class of architected materials are not only changeable by harnessing elastic
buckling resulting from di!erent statically produced pre-deformations [68, 71, 70],
but are also conÞgurable over a range of behaviors by taking advantage of geomet-
ric nonlinearities presented by the basic building blocks [43, 67]. For instance, the
latest research by Deng et al. [72] shows that the soft metamaterial composed of
periodically arranged rotating crosses possesses a robustfeature of amplitude gaps
(ranges of pulse amplitudes where solitons are not stable) with gap width tunable
via both the structural property variation of the units and the symmetry breaking in
the underlying geometry. This enables the manipulation of highly nonlinear elastic
pulses, e.g. soliton splitters and diodes, as illustrated in Fig. 7. Hence, the archi-
tected soft materials provide the opportunity to expandingthe ability of existing
metamaterial, and make them capable of supporting a wide variety of dispersive
and nonlinear wave propagation. They are deÞnitely a source of inspiration for the
present research work.
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Figure 7: Meta-structures with amplitude gaps for elastic solitons, providing new oppor-
tunities to manipulate highly nonlinear elastic pulses, as demonstrated by the designed
soliton diodes (a) and splitters (b) [72].

Throughout this manuscript, as mentioned previously, we focus on the design
of 2D nonlinear metamaterials, i.e., the nonlinear metasurface or meta-interface,
targeting the enhancement of a given nonlinear response. More speciÞcally we an-
alyze the e"cient energy conversion from a fundamental incoming wave towards
the second harmonic wave during the scattering process of the acoustic wave by
the metasurface. This considered phenomenon could have potential applications in
various Þelds, for instance, for the construction of the harmonic images in medical
imaging [73, 74] and for improving the noise control with strategies that are di!erent
from absorption alone [18]. However, these nonlinear metasurfaces are not limited
to this speciÞc e!ect and several other nonlinear e!ects couldbe studied as well.
Nevertheless, the conversion to second harmonic wave is thestarting point of this
PhD and requires nonlinearity management of the metasurface, design of a realistic
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structure, development of analysis tools, as would requirethe study of other nonlin-
ear e!ects. As the usually Þrst manifesting feature of general classical nonlinearity,
the quadratic nonlinearity has been given widespread attention and has been an-
alyzed recently only in optics and electromagnetics in the context of metasurfaces
[51, 75, 76, 77, 78]. The desired acoustic nonlinear metasurface focusing on the sec-
ond harmonic enhancement, has hardly been explored in acoustics, thus requiring
Þrst and foremost a theoretical comprehension and investigation.

Unusual e!ective properties leading to interesting wave e!ects or to wave control
capabilities are one of the Þrst motivations for the study ofmetamaterials and in
particular acoustic metamaterials [4, 2, 79, 80, 34]. The correspondence between the
architecture at the micro-scale and the desired e!ective properties at macro-scale
should be constantly achieved. This can be achieved for instance by taking the long-
wavelength limit of a periodic system with a known behavior of the unit cell [81, 82,
83, 84, 85, 16]. Another way is to apply homogenization methods, as proposed for
acoustic metasurfaces [86, 87, 88]. For the analysis of nonlinear resonant acoustic
metasurfaces, little has been done so far, and the questionswe wanted to address at
the beginning of this PhD work can be formulated as follows: whatsort of theoretical
and numerical tools can be used to analyze"model" nonlinear metasurfaces? Are
nonlinear acoustic metasurfaces plausible and what kind of nonlinear e! ects can
be targeted? What are the conditions and limits to observe nonlinear e! ects at
an acoustic metasurface? Can we manage the elastic nonlinearity and propose a
realistic design for a nonlinear metasurface structure?

To this end, based on resonant nonlinear elastic elements, we start in Chapter
1 by proposing a lumped-element theoretical model of a metasurface. A classi-
cal quadratic nonlinearity is assumed to be carried directly by the elastic elements
(springs) composing the metasurface resonating units. Within this chapter, under
the hypothesis that the considered metasurface is connected to a rigid wall at one
end, we try to investigate and characterize the nonlinear reßection process in order
to determine the operating conditions enabling the second harmonic enhancement.
However, it is necessary to notice that the modeling is basedon lump elements,
requiring to be tuned Þnely to achieve the desired e! ects. Indeed, the realization
of the described metasurface model is relatively di" cult, since the way of designing
such elastic springs with e! ective quadratic nonlinearity remains to be explored.

Therefore, in the following Chapter 2, inspired by the recent research on archi-
tected soft materials [67, 72] illustrated in Fig. 7 and Fig.8, we present a realistic
design of a nonlinear metasurface comprising rotating elements. In this case, the
nonlinearity is of geometrical nature, and can be controlled by the rational concep-
tion of the structure. The speciÞc nonlinear phenomenon reported in Chapter 1,
i.e., complete conversion from fundamental incoming wave to the reßected second
harmonic achieved through the reßection process, is further analyzed by considering
the here-proposed metasurface design. The characteristic parameters of excitation
that a! ect the nonlinearity implementation, such as the excitation magnitude and
the excitation frequency detuning, are herein taken into account and evaluated in
realistic value ranges. At the end of this chapter, the parameter space of consid-
ered problem is explored in the aim of determining the favorable range that enables
the desired nonlinear wave manipulation. We then show that elastic nonlinearity
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management can be Þnely achieved in a metasurface conÞguration.

!"# !$#

Figure 8: Soft architected materials that support the propagation of elastic vector solitons
[67].

Following the work of metasurface design of Chapter 2 in which only the re-
ßection process is considered, we continue in Chapter 3, by introducing a similar
rotating-element based meta-interface design, to investigate several nonlinear fre-
quency conversion e!ects via both wave reßection and transmission processes. The
analysis is divided into two parts depending on the meta-interface structures, i.e.,
symmetrical or asymmetrical. For both the discussed types of meta-interface designs,
a single excitation conÞguration at one side of meta-interface and a dual-excitation
performed at both sides are studied respectively. The parameter space evaluation
adopted in Chapter 2 is re-implemented and completed by additional considera-
tion of other parameters, such as the mass ratio between plates contained in the
designed structure and the magnitude di!erence between sources in dual-excitation
conÞguration, contributing to expand the optimal parameter conditions that provide
a considerable nonlinear e!ect.

The actually very range of possible nonlinear phenomena is hitherto restricted
to the frequency conversion of fundamental wave to the second harmonic through
scattering process, chosen since the second harmonic generation is a classical e!ect
representative of nonlinear wave behaviors. Nevertheless, a variety of non-trivial
acoustic phenomena can be observed with the reported rotating-element architected
metamaterial. Thus in chapter 4, a meta-structure composed of rotating crosses
is constructed. The theoretical and numerical analysis of the proposed artiÞcial
material is carried out in parallel with experiments conducted by other members of
LAUM I collaborated with. One of the targeted e!ects among the complex nonlinear
dynamics of the considered material, is the DC shrinking of the chain when excited
harmonically. I have contributed to this preliminary work on the theoretical and
numerical aspects, to derive the dispersion properties of the inÞnitely-long structure,
and describe the shrinking phenomenon. These preliminary results are presented
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and discussed. The experimental and analysis tasks are stillongoing and should be
completed in the next months in a collaborative work.

Conclusions and prospects of this PhD work are Þnally presented at the end of
the document.
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12 CHAPTER 1.DUAL-RESONANCE MODEL

In this Þrst chapter, the modeling of a nonlinear elastic metasurface based on
elastic resonators is developed. In the conventional theoretical analysis of meta-
materials, the nonlinear behaviors are exhibited via either resonant units owning
particular shapes [76, 89, 90, 91], or a nonlinear type of elastic contact between
building blocks [92, 90, 93, 56, 65, 45]. Accordingly, for the metasurface modelling
performed in this chapter, we adopt a direct introduction ofelastic elements that act
nonlinearly. More speciÞcally, we propose an architected metasurface model com-
posed of a two degree-of-freedom mass-spring system with quadratic elastic nonlin-
earity carried by the springs. The possibility of converting, during the reßection
process, most of the fundamental incoming wave energy into the second harmonic
wave is shown, both theoretically and numerically, by means of the proposed proper
design of metasurface. The theoretical results from the harmonic balance method
for a monochromatic source are compared with time domain simulations for a wave
packet source. The following presentation corresponds to thepublished article [94].
Furthermore, the executed protocol allows analyzing the dynamics of the nonlinear
reßection process in the metasurface as well as exploring the limits of the operating
frequency bandwidth. The reported methodology can be appliedto a wide variety
of nonlinear metasurfaces, thus possibly extending in the future the family of exotic
nonlinear reßection processes.

1.1 Introduction

The ability of locally-resonant architected materials to achieve wave control at wave-
lengths much longer than the dimensions of the resonant elements has been demon-
strated and utilized extensively over the past several years [2, 34, 3, 95, 36, 37].
Slow sound [7, 8, 9], negative refraction [22, 23, 24, 25, 26,27], sub-wavelength wave
guiding and multiplexing [19, 21], are all among the recently reported e!ects of sig-
niÞcant interest. This sub-wavelength range of operations is especially pertinent for
layers made of locally-resonant elements [40, 35], denotedas metasurfaces. As such,
the average thickness can be drastically reduced, which is advantageous e.g. for
sound absorption [10, 11, 12, 13, 14, 15, 16, 17], carpet cloaking [30, 31, 32] or other
purposes. The key challenges ahead in improving and applyingthe proposed wave
control designs, based on metamaterials, are mainly: i) theoperating bandwidth,
which is often limited to the resonance frequency range; ii) the tunability of the
metamaterial response; and iii) the nonlinear (amplitude-dependent) response, as
found to be particularly relevant for intense sound waves. Recent research has pri-
marily sought to overcome the Þrst two of these listed challenges [80, 96, 43], whereas
this paper focuses on the third challenge, i.e. the nonlinear amplitude-dependent
response of metamaterials.

Compared to the linear dispersive properties of acoustic metamaterials, the non-
linear wave interaction processes in metamaterials have been studied less extensively.
Nevertheless, granular crystals and granular metamaterials are structures whose con-
tact interaction nonlinearity may be e"ciently mobilized t o produce nonlinear wave
processes, such as asymmetric transmission [45, 19, 97, 98,29], nonlinear pulse and
soliton propagation [47, 48, 67], harmonic generation [49,50] and breathers [52, 53]
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... While these granular structures are among the most widelystudied nonlinear
elastic engineered materials for waves and despite their rich behavior, the nonlinear
parameter space of granular systems is highly constrained by the intrinsic Hertz-
Mindlin contact nonlinearity. Moreover, the metasurfaces conÞguration, in the form
of a sub-wavelength layer, does not favor a priori the accumulation of nonlinear ef-
fects along distances, as classically observed in homogeneous media [60, 99]. Recent
results on architected soft solids [67, 68, 69, 70, 71, 65] however have demonstrated
some ways of managing the dynamic elastic nonlinearity and o!ered other ways
of designing nonlinear resonating elements for elastic andacoustic wave control in
propagation or in metasurface conÞgurations.

This part of work sets out to show that unusual reßection e!ectsby a nonlinear
metasurface can indeed be modeled and predicted. More speciÞcally, it demonstrates
the ability to avoid reßection at the fundamental incident frequency and to convert
most of the energy in the reßection process into the second harmonic wave. The
metasurface conÞgurations explored are found to be realistic for subsequent imple-
mentation in experimental testing. The theoretical analysis methodology developed
can be applied to other nonlinear metasurface designs and other nonlinear e!ects.
The Þrst part of this paper studies the case of a reßected monochromatic incident
stress wave, while the second part numerically analyzes the nonlinear reßection of a
wave packet, in addition to studying the frequency bandwidthcharacter (or time-
domain e!ects) of the nonlinear reßection process.

1.2 The problem under consideration and the cor-
responding metasurface design

We consider herein the problem of wave reßection by a sub-wavelength thickness
metasurface, in a one-dimensional conÞguration, i.e. with normal incidence on the
ßat surface. The incoming wave is a longitudinal scalar wave,such as an acoustic
wave in a ßuid or a pure longitudinal stress wave in a homogeneous solid. The prop-
agation medium is assumed to be semi-inÞnite. The unit cell ofthe metasurface is
composed of two elementary masses (m1 and m2) connected to two nonlinear springs
(K NL

1 and K NL
2 ) and viscous dampers (#), as shown in Fig. 1.1. The metasurface

thickness is assumed to be much less than the wavelength in the propagation medium
(1). Springs and dampers are regularly positioned over the metasurface, with each
occupying a lateral surfaceS.

A quadratic nonlinearity is considered for both springs: this nonlinearity follows
a force-displacement law expressed asFi Ò K i p" ) i q ` * i K i p" ) i q2 (i=1,2) with " ) i

being the elongation of springi and * i the quadratic nonlinear parameter.
The metasurface is inserted between a semi-inÞnite propagation mediump1qand

a rigid wall p2q. LetÕs consider a plane stress-wave&inc of amplitude &0 incoming
from «8 and propagating along the positivex direction. The problem is therefore
one-dimensional, and the incident and reßected waves can bewritten as a function
of x « ct and of x ` ct, respectively (using the time conventioni"t ), with c the wave
velocity in the propagation medium. The total stress& can be decomposed into
an incoming stress-wave and a reßected stress-wave& Ò &inc ` &ref ; the following
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can now be written: B#
Bx Ò « 1

c
B# inc

Bt ` 1
c

B#ref

Bt . The one-dimensional wave equation,
+B2ux

Bt2 Ò B#
Bx , with + the mass density of the propagation medium, must be satisÞed

on the metasurface atx Ò 0, which leads to the following useful relation:&ref Ò
&inc ` +cBu1

Bt .

Figure 1.1: Design of the nonlinear elastic metasurface by: (a) a vertically periodic struc-
ture at the sub-wavelength scale; in order to simplify the analysis, (b) a dual-resonance
model with two mass-spring elements is implemented. A semi-inÞnite medium (1) and a
rigid wall (2) are separated by the designed metasurface. It is assumed herein that all model
elements of the model are capable of only moving along the x-direction, while the nonlin-
earities are only presented in the two springs; (c) presents the frequency response in the
linear case of the Þrst mass, with the proposed model featuring two resonance frequencies,
i.e., ! 1 and ! 2.

The system of metasurface motion equations can thus be writtenin the following
form:
$
&

%

m1
B2u1
Bt2 Ò «

`
2&inc ` +cBu1

Bt

ù
S « K 1pu1 « u2q « # Bpu1« u2q

Bt « * 1K 1pu1 « u2q2,

m2
B2u2
Bt2 Ò K 1pu1 « u2q ` # Bpu1« u2q

Bt ` * 1K 1pu1 « u2q2 « K 2u2 « # Bu2
Bt « * 2K 2u2

2,
(1.1)

with S being the characteristic lateral surface area of each metasurface element, and
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ui (i=1,2) the displacement of massmi .

The analysis is carried out here for metasurface parameters deÞned using ratios
between the two masses, i.e.m2{m1 Ò 2, and the two linear spring constants,
i.e. K 2{K 1 Ò 2, while the dashpots are characterized by a damping coe"cient#
identical for both. Consequently, the proposed interface design, in the linear case,
leads to a dual-resonance system characterized by the following relation between
the two angular resonance frequencies" 2 Ò 2" 1 Ò 2

a
K 1{2m1. An example of

such a metasurface response function in the case without coupling in present of a
propagation medium (vacuum) is shown in Fig. 1.1(c). In usingthe Þrst resonance
frequency" 1, letÕs deÞne the dimensionless impedance parameter$ representing the
ratio of the impedance of the propagation medium to the mechanical impedance of
the metasurface as follows:

$ Ò
+cS

2m1" 1
. (1.2)

The metasurface absorption parameter is deÞned as,

%Ò
#

2m1" 1
. (1.3)

Using this expression, letÕs now deÞne the quality factorQ Ò 1{
?

2%which
quantiÞes the e!ect of viscous damping in the metasurface based on the expression
for a single damped mass-spring system. Moreover, letÕs deÞne the dimensionless
nonlinear parameters (or amplitude parameters of our problem): B i Ò * i u0, with
u0 Ò &0S{K 1. The motion equation system Eq. (1.1) can then be rewritten with
dimensionless parameters as follows:

$
&

%

1
2 ! 2 B2U1

B$2 Ò « 2f p! q « $! BU1
B$ « pU1 « U2q « %! BpU1« U2q

B$ « B1pU1 « U2q2,

! 2 B2U2
B$2 Ò pU1 « U2q ` %! BpU1« U2q

B$ ` B1pU1 « U2q2 « 2U2 « %! BU2
B$ « 2B2U2

2 ,
(1.4)

where ! Ò "t is the dimensionless time,! Ò " {" 1 is the normalized excitation
frequency,f p! q Ò&inc p! q{&0 is the normalized incident stress wave at the interface
x Ò 0, and Ui Ò ui {u0 (i=1,2) is the normalized displacement of each massmi .

In the weakly nonlinear regime of the metasurface operation, letÕs assume that
the reßected wave spectrum from a monochromatic incident wave will contain, at
the Þrst order, combination frequencies of" , i.e. harmonics of the incident wave.
Consequently, at the boundaryx Ò 0, the complex amplitude of the reßected stress
wave is written asr&R Ò r&0

! N
nÒ1

rRnpn! qein ! $, with r&0 being the complex amplitude
of the incident wave. Here,rRnpn! q p1 " n " N qactually corresponds to the complex
amplitudes of each reßected harmonic relative to the incident wave amplitude. In
the following, for the sake of simplicity, rRnpn! q will denote the complex reßection
coe"cient of the n-th harmonic.
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1.3 Theoretical results and parametric analysis: case
of a monochromatic source

In the case of a monochromatic source, i.e.f p! q Ò cosp! q, the considered motion
equation system Eq. (1.4) can be solved by using the Harmonic Balance Method
(HBM) [100] (see Appendix A.1). According to this method, thesolution Ui is
developed in the form of a sum of all harmonics generated:

Ui p! q ÒUi 0 `
NØ

nÒ1

rCin cospn! q ` Sin sinpn! qs, (1.5)

with Ui 0 indicates the constant terms,Cin and Sin the magnitudes of the sinusoidal
terms cosand sin, respectively, andN the Þnite number of harmonics being consid-
ered. In the present study, which deals with weak quadratic nonlinearity, we veriÞed
that N Ò 10 is always su"cient since it yields results with relative error of less than
10« 15 as compared toN Ò 9. By means of this explicit expression of the solution,
the system Eq. (1.4) is simpliÞed and capable of being solved numerically by ap-
plying the classical Newton-Raphson method. The complex reßection coe"cients of
each harmonic componentn are then deduced as follows:

rRn Ò , n1 ` i$n! pC1n « iS1nq, (1.6)

where, n1 is the Delta function, which is always zero except whenn Ò 1. The results
obtained are considered to be the theoretical. The Section 1.4 will compare these
results to the case of a wave packet source in order to study the e!ects of Þnite
bandwidth.

In the present study, the excitation frequency" is always set equal to the Þrst
resonance frequency" 1 of the linearized metasurface, i.e. the normalized excita-
tion frequency is ! Ò 1. According to the theoretical results produced by the
HBM method (Fig. 1.2), in order to obtain an optimal generation of the second or
third harmonic component, the nonlinear parametersB i need to be carefully chosen.
When the two springs of the model have the same nonlinearity (B1 Ò B2), higher
harmonics are not necessarily generated during the reßection process, see for exam-
ple the value of | rR2| along the diagonalB1 Ò B2 in Fig. 1.2(b). To enhance the
nonlinear process of second harmonic generation, the di!erence between nonlinear
parametersB1 and B2 must be as large as possible. In the following study therefore,
we have setB2 Ò 0, moreover, the maximum value ofB1 is deÞned such that the
ratio of the nonlinear part of the elastic force to its linearpart is approx. 0.1, which
means that the nonlinearity remains weak. For the illustrated case in Fig. 1.2 with
an impedance parameter$ Ò 0.0162and an absorption parameter%Ò 0.0088, the
deÞned maximum value ofB1 equal roughly0.002.

Furthermore, for the proposed linear properties of the metasurface, the second
resonance lies at a frequency corresponding to twice that of the Þrst resonance, i.e.
" 2 Ò 2" 1. Consequently, when the system is excited at the Þrst resonance fre-
quency" Ò " 1, the second harmonic, which is generated at2" (and thus e!ectively
"reßected") due to the quadratic nonlinearity, coincides with the second resonance
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Figure 1.2: Theoretical magnitudes of the reßection coe"cients for, (a) the reßected fun-
damental wave, (b) the reßected second harmonic, and (d) the reßected thirdharmonic,
derived by HBM, as a function of the nonlinear parameter valuesB1 and B2. (c) shows an
example of a special case withB1 Ò 0.002 and B2 Ò 0. The graphs have been produced
with an impedance parameter# Ò 0.0162and an absorption parameter$ Ò 0.0088.

frequency of the metasurface. Thanks to this selected resonance frequency matching
and with appropriate nonlinear parameters (e.g.B2 ! B1 ! 0.02 see Fig. 1.2(c),
the reßected second harmonic can thus be well ampliÞed. Simultaneously, we have
found that the other higher harmonics are nearly all missing, even more interestingly,
the fundamental wave has almost been entirely eliminated during the reßection, i.e.
| rR1| ! 1.

LetÕs now examine the role of the impedance parameter$ and the absorption
parameter%on this nonlinear process of reßection, which converts a large amount of
the energy from the incoming fundamental wave into the second harmonic reßected
wave. By studying the linear case (B i Ò 0 with i Ò 1, 2) for the designed interface,
it is possible to determine the characteristic times of eachresonance: at the Þrst
resonance frequency" 1, the dimensionless characteristic times of absorption (losses
due to the dashpots) and impedance (losses due to radiation in the propagation
medium) are! abs

1 Ò 3
% and ! imp

1 Ò 3
2&, respectively, At the second resonance frequency

" 2, they become! abs
2 Ò 3

5% and ! imp
2 Ò 3

&. These characteristic times lead to the
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Figure 1.3: Magnitude of the theoretical reßection coe"cient (a) at the incoming fundamen-
tal frequency, and (b) for the reßected second harmonic wave.| rR1| and | rR2| are obtained
via the HBM with a monochromatic source and are evaluated as a function of both the
impedance parameter# and the absorption parameter$. The nonlinear parameters are
Þxed at B1 Ò 0.002 and B2 Ò 0. The dashed lines show the characteristic parameter
equalities. The cross-hatched regions in both (a) and (b) highlight the parameter space
characterized by%NL ! %1,2 where nonlinear e!ects develop e"ciently..

deÞnition of the dimensionless lifetime! i (i Ò 1, 2) for each resonance:

1
! i

Ò
1

! abs
i

`
1

! imp
i

. (1.7)

In the linear case, the reßection coe"cient of the fundamental wave can be ob-
tained analytically in the following form:

"R1 Ò
p1{2qp! 2 « 1qp! 2 « 4q ` i%! p«2! 2 ` 3q « i$ ! p«! 2 ` 3q « %p%« 2$q! 2

p1{2qp! 2 « 1qp! 2 « 4q ` i%! p«2! 2 ` 3q ` i$ ! p«! 2 ` 3q « %p%̀ 2$q! 2
.

(1.8)
Hence, without nonlinearity, when the excitation occurs at the Þrst resonance fre-
quency (! Ò 1), the reßection can be eliminated if the characteristic impedance
time is equal to the characteristic absorption time! imp

1 Ò ! abs
1 , i.e. equivalent to

%Ò 2$. This condition is highlighted in Fig. 1.3(a) with a dashed line, and the
corresponding computed values of| rR1| are observed to be very low. For the studied
quadratic nonlinear case (withB1 ä 0 and B2 Ò 0, the dimensionless character-
istic time of nonlinearity has also been deÞned as:! NL Ò 1{

?
B1, which conveys

an analogous physical meaning to the shock formation characteristic distance for
a nonlinear propagating wave [99]: the nonlinear e!ects can e"ciently develop for
characteristic times of metasurface vibration longer than! NL . One consequence of
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this approach is that ! NL ! ! i pi Ò 1, 2q is required for a nonlinear e!ect to e"-
ciently develop, i.e. before the resonance vanishes. This condition for the signiÞcant
nonlinear e!ect development can be veriÞed with the results from Fig. 1.3(a),(b). In
the cross-hatched region of Fig. 1.3(a), where! NL ! ! 1, | rR1| is no longer zero along
the dashed line! imp

1 Ò ! abs
1 , thus deviating from the linear case. In Fig. 1.3(b),

the greatest magnitudes for| ÷R2| occur in the lower left part of the graph, in the
cross-hatched region where the inequality! NL ! ! 2 is satisÞed.

More precisely, whenB1 is set at B1 Ò 0.002, ! NL Ò ! abs
1 (respectively ! NL Ò

! imp
1 ) when % Ç 0.134 (respectively $ Ç 0.067), and ! NL Ò ! abs

2 (respectively
! NL Ò ! imp

2 ) for %Ç 0.027 (respectively $ Ç 0.134). Hence, in order to satisfy
the condition ! NL ! ! i pi Ò 1, 2q, $ Ò 'cS

2m1 ! 1
and %Ò "

2m1 ! 1
should be much less than

1. Physically, this condition means that the propagation medium should actually
be much softer than the metasurface. It also means that the metasurface should be
weakly dissipative, i.e. the quality factorQ should not be too low, and typically
much greater than unity.

In the results presented in Fig. 1.2, the value$ Ò 0.0162 has been chosen.
Considering air as the propagation medium, this value of$ leads to a resonance
frequencyf r Ò 2 kHz for a metasurface with a mass per unit area equal to one, which
can be achieved with a solid like balsa wood (density of130kg{m3), and a thickness
of 7.7mm. Similarly, the choice % Ò 0.0088 used for Fig. 1.2 corresponds to a
quality factor Q=80. This conÞguration example, based on such realistic parameter
values, shows the potential for applying the presented concept to the nonlinear
manipulation of airborne sound. Note that in the linear case(i.e. B1 Ò B2 Ò 0), the
assigned values of parameters$ and %lead to a fundamental reßection coe"cient
| rR1| Ç 0.57. However, when the nonlinear parameterB1 is nonzero and limited such
that the ratio of the nonlinear part of the elastic force to its linear part is at most0.1,
e.g. B1 Ò 0.002, the fundamental reßection can nearly vanish (with| rR1| Ç 0.07),
while the second harmonic can be e"ciently generated and reßected with a reßection
coe"cient greater than 0.45. As such, the ratio between| rR2| and | rR1| exceeds6.
Therefore, even with very limited nonlinearity (e.g. a nonlinear elastic force ten times
smaller than the linear elastic force), a nearly full conversion from the fundamental
incoming energy to the second harmonic reßection can be achieved by the proposed
metasurface design. The conversion result presented hereincan be further improved
if the impedance parameter is changed to$ Ò 0.0176, thus providing a fundamental
reßection coe"cient of | rR1| Ç 0.005 and a second harmonic reßection coe"cient of
| rR2| Ç 0.46.

This theoretical study based on the HBM demonstrates a valuable energy trans-
fer, from a fundamental wave to its second harmonic in the reßection process by
means of a nonlinear metasurface. The preconditions for e"cient conversion are
now in place and provide the design rules for metasurface element characterization.
These results remain valid for a monochromatic incident wave. The Section 1.4 will
focus on analyzing the case of a Þnite-length wave packet in order to extend the
operating conditions of such a nonlinear metasurface and verifying the robustness
of the highlighted e!ects.
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1.4 Numerical results and parametric analysis with
a wave packet source

The following discussion will consider a Gaussian modulated wave packet of the
form,

&inc p! q{&0 Ò f p! q Òsinp! qe« p! « ! 0q2

p"T q2 ,

as the incident wave, with! Ò "t , T the characteristic temporal width of the wave
packet, and! 0 the dimensionless time center of the packet. A classical fourth-order
Runge-Kutta integration method (RK4) [101] is used to solve the system of tempo-
ral equations, in Eq. (1.1), for all cases presented in this Section. Other numerical
integration methods have been implemented to verify these RK4 results, i.e. 6th
order Runge-Kutta, Matlab functions ODE45 and ODE133, and Adamsmethods.
By introducing the relation &ref Ò &inc ` +cBu1

Bt , the reßected wave signal is obtained
once the temporal displacementsui have been determined. The time-frequency anal-
ysis of the reßected signals can then be performed using the spectrogram method,
yielding in particular a reßected time- and frequency-dependent magnitude | rR|.

When the metasurface is excited by a wave packet with a carrierfrequency equal
to the Þrst resonance frequency of the metasurface (" Ò " 1), the two masses of
the metasurface start vibrating with the same phase and at an amplitude ratio of 2
(corresponding to the eigenmodet u1, u2uT

1 Ò t 2, 1uT of the Þrst resonance). During
the increase in metasurface vibration amplitude, i.e. as the displacement magni-
tudes of both masses are rising, higher harmonics are gradually being generated,
to an increasing extent, and the mass displacement waveforms are being distorted
(see Fig. 1.4). More speciÞcally, as observed in the Section 1.3, among all the higher
harmonics generated, energy is mainly converted to the second harmonic component
due to frequency matching with the second metasurface resonance, i.e. 2" Ò " 2.
At 2" the displacement relationship between the two masses follows the eigenmode
t u1, u2uT

2 Ò t« 1, 1uT of the second metasurface resonance, i.e. the same displace-
ment magnitude for both masses yet with out-of-phase motion.In Fig. 1.4, the
spectrograms and zooms of the waveforms of both the incidentand reßected stress
waves are plotted, along with the displacements of the two masses.

If the incident wave packet lasts long enough, the theoretical results derived via
the HBM in the Section 1.3 should be replicated. This outcome can be veriÞed by
monitoring the maximum of | rRp! q| and of | rRp2! q| from the spectrogram contained
in Fig. 1.4 for various temporal widthsT of the incident wave packet. A good level of
agreement has been obtained between the theoretical HBM results and the temporal
simulation for a wave packet when the dimensionless characteristic width "T of
the wave packet is much larger than the characteristic lifetime of the metasurface
resonances, i.e. "T " ! i with i Ò 1, 2. With the chosen values of impedance
parameter $ Ò 0.0162 and absorption parameter%Ò 0.0088, the lifetimes of the
Þrst and second resonances are! 1 Ç 72.82 and ! 2 Ç 49.83. With B1 Ò 0.002,
the characteristic time of nonlinearity ! NL Ò 1{

?
B1 Ç 22.36, which satisÞes the

condition ! NL ! ! i for high nonlinear e!ect e"ciency. In turn the inequality "T "
! NL with i Ò 1, 2 needs to be satisÞed in order to retrieve the HBM results for
continuous excitation with a wave packet of temporal widthT.
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In Fig. 1.4(b), it is observed that the steady state regime isreached at! Ò 6000,
where the amplitude of the fundamental reßected wave is at a minimum and the
amplitude of the reßected second harmonic wave is at a maximum. The local values
of | ÷R2| ã 0.5 and | ÷R1| ã 0 closely correspond to the HBM results values (see
Fig. 1.2(c)). To study the robustness of this e!ect for various signal characteristic

Figure 1.4: Spectrogram and waveform of (a) normalized incident wave &inc {&0, of (b)
reßected wave normalized by incident amplitude&ref {&0, of (c) and (d) displacements
of the two masses, respectivelyu1 and u2, normalized by the maximum displacement of
the Þrst massmaxpU1q. These results have been obtained numerically by means of the
fourth-order Runge-Kutta method (RK4) with a wave packet source ofdimensionless width
!T Ò 2000. The illustrated waveforms have been extracted around the time centert0 of
the source (%Ò !t 0 Ò 6000). System parameters are Þxed at# Ò 0.0162, $ Ò 0.0088
(corresponding toQ Ò 80), B1 Ò 0.002 and B2 Ò 0.

widths "T , we performed a number of numerical simulations for15 " "T " 566,
i.e. equivalent to 4 " NT " 150, where NT is the number of fundamental carrier
wave periods within the packet width at half its maximum amplitude. For an NT

typically less than 10 however, the frequency width of each contribution (whether
fundamental or second harmonic) cannot be easily separatedin the time frequency
analysis. Consequently, we opted to monitor the values at! Ò 1 and at ! Ò 2 of the
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Fourier spectrum for the entire reßected wave signals. Theseresults are displayed
in Fig. 1.5 for the reßection at the fundamental frequency| ÷Rp! Ò 1q| Ò |÷R1| and in
Fig. 1.6 for the reßection at the second harmonic frequency| ÷Rp! Ò 2q| Ò |÷R2|, for
various metasurface parameters.

Figure 1.5: Magnitude of the reßection coe"cient at the fundamental frequency (three
left-hand Þgures) and the second harmonic frequency (three right-hand Þgures) obtained
from the Fourier spectrum for the entire reßected wave taken at! Ò 2, with various wave
packet source widths (NT denotes the number of carrier wave periods within the width at
half height of the wave packet source). In all graphs, the default parameters are impedance
parameter #0 Ò 0.0162, quality factor Q Ò 80 (™ $0 Ò 0.0088), and nonlinear parameters
B1 Ò B 0

1 Ò 0.002, B2 Ò 0. Otherwise, all parameter values are indicated in the graph
legend.

In Fig. 1.5(a), the reßection coe"cient magnitude at the fundamental frequency
| ÷R1| is plotted for various values of the nonlinear parameterB1 from 0 to B1 Ò
B 0

1 Ò 0.002. For this metasurface conÞguration, the linear case (B1 Ò B2 Ò 0)
shows that | ÷R1| is close to 0.6 for any wave packet source width. With nonlinearity
(i.e. B1 ä 0), | ÷R1| decreases as wave packet widthNT increases, thus revealing
the existence of a nonlinear e!ect that depends onNT (and obviously onB1). For
B1 Ò B 0

1 Ò 0.002, | ÷R1| decreases asNT rises toã 25and then stabilizes, reaching the
asymptotical value ofã 0.1. This value is greater than what had been obtained for
the same metasurface parameters with the HBM because the Fourier spectrum over
the entire reßected signal necessarily comprises transient e!ects, e.g. the increasing
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front of the wave packet amplitude, where nonlinear e!ects cannot fully develop due
to insu"cient amplitude. On all the curves in Fig. 5, the reßection coe"cients are
nearly constant for a wave packet widthNT # N c

T È 25.
In Fig. 1.5(b), for adequately long source signals (NT # 50), the asymptotic val-

ues of| ÷R1| depend on$. For $ Ò $0 and NT # N c
T , | ÷R1| È 0.1, while for $ Ò 2$0 and

NT # N c
T , | ÷R1| È 0.6. Also, as$ increases, the inßuence ofNT on | ÷R1| tends to van-

ish. We found this behavior to be caused by the fact that increasing$ moves further
from the e"cient nonlinear e!ect region of the metasurface parameters, as denoted
by the cross-hatched zone in Fig. 1.3 and deÞned by! NL ! ! i . Increasing$ cor-
responds to leaving this cross-hatched region vertically upward. As a consequence,
the nonlinear e!ects on| ÷R1| vanish and we Þnd once again a near constant| ÷R1| as
a function of NT , i.e. similar to the linear caseB1 Ò 0 exhibited in Fig. 1.5(a).

The inßuence of the resonance quality factor on| ÷R1| is shown in Fig. 1.5(c). For
largeNT values, the inßuence ofQ is noticeable yet weak. In this case, the nonlinear
e!ects fully develop, and the parameter%(or Q) no longer plays an important role
anymore (cross-hatched region! NL ! ! 1 in Fig. 1.3(a) where the blue zone of small
| ÷R1| extends almost horizontally). For smallNT values however, the metasurface
conÞgurations basically reveal di!erent behaviors: asNT decreases,| ÷R1| drops for
Q Ò 20 while rises for Q Ò 40, 60 and 80. In the linear case, the conÞguration
with Q Ò 20 actually corresponds almost perfectly to the total absorption case (or
zero reßection case)%Ò 2$, and | ÷R1| Ç 0 is expected. As discussed above, asNT

decreases, the nonlinear e!ects cannot fully develop and theresults converge on the
linear e!ects (see Fig. 1.5(a). ForQ Ò 20, the linear case corresponds to a nearly
perfect absorption by the metasurface, and this perfect absorption becomes degraded
by the nonlinear e!ects occurring at higher value ofNT . Such is not the case for
the other conÞgurations with di!erent Q values, where the nonlinear e!ects tend to
decrease| ÷R1| and improve the absorption at! Ò 1 through the energy transfer to
! Ò 2 as NT increases.

Figure 1.6: The Fast Fourier Transform (FFT) of normalized reßected wave &ref {&0 present
around the fundamental harmonic ! for various source widths, with NT denoting the
number of periods at half height of theincident stress wave and usingparameters of the
system are Þxed as above:# Ò 0.0162, $ Ò 0.0088 (corresponding to a Q factor equal to
80), B1 Ò 0.002 and B2 Ò 0.
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Figure 1.7: The FFT of normalized reßected wave&ref {&0 present around the second
harmonic 2! for various source widths, with NT denoting the number of periods at half
height of the incident stress wave.and using parameters of the system are Þxed as above:
# Ò 0.0162, $ Ò 0.0088(corresponding to a Q factor equal to 80),B1 Ò 0.002 and B2 Ò 0.

The reßection coe"cient magnitude at the second harmonic frequency is analyzed
for the same metasurface conÞgurations as that of the fundamental frequency. In all
cases, the reßection coe"cient magnitude| ÷R2| starts at a value close to zero for small
NT values and increases to reach a plateau afterNT ã 25. The values attained for
large NT depend on the conÞguration and among the presented set of metasurface
parameters, the largest| ÷R2| is obtained for the default parameters$0 Ò 0.0162,
Q Ò 80 and B 0

1 Ò 0.002.

In the aim of illustrating the spectral and temporal characteristics of the wave
packet reßection process, the total signal spectra have been plotted in Fig. 1.6 for
frequenciesã ! and in Fig. 1.7 for frequenciesã 2! . Four characteristic wave packet
widths are considered, namely:NT Ò 4, 20, 100, and 150. In Fig. 1.6, the energy
absorption and nonlinear energy transfer by the nonlinear metasurface toward the
harmonics in the reßection process is displayed by a dip at! Ò 1 in the initial
Gaussian spectrum. The nonlinear energy transfer toward thesecond harmonic is
observed in Fig. 1.7 with the spectra displayed for! ã 2, i.e. over a frequency
range in which no energy is present in the incident wave packet. The temporal
signals associated with these spectra are shown in Figs. 1.8 and 1.9, respectively.
It can be observed that for the default set of metasurface parameters, delays occur
when establishing the resonances in displacementsU1 and U2 relative to the incident
wave packet, as would be expected for the transient excitationof a resonant system.
Consequently, the local minimum in the reßected wave amplitude is also delayed
with the respect to the central time of the incident stress wave packet. Lastly, the
maximum of the temporal wave packet Þltered at the second harmonic frequency is
even more heavily delayed, thus demonstrating the additional time required for the
nonlinear energy transfer (or nonlinear accumulation time! NL ) in the metasurface.
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Figure 1.8: Temporal signals of the wave packet source&inc with the number of periods
at half height equal to NT Ò 4, of the corresponding normalized reßected wave&ref {&0ã
and of the normalized displacements of two massesU1 and U2 (with normalization Ui Ò
ui {u0, pi Ò 1, 2q). The second harmonic component (in red lines) for the reßected wave
and for the displacements&2!

ref and U2!
i are obtained by applying around2! (from 1.5! to

2.5! ) a bandpass Þlter to each original temporal signals respectively.Using the parameters
of the system are Þxed as above:# Ò 0.0162, $ Ò 0.0088(corresponding to Q factor equal
to 80), B1 Ò 0.002 and B2 Ò 0.

1.5 Conclusion

In conclusion, through modeling a nonlinear metasurface with a dual-resonance
mass-spring system, we have proven both theoretically and numerically the possibil-
ity of achieving a near perfect absorption of the incoming fundamental wave together
with its e"cient conversion into the second harmonic frequency. If the metasurface
lies between a relatively soft propagation medium (air for instance) and a rigid wall
and moreover if the metasurface exhibits weak intrinsic dissipation (Q Ò 80), our
results indicate that even with a small quadratic nonlinearity ( B1 Ò 0.002), a re-
ßection amplitude at the fundamental incoming wave frequency of | rRp! q| Ç 0.05
is obtained and a reßected second harmonic of amplitude| rRp2! q| Ç 0.46 can be
reached. In order to study the characteristic frequency bandwidth character of this
e!ect, the nonlinear reßection of a wave packet has also been examined via the nu-
merical integration of the metasurface system of nonlinearmotion equations. When
the characteristic temporal width of the wave packet signal is large in comparison
to the lifetimes of the metasurface two resonances ("T " ! i with i Ò 1, 2), a good
level of agreement between the theoretical results obtained by HBM and the im-
plemented numerical results is found, in accordance with expectations. For smaller
width however, deviations from the HBM results are observed,indicating that they
tend toward the linear reßection results. This funding is explained by the fact that
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Figure 1.9: Temporal signals of the wave packet source&inc along with the number of
periods at the half height equal toNT Ò 20, of the corresponding normalized reßected wave
&ref {&0, and of the normalized displacements of two massesU1 and U2 (with normalization
Ui Ò ui {u0, pi Ò 1, 2q). The second harmonic component (shown in red lines) for both the
reßected wave and for the displacements&2!

ref and U2!
i is obtained by applying around 2!

(from 1.5! to 2.5! ) a bandpass Þlter to each original temporal signal, respectively, in using
the system parameters Þxed as above:# Ò 0.0162, $ Ò 0.0088(corresponding to a Q factor
equal to 80), B1 Ò 0.002 and B2 Ò 0.

the excitation time is shorter than the time necessary to accumulate nonlinear ef-
fects, i.e. the characteristic time! NL .

The potentially very wide metasurface design space is limitedhere to the con-
Þguration of a relative abstract lumped-element model, chosen such that its Þrst
resonance frequency equals to the excitation frequency andhalf the second reso-
nance frequency. Consequently, a number of interesting conÞgurations still need to
be studied with detuning, for example between the interface resonances or between
the excitation frequency and the Þrst resonance frequency.Also, as recently demon-
strated in [67], it is possible to design architected materials in order to achieve the
desired type (quadratic, cubic) and amount of elastic wave nonlinearity, in addition
to designing the linear dispersive properties. This approach opens up avenues for
enhancing the possible wave phenomena induced during the reßection process by a
nonlinear metasurface, including but not limited to the wave manipulation of intense
sounds, energy mitigation, and the linearization of intense sound resonators.
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In the previous Chapter 1, via a lumped-element modeling based on nonlinear
local resonators, the ability of an appropriately structured metasurface to achieve
unusual wave manipulation, in particular to enable the energy conversion from the
fundamental wave to the second harmonic through the reßection process, has been
demonstrated. Yet the realization of the given metasurfacemodel is relatively dif-
Þcult, since the way of introducing the deÞnite type of nonlinearity into elastic
elements remains to be explored. Furthermore, as mentionedat the end of Chap-
ter 1, the parameter space of the nonlinear metasurface reßection problem has been
limited to a few aspects. The excitation properties that a!ectnonlinearity manifesta-
tion, such as excitation frequency detuning (compared to the metasurface resonance
frequency) and the excitation magnitude, need to be taken into account for instance.

Inspired by recent research on soft architected rotating-square structures [94],
we propose in the present Chapter 2 a realistic design of nonlinear elastic metasur-
face composed of a single layer of rotating squares connected via thin and highly
deformable ligaments placed between them and also to a rigidplate and a wall.
During the process of reßection at normal incidence, the designed metasurface is
evaluated to achieve the same nonlinear acoustic wave reßection control as previ-
ously, i.e., convert most of the incoming fundamental wave energy into the second
harmonic wave. We expect herein to extend the reported design of nonlinear acoustic
metasurface to a large family of architected structures, byconsidering an improved
parameter space that includes the just-emphasized excitation parameters, with in-
tention to open new ways for realistic metasurface designs that provide nonlinear
or amplitude-dependent wave tailoring. The following contents are given in form of
the article submitted in Physical Review E.

2.1 Introduction

Acoustic metamaterials composed of local resonators have proven to be of great
interest, due to their ability to perform a variety of wave control functionalities at
wavelengths much longer than the dimensions of the resonantelements. A wide
array of novel acoustic phenomena such as slow sound [7, 8, 9], negative refraction
[22, 23, 24, 25, 26, 27, 28], subwavelength wave guiding [19,20], sound absorption
[10, 11, 12, 13, 14, 15, 16, 17] and cloaking [30, 31, 32, 33] have been demonstrated in
appropriately designed metamaterials. Compared to the metamaterials composed
of linear resonators, nonlinear metamaterials o!er a rich and diverse set of non-
trivial acoustic phenomena, including asymmetric transmission [45, 19, 97, 98, 29],
nonlinear pulse and soliton propagation [47, 48, 67], harmonic generation [49, 50]
and breathers [52, 53]. Nevertheless, the design of nonlinear metamaterials, which
was initially investigated in optics for the purpose of enhancing the higher harmonic
generation [58, 57, 59], has been studied much less extensively in the acoustic Þeld.

The key limitations in developing nonlinear acoustic metamaterials pertain to the
typically weak e"ciency of their nonlinear response, combined with a lack of control
over this nonlinearity. Examples of tailoring the acoustic or elastic wave nonlinearity
of a system are found in granular crystals, yet the tunability is intrinsically limited
due to the Hertz-Mindlin contact behavior [64, 65]. Being able to manage the wave
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nonlinearity of a system, over a wider parameter space, thus appears as the main
challenge to developing nonlinear acoustic metamaterials.

In studying a lumped-element model of a nonlinear metasurface [94], we recently
demonstrated that nonlinear acoustic e!ects can be enhancedin a subwavelength
metasurface comprising nonlinear oscillators, thanks to the resonance process. This
process intrinsically increases the characteristic interaction times as well as local
wave amplitudes. We have reported a nonlinear frequency conversion e!ect from
the incoming fundamental wave to the reßected second harmonic. However, the key
link between the lumped-element model of this nonlinear metasurface and a realistic
structure is missing. More speciÞcally, the method of designing elastic springs with
an e!ective quadratic nonlinearity still needs to be determined.

Recent research has demonstrated that soft architected materials enable ma-
nipulating and controlling elastic and acoustic waves [66,67, 68, 69, 70, 71, 43].
The intrinsic structure and property of this class of architected materials are not
only modiÞable by harnessing the elastic buckling resulting from di!erent statically-
produced pre-deformations [68, 71, 70], but also dynamically tunable over a broad
range of frequencies by taking advantage of geometric nonlinearities in the basic
building blocks [43, 67]. As such, these nonlinearities provide the opportunity to
expand the ability of existing metamaterials and enable them to support a wide
variety of dispersive and nonlinear wave propagation.

Inspired by the latest research on the dynamics of soft architected materials com-
prising rotating units [67, 72], our attention has been drawnto the fact that the local
rotational degree of freedom necessarily leads to the presence of sinusoidal functions
of the angle of rotation in the motion equations. These nonlinear functions of wave
variables constitute geometric type sources of wave nonlinearity and are found to
depend on the building blocks (elasticity, geometry, inertia) of the architected struc-
ture. Consequently, in the aim of proposing a realistic design of a nonlinear elastic
metasurface that accomplishes the same nonlinear conversion as in [94] but with a
higher e"ciency and over a much larger parameter space, the present paper ana-
lyzes a metasurface composed of a single layer of rotating squares connected with
thin and highly deformable ligaments and placed between a rigid plate and a wall.
Special focus is placed on the nonlinear reßection process,thus leading to an optimal
conversion from an incident sinusoidal wave towards its reßected second harmonic.
By adjusting the physical properties of the metasurface, the desired nonlinear con-
version is demonstrated to be feasible over a wide parameter space, hence enabling
the extension of the proposed single design to a family of dynamic rotating-element
metastructures. The predictive theoretical framework developed is also expected
to help manage the wave nonlinearity by metamaterials and moreover guide future
experiments in this Þeld.

2.2 Nonlinear elastic metasurface design and the re-
ßection problem at normal incidence

From the previous studies on wave propagation in soft architected materials made
of rotating square units [67, 72], we propose herein a realistic design of a nonlinear
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Figure 2.1: Nonlinear metasurface design: (a) Single layer of periodically arranged rigid
squares sandwiched between a moving rigid plate and a Þxed wall, with elastic springs
running between all the elements. The propagation medium (1) in frontof the designed
metasurface is assumed to be semi-inÞnite. (b) The metasurface unit cell is composed of
two identical squares with elementary massm. The front rigid plate has an elementary
mass2m0. (c) Due to symmetry, taking into account the motion of just one square of mass
m and the face plate with a mass per unit length ofm0 is demonstrated to be su"cient
for the considered reßection problem at normal incidence.

metasurface. As shown in Fig. 2.1, this design comprises periodically arranged rigid
squares, connected via ligaments at their corners to a moving rigid plate (at the
front end of the single square layer) and a Þxed wall (at the back end of this square
layer). The ligaments are considered to be thin, massless andhighly deformable,
thus playing the role of elastic springs. The metasurface unit cell is composed of
two identical squares with elementary massesm sandwiched between the solid plate
with a surface mass density of2m0 and the rigid wall. The two unit cell squares,
featuring the same initial angle of rotation' 0 as deÞned in Fig. 2.1, are placed in
symmetrical positions at rest. Since a horizontal force applied to the plate produces
simultaneous square translation and rotation, three di!erent springs are taken into
account at each square vertex, i.e. a longitudinal (compression or tension) spring
with sti!ness kl , a shear spring with sti!nessks, and a bending spring with sti!ness
k" .
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The proposed metasurface structure is assumed to be inÞnitely long along the
vertical direction y, while the plate thickness alongx is assumed to be signiÞcantly
less than that of the single square layer. The considered design then is a 2D metas-
tructure in the px, yq plane; moreover, the elementary lateral surface area of the
metasurface unit cell is denotedS.

Throughout this paper, focus is placed on the reßection at normal incidence by
the designed metasurface, with the propagation medium (1) infront of the meta-
surface assumed to be semi-inÞnite. The metasurface widthh along thex direction
is assumed to be much smaller than the acoustic wavelength inmedium p1q, i.e.,
h ! - . LetÕs now consider a plane stress wave&inc of amplitude A inc incident from
«8 and propagating along the positivex direction. The problem therefore is one-
dimensional, and the incident and reßected waves can be written as a function of
x « ct and x ` ct, respectively (using the time conventioni"t ), with c denoting wave
velocity in the propagation medium. The total stress& can be decomposed into an
incoming stress wave and a reßected stress wave& Ò &inc ` &ref . The one-dimensional
wave equation,

+
B2ux

Bt2
Ò

B&
Bx

(2.1)

with + as the mass density of the propagation medium andux the displacement along
the x direction, must be satisÞed everywhere and especially on themetasurface at
x Ò 0, which leads to the following relationship between the incident and reßected
waves for the considered problem:

&ref Ò &inc ` +c
Bu1

Bt
(2.2)

whereu1 denotes the displacement of the plate with a surface mass density of m0.
Since the single square layer is periodically arranged and assumed to be inÞnitely

long, with homogenous excitation alongy, the two squares of each unit cell translate
with the same displacement and moreover rotate with the same dynamic angle yet
in opposite directions. Consequently, the motions of just one square and of its face
plate are su"cient to describe the full dynamics.

For a systematic analysis, we introduce the following dimensionless parameters:
normalized displacementsUi Ò ui {2l, (i=1,2) of the plate and squares, respectively,
with 2l denoting the diagonal length of the squares, pulsation! Ò " {" 0 with " 0 Òa

kl {m, time ! Ò " 0t, inertial moment of squares# Ò J{ml 2, normalized shear,
bending sti!nessesK s Ò ks{kl and K " Ò k" {kl l2 respectively, and lastly mass ratio
#m Ò m0{m.

Based on previous results and validations [67, 72], the springs are assumed to
behave linearly and dissipation is accounted for via linearviscous damping asso-
ciated with the respective translation and rotation motionsof each square. The
characteristic dissipation parameters#u and #" are normalized as%u Ò #u{m" 0 and
%" Ò #" {m" 0 for the translation and rotation, respectively. In the present work, it is
considered that the dissipation remains relatively weak with a dimensionless value
of %u Ò %" Ò 0.001. Thus, for each square and the front plate occupying a lateral
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surface areaS in the py, zq plane, the governing motion equations are written as:
$
ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕ&

ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕ%

#m
B2U1
B$2 Ò « 2f inc p! , ! q « $BU1

B$ « U1 ` U2 « %u
BU1
B$ ` %u

BU2
B$

` 1
2

`
cosp' 0q « cosp' 0 ` ' q ` %" sin' 0

B"
B$

ù
,

B2U2
B$2 Ò U1 « 2U2 ` %u

BU1
B$ « 2%u

BU2
B$ ,

# B2"
B$2 Ò « 6K "

`
' ` %"

B"
B$

ù
` 2pU1 ` %u

BU1
B$ qsinp' 0 ` ' q

` 6 sinp' 0 ` ' q
`
cosp' 0 ` ' q « cosp' 0q « %" sin' 0

B"
B$

ù

« 2K s cosp' 0 ` ' q
`
sinp' 0 ` ' q « sinp' 0q ` %" cos' 0

B"
B$

ù

(2.3)

wheref inc p! , ! q Ò&inc p! , ! qS{2kl l denotes the normalized force applied to the plate
due to the incident stress wave,$ Ò +cS{m" 0 the dimensionless impedance pa-
rameter representing the ratio of the propagation mediump1q impedance to the
mechanical impedance of the metasurface.

When a normal incident stress wave interacts with the metasurface, and under
the condition that the squares are initially rotated at nonzero angles' 0, the transla-
tion of the front plate induces both translation and rotation of the squares, along the
x direction and around thez direction, respectively. Under a linear assumption for
all springs, the elastic forces applied to each metasurfaceelement are proportional
to the spring elongations. However, since the square units rotate, the geometric
nonlinearity of the structure is activated due to the sinusoidal dependence of spring
deformations on the angle of rotation of the squares, as shownin Eq. (2.3). Inter-
estingly, as a consequence of this geometric nonlinearity dependent on structural
design, it can be tuned along with the linear elastic properties in order to produce
speciÞc nonlinear wave e!ects.

In the presence of nonlinearity, the reßected wave spectrumfrom a monochro-
matic incident wave at frequency" may contain harmonics of the incident wave.
Consequently, it is assumed that at the boundaryx Ò 0, the reßected wave is
composed of harmonics with the complex amplituderRn (1 " n " N ) relative to
the incident wave amplitude, denoted byrA inc . In the following discussion and for
the sake of simplicity, rRn and Rn will be used to represent the complex reßection
coe"cient of the n-th harmonic and its magnitude, respectively.

2.3 Analysis of the linearized metasurface: Param-
eter deÞnitions and frequency response

In the linear and weakly dissipative conÞguration, i.e. withÞxed dissipation pa-
rameters%u Ò %" Ò 0.001 and a linear approximation of trigonometric functions as
cosp' 0 ` ' q Ç cos' 0 « sinp' 0q' and sinp' 0 ` ' q Ç sin' 0 ` cosp' 0q' , the resonance
frequencies" i (i Ò 1, 2, 3) of the considered metasurface depend on all the intrin-
sic parameters, i.e. the initial angle of rotation' 0, the mass ratio#m , the inertial
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moment #, the normalized shear sti!nessK s and the bending sti!nessK " . Using
realistic materials studied earlier in [72], it is assumed here that the normalized
shear and bending sti!nesses are both less than 0.1 and lie at the same value, i.e.
K s Ò K " " 0.1. Additionally, the initial angle of rotation ' 0 is set smaller than30o.
In Sections 2.3 and 2.4ã the focus is placed on the case of homogeneous squares, i.e.
# Ò 1{3, though other types of rotating elements with di!erent inertial moments
are considered in Section 2.5.

In a previous theoretical study of a lumped-element, dual-resonance elastic meta-
surface model [94], it was demonstrated that to conduct the optimal frequency con-
version from fundamental wave to second harmonic through thereßection process, a
ratio of 2 between the two linear resonance frequencies of the metasurface is needed.
The targeted conversion takes place with an excitation at the Þrst resonance fre-
quency. Regarding the current metasurface design with threedegrees of freedom
(rotation and translation of the squares, plus translationof the front plate), three
resonance frequencies are involved" i (i Ò 1, 2, 3) with " 1 ! " 2 ! " 3. Since the
(geometric) nonlinearity is primarily excited by the rotation of squares, the excita-
tion frequency" should coincide with the resonance frequency, denoted as" " , which
corresponds to a rotation-dominated mode. Moreover, one of the other resonance
frequencies, denoted here as" u, should match 2" " , in order to approximate the
optimal conversion e"ciency.

To satisfy the condition " u Ò 2" " , the mass ratio #m can be determined in
the linear and weakly dissipative case (see Fig. 2.2(b)). Bysimultaneously varying
sti!nesses pK s, K " q and initial angle of rotation ' 0 in their considered intervals,
the eigenmodes can be characterized by the magnitude of the ratio ' {U1 taken at
the di!erent resonance frequencies. A ratio' {U1 with a magnitude greater than
unity indicates a rotation-dominated mode, whereas a translation-dominated mode
occurs with a ratio less than unity. Fig. 2.2(c) and Fig. 2.2(d) illustrate this ratio at
resonance frequencies" " and " u, respectively. It has been veriÞed that within the
considered range of metasurface parameters, the absolute ratio ' {U1 is maintained
above3 at " " and below0.5 at " u, i.e., " " (resp. " u) corresponds to a rotation (resp.
translation)-dominated mode.

However, once the displacement ratio' {U1 deviates from unity (with an abso-
lute value becoming much smaller or much larger than unity),the rotation motion
and translation motion turn out to be weakly coupled; consequently, the energy
transfer from fundamental harmonic to higher harmonics becomes ine"cient during
the reßection process. In order to excite the rotation mode of the metasurface as
much as possible while enhancing the intended nonlinear conversion, the ranges of
sti!ness and initial angle of rotation are limited, thus allowing for an absolute ratio
' {U1 less than10 at frequency" " and greater than0.1 at frequency" u. Among the
chosen displacement ratio threshold values, the optimal range of sti!ness and initial
angle of rotation values can be obtained, i.e. deÞned asK s Ò K " P p0, 0.04q and
' 0 P p3o, 15oq, as enclosed by the white dotted line in Fig. 2.2(c) and Fig. 2.2(d).
The discussion in Section 2.5 veriÞes that the above choice ofparameter space is
indeed realistic and yields a high e"ciency for the desired nonlinear conversion.

For the study of the nonlinear case in the following Section 2.4, both the sti!ness
and initial angle of rotation of the metasurface are set asK s Ò K " Ò 0.02 and ' 0 Ò
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Figure 2.2: Eigenfrequencies and eigenvectors of the considered metasurface. In the linear
dissipative regime, three resonance frequencies! i (i Ò 1, 2, 3) are presented (a), related to
either a translation-dominated movement, denoted! u , or a rotation-dominated movement
denoted ! " , or a combination of both. When the resonance frequency condition! u Ò 2! "

is satisÞed, the mass ratio" m is determined for di!erent values of initial angles of rotation
' 0 and sti!nesses K s and K " (b). The ratio of ' to U1 is examined as a function of' 0

and K s Ò K " as well, at resonance frequencies! " and ! u in (c) and (d), respectively. The
optimal value range of sti!ness and initial angle of rotation is indicated by the white dotted
line in both (c) and (d).
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10o, which corresponds approximately to the center of the optimal parameter space
region. The corresponding resonance frequencies in the linear regime, as normalized
by " 0, are respectively! 1 Ò 0.7145, ! 2 Ò 1.0858, and ! 3 Ò 2.1716.

Furthermore, we found that as the incident amplitude increases, resulting in the
activation of nonlinear e!ects, the metasurface resonance frequencies start shifting
relative to the linear frequencies. Hence, one possible wayto improve the second
harmonic conversion e!ect, combined with absorption of the fundamental reßected
wave, would be to detune the excitation frequency with respect to the linear res-
onance frequency, thus yielding better coincidence with theshifted nonlinear reso-
nance frequencies. This applied detuning will also be discussed in Section2.4. To
complete the analysis, the sti!ness and initial angle of rotation, along with the in-
ertial moment of the rotating masses, which remain set until Section 2.4, will then
be varied and analyzed in 2.5.

2.4 Nonlinear reßection by the designed metasur-
face: Optimal frequency conversion

LetÕs now consider a monochromatic sourcef inc p! , ! q Ò A inc cosp! ! q in order to
solve semi-analytically the considered problem Eq. (2.3) comprising nonlinear terms
in the form of sin and cos functions. An expansion up to the fourth order of all
sinusoidal terms is then applied:

$
ÕÕÕÕ&

ÕÕÕÕ%

cosp' 0 ` ' q Ç cos' 0 « sin' 0' « 1
2 cos' 0' 2

` 1
6 sin' 0' 3 ` 1

24 cos' 0' 4,

sinp' 0 ` ' q Ç sin' 0 ` cos' 0' « 1
2 sin' 0' 2

« 1
6 cos' 0' 3 ` 1

24 sin' 0' 4.

In the present study, which deals with the case of dynamic angles comparable to
the initial angle of rotation, the considered expansion is determined to be su"cient
since it yields reßection coe"cient results with an accuracyto within 0.01 when
compared to the numerical integration of the full problem described further below.
The system of equations approximated by a polynomial form cannow be solved
using the Harmonic Balance Method (HBM) [100] (more details inAppendix A.2).

According to HBM, the solution t qu Ò tU 1, U 2, ' uT is developed as the sum of
all generated harmonics:

t qu Ò tq0u`
NØ

nÒ1

rt Cn ucospn! ! q ` t Sn usinpn! ! qs (2.4)

with t q0u Ò tC1
0, C2

0, C3
0uT indicating the constant terms of variablesU1, U2 and ' ,

and t Cn u (resp. t Sn u) grouping the magnitudes ofcos(resp. sin) terms of the three
variables. N denotes the Þnite number of harmonics under consideration,which is
set at N Ò 10, thus corresponding to a relative error of less than10« 15, compared
to the solution for N Ò 9. According to the vectorial form of the solution, the
approximated polynomial form governing the system of equations can be rewritten in



36 CHAPTER 2. SOFT METASURFACE DESIGN

a matrix form that is numerically solvable by applying the classical Newton-Raphson
method. Once displacementU1 is determined, the complex reßection coe"cient of
the n-th harmonic frequency component can be deduced as:

rRn Ò , n1 ` i$n! pC1
n « iS1

nq, (2.5)

where, n1 is the Delta function, which always equals zero except whenn Ò 1. C1
n and

S1
n denote the magnitudes of sinusoidal termscosn! ! and sinn! ! of displacement

U1. The reßection coe"cients obtained by HBM are considered as theoretical results
and will be compared with the time domain simulation results atthe end of the
current section.

When the incident amplitude is relatively weak, the reßection coe"cients ob-
tained by HBM are close to the linear analytical solution. For instance, an excita-
tion of dimensionless magnitudeA inc Ò 10« 7 leads to an absolute di!erence in the
reßection coe"cient of less than0.01%, compared to the linear analytical solution.
Therefore, for the following discussion of nonlinear phenomena, the excitation mag-
nitude range considered extends fromA inc Ò 10« 7 to A inc Ò 10« 4, i.e. from the
linear case to amplitudes 3 orders of magnitude greater.

As mentioned at the end of Section 2.3, once the excitation level is signiÞcant,
the nonlinear resonance frequencies of the metasurface shift relative to the linear
frequencies. Consequently, taking into account excitationfrequency detuning be-
comes necessary for the considered input amplitude range. In addition to the in-
trinsic parameters of the metasurface that have already been deÞned in Section
2.3, the nonlinear reßection also depends on the propagation medium. By choosing
herein two di!erent excitation amplitudes, i.e. a relatively weak one with magnitude
A inc Ò 5 ¬10« 6 and a stronger one withA inc Ò 5 ¬10« 5, the nonlinear reßection is
thus being investigated simultaneously as a function of both the excitation frequency
detuning "! (normalized by" 0) and the medium impedance parameter$, as shown
in Fig. 2.3.

Through the reßection process and depending on input intensity, the frequency
conversion can be achieved for a speciÞc impedance value andfor appropriate fre-
quency detuning (see Fig. 2.3). In the case ofA inc Ò 5 ¬10« 6, by setting the
impedance parameter at$ Ò 0.008and considering a very small frequency detuning
of "! Ò « 10« 4, a second harmonic reßection coe"cient ofR2 Ò 0.418 along with
a near-zero fundamental coe"cientR1 Ò 0.0024 are obtained. In comparison, as
the source amplitude increases toA inc Ò 5 ¬10« 5, the frequency detuning necessary
to reduce reßection at the fundamental frequency becomes"! Ò « 1.7 ¬10« 3, thus
yielding a second harmonic reßection coe"cient ofR2 Ò 0.786, accompanied by a
fundamental coe"cient R1 Ò 0.006 at $ Ò 0.0195. Furthermore, for the parameter
ranges presented in Fig. 2.3, the reßection coe"cients of harmonics higher than the
second order are all found to be negligible compared to the second harmonic coe"-
cient, with absolute values consistently less than0.001; hence, these values will not
be discussed any further in the present work.

The magnitude of excitation frequency detuning needed to minimize incident
fundamental wave reßection corresponds to the resonance frequency shift of the
metasurface with respect to the linear resonance frequency,under the considered
level of excitation. More speciÞcally, in order to analyze the resonance frequency
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Figure 2.3: Absolute reßection coe"cients of the fundamental and second harmonic compo-
nents, denotedR1 and R2 respectively, as a function of both the dimensionless impedance
parameter # and the normalized excitation frequency detuning"! . The latter is deÞned
as the di!erence between the excitation frequency! and the linear resonance frequency
! " , subsequently normalized by! 0, i.e., "! Ò p! « ! " q{! 0. When the input intensity
is relatively weak, with a magnitude A inc Ò 5 ¬10« 6, the required excitation detuning is
less ("! Ò « 1 ¬10« 4), as the maximum value of R2 exceeds0.4 (a) and (b). Whereas
with a stronger source of magnitudeA inc Ò 5 ¬10« 5, a frequency detuning of around
"! Ò « 1.7 ¬10« 3 is needed to totally absorbR1, which does not alter the amplitude of
the second harmonicR2 to reach a maximum value of nearly 0.8 (c) and (d).
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shifts for the various source amplitudes indicated herein,i.e. weak levelA inc Ò 10« 7

corresponding to the linear conÞguration and nonlinear levels A inc Ò 5 ¬10« 6 and
A inc Ò 5 ¬10« 5, the metasurface kinetic energy at frequencies close to thelinear
resonance frequencies" " and " u has been introduced. For excitation around the
rotation-dominated resonance frequency" " , it has been veriÞed that the maximum
kinetic energy, which indicates the frequency position of the nonlinear resonance,
actually shifts with increasing excitation amplitude, as illustrated in Fig. 2.4. The
frequency shift between the nonlinear and linear resonancefrequencies coincides
exactly with the optimal excitation detuning, as introducedpreviously in Fig. 2.3,
in order to minimize reßection of the fundamental wave.

Nevertheless, for excitation around" u corresponding to a translation-dominated
motion (Fig. 2.4(b)), as opposed to excitation around" " , the excitation level does
not inßuence the kinetic energy curve. Hence, when the excitation frequency is de-
tuned to compensate for the frequency shift of resonance" " , the reßection of the
fundamental wave can become minimized, whereas the second harmonic (which is
detuned twice as fast as the fundamental harmonic) will barelychange its reßec-
tion coe"cient R2. This result is due to the fact that the corresponding frequency
detuning around resonance" u does not introduce as much of a variation in kinetic
energy as the detuning around" " . Accordingly, the excitation detuning simultane-
ously enables minimizing the reßection of the fundamental wave while maintaining
the nonlinear conversion e"ciency into the reßected secondharmonic wave.
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Figure 2.4: Kinetic energy of the metasurface at various excitationlevels, from a linear
conÞguration with A inc Ò 10« 7 to a weakly nonlinear conÞguration with A inc Ò 5 ¬10« 6

and a highly nonlinear conÞgurationA inc Ò 5 ¬10« 5, respectively, for the cases of: (a)
excitation frequencies close to the linear rotation-dominated resonance frequency! " , and
(b) excitation frequencies close to the linear translation-dominated resonance frequency
! u verifying ! u Ò 2! " . During the kinetic energy test, the metasurface is excited, at
each excitation frequency, by 1,000 periods of a sine signal. The dotted black line in (a)
indicates the resonance shift under excitationA inc Ò 5 ¬10« 5, which corresponds exactly
to the optimal excitation detuning introduced in Fig. 2.3.

In Fig. 2.5, the evolution of both the fundamental and secondharmonic reßection
coe"cients are examined over the gradual increase in excitation amplitude, from
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