Skip to Main content Skip to Navigation
Theses

Contributions to tensor models, Hurwitz numbers and Macdonald-Koornwinder polynomials

Résumé : Dans cette thèse, j’étudie trois sujets reliés : les modèles de tenseurs, les nombres de Hurwitz et les polynômes de Macdonald-Koornwinder. Les modèles de tenseurs généralisent les modèles de matrices en tant qu’une approche à la gravité quantique en dimension arbitraire (les modèles de matrices donnent une version bidimensionnelle). J’étudie un modèle particulier qui s’appelle le modèle quartique mélonique. Sa spécialité est qu’il s’écrit en termes d’un modèle de matrices qui est lui-même aussi intéressant. En utilisant les outils bien établis, je calcule les deux premiers ordres de leur 1=N expansion. Parmi plusieurs interprétations, les nombres de Hurwitz comptent le nombre de revêtements ramifiés de surfaces de Riemann. Ils sont connectés avec de nombreux sujets en mathématiques contemporaines telles que les modèles de matrices, les équations intégrables et les espaces de modules. Ma contribution principale est une formule explicite pour les nombres doubles avec 3-cycles complétées d’une part. Cette formule me permet de prouver plusieurs propriétés intéressantes de ces nombres. Le dernier sujet de mon étude est les polynôme de Macdonald et Koornwinder, plus précisément les identités de Littlewood. Ces polynômes forment les bases importantes de l’algèbre des polynômes symétriques. Un des problèmes intrinsèques dans la théorie des fonctions symétriques est la décomposition d’un polynôme symétrique dans la base de Macdonald. La décomposition obtenue (notamment si les coefficients sont raisonnablement explicites et compacts) est nommée une identité de Littlewood. Dans cette thèse, j’étudie les identités démontrées récemment par Rains et Warnaar. Mes contributions incluent une preuve d’une extension d’une telle identité et quelques progrès partiels vers la généralisation d’une autre.
Document type :
Theses
Complete list of metadatas

Cited literature [98 references]  Display  Hide  Download

https://tel.archives-ouvertes.fr/tel-02048213
Contributor : Abes Star :  Contact
Submitted on : Monday, February 25, 2019 - 2:25:06 PM
Last modification on : Monday, March 9, 2020 - 6:16:01 PM
Document(s) archivé(s) le : Sunday, May 26, 2019 - 2:51:23 PM

File

NGUYENVIETANH.pdf
Version validated by the jury (STAR)

Identifiers

  • HAL Id : tel-02048213, version 1

Citation

Viet Anh Nguyen. Contributions to tensor models, Hurwitz numbers and Macdonald-Koornwinder polynomials. General Mathematics [math.GM]. Université d'Angers, 2017. English. ⟨NNT : 2017ANGE0052⟩. ⟨tel-02048213⟩

Share

Metrics

Record views

190

Files downloads

96