J. Kraus, Selbstreproduktion bei programmen, p.22, 1980.

F. Cohen, Computer viruses. Computers & security, vol.6, p.22, 1987.

. Leonard-m-adleman, An abstract theory of computer viruses. Advances in Crypto, p.22, 1998.

E. Filiol, Viruses and malware, Handbook of Information and Communication Security, p.22, 2010.
DOI : 10.1007/978-3-642-04117-4_34

URL : https://hal.archives-ouvertes.fr/hal-01355337

A. F. , A. Kadir, N. Stakhanova, and A. Ghorbani, Understanding android financial malware attacks : Taxonomy, characterization, and challenges, p.22
DOI : 10.13052/jcsm2245-1439.732

URL : https://riverpublishers.com/journal/journal_articles/RP_Journal_2245-1439_732.pdf

Y. Zhou and X. Jiang, Dissecting android malware : Characterization and evolution, security and Privacy (SP), 2012 IEEE Symposium on, vol.24, p.59, 2012.
DOI : 10.1109/sp.2012.16

URL : http://ieee-security.org/TC/SP2012/papers/4681a095.pdf

K. Dunham, S. Hartman, M. Quintans, J. A. Morales, and T. Strazzere, Android Malware and Analysis, p.24, 2014.
DOI : 10.1201/b17598

K. Lab, Mobile malware evolution, p.25, 2016.

A. Dey, L. Beheshti, and M. Sido, Health state of google's playstore, vol.30, p.63, 2018.

A. Polkovnichenko, O. Koriat, and . Und-check-point-research-team, Viking horde : A new type of android malware on google play, Blog Post, p.30, 2016.

N. Viennot, E. Garcia, and J. Nieh, A measurement study of google play, ACM SIGMETRICS Performance Evaluation Review, vol.42, p.31, 2014.

A. Apvrille and L. Apvrille, Sherlockdroid, an inspector for android marketplaces, Hack. lu, vol.31, p.60, 2014.

Z. Jeremy, M. Kolter, and . Maloof, Learning to detect malicious executables, Machine Learning and Data Mining for Computer Security, p.33, 2006.

D. Arp, M. Spreitzenbarth, M. Hubner, H. Gascon, K. Rieck et al., Drebin : Effective and explainable detection of android malware in your pocket, NDSS, vol.33, p.154, 2014.

P. Irolla and É. Filiol, (in)security of mobile banking...and of other mobile apps, vol.35, p.36, 2015.

G. Wilkinson, The machines that betrayed their masters, p.38, 2014.

, 459 malware, 2,166 benign) containing opcodes sequences for applications in the database. We grouped together equal sequences, to constitute a set, vol.13, p.625

R. Rojas, Neural networks : a systematic introduction, vol.89, p.157, 2013.

I. Goodfellow, Y. Bengio, and A. Courville, Deep learning, vol.1, p.103, 2016.

S. Warren, W. Mcculloch, and . Pitts, A logical calculus of the ideas immanent in nervous activity, The bulletin of mathematical biophysics, vol.5, issue.4, p.84, 1943.

A. Rosenblueth, N. Wiener, and J. Bigelow, Behavior, purpose and teleology, Philosophy of science, vol.10, issue.1, p.84, 1943.

N. Wiener, Cybernetics : Control and communication in the animal and the machine, p.84, 1948.

A. I. Berg, Cybernetics and society, Soviet Review, vol.1, issue.1, p.84, 1960.

I. Arel, Reinforcement learning-based multi-multi-agent system for network traffic signal control, Intelligent Transport Systems, vol.4, issue.2, p.84, 2010.

T. Royani, J. Haddadnia, and M. Alipoor, Traffic signal control for isolated intersections based on fuzzy neural network and genetic algorithm, Proceedings of the 10th WSEAS international conference on signal processing, computational geometry and artificial vision, p.84, 2010.

T. V. Manh-hung-nguyen, T. H. Ho, and . Nguyen, On the dynamic optimization of traffic lights. Asian Simulation and Modeling, p.84, 2013.

R. Stufflebeam, Neurons, synapses, action potentials, and neurotransmission, Consortium on Cognitive Science Instruction, vol.87, 2008.

. Re-ucheya, F. E. Ucheya, and . Amiegheme, Is a combine therapy of aqueous extract of azadirachta indica leaf (neem leaf ) and chloroquine sulphate toxic to the histology of the rabbit cerebellum ? Annals of medical and health sciences research, vol.1, pp.203-214, 2011.

J. Schmidhuber, Deep learning in neural networks : An overview, Neural networks, vol.61, p.115, 2015.

B. Taylor, Methodus incrementorum directa & inversa. impensis Gulielmi Innys

P. Diederik, J. Kingma, and . Ba, Adam : A method for stochastic optimization, vol.15, p.118, 2014.

N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, Dropout : a simple way to prevent neural networks from overfitting, The Journal of Machine Learning Research, vol.15, issue.1, p.104, 2014.

R. Kohavi, A study of cross-validation and bootstrap for accuracy estimation and model selection, Ijcai, vol.14, pp.1137-1145, 1995.

D. Nguyen and B. Widrow, Improving the learning speed of 2-layer neural networks by choosing initial values of the adaptive weights, IJCNN International Joint Conference on, p.106, 1990.

G. Saporta, Probabilités, analyse des données et statistique. Editions Technip, vol.108, p.123, 2006.

D. Zuras, M. Cowlishaw, A. Aiken, M. Applegate, D. Bailey et al., Ieee standard for floating-point arithmetic, IEEE Std, vol.754, p.110, 2008.

N. Nicol and . Schraudolph, A fast, compact approximation of the exponential function, Neural Computation, vol.11, issue.4, p.112, 1999.

N. Kalchbrenner, E. Grefenstette, and P. Blunsom, A convolutional neural network for modelling sentences, p.116, 2014.

A. Krizhevsky, I. Sutskever, and G. E. Hinton, Imagenet classification with deep convolutional neural networks, Advances in neural information processing systems, p.116, 2012.

J. Tobias-springenberg, A. Dosovitskiy, T. Brox, and M. Riedmiller, Striving for simplicity : The all convolutional net, p.116, 2014.

J. Felix-a-gers, F. Schmidhuber, and . Cummins, Learning to forget : Continual prediction with lstm, p.116, 1999.

D. Arp, M. Spreitzenbarth, M. Hubner, H. Gascon, K. Rieck et al., Drebin : Effective and explainable detection of android malware in your pocket, NDSS, vol.33, p.154, 2014.

P. Irolla and A. Dey, The duplication issue within the drebin dataset, Journal of Computer Virology and Hacking Techniques, vol.49, p.152, 2018.

K. Allix, F. Tegawendé, J. Bissyandé, Y. L. Klein, and . Traon, Androzoo : Collecting millions of android apps for the research community, Mining Software Repositories (MSR), 2016 IEEE/ACM 13th Working Conference on, p.117, 2016.

P. Baldi, Autoencoders, unsupervised learning, and deep architectures, Proceedings of ICML workshop on unsupervised and transfer learning, p.117, 2012.

Q. Le and T. Mikolov, Distributed representations of sentences and documents, International Conference on Machine Learning, p.117, 2014.

Y. Zhang, R. Jin, and Z. Zhou, Understanding bag-of-words model : a statistical framework, International Journal of Machine Learning and Cybernetics, vol.1, issue.1-4, p.118, 2010.

T. Dozat, Incorporating nesterov momentum into adam, p.118, 2016.

E. Raff, J. Barker, J. Sylvester, R. Brandon, B. Catanzaro et al., Malware detection by eating a whole exe, p.119, 2017.

C. Szegedy, W. Zaremba, I. Sutskever, and J. Bruna, Dumitru Erhan, Ian Goodfellow, and Rob Fergus. Intriguing properties of neural networks, 2013.

K. Grosse, N. Papernot, P. Manoharan, M. Backes, and P. Mcdaniel, Adversarial perturbations against deep neural networks for malware classification, p.120, 2016.

H. Wael, . Gomaa, . Aly, and . Fahmy, A survey of text similarity approaches, International Journal of Computer Applications, vol.68, issue.13, p.125, 2013.

D. S. Hirschberg, A linear space algorithm for computing maximal common subsequences, Communications of the ACM, vol.18, issue.6, pp.341-343, 1975.

. David-w-mount, Bioinformatics : sequence and genome analysis, Bioinformatics : Sequence and Genome Analysis, vol.126, 2004.

M. Cheatham and P. Hitzler, String similarity metrics for ontology alignment, International Semantic Web Conference, pp.294-309, 2013.

J. P. Angelo and D. B. West, Mathematical Thinking : Problem-Solving and Proofs, 2000.

A. V. Aho, R. Michael, J. D. Garey, and . Ullman, The transitive reduction of a directed graph, SIAM Journal on Computing, vol.1, issue.2, p.132

J. Daciuk, S. Mihov, R. E. Bruce-w-watson, and . Watson, Incremental construction of minimal acyclic finite-state automata. Computational linguistics, vol.26, p.132, 2000.

D. Arp, M. Spreitzenbarth, M. Hubner, H. Gascon, K. Rieck et al., Drebin : Effective and explainable detection of android malware in your pocket, NDSS, vol.14, p.154, 2014.

P. Irolla and A. Dey, The duplication issue within the drebin dataset, Journal of Computer Virology and Hacking Techniques, vol.49, p.152, 2018.

P. Irolla and E. Filiol, Glassbox : Dynamic analysis platform for malware android applications on real devices, vol.138, p.154

Y. Lin, Y. Lai, C. Lu, P. Hsu, and C. Lee, Three-phase behavior-based detection and classification of known and unknown malware, vol.8, 2004.

R. Artusi, E. Verderio, and . Marubini, Bravais-pearson and spearman correlation coefficients : meaning, test of hypothesis and confidence interval. The International journal of biological markers, vol.17, p.139, 2002.

G. Saporta, Probabilités, analyse des données et statistique. Editions Technip, vol.108, p.142, 2006.

L. Deshotels, V. Notani, and A. Lakhotia, Droidlegacy : Automated familial classification of android malware, Proceedings of ACM SIGPLAN on program protection and reverse engineering workshop, 2014.

Y. Aafer, W. Du, and H. Yin, Droidapiminer : Mining api-level features for robust malware detection in android, International conference on security and privacy in communication systems, p.143, 2013.

Y. Ki, E. Kim, and H. Kim, A novel approach to detect malware based on api call sequence analysis, International Journal of Distributed Sensor Networks, vol.11, issue.6, p.150, 2015.

G. Sakkis, I. Androutsopoulos, and G. Paliouras, Vangelis Karkaletsis, Constantine D Spyropoulos, and Panagiotis Stamatopoulos. A memory-based approach to anti-spam filtering for mailing lists, Information retrieval, vol.6, issue.1, p.150, 2003.

M. Damshenas, A. Dehghantanha, K. Choo, and R. Mahmud, M0droid : An android behavioral-based malware detection model, Journal of Information Privacy and Security, vol.11, issue.3, p.150, 2015.

J. Platt, Fast training of support vector machines using sequential minimal optimization, Advances in Kernel Methods-Support Vector Learning, p.150, 1998.

R. Quinlan, C4.5 : Programs for Machine Learning, p.150, 1993.

A. Genkin, D. D. Lewis, and D. Madigan, Large-scale bayesian logistic regression for text categorization, DIMACS, p.150, 2004.

D. Arp, M. Spreitzenbarth, M. Hubner, H. Gascon, K. Rieck et al., Drebin : Effective and explainable detection of android malware in your pocket, NDSS, vol.14, p.154, 2014.

P. Irolla and A. Dey, The duplication issue within the drebin dataset, Journal of Computer Virology and Hacking Techniques, vol.49, p.152, 2018.

M. B. Paul, M. Vitanyi, and . Li, An introduction to Kolmogorov complexity and its applications, vol.34, p.152, 1997.

H. Peng, F. Long, and C. Ding, Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy, IEEE Transactions on pattern analysis and machine intelligence, vol.27, p.153, 2005.

P. Irolla and E. Filiol, Glassbox : Dynamic analysis platform for malware android applications on real devices, vol.70, p.154, 2016.

R. Rojas, Neural networks : a systematic introduction, vol.89, p.157, 2013.

, Bibliothèque d'algorithmes d'apprentissage automatique L'apprentissage artificiel commence à être et sera une science utilisée dans tous les domaines technologiques, sans avoir recours à un expert. Les avancées de l'apprentissage en profondeur évitent l'exigence d'un processus d'extraction / de sélection de caractéristiques. Cependant, l'algorithme d'apprentissage et d'autres paramètres internes doivent encore être modifiés. L'apprentissage artificiel doit encore être conçu et configuré par une personne ayant de l'expérience pour être efficace. Enfin, bien que l'apprentissage en profondeur soit très efficace, vol.1

, Nous avons présenté nos travaux à travers des publications, des conférences et des articles de vulgarisation scientifique : : ? Articles internationaux

P. Irolla and A. Dey, The duplication issue within the Drebin dataset, Journal of Computer Virology and Hacking Techniques

, ? Workshops et conferences internationaux avec article ? Paul Irolla and Éric Filiol, (In)Security of Mobile Banking, 201518.

P. Irolla, Glassbox : Dynamic Analysis Platform for Malware Android Applications on Real Devices, ICISSP ForSE, 2017.

P. Irolla, Systematic Characterization of a Sequence Group, 2019.

A. Hota and P. Irolla, Deep Neural Networks for Android Malware Detection, 2019.
DOI : 10.5220/0007617606570663

, ? Conferences internationales sans articles ? Paul Irolla and Éric Filiol, (In)Security of Mobile Banking, 201419.

P. Irolla, Security of Mobile Banking, 201520.

, ? Publications et articles de vulgarisation nationaux ? Paul Irolla, Applications bancaires pour smartphone : une sécurité bâclée, 201521.

P. Irolla, La surveillance mondiale du Wifi, p.22, 2015.

P. Irolla, User tracking et Facebook : l'ère de la surveillance globale, p.23, 2016.

?. Filiol, B. David, and P. Irolla, Virus informatiques et autres infections informatiques, Techniques de l'Ingénieur, vol.5440, p.3, 2017.