J. Wilson, The role of cytokines in the epithelial cancer microenvironment, Seminars in Cancer Biology, vol.12, issue.2, pp.113-120, 2002.

S. Gout and . Huot, Role of cancer microenvironment in metastasis : focus on colon cancer, Cancer Microenvironment, vol.1, issue.1, pp.69-83, 2008.

. Ip-witz, The tumor microenvironment : the making of a paradigm, Cancer Microenvironment, vol.2, issue.1, pp.9-17, 2009.

M. J. Bissell and . Hines, Why don't we get more cancer ? a proposed role of the microenvironment in restraining cancer progression, Nature medicine, vol.17, issue.3, p.320, 2011.

N. Li, S. I. Grivennikov, and M. Karin, The unholy trinity : inflammation, cytokines, and stat3 shape the cancer microenvironment, Cancer cell, vol.19, issue.4, pp.429-431, 2011.

C. Feig, . Gopinathan, . Neesse, . Ds-chan, D. A. Cook et al., The pancreas cancer microenvironment, Clin. Cancer Res, vol.18, issue.16, pp.4266-4276, 2012.

M. Erreni, P. Mantovani, and . Allavena, Tumor-associated macrophages (tam) and inflammation in colorectal cancer, Cancer microenvironment, vol.4, issue.2, pp.141-154, 2011.

. De-ingber, Tensegrity : the architectural basis of cellular mechanotransduction. Annual review of physiology, vol.59, pp.575-599, 1997.

M. Thery and . Bornens, Cell shape and cell division. Current opinion in cell biology, vol.18, pp.648-657, 2006.

C. Lo, H. Wang, Y. Dembo, and . Wang, Cell movement is guided by the rigidity of the substrate, Biophysical journal, vol.79, issue.1, pp.144-152, 2000.

A. J. Engler, . Sen, D. E. Sweeney, and . Discher, Matrix elasticity directs stem cell lineage specification, Cell, vol.126, issue.4, pp.677-689, 2006.

D. Wirtz, P. C. Konstantopoulos, and . Searson, The physics of cancer : the role of physical interactions and mechanical forces in metastasis, Nature Reviews Cancer, vol.11, issue.7, p.512, 2011.

T. Stylianopoulos, . Martin, . Vp-chauhan, . Sr-jain, . Diop-frimpong et al., Causes, consequences, and remedies for growth-induced solid stress in murine and human tumors, Proceedings of the National Academy of Sciences, vol.109, issue.38, pp.15101-15108, 2012.

M. T. Janet, J. A. Cheng, . Tyrrell, Y. Wilcox-adelman, . Boucher et al., Mechanical compression drives cancer cells toward invasive phenotype, Proceedings of the National Academy of Sciences, vol.109, issue.3, pp.911-916, 2012.

M. P. Lutolf, Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering, Nature biotechnology, vol.23, issue.1, p.47, 2005.

M. A. Wozniak and C. S. Chen, Mechanotransduction in development : a growing role for contractility, Nature reviews Molecular cell biology, vol.10, issue.1, p.34, 2009.

G. T. Haneveld, Compression as a treatment of cancer, a historical survey, Archivum chirurgicum Neerlandicum, vol.31, issue.1, pp.1-8, 1979.

R. M. Sutherland, J. A. Inch, J. Mccredie, and . Kruuv, A multi-component radiation survival curve using an in vitro tumour model, International Journal of Radiation Biology and Related Studies in Physics, vol.18, issue.5, pp.491-495, 1970.

R. M. Sutherland, Cell and environment interactions in tumor microregions : the multicell spheroid model, Science, vol.240, issue.4849, pp.177-184, 1988.

J. Friedrich, . Seidel, L. A. Ebner, and . Kunz-schughart, Spheroid-based drug screen : considerations and practical approach, Nature protocols, vol.4, issue.3, p.309, 2009.

F. Montel, . Delarue, . Elgeti, . Malaquin, . Basan et al., Stress clamp experiments on multicellular tumor spheroids, Physical review letters, vol.107, issue.18, p.188102, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01138973

F. Montel, . Delarue, . Elgeti, . Vignjevic, J. Cappello et al., Isotropic stress reduces cell proliferation in tumor spheroids, New Journal of Physics, vol.14, issue.5, p.55008, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01138975

M. Delarue, . Montel, . O-caen, J. Elgeti, . Siaugue et al., Mechanical control of cell flow in multicellular spheroids, Physical review letters, vol.110, issue.13, p.138103, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01138971

M. Delarue, . Montel, . Vignjevic, J. Prost, G. Joanny et al., Compressive stress inhibits proliferation in tumor spheroids through a volume limitation, Biophysical journal, vol.107, issue.8, pp.1821-1828, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01123922

S. Monnier, . Delarue, . Brunel, . Me-dolega, G. Delon et al., Effect of an osmotic stress on multicellular aggregates, Methods, vol.94, pp.114-119, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01214623

K. Alessandri, . Sarangi, . Vv-gurchenkov, . Sinha, . Tr-kießling et al., Cellular capsules as a tool for multicellular spheroid production and for investigating the mechanics of tumor progression in vitro, Proceedings of the National Academy of Sciences, vol.110, issue.37, pp.14843-14848, 2013.
URL : https://hal.archives-ouvertes.fr/inserm-01356886

V. Ntziachristos, Going deeper than microscopy : the optical imaging frontier in biology, Nature methods, vol.7, issue.8, p.603, 2010.

T. Wilson, Optical aspects of confocal microscopy, Confocal Microscopy, pp.93-141, 1990.

W. Denk, W. W. Strickler, and . Webb, Two-photon laser scanning fluorescence microscopy, Science, vol.248, issue.4951, pp.73-76, 1990.

F. Helmchen and . Denk, Deep tissue two-photon microscopy, Nature methods, vol.2, issue.12, p.932, 2005.

J. Huisken, . Swoger, . Del-bene, E. Wittbrodt, and . Stelzer, Optical sectioning deep inside live embryos by selective plane illumination microscopy, Science, vol.305, issue.5686, pp.1007-1009, 2004.

J. Huisken and . Stainier, Even fluorescence excitation by multidirectional selective plane illumination microscopy (mspim), Optics letters, vol.32, issue.17, pp.2608-2610, 2007.

P. J. Verveer, . Swoger, . Pampaloni, . Greger, E. Marcello et al., Highresolution three-dimensional imaging of large specimens with light sheet-based microscopy, Nature methods, vol.4, issue.4, p.311, 2007.

C. Lorenzo, . Frongia, . Jorand, . Fehrenbach, . Weiss et al., Live cell division dynamics monitoring in 3d large spheroid tumor models using light sheet microscopy, Cell division, vol.6, issue.1, p.22, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00691571

. Fo-fahrbach, . Gurchenkov, . Alessandri, A. Nassoy, and . Rohrbach, Light-sheet microscopy in thick media using scanned bessel beams and two-photon fluorescence excitation, Optics express, vol.21, issue.11, pp.13824-13839, 2013.

I. M. Vellekoop and A. P. Mosk, Focusing coherent light through opaque strongly scattering media, Optics letters, vol.32, issue.16, pp.2309-2311, 2007.

C. Leroux, . Monnier, . Wang, A. Cappello, and . Delon, Fluorescent correlation spectroscopy measurements with adaptive optics in the intercellular space of spheroids, Biomedical optics express, vol.5, issue.10, pp.3730-3738, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01123925

Y. Liu, C. Lai, . Ma, A. A. Xu, L. V. Grabar et al., Optical focusing deep inside dynamic scattering media with near-infrared time-reversed ultrasonically encoded (true) light, Nature communications, vol.6, p.5904, 2015.

Z. Yaqoob, . Psaltis, C. Ms-feld, and . Yang, Optical phase conjugation for turbidity suppression in biological samples, Nature photonics, vol.2, issue.2, p.110, 2008.

X. Wang, M. Xu, . Xu, . Yokoo, L. V. Fry et al., Photoacoustic tomography of biological tissues with high cross-section resolution : Reconstruction and experiment, Medical physics, vol.29, issue.12, pp.2799-2805, 2002.

D. Huang, C. P. Swanson, . Lin, . Schuman, . Stinson et al., Optical coherence tomography. science, vol.254, issue.5035, pp.1178-1181, 1991.

P. Yu, . Mustata, . Turek, . French, D. D. Melloch et al., Holographic optical coherence imaging of tumor spheroids, Applied physics letters, vol.83, issue.3, pp.575-577, 2003.

J. A. Izatt, A. Ma-choma, and . Dhalla, Theory of optical coherence tomography. Optical Coherence Tomography : Technology and Applications, pp.65-94, 2015.

C. Leroux, J. Palmier, A. C. Boccara, S. Cappello, and . Monnier, Elastography of multicellular aggregates submitted to osmo-mechanical stress, New Journal of Physics, vol.17, issue.7, p.73035, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01214628

D. Zhu, . Larin, V. V. Luo, and . Tuchin, Recent progress in tissue optical clearing, Laser & photonics reviews, vol.7, issue.5, pp.732-757, 2013.

D. S. Richardson and J. W. Lichtman, Clarifying tissue clearing, Cell, vol.162, issue.2, pp.246-257, 2015.

J. R. Mourant, A. H. Freyer, A. A. Hielscher, . Eick, T. M. Shen et al., Mechanisms of light scattering from biological cells relevant to noninvasive optical-tissue diagnostics, Applied optics, vol.37, issue.16, pp.3586-3593, 1998.

. Vg-peters, . Wyman, G. L. Ms-patterson, and . Frank, Optical properties of normal and diseased human breast tissues in the visible and near infrared, Physics in Medicine & Biology, vol.35, issue.9, p.1317, 1990.

M. Oheim, . Beaurepaire, . Chaigneau, S. Mertz, and . Charpak, Two-photon microscopy in brain tissue : parameters influencing the imaging depth, Journal of neuroscience methods, vol.111, issue.1, pp.29-37, 2001.

A. Hopt and . Neher, Highly nonlinear photodamage in two-photon fluorescence microscopy, Biophysical journal, vol.80, issue.4, pp.2029-2036, 2001.

E. Meijering, . Dzyubachyk, and . Smal, Methods for cell and particle tracking, Methods Enzymol, vol.504, issue.9, pp.183-200, 2012.

M. Ma?ka, . Ulman, . Svoboda, . Matula, C. Matula et al., A benchmark for comparison of cell tracking algorithms, Bioinformatics, vol.30, issue.11, pp.1609-1617, 2014.

D. Gonzalez-rodriguez, . Guevorkian, F. Douezan, and . Brochard-wyart, Soft matter models of developing tissues and tumors, Science, vol.338, issue.6109, pp.910-917, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00996519

B. Brunel, . Beaune, . Nagarajan, . Dufour, F. M. Brochard-wyart et al., Nanostickers for cells : a model study using cell-nanoparticle hybrid aggregates, Soft matter, vol.12, issue.38, pp.7902-7907, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01371600

P. Carmeliet, Angiogenesis in health and disease, Nature medicine, vol.9, issue.6, p.653, 2003.

F. Hirschhaeuser, C. Menne, . Dittfeld, . West, L. A. Mueller-klieser et al., Multicellular tumor spheroids : an underestimated tool is catching up again, Journal of biotechnology, vol.148, issue.1, pp.3-15, 2010.

S. Dini, . Binder, C. Fischer, . Mattheyer, E. Schmitz et al., Identifying the necrotic zone boundary in tumour spheroids with pair-correlation functions, Journal of The Royal Society Interface, vol.13, issue.123, p.20160649, 2016.

S. Breslin and L. Driscoll, Three-dimensional cell culture : the missing link in drug discovery. Drug discovery today, vol.18, pp.240-249, 2013.

I. Dufau, . Frongia, L. Sicard, . Dedieu, . Cordelier et al., Multicellular tumor spheroid model to evaluate spatio-temporal dynamics effect of chemotherapeutics : application to the gemcitabine/chk1 inhibitor combination in pancreatic cancer, BMC cancer, vol.12, issue.1, p.15, 2012.
URL : https://hal.archives-ouvertes.fr/inserm-00670715

L. A. Kunz-schughart, . Freyer, R. Hofstaedter, and . Ebner, The use of 3-d cultures for high-throughput screening : the multicellular spheroid model, Journal of biomolecular screening, vol.9, issue.4, pp.273-285, 2004.

K. Kwapiszewska, . Michalczuk, . Rybka, Z. Kwapiszewski, and . Brzózka, A microfluidic-based platform for tumour spheroid culture, monitoring and drug screening, Lab on a Chip, vol.14, issue.12, pp.2096-2104, 2014.

J. Laurent, . Frongia, . Cazales, . Mondesert, V. Ducommun et al., Multicellular tumor spheroid models to explore cell cycle checkpoints in 3d, BMC cancer, vol.13, issue.1, p.73, 2013.

L. Bingle, . Lewis, . Kp-corke, N. J. Mwr-reed, and . Brown, Macrophages promote angiogenesis in human breast tumour spheroids in vivo, British journal of cancer, vol.94, issue.1, p.101, 2006.

M. S. Steinberg, Reconstruction of tissues by dissociated cells, Science, vol.141, issue.3579, pp.401-408, 1963.

P. Marmottant, . Mgharbel, . Käfer, J. Audren, J. Rieu et al., The role of fluctuations and stress on the effective viscosity of cell aggregates, Proceedings of the National Academy of Sciences, vol.106, issue.41, pp.17271-17275, 2009.
URL : https://hal.archives-ouvertes.fr/inserm-00524596

H. M. Phillips and M. S. Steinberg, Embryonic tissues as elasticoviscous liquids. i. rapid and slow shape changes in centrifuged cell aggregates, Journal of cell science, vol.30, issue.1, pp.1-20, 1978.

S. Douezan, . Guevorkian, . Naouar, . Dufour, F. Cuvelier et al., Spreading dynamics and wetting transition of cellular aggregates, Proceedings of the National Academy of Sciences, vol.108, issue.18, pp.7315-7320, 2011.

T. Hayashi, Surface mechanics mediate pattern formation in the developing retina, Nature, vol.431, issue.7009, p.647, 2004.

L. Pontani, . Jorjadze, J. Viasnoff, and . Brujic, Biomimetic emulsions reveal the effect of mechanical forces on cell-cell adhesion, Proceedings of the National Academy of Sciences, vol.109, issue.25, pp.9839-9844, 2012.

G. Helmlinger, P. A. Netti, . Hc-lichtenbeld, R. K. Melder, and . Jain, Solid stress inhibits the growth of multicellular tumor spheroids, Nature biotechnology, vol.15, issue.8, p.778, 1997.

G. Cheng, . Tse, L. L. Rk-jain, and . Munn, Micro-environmental mechanical stress controls tumor spheroid size and morphology by suppressing proliferation and inducing apoptosis in cancer cells, PLoS one, vol.4, issue.2, p.4632, 2009.

A. Desmaison, . Frongia, . Grenier, V. Ducommun, and . Lobjois, Mechanical stress impairs mitosis progression in multi-cellular tumor spheroids, PloS one, vol.8, issue.12, p.80447, 2013.

A. Desmaison, . Guillaume, . Triclin, . Weiss, V. Ducommun et al., Impact of physical confinement on nuclei geometry and cell division dynamics in 3d spheroids, Scientific reports, vol.8, issue.1, p.8785, 2018.

. Me-dolega, . Delarue, . Ingremeau, . Prost, G. Delon et al., Cell-like pressure sensors reveal increase of mechanical stress towards the core of multicellular spheroids under compression, Nature communications, vol.8, p.14056, 2017.

M. Delarue, J. Joanny, J. Jülicher, and . Prost, Stress distributions and cell flows in a growing cell aggregate. Interface focus, vol.4, p.20140033, 2014.

A. Guinier and G. Fournet, Small-angle scattering of x-rays, 1955.

O. Glatter and . Kratky, Small angle X-ray scattering, 1982.

L. A. Feigin, G. W. Di-svergun, and . Taylor, Structure analysis by small-angle X-ray and neutron scattering, 1987.

A. Brunsting and P. F. Mullaney, Differential light scattering from spherical mammalian cells, Biophysical journal, vol.14, issue.6, pp.439-453, 1974.

J. Beuthan, . Minet, . Helfmann, G. Herrig, and . Müller, The spatial variation of the refractive index in biological cells, Physics in Medicine & Biology, vol.41, issue.3, p.369, 1996.

B. Beauvoit, . Kitai, and . Chance, Contribution of the mitochondrial compartment to the optical properties of the rat liver : a theoretical and practical approach, Biophysical Journal, vol.67, issue.6, pp.2501-2510, 1994.

M. Xu, J. Y. Wu, and . Qu, Unified mie and fractal scattering by cells and experimental study on application in optical characterization of cellular and subcellular structures, Journal of biomedical optics, vol.13, issue.2, p.24015, 2008.

P. F. Mullaney, . Ma-van-dilla, P. N. Coulter, and . Dean, Cell sizing : a light scattering photometer for rapid volume determination, Review of Scientific Instruments, vol.40, issue.8, pp.1029-1032, 1969.

E. J. Meehan and A. E. Gyberg, Particle-size determination by low-angle light scattering : Effect of refractive index, Applied optics, vol.12, issue.3, pp.551-554, 1973.

J. V. Watson, Introduction to flow cytometry, 2004.

A. Dunn and R. Richards-kortum, Three-dimensional computation of light scattering from cells, IEEE Journal of Selected Topics in Quantum Electronics, vol.2, issue.4, pp.898-905, 1996.

R. Drezek, R. Dunn, and . Richards-kortum, Light scattering from cells : finitedifference time-domain simulations and goniometric measurements, Applied optics, vol.38, issue.16, pp.3651-3661, 1999.

J. R. Mourant, . Johnson, J. P. Doddi, and . Freyer, Angular dependent light scattering from multicellular spheroids, J. Biomed. Opt, vol.7, issue.1, pp.93-99, 2002.

J. M. Schmitt, M. Knüttel, and . Yadlowsky, Confocal microscopy in turbid media, JOSA A, vol.11, issue.8, pp.2226-2235, 1994.

P. Theer and . Denk, On the fundamental imaging-depth limit in two-photon microscopy, JOSA A, vol.23, issue.12, pp.3139-3149, 2006.

W. Cheong, A. J. Sa-prahl, and . Welch, A review of the optical properties of biological tissues, IEEE journal of quantum electronics, vol.26, issue.12, pp.2166-2185, 1990.

M. Chaplin, Water structure and science

. Dj-pine, . Da-weitz, E. Pm-chaikin, and . Herbolzheimer, Diffusing wave spectroscopy, Physical review letters, vol.60, issue.12, p.1134, 1988.

J. Li, . Dietsche, . Iftime, . Se-skipetrov, . Maret et al., Noninvasive detection of functional brain activity with near-infrared diffusing-wave spectroscopy, Journal of biomedical optics, vol.10, issue.4, p.44002, 2005.

M. Cheikh, . Nghiem, . Ettori, . Tinet, J. Avrillier et al., Time-resolved diffusing wave spectroscopy applied to dynamic heterogeneity imaging, Optics letters, vol.31, issue.15, pp.2311-2313, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00021510

H. J. Butler, . Ashton, . Bird, . Cinque, . Curtis et al., Using raman spectroscopy to characterize biological materials, Nature protocols, vol.11, issue.4, p.664, 2016.

. Lt-perelman, Optical diagnostic technology based on light scattering spectroscopy for early cancer detection, Expert Review of Medical Devices, vol.3, issue.6, pp.787-803, 2006.

J. Nallala, M. Piot, C. Diebold, . Gobinet, . Bouché et al., Infrared and raman imaging for characterizing complex biological materials : a comparative morpho-spectroscopic study of colon tissue, Applied spectroscopy, vol.68, issue.1, pp.57-68, 2014.

B. J. Berne and . Pecora, Dynamic Light Scattering with applications to biology, chemistry and Physics, 1976.

R. Klein and B. Aguanno, Static scattering properties of colloidal suspensions, 1996.

R. Nassif, C. Nader, . Afif, . Pellen, . Le-brun et al., Detection of golden apples'climacteric peak by laser biospeckle measurements, Applied optics, vol.53, issue.35, pp.8276-8282, 2014.

H. Conrad, . Lehmkühler, . Fischer, M. A. Westermeier, Y. Schroer et al., Correlated heterogeneous dynamics in glass-forming polymers, Phys. Rev. E, vol.91, issue.4, p.42309, 2015.

E. Tamborini and . Cipelletti, Multiangle static and dynamic light scattering in the intermediate scattering angle range, Review of scientific instruments, vol.83, issue.9, p.93106, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00725045

M. Suissa, . Place, E. Goillot, and . Freyssingeas, Internal dynamics of a living cell nucleus investigated by dynamic light scattering, Eur. Phys. J. E, vol.26, issue.4, pp.435-448, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00373290

J. Lee, . Radhakrishnan, . Wu, . Daneshmand, C. Climov et al., Quantitative imaging of cerebral blood flow velocity and intracellular motility using dynamic light scattering-optical coherence tomography, Journal of Cerebral Blood Flow & Metabolism, vol.33, issue.6, pp.819-825, 2013.

. Dd-nolte, . An, and . Turek, Tissue dynamics spectroscopy for threedimensional tissue-based drug screening, JALA : Journal of the Association for Laboratory Automation, vol.16, issue.6, pp.431-442, 2011.

. Dd-nolte, . An, and . Turek, Holographic tissue dynamics spectroscopy, Journal of Biomedical Optics, vol.16, issue.8, p.87004, 2011.

B. Weber, M. T. Burger, . Wyss, . Schulthess, A. Scheffold et al., Optical imaging of the spatiotemporal dynamics of cerebral blood flow and oxidative metabolism in the rat barrel cortex, Eur. J. Neurosci, vol.20, p.2664, 2004.

F. Jaillon, . Skipetrov, . Li, . Dietsche, T. Maret et al., Diffusing-wave spectroscopy from head-like tissue phantoms : influence of a non-scattering layer, Opt. Expr, vol.14, p.10181, 2001.

C. Zimmer, . Zhang, . Dufour, . Thébaud, . Berlemont et al., On the digital trail of mobile cells, IEEE Signal Processing Magazine, vol.23, issue.3, pp.54-62, 2006.

K. Jaqaman, . Loerke, H. Mettlen, . Kuwata, . Grinstein et al., Robust single-particle tracking in live-cell time-lapse sequences, Nature methods, vol.5, issue.8, p.695, 2008.

K. Rohr, . Godinez, . Harder, . Wörz, . Mattes et al., Tracking and quantitative analysis of dynamic movements of cells and particles, Cold Spring Harbor Protocols, issue.6, p.80, 2010.

E. Meijering, . Smal, J. Dzyubachyk, and . Olivo-marin, Time-lapse imaging. Microscope Image Processing, pp.401-440, 2008.

G. Lin, . Adiga, J. F. Olson, C. A. Guzowski, B. Barnes et al., A hybrid 3d watershed algorithm incorporating gradient cues and object models for automatic segmentation of nuclei in confocal image stacks, Cytometry Part A : the journal of the International Society for Analytical Cytology, vol.56, issue.1, pp.23-36, 2003.

A. Garrido and N. Blanca, Applying deformable templates for cell image segmentation, Pattern Recognition, vol.33, issue.5, pp.821-832, 2000.

. Mk-cheezum, W. H. Walker, and . Guilford, Quantitative comparison of algorithms for tracking single fluorescent particles, Biophysical journal, vol.81, issue.4, pp.2378-2388, 2001.

J. B. Beltman, R. Afm-marée, and . Boer, Analysing immune cell migration, Nature Reviews Immunology, vol.9, issue.11, p.789, 2009.

R. Colin, L. G. Zhang, and . Wilson, Fast, high-throughput measurement of collective behaviour in a bacterial population, Journal of The Royal Society Interface, vol.11, issue.98, p.20140486, 2014.

. Mv-kristensen, . Ahrendt, . Tb-lindballe, A. P. Oha-nielsen, H. Kylling et al., Motion analysis of optically trapped particles and cells using 2d fourier analysis, Optics express, vol.20, issue.3, pp.1953-1962, 2012.

F. Giavazzi, . Brogioli, . Trappe, R. Bellini, and . Cerbino, Scattering information obtained by optical microscopy : differential dynamic microscopy and beyond, Physical Review E, vol.80, issue.3, p.31403, 2009.

. Va-martinez, . Besseling, . Oa-croze, . Tailleur, . Reufer et al., Differential dynamic microscopy : A high-throughput method for characterizing the motility of microorganisms, Biophysical journal, vol.103, issue.8, pp.1637-1647, 2012.

. Fj-duarte, . Kelley, P. F. Hillman, and . Liao, Dye laser principles : with applications, 1990.

J. W. Goodman, Introduction to Fourier optics, 2005.

T. Zemb and . Lindner, Neutrons, X-rays and light : scattering methods applied to soft condensed matter, 2002.

A. Einstein, Theotie der opaleszenz von homogenen flussigkeiten und flussigkeitsgemischen in der nahe des kritischen zustandes, Ann. Phys, vol.33, pp.1275-1298, 1910.

. De-koppel, Analysis of macromolecular polydispersity in intensity correlation spectroscopy : the method of cumulants, The Journal of Chemical Physics, vol.57, issue.11, pp.4814-4820, 1972.

S. R. Aragon and R. Pecora, Theory of dynamic light scattering from polydisperse systems, The Journal of Chemical Physics, vol.64, issue.6, pp.2395-2404, 1976.

B. Lorber, M. Fischer, H. Bailly, D. Roy, and . Kern, Protein analysis by dynamic light scattering : methods and techniques for students, Biochemistry and Molecular Biology Education, vol.40, issue.6, pp.372-382, 2012.

B. J. Berne and . Pecora, Laser light scattering from liquids. Annual review of physical chemistry, vol.25, pp.233-253, 1974.
DOI : 10.1146/annurev.pc.25.100174.001313

. Bj-frisken, Revisiting the method of cumulants for the analysis of dynamic lightscattering data, Applied Optics, vol.40, issue.24, pp.4087-4091, 2001.

. Ks-furukawa, Y. Ushida, . Sakai, J. Suzuki, T. Tanaka et al., Formation of human fibroblast aggregates (spheroids) by rotational culture, Cell Transplantation, vol.10, issue.4-1, pp.441-445, 2001.

N. E. Timmins and L. K. Nielsen, Generation of multicellular tumor spheroids by the hanging-drop method, Tissue Engineering, pp.141-151, 2007.

. Pd-kaplan, D. A. Trappe, and . Weitz, Light-scattering microscope, Applied Optics, vol.38, issue.19, pp.4151-4157, 1999.

F. Ferri, Use of a charge coupled device camera for low-angle elastic light scattering, Review of scientific instruments, vol.68, issue.6, pp.2265-2274, 1997.

A. F. Fercher, Flow visualization by means of single-exposure speckle photography, Optics communications, vol.37, issue.5, pp.326-330, 1981.
DOI : 10.1016/0030-4018(81)90428-4

J. D. Briers, Laser doppler, speckle and related techniques for blood perfusion mapping and imaging, Physiological measurement, vol.22, issue.4, p.35, 2001.

L. Cipelletti and D. A. Weitz, Ultralow-angle dynamic light scattering with a charge coupled device camera based multispeckle, multitau correlator, Review of scientific instruments, vol.70, issue.8, pp.3214-3221, 1999.

B. Brunel, . Blanch, . Gourrier, . Petrolli, J. Delon et al., Structure and dynamics of multicellular assemblies measured by coherent light scattering, New Journal of Physics, vol.19, issue.7, p.73033, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01525521

Q. Tseng, . Wang, . Duchemin-pelletier, . Azioune, . Carpi et al., A new micropatterning method of soft substrates reveals that different tumorigenic signals can promote or reduce cell contraction levels, Lab Chip, vol.11, issue.13, pp.2231-2240, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00611335

J. W. Goodman, Some fundamental properties of speckle, JOSA, vol.66, issue.11, pp.1145-1150, 1976.
DOI : 10.1364/josa.66.001145

J. S. Pedersen, Analysis of small-angle scattering data from colloids and polymer solutions : modeling and least-squares fitting, Advances in colloid and interface science, vol.70, pp.171-210, 1997.

J. Heaysman, Contact inhibition of locomotion : a reappraisal, International review of cytology, vol.55, pp.49-66, 1978.

M. Abercrombie, Contact inhibition and malignancy, Nature, vol.281, issue.5729, p.259, 1979.
DOI : 10.1038/281259a0

R. P. Millane, Phase retrieval in crystallography and optics, JOSA A, vol.7, issue.3, pp.394-411, 1990.

Y. Shechtman, . Eldar, . Cohen, J. Hn-chapman, M. Miao et al., Phase retrieval with application to optical imaging : a contemporary overview, IEEE signal processing magazine, vol.32, issue.3, pp.87-109, 2015.
DOI : 10.1109/msp.2014.2352673

URL : http://bib-pubdb1.desy.de//record/220020/files/1402.7350v1.pdf

O. Glatter, Convolution square root of band-limited symmetrical functions and its application to small-angle scattering data, Journal of Applied Crystallography, vol.14, issue.2, pp.101-108, 1981.

T. Colin, . Dechriste, . Fehrenbach, . Guillaume, C. Lobjois et al., Experimental estimation of stored stress within spherical microtissues, Journal of mathematical biology, pp.1-20, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01782340

. Ht-nia, G. Liu, . Seano, . Datta, . Jones et al., Solid stress and elastic energy as measures of tumour mechanopathology, Nature biomedical engineering, vol.1, issue.1, p.4, 2017.

M. Basan, J. Risler, . Joanny, J. Sastre-garau, and . Prost, Homeostatic competition drives tumor growth and metastasis nucleation, HFSP journal, vol.3, issue.4, pp.265-272, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00961019

J. M. Schmitt, A. H. Gandjbakhche, and R. F. Bonner, Use of polarized light to discriminate short-path photons in a multiply scattering medium, Applied optics, vol.31, issue.30, pp.6535-6546, 1992.

G. Phillies, Suppression of multiple scattering effects in quasielastic light scattering by homodyne cross-correlation techniques, The Journal of Chemical Physics, vol.74, issue.1, pp.260-262, 1981.

K. Schätzel, Suppression of multiple scattering by photon cross-correlation techniques, Journal of modern optics, vol.38, issue.9, pp.1849-1865, 1991.

J. Tualle, S. Tinet, and . Avrillier, A new and easy way to perform time-resolved measurements of the light scattered by a turbid medium, Optics communications, vol.189, issue.4-6, pp.211-220, 2001.

S. Andersson-engels, . Berg, and . Svanberg, Time-resolved transillumination for medical diagnostics, Optics letters, vol.15, issue.21, pp.1179-1181, 1990.

T. A. Wynn, J. W. Chawla, and . Pollard, Macrophage biology in development, homeostasis and disease, Nature, vol.496, issue.7446, p.445, 2013.

K. A. Sj-gardai, . Mcphillips, . Sc-frasch, . Wj-janssen, . Starefeldt et al., Cell-surface calreticulin initiates clearance of viable or apoptotic cells through trans-activation of lrp on the phagocyte, Cell, vol.123, issue.2, pp.321-334, 2005.

A. Hochreiter, -. , and K. S. Ravichandran, Clearing the dead : apoptotic cell sensing, recognition, engulfment, and digestion. Cold Spring Harbor perspectives in biology, vol.5, p.8748, 2013.

P. M. Henson and D. A. Hume, Apoptotic cell removal in development and tissue homeostasis, Trends in immunology, vol.27, issue.5, pp.244-250, 2006.

S. Nagata, K. Hanayama, and . Kawane, Autoimmunity and the clearance of dead cells, Cell, vol.140, issue.5, pp.619-630, 2010.

S. Franz, L. E. Gaipl, . Munoz, . Sheriff, . Beer et al., Apoptosis and autoimmunity : when apoptotic cells break their silence, Current rheumatology reports, vol.8, issue.4, p.245, 2006.

K. Lauber, . Bohn, Y. Sm-kröber, . Xiao, . Blumenthal et al., Apoptotic cells induce migration of phagocytes via caspase-3-mediated release of a lipid attraction signal, Cell, vol.113, issue.6, pp.717-730, 2003.

. Va-fadok, P. A. Voelker, J. J. Campbell, . Cohen, P. M. Dl-bratton et al., Exposure of phosphatidylserine on the surface of apoptotic lymphocytes triggers specific recognition and removal by macrophages, The Journal of Immunology, vol.148, issue.7, pp.2207-2216, 1992.

S. Tsuchiya, Y. Yamabe, Y. Yamaguchi, . Kobayashi, K. Konno et al., Establishment and characterization of a human acute monocytic leukemia cell line (thp-1), International journal of cancer, vol.26, issue.2, pp.171-176, 1980.

S. Mccartan, L. A. Powell, . Bd-green, A. Mceneny, and . Mcginty, The anti-atherogenic effects of eicosapentaenoic and docosahexaenoic acid are dependent on the stage of thp-1 macrophage differentiation, Journal of Functional Foods, vol.19, pp.958-969, 2015.

M. Stein, . Keshav, S. Harris, and . Gordon, Interleukin 4 potently enhances murine macrophage mannose receptor activity : a marker of alternative immunologic macrophage activation, Journal of Experimental Medicine, vol.176, issue.1, pp.287-292, 1992.

C. D. Mills, J. M. Kincaid, . Alt, A. M. Mj-heilman, and . Hill, M-1/m-2 macrophages and the th1/th2 paradigm, The Journal of Immunology, vol.164, issue.12, pp.6166-6173, 2000.

A. Mantovani, . Sica, . Sozzani, . Allavena, M. Vecchi et al., The chemokine system in diverse forms of macrophage activation and polarization, Trends in immunology, vol.25, issue.12, pp.677-686, 2004.

. Kc-navegantes, P. Gomes, P. G. Pereira, C. Czaikoski, M. C. Azevedo et al., Immune modulation of some autoimmune diseases : the critical role of macrophages and neutrophils in the innate and adaptive immunity, Journal of translational medicine, vol.15, issue.1, p.36, 2017.

G. E. Uhlenbeck and . Ornstein, On the theory of the brownian motion, Physical review, vol.36, issue.5, p.823, 1930.

C. L. Stokes, S. K. Da-lauffenburger, and . Williams, Migration of individual microvessel endothelial cells : stochastic model and parameter measurement, Journal of cell science, vol.99, issue.2, pp.419-430, 1991.

P. Wu, . Giri, D. Sx-sun, and . Wirtz, Three-dimensional cell migration does not follow a random walk, Proceedings of the National Academy of Sciences, p.201318967, 2014.

J. E. Glasgow, E. S. Farrell, . Fisher, and . Da-lauffenburger, The motile response of alveolar macro-phages, Am. Rev. Respir. Dis, vol.139, pp.320-329, 1989.

D. Be-farrell and D. A. Lauffenburger, Quantitative relationships between single-cell and cell-population model parameters for chemosensory migration responses of alveolar macrophages to c5a, Cell motility and the cytoskeleton, vol.16, issue.4, pp.279-293, 1990.

E. Bertseva, . Grebenkov, . Schmidhauser, . Gribkova, L. Jeney et al., Optical trapping microrheology in cultured human cells, The European Physical Journal E, vol.35, issue.7, p.63, 2012.

S. Elmore, Apoptosis : a review of programmed cell death, Toxicologic pathology, vol.35, issue.4, pp.495-516, 2007.

T. A. Ulrich, E. M. De-juan, S. Pardo, and . Kumar, The mechanical rigidity of the extracellular matrix regulates the structure, motility, and proliferation of glioma cells, Cancer research, vol.69, issue.10, pp.4167-4174, 2009.

C. Lee-thedieck, . Rauch, . Fiammengo, J. P. Klein, and . Spatz, Impact of substrate elasticity on human hematopoietic stem and progenitor cell adhesion and motility, J Cell Sci, p.95596, 2012.

A. Pathak and S. Kumar, Independent regulation of tumor cell migration by matrix stiffness and confinement, Proceedings of the National Academy of Sciences, vol.109, issue.26, pp.10334-10339, 2012.

P. W. Oakes, N. A. Patel, . Morin, . Dp-zitterbart, J. S. Fabry et al., Neutrophil morphology and migration are affected by substrate elasticity, Blood, vol.114, issue.7, pp.1387-1395, 2009.

P. Friedl and E. Bröcker, The biology of cell locomotion within three-dimensional extracellular matrix. Cellular and molecular life sciences CMLS, vol.57, pp.41-64, 2000.

E. Cukierman, . Pankov, K. M. Stevens, and . Yamada, Taking cell-matrix adhesions to the third dimension, Science, vol.294, issue.5547, pp.1708-1712, 2001.

D. J. Webb and A. F. Horwitz, New dimensions in cell migration, Nature Cell Biology, vol.5, issue.8, p.690, 2003.

M. H. Zaman, A. L. Trapani, . Sieminski, H. Mackellar, . Gong et al., Migration of tumor cells in 3d matrices is governed by matrix stiffness along with cell-matrix adhesion and proteolysis, Proceedings of the National Academy of Sciences, vol.103, issue.29, pp.10889-10894, 2006.

D. Bi, . Yang, M. L. Mc-marchetti, and . Manning, Motility-driven glass and jamming transitions in biological tissues, Physical Review X, vol.6, issue.2, p.21011, 2016.

. Pk-jain, . Lee, M. A. El-sayed, and . El-sayed, Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition : applications in biological imaging and biomedicine, The journal of physical chemistry B, vol.110, issue.14, pp.7238-7248, 2006.

S. Even and -. Yamada, Cell migration in 3d matrix. Current opinion in cell biology, vol.17, pp.524-532, 2005.

A. Jeffrey and . Zwillinger, Table of integrals, series, and products, 2007.

I. Figure, 4-Fonction de correlation C selon l'équation 29, avec L = 20 µm et A=0.1, (A) et distribution des déplacements associée (B)

, Vider les premiers jets, retour à la hotte : remplir 10mL de la seringue

, II Ajouter les cellules A partir de la solution intermédiaire :-préparer la cellule Mallassez : une goutte d'eau de chaque coté + lamelle tenue par les gouttes

. Compter, Compter 10 cases, nombre de cellules = N *10 kC/mL, p.20

. Rincer-mallassez,

, diluer la solution intermédiaire pour avoir 2kC/mL (*150 µL = 300 C/puits)

, mettre 150 µL/puits avec le multipipette parallèle ou une pipette normale

, Préparer l'échantillon spheroïde-préchauffer 3mL de milieu dans un Falcon

, mettre 1 mL de Polylisine dans une boîte de pétri et laisser 10 minutes ;-reprendre la Polylisine (ne pas la jeter)

, L'adhésion du sphéroïde sur le fond de la boîte de pétri se fait en 30 minutes environ