K. Bhat and . Pelletier, However, surveys are constrained by their low-update frequency by reason of their important cost and may be prone to a sampling bias. In addition, surveys generally report one day of trips per individual, which is not sufficient to capture all the temporal variations of trips (e.g., seasonality, weekly patterns). In recent years, population generates rising travel flows, increasing the need for efficient transport planning policies, 1999.

X. Ma, In most urban areas, multiple transport operators are in charge of public transport services and infrastructures. Each operator possesses travel data on its own transport network. Therefore, transport operators usually lack a global picture of the traffic state in the multimodal transport network. Such knowledge could be a valuable asset to evaluate and predict the impact of perturbations (e.g., congestion, public transport interruption, public transport strikes, road closure, meteorological events). In parallel, the pervasive use of mobile phones, along with their high penetration rates, have made mobile phone data the largest mobility data source. Call Detail Records (CDR) are collected at no additional cost by telecommunications operators for billing purposes, 2012.

G. Blondel, Travel demand modeling, 2013.

. Becker, traveler behavior understanding, 2010.

C. and B. , 2014) are among the most popular research areas

A. Bibliographie, . Vincent, A. Sylvain, B. Vincent, C. François et al., Using cell phone data to measure quality of service and passenger flows of Paris transit system, Transportation Research Part C : Emerging Technologies 43. Special Issue with Selected Papers from Transport Research Arena, pp.198-211, 2014.

A. , R. Anto, A. Siiri, S. Margus, and T. , Daily rhythms of suburban commuters' movements in the Tallinn metropolitan area : Case study with mobile positioning data, Transportation Research Part C : Emerging Technologies 18.1. Information/Communication Technologies and Travel Behaviour Agents in Traffic and Transportation, pp.45-54, 2010.

A. , L. Shan, J. Mikel, M. Marta, and C. González, Origindestination trips by purpose and time of day inferred from mobile phone data, Transportation Research Part C : Emerging Technologies, vol.58, pp.240-250, 2015.

A. , G. Natalia, A. Salvatore, and R. , Interactive visual clustering of large collections of trajectories, Visual Analytics Science and Technology, p.18, 2009.

, ARCEP, p.55, 2014.

A. , F. , A. Sultan, X. Haoyi, G. Vincent et al., CT-Mapper : Mapping sparse multimodal cellular trajectories using a multilayer transportation network, Computer Communications, vol.95, pp.69-81, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01412950

D. Bachir, G. Vincent, E. L. Mounim, . Yacoubi, and K. Ghazaleh, Using mobile phone data analysis for the estimation of daily urban dynamics, IEEE 20th International Conference on. IEEE, pp.626-632, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01745767

D. Bachir, K. Ghazaleh, G. Vincent, E. L. Mounim, . Yacoubi et al., Inferring Dynamic Origin-Destination Flows by Transport Mode using Mobile Phone Data, Transportation Research Part C : Emerging Technologies, p.72, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02043639

D. Bachir, K. Ghazaleh, G. Vincent, E. L. Mounim, E. Yacoubi et al., Combining Bayesian Inference and Clustering for Transport Mode Detection from Sparse and Noisy Geolocation Data, Joint European Conference on Machine Learning and Knowledge Discovery in Databases, pp.569-584, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01939608

B. , J. P. Dashun, W. , and A. Barabasi, Collective response of human populations to large-scale emergencies, PloS one 6, vol.3, p.39, 2011.

B. , M. Ali, D. Murat, and E. Nathan, Discovering spatiotemporal mobility profiles of cellphone users, World of Wireless, Mobile and Multimedia Networks & Workshops, 2009. WoWMoM, pp.1-9, 2009.

B. , R. A. Ramon, C. , and K. Hanson, Route classification using cellular handoff patterns, Proceedings of the 13th international conference on Ubiquitous computing, vol.71, p.1, 2011.

B. , M. , F. Calabrese, G. Di, and . Lorenzo, AllAboard : a system for exploring urban mobility and optimizing public transport using cellphone data, In : t. pt.III. IBM Research, vol.39, p.13, 2013.

, AllAboard : a system for exploring urban mobility and optimizing public transport using cellphone data, In : t. pt.III. IBM Research, p.72, 2013.

B. , C. R. Frank, and S. Koppelman, Activity-based modeling of travel demand, Handbook of transportation Science, p.71, 1999.

E. , M. , H. -. Peter, K. Jörg, S. Xiaowei et al., A densitybased algorithm for discovering clusters in large spatial databases with noise, In : Kdd. T. 96, vol.34, p.33, 1996.

A. Furno, F. Marco, S. Razvan, Z. Cezary, and S. Zbigniew, A tale of ten cities : Characterizing signatures of mobile traffic in urban areas, IEEE Transactions on Mobile Computing 16, vol.10, pp.2682-2696, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01514398

A. Furno, S. Razvan, and F. Marco, A comparative evaluation of urban fabric detection techniques based on mobile traffic data, Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, vol.45, p.40, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01246620

G. Gadzi´nski, Perspectives of the use of smartphones in travel behaviour studies : Findings from a literature review and a pilot study, Transportation Research Part C : Emerging Technologies, vol.88, p.1, 2018.

G. , S. Padhraic, and S. , Trajectory clustering with mixtures of regression models, Proceedings of the fifth ACM SIGKDD international conference on Knowledge discovery and data mining, p.18, 1999.

G. , P. , A. E. Raftery, and H. Sevcíková, World population stabilization unlikely this century, Science 346, vol.6206, p.1, 2014.

G. , F. Andrea, V. Alexandre, G. Assaf, B. Carlo et al., Towards estimating the presence of visitors from the aggregate mobile phone network activity they generate, Intl. Conference on Computers in Urban Planning and Urban Management, p.39, 2009.

G. , C. Y. , J. Dauwels, and N. Mitrovic, Online map-matching based on hidden markov model for real-time traffic sensing applications, 2012 15th International IEEE Conference on Intelligent Transportation Systems, p.14, 2012.

G. , M. C. Cesar, A. Hidalgo, and A. Barabasi, Understanding individual human mobility patterns, Nature 453, vol.7196, pp.26-28, 2008.

G. , P. , J. Weinstein, and S. Barbeau, Automating mode detection using neural networks and assisted GPS data collected using GPS-enabled mobile phones, 15th World congress on intelligent transportation systems, p.15, 2008.

H. , M. Michalis, and V. , Clustering validity assessment : Finding the optimal partitioning of a data set, Proceedings IEEE International Conference on. IEEE, p.36, 2001.

C. Horn, K. Stefan, C. Michael, and R. Thomas, Detecting outliers in cell phone data : correcting trajectories to improve traffic modeling, Transportation Research Record : Journal of the Transportation Research Board 2405, p.9, 2014.

C. Hu, C. Wu, C. Yongqi, and L. Dajie, Adaptive Kalman filtering for vehicle navigation, 2009.

H. , T. Teodor, M. Matei, and Z. , Scaling the Mobile Millennium system in the cloud, Proceedings of the 2nd ACM Symposium on Cloud Computing. ACM, p.14, 2011.

. Insee, Type IRIS, p.44, 2013.

I. , M. Shahadat, F. Charisma, . Choudhury, W. Pu et al., Development of origin-destination matrices using mobile phone call data, Transportation Research Part C : Emerging Technologies, vol.40, pp.63-74, 2014.

J. , A. Hesham, and A. Rakha, Applying machine learning techniques to transportation mode recognition using mobile phone sensor data, IEEE transactions on intelligent transportation systems 16.5, p.39, 2015.

J. , O. Rein, A. Frank, and W. , Understanding monthly variability in human activity spaces : A twelve-month study using mobile phone call detail records, Transportation Research Part C : Emerging Technologies, vol.38, pp.122-135, 2014.

J. Chapitre-7-bibliographie, J. Shan, . Ferreira, C. Marta, and . Gonzalez, Activity-based human mobility patterns inferred from mobile phone data : A case study of Singapore, IEEE Transactions on Big Data, pp.208-219, 2017.

J. , S. Gaston, A. Fiore, and Y. Yingxiang, A review of urban computing for mobile phone traces : current methods, challenges and opportunities, Proceedings of the 2nd ACM SIGKDD international workshop on Urban Computing, p.10, 2013.

K. , H. , J. Kim, K. , and L. I. , Similarity measures for trajectory of moving objects in cellular space, Proceedings of the 2009 ACM symposium on Applied Computing, p.18, 2009.

L. Kaufman, J. Peter, and . Rousseeuw, Finding groups in data : an introduction to cluster analysis. T. 344, p.34, 2009.

K. , G. Vincent, G. Marco, F. Mounim, and A. El-yacoubi, Estimation of Static and Dynamic Urban Populations with Mobile Network Metadata, IEEE Transactions on Mobile Computing, vol.12, p.59, 2018.

K. , G. Vincent, G. Mounim, E. Marco, and F. , Population estimation from mobile network traffic metadata, World of Wireless, Mobile and Multimedia Networks (WoWMoM), pp.1-9, 2016.

, Population estimation from mobile network traffic metadata, World of Wireless, Mobile and Multimedia Networks (WoWMoM), vol.40, p.11, 2016.

K. , G. Francesco, C. , C. R. Vincent, and D. Blondel, Urban gravity : a model for inter-city telecommunication flows, Journal of Statistical Mechanics : Theory and Experiment, vol.07, p.10, 2009.

L. , A. Nabavi, A. Julien, P. Mathieu, B. Cezary et al., Investigating the Mobile Phone Data to Estimate the Origin Destination Flow and Analysis ; Case Study : Paris Region, Transportation Research Procedia, vol.6, p.15, 2015.

L. , J. Jiawei, H. Xiaolei, and L. I. , Trajectory outlier detection : A partition-anddetect framework, IEEE 24th International Conference on. IEEE, p.18, 2008.

L. , W. , and F. Van-audenhove, The future of urban mobility : Towards networked, multimodal cities in 2050, In : Public Transport InternationalEnglish Edition, vol.61, p.1, 2012.

L. , F. Zhijie, and Z. , Adaptive density trajectory cluster based on time and space distance, Physica A : Statistical Mechanics and its Applications, vol.484, p.18, 2017.

Y. Liu, L. I. Zhongmou, X. Hui, G. Xuedong, and W. U. Junjie, Understanding of internal clustering validation measures, IEEE 10th International Conference on. IEEE, vol.36, p.35, 2010.

M. A. , X. Yao-jan, W. U. Yinhai, W. Feng, C. Jianfeng et al., Mining smart card data for transit riders' travel patterns, Transportation Research Part C : Emerging Technologies, vol.36, p.71, 2013.

M. and M. G. , The four step model, 2000.

M. and J. , Generating surface models of population using dasymetric mapping, The Professional Geographer, vol.55, p.11, 2003.

M. , M. A. Carolina, and P. , Estimation of a disaggregate multimodal public transport Origin-Destination matrix from passive smartcard data from, Transportation Research Part C : Emerging Technologies, vol.24, p.71, 2012.

N. I. , L. Xiaokun, (. Cara, ). Wang, and . Xiqun, A spatial econometric model for travel flow analysis and real-world applications with massive mobile phone data, Transportation Research Part C : Emerging Technologies, vol.86, p.72, 2018.

. Osm, , vol.74, p.29, 2018.

P. , L. Xiaolin, C. Sanjay, L. Wei, and Z. Yu, On detection of emerging anomalous traffic patterns using GPS data, Data & Knowledge Engineering, vol.87, pp.357-373, 2013.

P. , M. -. Pier, T. Martin, and M. Catherine, Smart card data use in public transit : A literature review, Transportation Research Part C : Emerging Technologies 19, vol.4, p.71, 2011.

R. , C. Dennis, F. , R. Maria, P. Sarah et al., Mobile landscapes : using location data from cell phones for urban analysis, Environment and Planning B : Planning and Design 33, vol.5, p.23, 2006.

Y. E. , Y. Yu, Z. Yukun, C. Jianhua, F. Xing et al., Mining individual life pattern based on location history, Mobile Data Management : Systems, Services and Middleware, 2009. MDM'09. Tenth International Conference on. IEEE, p.18, 2009.

Y. , J. Yu, Z. Chengyang, Z. Xing, X. Guang-zhong et al., An interactive-voting based map matching algorithm, Mobile Data Management (MDM), 2010 Eleventh International Conference on. IEEE, p.15, 2010.

Y. , Y. Martin, and R. , Measuring similarity of mobile phone user trajectories-a Spatio-temporal Edit Distance method, International Journal of Geographical Information Science, vol.28, p.18, 2014.

Z. , Y. Xing, and X. , Learning travel recommendations from user-generated GPS traces, ACM Transactions on Intelligent Systems and Technology (TIST) 2.1, p.18, 2011.

G. Zhong, W. Xia, Z. Jian, Y. Tingting, and R. Bin, Characterizing passenger flow for a transportation hub based on mobile phone data, IEEE Transactions on Intelligent Transportation Systems 18, vol.6, pp.1507-1518, 2017.

, Chapitre 7 Bibliographie