Skip to Main content Skip to Navigation

Isolement et caractérisation des bactéries marines hydrocarbonoclastes, production des biosurfactants et étude de la biodiversité microbienne au sein de trois ports de Sfax, Tunisie

Abstract : Pollution of coastal marine ecosystems by hydrocarbons, in particular polycyclic aromatic hydrocarbons (PAHs), is a major environmental problem. The South coast of Sfax (Tunisia) is an example of a polluted ecosystem subject to both urbanization and industrialization including the outfall of untreated domestic sewage and wastewaters, fishery activities, as well as ship traffic and boat pollution. The physico-chemical characterization of the seawater taken from three harbours (pleasure, commercial and fishing) of the city of Sfax, showed a heavy contamination by organic and inorganic micropollutants. These are excellent tracers of urban and industrial pollution, and they are among the most toxic compounds due to their low biodegradation.The molecular fingerprinting technique (PCR-SSCP) showed the dominance of the Bacteria domain followed by Eucarya and Archaea within the studied marine samples. Statistical analysis using the R software, showed that no correlation was identified between the bacterial community identified by PCR-SSCP and the studied physico-chemical parameters.In another part, four marine, aerobic and hydrocarbonoclastic strains: Bacillus stratosphericus FLU5, Pseudomonas aeruginosa NAPH6, Bacillus licheniformis PYR2, isolated after enrichments on fluoranthene, naphthalene and pyrene, respectively, and in the presence of 30 g/l NaCl. Strain Staphylococcus sp. CO100 was isolated after enrichment on crude oil, in the presence of 100 g/l. Chromatographic analysis (GC-MS or GC-FID), showed the interesting biodegradative capacities of these recalcitrant compounds by the isolated bacteria.Besides, these strains showed their capacity to produce efficient surface active agents BS-FLU5, BS-NAPH6, BS-PYR2 and BS-CO100, on several substrates and in particular the residual frying oil, which is a cheap and renewable carbon source alternative, thus minimizing the high cost of producing surfactants. The MALDI-TOF/MS analysis of the purified BS-FLU5, BS-PYR2 and BS-CO100 biosurfactants revealed that they are belonging to lipopeptide family. FTIR analysis showed the glycolipid nature, more precisely the rhamnolipid type, of biosurfactant BS-NAPH6.These four biosurfactants are characterized by interesting tensioactive properties (low CMC, important surface tension reduction...). Furthermore, these surface active agents showed interest stability against a broad range of pH, temperature and salinity. The application of these biosurfactants, in oil recovery, from hydrocarbons-contaminated soil, showed that they were more effective on the hydrocarbon-remobilization than some tested synthetic surfactants. The biosurfactants BS-FLU5, BS-PYR2 and BS-CO100, were found to have notable anti-adhesif and anti-biofilm activities, being able to prevent and eliminate the biofilm formation by pathogenic microorganisms. Moreover, the four tested biosurfactants showed an interesting healing activity, on the wound site in a rat model. They increased significantly the percentage of wound closure when compared to the untreated and CICAFLORA® (a reference pharmaceutical product) treated groups, using two different concentrations (5 and 10 mg/l). Interestingly, the evaluation of the cytotoxicity of the studied biosurfactants, showed that they have no toxic effects on human HEK-239 cells at concentrations up to 1000 μg/ml for BS-FLU5 and BS-CO100 and up to 200 μg/ml for BS-NAPH6 and BS-PYR2. An attempt to produce biosurfactant produce by strain FLU5 on a pilot-scale (fermentors of 20 and 100 liter, as total volume), using a cost-effective medium, was also performed. Preliminary results showed an increase in the quantities of biosurfactantsBS-FLU5 produced on a pilot-scale compared to the lab-scale (Erlenmeyer of 1 liter).These results highlight the interest for potential use of strains FLU5, NAPH6, PYR2 and CO100, as well as their biosurfactants, in a wide variety of industrial, environmental and biotechnological applications.
Document type :
Complete list of metadatas

Cited literature [414 references]  Display  Hide  Download
Contributor : Abes Star :  Contact
Submitted on : Friday, February 22, 2019 - 1:30:08 PM
Last modification on : Wednesday, October 14, 2020 - 4:09:30 AM
Long-term archiving on: : Thursday, May 23, 2019 - 2:31:01 PM


Version validated by the jury (STAR)


  • HAL Id : tel-02045890, version 1


Dorra Hentati. Isolement et caractérisation des bactéries marines hydrocarbonoclastes, production des biosurfactants et étude de la biodiversité microbienne au sein de trois ports de Sfax, Tunisie. Microbiologie et Parasitologie. Université Montpellier; Université de Sfax (Tunisie), 2018. Français. ⟨NNT : 2018MONTG064⟩. ⟨tel-02045890⟩



Record views


Files downloads