[. Bringmann, Pattern-based classification: a unifying perspective, 2011.

[. Buzmakov, The representation of sequential patterns and their projections within formal concept analysis, Workshop Notes for LML (PKDD), 2013.
URL : https://hal.archives-ouvertes.fr/hal-00910266

. Chevaleyre, Y. Zucker-;-chevaleyre, and J. Zucker, Solving multipleinstance and multiple-part learning problems with decision trees and rule sets. application to the mutagenesis problem, Conference of the Canadian Society for Computational Studies of Intelligence, pp.204-214, 2001.
URL : https://hal.archives-ouvertes.fr/hal-01571852

W. W. Cohen-;-cohen, Fast effective rule induction, Proceedings of the International Conference on Machine Learning, pp.115-123, 1995.

[. Cordier, Distributed chronicles for on-line diagnosis of web services, 18th International Workshop on Principles of Diagnosis, pp.37-44, 2007.
URL : https://hal.archives-ouvertes.fr/inria-00463008

[. Cram, A complete chronicle discovery approach: application to activity analysis, Expert Systems, vol.29, issue.4, pp.321-346, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01354577

. De-smedt, Behavioral constraint pattern-based sequence classification, Machine Learning and Knowledge Discovery in Databases-European Conference, ECML PKDD, pp.20-36, 2017.

. Dean, J. Dean, and S. Ghemawat, Mapreduce: simplified data processing on large clusters, Communications of the ACM, vol.51, issue.1, pp.107-113, 2008.

[. Dechter, Temporal constraint networks, Artificial intelligence, vol.49, pp.61-95, 1991.

[. Dietterich, Solving the multiple instance problem with axis-parallel rectangles, Artificial intelligence, vol.89, issue.1, pp.31-71, 1997.

L. Dong, G. Dong, and J. Li, Efficient mining of emerging patterns: Discovering trends and differences, Proceedings of the fifth ACM SIGKDD international conference on Knowledge discovery and data mining, pp.43-52, 1999.

R. ;. Doran, G. Doran, and S. Ray, A theoretical and empirical analysis of support vector machine methods for multiple-instance classification, Machine Learning, vol.97, pp.79-102, 2014.

. Dousson, C. Duong-;-dousson, and T. V. Duong, Discovering chronicles with numerical time constraints from alarm logs for monitoring dynamic systems, Proceedings of International Conference on Artificial Intelligence, pp.620-626, 1999.

[. Duivesteijn, Exceptional model mining, Data Mining and Knowledge Discovery, vol.30, issue.1, pp.47-98, 2016.

[. Fabrègue, Discriminant temporal patterns for linking physico-chemistry and biology in hydro-ecosystem assessment, Ecological Informatics, vol.24, pp.210-221, 2014.

[. Fabrègue, Orderspan: Mining closed partially ordered patterns, International Symposium on Intelligent Data Analysis, pp.186-197, 2013.

F. Foulds, J. Foulds, and E. Frank, A review of multi-instance learning assumptions, The Knowledge Engineering Review, vol.25, issue.01, pp.1-25, 2010.

D. Fradkin-and-mörchen-;-fradkin and F. Mörchen, Mining sequential patterns for classification, Knowledge and Information Systems, vol.45, issue.3, pp.731-749, 2015.

[. Garofalakis, Spirit: Sequential pattern mining with regular expression constraints, Proceedings of VLDB, vol.99, pp.7-10, 1999.

[. Gärtner, Multiinstance kernels, Proceedings of ICML, vol.2, pp.179-186, 2002.

[. Giannotti, Efficient mining of temporally annotated sequences, Proceedings of the 2006 SIAM International Conference on Data Mining, pp.348-359, 2006.
DOI : 10.1137/1.9781611972764.31

URL : https://epubs.siam.org/doi/pdf/10.1137/1.9781611972764.31

[. Guyet, Declarative sequential pattern mining of care pathways, Conference on Artificial Intelligence in Medicine in Europe, pp.261-266, 2017.
DOI : 10.1007/978-3-319-59758-4_29

URL : https://hal.archives-ouvertes.fr/hal-01569023

T. Guyet and R. Quiniou, Extracting temporal patterns from interval-based sequences, Proceedings of International Joint Conference on Artificial Intelligence, pp.1306-1311, 2011.
URL : https://hal.archives-ouvertes.fr/inria-00618444

[. Han, Freespan: frequent pattern-projected sequential pattern mining, Proceedings of the sixth ACM SIGKDD international conference on Knowledge discovery and data mining, pp.355-359, 2000.

[. Han, Prefixspan: Mining sequential patterns efficiently by prefix-projected pattern growth, Proceedings of the 17th international conference on data engineering, pp.215-224, 2001.

[. Han, Mining frequent patterns without candidate generation, ACM sigmod record, vol.29, pp.1-12, 2000.
DOI : 10.1145/335191.335372

[. Herrera, An overview on subgroup discovery: foundations and applications, Knowledge and information systems, vol.29, issue.3, pp.495-525, 2011.
DOI : 10.1007/s10115-010-0356-2

T. K. Ho, The random subspace method for constructing decision forests, Proceedings of the Third International Conference on Document Analysis and Recognition, vol.1, pp.832-844, 1995.

. Huang, On mining clinical pathway patterns from medical behaviors, Artificial Intelligence in Medicine, vol.56, issue.1, pp.35-50, 2012.
DOI : 10.1016/j.artmed.2012.06.002

[. Knobbe, From local patterns to global models: the LeGo approach to data mining, LeGo, vol.8, pp.1-16, 2008.

[. Lakshmanan, Investigating clinical care pathways correlated with outcomes, Business process management, pp.323-338, 2013.
DOI : 10.1007/978-3-642-40176-3_27

[. Lattner, Experimental comparison of symbolic learning programs for the classification of gene network topology models, Center for Computing Technologies-TZI, vol.2, p.1, 2003.

[. Li, Pfp: parallel fpgrowth for query recommendation, Proceedings of the conference on Recommender systems, pp.107-114, 2008.

Z. C. Lipton, The doctor just won't accept that! arXiv preprint, 2016.

[. Lou, Intelligible models for classification and regression, Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data mining, pp.150-158, 2012.
DOI : 10.1145/2339530.2339556

URL : http://www.cs.cornell.edu/~yinlou/papers/lou-kdd12.pdf

[. Luo, C. Luo, C. Chung, and S. M. , A scalable algorithm for mining maximal frequent sequences using a sample, Knowledge and Information Systems, vol.15, issue.2, pp.149-179, 2008.
DOI : 10.1007/s10115-006-0056-0

L. Ma, B. L. Ma, Y. Liu, and B. , Integrating classification and association rule mining, Proceedings of the fourth international conference on knowledge discovery and data mining, 1998.

N. R. Mabroukeh and C. I. Ezeife, A taxonomy of sequential pattern mining algorithms, ACM Journal of Computing Survey, vol.43, issue.1, pp.1-41, 2010.

[. Mannila, Discovery of frequent episodes in event sequences, Data mining and knowledge discovery, vol.1, issue.3, pp.259-289, 1997.

[. Mäntyjärvi, Sensor signal data set for exploring context recognition of mobile devices, Proc. of 2nd Int. Conf. on Pervasive Computing (PERVASIVE 2004), pp.18-23, 2004.