Skip to Main content Skip to Navigation
Theses

Discriminant chronicle mining

Yann Dauxais 1, 2
2 LACODAM - Large Scale Collaborative Data Mining
Inria Rennes – Bretagne Atlantique , IRISA-D7 - GESTION DES DONNÉES ET DE LA CONNAISSANCE
Résumé : De nombreuses données sont enregistrées dans le cadre d'applications variées et leur analyse est un challenge abordé par de nombreuses études. Parmi ces différentes applications, cette thèse est motivée par l'analyse de parcours patients pour mener des études de pharmaco-épidémiologie. La pharmaco-épidémiologie est l'étude des usages et effets de produits de santé au sein de populations définies. Le but est donc d'automatiser ce type d'étude en analysant des données. Parmi les méthodes d'analyses de données, les approches d'extraction de motifs extraient des descriptions de comportements, appelées motifs, caractérisant ces données. L'intérêt principal de telles approches est de donner un aperçu des comportements décrivant les données. Dans cette thèse, nous nous intéressons à l'extraction de motifs temporels discriminants au sein de séquences temporelles, c'est-à-dire une liste d'évènements datés. Les motifs temporels sont des motifs représentant des comportements par leur dimension temporelle. Les motifs discriminants sont des motifs représentant les comportements apparaissant uniquement pour une sous-population bien définie. Alors que les motifs temporels sont essentiels pour décrire des données temporelles et que les motifs discriminants le sont pour décrire des différences de comportement, les motifs temporels discriminants ne sont que peu étudiés. Dans cette thèse, le modèle de chronique discriminante est proposé pour combler le manque d'approches d'extraction de motifs temporels discriminants. Une chronique est un motif temporelle représentable sous forme de graphe dont les nœuds sont des évènements et les arêtes sont des contraintes temporelles numériques. Le modèle de chronique a été choisi pour son expressivité concernant la dimension temporelle. Les chroniques discriminantes sont, de ce fait, les seuls motifs temporels discriminants représentant numériquement l'information temporelle. Les contributions de cette thèse sont : (i) un algorithme d'extraction de chroniques discriminantes (DCM), (ii) l'étude de l'interprétabilité du modèle de chronique au travers de sa généralisation et (iii) l'application de DCM sur des données de pharmaco-épidémiologie. L'algorithme DCM est dédié à l'extraction de chroniques discriminantes et basé sur l'algorithme d'extraction de règles numériques Ripperk . Utiliser Ripperk permet de tirer avantage de son efficacité et de son heuristique incomplète évitant la génération de motifs redondants. La généralisation de cet algorithme permet de remplacer Ripperk par n'importe quel algorithme de machine learning. Les motifs extraits ne sont donc plus forcément des chroniques mais une forme généralisée de celles-ci. Un algorithme de machine learning plus expressif extrait des chroniques généralisées plus expressives mais impacte négativement leur interprétabilité. Le compromis entre ce gain en expressivité, évalué au travers de la précision de classification, et cette perte d'interprétabilité, est comparé pour plusieurs types de chroniques généralisées. L'intérêt des chroniques discriminantes à représenter des comportements et l'efficacité de DCM est validée sur des données réelles et synthétiques dans le contexte de classification à base de motifs. Des chroniques ont finalement été extraites à partir des données de pharmaco-épidémiologie et présentées aux cliniciens. Ces derniers ont validés l'intérêt de celles-ci pour décrire des comportements d'épidémiologie discriminants.
Document type :
Theses
Complete list of metadatas

Cited literature [101 references]  Display  Hide  Download

https://tel.archives-ouvertes.fr/tel-02044269
Contributor : Abes Star :  Contact
Submitted on : Thursday, February 21, 2019 - 2:04:07 PM
Last modification on : Wednesday, June 24, 2020 - 4:19:47 PM
Document(s) archivé(s) le : Wednesday, May 22, 2019 - 3:51:15 PM

File

DAUXAIS_Yann.pdf
Version validated by the jury (STAR)

Identifiers

  • HAL Id : tel-02044269, version 1

Citation

Yann Dauxais. Discriminant chronicle mining. Databases [cs.DB]. Université Rennes 1, 2018. English. ⟨NNT : 2018REN1S052⟩. ⟨tel-02044269⟩

Share

Metrics

Record views

169

Files downloads

1342